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Preface

A mind that is stretched by a new experience can never go back to its old
dimensions.

—Oliver Wendell Holmes Jr.

Developing software can be quite a complex endeavor. As Java developers,
we usually try to tame this complexity with object-oriented programming
(OOP) and an imperative coding style. But not every problem is a good
match for an object-oriented coding style. We end up introducing even more
complexity by not solving problems with the best tools and paradigms
available to us. The functional programming (FP) paradigm offers another
approach to solving problems.

After spending its early life hidden away in academia and niches, functional
programming is on the rise again and becoming more mainstream. The
ideas and concepts behind it are adopted in almost every multi-paradigm
and general-purpose language, allowing us to use some form of functional
programming regardless of the context. And it’s not a surprising trend.

New Hardware Needs a New Way of Thinking
Our hardware is evolving in a new direction. Moore’s law — coined in 1965
as the observation of transistor counts doubling every two years, and
therefore the performance per core available to us — seems to slow down.
For quite some time, single-core performance improvements are getting
smaller with each processor generation. The manufacturers favor more
cores — even specialized ones — over ever-increasing transistor count and
clock rates per core.  That’s why modern workloads need new ways to reap
all the benefits such new hardware offers: parallelism.
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CONCURRENCY VERSUS PARALLELISM
Concurrency and parallelism are often confused with each other or seen
as the same thing. The Merriam-Webster dictionary even defines them
quite similar:

Concurrence

The simultaneous occurrence of events or circumstances.

Parallel

An arrangement or state that permits several operations or tasks to
be performed simultaneously rather than consecutively.

But in computer science, the terms express two different concepts.

Concurrency allows multiple threads to make progress simultaneously
on the same CPU core. The threads need to be coordinated and
“interrupted” to get their work done. Think of it like a juggler using
only one hand (single CPU core) with multiple balls (threads). They can
only hold a single ball at any time (doing the work), but which ball
changes over time (interrupting and switching to another thread). Even
with only two balls, they have to juggle the workload.

Parallelism is about running multiple tasks at literally the same time,
like on multiple CPU cores. The juggler now uses both hands (more
than one CPU core) to hold two balls at once (doing the work
simultaneously). If there are only two balls in total, they can hold both
at the same time.

These concepts aren’t mutually exclusive and are often used together.

Scaling your software horizontally through parallelism isn’t an easy task in
OOP. Not every problem is a good fit for parallelism. More painters might
paint a room faster, but you can’t speed up pregnancy by involving more



people. If the problem consists of serial or interdependent tasks,
concurrency is preferable to parallelism.

But if a problem can be broken down into smaller, non-related sub-
problems, parallelism really shines. And the stateless and immutable nature
of idiomatic FP provides all the tools necessary to build small, reusable
tasks to be easily used in parallel environments. That’s just one of many
benefits of a more functional approach to your daily development problems.

Why Java?
There are many programming languages to choose from when you want to
start with functional programming. Haskell is a favorite if you prefer a pure
functional language with almost no support for an imperative coding style.
But you don’t have to leave the JVM ecosystem behind to find FP-capable
languages. Scala shines in combining OOP and FP paradigms into a
concise, high-level language. Another popular choice, Clojure, was
designed as a functional language with a dynamic type system at heart. But
sometimes, you won’t have the luxury of choosing the language for your
project or problem, and you’ll have to play the cards you’re dealt, and
you’ll need to use Java.

Even though you can implement most functional principles in Java
regardless of deeply integrated language level support , your code won’t be
as concise and easy to reason with as it would in other languages. And
without such support, many developers didn’t bother to embrace these
principles, even if they could have provided a more productive approach or
better overall solution.

In the past, many people thought of Java as a slow-moving behemoth, a
“too big to become extinct” enterprise language, like a more modern
version of COBOL or FORTRAN. And in my opinion, that’s partially true.
The pace didn’t pick up until Java 9 and the shortened release timeframes .
It took Java five years to go from version 6 to 7 (2006-2011). And even
though there were significant new features, like try-with-resources,
none of them were “ground-breaking”. The few and slow changes in the
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past led to projects and developers not adopting the “latest and greatest”
Java Development Kit (JDK), missing out on many language
improvements. Three years later, in 2014, the next version, Java 8, was
released. But this time, it introduced one of the most significant changes to
Java’s future: lambda expressions.

A better foundation for functional programming had finally arrived in
arguably the most prominent object-oriented programming language of the
world, changing the language and its idioms significantly:

Runnable runnable = () -> System.out.println("hello, functional 
world!");

A whole new world of ideas and concepts was made available to Java
developers by introducing lambda expressions. Many of the JDK’s new
features, like Streams, or the Optional type, are only possible in such a
concise way thanks to language-level lambda expressions. But the new
idioms and way of doing things with FP might not come naturally,
especially after spending so much time in an “object-oriented headspace”.

Why I Wrote This Book
After using a more functional style in other languages I work with, like
Swift, I gradually introduced more functional principles in my Java-based
projects. That led me to realize something: How to use lambdas, Streams,
and other functional tools provided by Java, is easy to grasp. But without
understanding why you should use them — and when not to — you won’t
unlock their full potential, and it will just be “new wine in old wineskins.”

So I decided to write this book to highlight the different concepts that make
a language functional, and how you can incorporate them into your Java
code, either with the tools provided by the JDK or by creating them
yourself. A functional approach to your Java code will most likely
challenge the status quo and go against best practices you were using
before. But by embracing a more functional way of doing things, like



immutability and pure functions, you will be able to write more concise,
more reasonable, and future-proof code that is less prone to bugs.

Who Should Read This Book
This book is for you if you are curious about functional programming and
want to know what all the fuss is about and apply it to your Java code. You
might already be using some functional Java types but desire a more
profound knowledge of why and how to apply them more effectively.

There is no need to be an expert on OOP, but the book is not a beginner’s
guide to Java or OOP. You should already be familiar with the Java standard
library. No prior knowledge of functional programming is required. Every
concept is introduced with an explanation and examples.

The book covers Java 17 as the latest Long-Term-Support (LTS) version
available at publication. But knowing that many developers need to support
projects with earlier versions, the baseline will be the previous LTS, Java
11.

This book might not be for you if you are looking for a compartmentalized,
recipe-style book presenting “ready-to-implement” solutions. Its main
intention is to introduce functional concepts and idioms and teach you how
to incorporate them into your Java code.

What You Will Learn
By the end of this book, you will have a fundamental knowledge of
functional programming and its underlying concepts and how to apply this
knowledge to your daily work. Every Java functional type will be at your
disposal, and you will be able to build anything missing from the JDK by
yourself, if necessary.

A functional approach will lead to many advantages in your code:

Composition: Build modular and easy composable blocks.



Expressiveness: Write more concise code that clearly expresses its
intent.

More reasonable code: Safer data structures without side-effects
that don’t need to deal with locks or race conditions.

Modularity: Break down larger projects into more easily
manageable modules.

Maintainability: Smaller functional blocks with less
interconnection make changes and refactoring safer without
breaking other parts of your code.

Data manipulation: Build efficient data manipulation pipelines
with less complexity.

Performance: Immutability and predictability allow to scale
horizontally with parallelism without much thought about it.

Testing: Verify your building blocks with ease.

Even without going fully functional, your code will benefit from the
concepts and idioms presented in this book. And not only your Java code.
You will tackle development challenges with a functional mindset,
improving your programming regardless of the used language or paradigm.

What About Android?
Talking about Android in a Java context is always a challenging endeavor.
Even though you can write Android applications in Java, the underlying
API isn’t the same, and Android doesn’t run Java bytecode on a JVM.
Instead, it recompiles the Java bytecode for its own runtime.

Android is (not) Java
Android chose Java as its primary language for multiple reasons. At the
time of Android’s inception, Java was a well-known language and the first



programming language many universities taught their students. Also, it
offered a vast pool of developers and a vibrant ecosystem of compatible
libraries. But instead of running Java bytecode on a minimalistic JVM, like
Java Platform Micro Edition, the Java bytecode is recompiled. The Dex-
compiler creates Dalvik bytecode, which runs on a specialized runtime: the
Android Runtime (ART), and previously on the Dalvik virtual machine .

Recompiling Java bytecode to Dalvik bytecode allows the devices to run
highly optimized code, getting the most out of their hardware constraints.
But for you as a developer, that means that even though your code looks
and feels like Java, and most of the public API is available to you, there
isn’t a feature parity between the JDK and Android SDK you can rely on.
For example, the cornerstones of this book — lambda expressions and
streams — were among the missing features in Android for a long time.

Desugaring Android Java Code
The expression “syntactic sugar” describes features that are additions to a
language’s syntax to make your life as a developer “sweeter”. It provides an
alternative, more concise style for more complex tasks. You will learn more
about in “Syntactic Sugar”. For example, augmented assignments, prefix
and postfix operators, and type inference, as shown in Table P-1, are
“syntactic sugar” you might already use.
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Description With Sugar Without Sugar

Type inference var x = 42L; long x = 42L;

Type inference List<String> list = new 
ArrayList<>();

List<String> list = new 
ArrayList<String>();

Augmented 
Assignment

x += 1; x = x + 1;



Postfix Operator x++; x = x + 1;

The compiler is responsible for removing the “sweetness” by desugaring
your code, returning it to the actual form that gets compiled.

Java lambda expressions are more than just “syntactic sugar”, as you will
learn more about in “Lambdas Versus Anonymous Classes”. But for
Android, there was no other option to support various Java 8+ features than
desugaring. At least without implementing them natively at a runtime level.
Starting with 3.0.0, the Android Gradle plugin supports automatic
desugaring of the following features that are covered in this book:

Lambda expressions (without serialization support)

Method references

Default and static interface methods

The next major version, 4.0.0, added even more functional features:

Streams

Optionals

The java.util.function package

Keep in mind that even though all these features are finally available in
Android, they are implemented differently from the JDK .

A Functional Approach to Android
In 2019, Google announced that Java is no longer the preferred language for
Android app developers. It got replaced by Kotlin, after making it an
available option two years prior. Kotlin is a multi-platform language that
mainly targets the JVM but also compiles to JavaScript and many multiple
native platforms, too . It aims to be a “modern and more concise” Java,
fixing many of Java’s debatable shortcomings and cruft accumulated over
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the years due to backward compatibility, without forgoing all the available
frameworks and libraries available in Java. It’s 100% interoperable with
Java, and you can mix Java and Kotlin in the same project with ease.

One obvious advantage of Kotlin over Java is that many of the introduced
functional concepts and idioms are an integral part of the language itself.
But Kotlin has its own idioms and best practices that differ from Java’s. The
generated bytecode might differ, too, like how to generate lambdas . The
most significant advantage of Kotlin is its attempt to create a more concise
and predictable language compared to Java. And just like you can be more
functional in Java without going fully functional, you can use Kotlin-only
features without going full Kotlin in your Android projects. By mixing Java
and Kotlin, you can pick the best features from both sides.

Keep in mind that this book’s primary focus is Java. Most of the ideas
behind what you will learn are transferrable to Android, even if you use
Kotlin. But there won’t be any special considerations for Android
throughout the book.

Navigating This Book
This book consists of three different parts. Reading them in their respective
order will let you get the most of them because they build on each other.
The contained chapters, however, are only loosely coupled. So feel free to
skim for the bits that might interest you and jump around. Any necessary
connections are cross-referenced.

Part I, A Functional Approach, covers a high-level overview of
functional programming and the types already available to Java
developers to better understand the different concepts’ underlying
philosophy. It’s followed by a topic-based deep-dive through the
different concepts and how to use them.

In [Link to Come], Real-World Problems, Patterns and Recipes,
you will see how to apply the previously learned knowledge to
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typical real-world problems you might encounter in your daily
work.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.



WARNING
This element indicates a warning or caution.

Using Code Examples
The source code for the book is available on GitHub:
https://github.com/benweidig/a-functional-approach-to-java. Besides
compilable Java code, there are also JShell scripts available to run the code
more easily. See the README.md for instructions on how to use them.

Supplemental material (code examples, exercises, etc.) is available for
download at https://github.com/oreillymedia/title_title.

If you have a technical question or a problem using the code examples,
please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example: "Book
Title by Some Author (O’Reilly). Copyright 2012 Some Copyright Holder,
978-0-596-xxxx-x.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.
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Part I. A Functional Approach

Functional programming isn’t more complicated than object-oriented
programming and its primarily imperative coding style. It’s just a different
way of approaching the same problems. Every problem that you can solve
imperatively can also be solved functionally.

Mathematics builds the foundation for functional programming, making it
harder to approach than an object-oriented mindset. But just like learning a
new foreign language, the similarities and shared roots become more visible
over time until it just clicks.

You can implement almost any of the upcoming concepts without Java
lambda expression. But compared to other languages, the result won’t be as
elegant and concise. The functional tools available in Java allow your
implementations of these concepts and functional idioms to be less verbose
and more concise and efficient.



Chapter 1. An Introduction to
Functional Programming

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 1st chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

To better understand how to incorporate a more functional programming
style in Java, we first need to make ourselves knowledgeable about
functional programming’s origin and foundational concepts. This chapter
will explore the roots of functional programming and what concepts
contribute to making an approach to programming more functional.

The Origin of Functional Programming
The functional programming paradigm evolved from Lambda Calculus,
invented by the logician Alonzo Church in the 1930s.  Lambda calculus is a
formal mathematical system to express computations with abstract
functions and apply variables to them. The name “lambda calculus” came
from the Greek letter chosen for its symbol: λ

1



Don’t worry! I promise I won’t torture you with more complex math than
needed.

There are three pillars to support the general concept of lambda calculus:

Abstraction

Application

Reduction

Lambda Abstractions
What you as a developer refer to as a “function call” is, mathematically
speaking, the application of lambda abstraction to a value. It can be
declared as a function like this: f = λx. E

A function declaration consists of multiple parts:

x

A variable, the argument representing a value.

E

An expression, or term, containing the logic.

λx. E

The abstraction, an anonymous function accepting a single input x.

f

The resulting function that can apply an argument to its abstraction.

Let’s imagine a Java function for calculation a quadratic value, as seen in
Example 1-1.

Example 1-1. Quadratic function (Java)
// As "classical" method 
 
Integer f(Integer value) { 



  return value * value; 
} 
 
// As lambda expression 
 
Function<Integer, Integer> f = x -> x * x; 

A functiona accepting a single Integer, and returning an Integer.

NOTE
Example 1-1 uses Integer instead of int due to generic nature of Java’s functional
types. The use of value types in generics is part of the upcoming Project Valhalla.

The Java lambda expression quite resembles its lambda calculus counterpart
in Equation 1-1.

Equation 1-1. Quadratic function (lambda calculus)

f = λx. x*x

Application
The application of an abstraction in Equation 1-2 looks like a method call
that you’re quite used to in Java.

Equation 1-2. Application of f to argument 5 (lambda calculus)

f5

The Java equivalent in Example 1-2 is a little bit more verbose because it
uses the “normal” method calling syntax that requires a name, but you can’t
deny the similarity.

Example 1-2. Application of f to argument 5 (lambda calculus)
// As applied lambda expression 
 
f.apply(5); 
 

https://wiki.openjdk.java.net/display/valhalla/Main


 
// As method call 
 
f(5);

Reduction
If you apply a lambda abstraction to an argument, the variable in the
expression gets substituted by the argument. This form of substitution is
called β-reduction, as seen in Equation 1-3.

Equation 1-3. ß-reduction

The equivalency between a function application and the result itself allows
simplifying more complex constructs. Complex calculations will be more
approachable and less intimidating after reducing them to a more simple
form.

Of course, there are way more details to it , but that’s all you will need to
understand the origin of functional programming.

f5

→ 5*5

→ 25

f(f3)

→ f(3*3)

→ f9

→ 9*9

→ 81
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LAMBDA CALCULUS AND TURING MACHINES
Another computational model developed in the 1930s  is the “Turing
machine”. Its inventor — Alan Turing — was a Ph.D. student of Alonzo
Church at Princeton 1936-1938, but they developed their respective
computational models independently before working together.

The stateless lambda calculus seems to be a contrary approach to
mathematical calculations than to turing machines and their internal
state. But they are both models that capture the notion of algorithmic
computation. And it turned out that lambda calculus  is actually turing
complete, meaning it can calculate anything a Turing machine could
calculate, creating an unintended equivalency between the two models.

What is Functional Programming?
Like most paradigms, functional programming doesn’t have a single
agreed-upon definition, and many turf wars are fought about what defines a
language as really functional. Instead of giving my own definition, I will
show you different aspects of what makes a language functional.

As an object-oriented developer, you are used to imperative programming:
by defining a series of statements, you are telling the computer what to do
to accomplish a particular task.

Functional programming uses a declarative style to express the logic of
computations without describing their control flow. It is a description of
how a program should work, not what it should do. Your code is bound in a
sequence of functions, representing evaluable expressions instead of
statements.

The primary distinction between expressions and statements is that the latter
has possible side-effects to program state, and the former is supposed to be
self-contained with immutable state. These properties aren’t absolute or

3
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mutually exclusive. Especially in a general-purpose, multi-paradigm
language like Java, the lines between them can quickly blur.

Expressions
An expression is a sequence of operators and operands that define a
computation, like in Example 1-3. An expression can return some form of a
result but doesn’t have to. They are analogous to the concept shown in
“Lambda Abstractions”. Side-effects are discouraged but aren’t forbidden
either.

