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Preface

Machine learning is a name that is gaining popularity as an umbrella and evolution for methods that
have been studied and developed for many decades in different scientific communities and under differ-
ent names, such as statistical learning, statistical signal processing, pattern recognition, adaptive signal
processing, image processing and analysis, system identification and control, data mining and infor-
mation retrieval, computer vision, and computational learning. The name “machine learning” indicates
what all these disciplines have in common, that is, to learn from data, and then make predictions. What
one tries to learn from data is their underlying structure and regularities, via the development of a
model, which can then be used to provide predictions.

To this end, a number of diverse approaches have been developed, ranging from optimization of cost
functions, whose goal is to optimize the deviation between what one observes from data and what the
model predicts, to probabilistic models that attempt to model the statistical properties of the observed
data.

The goal of this book is to approach the machine learning discipline in a unifying context, by pre-
senting major paths and approaches that have been followed over the years, without giving preference
to a specific one. It is the author’s belief that all of them are valuable to the newcomer who wants to
learn the secrets of this topic, from the applications as well as from the pedagogic point of view. As the
title of the book indicates, the emphasis is on the processing and analysis front of machine learning and
not on topics concerning the theory of learning itself and related performance bounds. In other words,
the focus is on methods and algorithms closer to the application level.

The book is the outgrowth of more than three decades of the author’s experience in research and
teaching various related courses. The book is written in such a way that individual (or pairs of) chapters
are as self-contained as possible. So, one can select and combine chapters according to the focus he/she
wants to give to the course he/she teaches, or to the topics he/she wants to grasp in a first reading. Some
guidelines on how one can use the book for different courses are provided in the introductory chapter.

Each chapter grows by starting from the basics and evolving to embrace more recent advances.
Some of the topics had to be split into two chapters, such as sparsity-aware learning, Bayesian learning,
probabilistic graphical models, and Monte Carlo methods. The book addresses the needs of advanced
graduate, postgraduate, and research students as well as of practicing scientists and engineers whose
interests lie beyond black-box approaches. Also, the book can serve the needs of short courses on spe-
cific topics, e.g., sparse modeling, Bayesian learning, probabilistic graphical models, neural networks
and deep learning.

Second Edition

The first edition of the book, published in 2015, covered advances in the machine learning area up to
2013-2014. These years coincide with the start of a real booming in research activity in the field of deep
learning that really reshaped our related knowledge and revolutionized the field of machine learning.
The main emphasis of the current edition was to, basically, rewrite Chapter 18. The chapter now covers
a review of the field, starting from the early days of the perceptron and the perceptron rule, until
the most recent advances, including convolutional neural networks (CNNs), recurrent neural networks
(RNNS5), adversarial examples, generative adversarial networks (GANs), and capsule networks.
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Also, the second edition covers in a more extended and detailed way nonparametric Bayesian meth-
ods, such as Chinese restaurant processes (CRPs) and Indian buffet processes (IBPs). It is the author’s
belief that Bayesian methods will gain in importance in the years to come. Of course, only time can
tell whether this will happen or not. However, the author’s feeling is that uncertainty is going to be
a major part of the future models and Bayesian techniques can be, at least in principle, a reasonable
start. Concerning the other chapters, besides the (omnipresent!) typos that have been corrected, changes
have been included here and there to make the text easier to read, thanks to suggestions by students,
colleagues, and reviewers; I am deeply indebted to all of them.

Most of the chapters include MATLAB® exercises, and the related code is freely available from
the book’s companion website. Furthermore, in the second edition, all the computer exercises are also
given in Python together with the corresponding code, which are also freely available via the website
of the book. Finally, some of the computer exercises in Chapter 18 that are related to deep learning,
and which are closer to practical applications, are given in Tensorflow.

The solutions manual as well lecture slides are available from the book’s website for instructors.

In the second edition, all appendices have been moved to the website associated with the book, and
they are freely downloadable. This was done in an effort to save space in a book that is already more
than 1100 pages. Also, some sections dedicated to methods that were present in various chapters in the
first edition, which I felt do not constitute basic knowledge and current mainstream research topics,
while they were new and “fashionable” in 2015, have been moved, and they can be downloaded from
the companion website of the book.

Instructor site URL:
http://textbooks.elsevier.com/web/Manuals.aspx ?isbn=9780128 188033
Companion Site URL:

https://www.elsevier.com/books-and-journals/book-companion/9780128188033
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Notation

I have made an effort to keep a consistent mathematical notation throughout the book. Although every
symbol is defined in the text prior to its use, it may be convenient for the reader to have the list of major
symbols summarized together. The list is presented below:

Vectors are denoted with boldface letters, such as x.

Matrices are denoted with capital letters, such as A.

The determinant of a matrix is denoted as det{A}, and sometimes as |A]|.

A diagonal matrix with elements ay, az, ..., a; in its diagonal is denoted as A = diag{aj, a2, ..., a;}.
The identity matrix is denoted as /.

The trace of a matrix is denoted as trace{A}.

Random variables are denoted with roman fonts, such as x, and their corresponding values with
mathmode letters, such as x.

Similarly, random vectors are denoted with roman boldface, such as x, and the corresponding values
as x. The same is true for random matrices, denoted as X and their values as X.

Probability values for discrete random variables are denoted by capital P, and probability density
functions (PDFs), for continuous random variables, are denoted by lower case p.

The vectors are assumed to be column-vectors. In other words,

X1 x(1)

X2 x(2)
x = ) ,orx =

x.z x(.l)

That is, the ith element of a vector can be represented either with a subscript, x;, or as x ().
Matrices are written as

X1 X12 ... Xy X1,y x1,2) ... X{1,D
X = : o ,or X = : . :
X1 X2 ... X[ XU, X2 ... X{U)D
Transposition of a vector is denoted as x” and the Hermitian transposition as x .
Complex conjugation of a complex number is denoted as x* and also /—1 := j. The symbol “:=
denotes definition.
The sets of real, complex, integer, and natural numbers are denoted as R, C, Z, and N, respectively.
Sequences of numbers (vectors) are denoted as x, (x,) or x(n) (x(n)) depending on the context.
Functions are denoted with lower case letters, e.g., f, or in terms of their arguments, e.g., f(x) or
sometimes as f(-), if no specific argument is used, to indicate a function of a single argument, or
f (-, ) for a function of two arguments and so on.

(L)
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1.1 THE HISTORICAL CONTEXT

During the period that covers, roughly, the last 250 years, humankind has lived and experienced three
transforming revolutions, which have been powered by technology and science. The first industrial
revolution was based on the use of water and steam and its origins are traced to the end of the 18th
century, when the first organized factories appeared in England. The second industrial revolution was
powered by the use of electricity and mass production, and its “birth” is traced back to around the turn
of the 20th century. The third industrial revolution was fueled by the use of electronics, information
technology, and the adoption of automation in production. Its origins coincide with the end of the
Second World War.

Although difficult for humans, including historians, to put a stamp on the age in which they them-
selves live, more and more people are claiming that the fourth industrial revolution has already started
and is fast transforming everything that we know and learned to live with so far. The fourth industrial
revolution builds upon the third one and is powered by the fusion of a number of technologies, e.g.,

Machine Learning. https://doi.org/10.1016/B978-0-12-818803-3.00010-6 1
Copyright © 2020 Elsevier Ltd. All rights reserved.


https://doi.org/10.1016/B978-0-12-818803-3.00010-6

2 CHAPTER 1 INTRODUCTION

computers and communications (internet), and it is characterized by the convergence of the physical,
digital, and biological spheres.

The terms artificial intelligence (AI) and machine learning are used and spread more and more to
denote the type of automation technology that is used in the production (industry), in the distribution of
goods (commerce), in the service sector, and in our economic transactions (e.g., banking). Moreover,
these technologies affect and shape the way we socialize and interact as humans via social networks,
and the way we entertain ourselves, involving games and cultural products such as music and movies.

A distinct qualitative difference of the fourth, compared to the previous industrial revolutions, is
that, before, it was the manual skills of humans that were gradually replaced by “machines.” In the
one that we are currently experiencing, mental skills are also replaced by “machines.” We now have
automatic answering software that runs on computers, less people are serving us in banks, and many
jobs in the service sector have been taken over by computers and related software platforms. Soon, we
are going to have cars without drivers and drones for deliveries. At the same time, new jobs, needs,
and opportunities appear and are created. The labor market is fast changing and new competences and
skills are and will be required in the future (see, e.g., [22,23]).

At the center of this historical happening, as one of the key enabling technologies, lies a discipline
that deals with data and whose goal is to extract information and related knowledge that is hidden in
it, in order to make predictions and, subsequently, take decisions. That is, the goal of this discipline is
to learn from data. This is analogous to what humans do in order to reach decisions. Learning through
the senses, personal experience, and the knowledge that propagates from generation to generation is
at the heart of human intelligence. Also, at the center of any scientific field lies the development of
models (often called theories) in order to explain the available experimental evidence. In other words,
data comprise a major source of learning.

1.2 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

The title of the book refers to machine learning, although the term artificial intelligence is used more
and more, especially in the media but also by some experts, to refer to any type of algorithms and
methods that perform tasks that traditionally required human intelligence. Being aware that definitions
of terms can never be exact and there is always some “vagueness” around their respective meanings,
I will still attempt to clarify what I mean by machine learning and in which aspects this term means
something different from Al. No doubt, there may be different views on this.

Although the term machine learning was popularized fairly recently, as a scientific field it is an
old one, whose roots go back to statistics, computer science, information theory, signal processing,
and automatic control. Examples of some related names from the past are statistical learning, pattern
recognition, adaptive signal processing, system identification, image analysis, and speech recognition.
What all these disciplines have in common is that they process data, develop models that are data-
adaptive, and subsequently make predictions that can lead to decisions. Most of the basic theories and
algorithmic tools that are used today had already been developed and known before the dawn of this
century. With a “small” yet important difference: the available data, as well as the computer power
prior to 2000, were not enough to use some of the more elaborate and complex models that had been
developed. The terrain started changing after 2000, in particular around 2010. Large data sets were
gradually created and the computer power became affordable to allow the use of more complex mod-
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els. In turn, more and more applications adopted such algorithmic techniques. “Learning from data”
became the new trend and the term machine learning prevailed as an umbrella for such techniques.

Moreover, the big difference was made with the use and “rediscovery” of what is today known
as deep neural networks. These models offered impressive predictive accuracies that had never been
achieved by previous models. In turn, these successes paved the way for the adoption of such models in
a wide range of applications and also ignited intense research, and new versions and models have been
proposed. These days, another term that is catching up is “data science,” indicating the emphasis on
how one can develop robust machine learning and computational techniques that deal efficiently with
large-scale data.

However, the main rationale, which runs the spine of all the methods that come under the machine
learning umbrella, remains the same and it has been around for many decades. The main concept is
to estimate a set of parameters that describe the model, using the available data and, in the sequel,
to make predictions based on low-level information and signals. One may easily argue that there is
not much intelligence built in such approaches. No doubt, deep neural networks involve much more
“intelligence” than their predecessors. They have the potential to optimize the representation of their
low-level input information to the computer.

The term “representation” refers to the way in which related information that is hidden in the input
data is quantified/coded so that it can be subsequently processed by a computer. In the more technical
jargon, each piece of such information is known as a feature (see also Section 1.5.1). As discussed in
detail in Chapter 18, where neural networks (NNs) are defined and presented in detail, what makes these
models distinctly different from other data learning methods is their multilayer structure. This allows
for the “building” up of a hierarchy of representations of the input information at various abstraction
levels. Every layer builds upon the previous one and the higher in hierarchy, the more abstract the
obtained representation is. This structure offers to neural networks a significant performance advantage
over alternative models, which restrict themselves to a single representation layer. Furthermore, this
single-level representation was rather hand-crafted and designed by the users, in contrast to the deep
networks that “learn” the representation layers from the input data via the use of optimality criteria.

Yet, in spite of the previously stated successes, I share the view that we are still very far from what
an intelligent machine should be. For example, once trained (estimating the parameters) on one data
set, which has been developed for a specific task, it is not easy for such models to generalize to other
tasks. Although, as we are going to see in Chapter 18, advances in this direction have been made, we are
still very far from what human intelligence can achieve. When a child sees one cat, readily recognizes
another one, even if this other cat has a different color or if it turns around. Current machine learning
systems need thousands of images with cats, in order to be trained to “recognize” one in an image. If a
human learns to ride a bike, it is very easy to transfer this knowledge and learn to ride a motorbike or
even to drive a car. Humans can easily transfer knowledge from one task to another, without forgetting
the previous one. In contrast, current machine learning systems lack such a generalization power and
tend to forget the previous task once they are trained to learn a new one. This is also an open field of
research, where advances have also been reported.

Furthermore, machine learning systems that employ deep networks can even achieve superhuman
prediction accuracies on data similar to those with which they have been trained. This is a significant
achievement, not to be underestimated, since such techniques can efficiently be used for dedicated
jobs; for example, to recognize faces, to recognize the presence of various objects in photographs, and
also to annotate images and produce text that is related to the content of the image. They can recognize
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speech, translate text from one language to another, detect which music piece is currently playing in the
bar, and whether the piece belongs to the jazz or to the rock musical genre. At the same time, they can
be fooled by carefully constructed examples, known as adversarial examples, in a way that no human
would be fooled to produce a wrong prediction (see Chapter 18).

Concerning Al, the term “artificial intelligence” was first coined by John McCarthy in 1956 when
he organized the first dedicated conference (see, e.g., [20] for a short history). The concept at that time,
which still remains a goal, was whether one can build an intelligent machine, realized on software and
hardware, that can possess human-like intelligence. In contrast to the field of machine learning, the
concept for Al was not to focus on low-level information processing with emphasis on predictions, but
on the high-level cognitive capabilities of humans to reason and think. No doubt, we are still very far
from this original goal. Predictions are, indeed, part of intelligence. Yet, intelligence is much more than
that. Predictions are associated with what we call inductive reasoning. Yet what really differentiates
human from the animals intelligence is the power of the human mind to form concepts and create
conjectures for explaining data and more general the World in which we live. Explanations comprise
a high-level facet of our intelligence and constitute the basis for scientific theories and the creation of
our civilization. They are assertions concerning the “why”’s and the “how” ’s related to a task, e.g.,
[5.6,11].

To talk about Al, at least as it was conceived by pioneers such as Alan Turing [16], systems should
have built-in capabilities for reasoning and giving meaning, e.g., in language processing, to be able
to infer causality, to model efficient representations of uncertainty, and, also, to pursue long-term
goals [8]. Possibly, towards achieving these challenging goals, we may have to understand and imple-
ment notions from the theory of mind, and also build machines that implement self-awareness. The
former psychological term refers to the understanding that others have their own beliefs and intentions
that justify their decisions. The latter refers to what we call consciousness. As a last point, recall that
human intelligence is closely related to feelings and emotions. As a matter of fact, the latter seem
to play an important part in the creative mental power of humans (e.g., [3,4,17]). Thus, in this more
theoretical perspective Al still remains a vision for the future.

The previous discussion should not be taken as an attempt to get involved with philosophical the-
ories concerning the nature of human intelligence and Al. These topics comprise a field in itself, for
more than 60 years, which is much beyond the scope of this book. My aim was to make the newcomer
in the field aware of some views and concerns that are currently being discussed.

