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Introduction

Machine learning is becoming important in every engineering discipline. For example:

1. Autonomous cars. Machine learning is used in almost every aspect of car control systems.

2. Plasma physicists use machine learning to help guide experiments on fusion reactors.
TAE Systems has used it with great success in guiding fusion experiments. The Princeton
Plasma Physics Laboratory has used it for the National Spherical Torus Experiment to
study a promising candidate for a nuclear fusion power plant.

3. It is used in finance for predicting the stock market.

4. Medical professionals use it for diagnoses.

5. Law enforcement, and others, use it for facial recognition. Several crimes have been
solved using facial recognition!

6. An expert system was used on NASA’s Deep Space 1 spacecraft.

7. Adaptive control systems steer oil tankers.

There are many, many other examples.
Although many excellent packages are available from commercial sources and open-source

repositories, it is valuable to understand how these algorithms work. Writing your own algo-
rithms is valuable both because it gives you an insight into the commercial and open-source
packages and because it gives you the background to write your own custom machine learning
software specialized for your application.

MATLAB® had its origins for that very reason. Scientists who needed to do operations
on matrices used numerical software written in FORTRAN. At the time, using computer lan-
guages required the user to go through the write-compile-link-execute process, which was time-
consuming and error-prone. MATLAB presented the user with a scripting language that allowed
the user to solve many problems with a few lines of a script that executed instantaneously. MAT-
LAB has built-in visualization tools that helped the user to better understand the results. Writing
MATLAB was a lot more productive and fun than writing FORTRAN.
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Introduction

The goal of MATLAB Machine Learning Recipes: A Problem–Solution Approach is to help
all users to harness the power of MATLAB to solve a wide range of learning problems. The
book has something for everyone interested in machine learning. It also has material that will
allow people with an interest in other technology areas to see how machine learning, and MAT-
LAB, can help them to solve problems in their areas of expertise.

Using the Included Software
This textbook includes a MATLAB toolbox, which implements the examples. The toolbox
consists of:

1. MATLAB functions

2. MATLAB scripts

3. html help

TheMATLAB scripts implement all of the examples in this book. The functions encapsulate the
algorithms. Many functions have built-in demos. Just type the function name in the command
window and it will execute the demo. The demo is usually encapsulated in a sub-function. You
can copy out this code for your own demos and paste it into a script. For example, type the
function name PlotSet into the command window and the plot in Figure 1 will appear.

>> PlotSet

Figure 1: Example plot from the function PlotSet.m.
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Introduction

If you open the function you will see the demo:

%%% PlotSet>Demo
function Demo

x = linspace(1,1000);
y = [sin(0.01*x);cos(0.01*x);cos(0.03*x)];
disp('PlotSet: One x and two y rows')
PlotSet( x, y, 'figure title', 'PlotSet Demo',...

'plot set',{[2 3], 1},'legend',{{'A' 'B'},{}},'plot title',
{'cos','sin'});

You can use these demos to start your own scripts. Some functions, such as right-hand side
functions for numerical integration, don’t have demos. If you type:

>> RHSAutomobileXY
Error using RHSAutomobileXY (line 17)
a built-in demo is not available.

The toolbox is organized according to the chapters in this book. The folder names are Chap-
ter 01, Chapter 02, etc. In addition, there is a general folder with functions that support the rest
of the toolbox. You will also need the open-source package GLPK (GNU Linear Programming
Kit) to run some of the code. Nicolo Giorgetti has written a MATLABMEX interface to GLPK
that is available on SourceForge and included with this toolbox. The interface consists of:

1. glpk.m

2. glpkcc.mexmaci64, or glpkcc.mexw64, etc.

3. GLPKTest.m

which are available from https://sourceforge.net/projects/glpkmex/. The second item is the
MEX file of glpkcc.cpp compiled for your machine, such as Mac or Windows. Go to https://
www.gnu.org/software/glpk/ to get the GLPK library and install it on your system. If needed,
download the GLPKMEX source code as well and compile it for your machine, or else try
another of the available compiled builds.

XIX

https://sourceforge.net/projects/glpkmex/
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/


CHAPTER 1

An Overview of Machine Learning

1.1 Introduction
Machine learning is a field in computer science where data are used to predict, or respond to,
future data. It is closely related to the fields of pattern recognition, computational statistics,
and artificial intelligence. The data may be historical or updated in real-time. Machine learning
is important in areas such as facial recognition, spam filtering, and other areas where it is not
feasible, or even possible, to write algorithms to perform a task.