Example 1-3. Simple Java Expressions
x * x  
 
2 * Math.PI * radius 

The quadratic expression used in Example 1-1.

An expression to calculate the circumference of a circle.

Statements
In Java, you’re used to statements. Assigning or changing the value of a
variable, calling methods, or control-flow like if/else; all of these are
statements. They are actions taken by your code, as in Example 1-4.

Example 1-4. Java Statements
int treasureCounter = 0;  
 
treasureCounter += findTreasure(6);  
 
if (treasureCounter > 10) {  
  System.out.println("You have a lot of treasure!"); 
} 
else { 
  System.out.println("You should look for more treasure!"); 
}

Assigns an initial value to a variable, introducing state into the program.



The function call findTreasure(6) might be a pure functional
expression, but the reassignment of treasureCounter is state-
change and therefore a statement.

The control-flow statement if/else expresses what action should be
taken based on the result of the expression (treasureCounter >
10).

Functional Programming Concepts
Functional programming is a conglomerate of different concepts, forming a
paradigm in which everything is bound together with pure mathematical
functions. Its primary focus is on “what to solve” in a declarative style, in
contrast to the imperative “how to solve” approach.

We will go through the most common and significant aspects functional
programming builds upon. But remember, these aren’t exclusive to a
particular paradigm. Many of the ideas behind them apply to other
programming paradigms as well.

Pure Functions
Functional programming categorizes functions into two categories: pure
and impure.

Pure functions have two elemental guarantees:

The same input will always create the same output.

They are self-contained without any kind of side-effect, e.g.,
affecting the global state or changing argument values, or using
I/O, like in Figure 1-1.



Figure 1-1. Pure Functions are separated from Program State

These two guarantees allow pure functions to be safe to use in any
environment, even in a parallel fashion.

Functions violating any of these guarantees are considered impure. That is a
rather unfortunate name because of the connotation it might invoke. Impure
functions aren’t second-class to pure functions. They are just used in
different ways.

Referential Transparency
Due to the predictable result of side-effect-free expressions and pure
functions based on their input, their respective return values can replace
them for any further invocations once evaluated, without changing the
result of the program. These kinds of functions and expressions are
referentially transparent. You have seen this kind of substitution in
Equation 1-3.

Optimization techniques, like memoization, can use this concept to cache
function calls to prevent unnecessary reevaluation of expressions.

Immutability
Object-oriented code, like in Java, is often based around a mutual state.
Objects can usually be changed after their creation, using setters. But
mutating data structures can create unexpected side effects.



With immutability, data structures can no longer change after their
initialization. By never changing, they are always consistent, and therefore
predictable, side-effect-free, and easier to reason with. Like pure functions,
their usage is safe in concurrent and parallel environments without the usual
issues of unsynchronized access or out-of-scope state changes.

If data structures never change at all, a program would not be very useful.
Instead of mutating existing data, you have to create a new data structure
containing the changed data. At first, this might sound like a chore, and
actually, it can be. But in general, the advantages of having side-effect-free
data structures outweigh the extra work that might be necessary.

Recursion
Recursion is an approach for problems that can be partially solved, with a
remaining problem in the same form. In layman’s terms, recursive functions
call themselves, but with a slight change in their input arguments until they
reach an end condition and return an actual value. The later chapter
“Mathematical Explanation” will go into the more finer details of recursion.

A simple example is calculating a factorial, the product of all positive
integers less than or equal to the input parameter. Instead of calculating the
value with an intermediate state, the function calls itself with a decremented
input variable, like in Figure 1-2.



Figure 1-2. Calculating a factorial with recursion

Pure functional programming prefers using recursion instead of loops.
Some languages, like Haskell, don’t even provide the traditional for or
while-loops.

As with most of the other concepts, recursion is also not exclusive to
functional programming.

First-Class and Higher-Order
Many of the previous concepts don’t have to be (fully) available to support
a more functional programming style in a language. But this one is an
absolute must-have.

Functions are supposed to be a “first-class citizen”, giving them all the
properties inherent to other entities of the language. They need to be
assignable to variables and be used as arguments and return values in other
functions and expressions, like in Example 1-5.

Example 1-5. First-Class Functions
Function<Integer, Integer> quadraticFn = x -> x * x;  
 
var result = quadraticFn.apply(5); 

https://www.haskell.org/


Expressions are based on so-called functional interfaces, and can be
assigned to variables like any other value.

It can be used like any other “normal” Java variable, calling the apply
method of its interface.

Higher-order functions use their first-class citizenship to accept functions
as arguments or to return a function as their result, or both. That is essential
for the next concept, functional composition.

Functional Composition
Pure functions can be combined to create more complex expressions. In
mathematical terms, this means that the two functions f(x) and g(x) can be
combined to a function h(x) = g(f(x)), as seen in Figure 1-3.

Figure 1-3. Composing functions

This way, the initial functions can be small and reusable, and the resulting
composed function will perform a more complex and complete task. Let’s
combine the previous quadratic function with other functions in Example 1-
6.

Example 1-6. Functional Composition in Java
Function<Integer, Integer> quadratic = x -> x * x;  
 
Function<Integer, Integer> triple = x -> 3 * x;  
 
var quadraticThenTriple = quadratic.andThen(triple);  



 
var tripleThenQuadratic = quadratic.compose(triple);  
 
var result1 = quadraticThenTriple.apply(3); // => 27 
 
var result2 = tripleThenQuadratic.apply(3); // => 81

The simple quadratic function from previous examples.

Another pure function, tripling the applied value.

Composing a function, calling triple with the result of quadratic.

Composing a function the other way around, tripling first.

If you look at the source code of andThen and compose, you can clearly
see the concept of first-class and higher-order functions in action.
Example 1-7 is a simplified version of what’s actually happening.

Example 1-7. Source code of andThen and compose.
Function<Integer> andThen(Function<Integer, Integer> after) {  
  return value -> after.apply(apply(value));  
} 
 
Function<Integer, Integer> compose(Function<Integer, Integer> 
before) {  
  return value -> apply(before.apply(value));  
}

andThen is a higher-order function, accepting a function as its
argument, and returning a combined function.

The returned function accepts a value and applies the current function to
it first, and the result is then applied to after.

As with andThen, a function is accepted as an argument and returns a
new function.



This time, before is applied to the value first, and the original
function is applied to the result.

Laziness
Lazy evaluation is a common technique to decouple the evaluation of an
expression until its result is actually needed. Expressions evaluate just-in-
time. It is another concept that is not rooted in functional programming
itself but provides a foundation for many related concepts.

Some form of laziness is already available in Java: logical short-circuit
operators, as seen in Example 1-8.

Example 1-8. Logical Short-Circuit Operators
var result1 = simple() && complex(); 
 
var result2 = simple() || complex();

The number of evaluated expressions depends on the results of simple(),
as seen in Table 1-1.
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Operator Result of simple() Is complex() evaluated?

&& true yes

&& false no

|| true no

|| false yes

The JVM can discard expressions not related to the final result. This
behavior even allows infinite data structures to exist, as you will learn about
in [Link to Come].

Laziness works well with referential transparency. If there is no difference
between an expression and its result, it doesn’t matter when you will
execute it. Delayed evaluation might still impact the program performance
because you might not know the precise time of evaluation.

Advantages of Functional Programming
Now that you have learned about the different concepts functional
programming relies on, what advantages does it provide to you and your
code?

Simplicity

Without state and side-effects, your functions tend to be smaller, doing
“just what they are supposed to do”.



Consistency

Immutable data structures are reliable and consistent. No more worries
about changed state without you knowing.

(Mathematical) Correctness

Simpler code with consistent data structures will automatically lead to
“more correct” code with fewer bugs. The “purer” your code, the easier
it will be to reason with, leading to easier debugging and testing.

Concurrency

Concurrency is one of the most challenging tasks to do right in
“classical” Java. Functional concepts allow you to eliminate many
headaches and gain safer parallel-processing (almost) for free.

Modularity

Small, independent, and reusable functions allow a new form of
modularity and reusability, like functional composition.

Academia Versus “The Real World”
The foundation of functional concepts consists of strictly mathematical
principles due to their roots in academia. That provides us with a
straightforward, easy to reason with, and safe paradigm.

But all of us know that not everything obeys the rules, especially in real-
world projects. That’s why many functional programming languages
deviate from the purest interpretation of the fundamental concepts for
various reasons, most likely to provide a broader range of use. And even
then, how much of the remaining strictness you want to introduce into your
code relies mostly on you and your requirements.

Language design is always a balancing act between being safe and being
convenient. For example, Haskell, a purely functional programming
language, has the slogan “avoid success at all costs”. “Success” in this case

https://www.haskell.org/


means broad popularity and widespread use, and “costs” being concessions
made to further such “success”. They won’t “make things easier” for
beginners or add any changes that might impact the core values of Haskell.
That can make a language “useless” but “safe”. Simon Peyton Jones, lead
developer of the Glasgow Haskell Compiler and major contributor to
Haskell, describes the relationship between the two properties in an
informal Youtube video.

With Haskell arguably being an academia language with only niche-
adaption, it can afford to stand up for its convictions. Java does it, too, but
has other priorities. Every new Java version provides you with safer and
more useful tools.

The goal you should strive for in your own code shouldn’t be relying on one
extreme position or another. Instead, it should be the amalgamation of the
best of both worlds.

Takeaways
The mathematical principle of lambda calculus and abstractions
builds the foundation for FP.

FP emphasizes expressions, while imperative programming
emphasizes statements.

There are many inherently functional concepts, but they are not an
absolute requirement to make code “functional”.

Trade-offs are often necessary between “pureness” of functional
concepts and their real-world application.

1  Church, Alonzo. 1936. “An unsolvable problem of elementary number theory”. American
journal of mathematics, Vol. 58, 345–363.

2  The Wikipedia entry on lambda calculus provides more information.

3  Turing, A.M. 1937. “On Computable Numbers, with an Application to the
Entscheidungsproblem.” Proceedings of the London Mathematical Society, Vol. s2-42 Issue 1,

https://www.haskell.org/ghc/
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https://doi.org/10.2307/2268571
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230-265.

4  There are certain restrictions on lambda calculus to be turing complete. See the Wikipedia
entry on Turing completeness for more information.

5  Copeland, Jack and Oron Shagrir. 2019. “The Church-Turing Thesis: Logical Limit or
Breachable Barrier?” Communications of the ACM, January 2019, Vol. 62 No. 1, Pages 66-74.
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Chapter 2. Functions and
Lambdas

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 2nd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

Unsurprisingly, lambdas are the key to functional programming. But how
do lambdas in Java exactly work? And how can you use them to incorporate
functional concepts in your code?

In this chapter, you will learn about what Java lambdas are and how they
work internally. You will get to know the functional types available in the
JDK and the different concepts and ideas they enable you to implement in
your code.

Java Lambdas
Objects and primitives in Java are “first-class citizens.” They can be freely
assigned to variables and passed into and returned from methods.
Functional programming requires functions to be “first-class citizens.”
Without it, many concepts and techniques aren’t possible or heavily



restricted. But Java is based on methods bound to objects, not standalone
functions.

From a simplified point of view, a lambda is like an anonymous method that
doesn’t belong to any object. It still behaves like any other object or
variable in Java: it has a particular type, it’s assignable to a variable, usable
as an argument, etc. But lambdas are concrete implementations of so-called
functional interfaces, which have certain constraints that differ from what
you’re might be used to.

Functional Interfaces
There isn’t any explicit syntax or keyword for functional interfaces. They
look and feel like any other interface, can extend or be extended by other
interfaces, and classes can implement them. So if they are just like
“normal” interfaces, what makes them a functional interface then? It’s their
requirement that only a single abstract method (SAM) is allowed to exist.



INTERFACES IN JAVA
Interface declarations consist of a name with optional generic bounds,
inherited interfaces, and its body. Such a body is allowed to contain the
following content:

Method signatures

Body-less — abstract — method signatures that must be
implemented by any class conforming to the interface. Only these
method signatures count towards the single abstract method
constraint of functional interfaces.

default methods

Methods signatures with a “default” implementation, signified by
the default keyword. Any class implementing the interface can
override it but isn’t required to do so.

static methods

Like the class-based counterparts, they’re associated with the type
itself and must provide an implementation. But unlike default
methods, they aren’t inherited and can’t be overridden.

Constant values

Implicetily public, static, and final values.

As the name signifies, this restriction applies only to abstract methods.
There’s no limit to any additional, non-abstract methods. Neither
default nor static methods are abstract, hence not relevant for the
SAM count. They are often used to complement the capabilities of the
lambda type.



For example, the type java.util.function.Predicate<T> is a
functional interface. Besides it SAM — boolean test(T t) — , it
provides five additional methods (three default, two static), as you
can see in the simplified interface  declaration in Example 2-1.

Example 2-1. Simplified java.util.functional.Predicate<T>
package java.util.function; 
 
@FunctionalInterface  
public interface Predicate<T> { 
 
  boolean test(T t);  
 
  default Predicate<T> and(Predicate<? super T> other) {  
    // ... 
  } 
 
  default Predicate<T> negate() {  
    // ... 
  } 
 
  default Predicate<T> or(Predicate<? super T> other) {  
    // ... 
  } 
 
  static <T> Predicate<T> isEqual(Object targetRef) {  
    // ... 
  } 
 
  static <T> Predicate<T> not(Predicate<? super T> target) {  
    // ... 
  } 
}

The type has a @FunctionalInterface annotation, which isn’t
explicitly required.

The single abstract method of the type Predicate<T>.

Several default methods provides support for functional
composition.
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Convenience static methods are used to simplify creation or to wrap
existing lambdas.

Even though the single abstract method requirement is the only requirement
a functional interface has to oblige to, all JDK-provided functional
interfaces use the explicit @FunctionalInterface annotation. It isn’t
mandatory, and it doesn’t provide any other functionality than marking a
type as a functional interface. Its purpose is to tell the compiler or any
tooling that works with annotations that a type is supposed to be a
functional interface and that the single abstract method requirement must
be enforced. If you add another abstract method, the Java compiler will
refuse to compile your code. That’s why adding the annotation makes a lot
of sense, even if you don’t explicitly need it. It makes the reasoning and
intention of an interface clearer and fortifies your code against unintentional
changes that might break it in the future.

Lambda Syntax
In “Lambda Abstractions” you’ve already learned about the mathematical
notation for lambdas:

λx. E

The actual Java syntax doesn’t differ that much, as shown in Example 2-2.

Example 2-2. Java lambda syntax
(<parameters>) -> { <body> };

A Java lambda consists of three distinct parts:

Parameters

A comma-separated list of parameters, just like a method argument list.
You can omit the type completely if the compiler can infer them. In case
of multiple parameters, you must wrap them in parenthesis. But for a
single parameter, they are optional. Mixing implicitly and explicitly
typed parameters is not allowed.



Arrow

The → (arrow) separates the parameters from the lambda body. It’s the
equivalent to λ in lambda calculus.

Body

The body is either a single expression or a block statement. The curly
braces aren’t allowed for single expressions, and the evaluated result
returns implicitly without a return statement. But if the body is
represented by more than a single expression, a typical Java code block
is used instead. It must be wrapped in curly braces and explicitly use a
return statement if the functional interface requires returns a value.

That is all the syntax definition there is for lambdas in Java. With its
multiple ways of declaring a lambda, you can write the same lambda with
different verbosity levels, as seen in Example 2-3.

Example 2-3. Different ways of writing the same lambda
Predicate<String> isNotNull = (String input) -> {  
  return input != null; 
}; 
 
Predicate<String> isNotNull = input -> {  
  return input != null; 
}; 
 
Predicate<String> isNotNull = input -> input != null; 

The most verbose variant: an explicitly typed parameter in parenthesis
and the body as a block.

Type inference for parameters allows removing the explicit type, and a
single parameter doesn’t need parenthesis. That shortens the lambda
declaration slightly without removing information due to the
surrounding context.



Reducing the body to a single expression allows you to remove the
curly braces and the need for the return keyword.

Which variant to choose depends highly on the context and personal
preference. Usually, the compiler can infer the types and deduce any
missing information. But that doesn’t mean a human reader is as good at
understanding the shortest code possible, just like a compiler. Even though
you should always strive for clean and more concise code, that doesn’t
mean it has to be as minimal as possible. A certain amount of verbosity
might help understand the reasoning behind your code better and make it fit
into the mental model of your code more efficiently.

Calling Lambdas
With lambdas effectively being concrete implementations of their
respective functional interfaces, their usage differs from other, more
functional languages. For example, JavaScript, or even JVM languages like
Scala, allow you to call a lambda directly. But Java decided to implement
functional interfaces with the tools at hand, and you must explicitly call the
single abstract method, as shown in Example 2-4.

Example 2-4. Lambdas in JavaScript versus Java
// JavaScript 
 
var helloWorld = name => 'hello, ' + name + '!' 
var result = helloWorld('Ben')  
 
// Java 
 
Function<String, String> helloWorld = name -> "hello, " + name + 
"!"; 
var result = helloWorld.apply("Ben"); 

In JavaScript, functions are objects. But can call them directly by
providing the arguments on parenthesis on the variable itself.

In Java, a “function” is an object, too. But you need to call its single
abstract method explicitly.



The call to the single abstract method might not be as concise as in other
languages. But such verbosity allows for a backward-compatible way of
calling lambdas that’s familiar with Java developers, without the need to
change the language itself.