In the more practical front, for the early years, the term Al was used to refer to techniques built
around knowledge-based systems that sought to hard-code knowledge in terms of formal languages,
e.g., [13]. Computer “reasoning” was implemented via a set of logical inference rules. In spite of the
early successes, such methods seem to have reached a limit, see, e.g., [7]. It was the alternative path of
machine learning, via learning from data, that gave a real push into the field. These days, the term Al
is used as an umbrella to cover all methods and algorithmic approaches that are related to the machine
intelligence discipline, with machine learning and knowledge-based techniques being parts of it.

1.3 ALGORITHMS CAN LEARN WHAT IS HIDDEN IN THE DATA

It has already been emphasized that data lie at the heart of machine learning systems. Data are the
beginning. It is the information hidden in the data, in the form of underlying regularities, correlations,
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or structure, which a machine learning system tries to “learn.” Thus, irrespective of how intelligent a
software algorithm is designed to be, it cannot learn more than what the data which it has been trained
on allow.

Collecting the data and building the data set on which an “intelligent” system is going to be trained
is highly critical. Building data sets that address human needs and developing systems that are going
to make decisions on issues, where humans and their lives are involved, requires special attention, and
above all, responsibility. This is not an easy issue and good intentions are not enough. We are all prod-
ucts of the societies in which we live, which means that our beliefs, to a large extent, are formed by the
prevailing social stereotypes concerning, e.g., gender, racial, ethnic, religious, cultural, class-related,
and political views. Most importantly, most of these beliefs take place and exist at a subconscious level.
Thus, sampling “typical” cases to form data sets may have a strong flavor of subjectivity and introduce
biases. A system trained on such data can affect lives, and it may take time for this to be found out.
Furthermore, our world is fast changing and these changes should continuously be reflected in the sys-
tems that make decisions on our behalf. Outsourcing our lives to computers should be done cautiously
and above all in an ethical framework, which is much wider and general than the set of the existing
legal rules.

Of course, although this puts a burden on the shoulders of the individuals, governments, and com-
panies that develop data sets and “intelligent” systems, it cannot be left to their good will. On the one
hand, a specialized legal framework that guides the design, implementation, and use of such platforms
and systems is required to protect our ethical standards and social values. Of course, this does not con-
cern only the data that are collected but also the overall system that is built. Any system that replaces
humans should be (a) transparent, (b) fair, and (c) accurate. Not that the humans act, necessarily, ac-
cording to what the previous three terms mean. However, humans can, also, reason and discuss, we
have feelings and emotions, and we do not just perform predictions.

On the other hand, this may be the time when we can develop and build more “objective” systems;
that is, to go beyond human subjectivity. However, such “objectivity” should be based on science,
rules, criteria, and principles, which are not yet here. As Michael Jordan [8] puts it, the development
of such systems will require perspectives from the social sciences and humanities. Currently, such
systems are built following an ad hoc rather than a principled way. Karl Popper [12], one of the most
influential philosophers of science, stressed that all knowledge creation is theory-laden. Observations
are never free of an underlying theory or explanation. Even if one believes that the process begins with
observations, the act of observing requires a point of view (see, also, [1,0]).

If T take the liberty to make a bit of a science fiction (something trendy these days), when Al,
in the context of its original conception, is realized, then data sampling and creation of data sets for
training could be taken care of by specialized algorithms. Maybe such algorithms will be based on
scientific principles that in the meantime will have been developed. After all, this may be the time
of dawn for the emergence of a new scientific/engineering field that integrates in a principle way
data-focused disciplines. To this end, another statement of Karl Popper may have to be implemented,
i.e., that of falsification, yet in a slightly abused interpretation. An emphasis on building intelligent
systems should be directed on criticism and experimentations for finding evidence that refutes the
principles, which were employed for their development. Systems can only be used if they survive the
falsification test.
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1.4 TYPICAL APPLICATIONS OF MACHINE LEARNING

It is hard to find a discipline in which machine learning techniques for “learning” from data have not
been applied. Yet, there are some areas, which can be considered as typical applications, maybe due to
their economic and social impact. Examples of such applications are summarized below.

SPEECH RECOGNITION

Speech is the primary means of communication among humans. Language and speech comprise major
attributes that differentiate humans from animals. Speech recognition has been one of the main research
topics whose roots date back to the early 1960s. The goal of speech recognition is to develop methods
and algorithms that enable the recognition and the subsequent representation in a computer of spoken
language. This is an interdisciplinary field involving signal processing, machine learning, linguistics,
and computer science.

Examples of speech recognition tasks and related systems that have been developed over the years
range from the simplest isolated word recognition, where the speaker has to wait between utterances,
to the more advanced continuous speech recognizers. In the latter, the user can speak almost naturally,
and concurrently the computer can determine the content. Speaker recognition is another topic, where
the system can identify the speaker. Such systems are used, for example, for security purposes.

Speech recognition embraces a wide spectrum of applications. Some typical cases where speech
recognizers have been used include automatic call processing in telephone networks, query-based in-
formation systems, data entry, voice dictation, robotics, as well as assistive technologies for people
with special needs, e.g., blind people.

COMPUTER VISION

This is a discipline that has been inspired by the human visual system. Typical tasks that are addressed
within the computer vision community include the automatic extraction of edges from images, rep-
resentation of objects as compositions of smaller structures, object detection and recognition, optical
flow, motion estimation, inference of shape from various cues, such as shading and texture, and three-
dimensional reconstruction of scenes from multiple images. Image morphing, that is, changing one
image to another through a seamless transition, and image stitching, i.e., creating a panoramic image
from a number of images, are also topics in the computer vision research. More recently, there is more
and more interaction between the field of computer vision and that of graphics.

MULTIMODAL DATA

Both speech recognition and computer vision process information that originates from single modali-
ties. However, humans perceive the natural world in a multimodal way, via their multiple senses, e.g.,
vision, hearing, and touch. There is complementary information in each one of the involved modalities
that the human brain exploits in order to understand and perceive the surrounding world.

Inspired by that, multimedia or multimodal understanding, via cross-media integration, has given
birth to a related field whose goal is to improve the performance in the various scientific tasks that
arise in problems that deal with multiple modalities. An example of modality blending is to combine
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together image/video, speech/audio, and text. A related summary that also touches issues concerning
the mental processes of human sensation, perception, and cognition is presented in [9].

NATURAL LANGUAGE PROCESSING

This is the discipline that studies the processing of a language using computers. An example of a
natural language processing (NLP) task is that of SPAM detection. Currently, the NLP field is an area
of intense research with typical topics being the development of automatic translation algorithms and
software, sentiment analysis, text summarization, and authorship identification. Speech recognition
has a strong affinity with NLP and, strictly speaking, could be considered as a special subtopic of it.
Two case studies related to NLP are treated in the book, one in Chapter 11 concerning authorship
identification and one in Chapter 18 related to neural machine translation (NMT).

ROBOTICS

Robots are used to perform tasks in the manufacturing industry, e.g., in an assembly line for car pro-
duction, or by space agencies to move objects in the space. More recently, the so-called social robots
are built to interact with people in their social environment. For example, social robots are used to
benefit hospitalized children [10].

Robots have been used in situations that are difficult or dangerous for humans, such as bomb det-
onation and work in difficult and hazardous environments, e.g., places of high heat, deep oceans, and
areas of high radiation. Robots have also been developed for teaching.

Robotics is an interdisciplinary field that, besides machine learning, includes disciplines such as
mechanical engineering, electronic engineering, computer science, computer vision, and speech recog-
nition.

AUTONOMOUS CARS

An autonomous or self-driving car is a vehicle that can move around with no or little human in-
tervention. Most of us have used self-driving trains in airports. However, these operate in a very
well-controlled environment. Autonomous cars are designed to operate in the city streets and in mo-
torways. This field is also of interdisciplinary nature, where areas such as radar, lidar, computer vision,
automatic control, sensor networks, and machine learning meet together. It is anticipated that the use
of self-driving cars will reduce the number of accidents, since, statistically, most of the accidents occur
because of human errors, due to alcohol, high speed, stress, fatigue, etc.

There are various levels of automation that one can implement. At level 0, which is the category in
which most of the cars currently operate, the driver has the control and the automated built-in system
may issue warnings. The higher the level, the more autonomy is present. For example, at level 4, the
driver would be first notified whether conditions are safe, and then the driver can decide to switch
the vehicle into the autonomous driving mode. At the highest level, level 5, the autonomous driving
requires absolutely no human intervention [21].

Besides the aforementioned examples of notable machine learning applications, machine learning
has been applied in a wide range of other areas, such as healthcare, bioinformatics, business, finance,
education, law, and manufacturing.



8 CHAPTER 1 INTRODUCTION

CHALLENGES FOR THE FUTURE

In spite of the impressive advances that have been achieved in machine learning, there are a number
of challenges for the foreseeable future, besides the long-term ones that were mentioned before, while
presenting Al In the Berkeley report [18], the following list of challenges are summarized:

» Designing systems that learn continually by interacting with a dynamic environment, while making
decisions that are timely, robust, and secure.

* Designing systems that enable personalized applications and services, yet do not compromise users’
privacy and security.

* Designing systems that can train on data sets owned by different organizations without compro-
mising their confidentiality, and in the process provide Al capabilities that span the boundaries of
potentially competing organizations.

* Developing domain-specific architectures and software systems to address the performance needs
of future applications, including custom chips, edge-cloud systems to efficiently process data at the
edge, and techniques for abstracting and sampling data.

Besides the above more technology-oriented challenges, important social challenges do exist. The
new technologies are influencing our daily lives more and more. In principle, they offer the potential,
much more than ever before, to manipulate and shape beliefs, views, interests, entertainment, customs,
and culture, independent of the societies. Moreover, they offer the potential for accessing personal data
that in the sequel can be exploited for various reasons, such as economic, political, or other malicious
purposes. As M. Schaake, a member of the European Parliament, puts it, “When algorithms affect hu-
man rights, public values or public decision-making, we need oversight and transparency.” However,
what was said before should not mobilize technophobic reactions. On the contrary, human civiliza-
tion has advanced because of leaps in science and technology. All that is needed is social sensitivity,
awareness of the possible dangers, and a related legal “shielding.”

Putting it in simple words, as Henri Bergson said [2], history is not deterministic. History is a
creative evolution.

1.5 MACHINE LEARNING: MAJOR DIRECTIONS

As has already been stated before, machine learning is the scientific field whose goal is to develop
methods and algorithms that “learn” from data; that is, to extract information that “resides” in the data,
which can subsequently be used by the computer to perform a task. To this end, the starting point is an
available data set. Depending on the type of information that one needs to acquire, in the context of a
specific task, different types of machine learning have been developed. They are described below.

1.5.1 SUPERVISED LEARNING

Supervised learning refers to the type of machine learning where all the available data have been
labeled. In other words, data are represented in pairs of observations, e.g., (Y, X,), n=1,2,..., N,
where each x;, is a vector or, in general, a set of variables. The variables in x,, are called the input
variables, also known as the independent variables or features, and the respective vector is known as
the feature vector. The variables y, are known as the output or dependent or target or label variables.
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In some cases, y, can also be a vector. The goal of learning is to obtain/estimate a functional mapping
to, given the value of the input variables, predict the value of the respective output one. Two “pillars”
of supervised learning are the classification and the regression tasks.

Classification

The goal in classification is to assign a pattern to one of a set of possible classes, whose number
is considered to be known. For example, in X-ray mammography, we are given an image where a
region indicates the existence of a tumor. The goal of a computer-aided diagnosis system is to predict
whether this tumor corresponds to the benign or the malignant class. Optical character recognition
(OCR) systems are also built around a classification system, in which the image corresponding to each
letter of the alphabet has to be recognized and assigned to one of the 26 (for the Latin alphabet) classes;
see Example 18.3 for a related case study. Another example is the prediction of the authorship of a given
text. Given a text written by an unknown author, the goal of a classification system is to predict the
author among a number of authors (classes); this application is treated in Section 11.15. The receiver
in a digital communications system can also be viewed as a classification system. Upon receiving the
transmitted data, which have been contaminated by noise and also by other transformations imposed by
the transmission channel (Chapter 4), the receiver has to reach a decision on the value of the originally
transmitted symbols. For example, in a binary transmitted sequence, the original symbols belong either
to the +1 or to the —1 class. This task is known as channel equalization.

The first step in designing any machine learning task is to decide how to represent each pattern in the
computer. This is achieved during the preprocessing stage; one has to “encode” related information that
resides in the raw data (e.g., image pixels or strings of words) in an efficient and information-rich way.
This is usually done by transforming the raw data into a new space and representing each pattern by a
vector, x € R/, This comprises the feature vector and its / elements the corresponding feature values.
In this way, each pattern becomes a single point in an /-dimensional space, known as the feature space
or the input space. We refer to this transformation of the raw data as the feature generation or feature
extraction stage. One starts with generating some large value, K, of possible features and eventually
selects the [ most informative ones via an optimizing procedure known as the feature selection stage.
As we will see in Section 18.12, in the context of convolutional neural networks, the previous two
stages are merged together and the features are obtained and optimized in a combined way, together
with the estimation of the functional mapping, which was mentioned before.

Having decided upon the input space in which the data are represented, one has to train a classifier;
that is, a predictor. This is achieved by first selecting a set of N data points/samples/examples, whose
class is known, and this comprises the training set. This is the set of observation pairs, (v, X,), n =
1,2, ..., N, where y, is the (output) variable denoting the class in which x, belongs, and it is known
as the corresponding class label; the class labels take values over a discrete set, e.g., {1,2,..., M},
for an M-class classification task. For example, for a two-class classification task, y, € {—1, +1} or
yn € {0, +1}. To keep our discussion simple, let us focus on the two-class case. Based on the training
data, one then designs a function, f, which is used to predict the output label, given the input feature
vector, x. In general, we may need to design a set of such functions.

Once the function, f, has been designed, the system is ready to make predictions. Given a pattern
whose class is unknown, we obtain the corresponding feature vector, x, from the raw data. Depending
on the value of f(x), the pattern is classified in one of the two classes. For example, if the labels
take the values +1, then the predicted label is obtained as y = sgn{ f (x)}. This operation defines the
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FIGURE 1.1

The classifier (linear in this simple case) has been designed in order to separate the training data into two classes.
The graph (straight line) of the linear function, f(x) = 0, has on its positive side the points coming from one class
and on its negative side those of the other. The “red” point, whose class is unknown, is classified in the same class as
the “star” points, since it lies on the positive side of the line.

classifier. If the function f is linear (nonlinear) we say that the respective classification task is linear
(nonlinear) or, in a slight abuse of terminology, that the classifier is a linear (nonlinear) one.

Fig. 1.1 illustrates the classification task. Initially, we are given the set of points, each one repre-
senting a pattern in the two-dimensional space (two features used, x1, x3). Stars belong to one class,
and the crosses to the other, in a two-class classification task. These are the training points, which are
used to obtain a classifier. For our very simple case, this is achieved via a linear function,

S (x) =061x1 + 62x2 + 6y, (1.1)

whose graph, for all the points such that f(x) =0, is the straight line shown in the figure. The values
of the parameters 01, 6>, 6 are obtained via an estimation method based on the training set. This phase,
where a classifier is estimated, is also known as the training or learning phase.