For example, early attempts at filtering junk emails had the user write rules to determine
what was junk or spam. Your success depended on your ability to correctly identify the
attributes of the message that would categorize an email as junk, such as a sender address
or words in the subject, and the time you were willing to spend on tweaking your rules. This
was only moderately successful as junk mail generators had little difficulty anticipating peo-
ple’s hand-made rules. Modern systems use machine-learning techniques with much greater
success. Most of us are now familiar with the concept of simply marking a given message as
“junk” or “not junk,” and take for granted that the email system can quickly learn which fea-
tures of these emails identify them as junk and prevent them from appearing in our inbox. This
could now be any combination of IP or email addresses and words and phrases in the subject
or body of the email, with a variety of matching criteria. Note how the machine learning in this
example is data-driven, autonomous, and continuously updating itself as you receive email and
flag it. However, even today, these systems are not completely successful since they do yet not
understand the “meaning” of the text that they are processing.

In a more general sense, what does machine learning mean? Machine learning can mean
using machines (computers and software) to gain meaning from data. It can also mean giving
machines the ability to learn from their environment. Machines have been used to assist humans
for thousands of years. Consider a simple lever, which can be fashioned using a rock and
a length of wood, or the inclined plane. Both of these machines perform useful work and
assist people but neither has the ability to learn. Both are limited by how they are built. Once
built, they cannot adapt to changing needs without human interaction. Figure 1.1 shows early
machines that do not learn.
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CHAPTER 1 AN OVERVIEW OF MACHINE LEARNING

Figure 1.1: Simple machines that do not have the capability to learn.
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Both of these machines do useful work and amplify the capabilities of people. The knowl-
edge is inherent in their parameters, which are just the dimensions. The function of the inclined
plane is determined by its length and height. The function of the lever is determined by the two
lengths and the height. The dimensions are chosen by the designer, essentially building in the
designer’s knowledge of the application and physics.

Machine learning involves memory that can be changed while the machine operates. In
the case of the two simple machines described above, knowledge is implanted in them by their
design. In a sense, they embody the ideas of the builder, and are thus a form of fixed memory.
Learning versions of these machines would automatically change the dimensions after evaluat-
ing how well the machines were working. As the loads moved or changed the machines would
adapt. A modern crane is an example of a machine that adapts to changing loads, albeit at the
direction of a human being. The length of the crane can be changed depending on the needs of
the operator.

In the context of the software we will be writing in this book, machine learning refers to
the process by which an algorithm converts the input data into parameters it can use when
interpreting future data. Many of the processes used to mechanize this learning derive from
optimization techniques, and in turn are related to the classic field of automatic control. In
the remainder of this chapter, we will introduce the nomenclature and taxonomy of machine
learning systems.

1.2 Elements of Machine Learning
This section introduces key nomenclature for the field of machine learning.

1.2.1 Data

All learning methods are data driven. Sets of data are used to train the system. These sets may
be collected and edited by humans or gathered autonomously by other software tools. Control
systems may collect data from sensors as the systems operate and use that data to identify
parameters, or train, the system. The data sets may be very large, and it is the explosion of
data storage infrastructure and available databases that is largely driving the growth in machine
learning software today. It is still true that a machine learning tool is only as good as the data
used to create it, and the selection of training data is practically a field unto itself.
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Note When collecting data from training, one must be careful to ensure that the time
variation of the system is understood. If the structure of a system changes with time it may be
necessary to discard old data before training the system. In automatic control, this is sometimes
called a forgetting factor in an estimator.

1.2.2 Models

Models are often used in learning systems. A model provides a mathematical framework for
learning. A model is human-derived and based on human observations and experiences. For
example, a model of a car, seen from above, might show that it is of rectangular shape with
dimensions that fit within a standard parking spot. Models are usually thought of as human-
derived and providing a framework for machine learning. However, some forms of machine
learning develop their own models without a human-derived structure.

1.2.3 Training

A system, which maps an input to an output, needs training to do this in a useful way. Just
as people need to be trained to perform tasks, machine learning systems need to be trained.
Training is accomplished by giving the system and input and the corresponding output and
modifying the structure (models or data) in the learning machine so that mapping is learned. In
some ways, this is like curve fitting or regression. If we have enough training pairs, then the
system should be able to produce correct outputs when new inputs are introduced. For example,
if we give a face recognition system thousands of cat images and tell it that those are cats we
hope that when it is given new cat images it will also recognize them as cats. Problems can
arise when you don’t give it enough training sets or the training data are not sufficiently diverse,
for instance, identifying a long-haired cat or hairless cat when the training data only consist of
shorthaired cats. Diversity of training data is required for a functioning neural net.