Lambdas Versus Anonymous Classes
As a Java developer, you are most likely familiar with anonymous inner
classes: the combined declaration and instantiation of types. An interface or
extended class can be implemented “on-the-fly” without needing a separate
Java class. On the surface, an anonymous class looks quite similar to
lambda expressions, especially in Example 2-5.

Example 2-5. Anonymous class
// FUNCTIONAL INTERFACE (implicit) 
 
interface HelloWorld { 
  String sayHello(String name); 
} 
 
 
// AS ANONYMOUS CLASS 
 
var helloWorld = new HelloWorld() { 
 
  @Override 
  public String sayHello(String name) { 
    return "hello, " + name + "!"; 
  } 
}; 
 
// AS LAMBDA 
 
HelloWorld helloWorldLambda = name -> "hello, " + name + "!";

So are lambda expressions just syntactic sugar for anonymous classes for
functional interfaces?



SYNTACTIC SUGAR
Syntactic sugar describes features that are additions to a language to
make your life as a developer “sweeter.” Certain constructs can be
expressed more concisely or clearly, or in an alternative manner.

Peter J. Landin coined the term in 1964 , describing how the keyword
where replaced λ in an ALGOL-like language.

Java’s import statement, for example, allows you to use types without
their fully qualified names. Another example is type inference with var
for references or the diamond operator <> for generic types. Both
features simplify your code for “human consumption.” The compiler
will “desugar” the code, though, it can deal with its “bitterness.”

Even though it might look like just syntactic sugar, it’s much more in
reality. The real difference — besides verbosity — lies in the generated
bytecode, as seen in Example 2-6, and how the runtime handles it.

Example 2-6. Bytecode differences between anonymous classes and
lambdas
// ANONYMOUS CLASS 
 
0: new #2 // class Anonymous$1  
3: dup 
4: invokespecial #9 // Method Anonymous$1."<init>":()V  
7: astore_1 
8: return 
 
 
// LAMBDA 
 
0: invokedynamic #7, 0 // InvokeDynamic #0:sayHello:()LHelloWorld; 
 

5: astore_1 
6: return

A new object of the anonymous inner class Anonymous$1 is created
in the surrounding class Anonymous.
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The constructor of the anonymous class is called. Object creation is a
two-step process in the JVM.

The invokedynamic opcode hides the whole logic behind creating
the lambda.

The anonymous version creates a new object of the anonymous class
Anonymous$1, resulting in three opcodes:

new

Create a new uninitialized instance of a type.

dup

Put the value on top of the stack by duplicating it.

invokespecial

Call the constructor method of the newly created object to finalize
intialization.

The total count ignores astore_1, because both versions store a reference
into a local variable.

The lambda version only needs a single opcode: invokedynamic,
delegating the actual creation to the JVM.



THE INVOKEDYNAMIC INSTRUCTION

Java 7 introduced this JVM opcode to allow dynamic method
invocation methods. That allows the support of dynamic languages, like
Groovy or JRuby. invokedynamic is a flexible invocation variant
because its actual target is unknown on class-loading. Instead of linking
dynamic methods — like lambdas — at compile-time, the JVM links a
dynamic call site with the actual target method instead.

The runtime uses a so-called “bootstrap method”  (BSM) to link it and
return a method handle on first-call. This way, the JVM can optimize
lambda creation with different strategies, like dynamic proxies,
anonymous inner classes, or MethodHandles. It’s like using reflection
in your code but safer and directly done by the JVM.

Another difference between lambdas and anonymous inner classes is their
respective scope. An inner class creates a new scope, hiding its local
variables from the enclosing one. Also, the keyword this references the
instance of the inner class itself, not the surrounding scope. Lambdas, on
the other hand, live fully in their surrounding scope. Variables can’t be re-
declared with the same name, and this refers to the instance the lambda
was created in, if not static.

As you can see, lambda expressions are not syntactic sugar. That allows the
JVM to optimize your functional code in new ways, even allowing the reuse
of lambdas at the JVM’s discretion.

Method References
Another syntax-change introduced with Java 8 is method references. It’s
shorthand syntactic sugar, using the new :: (double-colon) operator, to
reference an existing method in lieu of creating a lambda expression calling
that method. If the input and output arguments match, method references
allow you to streamline your functional code by eliminating the need for
explicitly creating lambdas for dealing with already existing methods.
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There are four types of method references, as listed in Table 2-1.
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Type Syntax Example

Static method ClassName::staticMethodNam
e

List::of

Instance of method 
(specific)

variable::instanceMethodNa
me

customer::compareTo

Instance of method 
(arbitrary)

ContainingType::methodName String::toUpperCas
e

Constructor ClassName::new ArrayList::new

Example 2-7 shows how a Stream pipeline’s readability benefits from
converting the lambdas to method references. Don’t worry! You will learn
about Streams later on in this book, just think of it as a fluent call with
lambda accepting methods.

Example 2-7. Stream lambdas and method references



List<Customer> customers = ...; 
 
// Lambdas 
 
customer.stream() 
        .filter(customer -> customer.isActive()) 
        .map(customer -> customer.getName()) 
        .map(name -> name.toUpperCase()) 
        .peek(name -> System.out.println(name)) 
        .toArray(count -> new String[count]); 
 
// Method References 
 
customer.stream() 
        .filter(Customer::isActive) 
        .map(Customer::getName) 
        .map(String::toUpperCase) 
        .peek(System.out::println) 
        .toArray(String[]::new);

You can even use method references for constructs you don’t usually use in
normal Java, like casting objects, as seen in Example 2-8.

Example 2-8. Casting objects with a method reference
List<Object> maybeCustomers = ...; 
 
maybeCustomer.stream() 
        .filter(Customer.class::isInstance) 
        .map(Customer.class::cast) 
        ...

The instanceof operator and casting by using (Customer) can both
be done by calling the appropriate methods on the class itself, allowing
you to use both as method references.

Replacing lambdas with method references removes a lot of unnecessary
noise without compromising the readability or understandability of your
code. There is no need for the input arguments to have actual names and
call their methods explicitly. The method references communicate the same
amount of information to the reader in fewer chars typed and read. Also,
modern IDEs usually provide you with a “quick fix” to convert lambdas to
a method reference, if applicable.



(Almost) Pure Lambdas and Effectively final
Variables
In Figure 1-1 you were introducted to the concept of pure — self-contained 
— functions that won’t affect any outside state. Lambdas follow the same
gist, but not only for conceptional or paradigmatic reasons. As mentioned
before, the JVM tries its best to optimize lambdas with different strategies
based on their actual usage pattern. But lambdas can “capture” values from
their defining scope and have to be treated differently from pure lambas.
That means their body can access variables from their creation scope, even
if the lambda itself is no longer in that scope for these variables, as seen in
Example 2-9.

Example 2-9. Lambda variable capture
  void capture() { 
    var theAnswer = 42;  
    Runnable printAnswer = () -> System.out.println("the answer is 
" + theAnswer);  
 
    run(printAnswer); 
  } 
 
  void run(Runnable r) { 
    r.run();  
  }

The variable theAnswer is declared in the scope of capture().

The lambda printAnswer captures the variable in its body.

The lambda can be run in another method and scope but still has access
to theAnswer.

The big difference between capture and non-capture lambdas are the
optimization strategies of the JVM. If no variables get captured, a lambda
might end up being a simple static method behind the scenes, beating
out the performance of alternative approaches like anonymous classes. The
implications of capturing variables on performance are not as clear.



There are multiple ways the JVM might translate your code if it captures
variables, leading to additional object allocation, affecting performance, and
garbage-collector times. That doesn’t mean that capturing variables is
inherently a bad design choice. If your requirements need the least amount
of allocations or best performance possible, you should avoid unnecessary
capturing, though. But try to refrain from premature optimizations just to
avoid some overhead allocations. The main goal of a more functional
approach should be improved productivity, more straightforward reasoning,
and more concise code.

Effectively final
Captured variables are a thorn in the JVM’s side. It has to make special
considerations to use them safely and achieve the best performance
possible. That’s why there’s an important requirement regarding “out-of-
body” variables: only effectively final variables are allowed.

In simple terms, it represents an immutable reference that isn’t allowed to
change after its initialization. Any “out-of-body” variables used by a
lambda must be final, either by explicitly using the final keyword or
by not changing after their initialization, making them effectively final.
Be aware that this requirement is actually for the reference to a variable and
not the underlying data structure itself. A reference to a List<String>
might be final, but you can still add new items, as seen in Example 2-10.

Example 2-10. Change data behind a final variable
final List<String> list = new ArrayList<>();

list.add("adding is fine"); 

// WON'T COMPILE 
list = List.of("assigning", "another", "List", "is", "not"); 

The variable list is explicetly final, but new values can still be
added.

Reassigning the variable is prohibited and won’t compile.



The simplest way to test whether a variable is effectively final or not is
by making it explicitly final. If your code still compiles with the
additional final keyword, it will compile without it. So why not make
every variable final? Because it will add a lot of unnecessary noise and
verbosity to your code. The compiler ensures that “out-of-body” references
are effectively final, and the keyword won’t help with actual
immutability anyways.

WARNING
If you run any of the shown effectively final-related examples in jshell, they might
not behave as expected. That’s because jshell has special semantics regarding top-
level expressions and declarations, which affects final or effectively final values at
top-level . Even though you can reassign any reference — making it non-effectively
final — , you can still use them in lambdas, as long as you’re not in the top-level
scope.

In [Link to Come], you will learn more about the final keyword and its
implications on your code and performance characteristics.

Re-finalizing a reference
Sometimes a reference might not be effectively final, but you still need
them to be available in a lambda. If refactoring your code isn’t an option,
there’s a simple trick to re-finalize them. Remember, the requirement is just
for the reference and not the underlying data structure itself. So you can
create a new effectively final reference to the non-effectively final
variable, as shown in Example 2-11.

Example 2-11. Re-finalize a variable
var nonEffectivelyFinal = 1000L;  
nonEffectivelyFinal = 9000L;  
 
var finalAgain = nonEffectivelyFinal;  
 
Predicate<Long> isOver9000 = value -> value > finalAgain;
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At this point, nonEffectivelyFinal is still effectively final.

Changing the variable after its initialization makes it unusable in
lambda.

By creating a new variable and not changing it after its initialization,
you “re-finalized” the reference to the underlying data structure.

That’s a neat trick that’s good to know. But it’s still only another “band-
aid.” And needing a band-aid means you scraped your knees first. So the
best approach is trying not to need a band-aid at all. Refactoring or
redesigning your code should always be the preferred option.

At first, the effectively final requirement might look like an additional
burden. But it will force you to think in a more “pure” and side-effect-free
way about lambdas. Instead of capturing “out-of-body” variables, your
lambdas should be self-sufficient and require all necessary data as
arguments. That automatically leads to more reasonable code, increased
reusability, and allows for easier refactoring.

Batteries Included
Contrary to other functional languages, every lambda in Java must be
backed by an actual interface. To not start your functional toolset by zero,
the JDK provides over 40 different functional interfaces that can be grouped
into four different categories:

Functions accept arguments and return a result.

Consumers only accept arguments and do not return a result.

Suppliers do not accept arguments but return a result.

Predicates accept arguments, test an expression, and return a
boolean primitive.



The Big Four
The four different categories map directly to four functional interfaces (and
their variants) present in the java.util.function:

Function<T, R>

One of the most central functional interfaces. It represents a “classical”
function with a single input and output parameter, as shown in Figure 2-
1. The input and output types can be identical, but in “Function Arity”
you will learn about specialized functional interfaces with identical
types.

Figure 2-1. Function<T, R>

Consumer<T>

As the name suggests, it consumes an input parameter, but doesn’t
return anything, as shown in Figure 2-2. Even though the sole
consumption of a value in an expression might not fit into “pure”
functional concepts, it’s an essential component to elevate a more
functional coding style in Java.

Figure 2-2. Consumer<T>

Supplier<T>

The antagonist to a Consumer<T>. It doesn’t need any input
parameter, but it returns a single value of type T, as shown in Figure 2-
3.



Figure 2-3. Supplier<T>

Predicate<T>

A specialized function returning a boolean primitive, as shown in
Figure 2-4. It’s often used for decision-making, like filter methods
of the functional pattern map/filter/reduce you will learn more about
later on.

Figure 2-4. Predicate<T>

You can write a lot of functional code with just these four interfaces alone.
In Example 2-12 you see all of them in action, combined in a Stream
pipeline, which you will learn about in [Link to Come].

Example 2-12. The big four functional interfaces
Supplier<List<String>> lazy =  
  () -> List.of("apples", 
                "oranges", 
                "pear", 
                "ananas", 
                "banana"); 
 
lazy.get() 
    .stream() 
    .filter(in -> in.startsWith("a"))  
    .map(String::toUpperCase)  
    .forEach(System.out::println);  
 
// Output: 
// APPLES 
// ANANAS



A Supplier<List<String>> providing a lazily created
List<String>.

A Predicate<String> filtering elements.

A Function<String, String>: returning the current element in
uppercase.

A Consumer<String> printing the current element.

Specialized Functional Interfaces
If there are just four categories, why does Java provide over 40 different
functional interfaces? The answer lies in Java’s type system. Functional
interfaces are, well, interfaces, and lambda expressions are implementations
of these interfaces. Type inference makes it easy to forget that you can’t
simply cast between interfaces, even if the method signatures are identical,
like in Example 2-13.

Example 2-13. Casting between Functional Interfaces
Function<String, Long> fn = in -> 3L;  
 
interface CustomFunction {  
  Long apply(String value); 
} 
 
var customFn = (CustomFunction) fn;  
// => throws java.lang.ClassCastException

A simple function you might want to cast later.

A functional interface matching the function signature.

Attempts to cast between the types will throw a
java.lang.ClassCastException, regardless of a being a
generic or non-generic implementation.



jshell> IntConsumer primitive = i → System.out.println(i) primitive =⇒
$Lambda$25/0x0000000800c0bc40@48533e64

jshell> Consumer<Integer> boxed = i → System.out.println(i) boxed =⇒
$Lambda$21/0x0000000800c0a800@34c45dca

jshell> IntConsumer fake = (IntConsumer) boxed | Exception
java.lang.ClassCastException: class
REPL.$JShell$12Lambda$21/0x0000000800c0a800 cannot be cast to class
java.util.function.IntConsumer
(REPL.$JShell$12Lambda$21/0x0000000800c0a800 is in unnamed module
of loader jdk.jshell.execution.DefaultLoaderDelegate$RemoteClassLoader
@2f0e140b; java.util.function.IntConsumer is in module java.base of loader
bootstrap) | at (#7:1)

jshell> IntConsumer fake = (IntConsumer) boxed::accept fake =⇒
$Lambda$26/0x0000000800c0e410@484b61fc

jshell>

That’s why the JDK provides you with a lot of variations of functional
interfaces, to give context-specific types, that express a certain intended use
by their name alone and signature alone.

Function Arity
The concept of arity describes the number of operands taken by a function,
regardless of the function being in logic, mathematics, or in our case,
programming. The name comes from the Latin “-ary” suffix.

The number of operands in a Java method signature is fixed, so there must
be an explicit functional interface for every arity. That’s why the JDK
provides additional interfaces for certain arities, including even more
straightforward interfaces for identical input and output types, as listed in
Table 2-2.
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Arity Specialized Type Super Interface

1 UnaryOperator<T> Function<T, T>

2 BiFunction<T, U> -

2 BinaryOperator<T> BiFunction<T, T, T>

2 BiConsumer<T> -

2 BiPredicate<T,U> -

You can create higher arities yourself, as you will see later on in Example 2-
19.

These specialized interfaces will help you write more concise code,
especially if they implement a common super interface. But be aware when
you design APIs with these types. If your code requires an
UnaryOperator<String>, it won’t be compatible with
Function<String,String>. The other way around works, though, as
seen in Example 2-14.



Example 2-14. Java arity compatibility
UnaryOperator<String> unary = String::toUpperCase; 
 
Function<String, String> func = String::toUpperCase; 
 
 
void acceptsUnary(UnaryOperator<String> unary) { ... }; 
 
void acceptsFunction(Function<String, String> func) { ... }; 
 
acceptsUnary(unary); // OK
acceptsUnary(func); // COMPILE-ERROR 
 
acceptsFunction(func); // OK
acceptsFunction(unary); // OK

The increased verbosity of designing your methods to accept shared super
interfaces in the signature is an acceptable trade-off, in my opinion, because
it maximizes usability and doesn’t restrict an argument to a specialized
functional interface. But when creating a lambda though, the specialized
type allows for more concise code without losing any expressiveness.

Primitive Types
So far, most functional interfaces have a generic type definition. But
primitive types can’t be used as generic types (yet). That’s why there are
specialized functional interfaces for primitives.



PROJECT VALHALLA AND SPECIALIZED GENERICS
The OpenJDK Project Valhalla is an experimental JDK project to
develop multiple changes to the Java language itself. One of them that’s
quite relevant to simplifying lambdas is “specialized generics.” Right
now, generic type arguments are constrained to types that extend
java.lang.Object, meaning that they are not compatible with
primitives. Your only option is auto-boxed types like
java.lang.Integer, etc., which has performance implications and
other pitfalls compared to using primitives directly.

The timeline of the project isn’t clear yet. It was created in 2014, and in
March 2020, the team behind it created five distinct prototypes to tackle
the associated aspects of the problems.