Once a classifier has been “learned,” we are ready to perform predictions, that is, to predict the
class label of a pattern x. For example, we are given the point denoted by the red circle, whose class is
unknown to us. According to the classification system that has been designed, this belongs to the same
class as the points denoted by stars, which all belong to, say, class +1. Indeed, every point on one side
of the straight line will give a positive value, f(x) > 0, and all the points on its other side will give a
negative value, f(x) < 0. The predicted label, §, for the point denoted with the red circle will then be
y=sgn{f(x)} > 0, and it is classified in class +1, to which the star points belong.

Our discussion to present the classification task was based on features that take numeric values.
Classification tasks where the features are of categorical type do exist and are of major importance,
too.
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FIGURE 1.2

In a regression task, once a function (linear in this case) f has been designed, for its graph to fit the available
training data set, given a new (red) point, x, the prediction of the associated output (red) value is given by y = f(x).

Regression

Regression shares to a large extent the feature generation/selection stage, as described before; however,
now the output variable, y, is not discrete, but it takes values in an interval in the real axis or in a region
in the complex numbers’ plane. Generalizations to vector-valued outputs are also possible. Our focus
here is on real variables. The regression task is basically a function (curve/surface) fitting problem.

We are given a set of training samples, (y,, X,), yn € R, x,, € R, n= 1,2,..., N, and the task is
to estimate a function f, whose graph fits the data. Once we have found such a function, when a new
sample x, outside the training set, arrives, we can predict its output value. This is shown in Fig. 1.2.
The training data in this case are the gray points. Once the function fitting task has been completed,
given a new point x (red), we are ready to predict its output value as § = f(x). In the simple case of
the figure, the function f is linear and thus its graph is a straight line.

The regression task is a generic one that embraces a number of problems. For example, in financial
applications, one can predict tomorrow’s stock market prices given current market conditions and other
related information. Each piece of information is a measured value of a corresponding feature. Signal
and image restoration come under this common umbrella of tasks. Signal and image denoising can also
be seen as a special type of the regression task. Deblurring of a blurred image can also be treated as
regression (see Chapter 4).

1.6 UNSUPERVISED AND SEMISUPERVISED LEARNING

The goal of supervised learning is to establish a functional relationship between the input and output
variables. To this end, labeled data are used, which comprise the set of output—input pairs, on which
the learning of the unknown mapping is performed.
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In the antipode of supervised learning lies unsupervised learning, where only input variables are
provided. No output or label information is available. The aim of unsupervised learning is to unravel
the structure that underlies the given set of data. This is an important part in data learning methods.
Unsupervised learning comes under a number of facets.

One of the most important types of unsupervised learning is that of clustering. The goal of any
clustering task is to unravel the way in which the points in a data set are grouped assuming that such a
group structure exists. As an example, given a set of newspaper articles, one may want to group them
together according to how similar their content is. As a matter of fact, at the heart of any clustering
algorithm lies the concept of similarity, since patterns that belong to the same group (cluster) are
assumed to be more similar than patterns that belong to different clusters.

One of the most classical clustering schemes, the so-called k-means clustering, is presented and
discussed in Section 12.6.1. However, clustering is not a main topic of this book, and the interested
reader may look at more specialized references (e.g., [14,15]).

Another type of unsupervised learning is dimensionality reduction. The goal is also to reveal a
particular structure of the data, which is of a different nature than that of the groupings. For ex-
ample, although the data may be represented in a high-dimensional space, they may lie around a
lower-dimensional subspace or a manifold. Such methods are very important in machine learning for
compressed representations or computational reduction reasons. Dimensionality reduction methods are
treated in detail in Chapter 19.

Probability distribution estimation can also be considered as a special case of unsupervised learn-
ing. Probabilistic modeling is treated extensively in Chapters 12, 13, 15, and 16.

More recently, unsupervised learning is used for data generation. The so-called generative adversar-
ial networks (GANs) comprise a new way of dealing with this old topic, by employing game theoretic
arguments, and they are treated in Chapter 18.

Semisupervised lies in between supervised and unsupervised learning. In semisupervised learning,
there are labeled data but not enough to get a good estimate of the output—input dependence. The
existence of a number of unlabeled patterns can assist the task, since it can reveal additional structure
of the input data that can be efficiently utilized. Semisupervised learning is treated in, e.g., [14].

Finally, another type of learning, which is increasingly gaining in importance, is the so-called rein-
forcement learning (RL). This is also an old field, with origins in automatic control. At the heart of this
type of learning lies a set of rules and the goal is to learn sequences of actions that will lead an agent
to achieve its goal or to maximize its objective function. For example, if the agent is a robot, the goal
may be to move from point A to point B. Intuitively, RL attempts to learn actions by trial and error.
In contrast to supervised learning, optimal actions are not learned from labels but from what is known
as a reward. This scalar value informs the system whether the outcome of whatever it did was right or
wrong. Taking actions that maximize the reward is the goal of RL.

Reinforcement learning is beyond the scope of this book and the interested reader may consult, e.g.,
[19].

1.7 STRUCTURE AND A ROAD MAP OF THE BOOK

In the discussion above, we saw that seemingly different applications, e.g., authorship identification and
channel equalization, as well as financial prediction and image deblurring, can be treated in a unified
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framework. Many of the techniques that have been developed for machine learning are no different than
techniques used in statistical signal processing or adaptive signal processing. Filtering comes under the
general framework of regression (Chapter 4), and “adaptive filtering” is the same as “online learning”
in machine learning. As a matter of fact, as will be explained in more detail, this book can serve the
needs of more than one advanced graduate or postgraduate courses.

Over the years, a large number of techniques have been developed, in the context of different appli-
cations. Most of these techniques belong to one of two schools of thought. In one of them, the involved
parameters that define an unknown function, for example, 61, 87, 6y in Eq. (1.1), are treated as random
variables. Bayesian learning builds upon this rationale. Bayesian methods learn distributions that de-
scribe the randomness of the involved parameters/variables. According to the other school, parameters
are treated as nonrandom variables. They correspond to a fixed, yet unknown value. We will refer to
such parameters as deterministic. This term is justified by the fact that, in contrast to random variables,
if the value of a nonrandom variable is known, then its value can be “predicted” exactly. Learning
methods that build around deterministic variables focus on optimization techniques to obtain estimates
of the corresponding values. In some cases, the term “frequentist” is used to describe the latter type of
techniques (see Chapter 12).

Each of the two previous schools of thought has its pros and cons, and I firmly believe that there
is always more than one road that leads to the “truth.” Each can solve some problems more efficiently
than the other. Maybe in a few years, the scene will be more clear and more definite conclusions can
be drawn. Or it may turn out, as in life, that the “truth” is somewhere in the middle.

In any case, every newcomer to the field has to learn the basics and the classics. That is why, in this
book, all major directions and methods will be discussed, in an equally balanced manner, to the greatest
extent possible. Of course, the author, being human, could not avoid giving some more emphasis to
the techniques with which he is most familiar through his own research. This is healthy, since writing
a book is a means of sharing the author’s expertise and point of view with the readers. This is why I
strongly believe that a new book does not serve to replace previous ones, but to complement previously
published points of view.

Chapter 2 is an introduction to probability and statistics. Random processes are also discussed.
Readers who are familiar with such concepts can bypass this chapter. On the other hand, one can
focus on different parts of this chapter. Readers who would like to focus on statistical signal process-
ing/adaptive processing can focus more on the random processes part. Those who would like to follow
a probabilistic machine learning point of view would find the part presenting the various distributions
more important. In any case, the multivariate normal (Gaussian) distribution is a must for those who
are not yet familiar with it.

Chapter 3 is an overview of the parameter estimation task. This is a chapter that presents an
overview of the book and defines the main concepts that run across its pages. This chapter has also
been written to stand alone as an introduction to machine learning. Although it is my feeling that all
of it should be read and taught, depending on the focus of the course and taking into account the om-
nipresent time limitations, one can focus more on the parts of her or his interest. Least-squares and
ridge regression are discussed alongside the maximum likelihood method and the presentation of the
basic notion of the Bayesian approach. In any case, the parts dealing with the definition of the inverse
problems, the bias—variance tradeoff, and the concepts of generalization and regularization are a must.

Chapter 4 is dedicated to the mean-square error (MSE) linear estimation. For those following a
statistical signal processing course, the whole chapter is important. The rest of the readers can bypass
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the parts related to complex-valued processing and also the part dealing with computational complexity
issues, since this is only of importance if the input data are random processes. Bypassing this part will
not affect reading later parts of the chapter that deal with the MSE estimation of linear models, the
Gauss—Markov theorem, and the Kalman filtering.

Chapter 5 introduces the stochastic gradient descent family of algorithms. The first part, dealing
with the stochastic approximation method, is a must for every reader. The rest of the chapter, which
deals with the least-mean-squares (LMS) algorithm and its offsprings, is more appropriate for readers
who are interested in a statistical signal processing course, since these families are suited for track-
ing time-varying environments. This may not be the first priority for readers who are interested in
classification and machine learning tasks with data whose statistical properties are not time-varying.

Chapter 6 is dedicated to the least-squares (LS) method, which is of interest to all readers in ma-
chine learning and signal processing. The latter part, dealing with the total least-squares method, can
be bypassed in a first reading. Emphasis is also put on ridge regression and its geometric interpretation.
Ridge regression is important to the newcomer, since he/she becomes familiar with the concept of regu-
larization; this is an important aspect in any machine learning task, tied directly with the generalization
performance of the designed predictor.

I have decided to compress the part dealing with fast LS algorithms, which are appropriate when the
input is a random process/signal that imposes a special structure on the involved covariance matrices,
into a discussion section. It is the author’s feeling that this is of no greater interest than it was a decade
or two ago. Also, the main idea, that of a highly structured covariance matrix that lies behind the fast
algorithms, is discussed in some detail in Chapter 4, in the context of Levinson’s algorithm and its
lattice and lattice-ladder by-products.

Chapter 7 is a must for any machine learning course. Important classical concepts, including classi-
fication in the context of the Bayesian decision theory, nearest neighbor classifiers, logistic regression,
Fisher’s discriminant analysis and decision trees are discussed. Courses on statistical signal processing
can also accommodate the first part of the chapter dealing with the classical Bayesian decision theory.

The aforementioned six chapters comprise the part of the book that deals with more or less classical
topics. The rest of the chapters deal with more advanced techniques and can fit with any course deal-
ing with machine learning or statistical/adaptive signal processing, depending on the focus, the time
constraints, and the background of the audience.

Chapter 8 deals with convexity, a topic that is receiving more and more attention recently. The
chapter presents the basic definitions concerning convex sets and functions and the notion of projec-
tion. These are important tools used in a number of recently developed algorithms. Also, the classical
projections onto convex sets (POCS) algorithm and the set-theoretic approach to online learning are
discussed as an alternative to gradient descent-based schemes. Then, the task of optimization of nons-
mooth convex loss functions is introduced, and the family of proximal mapping, alternating direction
method of multipliers (ADMM), and forward backward-splitting methods are presented. This is a chap-
ter that can be used when the emphasis of the course is on optimization. Employing nonsmooth loss
functions and/or nonsmooth regularization terms, in place of the squared error and its ridge regression
relative, is a trend of high research and practical interest.

Chapters 9 and 10 deal with sparse modeling. The first of the two chapters introduces the main
concepts and ideas and the second deals with algorithms for batch as well for as online learning sce-
narios. Also, in the second chapter, a case study in the context of time-frequency analysis is discussed.
Depending on time constraints, the main concepts behind sparse modeling and compressed sensing can
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be taught in a related course. These two chapters can also be used as a specialized course on sparsity
on a postgraduate level.

Chapter 11 deals with learning in reproducing kernel Hilbert spaces and nonlinear techniques. The
first part of the chapter is a must for any course with an emphasis on classification. Support vector
regression and support vector machines are treated in detail. Moreover, a course on statistical signal
processing with an emphasis on nonlinear modeling can also include material and concepts from this
chapter. A case study dealing with authorship identification is discussed at the end of this chapter.

Chapters 12 and 13 deal with Bayesian learning. Thus, both chapters can be the backbone of
a course on machine learning and statistical signal processing that intends to emphasize Bayesian
methods. The former of the chapters deals with the basic principles and it is an introduction to the
expectation-maximization (EM) algorithm. The use of this celebrated algorithm is demonstrated in
the context of two classical applications: linear regression and Gaussian mixture modeling for prob-
ability density function estimation. The second chapter deals with approximate inference techniques,
and one can use parts of it, depending on the time constraints and the background of the audience.
Sparse Bayesian learning and the relevance vector machine (RVM) framework are introduced. At the
end of this chapter, nonparametric Bayesian techniques such as the Chinese restaurant process (CRP),
the Indian buffet process (IBP), and Gaussian processes are discussed. Finally, a case study concern-
ing hyperspectral image unmixing is presented. Both chapters, in their full length, can be used as a
specialized course on Bayesian learning.

Chapters 14 and 17 deal with Monte Carlo sampling methods. The latter chapter deals with particle
filtering. Both chapters, together with the two previous ones that deal with Bayesian learning, can be
combined in a course whose emphasis is on statistical methods of machine learning/statistical signal
processing.

Chapters 15 and 16 deal with probabilistic graphical models. The former chapter introduces the
main concepts and definitions, and at the end it introduces the message passing algorithm for chains
and trees. This chapter is a must for any course whose emphasis is on probabilistic graphical models.
The latter of the two chapters deals with message passing algorithms on junction trees and then with
approximate inference techniques. Dynamic graphical models and hidden Markov models (HMMs) are
introduced. The Baum—Welch and Viterbi schemes are derived as special cases of message passaging
algorithms by treating the HMM as a special instance of a junction tree.

Chapter 18 deals with neural networks and deep learning. In the second edition, this chapter has
been basically rewritten to accommodate advances in this topic that have taken place after the first
edition was published. This chapter is also a must in any course with an emphasis on classification.
The chapter starts from the early days of the perceptron algorithm and perceptron rule and moves on
to the most recent advances in deep learning. The feed-forward multilayer architecture is introduced
and a number of stochastic gradient-type algorithmic variants, for training networks, are presented.
Different types of nonlinearities and cost functions are discussed and their interplay with respect to the
vanishing/exploding phenomenon in the gradient propagation are presented. Regularization and the
dropout method are discussed. Convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) are reviewed in some detail. The notions of attention mechanism and adversarial examples
are presented. Deep belief networks, GANs, and variational autoencoders are considered in some de-
tail. Capsule networks are introduced and, at the end, a discussion on transfer learning and multitask
learning is provided. The chapter concludes with a case study related to neural machine translation
(NMT).
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Chapter 19 is on dimensionality reduction techniques and latent variable modeling. The meth-
ods of principal component analysis (PCA), canonical correlations analysis (CCA), and independent
component analysis (ICA) are introduced. The probabilistic approach to latent variable modeling is
discussed, and the probabilistic PCA (PPCA) is presented. Then, the focus turns to dictionary learning
and to robust PCA. Nonlinear dimensionality reduction techniques such as kernel PCA are discussed,
along with classical manifold learning methods: local linear embedding (LLE) and isometric mapping
(ISOMAP). Finally, a case study in the context of functional magnetic resonance imaging (fMRI) data
analysis, based on ICA, is presented.

Each chapter starts with the basics and moves on to cover more recent advances in the corresponding
topic. This is also true for the whole book and the first six chapters cover more classical material.