1.2.3.1 Supervised Learning
Supervised learning means that specific training sets of data are applied to the system. The
learning is supervised in that the “training sets” are human-derived. It does not necessarily
mean that humans are actively validating the results. The process of classifying the system’s
outputs for a given set of inputs is called “labeling,” that is, you explicitly say which results are
correct or which outputs are expected for each set of inputs.

The process of generating training sets can be time consuming. Great care must be taken
to ensure that the training sets will provide sufficient training so that when real-world data are
collected, the system will produce the correct results. They must cover the full range of expected
inputs and desired outputs. The training is followed by test sets to validate the results. If the
results aren’t good then the test sets are cycled into the training sets and the process repeated.

A human example would be a ballet dancer trained exclusively in classical ballet technique.
If she were then asked to dance a modern dance, the results might not be as good as required
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because the dancer did not have the appropriate training sets; her training sets were not suffi-
ciently diverse.

1.2.3.2 Unsupervised Learning
Unsupervised learning does not utilize training sets. It is often used to discover patterns in data
for which there is no “right” answer. For example, if you used unsupervised learning to train
a face identification system the system might cluster the data in sets, some of which might be
faces. Clustering algorithms are generally examples of unsupervised learning. The advantage
of unsupervised learning is that you can learn things about the data that you might not know in
advance. It is a way of finding hidden structures in data.

1.2.3.3 Semi-Supervised Learning
With this approach, some of the data are in the form of labeled training sets and other data are
not [11]. In fact, typically only a small amount of the input data is labeled while most are not,
as the labeling may be an intensive process requiring a skilled human. The small set of labeled
data is leveraged to interpret the unlabeled data.

1.2.3.4 Online Learning
The system is continually updated with new data [11]. This is called “online” because many of
the learning systems use data collected online. It could also be called recursive learning. It can
be beneficial to periodically “batch” process data used up to a given time and then return to the
online learning mode. The spam filtering systems from the introduction utilize online learning.

1.3 The Learning Machine
Figure 1.2 shows the concept of a learning machine. The machine absorbs information from
the environment and adapts. The inputs may be separated into those that produce an immediate
response and those that lead to learning. In some cases they are completely separate. For ex-
ample, in an aircraft a measurement of altitude is not usually used directly for control. Instead,
it is used to help select parameters for the actual control laws. The data required for learning
and regular operation may be the same, but in some cases separate measurements or data are
needed for learning to take place. Measurements do not necessarily mean data collected by a
sensor such as radar or a camera. It could be data collected by polls, stock market prices, data
in accounting ledgers or any other means. The machine learning is then the process by which
the measurements are transformed into parameters for future operation.

Note that the machine produces output in the form of actions. A copy of the actions may
be passed to the learning system so that it can separate the effects of the machine actions from
those of the environment. This is akin to a feedforward control system, which can result in
improved performance.

A few examples will clarify the diagram. We will discuss a medical example, a security
system, and spacecraft maneuvering.

A doctor may want to diagnose diseases more quickly. She would collect data on tests on
patients and then collate the results. Patient data may include age, height, weight, historical
data such as blood pressure readings and medications prescribed, and exhibited symptoms. The
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Figure 1.2: A learning machine that senses the environment and stores data in memory.
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machine learning algorithm would detect patterns so that when new tests were performed on
a patient, the machine learning algorithm would be able to suggest diagnoses, or additional
tests to narrow down the possibilities. As the machine-learning algorithm were used it would,
hopefully, get better with each success or failure. Of course, the definition of success or failure
is fuzzy. In this case, the environment would be the patients themselves. The machine would
use the data to generate actions, which would be new diagnoses. This system could be built in
two ways. In the supervised learning process, test data and known correct diagnoses are used
to train the machine. In an unsupervised learning process, the data would be used to generate
patterns that may not have been known before and these could lead to diagnosing conditions
that would normally not be associated with those symptoms.

A security system may be put into place to identify faces. The measurements are camera
images of people. The system would be trained with a wide range of face images taken from
multiple angles. The system would then be tested with these known persons and its success rate
validated. Those that are in the database memory should be readily identified and those that are
not should be flagged as unknown. If the success rate were not acceptable, more training might
be needed or the algorithm itself might need to be tuned. This type of face recognition is now
common, used in Mac OS X’s “Faces” feature in Photos, face identification on the new iPhone
X, and Facebook when “tagging” friends in photos.