You could use a generic functional interface for the object wrapper type and
let auto-boxing take care of the rest. But auto-boxing isn’t free and can have
a performance impact. That’s why many of the functional interfaces
provided by the JDK deal with primitive types to avoid auto-boxing. Such
primitive functional interfaces aren’t available for all primitives, though.
They are mostly concentrated around the numeric primitives int, long,
and double. In Table 2-3 you see the available functional interfaces for
int, but there are equivalent types available for long and double.

https://openjdk.java.net/projects/valhalla/
https://cr.openjdk.java.net/~briangoetz/valhalla/sov/01-background.html
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Functional Interface Boxed Alternative

IntFunction<R> Function<Integer, R>

IntUnaryOperator UnaryOperator<Integer>

IntBinaryOperator BinaryOperator<Integer>

ToIntFunction<T> Function<T, Integer>

ToIntBiFunction<T, U> BiFunction<T, U, Integer>

IntConsumer Consumer<Integer>

ObjIntConsumer<T> BiConsumer<T, Integer>

IntSupplier Supplier<Integer>

IntPredicate Predicate<Integer>



IntToDoubleFunction Function<Integer, Double>

IntToLongFunction Function<Integer, Long>

Only a single type is available for boolean: BooleanSupplier.

Functional interfaces for primitives aren’t the only special consideration in
the new functional parts of Java to accommodate primitives. As you will
learn later in this book, Streams and Optionals provide specialized types,
too, to reduce unnecessary overhead if needed.

Functional Programming Concepts in Java
“Functional Programming Concepts” introduced multiple concepts on a
mostly theoretical level. Let’s take another look at them regarding functions
and lambdas as Java developers.

Pure Functions and Referential Transparency
The first concept is based on two guarantees that aren’t necessarily bound to
functional programming. It can easily be adopted in your imperative code
without any functional programming.

Pure functions are:

The same input will always create the same output. Therefore,
repeated calls can be replaced by the initial result.

They are self-contained without any kind of side effect.

Making your code predictable and reproducible brings in a multitude of
advantages. Reasoning with your code becomes more straightforward, and
it becomes unit-testable with ease. From a Java perspective, how can you
achieve these beneficial properties?



Mutable state — if it crosses the boundaries of the functions — must be
eliminated. Side-effects aren’t restricted to mutable outside state, though. A
simple System.out.println(...) call is a side-effect, even if it
might look harmless. The reasoning behind this can be distilled to that
repeated calls of the function with the same arguments can’t be replaced
with the result of the first evaluation. A good indicator for an impure
method is a void return type. If a method doesn’t return anything, all it
does are side effects.

The last piece to the pureness puzzle is removing uncertainty. Like the
example of calling System.out.println(...), including any
random code, like random number generators, the current date, etc., will
result in unpredictable and unreproducible code, making it impure.

The same input will always generate the same output, which is called
referential transparency. Hence, you can replace any subsequent calls with
the same arguments with the previously calculated result.

This interchangeability allows for an optimization technique called
memoization. Originating from the Latin word “memorandum" — to be
remembered — , this technique describes “remembering” previously
evaluated expressions. It trades memory space for saving computational
time.

SPACE–TIME TRADE-OFF
Algorithms depend on two significant factors: space (e.g., memory) and
time (e.g., computational or response time). Both might be available in
vast quantities these days, but they are still finite. The space-time trade-
off states that you can decrease one of the factors by increasing the
other. If you want to save time, you need more memory by storing
results. Or you can save memory by constantly recalculating them.

You’re most likely using the general concept already: caching. From
dedicated cache-libraries, like Ehcache  to simple HashMap-based lookup
tables, it’s all about “remembering” a value against a set of input arguments.
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But automatic memoization of functions or methods calls isn’t supported by
the Java compiler. Some frameworks provide annotations, like
@Cacheable in Spring  or @Cached in Apache Tapestry , and generate
the required code automatically behind the scenes.

Building your own memoization by creating an “on-demand” lookup table
requires the answer to two questions:

How to identify the function input arguments uniquely?

How to store the evaluated result?

If your function or method call has only a single argument with a constant
hashCode or other deterministic value, you can create a simple Map-
based lookup table. But for multi-argument calls, you have to define how to
create a lookup-key first.

Java 8 introduced multiple functional additions to the Map<K, V> type.
The computeIfAbsent(…) is the perfect tool to implement
memoization, as shown in Example 2-15.

Example 2-15. Memoization with Map#computeIfAbsent
ResultType expensiveCalculation(String arg0, int arg1) {  
    ... 
} 
 
private static final Map<String, ResultType> CACHE = new HashMap<>
();  
 
ResultType memoized(String arg0, int arg1) {  
  var compoundKey = String.format("%s-%d", arg0, arg1);  
  return CACHE.computeIfAbsent(compoundKey, 
                               key -> expensiveCalculation(arg0, 
arg1));  
}

The time-consuming method for calculating a result.

The results are cached in a simple
HashMap<String,ResultTyp>. Depending on your requirements,
there might be special considerations, like caching results per request in
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a web application or requiring a “time-to-live” concept. This example is
supposed to show the simplest form of a lookup table.

The “memoized” wrapper method around the cache. It has the same
arguments as the calculation method because it delegates the work to it.

The ResultType must be uniquely identifiable. Therefore, using a
compound key in the case of multiple arguments makes sense.

The mapping lambda is only evaluated if no value is associated with
compoundKey.

The functional additions to Map<K, V> didn’t stop there. It provides the
tools to create associations “on the fly.” But it also allows more fine-grained
control if a value is already present. You will learn more about it in [Link to
Come].

Immutability
Mutable state is the enemy of functional programming because most of its
concepts rely on immutable data structures. Earlier in this chapter, in
“(Almost) Pure Lambdas and Effectively final Variables” you’ve already
learned about the restrictions Java lambdas impose on you to reduce side
effects and enforce immutability on references, in the form of effectively
final references.

Immutabily is a complex subject that you’ll learn more about and its
importance and how to utilize it properly — either with built-in tools or
with a do-it-yourself-approach — in [Link to Come].

First-Class and Higher-Order
With Java lambas being concrete implementations of functional interfaces,
they gain first-class citizenship — being usable as variable, arguments and
return values — , as seen in Example 2-16.



Example 2-16. First-class Java Lambdas
UnaryOperator<Integer> quadraticFn = x -> x * x;  
 
quadraticFn.apply(5);  
// => 25 
 
 
public UnaryOperator<Integer> multiplyWith(Integer multiplier) { 
  return x -> multiplier * x;  
} 
 
var multiplyWithFive = multiplyWith(5); 
 
multiplyWithFive(5); 
// => 25

Assigning a Java lambda to the variable quadraticFn.

It can be used like any other “normal” Java variable, calling the apply
method of its interface.

Returning a lambda is like returning any other Java variable.

Accepting lambdas as arguments and returning lambdas is essential for the
next concept, functional composition.

Functional Composition
The idea of creating complex systems by composing smaller components is
a cornerstone of programming. And functional composition is arguably one
of the essential aspects of a functional programming mindset.

The general concept is simple: two functions are combined to build a new
function. Smaller functions are composited into a larger chain of functions,
creating a more complex system.

Functional interfaces can provide the necessary “glue methods” as
default or static methods. In case of Function<T, R>, two
default methods are available:



<V> Function<V, R> compose(Function<? super V, ?
extends T> before)

Returns a composed function that first applies before to its input and
then this.

<V> Function<T, V> andThen(Function<? super R, ?
extends V> after)

The opposite of compose(…), applying this first, and then after.

The direction of the composition is up to you. There’s no difference in the
end result, as seen in Example 2-17.

Example 2-17. Functional composition direction
Function<String, String> removeLowerCaseA = in -> in.replace("a", 
""); 
 
Function<String, String> upperCase = String::toUpperCase; 
 
var input = "abcd"; 
 
// Uppercase the String then remove the letter "a" 
 
removeLowerCaseA.compose(upperCase) 
                .apply(input); 
// => "ABCD" 
 
upperCase.andThen(removeLowerCaseA) 
         .apply(input); 
// => "ABCD" 
 
// ---------------------------------------------- 
 
// Remove the letter "a" then uppercase the String 
 
upperCase.compose(removeLowerCaseA) 
         .apply(input); 
// => "BCD" 
 
removeLowerCaseA.andThen(upperCase) 
                .apply(input); 
// => "BCD"



Which direction to choose depends on the context and personal preference.
I prefer andThen(…) because the resulting fluent method call-chain
mirrors the logical flow of functions.

Composable Functional Interfaces in the JDK
Not every functional interface provides “glue methods” to allow
composition, even if it would be sensible. And other provide methods that
aren’t just directly connecting the method’s inputs and outputs but provide
additional logic to simplify the method call-chain.

Function<T, R>

Function<T, R>, and its specialized arities, like
UnaryOperator<T>, support composition in both direction. The
Bi… variants only support andThen.

Predicate<T>

Predicates support various methods to compose a new Predicate with
common operations associated with them: and, or, negate.

Consumer<T> and Supplier<T>

Both functional interfaces only support andThen.

Specialized primitive functional interfaces

The support for functional composition among the specialized
functional interfaces for primitives is not on par with their generic
brethren. And even among themselves, the support differs between the
primitive types.

Currying
Currying — converting a function from taking multiple arguments into a
sequence of functions that each take only a single argument — isn’t natively



supported by any functional interface. But you can create a helper to curry
functions yourself, as shown in Example 2-18.

Example 2-18. Currying Helper
<T, U, R> Function<T, Function<U, R>> curry(BiFunction<T, U, R> fn) 
{  
    return t -> 
             u -> fn.apply(t, u);  
}

The curry method accepts a BiFunction and converts it to a
Function returning another Function.

The line break isn’t necessary but better illustrates what’s happening.

For easier use, such helper methods should be grouped together in a
static class. If you need more arguments than two, you need to create
the functional interface yourself. But you add the required curry method
directly in the interface, as seen in Example 2-19 for ternary arity, instead of
needing an extra helper class.

Example 2-19. Currying a TriFunction with a custom wrapper
@FunctionalInterface 
public static interface TriFunction<A, B, C, R> { 
 
  R apply(A a, B b, C c);  
 
  default Function<A, Function<B, Function<C, R>>> curry() {  
    return 
      a -> 
        b -> 
          c -> apply(a, b, c); 
  } 
} 
 
 
TriFunction<Double, Double, Boolean, Double> calculateFinalPrice = 
 

  (price, taxPercentage, includeTax) -> { 
    if (includeTax == false) { 
      return price; 
    } 



 
    return price + taxPercentage * price; 
  }; 
 
 
Function<Double, Function<Double, Function<Boolean, Double> curried 
= 
  calculateFinalPrice.curry();  
 
var finalPrice = curried.apply(100.0D)  
                        .apply(0.19D) 
                        .apply(Boolean.TRUE); 
// => 119.0

The single abstract method is quite straightforward: accept three
arguments and have a return value.

Adding a default curry() method allows for easier currying.

Creating a TriFunction as as simple as a BiFunction, nothing
special about it.

Calling curry() creates a nested Function, and you should use
var instead of the explicit type.

The curried variable now allows you to apply every single argument
seperatly.

It might look quite unwieldy, but as many of the other concepts, they are
interconnected with each other. In this case, partial function application.

Partial Function Application
The previous currying example can be extended to support the principle of
partial application: applying only a subset of the required arguments.

You could use the curry() method of TriFunction as a starting point
for partial application. But introducing additional default methods is a
more flexible approach, as shown in Example 2-20.



Example 2-20. TriFunction Partial Application
@FunctionalInterface 
public static interface TriFunction<A, B, C, R> { 
 
  R apply(A a, B b, C c); 
 
  default Function<A, Function<B, Function<C, R>>> curry() { 
    ... 
  } 
 
  default BiFunction<B, C, R> partial(A a) {  
    return (b, c) -> apply(a, b, c); 
  } 
 
  default Function<C, R> partial(A a, B b) {  
      return c -> apply(a, b, c); 
  } 
} 
 
TriFunction<Double, Double, Boolean, Double> calculateFinalPrice = 
... 
 
Function<Boolean, Double> basePrice = 
calculateFinalPrice.partial(100.0D, 
                                                                  
0.19D);  
 
 
var withTax = basePrice.apply(Boolean.TRUE);  
 
var withoutTax = basePrice.apply(Boolean.FALSE); 

The default partial(…) methods create new lambas with less
requirement arguments.

The TriFunction can now be reduced to a partially applied version.

The partially applied function is reusable and requires only a single
argument.

Like other concepts, parial application is about the reusability of pure
functions. It allows you to create a more generic pool of functionality that



can be specialized as needed.

Takeaways
Lambas are concrete implementations of functional interfaces.

Their syntax is close to underlying mathematical notation. There
are multiple verbosity levels possible, depending on the
surrounding context and your requirements.

Lambas are more than just syntactic sugar, with the JVM using the
opcode invokedynamic.

Method references are a concise alternative for matching method
signatures and lambda definitions.

Outside variables need to be effectively final to be used in
lambdas, making the references immutable, but not the data
structures themselves.

The JDK provides a lot of different functional interfaces, including
support for multiple functional techniques.

Some edge cases are missing, but all tools to implement them
yourself are provided.

Primitives are supported by either using auto-boxing, or the
specialized functional interfaces for int, long, double, and
boolean.

1  The simplified version of java.util.function.Predicate is based on the source
code for the latest Git tag of the LTS version at the time of writing: 17+35. You can check out
the official source code repository to see the original file.

2  Landin, Peter J. (1964). “The mechanical evaluation of expressions.” The Computer Journal.
Computer Journal. 6 (4).

3  The class java.lang.invoke.LambdaMetaFactory is responsible for creating
“bootstrap methods.”

https://github.com/openjdk/jdk/blob/dfacda488bfbe2e11e8d607a6d08527710286982/src/java.base/share/classes/java/util/function/Predicate.java
https://doi.org/10.1093/comjnl/6.4.308
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/invoke/LambdaMetafactory.html


4  The official documentaton sheds some light on the special semantics and requirements for
top-level expressions and declarations.

5  Ehcache is a widely-used Java cache library.

6  https://docs.spring.io/spring-framework/docs/current/javadoc-
api/org/springframework/cache/annotation/Cacheable.html

7  https://tapestry.apache.org/5.7.2/apidocs/org/apache/tapestry5/annotations/Cached.html

https://docs.oracle.com/en/java/javase/17/docs/api/jdk.jshell/jdk/jshell/JShell.html#eval(java.lang.String)
https://www.ehcache.org/
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/cache/annotation/Cacheable.html
https://tapestry.apache.org/5.7.2/apidocs/org/apache/tapestry5/annotations/Cached.html


Chapter 3. Optionals

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 6th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

Many people call the null reference a billion-dollar mistake. The inventor
of null itself originally coined that phrase:

I call it my billion-dollar mistake.

It was the invention of the null reference in 1965. At that time, I was
designing the first comprehensive type system for references in an object-
oriented language (ALGOL W). My goal was to ensure that all use of
references should be absolutely safe, with checking performed
automatically by the compiler. But I couldn’t resist the temptation to put
in a null reference simply because it was so easy to implement.

This has led to innumerable errors, vulnerabilities, and system crashes,
which have probably caused a billion dollars of pain and damage in the
last forty years.

—Sir Charles Antony Richard Hoare, QCon London 2009

There is no consensus on how to deal with this “mistake” among
programming languages. But many of them have a proper and idiomatic



way of handling null references, directly integrated into the language
itself.

This chapter will show you the different ways to handle null and how you
can improve handling null in Java with the Optional<T> type and its
functional API. You will create your own improved Optional type for
primitives and learn how, when, and when not to use Optionals.

How to Handle null
Instead of diving into Java’s null-handling head-first, it’s worth looking at
how different programming languages handle null first. The range of how
deep such handling integrates directly into a language varies greatly, and
there is no consensus on what’s best. But most languages use one of these
five concepts to deal with null references:

Best practices and informal rules

Safe navigation operator

Embrace null as a valid value

Third-party tools

No null at all and/or specialized types

Best Practices and Informal Rules
If a language itself isn’t providing any form of integrated null handling,
you can only resort to best practices and informal rules. Many companies,
teams, and projects develop their own coding style or adapt an existing one
to their needs By adhering to these self-imposed practices and rules, they’re
able to write more predictable code consistently.

The following four rules are a good starting point for handling null
references:

Don’t initialize a variable to null.



Don’t pass, accept, or return null.

null is acceptable as an implementation detail.

null-check everything outside your control.

These rules aim at reducing the general use of null. But null isn’t
inherently bad. Less usage leads to fewer null-checks and
NullPointerExceptions.

This manual approach is only as good as the level to which everyone
adheres to it. And you can only stick to these rules in your own code. If
you’re accustomed never to encounter null, you might get an unwelcome
surprise when dealing with external code. That doesn’t mean that following
best practices and informal rules isn’t a good idea per se. They will
improve your overall code quality, regardless of null. But it’s not a silver
bullet and requires discipline among your team to gain the most benefits
from them.

Safe Navigation Operator
Languages with nullable types allow a type definition to express that its
corresponding value might be null and requires special handling, often
signified with a "?" (question mark) in the type declaration. That leads to
the antagonistic requirement that non-nullable types are not allowed to be
null.

NOTE
Not all languages call their null reference null. Many languages, like Swift, call it
nil, but it’s effectively the same thing.

To safely call — or “navigate" — properties or functions of nullable types, a
safe navigation operator is used to forgo any null-checks. For example,
Swift, like many other languages with nullable types, uses ?. as its safe



navigation operator, in addition to the single dot you’re used to in Java. The
code in Example 3-1 shows how it’s used for multiple properties. The
resulting name might be null if any of the intermediate calls encountered
a null-value, or the author’s name is null. This way, no null-checks
are required between the calls.