In summary, we provide the following suggestions for different courses, depending on the emphasis
that the instructor wants to place on various topics.

* Machine learning with emphasis on classification:

— Main chapters: 3,7, 11, and 18.

— Secondary chapters: 12 and 13, and possibly the first part of 6.
» Statistical signal processing:

— Main chapters: 3, 4, 6, and 12.

— Secondary chapters: 5 (first part) and 13—-17.
* Machine learning with emphasis on Bayesian techniques:

— Main chapters: 3 and 12-14.

— Secondary chapters: 7, 15, and 16, and possibly the first part of 6.
* Adaptive signal processing:

— Main chapters: 3-6.

— Secondary chapters: 8, 9, 10, 11, 14, and 17.

I believe that the above suggestions of following various combinations of chapters is possible, since
the book has been written in such a way as to make individual chapters as self-contained as possible.

At the end of most of the chapters, there are computer exercises, mainly based on the various
examples given in the text. The exercises are given in MATLAB® and the respective code is available
on the book’s website. Moreover, all exercises are provided, together with respective codes, in Python
and are also available on the book’s website. Some of the exercises in Chapter 18 are in the context of
TensorFlow.

The solutions manual as well as all the figures of the book are available on the book’s website.
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2.1 INTRODUCTION

The goal of this chapter is to provide the basic definitions and properties related to probability theory
and stochastic processes. It is assumed that the reader has attended a basic course on probability and
statistics prior to reading this book. So, the aim is to help the reader refresh her/his memory and to
establish a common language and a commonly understood notation.

Besides probability and random variables, random processes are briefly reviewed and some basic
theorems are stated. A number of key probability distributions that will be used later on in a number
of chapters are presented. Finally, at the end of the chapter, basic definitions and properties related to
information theory and stochastic convergence are summarized.

The reader who is familiar with all these notions can bypass this chapter.

2.2 PROBABILITY AND RANDOM VARIABLES

A random variable, X, is a variable whose variations are due to chance/randomness. A random variable
can be considered as a function, which assigns a value to the outcome of an experiment. For example,
in a coin tossing experiment, the corresponding random variable, x, can assume the values x| =0 if
the result of the experiment is “heads” and x, = 1 if the result is “tails.”

We will denote a random variable with a lower case roman, such as X, and the values it takes once
an experiment has been performed, with mathmode italics, such as x.

A random variable is described in terms of a set of probabilities if its values are of a discrete nature,
or in terms of a probability density function (PDF) if its values lie anywhere within an interval of the
real axis (noncountably infinite set). For a more formal treatment and discussion, see [4,6].

2.2.1 PROBABILITY

Although the words “probability” and “probable” are quite common in our everyday vocabulary, the
mathematical definition of probability is not a straightforward one, and there are a number of different
definitions that have been proposed over the years. Needless to say, whatever definition is adopted,
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the end result is that the properties and rules which are derived remain the same. Two of the most
commonly used definitions are the following

Relative Frequency Definition
The probability P(A) of an event A is the limit

P(A)= lim A, .1
n—oo n
where n is the number of total trials and n 4 the number of times event A occurred. The problem with
this definition is that in practice in any physical experiment, the numbers n4 and n can be large, yet
they are always finite. Thus, the limit can only be used as a hypothesis and not as something that can
be attained experimentally. In practice, often, we use

P(A) ~ ’%A (2.2)

for large values of n. However, this has to be used with caution, especially when the probability of an
event is very small.

Axiomatic Definition

This definition of probability is traced back to 1933 to the work of Andrey Kolmogorov, who found
a close connection between probability theory and the mathematical theory of sets and functions of a
real variable, in the context of measure theory, as noted in [5].

The probability P(A) of an event is a nonnegative number assigned to this event, or

P(A) = 0. (2.3)
The probability of an event C which is certain to occur is equal to one, i.e.,
P(C)=1. 2.4)

If two events A and B are mutually exclusive (they cannot occur simultaneously), then the probability
of occurrence of either A or B (denoted as A U B) is given by

P(AUB)=P(A)+ P(B). 2.5

It turns out that these three defining properties, which can be considered as the respective axioms, suf-
fice to develop the rest of the theory. For example, it can be shown that the probability of an impossible
event is equal to zero, e.g., [6].

The previous two approaches for defining probability are not the only ones. Another interpretation,
which is in line with the way we are going to use the notion of probability in a number of places in this
book in the context of Bayesian learning, has been given by Cox [2]. There, probability was seen as
a measure of uncertainty concerning an event. Take, for example, the uncertainty whether the Minoan
civilization was destroyed as a consequence of the earthquake that happened close to the island of
Santorini. This is obviously not an event whose probability can be tested with repeated trials. However,
putting together historical as well as scientific evidence, we can quantify our expression of uncertainty
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concerning such a conjecture. Also, we can modify the degree of our uncertainty once more historical
evidence comes to light due to new archeological findings. Assigning numerical values to represent
degrees of belief, Cox developed a set of axioms encoding common sense properties of such beliefs,
and he came to a set of rules equivalent to the ones we are going to review soon; see also [4].

The origins of probability theory are traced back to the middle 17th century in the works of Pierre
Fermat (1601-1665), Blaise Pascal (1623-1662), and Christian Huygens (1629-1695). The concepts
of probability and the mean value of a random variable can be found there. The original motivation for
developing the theory seems not to be related to any purpose for “serving society”’; the purpose was to
serve the needs of gambling and games of chance!

2.2.2 DISCRETE RANDOM VARIABLES

A discrete random variable x can take any value from a finite or countably infinite set X'. The proba-
bility of the event, “x = x € X,” is denoted as

P(x=x) orsimply P(x). (2.6)

The function P is known as the probability mass function (PMF). Being a probability of events, it has
to satisfy the first axiom, so P(x) > 0. Assuming that no two values in X’ can occur simultaneously
and that after any experiment a single value will always occur, the second and third axioms combined
give
Y P =1. 2.7)
xeX

The set X" is also known as the sample or state space.

Joint and Conditional Probabilities

The joint probability of two events, A, B, is the probability that both events occur simultaneously,
and it is denoted as P(A, B). Let us now consider two random variables, X, y, with sample spaces

X={x1,....,xp, }and Y ={y1, ..., yn),}, respectively. Let us adopt the relative frequency definition
and assume that we carry out n experiments and that each one of the values in X’ occurred n’l‘ e, ”ZX
times and each one of the values in ) occurred n{ e, n%y times. Then,

P(x,')%?’, i=1,2,...,ny, and P(y;)~ — =12, ,ny.

Let us denote by n;; the number of times the values x; and y; occurred simultaneously. Then,
P(xi,yj)~ % Simple reasoning dictates that the total number, nj‘ , that value x; occurred is equal to

ny

ni‘ = an'j. (2-8)
j=1

Dividing both sides in the above by r, the following sum rule readily results.
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P(x) = Z P(x,y): sumrule. 2.9)
yey

The conditional probability of an event A, given another event B, is denoted as P(A|B), and it is
defined as

P(A,B .. e
P(A|B) .= % . conditional probability, (2.10)

provided P (B) # 0. It can be shown that this is indeed a probability, in the sense that it respects all three
axioms [6]. We can better grasp its physical meaning if the relative frequency definition is adopted. Let
nap be the number of times that both events occurred simultaneously, and let np be the number of
times event B occurred, out of n experiments. Then we have
P(A|B) =48 _TAB @.11)
n npg np

In other words, the conditional probability of an event A, given another event B, is the relative fre-
quency that A occurred, not with respect to the total number of experiments performed, but relative to
the times event B occurred.

Viewed differently and adopting similar notation in terms of random variables, in conformity with
Eq. (2.9), the definition of the conditional probability is also known as the product rule of probability,
written as

P(x,y)=P(x|y)P(y): productrule. (2.12)

To differentiate from the joint and conditional probabilities, probabilities P (x) and P(y) are known as
marginal probabilities. The product rule is generalized in a straightforward way to [ random variables,
ie.,

P(xy,x2,...,x) = P(xylxi—1, ..., x0)P(xj-1, ..., x1),
which recursively leads to the product
Pxy,x2,...,x) =P(xylxi—1, ..., x0)P(xy—1lx—2, ..., x1) ... P(x1).

Statistical independence: Two random variables are said to be statistically independent if and only
if their joint probability is equal to the product of the respective marginal probabilities, i.e.,

Px,y)=Px)P(). (2.13)

Bayes Theorem

The Bayes theorem is a direct consequence of the product rule and the symmetry property of the joint
probability, P(x, y) = P(y, x), and it is stated as

Px|y)P(y)

P(ylx) = P

Bayes theorem, (2.14)
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where the marginal, P (x), can be written as

P(x)=Y P(x,y)=)_ P&I)P®),
yey yey

and it can be considered as the normalizing constant of the numerator on the right-hand side in
Eq. (2.14), which guarantees that summing up P(y|x) with respect to all possible values of y € J
results in one.

The Bayes theorem plays a central role in machine learning, and it will be the basis for developing
Bayesian techniques for estimating the values of unknown parameters.

2.2.3 CONTINUOUS RANDOM VARIABLES

So far, we have focused on discrete random variables. Our interest now turns to the extension of the
notion of probability to random variables which take values on the real axis, R.

The starting point is to compute the probability of a random variable, x, to lie in an interval,
X1 <X <x3. Note that the two events, x < x; and x; < X < x3, are mutually exclusive. Thus, we can
write that

Px<x)+Px1 <x<x)=PE=<x). (2.15)

We define the cumulative distribution function (CDF) of x as

‘ Fy(x):= P(x<x): cumulative distribution function. ‘ (2.16)

Then, Eq. (2.15) can be written as
P(x1 <x < x2) = Fx(x2) — Fx(x1). (2.17)

Note that Fx is a monotonically increasing function. Furthermore, if it is continuous, the random vari-
able x is said to be of a continuous type. Assuming that it is also differentiable, we can define the
probability density function (PDF) of x as

dF,
px(x) == ;(x) :  probability density function, (2.18)
X
which then leads to
x
Pxi <x<x)= / px(x)dx. (2.19)
X1
Also,
X
Fx(x) =/ px(2)dz. (2.20)
—00

Using familiar arguments from calculus, the PDF can be interpreted as

AP(x <X <x+ Ax) = px(x)Ax, (2.21)
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which justifies its name as a “density” function, being the probability (AP) of x lying in a small
interval Ax, divided by the length of this interval. Note that as Ax — 0 this probability tends to zero.
Thus, the probability of a continuous random variable taking any single value is zero. Moreover, since
P(—00 <x < +00) =1, we have

+00
/ pr(x)dx = 1. (2.22)

—00

Usually, in order to simplify notation, the subscript x is dropped and we write p(x), unless it is
necessary for avoiding possible confusion. Note, also, that we have adopted the lower case “p” to
denote a PDF and the capital “P” to denote a probability.

All previously stated rules concerning probabilities are readily carried out for the case of PDFs, in

the following way:

+00
pirlyy = PE =f p(x.y)dy. (2.23)
p(y) —0

2.2.4 MEAN AND VARIANCE

Two of the most common and useful quantities associated with any random variable are the respective
mean value and variance. The mean value (or sometimes called expected value) is denoted as

+00
E[x]:= / xp(x)dx: mean value, (2.24)
—00

where for discrete random variables the integration is replaced by summation (]E[x] =), cxxXP (x)).
The variance is denoted as o2 and it is defined as

+00
ol = [ (x — E[x])zp(x) dx : variance, (2.25)

—00

where integration is replaced by summation for discrete variables. The variance is a measure of the
spread of the values of the random variable around its mean value.
The definition of the mean value is generalized for any function f(x), i.e.,

+00
E[f(x)]:= fx)px)dx. (2.26)

It is readily shown that the mean value with respect to two random variables, y, X, can be written as
the product

Exylfx, y)]=Ex [Ey\x[f(x’ Y)]] ) (2.27)

where Ey|, denotes the mean value with respect to p(y|x). This is a direct consequence of the definition
of the mean value and the product rule of probabilities.
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Given two random variables X, y, their covariance is defined as

cov(x,y):=E [(x — IE[X]) (y — E[y])], (2.28)

and their correlation as
ryy := E[xy] = cov(x,y) + E[x] E[y]. (2.29)
A random vector is a collection of random variables, X = [x1, ..., x;]7, and p(x) is the joint PDF

(probability mass for discrete variables),

p(X) = p(X1,....X)). (2.30)

The covariance matrix of a random vector x is defined as

‘ Cov(x) :=E [(x — E[x]) (x — E[x])T] :  covariance matrix, (2.31)
or
cov(xy,X1) ... cov(xy,X;)
Cov(x) = : : . (2.32)
cov(x;,X1) ... cov(xy,X;)

Another symbol that will be used to denote the covariance matrix is Xy. Similarly, the correlation
matrix of a random vector x is defined as

Ry =E [XXT] . correlation matrix, (2.33)

or

Elxi,xi] ... Elx1,x/]

Ry = . L
Elx;,xi] ..o Elxg,x]

= Cov(x) + E[x]E[x"]. (2.34)

Often, subscripts are dropped in other to simplify notation, and the corresponding symbols, e.g., r,

XY and R are used instead, unless it is necessary to avoid confusion when different random variables

are involved.! Both the covariance and correlation matrices have a very rich structure, which will be

exploited in various parts of this book to lead to computational savings whenever they are present
in calculations. For the time being, observe that both are symmetric and positive semidefinite. The

1 Note that in the subsequent chapters, to avoid having bold letters in subscripts, which can be cumbersome when more that
one vector variables are involved, the notation has been slightly relaxed. For example, Ry is used in place of Rx. For the sake of
uniformity, the same applies to the rest of the variables corresponding to correlations, variances and covariance matrices.
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symmetry, ¥ = X7 is readily deduced from the definition. An [ x [ symmetric matrix A is called
positive semidefinite if

yTAy>0, VyeR. (2.35)

If the inequality is a strict one, the matrix is said to be positive definite. For the covariance matrix, we
have

y'E [(x —Elx])(x — E[x])T] y=FE [(yT (x— E[x]))z] >0,
and the claim has been proved.

Complex Random Variables
A complex random variable, z € C, is a sum

z=x+ jy, (2.36)

where X, y are real random variables and j := +/—1. Note that for complex random variables, the PDF
cannot be defined since inequalities of the form x 4+ jy < x + jy have no meaning. When we write
p(2), we mean the joint PDF of the real and imaginary parts, expressed as

p(z) :=px,y). (2.37)
For complex random variables, the notions of mean and covariance are defined as
Elz] := E[x] + j E[yl, (2.38)
and

cov(zy,zp) . =E [(zl — E[zl])(zz — E[Zz])*] , (2.39)

where “x” denotes complex conjugation. The latter definition leads to the variance of a complex vari-
able,

2 2 2
o7 =E||z~El2 | =E[[|*] - [El21 (2.40)
Similarly, for complex random vectors, z =X + jy € C!, we have
@) i=pXL, ey X1 Y1y ee s VD), (2.41)

where x;, y;,i =1,2,...,1, are the components of the involved real vectors, respectively. The covari-
ance and correlation matrices are similarly defined as

Cov(z) .= [(z — Elz])(z — Efz1)"” ] , (2.42)
where “H” denotes the Hermitian (transposition and conjugation) operation.