For precision maneuvering of a spacecraft, the inertia of the spacecraft needs to be known.
If the spacecraft has an inertial measurement unit that can measure angular rates, the inertia
matrix can be identified. This is where machine learning is tricky. The torque applied to the
spacecraft, whether by thrusters or momentum exchange devices, is only known to a certain
degree of accuracy. Thus, the system identification must sort out, if it can, the torque scaling
factor from the inertia. The inertia can only be identified if torques are applied. This leads to
the issue of stimulation. A learning system cannot learn if the system to be studied does not
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have known inputs and those inputs must be sufficiently diverse to stimulate the system so that
the learning can be accomplished. Training a face recognition system with one picture will not
work.

1.4 Taxonomy of Machine Learning
In this book, we take a bigger view of machine learning than is typical. Machine learning as de-
scribed above is the collecting of data, finding patterns, and doing useful things based on those
patterns. We expand machine learning to include adaptive and learning control. These fields
started off independently, but are now adapting technology and methods from machine learn-
ing. Figure 1.3 shows how we organize the technology of machine learning into a consistent
taxonomy. You will notice that we created a title that encompasses three branches of learning;
we call the whole subject area “Autonomous Learning.” That means, learning without human
intervention during the learning process. This book is not solely about “traditional” machine
learning. There are other, more specialized books that focus on any one of the machine-learning
topics. Optimization is part of the taxonomy because the results of optimization can be new dis-
coveries, such as a new type of spacecraft or aircraft trajectory. Optimization is also often a part
of learning systems.

Figure 1.3: Taxonomy of machine learning.
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There are three categories under Autonomous Learning. The first is Control. Feedback
control is used to compensate for uncertainty in a system or to make a system behave differently
than it would normally behave. If there were no uncertainty you wouldn’t need feedback.
For example, if you are a quarterback throwing a football at a running player, assume for a
moment and you know everything about the upcoming play. You know exactly where the
player should be at a given time, so you can close your eyes, count, and just throw the ball to
that spot. Assuming that the player has good hands, you would have a 100% reception rate!
More realistically, you watch the player, estimate the player’s speed and throw the ball. You
are applying feedback to the problem. As stated, this is not a learning system. However, if now
you practice the same play repeatedly, look at your success rate and modify the mechanics and
timing of your throw using that information, you would have an adaptive control system, the
box second from the top of the control list. Learning in control takes place in adaptive control
systems and also in the general area of system identification.

System identification is learning about a system. By system we mean the data that represent
the system and the relationships between elements of those data. For example, a particle moving
in a straight line is a system defined by its mass, the force on that mass, its velocity and position.
The position is related to the velocity times time and the velocity is related determined by the
acceleration, which is the force divided by the mass.

Optimal control may not involve any learning. For example, what is known as full state
feedback produces an optimal control signal, but does not involve learning. In full state feed-
back, the combination of model and data tells us everything we need to know about the system.
However, in more complex systems we can’t measure all the states and don’t know the param-
eters perfectly so some form of learning is needed to produce “optimal” or the best possible
results.

The second category is what many people consider true Machine Learning. This is making
use of data to produce behavior that solves problems. Much of its background comes from
statistics and optimization. The learning process may be done once in a batch process or con-
tinually in a recursive process. For example, in a stock-buying package, a developer may have
processed stock data for several years, say prior to 2008, and used that to decide which stocks
to buy. That software may not have worked well during the financial crash. A recursive pro-
gram would continuously incorporate new data. Pattern recognition and data mining fall into
this category. Pattern recognition is looking for patterns in images. For example, the early AI
Blocks World software could identify a block in its field of view. It could find one block in a
pile of blocks. Data mining is taking large amounts of data and looking for patterns, for ex-
ample, taking stock market data and identifying companies that have strong growth potential.
Classification techniques and fuzzy logic are also in this category.

The third category of autonomous learning is Artificial Intelligence. Machine learning
traces some of its origins to artificial intelligence. Artificial Intelligence is the area of study
whose goal is to make machines reason. Although many would say the goal is to “think like
people,” this is not necessarily the case. There may be ways of reasoning that are not similar to
human reasoning, but are just as valid. In the classic Turing test, Turing proposes that the com-
puter only needs to imitate a human in its output to be a “thinking machine,” regardless of how
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those outputs are generated. In any case, intelligence generally involves learning, so learning
is inherent in many Artificial Intelligence technologies such as inductive learning and expert
systems. Our diagram includes the two techniques of inductive learning and expert systems.