Example 3-1. Safe navigation operator in Swift
// nil is Swift's literal for a null reference 
 
let name: String? = articles?.first?.author?.name

Java requires a lot more checks to be as safe as its equivalent Swift version.
You have to null-check every single step, as seen in Example 3-2 to avoid
any NullPointerExceptions.

Example 3-2. Unsafe navigation with Java
String name = null; 
 
if (articles != null && articles.isEmpty() == false) { 
 
   var article = articles.get(0); 
 
   // Additional check needed if collection allows null values 
   if (article != null) { 
 
        var author = article.getAuthor(); 
 
        if (author != null) { 
            name = author.getName(); 
        } 
    } 
 }

The extra boilerplate makes your code neither concise nor easy to reason
with. And to make things worse, anyone using the variable name can’t
deduce that it might be null, because its type definition — String — 
doesn’t confer the valid values.

Null Coalesce
Swift also provides another part of the equation for better null handling: a
null coalesce operator.



The safe navigation operator makes handling possible null values easier.
But at some point, you might need a fallback if it’s null. That’s where
another operator comes into play, the "??" (double question mark) operator.

If the left-side of the operator is null, the right side evaluates, as seen in
Example 3-3.

Example 3-3. Swift null coalesce operator
let name: String = articles?.first?.author?.name ?? "n/a"

This operator is like a short form of "? :“, the ternary operator.
Example 3-4 shows the null coalesce operator and how to implement the
same logic with the ternary operator.

Example 3-4. Swift null coalesce operator versus ternary operator
let name: String = articles?.first?.author?.name ?? "n/a" 
 
// is equivalent to 
 
let maybeName: String? = articles?.first?.author?.name
let name: String = maybeName != nil ? maybeName! : "n/a"

The difference between the two versions is the evaluation order and count.
The null coalesce operator is a binary operator, which means that if the left
side evaluates to non-null, the expression on the right side won’t evaluate
at all. And its operators evaluate only once at most. That is an essential trait
if one of the operands is an expression or method call with side effects.

As with the safe navigation operator, Java doesn’t have a null coalesce
operator. But the Optional type provides an alternative way to navigate
potential null properties and methods, as you will learn later in this
chapter.

Embrace null as valid value
Another approach is not throwing exceptions on null references and
accepting it as a valid value.



Clojure, a functional programming language running on the JVM, made the
absence of a value an acceptable state. Even though its nil is analogous to
Java’s null, it’s evaluating to false. It’s still possible to encounter a
NullPointerException, especially in Java-interop code. But it’s way
more complicated in idiomatic Clojure code. With nil being a value
representing nothingness instead of being nothing itself, it’s way easier to
handle and incorporate it into your code.

Another example is Objective-C, a Smalltalk-inspired language.
Semantically speaking, it doesn’t call methods or fields. Instead, it sends
messages to objects and might receive a response. Sending a message to
nil will not raise an exception. Instead, the message will be discarded
silently. A language with manually managed memory, like Objective-C, can
benefit from this behavior because you don’t have to null-check
everything before sending a message. But it’s also bad because you might
not realize that a sent message got discarded, and now you might have to
check for that instead.

Third-party tools
If a language doesn’t provide the built-in functionality you need, you can
always augment it with third-party tools to provide the missing features. For
null references in Java, an established best-practice is to use annotations
to mark variables, arguments, and method return types as either
@Nullable or @NonNull. It allows static code analysis to find
possible problems with null at compile-time. And even better, adding
these annotations to your code gives your method signatures and type
definitions a clearer intent of how to use them and what to expect, as seen
in Example 3-5.

Example 3-5. Null handling with annotation
interface Example {

  @NonNull List<String> getListOfNullables(); 

  List<@NonNull String> getNullableListOfStrings(); 



  void doWork(@Nullable String identifier); 
}

Returns a non-null List of possible null String objects.

Returns a possible null List containing non-null String objects.

The method argument identifier is allowed to be null.

The JDK doesn’t include these annotations, and the corresponding JSR 305
has the status “dormant”. But it’s still the de-facto community standard.
Several libraries  provide the missing annotations, and most tools support
multiple variants of them. But be aware that the tools might differ in their
actual handling of certain edge-cases .

The general problem with a tool-assisted approach is the reliance on the
tool itself. If it’s too intrusive, you might end up with code that won’t run
without it, especially if the tool involves code generation “behind the
scenes”. In the case of null-handling, that isn’t a big worry. Your code
will even run without a tool interpreting the annotations, and your variables
and methods signatures will still clearly communicate the requirements to
anyone using them, even if unenforced.

No null at all and/or specialized types
The most drastic method for dealing with null is not allowing it at all. For
example, the functional language Haskell doesn’t have null as a design
feature. Although the lack of any null-related exceptions sounds excellent,
you still need to somehow deal with the general concept of the absence of a
value. Many languages, including Haskell, solve this by providing
specialized types for representing optional values. Their names are almost
always in the same vein: Option, Optional, Maybe, Some, etc. They
allow for excellent null-handling without requiring an explicit language
or syntax integration.

Java’s Optionals are such a specialized type.
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How Java Handles null with Optionals
Dealing with null in Java can be cumbersome. Correct handling of null
is an essential part of every developer’s work because unexpected and
unhandled NullPointerExceptions are the root cause of many
problems with software written in Java. Without any language-integrated
features, like a safe navigation or null coalesce operator, you must resort to
best practices or third-party tools. Adhering to best practices is always a
good idea, although it’s hard to enforce them strictly. Instead, a tool-assisted
approach might be easier to enforce but can complicate the general project
workflow.

Java 8 finally introduced a specialized type to handle null:
java.util.Optional<T>. As with many other Java 8 features,
lambdas are part of the general design of Optionals, so a more functional
programming style becomes feasible and beneficial by introducing more
concise ways of handling nullable values.

Optional<T> Operations
The Optional<T> type is not just a simple wrapper around a value. It
provides almost 20 methods in four different categories:

Creating an Optional

The first step is creating an Optional. It can either have a value or is
empty.

Are you there, value?

You can check for the existence of an inner value with isEmpty() or
isPresent(), with both returning a boolean. Alternatively, there
are two methods available for a functional approach:
ifPresent(Consumer<? super T> action) or
ifPresentOrElse(Consumer<? super T> action,
Runnable emptyAction).



Filtering and Mapping

Like with Streams, you use these intermediate operations to work with
the value in an Optional by filtering or transforming it. Each operation
returns an Optional containing the resulting value, or an empty Optional
if no value is present. You can connect the method calls fluently to
another intermediate or terminal operation.

Getting the value, or having a backup plan

The Optional<T> type comes with multiple or…(…) methods. In
case of an empty Optional, you can provide an alternative by using one
of them. Many use-cases are covered, like eager and lazy values,
exceptions, and even new Optionals.

Creating Optionals
Optionals do not provide any public constructor. Instead, three static
methods are available for three distinct use cases:

Case 1: There might be a value

The main intention of Optionals is to make dealing with null more of
a non-issue. If you simply need an Optional and don’t care if it might be
empty, use the method Optional.ofNullable(…). It’s the
simplest and most bullet-proof form of creating an Optional.

var value = "Optionals are awesome!";
Optional<String> maybeValue = Optional.ofNullable(value); 
 
value = null;
Optional<String> emptyOptional = Optional.ofNullable(value);

Case 2: Value is known/needed

Even though Optionals are a great way to deal with null and prevent a
NullPointerException, what if you have to make sure you have
a value? For example, you already handled any edge-cases in your code 



— which returned empty Optionals — and now you definitely have a
value. The static method Optional.of(…) ensures that the value is
non-null, and throws an NullPointerException if not. This
way, the exception signifies a real problem in your code. Maybe you
missed an edge case, or a particular external method call has changed
and returns null now. Using Optional.of(…) in such a context
makes your code more future-proof and resilient.

var value = "Optionals are awesome!";
Optional<String> mustHaveValue = Optional.of(value); 
 
value = null;
Optional<String> emptyOptional = Optional.of(value);
// => throws NullPointerException

Case 3: There’s never a value

If you know there’s no value in the Optional, you can use the method
Optional.empty(). That is especially useful for return values
because you don’t have to create a new empty Optional every time.
Optional.empty() is a static final field, and is also
returned by Optional.ofNullable(null).

Optional<String> noValue = Optional.empty();

Checking for Values
The primary purpose of Optionals is to wrap a value and to represent its
existence or absence. So naturally, checking for values must be as
straightforward as possible. There are four methods available for checking
and reacting to values or their absence. They fall into two sub-categories,
the is methods and the if methods.

boolean isPresent()

Returns true if a value is present.



boolean isEmpty()

Returns true if the Optional is empty. This method was added with
Java 11, so you don’t have to check !isPresent(), making your
code more readable.

Instead of checking, retrieving, and using a value in separate steps, you
could use one of the if methods instead to streamline your code.

void ifPresent(Consumer<? super T> action)

Performs the supplied action only if a value is present. null actions
aren’t allowed and throw a NullPointerException.

void ifPresentOrElse(Consumer<? super T> action,
Runnable emptyAction)

Performs the supplied action only if a value is present. If no value is
found, the emptyAction is run instead. null actions aren’t allowed
and throw a NullPointerException.

Let’s look at how to use these methods in Example 3-6.

Example 3-6. Checking for Optional values
Optional<String> maybeValue = ...; 
 
// THIS VERBOSE CODE... 
 
if (maybeValue.isPresent()) { 
  var value = maybeValue.get(); 
  System.out.println(value);
}
else { 
  System.out.println("No value found!");
} 
 
// ...CAN BE SIMPLIFIED TO 
 
maybeValue.ifPresentOrElse(System.out::println, 
                           () -> System.out.println("No value 
found!"));



Filtering and Mapping
Optionals allow for more than just checking for the presence of a value or
its absence. Similar to Streams, you can build a pipeline by filtering and
mapping values. Every step results in a new Optional until a terminal
operation ends the call-chain.

Optional<T> filter (Predicate<? super T> predicate)

Filter a value with the provided predicate. Returns this if no value is
present because it’s already an empty Optional.

<U> Optional<U> map (Function<? super T, ? extends
U> mapper)

Transforms a value with the provided mapper function, returning a new
nullable Optional containing the mapped value. If no value is present,
an empty Optional<U> is returned instead.

<U> Optional<U> flatMap (Function<? super T, ?
extends Optional<? extends U>> mapper)

If your mapping function returns an Optional<U> instead of a
concrete value of type U, using map(…) would result in an
Optional<Optional<U>>. But flatMap(…) doesn’t pack the
result of the mapper function into a new Optional.

These intermediate operations allow you to build a call-chain to filter and
transform a value as needed. Example 3-7 shows an Optional call-chain and
the non-Optional equivalent for a hypothetical permissions container and its
sub-types. The code callouts are attached to both versions to show the
corresponding operations, but their descriptions are for the Optional-
version.

Example 3-7. Intermediate operations
interface Permissions { 
  boolean isEmpty() 
  Group getGroup(); 



} 
 
interface Group { 
  Optional<User> getAdmin(); 
} 
 
interface User { 
  boolean isActive(); 
} 
 
Permissions permissions = ...; 
 
// WITH OPTIONALS 
 
boolean isActiveAdmin = 
  Optional.ofNullable(permissions)  
          .filter(Predicate.not(Permissions::isEmpty))  
          .map(Permissions::getGroup)  
          .flatMap(Group::getAdmin)  
          .filter(User::isActive)  
          .orElse(Boolean.FALSE);  
 
 
// WITHOUT OPTIONALS 
 
boolean isActiveAdmin = false;  
 
if (permission != null && !permissions.isEmpty()) {   
  if (permission.getGroup() != null) {  
    var group = permissions.getGroup();  
    var maybeAdmin = group.getAdmin();  
 
    if (maybeAdmin.isPresent()) { 
      var admin = maybeAdmin.get(); 
      isActiveAdmin = admin.isActive(); 
    } 
  } 
}

Initial null-check by creating an Optional<Permissions>.

Filter for non-empty permissions, using a static helper of the
Predicate type to simplify the lambda to a method reference.



Get the group of the permissions. It doesn’t matter if getGroup()
returns null, because the Optional call-chain will skip to its
terminal operation if that’s the case. The non-Optional version needs an
explicit null-check if you can’t guarantee that group is never null.

The group might not have an admin. That’s why it returns an
Optional<Admin>. If you simply use map(Group::getAdmin),
you would have an Optional<Optional<Admin>> in the next
step. Thanks to flatMap(Group::getAdmin), the unnecessarily
nested Optional won’t be created.

With the Admin object, you can filter out non-active ones.

If any method of the call-chain returns an empty Optional, e.g., the
group was null, the terminal operation returns the fallback value
Boolean.FALSE. The next chapter will explain the different types of
terminal operations.

The difference between the two versions is quite noticeable. The Optional
call-chain is a fluent call that’s almost prose-like. Every step of the
underlying problem that needs to be solved is laid out in clear and directly
connected steps. Like null or empty-checks, any validation and decision-
making are wrapped up in the Optionals operations and method references.
The intent and flow of the problem to be solved are clearly visible, even
without explicit if-statements.

The non-Optional version can’t delegate any conditions or checks and relies
on explicit if-statements. That creates deeply nested flow structures,
increasing the cyclomatic complexity of your code. It’s harder to understand
the overall intent of the code-block and not as concise as with an Optional
call-chain.



NOTE
Cyclomatic Complexity  is a metric used to determine code complexity. It’s based on the
number of branching paths — or decisions — in your code. The general idea is that
straight, non-nested statements and expressions are more accessible to follow than
deeply nested decision branches, like nested if-statements.

Getting a (fallback) value
The simplest way of retrieving the inner value is calling get(). But make
sure you’ve checked for the existence of a value beforehand, or you’ll end
up with a NoSuchElementException. Instead of using get(), you
can use the more flexible or-prefixed methods, giving you a chance to
define an alternative if no value is present.

T orElse (T other)

Returns either the value of the Optional or "other" if no value is
present.

T orElseGet (Supplier<? extends T> supplier)

Instead of needing an alternative right away, you can supply it lazily
with a Supplier.

<X extends Throwable> T orElseThrow (Supplier<?
extends X> exceptionSupplier)

Even though one of the main advantages of Optionals is preventing
NullPointerException, sometimes you still need an exception if
there’s no value present. With orElseThrow(…), you have fine-
grained control about handling a missing value and what exception to
throw, too.

T orElseThrow()

Like orElseThrow(…), but in case no additional handling or specific
exception type is needed. Always throws a
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NoSuchElementException if no value is present.

There’s another method available since Java 9. Even though it’s not a
terminal operation providing you with a tangible value, it helps build more
complex Optional call-chains.

Optional<T> or (Supplier<? extends Optional<?
extends T>> supplier)

Lazily return another Optional<T> if no value is present.

Not fitting in the or nomenclature is another value-providing method used
for Stream pipelines.

Stream<T> stream()

Returns a Stream<T> only containing the value, or an empty Stream
if not value is present. Often used in Stream#flatMap() as a
method reference.

Optional Primitives
As you have learned about functional interfaces and Streams, handling
primitives requires additional types in Java. Optional<T> is a generic
type so it can’t handle primitives, therefore you need specialized types for
primitives, too.

You might ask yourself why you might even need an Optional of a
primitive: primitives can never be null! That’s correct. But Optionals
aren’t only about preventing values to be null. They’re also able to
represent a state of nothingness — an absence of a value — and not an
always identical primitive default value. In many cases, these default values
are enough, like representing a networking port. Zero is an invalid port
number, so you have to deal with it anyway.

There are two options available so far to deal with primitives: auto-boxing
or specialized types. “Primitive Types” highlighted the problems of using



object-wrapper classes and the overhead they introduce. On the other hand,
auto-boxing isn’t free either.

The usual primitive types are available as specialized Optionals:

java.util.OptionalInt

java.util.OptionalLong

java.util.OptionalDouble

Their semantics are almost equal to their generic counterpart, but they do
not inherit for Optional<T> or share a common interface. The features
aren’t identical either, multiple methods, like filter(…), map(…), or
flatMap(…), are missing.

The specialized primitive Optional types remove unnecessary auto-boxing.
But with the lack of some of the functionality provided by Optional<T>,
you might resort to using the generic wrapper more often than you want to.
Instead of accepting the status-quo, why not create a better alternative
yourself?

Creating an Improved Primitive Wrapper
With the specialized types not being directly related to their generic
counterpart, you can write your own improved Optional types, including all
the missing features and more. Let’s create an improved version of
OptionalInt, including the missing methods and even some new
functionality to allow interoperability between OptionalInt and
Optional<T>.

Instead of replicating the full functionality of OptionalInt, the new type
uses the delegation pattern to achieve the same code-reuse as inheritance,
without actually inheriting from OptionalInt, which can’t be inherited.



NOTE
The delegation pattern is an object-oriented design pattern based on object composition.
It follows the “composition over inheritance” design principle, allowing for code-reuse
without explicitly inheriting from other types .

Example 3-8 is the minimal implementation of replicating the functionality
of OptionalInt. All methods available on OptionalInt are
delegating their work, so most of the “delegation-only” methods are omitted
for readability.