For the rest of the chapter, we are going to deal mainly with real random variables. Whenever
needed, differences with the case of complex variables will be stated.
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2.2.5 TRANSFORMATION OF RANDOM VARIABLES
Let x and y be two random vectors, which are related via the vector transform,
y=fx), (2.43)

where f : R/ — R’ is an invertible transform. That is, given y, x = f 1 y) can be uniquely obtained.
We are given the joint PDF, px(x), of x and the task is to obtain the joint PDF, py(y), of y.
The Jacobian matrix of the transformation is defined as

i a1

8( ) x| ax;
Jyix) = o2 (2.44)

(x1, x2, ..., xp) N ,
/ Y
IR
Then, it can be shown (e.g., [6]) that
px(x)

— At , 2.45
Py = et (Tt )] le=r 100 24)

where |det(-)| denotes the absolute value of the determinant of a matrix. For real random variables, as
iny = f(x), Eq. (2.45) simplifies to

Px(x)
F4

py(y) = (2.46)

x=f"1(y)

The latter can be graphically understood from Fig. 2.1. The following two events have equal probabil-
ities:

Px<x<x+Ax)=P(+Ay<y=<y), Ax>0, Ay<O.
Hence, by the definition of a PDF we have
pyWIAy| = px(x)|Ax], (2.47)
which leads to Eq. (2.46).
Example 2.1. Let us consider two random vectors that are related via the linear transform
y = Ax, (2.48)

where A is invertible. Compute the joint PDF of y in terms of px(x).
The Jacobian of the transformation is easily computed and given by

ayr ... djg
a ... ap]
Jypx=| . . |[=A

apn ... 4y
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J
Ay
N
TN
! -
i T _
— Az +— z
FIGURE 2.1
Note that by the definition of a PDF, py(y)|Ay| = px(x)|Ax|.
Hence,
px(A”'y)

py(y) = (2.49)

|det(A)|

2.3 EXAMPLES OF DISTRIBUTIONS

In this section, some notable examples of distributions are provided. These are popular for modeling
the random nature of variables met in a wide range of applications, and they will be used later in this
book.

2.3.1 DISCRETE VARIABLES
The Bernoulli Distribution

A random variable is said to be distributed according to a Bernoulli distribution if it is binary, X =
{0, 1}, with

Px=1)=p, Px=0=1-p.

In a more compact way, we write x ~ Bern(x|p), where

P(x) =Bem(x|p) := p*(1 — p)' . (2.50)

Its mean value is equal to
Exl=1p+0(1—-p)=p (2.51)

and its variance is equal to

of =(—p)’p+p*d—p)=p(-p). (252)
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The Binomial Distribution

CHAPTER 2 PROBABILITY AND STOCHASTIC PROCESSES

A random variable x is said to follow a binomial distribution with parameters n, p, and we write

x ~ Bin(x|n, p),if ¥ ={0, 1, ...,n} and

P(x=k):=Bin(k|n, p) = (

n
k

)p"(l —p)" k. k=0,1,....n,

where by definition

(1)

n!

(n —k)k!”

(2.53)

(2.54)

For example, this distribution models the times that heads occurs in n successive trials, where
P(Heads) = p. The binomial is a generalization of the Bernoulli distribution, which results if in
Eq. (2.53) we set n = 1. The mean and variance of the binomial distribution are (Problem 2.1)

E[x]=np

and

of =np(l - p).

(2.55)

(2.56)

Fig. 2.2A shows the probability P (k) as a function of k for p = 0.4 and n = 9. Fig. 2.2B shows the
respective cumulative distribution. Observe that the latter has a staircase form, as is always the case for

discrete variables.

0.3

P CDF

0.2

0.1

FIGURE 2.2

0.8

0.6

0.4

0.2

(A) The probability mass function (PMF) for the binomial distribution for p = 0.4 and n = 9. (B) The respective
cumulative distribution function (CDF). Since the random variable is discrete, the CDF has a staircase-like graph.
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The Multinomial Distribution

This is a generalization of the binomial distribution if the outcome of each experiment is not binary
but can take one out of K possible values. For example, instead of tossing a coin, a die with K sides
is thrown. Each one of the possible K outcomes has probability Py, Ps, ..., Pk, respectively, to occur,
and we denote

P=[P,P,,..., PK]T.

After n experiments, assume that x, x2, ..., xg times sidesx =1,x =2, ..., x = K occurred, respec-
tively. We say that the random (discrete) vector,

x=[x1,%x2,...,xk 17, (2.57)

follows a multinomial distribution, x ~ Mult(x|n, P), if

K
n X,
P(x) =Mult(x|n, P) := P* 2.58
(x) (x|n, P) (x“xzw,w)]_[ : (2.58)
k=1
where
n . n!
X1, X2, o Xk )T xilo!. L xg !
Note that the variables X1, ..., Xg are subject to the constraint
K
s
k=1
and also

K
Z Prx =1.
k=1
The mean value, the variances, and the covariances are given by
E[x]=nP, axzk =nP(1—-Py), k=1,2,...,K, cov(x;,Xx;) =—nP; Pj, i #j. (2.59)

The special case of the multinomial, where only one experiment, n = 1, is performed, is known as the
categorical distribution. The latter can be considered as the generalization of the Bernoulli distribution.
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p(z)

FIGURE 2.3
The PDF of a uniform distribution U (a, b).

2.3.2 CONTINUOUS VARIABLES
The Uniform Distribution

A random variable x is said to follow a uniform distribution in an interval [a, b], and we write
x ~ U(a,b), witha > —oo and b < +o0, if

1 .
—, fa<x<b
x)=1 b-a’ =T =" 2.60
Pe) 0, otherwise. ( )

Fig. 2.3 shows the respective graph. The mean value is equal to

E[x] =& er b 2.61)

and the variance is given by (Problem 2.2)

1
2 2
=—(b- . 2.62
ol = b-a) (2.62)

The Gaussian Distribution

The Gaussian or normal distribution is one among the most widely used distributions in all scientific
disciplines. We say that a random variable x is Gaussian or normal with parameters y and o2, and we
write x ~ N (i, %) or N'(x|p, 02), if

202

1 (x — /L)2>
) 2.63
px) = \/2—0_ exXp < ( )

It can be shown that the corresponding mean and variance are

E[x]=u and ol=0o" (2.64)
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FIGURE 2.4

The graphs of two Gaussian PDFs for . = 1 and 62=0.1 (red) and 62=0.01 (gray).

Indeed, by the definition of the mean value, we have

+00 _ 2
E[x] = ! / X exp (—M> dx

V2ro Joxo 202
1 +00 y2

Due to the symmetry of the exponential function, performing the integration involving y gives zero
and the only surviving term is due to w. Taking into account that a PDF integrates to one, we obtain
the result.

To derive the variance, from the definition of the Gaussian PDF, we have

+00 _ 2
/ exp <—%) dx =270, (2.66)
—o0 20
Taking the derivative of both sides with respect to o, we obtain
400 _ 2 _ 2
/ M exp — M dx — A/ 2]‘[ (2.67)
oo o3 202
or
1 +o0 (x — M)2)
2 2 2
ol = X — expl ————— ) dx =07, 2.68
T V2no /—oo =) p< 202 (2.68)

which proves the claim.

Fig. 2.4 shows the graph for two cases, A(x|1,0.1) and A/ (x|1, 0.01). Both curves are symmetri-
cally placed around the mean value i = 1. Observe that the smaller the variance is, the sharper around
the mean value the PDF becomes.
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FIGURE 2.5

The graphs of two-dimensional Gaussian PDFs for u = 0 and different covariance matrices. (A) The covariance

matrix is diagonal with equal elements along the diagonal. (B) The corresponding covariance matrix is nondiagonal.

The generalization of the Gaussian to vector variables, X € R!, results in the so-called multivariate
Gaussian or normal distribution, x ~ N (x|, X) with parameters g and X, which is defined as

1 1 T y—1 . :
px)= W exp (—5 x—pn) X2 (x— u)) :  Gaussian PDF, (2.69)

where | - | denotes the determinant of a matrix. It can be shown (Problem 2.3) that the respective mean
values and the covariance matrix are given by

E[x]=n and Xy=2X. (2.70)

Fig. 2.5 shows the two-dimensional normal PDF for two cases. Both share the same mean vector,
1t =0, but they have different covariance matrices,

0.1 0.0 0.1 0.01
1= [0.0 0.1}’ 2= [0.01 0.2 ] @70

Fig. 2.6 shows the corresponding isovalue contours for equal probability density values. In
Fig. 2.60A, the contours are circles, corresponding to the symmetric PDF in Fig. 2.5A with covari-
ance matrix X'1. The one shown in Fig. 2.6B corresponds to the PDF in Fig. 2.5B associated with X».
Observe that, in general, the isovalue curves are ellipses/hyperellipsoids. They are centered at the mean
vector, and the orientation of the major axis as well their exact shape is controlled by the eigenstructure
of the associated covariance matrix. Indeed, all points x € R/, which score the same probability density
value, obey

(x— ;L)TZ'_l (x — u) = constant = c. (2.72)
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FIGURE 2.6

The isovalue contours for the two Gaussians of Fig. 2.5. The contours for the Gaussian in Fig. 2.5A are circles,
while those corresponding to Fig. 2.5B are ellipses. The major and minor axes of the ellipse are determined by the
eigenvectors/eigenvalues of the respective covariance matrix, and they are proportional to «/A1c and v/Asc, respec-
tively. In the figure, they are shown for the case of ¢ = 1. For the case of the diagonal matrix, with equal elements
along the diagonal, all eigenvalues are equal, and the ellipse becomes a circle.

We know that the covariance matrix besides being positive definite is also symmetric, ¥ = X7 . Thus,
its eigenvalues are real and the corresponding eigenvectors can be chosen to form an orthonormal basis
(Appendix A.2), which leads to its diagonalization,

T=UAUT, (2.73)
with
U:=luy,...,ul, (2.74)
where u;,i =1,2,...,1, are the orthonormal eigenvectors, and
A :=diag{A1,..., A} (2.75)

comprise the respective eigenvalues. We assume that X is invertible, hence all eigenvalues are positive
(being positive definite it has positive eigenvalues, Appendix A.2). Due to the orthonormality of the
eigenvectors, matrix U is orthogonal as expressed in UUT = UTU = I. Thus, Eq. (2.72) can now be
written as

yA ly=c, (2.76)

where we have used the linear transformation

y=U"(x—p), 2.77)
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which corresponds to a rotation of the axes by U and a translation of the origin to . Eq. (2.76) can be
written as

—c 2.78
. ¢ (2.78)

where it can be readily observed that it is an equation describing a (hyper)ellipsoid in the R!. From
Eq. (2.77), it is easily seen that it is centered at g and that the major axes of the ellipsoid are parallel to
up,...,u; (plugin place of x the standard basis vectors, [1,0, ..., 017, etc.). The sizes of the respective
axes are controlled by the corresponding eigenvalues. This is shown in Fig. 2.6B. For the special case
of a diagonal covariance with equal elements across the diagonal, all eigenvalues are equal to the
value of the common diagonal element and the ellipsoid becomes a (hyper)sphere (circle) as shown in
Fig. 2.6A.

The Gaussian PDF has a number of nice properties, which we are going to discover as we move on
in this book. For the time being, note that if the covariance matrix is diagonal,

¥ =diag{o?, ..., 07},

that is, when the covariance of all the elements cov(x;,x;) =0,i,j=1,2,...,/, then the random
variables comprising x are statistically independent. In general, this is not true. Uncorrelated variables
are not necessarily independent; independence is a much stronger condition. This is true, however, if
they follow a multivariate Gaussian. Indeed, if the covariance matrix is diagonal, then the multivariate
Gaussian is written as

! 2
1 (i — i)
= - - 2.79
px) ]1 o exp( 27 ) 2.79)
In other words,
!
p@) =[] r&. (2.80)
i=1

which is the condition for statistical independence.

The Central Limit Theorem

This is one of the most fundamental theorems in probability theory and statistics and it partly explains
the popularity of the Gaussian distribution. Consider N mutually independent random variables, each
following its own distribution with mean values w; and variances oiz, i=1,2,...,N. Define a new
random variable as their sum,

x=) x. (2.81)

Then the mean and variance of the new variable are given by

N N
=Yy ui and o°=Y o (2.82)
i=1 i=1
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It can be shown (e.g., [4,6]) that as N — oo the distribution of the normalized variable

X — [

z= (2.83)
o
tends to the standard normal distribution, and for the corresponding PDF we have
p(z) —— N(z[0, 1). (2.84)
N—oo

In practice, even summing up a relatively small number, N, of random variables, one can obtain a
good approximation to a Gaussian. For example, if the individual PDFs are smooth enough and each
random variable is independent and identically distributed (i.i.d.), a number N between 5 and 10 can
be sufficient. The term i.i.d. will be used a lot in this book. The term implies that successive samples
of a random variable are drawn independently from the same distribution that describes the respective
variable.

The Exponential Distribution
We say that a random variable follows an exponential distribution with parameter A > 0, if

A —Ax), if 0,
p(x>== P (=), Hx= (2.85)

0, otherwise.

The distribution has been used, for example, to model the time between arrivals of telephone calls or
of a bus at a bus stop. The mean and variance can be easily computed by following simple integration
rules, and they are

1 , 1
E[x] = 3 oy = PR (2.86)
The Beta Distribution

We say that a random variable, x € [0, 1], follows a beta distribution with positive parameters, a, b, and
we write, x ~ Beta(x|a, b,), if

— x 1 —xb ! ifo<x <1,
px) =1 B(a,b) (2.87)

0, otherwise,

where B(a, b) is the beta function, defined as
1
B(a, b) :=f x N1 —x)Plax. (2.88)
0
The mean and variance of the beta distribution are given by (Problem 2.4)

a 2 ab
Ex]=——, o= 5 )
a+b (@a+b)y*(a+b+1)

(2.89)
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A (B)

FIGURE 2.7

The graphs of the PDFs of the beta distribution for different values of the parameters. (A) The dotted line cor-
responds to a = 1, b = 1, the gray line to a = 0.5, b = 0.5, and the red one to a = 3, b = 3. (B) The gray line
corresponds to a =2, b =3, and the red one to a = 8, b = 4. For values a = b, the shape is symmetric around 1/2.
Fora <1,b < 1,itis convex. Fora > 1,b > 1, itis zero at x =0 and x = 1. For a = 1 = b, it becomes the uniform

distribution. If a < 1, p(x) — 00, x — O andif b < 1, p(x) — 0o, x —> 1.

Moreover, it can be shown (Problem 2.5) that

T'(a)T(b)

B(a,b) = , 2.90
@D =Tarp 230
where I is the gamma function defined as
oo
I'(a) = f x4 le™ dx. (2.91)
0

The beta distribution is very flexible and one can achieve various shapes by changing the parameters
a, b. For example, if a = b = 1, the uniform distribution results. If a = b, the PDF has a symmetric
graph around 1/2. If a > 1,b > 1, then p(x) — O bothat x=0and x=1.Ifa<1and b < 1, it
is convex with a unique minimum. If @ < 1, it tends to oo as x —> 0, and if b < 1, it tends to oo for
x — 1. Figs. 2.7A and B show the graph of the beta distribution for different values of the parameters.