Example 3-8. Improved OptionalInt (minimal functionality)
public class ImprovedOptionalInt { 
 
  private final OptionalInt delegate;  
 
  private static final ImprovedOptionalInt EMPTY = new 
ImprovedOptionalInt(); 
 
  public static ImprovedOptionalInt empty() {  
    return EMPTY; 
  } 
 
  public static ImprovedOptionalInt of(int value) {  
    return new ImprovedOptionalInt(value); 
  } 
 
  private ImprovedOptionalInt(int value) { 
    this.delegate = OptionalInt.of(value); 
  } 
 
  private ImprovedOptionalInt() { 
    this.delegate = OptionalInt.empty(); 
  } 
 
  public boolean isPresent() {  
    return this.delegate.isPresent(); 
  } 
 
  // various delegation-only methods omitted for readability 
 
  @Override 
  public boolean equals(Object obj) {  
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    if (this == obj) { 
      return true; 
    } 
 
    if (!(obj instanceof ImprovedOptionalInt)) { 
      return false; 
    } 
 
    var other = (ImprovedOptionalInt) obj; 
    return this.delegate.equals(other.delegate); 
  } 
 
  @Override 
  public int hashCode() {  
    return this.delegate.hashCode(); 
  } 
 
  @Override 
  public String toString() {  
    return isPresent() ? String.format("ImprovedOptionalInt[%d]", 
this.delegate.getAsInt()) 
                       : "ImprovedOptionalInt.empty"; 
  } 
}

The delegate that does the “heavy lifting” for the improved type.

The same convenience creation methods as with OptionalInt

If no additional logic is required — as for most methods in the type — a
simple delegate call is sufficient.

The equals method has a slightly different implementation to check
against the new type.

The toString method is also adapted to use the new type name.

If you include all the delegated methods, the new type contains quite a lot
of code. But thanks to the delegation pattern, it’s mostly a single call per
method.



Now that we got feature-parity with OptionalInt, it’s time to add the
missing methods from Optional<T>, as seen in Example 3-9.

Example 3-9. Improved OptionalInt (missing methods)
public ImprovedOptionalInt filter(IntPredicate predicate) { 
 
  Objects.requireNonNull(predicate); 
  if (isEmpty()) { 
    return this; 
  } 
 
  return predicate.test(getAsInt()) ? this : empty(); 
} 
 
public <U> Optional<U> map(IntFunction<? extends U> mapper) { 
 
  Objects.requireNonNull(mapper); 
  if (isEmpty()) { 
    return Optional.empty(); 
  } 
 
  return Optional.ofNullable(mapper.apply(getAsInt())); 
} 
 
public <U> Optional<U> flatMap(IntFunction<? extends Optional<? 
extends U>> mapper) { 
 
  Objects.requireNonNull(mapper); 
  if (isEmpty()) { 
    return Optional.empty(); 
  } 
 
  @SuppressWarnings("unchecked") 
  var value = (Optional<U>) mapper.apply(getAsInt()); 
  return Objects.requireNonNull(value); 
} 
 
public ImprovedOptionalInt or(Supplier<? extends 
ImprovedOptionalInt> supplier) { 
  Objects.requireNonNull(supplier); 
  if (isPresent()) { 
      return this; 
  } 
 
  return Objects.requireNonNull(supplier.get()); 
}



By supporting the intermediate methods filter(…), map(…), and
flatMap(…), the new type is en par with Optional<T> in regard to the
available functionality. The implementations of these methods are based on
their equivalent methods of Optional<T>. But they use their respective
specialized functional interfaces to avoid as much auto-boxing as possible.

The ImprovedOptionalInt is already more versatile than a plain
OptionalInt. But you can improve it even further. When you design
new types, it’s always a good idea to think ahead. By that, I don’t mean to
over-engineer your types to anticipate any possible future edge-case before
actually needing it. But interoperability with existing types is a good
addition, as seen in Example 3-10.

Example 3-10. Improved OptionalInt (interop)
public Optional<Integer> boxed() { 
 
  if (isEmpty()) { 
    return Optional.empty(); 
  } 
 
  Integer boxedValue = Integer.valueOf(getAsInt()); 
  return Optional.ofNullable(boxedValue); 
} 
 
public Optional<Integer> boxedStream() { 
 
  if (isEmpty()) { 
    return Stream.empty(); 
  } 
 
  Integer boxedValue = Integer.valueOf(getAsInt()); 
  return Stream.of(boxedValue); 
} 
 
public OptionalInt optionalInt() { 
  return this.delegate; 
}

With these three additions, the ImprovedOptionalInt provides
compatibility with its specialized counterpart OptionalInt and the
boxed variant Optional<Integer>.



Using Your Own Optional Types
Even though we developed an improved Optional type for integer
primitives in the previous section, I actually wouldn’t recommend using it
under most circumstances. Internally, you can use whatever Optional type
you prefer. But for a public API, you should always strive to use the most
anticipated type, and that’s usually what’s already included in the JDK.

The lesson here was to show you that Optionals aren’t magic types. You can
easily create your own, either by delegating the actual work or
reimplementing the logic yourself. If you look at the actual implementation
of any method in OptionalInt, like shown in Example 3-11, you see
that it’s mostly “boilerplate” code to handle the absence and presence of a
value.

Example 3-11. OptionalInt#ifPresentOrElse implementation
public void ifPresentOrElse(IntConsumer action, Runnable 
emptyAction) { 
  if (isPresent) { 
    action.accept(value); 
  } else { 
    emptyAction.run(); 
  } 
}

Optionals and Streams
Optionals alone are already a great addition to the JDK. Their fluent
functional API allows you to reduce the usual boilerplate code needed for
typical operations immensely. But they also provide interoperability with
another fluent functional API highlighted in this book: Streams.

Optionals as Stream Elements
Streams are pipelines working on elements, filtering and transforming them
to a desired outcome. To fit into such pipelines, Optionals can be seen as a
filter operation. If a value is present, it should provide it to the Stream. If
not, Stream.empty() is returned. This behavior is ingrained in the



Optional<T>#stream() method. Combined with the intermediate
Stream operation flatMap(…), you can save a filter(…) and
map(…) operation to check and unpack an Optional, as seen in Example 3-
12. The code callouts are attached to both versions to show the
corresponding operations, but their descriptions are for the flatMap-
version.

Example 3-12. Optionals as Stream elements
List<Permissions> permissions = ...; 
 
// WITH FLATMAP 
 
List<User> activeUsers = 
  permissions.stream() 
             .filter(Predicate.not(Permissions::isEmpty)) 
             .map(Permissions::getGroup) 
             .map(Group::getAdmin)  
             .flatMap(Optional::stream)  
             .filter(User::isActive) 
             .orElse(Collections.emptyList()); 
 
// WITHOUT FLATMAP 
 
List<User> activeUsers = 
  permissions.stream() 
             .filter(Predicate.not(Permissions::isBlock)) 
             .map(Permissions::getGroup) 
             .map(Group::getAdmin)  
             .filter(Optional::isPresent)  
             .map(Optional::get)  
             .filter(User::isActive) 
             .orElse(Collections.emptyList());

The getAdmin() returns an Optional<Admin>. At this point, the
Stream became a Stream<Optional<Admin>>.

Streams already have a concept of the existence and absence of
elements in the pipeline. If an element is an Optional, it can’t be absent.
But the value of the Optional can still be absent, which is why you need
to reduce the Stream from Stream<Optional<Admin>> to



Stream<Admin>. That way, the “normal” Stream semantics are
restored.

Even though you only save a single method call — flatMap instead of
filter and map — the resulting code is easier to reason with. The
flatMap operation conveys all the necessary information for
understanding the Stream pipeline without adding any complexity by being
split into multiple steps. Handling Optionals is a necessity, and it should be
done as concisely as possible so that the overall Stream pipeline is as
understandable and straightforward.

There’s no reason to design your APIs without Optionals just to avoid
flatMap operations in Streams. If getAdmin() would return null,
you would have to check for it with filter(Objects::nonNull)
anyways. And replacing a flatMap operation with a filter operation
gains you nothing, except getAdmin() now requires explicit null-
handling, even if it’s not obvious.

Terminal Operations
Five of the Stream API’s terminal operations provide an Optional as their
result. All of them can be categorized as trying to find or produce a value.
But in the case of an empty Stream, there had to be a sensible representation
of an absentee value. With Optionals being an exemplary manifestation of
this concept, it was logical to use them instead of return null.

Finding an Element
In the Stream API, the prefix find represents finding an element based on
its existence, compared to match, which embraces the element’s state in its
decision. There are two find operations available with different semantics
on the encountered order:

Optional<T> findFirst()



Returns the first element of a Stream, or an empty Optional if the
Stream is empty. Any element might be returned if the Stream lacks an
encounter order. See [Link to Come] for more details on Stream
characteristics.

Optional<T> findAny()

Return any element of a Stream, or an empty Optional if the Stream is
empty. The returned element is non-deterministic to maximize
performance in parallel streams. If you need a consistent return element,
you should prefer findFirst().

Reducing to a Single Value
Reducing elements of a Stream into a new data structure is one of its main
purposes. And just like the find operations, reducing operators have to
deal with empty Streams.

Optional<T> min (Comparator<? super T> comparator)

Return the “minimum” element based on the provided comparator, or an
empty Optional if the Stream is empty.

Optional<T> max(Comparator<? super T> comparator)

Return the “maximum” element based on the provided comparator, or
an empty Optional if the Stream is empty.

Optional<T> reduce (BinaryOperator<T> accumulator)

Reduces the elements of the Stream using the accumulator operator. The
returned value is the result of the reduction, or an empty Optional if the
Stream is empty. See Example 3-13 for an equivalent pseudo-code
example from the official documentation .

Example 3-13. Pseudo-code equivalent to reduce 
(BinaryOperator<T> accumulator)
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boolean foundAny = false; 
T result = null; 
 
for (T element : <this stream>) { 
  if (!foundAny) { 
    foundAny = true; 
    result = element; 
  } 
  else { 
    result = accumulator.apply(result, element); 
  } 
} 
 
return foundAny ? Optional.of(result) 
                : Optional.empty();

See [Link to Come] for a more detailed explanation of reduction.

Caveats
There are still caveats with the Optional types due to them being “normal”
types, like any other type in the JDK. Any reference to an Optional itself
can be null, with all its associated problems. If you design an API and
decide to use Optionals, you must not return null under any
circumstances! Always use Optional.empty() or the primitive
equivalent instead. This essential design requirement has to be enforced by
convention, though. The compiler won’t help you there without additional
tools, like for example [The SonarSource .

Even though Optionals are “normal” types, certain “taken for granted”
features might work differently from other objects. The identity-sensitive
operations equals(…) and hashCode are based on the value within.
The results of these methods are described as unpredictable in the official
documentation and should be avoided.

Another point to consider is the performance implication of Optionals.
Every method call creates a new stack frame, and can’t be as easily
optimized by the JVM as a if-statement of a null-check. But usually, the
trade-off between performance and safer and more straightforward code

6
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tends to be in favor of the latter. Saving a few CPU cycles means nothing
compared to a crash due to a unexpected NullPointerException.

Special Considerations for Collections
There’s another type of data structure that can represent the absence of a
value: collections. That’s why you shouldn’t wrap any collection type, like
List<T>, in an Optional. If no value is present, use an empty collection
instead. It’s unclear what an empty Optional of a collection is supposed to
represent. Because a collection can already represent an empty state by
itself, one might guess an empty Optional signifies the inability to gather
any values at all, not just the absence of values. But without additional
context or comments, you can’t be sure. That’s why you should use
Optionals to represent the absence of values for types that already have a
concept of absence and existence of values.

If you still need to represent additional states, you have two options. You
can either throw an appropriate exception. Or return another type being
capable of representing multiple states instead.

Alternative Implementations
Guava , the popular “Google core libraries for Java”, provides its own
Optional<T> type since 2011, three years before the release of Java 8.
The general semantics are quite similar, but they differ in three aspects:

Guava’s Optional<T> implements Serializable.

Java’s Optional<T> has additional methods like
ifPresent(…), filter(…), and flatMap(…).

Guava doesn’t offer specialized types for primitives.

Even though there’s now an alternative available directly in the JDK, Guava
doesn’t plan to deprecate the class in the foreseeable future. If you’re
already heavily invested in Guava, it makes perfect sense to keep Guava’s
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Optional and not replace everything with the JDK version. Especially since
conversion between the two types is simple, as shown in Example 3-14.

Example 3-14. Convert between Guava and JDK Optional<T>
public final class Optionals { 
 
  public static <T> java.util.Optional<T> 
toJDK(com.google.common.base.Optional<T> op) { 
    return op.isPresent() ? java.util.Optional.of(op.get()) 
                          : java.util.Optional.empty(); 
  } 
 
  public static <T> com.google.common.base.Optional<T> 
toGuava(java.util.Optional<T> op) { 
    return op.isPresent() ? 
com.boogle.common.base.Optional.of(op.get()) 
                          : 
com.boogle.common.base.Optional.empty(); 
  }
}

Is null Really Evil?
Although it’s called a billion-dollar mistake, null isn’t inherently evil. Sir
Charles Antony Richard Hoare, the inventor of null, believes that
programming language designers should be responsible for errors in
programs written in their language. A language should provide a solid
foundation with a good deal of ingenuity and control. Allowing null
references is one of many design choices for Java. Java’s catch or specify
requirement and try-catch-blocks provide you with tools against
obvious errors. But with null being a valid value for any type, every
reference is a possible crash waiting to happen. Even if you think something
can never be null, experience tells us that it will be at some point in time.

These downsides to null references don’t make Java a poorly designed
language. null has its place, but it requires you to be more attentive about
your code. And it doesn’t mean you should replace every single variable
and argument in your code with Optionals. Especially in code under your
control, you can make more assumptions and guarantees about the possible



nullability of references and deal with it accordingly. If you follow the other
principles highlighted in this book — like small, self-contained, pure
functions without side effects — it’s way easier to make sure your code
won’t return a null reference unexpectedly.

Takeaways
There’s no language-level or special syntax available for null
handling in Java.

The Optional<T> type allows for dedicated null-handling
with operation chains and fallbacks.

Specialized types for primitives are also available, although they
don’t provide feature-parity.

Other approaches for null-handling exist, like annotations, and
are de-facto standards.

Not everything is a good fit for Optionals. If a data structure
already has a concept of emptiness, like collections, no additional
wrapper is needed.

Optionals and Streams are interoperable without much friction.

Alternative implementations exist, like Guava.

null isn’t evil per se. Don’t replace every variable with Optionals
without a good reason.

1  The most common libraries to provide the marker annotation are FindBugz (up to Java 8), and
its spiritual successor SpotBugz. JetBrains, the creator of the IntelliJ IDE and the JVM
language Kotlin, also provide a package containing the annotations.

2  The Checker Framework has an example of such “non-standard” behavior between different
tools.

3  McCabe, TJ. 1976. “A Complexity Measure” IEEE Transactions on Software Engineering,
December 1976, Vol. SE-2 No. 4, 308–320.

http://findbugs.sourceforge.net/
https://spotbugs.github.io/
https://github.com/JetBrains/java-annotations
https://checkerframework.org/
https://checkerframework.org/manual/#findbugs-nullable
https://doi.org/10.1109/TSE.1976.233837


4  More information about the delegation pattern can be found in the “Gang of Four” book about
design patterns. (Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 2016. ISBN 0-201-63361-2.)

5  Documentation for Optional<T> reduce (BinaryOperator<T> accumulator).

6  The SonarSource rule RSPEC-2789 checks for Optionals being null.

7  Guava: Google Core Libraries for Java GitHub page.

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/stream/Stream.html#reduce(java.util.function.BinaryOperator)
https://www.sonarsource.com/
https://rules.sonarsource.com/java/RSPEC-2789
https://github.com/google/guava


Chapter 4. Recursion

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 7th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

Many developers see recursion as just another — more difficult — approach
to iteration-based problem-solving. But it’s also a whole different
philosophy for solving a particular group of problems in a functional way. If
a problem can be broken down into smaller versions of itself, recursion can
be a better approach, even if it almost seems contradictory to solve a
problem with the result of a smaller version of the same problem.

This chapter shows how to implement recursive methods in Java and their
implications compared to other forms of iteration.

Mathematical Explanation
In “Recursion”, you’ve seen the example of calculating factorials —  the
product of all positive integers less than or equal to the input parameter.
Many books, guides, and tutorials use factorials because it’s a perfect
problem to solve partially, and it’ll be one of the examples of this chapter,
too.



Every step of the calculation breaks down into the product of the input
parameter and the next factorial operation. When the calculation reaches
fac(1) — defined as “1" — it terminates and provides the value to the
previous step. The complete steps can be seen in Equation 4-1.

Equation 4-1. Formal representation of factorial calculation

This generalization of the calculation steps also shows the general concept
of recursion. An operation is repeated with different input parameters until
it reaches its base condition. Recursion consists of two distinct operation
types:

Base conditions

A base condition is a predefined case — a solution to the problem — 
which will return an actual value and unwind the recursive call-chain. It
provides its value to the previous step, which can now calculate a result
and return it to its predecessor.

Recursive call

Until the call-chain reaches a base condition, every step will create
another step with modified input parameters.

Figure 4-1 shows a more generic flow of a recursive call-chain.

fac(n)

→ n*fac(n − 1)

→ n*(n − 1)*fac(n − 2)

→ 4*(n − 1)*(n − 2)*⋯*fac(1)

→ 4*(n − 1)*(n − 2)*⋯*1



Figure 4-1. Solving problems with smaller problems

Head Versus Tail Recursion
There are two kinds of recursion: head and tail recursion. The difference is
the position of the recursive call:

Head recursion

The recursive call is not the function’s last statement, and other
statements/expressions are executed/evaluated after it.

Tail recursion

All non-recursive expressions are evaluated before the recursive call.



Let’s look at how to calculate a factorial with both types. Example 4-1
shows how to use head recursion.

Example 4-1. Calculating factorials with head recursion
long headFactorial(long n) {  
  if (n == 1L) {  
    return 1L; 
  } 
 
  return n * headFactorial(n - 1L);  
}

The method signature only contains the input parameter of the current
recursive step. No intermediate state moves between the recursive calls.

The base condition comes before the recursive call, so the call-chain can
finish on fulfilling its condition.

The recursive call depends on the input parameter, and an expression is
the actual return value, making it not the last call in the method.

Now it’s time to look at tail recursion, as shown in Example 4-2.

Example 4-2. Calculating factorials with tail recursion
long factorialTail(long n, long accumulator) {  
  if (n == 1L) {  
    return accumulator; 
  } 
 
  return factorialTail(n - 1L, n * accumulator);  
} 
 
factorialTail(4L, 1L); 

The method signature contains an accumulator.

The base condition hasn’t changed compared to head recursion.

Instead of returning an expression dependent on the next recursive call,
both factorialTail(…) parameters are independent of it. The



method only returns the recursive call itself.

The accumulator requires an initial value. It reflects the base condition.

There’s one significant advantage to tail recursion. Many modern compilers
can use tail-call optimization/elimination to optimize the required stack
frames. The Java compiler and runtime lack that particular ability, though.
That can cause severe problems if the recursive chain-call gets too big. But
knowing about the general problem can help you prevent it, as we’ll lay it
out in the next chapter.

Recursion and the Stack
Every single recursive step is a method call, which creates a new stack
frame. That is a necessity because every variable n must be isolated from
the previous calculation. The recursive call count is only constrained by
how long it takes to reach the base condition. The problem is, though, that
the available stack size is finite. Too many calls will fill up the available
space and lead to a StackOverflowError.

If you look at Figure 4-1 again, you can think of every box as a separate
stack frame.

NOTE
A stack frame contains the state of a single method invocation. Every time your code
calls a method, the JVM creates and pushes a new frame on the global stack. After
returning from a method, its stack frame gets popped and discarded.

The actual maximum stack depth depends on the available stack size , and what’s stored
in the individual frames.

Tail recursion and tail-call optimization allow compilers to reduce the
required stack frames by eliminating no longer required frames. Due to no
additional calculations on the returned value of the recursive call, it’s safe to
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modify the current stack frame. There’s no need to preserve previous stack
frames because the control doesn’t need to go back to the parent function.
That reduces the stack frame space complexity of the recursive call from
O(N) to O(1), resulting in faster and more memory-friendly machine-
code. Well, at least in languages supporting tail-call
optimization/elimination.

PROJECT LOOM
Project Loom, an effort to support easy-to-use, high-throughput
lightweight concurrency and new programming models, will add
support for stack frame manipulation. The JVM gains support for
unwinding the stack to some point and invoking a method with given
arguments, a feature called unwind-and-inkove.

That allows for efficient tail-calls, but automatic tail-call optimization is
not an explicitly stated project goal. Nevertheless, these are pleasant
changes that might lower the barriers to use recursion if the necessary
tools are available.

Streams to the Rescue
Java might not directly support tail-call optimization, but that doesn’t mean
you can’t implement a better way to do recursive style coding yourself, with
a little help of lambda expressions and Streams.

Thanks to the infinite nature of Streams, you can build a pipeline that runs
until reaching a recursive base condition. But instead of calling the lambda
expression recursively, it returns a new expression that runs in the Stream
pipeline. This way, the stack depth will remain constant, regardless of the
number of performed steps.

Our example of calculating a factorial will result in a number overflow
before a StackOverflowError occurs, so a simpler example is needed,
like summing up consecutive numbers (1 + 2+. . . +n). The recursive
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variant is shown in Example 4-3, and it fails on my machine with a
StackOverflowError for n > 3571.

Example 4-3. Recursivley summing up consecutive numbers
long sum(long total, long summand) { 
  if (summand == 1L) { 
    return total; 
  } 
 
  return sum(total + summand, summand - 1L); 
} 
 
var result = sum(1L, 4000L); // => StackOverflowError

To run the calculation in a Stream, you need to create a functional interface
for wrapping the recursion, as seen in Example 4-4.

Example 4-4. Recursive-like Functional Interface
@FunctionalInterface 
public interface RecursiveCall<T> { 
 
  RecursiveCall<T> apply();  
 
  default boolean isComplete() {  
    return false; 
  } 
 
  default T result() {  
    throw new Error("not implemented"); 
  } 
 
  default T run() {  
    return Stream.iterate(this, RecursiveCall::apply) 
                 .filter(RecursiveCall::isComplete) 
                 .findFirst() 
                 .get() 
                 .result(); 
  } 
 
  static <T> RecursiveCall<T> done(T value) {  
 
    return new RecursiveCall<T>() { 
 
      @Override 
      public boolean isComplete() { 
        return true; 



      } 
 
      @Override 
      public T result() { 
        return value; 
      } 
 
      @Override 
      public RecursiveCall<T> apply() { 
        throw new UnsupportedOperationException(); 
      } 
    }; 
  } 
}

The method apply() represents the recursive call. It executes the
recursive step and returns a new lambda with the next step.

The wrapper needs to know when it reaches a base condition, and the
call-chain is complete.

Because the lambda returns a new lambda instead of the result of its
calculation, the wrapper needs a way to access the actual result.

Calling run() will create and run an infinite Stream pipeline. The
Stream.iterate(…) method applies the initial value (this) to an
UnaryOperator (this::apply). The result is then iteratively
applied again to the UnaryOperator. The applying of the result to
the operator is done until the Stream’s terminal operation is reached.

A convenience method for creating a lambda representing a reached
base condition and containing the actual result.

This simple functional interface is an iterative wrapper for recursive-style
calls, eliminating the StackOverflowError. The previous recursive
example doesn’t differ much if you use the wrapper instead, as seen in
Example 4-5.

Example 4-5. Summing up numbers recursively



RecursiveCall<Long> sum(Long total, Long summand) { 
  if (summand == 1) { 
    return RecursiveCall.done(total); 
  } 
 
  return () -> sum(total + summand, summand - 1L); 
} 
 
var result = sum(1L, 4000L).run();

Compared to the “real” recursive version, the only difference is that the
base condition and the return value of sum(…) are wrapped in a new
RecursiveCall lambda. Also, you must call run() to start the
pipeline. See Figure 4-2 for how the Stream pipeline works iteratively on
the recursive problem.

Figure 4-2. Stream-based recursion flow

The invisible difference between recursion and “recursion-like” with
streams is the stack depth. As the recursive version creates a new stack
frame for every method invocation, the Stream works iteratively, and
therefore has a consistent stack depth . That allows you to use a recursive3



approach to solving a problem, but without the possibility of a
StackOverflowError.

A More Complex Example
So far, you’ve seen examples for factorials and summing up numbers. As
good as they are for explaining recursion, they don’t reflect “real-world”
applications. That’s why it’s time to look at a more realistic example:
traversing a tree-like data structure, as seen in Figure 4-3.

Recursive Tree-Traversal

Figure 4-3. Tree-like data structure traversal

The data structure has a single root node, and every node has an optional
left and right child node. There are multiple ways to traverse a tree. This
example is “in-order”, meaning it will traverse every node’s left child node
until no other node is reachable. Then it will continue to traverse down the
right child’s left nodes before going up again.

Thanks to records, as introduced in [Link to Come], a Node<T> is
representable by the record definition itself. Adding the traversal method
directly to Node<T> allows a node to traverse its children, regardless of



the tree’s actual root node. The Node<T> definition can be see in
Example 4-6.

Example 4-6. Tree node and recursion
public record Node<T>(T value, 
                      Node<T> left, 
                      Node<T> right) { 
 
  private <T> void traverse(Node<T> node) {  
    if (node == null) {  
      return; 
    } 
 
    traverse(node.left);  
 
    System.out.print(node.value + " ");  
 
    traverse(node.right);  
  } 
 
  public <T> void traverse() {  
    traverse(this); 
  } 
} 
 
// Building the tree-like data structure 
var node7 = new Node<String>("7", null, null); 
var node8 = new Node<String>("8", null, null); 
var node4 = new Node<String>("4", node7, node8); 
 
var node5 = new Node<String>("5", null, null); 
var node2 = new Node<String>("2", node4, node5); 
 
var node9 = new Node<String>("9", null, null); 
var node6 = new Node<String>("6", node9, null); 
var node3 = new Node<String>("3", null, node6); 
 
var node1 = new Node<String>("1", node2, node3);

The traversal method itself is private, because nodes should only
traverse themselves and their children.

The base condition



Traverse the left child.

Print the current node value.

Traverse the right child. That will lead to traversing a possible left
grandchild next.

The public traverse method to start the recursive call-chain.

The tree is traversed by invoking node1.traverse(), which outputs
the expected sequence: 7 4 8 2 5 1 3 6 9.

The code is concise and easy to understand. Let’s look at an iterative
approach for comparison.

Iterative Tree-Traversal
Compared to the recursive approach, traversing a tree iteratively needs
more lines of code and is more complicated, as seen in Example 4-7.

Example 4-7. Iterative tree traversal
var nodeStack = new Stack<Node<String>>();  
var current = node1;  
 
while(!nodeStack.isEmpty() || current != null) {  
 
  if (current != null) {  
    nodeStack.push(current); 
    current = current.left(); 
    continue; 
  } 
 
  current = nodeStack.pop();  
 
  System.out.println(current.value() + " ");  
 
  current = current.right();  
}

Auxiliary variables are needed to save the current state of the iteration.



Iterate as long as a node is present, or nodeStack isn’t empty.

A java.util.Stack saves all nodes until the bottom is reached.

At this point, the loop can’t go deeper because it encountered current
== null, so it sets current to the last node saved in nodeStack.

Output the node value, just like before in the recursive version.

Traverse the right child.

The output is the same as before: 7 4 8 2 5 1 3 6 9.

But the code doesn’t have the conciseness of the recursive approach. Two
additional variables are needed, and the general logic is more convoluted.

When (Not) To Use Recursion
Recursion is an often overlooked technique. It’s easy to get it wrong (non-
working base-case), can be harder to understand (especially if you’re not
used to it), and has an unavoidable overhead resulting in slower execution
times than iterative structures.

You should always consider the additional overhead and stack-overflow
problems when choosing between recursion and its alternatives. If you’re
running in a JVM with ample memory available and a big enough stack
size, even bigger recursive call-chains won’t be a problem. But if your
problem size is unknown or not fixed, an alternative approach can prevent a
StackOverflowError in the long run.

Some scenarios are better suited for a recursive approach, though, even in
Java without tail-call optimization. Especially if you’re dealing with self-
referencing data structures like linked lists or trees, recursion will feel more
natural. Traversing tree-like structures can also be done iteratively but will
most likely result in more complex code that’s harder to reason with. And
that will hurt long-time maintainability.



Which to choose — recursion or iteration — depends highly on the problem
you want to solve and in which environment your code runs. Recursion is
often the preferred tool for solving more abstract problems, and iteration is
preferred for more low-level code. Iteration might provide better runtime
performance, but recursion can improve your productivity as a programmer.
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Recursion Iteration

Implementation Self-calling function Loop

State Stored on Stack control variables (.e.g. a loop index)

Progress Towards base condition Towards control value condition

Termination Base condition reached Control variable condition reached

Verbosity ↘ ↗

If not terminated StackOverflowError endless loop

Overhead ↗ ↘

Performance ↘ ↗

Takeaways
Recursion is the functional alternative to traditional iteration.

It’s best used for partially solvable problems.

Java lacks tail-call-optimization, which can lead to
StackOverflowExceptions.

Streams can provide an alternative approach.

Don’t force recursion for functional’s sake. Use what fits the
context best.

1  The default stack size of the most JVMs is 1MB. You can set a bigger stack size with the flag
-Xss. Please see the Oracle Java Tools Documentation for more information.

https://docs.oracle.com/en/java/javase/11/tools/java.html#GUID-3B1CE181-CD30-4178-9602-230B800D4FAE__GUID-72BC3B70-49FF-4588-979F-7F8A32FEE6DA


2  The biggest possible long is 9,223,372,036,854,775,807, or 2^63-1. This value lies between
20! and 21!. The number overflows way before the stack overflows.

3  The actual stack depth depends on the underlying Stream. It might differ if its implementation
changes. But it will always be consistent, regardless of the required recursive steps.



Chapter 5. Exception Handling

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 9th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

Exceptions are Java’s mechanism of choice for handling disruptive and
abnormal control flow conditions of your programs. The general concept of
exceptions traces back to the origins of Lisp  and is used by many different
programming languages

Java’ exception handling mechanisms slightly improved over time, like
adding support for catching multiple types of exceptions at once with a
single try-catch-block (multi-catch) or better handling of resources
(try-with-resources). But so far, no improvements targeted at
lambdas have found their way into the JDK.

This chapter will show you the different kinds of exceptions and their
impact on functional programming with lambdas. You will learn how to
handle exceptions in lambdas or alternative ways to approach control flow
disruptions in a functional context.

Java Exception Handling in a Nutshell

1
2

https://docs.oracle.com/javase/7/docs/technotes/guides/language/catch-multiple.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html


There are three different kinds of control flow disruptions in Java, with
disparate requirements regarding their handling in your code: checked and
unchecked exceptions, and errors.

Checked exceptions are (supposed to be) anticipated and recoverable
events outside of normal control flow. You should always expect the
possibility of a missing file (java.io.FileNotFoundException) or
an invalid URL (java.net.MalformedURLException). And
because they’re anticipated, they must adhere to the catch-or-specify
requirement.

CATCH-OR-SPECIFY
The catch-or-specify requirement declares that your code must honor
one of the following conditions while dealing with checked exceptions:

Catch: An appropriate handler — a catch-block — for the
exception, or one of its base types, is provided.

Specify: The surrounding method signifies its thrown exception
types by using the throws keyword, followed by a comma-
separated list of possible checked exceptions.

This requirement must be obliged, and the compiler will make sure that
you fulfill at least one of them. There’s no need to specify an exception
type if you catch and handle it. An unnecessary throws forces the
consumer of such a method to comply with the catch-or-specify
requirement, too.

This requirement intends to locally flag possible exceptional states or force
you to handle it directly. That leads to improved software reliability and
resilience by giving you the possibility to recover gracefully or hand over
the liability down the line instead of ignoring the exception completely.

Unchecked exceptions, on the other hand, are not anticipated, and are often
unrecoverable, like:



Unsupported operations:
java.lang.UnsupportedOperationException

Invalid mathematical calculations:
java.lang.ArithmeticException

Empty references: java.lang.NullPointerException

They aren’t considered part of the methods’ contract but rather represent
what happens if the contract is broken. Therefore, such exceptions aren’t
subject to catch-or-specify, and methods usually don’t signify them with the
throws keyword, even if it’s known that a method will throw them. They
still have to be handled in some form, though, if you don’t want your
program to crash. If not handled directly, an exception automatically goes
up the call stack of the current thread until it finds an appropriate handler.
Or, if none is available, the thread dies. For single-threaded applications,
this means the runtime will terminate, and your program crashes.

The third kind of control flow disruptions — errors — indicate a severe
problem you shouldn’t catch or can’t handle under normal circumstances.
For example, if the runtime runs out of available memory, it throws a
java.lang.OutOfMemoryError. Or an endless recursive call will
eventually lead to a java.lang.StackOverflowError. There’s
nothing you could really do without any memory left, regardless of whether
it’s the heap or the stack. Faulty hardware is another source for Java errors,
like java.io.IOError in case of a disk error. These are all grave
problems with almost no possibility to recover gracefully. Because they also
aren’t anticipated, they mustn’t adhere to catch-or-specify.

All exceptions are checked, except types subclassing
java.lang.RuntimeException or java.lang.Error. But they
share a common base type: java.lang.Throwable. Types inheriting
from the latter two are either unchecked, or an Error. You can see the
hierarchy in Figure 5-1.



Figure 5-1. Exceptions hierarchy in Java

Checked Exceptions and Lambdas
Java’s exception handling existed since its inception. It was designed to
fulfill specific requirements at the time, independent from any possible
requirements that might arise 18 years later with with the introduction of
lambdas. That’s why throwing and handling exceptions don’t fit nicely into
a functional Java coding style without any special considerations.

Even the simplest example, like Example 5-1, is quite verbose and can lead
to functional impurity by making the code no longer deterministic. This
particular example is just a placeholder for the underlying problem. But it’s
transferrable to any code dealing with checked exceptions in lambdas.

Example 5-1. Checked Exceptions in Lambdas
String read(File input) throws IOException {  
  // ... 
} 
 
Stream<File> files = Stream.of(...); 
 
 



// COMPILER ERROR: Unhandled Exception of type IOException 
 
files.map(this::read)  
     .filter(Objects::nonNull) 
     .map(String::toUpperCase) 
     .forEach(System.out::println); 
 
 
// YOU NEED TO USE TRY-CATCH 
 
files.map(file -> { 
  try {  
    return read(file); 
  } 
  catch (IOException e) { 
    // handle the exception... 
    return null; 
  } 
}).filter(Objects::nonNull) 
  .map(String::toUpperCase) 
  .forEach(System.out::println);

The method signature indicates a checked exception, so any code
calling it must adhere to the catch or specify requirement.