The Gamma Distribution

A random variable follows the gamma distribution with positive parameters a, b, and we write
x ~ Gamma(x|a, b), if

ba
a—1 —bx’ 07
=1 T@" ¢ 7 (2.92)

0, otherwise.
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FIGURE 2.8

The PDF of the gamma distribution takes different shapes for the various values of the following parameters:
a=0.5,b=1 (full line gray), a =2,b = 0.5 (red), a = 1, b = 2 (dotted).

The mean and variance are given by
Elx] =2, o2=-. (2.93)

The gamma distribution also takes various shapes by varying the parameters. For a < 1, it is strictly
decreasing and p(x) — oo as x —> 0 and p(x) — 0 as x —> oo. Fig. 2.8 shows the resulting
graphs for various values of the parameters.

Remarks 2.1.

» Setting in the gamma distribution a to be an integer (usually a = 2), the Erlang distribution results.
This distribution is used to model waiting times in queueing systems.

* The chi-squared is also a special case of the gamma distribution, and it is obtained if we setb =1/2
and a = v/2. The chi-squared distribution results if we sum up v squared normal variables.

The Dirichlet Distribution

The Dirichlet distribution can be considered as the multivariate generalization of the beta distribution.
Let X = [X1,...,xx]? be a random vector, with components such as

K
0<xx<1, k=1,2,...,K, and Zxkzl. (2.94)
k=1

In other words, the random variables lie on (K — 1)-dimensional simplex, Fig. 2.9. We say that the
random vector x follows a Dirichlet distribution with (positive) parameters @ = [ay, ...,a k1%, and we
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T3

FIGURE 2.9

The two-dimensional simplex in R3.

write x ~ Dir(x|a), if

I'(a) K
p(x) =Dir(x|a) = T ——r— . TG ]‘[1 , (2.95)
where
K
a= Z a. (2.96)
k=1

(B)

FIGURE 2.10
The Dirichlet distribution over the two-dimensional simplex for (A) (0.1,0.1,0.1), (B) (1,1,1), and (C) (10,10,10).
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The mean, variance, and covariances of the involved random variables are given by (Problem 2.7),
i.e.,

2 ar(a — ax)

aaj
(¢} — -h = . <
o a2(@a+1)

1
E[x] = —a, m,

- cov(x;, Xj) =— i#j. 2.97)
a
Fig. 2.10 shows the graph of the Dirichlet distribution for different values of the parameters, over the

respective two-dimensional simplex.

2.4 STOCHASTIC PROCESSES

The notion of a random variable has been introduced to describe the result of a random experiment
whose outcome is a single value, such as heads or tails in a coin tossing experiment, or a value between
one and six when throwing the die in a backgammon game.

In this section, the notion of a stochastic process is introduced to describe random experiments
where the outcome of each experiment is a function or a sequence; in other words, the outcome of
each experiment is an infinite number of values. In this book, we are only going to be concerned with
stochastic processes associated with sequences. Thus, the result of a random experiment is a sequence,
u, (or sometimes denoted as u(n)), n € Z, where 7Z is the set of integers. Usually, n is interpreted as
a time index, and u,, is called a time series, or in signal processing jargon, a discrete-time signal. In
contrast, if the outcome is a function, u(t), it is called a continuous-time signal. We are going to adopt
the time interpretation of the free variable n for the rest of the chapter, without harming generality.

When discussing random variables, we used the notation x to denote the random variable, which
assumes a value, x, from the sample space once an experiment is performed. Similarly, we are going
to use u, to denote the specific sequence resulting from a single experiment and the roman font, u,,, to
denote the corresponding discrete-time random process, that is, the rule that assigns a specific sequence
as the outcome of an experiment. A stochastic process can be considered as a family or ensemble of
sequences. The individual sequences are known as sample sequences or simply as realizations.

For our notational convention, in general, we are going to reserve different symbols for processes
and random variables. We have already used the symbol u and not x; this is only for pedagogical
reasons, just to make sure that the reader readily recognizes when the focus is on random variables and
when it is on random processes. In signal processing jargon, a stochastic process is also known as a
random signal. Fig. 2.11 illustrates the fact that the outcome of an experiment involving a stochastic
process is a sequence of values.

Note that fixing the time to a specific value, n = ng, makes u,, a random variable. Indeed, for each
random experiment we perform, a single value results at time instant ng. From this perspective, a ran-
dom process can be considered the collection of infinite random variables, {u,, n € Z}. So, is there a
need to study a stochastic process separate from random variables/vectors? The answer is yes, and the
reason is that we are going to allow certain time dependencies among the random variables, corre-
sponding to different time instants, and study the respective effect on the time evolution of the random
process. Stochastic processes will be considered in Chapter 5, where the underlying time dependen-
cies will be exploited for computational simplifications, and in Chapter 13 in the context of Gaussian
processes.



42 CHAPTER 2 PROBABILITY AND STOCHASTIC PROCESSES
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FIGURE 2.11

The outcome of each experiment, associated with a discrete-time stochastic process, is a sequence of values. For
each one of the realizations, the corresponding values obtained at any instant (e.g., n or m) comprise the outcomes
of a corresponding random variable, u,, or u,,, respectively.

2.4.1 FIRST- AND SECOND-ORDER STATISTICS

For a stochastic process to be fully described, one must know the joint PDFs (PMFs for discrete-valued
random variables)

PUn, Up,y .. Ups R M, L T), (2.98)

for all possible combinations of random variables, u,, U, ..., u,. Note that, in order to emphasize it,
we have explicitly denoted the dependence of the joint PDFs on the involved time instants. However,
from now on, this will be suppressed for notational convenience. Most often, in practice, and certainly
in this book, the emphasis is on computing first- and second-order statistics only, based on p(u,) and
p(uy, uy). To this end, the following quantities are of particular interest.

Mean at time n:

+00
n = Eluy] = / e p ()it (2.99)

—00

Autocovariance at time instants n, m:
cov(n, m) :=E[(un —E[un])(um —E[um])]. (2.100)

Autocorrelation at time instants n, m:
r(n,m) :=E[u,u,]. (2.101)

Note that for notational simplicity, subscripts have been dropped from the respective symbols, e.g.,
r(n, m) is used instead of the more formal notation, r, (n, m). We refer to these mean values as ensemble
averages to stress that they convey statistical information over the ensemble of sequences that comprise
the process.

The respective definitions for complex stochastic processes are

cov(n,m) =E[(u, — E[u,]) (upm — Elu,])*], (2.102)

and

r(n, m) =E[unu:1]. (2.103)
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2.4.2 STATIONARITY AND ERGODICITY

Definition 2.1 (Strict-sense stationarity). A stochastic process u,, is said to be strict-sense stationary
(SSS) if its statistical properties are invariant to a shift of the origin, or if Vk € Z

p(u}’h Umy oo, Mr) = p(unfkv Um—ks -+ urfk)v (2104)
and for any possible combination of time instants, n,m, ..., r € Z.

In other words, the stochastic processes u, and u,_; are described by the same joint PDFs of all
orders. A weaker version of stationarity is that of the mth-order stationarity, where joint PDFs involving
up to m variables are invariant to the choice of the origin. For example, for a second-order (m = 2)
stationary process, we have p(u,) = p(u,—x) and p(uy,,u,) = p(Up—k, Ur—k), Yo, r, k € Z.

Definition 2.2 (Wide-sense stationarity). A stochastic process u, is said to be wide-sense stationary
(WSY) if the mean value is constant over all time instants and the autocorrelation/autocovariance se-
quences depend on the difference of the involved time indices, or

Un=m, and r(n,n—k)=r(k). (2.105)

Note that WSS is a weaker version of the second-order stationarity; in the latter case, all possible
second-order statistics are independent of the time origin. In the former, we only require the autocorre-
lation (autocovariance) and the mean value to be independent of the time origin. The reason we focus
on these two quantities (statistics) is that they are of major importance in the study of linear systems
and in the mean-square estimation, as we will see in Chapter 4.

Obviously, an SSS process is also WSS but, in general, not the other way around. For WSS pro-
cesses, the autocorrelation becomes a sequence with a single time index as the free parameter; thus its
value, which measures a relation of the random variables at two time instants, depends solely on how
much these time instants differ, and not on their specific values.

From our basic statistics course, we know that given a random variable x, its mean value can be
approximated by the sample mean. Carrying out N successive independent experiments, let x,,n =

1,2,..., N, be the obtained values, known as observations. The sample mean is defined as
LN
AN = NX;)C,,. (2.106)
—

For large enough values of N, we expect the sample mean to be close to the true mean value, E[x]. In a
more formal way, this is guaranteed by the fact that iy is associated with an unbiased and consistent
estimator. We will discuss such issues in Chapter 3; however, we can refresh our memory at this point.
Every time we repeat the N random experiments, different samples result and hence a different estimate
iy is computed. Thus, the values of the estimates define a new random variable, [i,,, known as the
estimator. This is unbiased, because it can easily be shown that

E[iy]=E[x], (2.107)

and it is consistent because its variance tends to zero as N —> +o0o (Problem 2.8). These two prop-
erties guarantee that, with high probability, for large values of N, jiy will be close to the true mean
value.
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To apply the concept of sample mean approximation to random processes, one must have at her/his
disposal a number of N realizations, and compute the sample mean at different time instants “across the
process,” using different realizations, representing the ensemble of sequences. Similarly, sample mean
arguments can be used to approximate the autocovariance/autocorrelation sequences. However, this
is a costly operation, since now each experiment results in an infinite number of values (a sequence
of values). Moreover, it is common in practical applications that only one realization is available to
the user.

To this end, we will now define a special type of stochastic processes, where the sample mean
operation can be significantly simplified.

Definition 2.3 (Ergodicity). A stochastic process is said to be ergodic if the complete statistics can be
determined by any one of the realizations.

In other words, if a process is ergodic, every single realization carries identical statistical informa-
tion and it can describe the entire random process. Since from a single sequence only one set of PDFs
can be obtained, we conclude that every ergodic process is necessarily stationary. A nonstationary
process has infinite sets of PDFs, depending upon the choice of the origin. For example, there is only
one mean value that can result from a single realization and be obtained as a (time) average over the
values of the sequence. Hence, the mean value of a stochastic process that is ergodic must be constant
for all time instants, or independent of the time origin. The same is true for all higher-order statistics.

A special type of ergodicity is that of the second-order ergodicity. This means that only statistics
up to a second order can be obtained from a single realization. Second-order ergodic processes are
necessarily WSS. For second-order ergodic processes, the following are true:

Elup] == lim [, (2.108)
N—o00
where
1 N
AN =5yt 2
n=—N
Also,
N
k)= lim —— - —k— W), 2.109
cov(k) = lim S D (it = W) atn—k = 1) (2.109)
n=—N
{ 1] [ , | ‘ . [ Time average
Random t 1 L 1 “along”
Process t ; : # ; '1‘\/
[ 7 1
”"LEnsemble average
“across”
FIGURE 2.12

For ergodic processes, the common mean value, for all time instants (ensemble averaging “across” the process), is
computed as the time average “along” the process.
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where both limits are in the mean-square sense; that is,
. ~ 21
lim Eliw - ul| =0,
N—o0

and similarly for the autocovariance. Note that often, ergodicity is only required to be assumed for the
computation of the mean and covariance and not for all possible second-order statistics. In this case,
we talk about mean-ergodic and covariance-ergodic processes.

In summary, when ergodic processes are involved, ensemble averages “across the process” can be
obtained as time averages “along the process”; see Fig. 2.12.

In practice, when only a finite number of samples from a realization is available, then the mean and
covariance are approximated as the respective sample means.

An issue is to establish conditions under which a process is mean-ergodic or covariance-ergodic.
Such conditions do exist, and the interested reader can find such information in more specialized books
[6]. It turns out that the condition for mean-ergodicity relies on second-order statistics and the condition
for covariance-ergodicity on fourth-order statistics.

It is very common in statistics as well as in machine learning and signal processing to subtract
the mean value from the data during the preprocessing stage. In such a case, we say that the data are
centered. The resulting new process has now zero mean value, and the covariance and autocorrelation
sequences coincide. From now on, we will assume that the mean is known (or computed as a sample
mean) and then subtracted. Such a treatment simplifies the analysis without harming generality.

Example 2.2. The goal of this example is to construct a process that is WSS yet not ergodic. Let a
WSS process, u,,

Elup] = u,
and
Elu,uy—] = ruk).
Define the process
vV, i= auy,, (2.110)

where a is a random variable taking values in {0, 1}, with probabilities P(0) = P (1) =0.5. Moreover,
a and u,, are statistically independent. Then, we have

E[v,] = E[au,] = E[a] E[u,] =0.5u, (2.111)
and

E[vnVn_i] = E[a2] E[upup_k] = 0.5r4 (k). (2.112)

Thus, v, is WSS. However, it is not ergodic. Indeed, some of the realizations will be equal to zero
(when a = 0), and the mean value and autocorrelation, which will result from them as time averages,
will be zero, which is different from the ensemble averages.
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2.4.3 POWER SPECTRAL DENSITY

The Fourier transform is an indispensable tool for representing in a compact way, in the frequency
domain, the variations that a function/sequence undergoes in terms of its free variable (e.g., time).
Stochastic processes are inherently related to time. The question that is now raised is whether stochastic
processes can be described in terms of a Fourier transform. The answer is affirmative, and the vehicle to
achieve this is via the autocorrelation sequence for processes that are at least WSS. Prior to providing
the necessary definitions, it is useful to summarize some common properties of the autocorrelation
sequence.

Properties of the Autocorrelation Sequence

Let u,, be a WSS process. Its autocorrelation sequence has the following properties, which are given
for the more general complex-valued case:

Property 1.
r(k) =r*(=k), VkelZ. (2.113)

This property is a direct consequence of the invariance with respect to the choice of the origin.
Indeed,

r(k) = Elu,uy,_; 1 =E[uyruy] =r* (k).
Property I1.
r(0)=E [|un|2]- (2.114)

That is, the value of the autocorrelation at k = 0 is equal to the mean-square of the magnitude of
the respective random variables. Interpreting the square of the magnitude of a variable as its energy,
r(0) can be interpreted as the corresponding (average) power.

Property III.

r(0) > |r(k)|, Vk#O0. (2.115)

The proof is provided in Problem 2.9. In other words, the correlation of the variables, corresponding
to two different time instants, cannot be larger (in magnitude) than r (0). As we will see in Chapter 4,
this property is essentially the Cauchy—Schwarz inequality for the inner products (see also Appendix
of Chapter 8).

Property IV. The autocorrelation sequence of a stochastic process is positive definite. That is,

N N
3> anapr(n.m)=0, VYa,eC,n=12,....N, YN €Z. (2.116)

n=1m=1

Proof. The proof is easily obtained by the definition of the autocorrelation,

N 2 N N
0<E[|Y aw| =23 ey Efua]. (2.117)

n=1 n=1m=1
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which proves the claim. Note that strictly speaking, we should say that it is semipositive definite.
However, the “positive definite” name is the one that has survived in the literature. This property
will be useful when introducing Gaussian processes in Chapter 13. O

* Property V. Let u, and v, be two WSS processes. Define the new process
Zy = Uy + Vy.
Then,
rz(k) = ry(k) 4+ ry(k) + ruy(k) + rya (k), (2.118)

where the cross-correlation between two jointly WSS stochastic processes is defined as

ruv(k) == E[unvz_k], keZ: cross-correlation. (2.119)

The proof is a direct consequence of the definition. Note that if the two processes are uncorrelated,
as when ryy (k) = ryy (k) =0, then

rz(k) = ry(k) + ry(k).

Obviously, this is also true if the processes u,, and v,, are independent and of zero mean value, since

then E[uan,,k] =E[u,] E[vzf «] = 0. It should be stressed here that uncorrelatedness is a weaker

condition and it does not necessarily imply independence; the opposite is true for zero mean values.
*  Property VI.

ray (k) = ryy (k). (2.120)

The proof is similar to that of Property L.
*  Property VII.

ra(0)ry(0) = ra(0)*, Yk € Z. (2.121)
The proof is also given in Problem 2.9.

Power Spectral Density

Definition 2.4. Given a WSS stochastic process uy, its power spectral density (PSD) (or simply the
power spectrum) is defined as the Fourier transform of its autocorrelation sequence,

oo
S(w) := Z r(k)exp (—jwk): power spectral density. (2.122)

k=—00

Using the Fourier transform properties, we can recover the autocorrelation sequence via the inverse
Fourier transform in the following manner:

+r
r(k):%/ S(w) exp (jwk) dow. (2.123)
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Due to the properties of the autocorrelation sequence, the PSD has some interesting and useful
properties, from a practical point of view.
Properties of the PSD

* The PSD of a WSS stochastic process is a real and nonnegative function of w. Indeed, we have

+00
S(@)= Y r(k)exp(—jwk)
k=—00

-1

=r(0)+ Y r(kyexp(—jwk)+ Y r(k)exp(—jwk)
k=—00 k=1

—+00 [e%e)
=r(0)+ Y _r*(k)exp (jok) + Y r(k)exp(—jwk)

k=1 k=1
+00
—r(0) +2 ) Real{r(k) exp (—jok) }, (2.124)
k=1

which proves the claim that PSD is a real number.” In the proof, Property I of the autocorrelation
sequence has been used. We defer the proof concerning the nonnegativity to the end of this section.

* The area under the graph of S(w) is proportional to the power of the stochastic process, as expressed
by

1 +r

E[Ju,*] =r(0) = —/ S(w)dw, (2.125)
27 J_»

which is obtained from Eq. (2.123) if we set k = 0. We will come to the physical meaning of this

property very soon.

Transmission Through a Linear System

One of the most important tasks in signal processing and systems theory is the linear filtering operation
on an input time series (signal) to generate another output sequence. The block diagram of the filtering
operation is shown in Fig. 2.13. From the linear system theory and signal processing basics, it is
established that for a class of linear systems known as linear time-invariant, the input—output relation
is given via the elegant convolution between the input sequence and the impulse response of the filter,

+oo
d, =w, xu, = Z w;u,—; : convolution sum, (2.126)

i=—00

where ..., wo, wi, wa, ... are the parameters comprising the impulse response describing the filter [8].
In case the impulse response is of finite duration, for example, wg, wi, ..., w;—1, and the rest of the

2 Recall that if z =a + jb is a complex number, its real part Real{z} =a = %(Z +2%).
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Linear
Up — system dn
Input Wy, Output

FIGURE 2.13

The linear system (filter) is excited by the input sequence (signal) u, and provides the output sequence (signal) d,,.

values are zero, then the convolution can be written as

d, = IZE wiu,—; = wy,, (2.127)
i=0
where
w = [wo, wi, ..., wi—11", (2.128)
and
Wy = [Up, U1, .. Upgp1]” € R (2.129)

The latter is known as the input vector of order [ and at time n. It is interesting to note that this is
a random vector. However, its elements are part of the stochastic process at successive time instants.
This gives the respective autocorrelation matrix certain properties and a rich structure, which will
be studied and exploited in Chapter 4. As a matter of fact, this is the reason that we used different
symbols to denote processes and general random vectors; thus, the reader can readily remember that
when dealing with a process, the elements of the involved random vectors have this extra structure.
Moreover, observe from Eq. (2.126) that if the impulse response of the system is zero for negative
values of the time index n, this guarantees causality. That is, the output depends only on the values of
the input at the current and previous time instants, and there is no dependence on future values. As a
matter of fact, this is also a necessary condition for causality; that is, if the system is causal, then its
impulse response is zero for negative time instants [8].

Theorem 2.1. The PSD of the output d,, of a linear time-invariant system, when it is excited by a WSS
stochastic process 0y, is given by

Sa(@) = |W (@) ]* Su(w), (2.130)
where
+o0
W(w):= Y wpexp(—jon). (2.131)

Proof. First, it is shown (Problem 2.10) that

ra(k) = ry(k) = wg = w* ;. (2.132)
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(W (w)]

—Wo wo

— Aw +— — Aw +

FIGURE 2.14

An ideal bandpass filter. The output contains frequencies only in the range of | — w,| < Aw/2.

Then, taking the Fourier transform of both sides, we obtain Eq. (2.130). To this end, we used the
well-known properties of the Fourier transform,

ru(k) % wi —> Sy(@)W(w), and w*, — W (w). |

Physical Interpretation of the PSD

We are now ready to justify why the Fourier transform of the autocorrelation sequence was given
the specific name of “power spectral density.” We restrict our discussion to real processes, although
similar arguments hold true for the more general complex case. Fig. 2.14 shows the magnitude of the
Fourier transform of the impulse response of a very special linear system. The Fourier transform is
unity for any frequency in the range | — w,| < % and zero otherwise. Such a system is known as
bandpass filter. We assume that Aw is very small. Then, using Eq. (2.130) and assuming that within
the intervals | — w,| < %, Su(w) = Sy(w,), we have

. Aw
Sq(w) = Su(wy), if |w _.a)ol < = (2.133)
0, otherwise.
Hence,
+o00

5 1 Aw
AP :=E[|dn| ]:rd(O)z — Si(w)dw ~ Sy(w,) —, (2.134)
27 J_ oo T

due to the symmetry of the PSD (S, (w) = Sy(—w)). Hence,
1 AP
—Su(wo) = —. (2.135)
b4 Aw

In other words, the value Sy (w,) can be interpreted as the power density (power per frequency interval)

in the frequency (spectrum) domain.
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Moreover, this also establishes what was said before that the PSD is a nonnegative real function
for any value of w € [—m, 4] (the PSD, being the Fourier transform of a sequence, is periodic with
period 27, e.g., [8]).

Remarks 2.2.

* Note that for any WSS stochastic process, there is only one autocorrelation sequence that describes
it. However, the converse is not true. A single autocorrelation sequence can correspond to more
than one WSS process. Recall that the autocorrelation is the mean value of the product of random
variables. However, many random variables can have the same mean value.

*  We have shown that the Fourier transform, S(w), of an autocorrelation sequence, r(k), is nonneg-
ative. Moreover, if a sequence r (k) has a nonnegative Fourier transform, then it is positive definite
and we can always construct a WSS process that has » (k) as its autocorrelation sequence (e.g., [0,
pages 410, 421]). Thus, the necessary and sufficient condition for a sequence to be an autocorrela-
tion sequence is the nonnegativity of its Fourier transform.

Example 2.3 (White noise sequence). A stochastic process 1, is said to be white noise if the mean and
its autocorrelation sequence satisfy

o2, ifk=0, ) _
EM,]=0 and r(k)=4{ " white noise, (2.136)
0, ifk#0.
where o2 is its variance. In other words, all variables at different time instants are uncorrelated. If, in

n
addition, they are independent, we say that it is strictly white noise. It is readily seen that its PSD is

given by
Sy(@) =07 (2.137)

That is, it is constant, and this is the reason it is called white noise, analogous to white light, whose
spectrum is equally spread over all wavelengths.

2.4.4 AUTOREGRESSIVE MODELS

We have just seen an example of a stochastic process, namely, white noise. We now turn our attention
to generating WSS processes via appropriate modeling. In this way, we will introduce controlled corre-
lation among the variables, corresponding to the various time instants. We focus on the real data case,
to simplify the discussion.

Autoregressive processes are among the most popular and widely used models. An autoregressive
process of order /, denoted as AR(!), is defined via the following difference equation:

u, +aju,—1+---+au,—; =mn,: autoregressive process, (2.138)

where 1, is a white noise process with variance o%.

As is always the case with any difference equation, one starts from some initial conditions and
then generates samples recursively by plugging into the model the input sequence samples. The input



52 CHAPTER 2 PROBABILITY AND STOCHASTIC PROCESSES

samples here correspond to a white noise sequence and the initial conditions are set equal to zero,
u_1=...u_;=0.

There is no need to mobilize mathematics to see that such a process is not stationary. Indeed, time
instant n = 0 is distinctly different from all the rest, since it is the time in which initial conditions are
applied. However, the effects of the initial conditions tend asymptotically to zero if all the roots of the
corresponding characteristic polynomial,

d4aid M+ a =0,

have magnitude less than unity (the solution of the corresponding homogeneous equation, without
input, tends to zero) [7]. Then, it can be shown that asymptotically, the AR(/) becomes WSS. This is
the assumption that is usually adopted in practice, which will be the case for the rest of this section.
Note that the mean value of the process is zero (try it).

The goal now becomes to compute the corresponding autocorrelation sequence, r(k), k € Z. Mul-
tiplying both sides in Eq. (2.138) with u,_, k > 0, and taking the expectation, we obtain

!

Zai Elu,—ius—k] =EMmyup—l, k>0,
i=0

where ag := 1, or
l
Zair(k —i)=0. (2.139)
i=0

We have used the fact that E[n,u,_¢], kK > 0, is zero. Indeed, u,_x depends recursively on n, ¢,
Nn—k—1 - - -, Which are all uncorrelated to 1, since this is a white noise process. Note that Eq. (2.139)
is a difference equation, which can be solved provided we have the initial conditions. To this end,
multiply Eq. (2.138) by u,, and take expectations, which results in

i
Zair(i) =0, (2.140)
i=0
since u,, recursively depends on 1),,, which contributes the anz term, and 1,1, . .., which result to zeros.

Combining Egs. (2.140)—(2.139) the following linear system of equations results:

r@© () ... rd | )
Oy
r(l)y r@© ...r(-=1 aj 0
= e (2.141)
rd) rd—1) ... r) a 0
These are known as the Yule—Walker equations, whose solution results in the values r(0), ..., (),

which are then used as the initial conditions to solve the difference equation in (2.139) and obtain
rk), Vk € Z.
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Observe the special structure of the matrix in the linear system. This type of matrix is known as
Toeplitz, and this is the property that will be exploited to efficiently solve such systems, which result
when the autocorrelation matrix of a WSS process is involved; see Chapter 4.

Besides the autoregressive models, other types of stochastic models have been suggested and used.
The autoregressive-moving average (ARMA) model of order (I, m) is defined by the difference equa-

tion
u, +aiu,—1+...+aquu— =bmy+...4+byMu—m, (2.142)
and the moving average model of order m, denoted as MA(m), is defined as
U, =bmy+ -+ bpMn—m. (2.143)
0.6
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FIGURE 2.15
(A) The time evolution of a realization of the AR(1) with a = —0.9 and (B) the respective autocorrelation sequence.
(C) The time evolution of a realization of the AR(1) with @ = —0.4 and (D) the corresponding autocorrelation

sequence.
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Note that the AR(1) and the MA(m) models can be considered as special cases of the ARMA(/, m). For
a more theoretical treatment of the topic, see [1].

Example 2.4. Consider the AR(1) process,
U, +av,—1 =1,.
Following the general methodology explained before, we have
rtky+ark—1)=0, k=1,2,...,
) +ar(l)=o;.

Taking the first equation for k = 1 together with the second one readily results in

2

g,
0)=—>_.
r(0) —a

Plugging this value into the difference equation, we recursively obtain

o2
r(k):(—a)‘k'#, k=0,+1,%2,..., (2.144)
where we used the property r(k) =r(—k). Observe that if |a| > 1, 7(0) <0, which is meaningless.
Also, |a| < 1 guarantees that the magnitude of the root of the characteristic polynomial (z. = —a)
is smaller than one. Moreover, |a| < 1 guarantees that r(k) —> 0 as k —> oo. This is in line with
common sense, since variables that are far away must be uncorrelated.

Fig. 2.15 shows the time evolution of two AR(1) processes (after the processes have converged
to be stationary) together with the respective autocorrelation sequences, for two cases, corresponding
to a = —0.9 and a = —0.4. Observe that the larger the magnitude of a, the smoother the realization
becomes and time variations are slower. This is natural, since nearby samples are highly correlated
and so, on average, they tend to have similar values. The opposite is true for small values of a. For
comparison purposes, Fig. 2.16A is the case of a = 0, which corresponds to a white noise. Fig. 2.16B
shows the PSDs corresponding to the two cases of Fig. 2.15. Observe that the faster the autocorrelation
approaches zero, the more spread out the PSD is, and vice versa.

2.5 INFORMATION THEORY

So far in this chapter, we have looked at some basic definitions and properties concerning probability
theory and stochastic processes. In the same vein, we will now focus on the basic definitions and notions
related to information theory. Although information theory was originally developed in the context of
communications and coding disciplines, its application and use has now been adopted in a wide range
of areas, including machine learning. Notions from information theory are used for establishing cost
functions for optimization in parameter estimation problems, and concepts from information theory
are employed to estimate unknown probability distributions in the context of constrained optimization
tasks. We will discuss such methods later in this book.
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FIGURE 2.16
(A) The time evolution of a realization from a white noise process. (B) The PSDs in dBs, for the two AR(1)
sequences of Fig. 2.15. The red one corresponds to a = —0.4 and the gray one to a = —0.9. The smaller the mag-

nitude of a, the closer the process is to a white noise, and its PSD tends to increase the power with which high
frequencies participate. Since the PSD is the Fourier transform of the autocorrelation sequence, observe that the
broader a sequence is in time, the narrower its Fourier transform becomes, and vice versa.

The father of information theory is Claude Elwood Shannon (1916-2001), an American mathemati-
cian and electrical engineer. He founded information theory with the landmark paper “A mathematical
theory of communication,” published in the Bell System Technical Journal in 1948. However, he is also
credited with founding digital circuit design theory in 1937, when, as a 21-year-old Master’s degree
student at the Massachusetts Institute of Technology (MIT), he wrote his thesis demonstrating that
electrical applications of Boolean algebra could construct and resolve any logical, numerical relation-
ship. So he is also credited as a father of digital computers. Shannon, while working for the national
defense during the Second World War, contributed to the field of cryptography, converting it from an
art to a rigorous scientific field.

As is the case for probability, the notion of information is part of our everyday vocabulary. In this
context, an event carries information if it is either unknown to us, or if the probability of its occurrence
is very low and, in spite of that, it happens. For example, if one tells us that the sun shines bright during
summer days in the Sahara desert, we could consider such a statement rather dull and useless. On the
contrary, if somebody gives us news about snow in the Sahara during summer, that statement carries a
lot of information and can possibly ignite a discussion concerning climate change.