Calling read(File file) as a method reference is the most concise
way to use it in the Stream pipeline and should be preferred. But thanks
to the checked IOException, it can’t be used that way.

The exception needs to be handled locally, introducing a try-catch-
block into the Stream operation.

As you can see, using a try-catch-block directly in lambdas is a
cumbersome and quite ugly way to deal with exceptions. But there are
different approaches to handling exceptions in lambdas without losing
(most) of the simplicity and clarity that lambdas, methods references, and
Streams provide.

Safe Method Extraction



How to handle exceptions in your Streams highly depends on who controls
the code. If the throwing code is entirely under your control, you should
always adequately handle its exceptions. But often, the offending code is
not yours, or you can’t change or refactor it as needed. In this case, you can
still extract it into a “safer” method with appropriate local exception
handling, as shown in Example 5-2.

Example 5-2. Safe method wrapper
String read(File input) throws IOException {  
  // ... 
} 
 
String safeRead(File file) {  
  try { 
    String content = read(file); 
  } 
  catch (IOException e) { 
    // ... 
    return null;  
  } 
} 
 
Stream<File> files = ... 
 
files.map(this::safeRead)  
     .filter(Objects::nonNull) 
     .map(String::toUpperCase) 
     .forEach(System.out::println);

The throwing method that might not be under your control, or you don’t
want or can’t refactor the original behavior.

A “safe” wrapper method is introduced to handle the exception instead.

Handling the error locally and return an adequate fallback value.

The wrapper method allows the use of a method reference, making the
code concise and readable again.



Creating a “safe” method allows you to handle the exception locally in any
way necessary in its original context. The pipeline remains robust if the
exception is handled gracefully. You also have a chance for additional
actions, like logging But how you handle the checked exception is up to you
and depends on your requirements. This isn’t a “one-size-fits-all” approach
because sometimes there’s no way to handle the exception locally.

NOTE
This approach can be seen as a more localized version of the facade pattern . Instead of
wrapping a whole class to provide a safer, context-specific interface, only specific
methods get a new facade to improve their handling for certain use-cases. That allows
you to reduce the affected code and still gain the advantages of a facade, like reduced
complexity and improved readability. Also, it’s a good starting point for future
refactoring efforts.

Safe wrapper methods are an improvement over using try-catch blocks
in a lambda because you keep the expressiveness of inline-lambdas and
method references and have a chance to handle any exceptions. But it’s still
only another abstraction over existing code to regain control of disruptive
conditions.

Not Throwing Exceptions in the First Place
Finding a better way to handle exceptions, especially in lambdas, is a
worthwhile endeavor. But if you have control over the API, you could
design its contracts to make exceptions unnecessary instead. Or at least
more manageable.

As seen in Chapter 3, Java has a specialized type representing the absence
of values: Optional<T>. With its help, you can refrain from returning
null as much as possible to mitigate the dreaded
NullPointerException gracefully. But keep in mind that null isn’t
always equivalent to the absence of a value. Returning null can have a
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completely different meaning! It highly depends on your requirements and
how you designed your API contracts in the first place.

Let’s look at the previous example with Optionals, by modifying the read
method, as seen in Example 5-3.

Example 5-3. Optional versus Exception
Optional<String> read(File input) {  
  try { 
    // ... 
    return Optional.ofNullable(...); 
  } 
  catch (IOException e) { 
    // ... 
    return Optional.empty();  
  } 
} 
 
Stream<File> files = Stream.of(...); 
 
files.map(this::read) 
     .flatMap(Optional::stream)  
     .map(String::toUpperCase) 
     .forEach(System.out::println);

The previously throwing method changed its signature to return an
Optional<String> instead.

In case of an exception, an empty Optional is returned. Therefore, no
additional “safe” method is required.

The Stream can unpack the Optional directly with flatMap.

At first look, we didn’t gain much compared to a “safe” method handling
the IOException and returning null. Like with “safe” methods, this
approach is highly dependent on your requirements. Any exception
handling is still localized to its occurrence and can’t be delegated. But by
changing the read method itself to an Optional<String>, no
additional “safe” method is required, and the returned value provides the
functional and fluent API of an Optional.



But in the end, it’s just another mere “band-aid” to ease the pain, but not
fixing any of the foundational problems of exceptions and lambdas.

The Anti-Pattern: Unchecking Exceptions
There’s another and most consequential way of “not dealing with
exceptions” that destroys the fundamental idea behind checked exceptions
for the sake of making the compiler happy: unchecking exception.

Instead of dealing with a checked exception directly, you hide it in an
unchecked exception. This is usually done by creating specialized
@FunctionalInterface to wrap the offending lambda or method
reference. It catches the original exception and rethrows it as an unchecked
RuntimeException, or one of its siblings.

Congratulations, the compiler is happy now and won’t force you to handle
the exception anymore. But the wrapper type doesn’t fix the original
problem of possible control flow disruption. Instead, there’s no exception
handling at all. It’s just hidden away, sweeping the problem “under the
carpet” by circumventing catch-or-specify. And any exception still disrupts
the control flow without being appropriately handled.

Unchecked exceptions are supposed to be unanticipated and are often
unrecoverable. That’s why they don’t fall under the catch-or-specify
requirement in the first place! It abuses the different kinds of exceptions and
the requirements for their handling by Java.

A More Functional Approach to Exceptions?
Exceptions are supposed to be additional signals about your control flow.
APIs can and should use exceptions purposefully. Before Java 8 introduced
lambdas, Streams, and method references, exceptions would fit nicely in the
available constructs and the mainly imperative coding style. In the last few
years, though, Java is finally advancing faster than ever before. But not all
of its parts keep up with the general pace. You have to find a reasonable



compromise between a functional approach to your code and more
traditional constructs for managing control flow.

You have to remember that Java is a general-purpose language with class-
based object orientation at its core. Its exception handling clearly shows its
primarily imperative coding style. Even with all the functional additions
since version 8, it didn’t become a full-fledged functional language
overnight. But we can look for inspiration in another, more functional
language again: Scala.

Try/Success/Failure in Scala
Scala is arguably the closest functional relative to Java available on the
JVM, not considering Clojure for its more foreign syntax. It addresses many
of Java’s “shortcomings,” is functional at its core, and has an excellent way
of dealing with exceptional conditions.

The Try/Success/Failure pattern and its related types Try[+T], and its
derived types Success[+T] and Failure[+T] , are Scala’s way of
dealing with exceptions in a more functional fashion. You can think of it as
specialized Java Optional<T> with integrated exception handling.
Where an Optional<T> indicates that a value might be missing,
Try[+T] can tell you why. And instead of being just a generic wrapper
around another object, Scala supports pattern-matching, a switch-like
concept of handling the different outcomes. That allows for quite concise
and straightforward exception handling.

A Try[+T] can either result in a Success[+T] or Failure[+T],
with the latter containing a Throwable. Even without full knowledge of
Scala syntax, the code in Example 5-4 should be clear.

Example 5-4. Scala Try/Success/Failure
def read(file: File): Try[String] = Try {  
  ... // code that will throw an exception 
} 
 
val file = new File(...); 
 

4



result read(file) {  
  case Success(value) => println(value.toUpperCase)  
  case Failure(e) => println("Couldn't read file: " + e.getMessage) 
 

}

The return type is an Try[String], so the method must either return
a Success[String] containing the content of the File, or a
Failure[Throwable]. Scala doesn’t need an explicit return and
returns the last value. Any exception is caught by the Try { … }
construct.

Pattern matching simplifies the result handling. The cases are lambdas,
and the whole block is similar to an Optional call-chain with map(…)
and orElse(…).

Success provides access to the return value, like Some.

If an exception occurs, you handle it with the Failure case.

Try[+A] is a great Scala feature, combining the concept of Optionals and
exception handling into a single, easy-to-use type. But what does that mean
for you as a Java developer? Let’s try to implement something similar with
Java ourselves!

Try/Success/Failure in Java
Java doesn’t provide anything out-of-the-box that comes close to the
Try/Success/Failure pattern. But the general concept can be implemented in
Java, although it lacks the conciseness and elegance of the Scala version
and its pattern matching.

A minimalistic implementation like in Example 5-5 requires less than 50
lines of code.

Example 5-5. Java Try/Success/Failure



import java.util.Objects; 
import java.util.function.Consumer; 
import java.util.function.Function; 
 
public class Try<T, R> {  
 
    private Function<T, R> fn; 
 
    private Function<RuntimeException, R> failureFn; 
 
    public static <T, R> Try<T, R> of(Function<T, R> fn) {  
        Objects.requireNonNull(fn); 
        return new Try<>(fn, null); 
    } 
 
    private Try(Function<T, R> fn, 
                Function<RuntimeException, R> failureFn) {  
        this.fn = fn; 
        this.failureFn = failureFn; 
    } 
 
    public Try<T, R> success(Function<R, R> successFn) {  
        var composedFn = this.fn.andThen(fnOut -> { 
            successFn.apply(fnOut); 
            return fnOut; 
        }); 
 
        this.fn = composedFn; 
 
        return this; 
    } 
 
    public Try<T, R> failure(Function<RuntimeException, R> 
failureFn) {  
        Objects.requireNonNull(failureFn); 
        this.failureFn = failureFn; 
 
        return this; 
    } 
 
    public Optional<R> apply(T value) {  
        try { 
            return Optional.ofNullable(this.fn.apply(value)); 
        } 
        catch (RuntimeException e) { 
            if (this.failureFn != null) { 
                var failureResult = this.failureFn.accept(e); 
                return Optional.ofNullable(failureResult); 



            } 
        } 
 
        return Optional.empty(); 
    } 
} 
 
// WON'T COMPILE! 
 
Optional<String> maybeContent = Try.<File, String> of(this::read) 
// 
                                   .success(String::toUpperCase) // 
                                   .failure(e -> ...)) // 
                                   .apply(new File(...));

This particular Try implementation wraps Function<T, R>, so it
must match the generic signature.

The convenience static of(…) method simplfies the creation of
Try objects. The private constructor disallows direct instantiation,
similar to Optional<T>.

The success case provides a Function<T, T> by functionally
composing the original function with it. This allows you to work on the
successful result of the initial function before returning it.

If an exception occurs, you handle it in failure case.

The apply(T value) method is realizing the lazy Try call-chain.
In case of an exception but no handler, the exception is swallowed
whole.

Even though this naïve implementation lacks flexibility, you can clearly see
its intention to handle a certain workflow more functionally. With the result
being an Optional<T>, you can extend the call-chain even further. But it
still suffers from the two main issues making such implementations a chore:
First, it only supports methods references or lambdas with unchecked
exceptions as an input. You can’t get around the catch-and-specify



requirement without “unchecking” the original exception, which is highly
discouraged. And second, it only supports a single functional interface and
its equivalents. You would have to implement Try repeatedly for different
functional interface signatures.

In this particular use case, the previously mentioned anti-pattern of
unchecking exception can be helpful to mitigate and allows you to handle
any exception. You need to create our own Function<T, R> derivate to
accept checked exceptions, as seen in Example 5-6.

Example 5-6. Function<T, R> with Checked Exceptions
@FunctionalInterface 
public interface CheckedFunction<T, R> { 
 
  R apply(T t) throws Exception; 
}

The new type lacks most functionality that Function<T, R> provides,
but it allows checked exceptions. Try<T, R> needs to be adapted, too.
But it’s almost a drop-in replacement as shown in Example 5-7.

Example 5-7. Try<T, R> with Checked Exceptions
import java.util.Objects; 
import java.util.Optional; 
import java.util.function.Function; 
 
public class Try<T, R> { 
 
  private CheckedFunction<T, R> fn;  
 
  private Function<Exception, R> failureFn; 
 
  public static <T, R, Exception> Try<T, R> of(CheckedFunction<T, 
R> fn) { 
      Objects.requireNonNull(fn); 
      return new Try<>(fn, null); 
    } 
 
    private Try(CheckedFunction<T, R> fn, Function<Exception, R> 
failureFn) { 
        this.fn = fn; 
        this.failureFn = failureFn; 
    } 



 
    public Try<T, R, E> success(CheckedFunction<R, R> successFn) { 
 

        var prev = this.fn; 
        this.fn = in -> successFn.apply(prev.apply(in)); 
        return this; 
    } 
 
    public Try<T, R> failure(Function<Exception, R> failureFn) { 
        Objects.requireNonNull(failureFn); 
        this.failureFn = failureFn; 
 
        return this; 
    } 
 
    public Optional<R> apply(T value) { 
        try { 
            return Optional.ofNullable(this.fn.apply(value)); 
        } 
        catch (Exception ex) { 
            if (this.failureFn != null) { 
                var failureResult = this.failureFn.apply(ex); 
                return Optional.ofNullable(failureResult); 
            } 
        } 
 
        return Optional.empty(); 
    } 
} 
 
// IT FINALLY COMPILES! 
 
Optional<String> maybeContent = Try.<File, String> of(this::read) 
// 
                                   .success(String::toUpperCase) // 
                                   .failure(e -> ...)) // 
                                   .apply(new File(...));

Instead of Function<T, R> the new type
CheckedException<T, R> is used.

The new type doesn’t support functional composition with
andThen(…), but the actual code for doing so is trivial.



The code finally compiles!

But without providing a lot of additional unchecking functional interfaces,
it’s not a practical solution. There are many third-party libraries available
that have already done most of the work for you. Two such functional
libraries are the Vavr project and jOOλ, providing more flexible tools in the
vein of our Try type.

Functional Exceptions with CompletableFuture
In [Link to Come] you’ve learned about CompletableFuture<T>, an
already available fluent API for doing work with lambdas and handling
exceptions. On the surface, it’s quite identical to the custom Try
implementation, as seen in Example 5-8. But it still shares the same
fundamental kryptonite: checked exceptions.

Example 5-8. Function Exceptions with CompletableFuture
String content = CompletableFuture.supplyAsync(() -> read(file)) 
                                  .exceptionally(ex -> null)) 
                                  .thenApply(String::toUpperCase) 
                                  .get();

Even if we ignore its inability to handle checked exceptions in a concise
way, it’s still not the perfect tool for functional exception handling, thanks
to its reliance on threads. CoompletableFuture provides a simple
interface to interconnect multiple steps that run asynchronously and trigger
their respective parts on completion. So the introduced overhead has to be
considered, making it a bad match for synchronous or simple problems.

How to Choose Your Approach
Exception handling can be quite a pain point in Java, regardless of a
functional approach. There is always a trade-off, no matter which presented
option you choose, especially if checked exceptions are involved.

Extracting unsafe methods to gain localized exception handling is a
better compromise but not an easy-to-use general solution.

https://www.vavr.io/
https://github.com/jOOQ/jOOL


Designing your APIs to not use exceptions at all is not as easy as it
sounds.

Unchecking your exceptions is a “last-resort” tool that hides them
away without a chance to handle them and contradicts their
purpose.

So what should you do? Well, it depends.

None of the presented solutions is perfect. You have to find a balance
between “convenience” and “usability.” Exceptions are sometimes an
overused feature, but they are still essential signals to the control flow of
your programs. Hiding them away might not be in your best interest in the
long run, even if the resulting code is more concise and reasonable, as long
as no exception occurs.

Not every imperative or OOP feature/technique is replaceable with a
functional equivalent in Java. Many of Java’s (functional) shortcomings are
circumventable to gain their general advantages, even if the resulting code
is not as concise as in fully-functional programming languages. But
exceptions are one of those features that aren’t easily replaceable in most
circumstances. They’re often an indicator that you either need to refactor
your code to make it “more functional” or that a functional approach might
not be the best solution for the problem.

Alternatively, there are several third-party libraries available, like the Vavr
project or jOOλ, that allow you to circumvent the general problems with
using (checked) exceptions in functional Java code. They did all the work
implementing all relevant wrapper interfaces and replicating control
structures and types from other languages, like pattern matching. But in the
end, you end up with highly specialized code that tries to bend Java to its
will, without much regard for traditional or common code constructs. Such
a dependency is a long-term commitment and shouldn’t be added lightly.

Takeaways

https://www.vavr.io/
https://github.com/jOOQ/jOOL


There’s no specialized exception handling for lambdas, only try-
catch as usual, which leads to verbose and unwieldy code.

You can fulfill or circumvent the catch-or-specify in multiple ways,
but that merely hides the original “problem.”

Custom wrappers can provide a more functional approach.

Third-party libraries can help to reduce the additional boilerplate
required for handling exceptions more functionally. But the newly
introduced types and constructs are no lightweight addition to your
code and might create a lot of technical debt.

No general approach is available. Choosing the right way to handle
exceptions depends highly on the surrounding context.

Often, an imperative approach is more recommended than trying to
work around the limitations of lambdas regarding exceptions.

1  Guy L. Steele and Richard P. Gabriel. 1996. “The evolution of Lisp.” History of programming
languages---II. Association for Computing Machinery, 233-330.

2  The Wikipedia entry on Exception handling syntax provides an overview of different kinds of
syntaxes and languages.

3  Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Elements of
reusable object-oriented software. Boston, MA: Addison Wesley.

4  Scala’s generic types are declared with [] (sqare brackets) instead of <> (angle brackets).
The + (plus) signifies the type’s variance. See “Tour of Scala” for more information about type
variance.

https://doi.org/10.1145/234286.1057818
https://en.wikipedia.org/wiki/Exception_handling_syntax
https://docs.scala-lang.org/tour/variances.html
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