Thus, trying to formalize the notion of information from a mathematical point of view, it is reason-
able to define it in terms of the negative logarithm of the probability of an event. If the event is certain
to occur, it carries zero information content; however, if its probability of occurrence is low, then its
information content has a large positive value.
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2.5.1 DISCRETE RANDOM VARIABLES
Information

Given a discrete random variable x, which takes values in the set X, the information associated with
any value x € X is denoted as 7 (x) and it is defined as

I(x) =—log P(x): information associated with x =x € X. ‘ (2.145)

Any base for the logarithm can be used. If the natural logarithm is chosen, information is measured
in terms of nats (natural units). If the base 2 logarithm is employed, information is measured in terms
of bits (binary digits). Employing the logarithmic function to define information is also in line with
common sense reasoning that the information content of two statistically independent events should
be the sum of the information conveyed by each one of them individually; 7 (x, y) = —log P(x, y) =
—log P(x) —log P(y).

Example 2.5. We are given a binary random variable x € X = {0, 1}, and we assume that P(1) =
P(0) =0.5. We can consider this random variable as a source that generates and emits two possible
values. The information content of each one of the two equiprobable events is

1(0)=1I(1)=—1log,0.5=1 bit.

Let us now consider another source of random events, which generates code words comprising k bi-
nary variables together. The output of this source can be seen as a random vector with binary-valued

elements, x = [X1, ..., x¢]7. The corresponding probability space, X, comprises K = 2k elements. If
all possible values have the same probability, 1 /K, then the information content of each possible event
is equal to

1
I(x;)=—log, x= k bits.

We observe that in the case where the number of possible events is larger, the information content of
each individual one (assuming equiprobable events) becomes larger. This is also in line with common
sense reasoning, since if the source can emit a large number of (equiprobable) events, then the occur-
rence of any one of them carries more information than a source that can only emit a few possible
events.

Mutual and Conditional Information

Besides marginal probabilities, we have already been introduced to the concept of conditional proba-
bility. This leads to the definition of mutual information.

Given two discrete random variables, x € X and y € ), the information content provided by the
occurrence of the event y = y about the event x = x is measured by the mutual information, denoted as
I (x; y) and defined by

P(x]y) |

mutual information. (2.146)
P(x)

I(x;y):=log

Note that if the two variables are statistically independent, then their mutual information is zero; this is
most reasonable, since observing y says nothing about x. On the contrary, if by observing y it is certain



2.5 INFORMATION THEORY 57

that x will occur, as when P(x|y) = 1, then the mutual information becomes I (x; y) = I (x), which is
again in line with common reasoning. Mobilizing our now familiar product rule, we can see that

I(x;y)=1(y;x).

The conditional information of x given y is defined as

‘ I(x|y) =—log P(x|y): conditional information. (2.147)

It is straightforward to show that
I(x;y)=1(x) = 1(x]y). (2.148)

Example 2.6. In a communications channel, the source transmits binary symbols, x, with probability
P(0) = P(1) = 1/2. The channel is noisy, so the received symbols y may have changed polarity, due
to noise, with the following probabilities:

Py=0x=0)=1-p,
P(y=1}x=0)=p,
Py=1x=1)=1-—g,
P(y=0x=1)=gq.

This example illustrates in its simplest form the effect of a communications channel. Transmitted bits
are hit by noise and what the receiver receives is the noisy (possibly wrong) information. The task of
the receiver is to decide, upon reception of a sequence of symbols, which was the originally transmitted
one.

The goal of our example is to determine the mutual information about the occurrence of x =0 and
x = 1 once y = 0 has been observed. To this end, we first need to compute the marginal probabilities,

1
Py=0=Py=0k=0Px=0+Py=0x=DPx=1=-0-p+q),
and similarly,

1
P(y=1)=5(1—q+p).

Thus, the mutual information is

P(x=0ly=0) P(y=0[x=0)
1(0;0)=1 -
(0; 0) =log, P(x=0) 0g) PGy =0)
log, 207
1-p+q’

and

2q
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Let us now consider that p =g = 0. Then 7 (0; 0) = 1 bit, which is equal to / (x = 0), since the output
specifies the input with certainty. If on the other hand p = ¢ = 1/2, then 1 (0; 0) = 0 bits, since the noise
can randomly change polarity with equal probability. If now p =q = 1/4, then 1(0; 0) = log, % =
0.587 bits and 7 (1; 0) = —1 bit. Observe that the mutual information can take negative values, too.

Entropy and Average Mutual Information

Given a discrete random variable x € X, its entropy is defined as the average information over all
possible outcomes,

HX):=— Z P(x)log P(x): entropy of x. (2.149)
xeX

Note that if P(x) =0, P(x)log P(x) =0, by taking into consideration that lim,_,¢ x logx = 0.
In a similar way, the average mutual information between two random variables, X, y, is defined as

[6Gy) =) Y PO, )I(x;y)

xeX ye)

- Z Z P(x,y)log Plfxm

xeX ye) (x)
_ Z ZP()‘ o P(XIy)P(y)
P( YP(y)

xeX ye)

or

P
I(x;y)= E Z P(x,y)log P((;pr()) : average mutual information. (2.150)
xeX ye)

It can be shown that
I(x;y) =0,

and it is zero if x and y are statistically independent (Problem 2.12).
In comparison, the conditional entropy of x given y is defined as

H(x|y) :==— Z Z P(x,y)log P(x|y): conditional entropy. (2.151)
xeX yey

It is readily shown, by taking into account the probability product rule, that
I(x;y) = H(x) — H(x]y). (2.152)

Lemma 2.1. The entropy of a random variable x € X takes its maximum value if all possible values
x € X are equiprobable.

Proof. The proof is given in Problem 2.14. O
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In other words, the entropy can be considered as a measure of randomness of a source that emits
symbols randomly. The maximum value is associated with the maximum uncertainty of what is going
to be emitted, since the maximum value occurs if all symbols are equiprobable. The smallest value of
the entropy is equal to zero, which corresponds to the case where all events have zero probability with
the exception of one, whose probability to occur is equal to one.

Example 2.7. Consider a binary source that transmits the values 1 or 0 with probabilities p and 1 — p,
respectively. Then the entropy of the associated random variable is

H(x) =—plog, p— (1 — p)logy(1 — p).

Fig. 2.17 shows the graph for various values of p € [0, 1]. Observe that the maximum value occurs for

FIGURE 2.17

The maximum value of the entropy for a binary random variable occurs if the two possible events have equal
probability, p = 1/2.

2.5.2 CONTINUOUS RANDOM VARIABLES

All the definitions given before can be generalized to the case of continuous random variables. How-
ever, this generalization must be made with caution. Recall that the probability of occurrence of any
single value of a random variable that takes values in an interval in the real axis is zero. Hence, the
corresponding information content is infinite.

To define the entropy of a continuous variable x, we first discretize it and form the corresponding
discrete variable xa, i.€.,

XA :=nA, if (n—1)A <x<nA, (2.153)
where A > 0. Then,
nA
P(XAZI’ZA)ZP(I’ZA—A<X§I’ZA)=/ p(x)dx =ApnA), (2.154)
n—1A
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where p(nA) is a number between the maximum and the minimum value of p(x),x € (nA — A, nA]
(such a number exists by the mean value theorem of calculus). Then we can write

+00
H(xp)=— Z Ap(nA)log (Aﬁ(nA)), (2.155)
and since
I +o0
> Aﬁ(nA)=/ peydx=1,
we obtain
+00
H(xa)=—logA— > Ap(nA)log(p(na)). (2.156)

Note that xo —> x as A —> 0. However, if we take the limit in Eq. (2.156), then —log A goes to
infinity. This is the crucial difference compared to the discrete variables.
The entropy for a continuous random variable x is defined as the limit

H(x):= Ahglo (H(xa) +log A),

or

+00
H(x) = —/ p(x)logp(x)dx: entropy. (2.157)

This is the reason that the entropy of a continuous variable is also called differential entropy.
Note that the entropy is still a measure of randomness (uncertainty) of the distribution describing x.
This is demonstrated via the following example.

Example 2.8. We are given a random variable x € [a, b]. Of all the possible PDFs that can describe
this variable, find the one that maximizes the entropy.
This task translates to the following constrained optimization task:

b
maximize with respectto p: H = —/ px)In p(x)dx,
a

b
subject to: / px)dx =1.
a

The constraint guarantees that the function to result is indeed a PDF. Using calculus of variations to
perform the optimization (Problem 2.15), it turns out that

1 .
—, if x €[a, b],
X) = b—a
P {0, otherwise.
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In other words, the result is the uniform distribution, which is indeed the most random one since it
gives no preference to any particular subinterval of [a, b].

We will come to this method of estimating PDFs in Section 12.8.1. This elegant method for esti-
mating PDFs comes from Jaynes [3,4], and it is known as the maximum entropy method. In its more
general form, more constraints are involved to fit the needs of the specific problem.

Average Mutual Information and Conditional Information
Given two continuous random variables, the average mutual information is defined as

+00  p+oo
I(x;y) —/ / p(x,y)log ————— p(x. y) dxdy (2.158)
px)p(y)

and the conditional entropy of x, giveny,

+oo  p+o00
H(xly) = / f p(x. y)log p(xly) dx dy. (2.159)

Using standard arguments and the product rule, it is easy to show that
I(x;y)=H(x) — H(xly) = H(y) — H(y[x). (2.160)

Relative Entropy or Kullback—Leibler Divergence

The relative entropy or Kullback—Leibler divergence is a quantity that has been developed within the
context of information theory for measuring similarity between two PDFs. It is widely used in machine
learning optimization tasks when PDFs are involved; see Chapter 12. Given two PDFs, p and ¢, their
Kullback-Leibler divergence, denoted as KL(p||g), is defined as

e (x)

KL(pllq) := / p(x)log 25
q(x)

—00

dx: Kullback—Leibler divergence. (2.161)

Note that

1(x;y) =KL(p(x, )l p(x)p(»)).

The Kullback-Leibler divergence is not symmetric, i.e., KL(p||q) # KL(g||p), and it can be shown
that it is a nonnegative quantity (the proof is similar to the proof that the mutual information is non-
negative; see Problem 12.7 of Chapter 12). Moreover, it is zero if and only if p = g¢.

Note that all we have said concerning entropy and mutual information is readily generalized to the
case of random vectors.

2.6 STOCHASTIC CONVERGENCE

We will close this memory refreshing tour of the theory of probability and related concepts with some
definitions concerning convergence of sequences of random variables.
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Consider a sequence of random variables
X0y X]seees Xpponnn

We can consider this sequence as a discrete-time stochastic process. Due to the randomness, a realiza-
tion of this process, as shown by

X0y X1y ooy Xpp ooy

may converge or may not. Thus, the notion of convergence of random variables has to be treated
carefully, and different interpretations have been developed.

Recall from our basic calculus that a sequence of numbers, x,, converges to a value x if Ve > 0
there exists a number 7 (¢) such that

|x, — x| <€, Vn>n(e). (2.162)

CONVERGENCE EVERYWHERE

We say that a random sequence converges everywhere if every realization, x,, of the random process
converges to a value x, according to the definition given in Eq. (2.162). Note that every realization
converges to a different value, which itself can be considered as the outcome of a random variable x,
and we write

Xp —> X. (2.163)
n—oo

It is common to denote a realization (outcome) of a random process as x, (¢), where ¢ denotes a specific
experiment.

CONVERGENCE ALMOST EVERYWHERE

A weaker version of convergence, compared to the previous one, is the convergence almost everywhere.
Consider the set of outcomes ¢, such that

limx,(¢) =x(¢), n—> oo.
We say that the sequence x,, converges almost everywhere if
Px,—x)=1, n— oo. (2.164)

Note that {x,, —> x} denotes the event comprising all the outcomes such that limx,(¢) = x(¢). The
difference with the convergence everywhere is that now it is allowed to a finite or countably infinite
number of realizations (that is, to a set of zero probability) not to converge. Often, this type of conver-
gence is referred to as almost sure convergence or convergence with probability 1.

CONVERGENCE IN THE MEAN-SQUARE SENSE

We say that a random sequence x, converges to the random variable X in the mean-square sense if

E [|xn - x|2] —50, n—> oo. (2.165)
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CONVERGENCE IN PROBABILITY

Given a random sequence X,, a random variable x, and a nonnegative number €, then {|x, — x| > €} is
an event. We define the new sequence of numbers, P ({|x,, —X| > e}). We say that x,, converges to x in
probability if the constructed sequence of numbers tends to zero,

P({|xn—x|>e})—>0, n — 00, Ye > 0. (2.166)

CONVERGENCE IN DISTRIBUTION

Given a random sequence X, and a random variable X, let F; (x) and F (x) be the CDFs, respectively.
We say that x,, converges to x in distribution if

F,(x) — F(x), n— 00, (2.167)

for every point x of continuity of F(x).

It can be shown that if a random sequence converges either almost everywhere or in the mean-square
sense, then it necessarily converges in probability, and if it converges in probability, then it necessarily
converges in distribution. The converse arguments are not necessarily true. In other words, the weakest
version of convergence is that of convergence in distribution.

PROBLEMS

2.1 Derive the mean and variance for the binomial distribution.

2.2 Derive the mean and variance for the uniform distribution.

2.3 Derive the mean and covariance matrix of the multivariate Gaussian.

2.4 Show that the mean and variance of the beta distribution with parameters a and b are given by

and

oy = 7 .
(@+b)*(a+b+1)
Hint: Use the property ['(a + 1) = al'(a).
2.5 Show that the normalizing constant in the beta distribution with parameters a, b is given by

[(a+b)
T(a)T(b)’

2.6 Show that the mean and variance of the gamma PDF

a
Gamma(x|a, b) = —x*"'e P, a,b,x >0,

T'(a)
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are given by

E[x] = -
X]= -,
b

a
szzﬁ

2.7 Show that the mean and variance of a Dirichlet PDF with K variables x;, k=1,2,..., K, and
parameters ax, k = 1,2, ..., K, are given by

E[Xk]=%k,k=1,2,...,1<,

2 ax(a@ — ay)

= ,k=1,2,...,K,
* @21 +a)
o1 a; .,
cov[x;X;] = _72(1 3 i #J,
a a

where a = Zle ak.-

2.8 Show that the sample mean, using N i.i.d. drawn samples, is an unbiased estimator with variance
that tends to zero asymptotically, as N — oo.

2.9 Show that for WSS processes

r(0) = |r(k)l, VkeZ,
and that for jointly WSS processes

ra(0)ry(0) > |ryy (k) [%,  Vk € Z.

2.10 Show that the autocorrelation of the output of a linear system, with impulse response w,,, n € Z,
is related to the autocorrelation of the input WSS process via

ra(k) =ry(k) * wr x w*,.
2.11 Show that
Inx <x—1.
2.12 Show that
1(xy) 2 0.

Hint: Use the inequality of Problem 2.11.
2.13 Show thatif a;, b;,i =1,2,..., M, are positive numbers such that

M

M
Zaizl and Zbl-sl,

i=1 i=1
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then

M M
— Za,- Inag; < — Za,- Inb;.
i=1 i=1
2.14 Show that the maximum value of the entropy of a random variable occurs if all possible outcomes
are equiprobable.
2.15 Show that from all the PDFs that describe a random variable in an interval [a, b], the uniform
one maximizes the entropy.
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3.1 INTRODUCTION

Parametric modeling is a theme that runs across the spine of this book. A number of chapters focus
on different aspects of this important problem. This chapter provides basic definitions and concepts
related to the task of learning when parametric models are mobilized to describe the available data.

Machine Learning. https://doi.org/10.1016/B978-0-12-81