The recipe chapters of this book are grouped according to this taxonomy. The first chapters
cover state estimation using the Kalman Filter and adaptive control. Fuzzy logic is then intro-
duced, which is a control methodology that uses classification. Additional machine-learning
recipes follow with chapters on data classification with binary trees, neural nets including deep
learning, and multiple hypothesis testing. We then have a chapter on aircraft control that in-
corporates neural nets, showing the synergy between the different technologies. Finally, we
conclude with a chapter on an artificial intelligence technique, case-based expert systems.

1.5 Control
Feedback control algorithms inherently learn about the environment through measurements
used for control. These chapters show how control algorithms can be extended to effectively
design themselves using measurements. The measurements may be the same as used for con-
trol, but the adaptation, or learning, happens more slowly than the control response time. An
important aspect of control design is stability. A stable controller will produce bounded outputs
for bounded inputs. It will also produce smooth, predictable behavior of the system that is con-
trolled. An unstable controller will typically experience growing oscillations in the quantities
(such as speed or position) that is controlled. In these chapters, we explore both the perfor-
mance of learning control and the stability of such controllers. We often break control into two
parts, control and estimation. The latter may be done independent of feedback control.

1.5.1 Kalman Filters

Chapter 4 shows how Kalman filters allow you to learn about dynamical systems for which we
already have a model. This chapter provides an example of a variable gain Kalman Filter for
a spring system, that is, a system with a mass connected to its base via a spring and a damper.
This is a linear system. We write the system in discrete time. This provides an introduction to
Kalman Filtering. We show how Kalman Filters can be derived from Bayesian Statistics. This
ties it into many machine-learning algorithms. Originally, the Kalman Filter, developed by R.
E. Kalman, C. Bucy, and R. Battin, was not derived in this fashion.

The second recipe adds a nonlinear measurement. A linear measurement is a measurement
proportional to the state (in this case position) it measures. Our nonlinear measurement will be
the angle of a tracking device that points at the mass from a distance from the line of movement.
One way is to use an Unscented Kalman Filter (UKF) for state estimation. The UKF lets us use
a nonlinear measurement model easily.

The last part of the chapter describes the Unscented Kalman Filter configured for parameter
estimation. This system learns the model, albeit one that has an existing mathematical model.
As such, it is an example of model-based learning. In this example, the filter estimates the
oscillation frequency of the spring-mass system. It will demonstrate how the system needs to
be stimulated to identify the parameters.
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1.5.2 Adaptive Control

Adaptive control is a branch of control systems in which the gains of the control system change
based on measurements of the system. A gain is a number that multiplies a measurement from
a sensor to produce a control action such as driving a motor or other actuator. In a nonlearning
control system, the gains are computed prior to operation and remain fixed. This works very
well most of the time since we can usually pick gains so that the control system is tolerant of
parameter changes in the system. Our gain “margins” tell us how tolerant we are to uncertainties
in the system. If we are tolerant to big changes in parameters, we say that our system is robust.

Adaptive control systems change the gain based on measurements during operation. This
can help a control system perform even better. The better we know a system’s model, the tighter
we can control the system. This is much like driving a new car. At first, you have to be cautious
driving a new car, because you don’t know how sensitive the steering is to turning the wheel
or how fast it accelerates when you depress the gas pedal. As you learn about the car you can
maneuver it with more confidence. If you didn’t learn about the car you would need to drive
every car in the same fashion.

Chapter 5 starts with a simple example of adding damping to a spring using a control sys-
tem. Our goal is to get a specific damping time constant. For this, we need to know the spring
constant. Our learning system uses a Fast Fourier Transform to measure the spring constant.
We’ll compare it with a system that does know the spring constant. This is an example of tun-
ing a control system. The second example is model reference adaptive control of a first-order
system. This system automatically adapts so that the system behaves like the desired model.
This is a very powerful method and applicable to many situations. An additional example will
be ship steering control. Ships use adaptive control because it is more efficient than conven-
tional control. This example demonstrates how the control system adapts and how it performs
better than its non-adaptive equivalent. This is an example of gain scheduling. We then give a
spacecraft example.

The last example is longitudinal control of an aircraft, extensive enough that it is given its
own chapter. We can control pitch angle using the elevators. We have five nonlinear equations
for the pitch rotational dynamics, velocity in the x direction, velocity in the z direction, and
change in altitude. The system adapts to changes in velocity and altitude. Both change the drag
and lift forces and the moments on the aircraft and also change the response to the elevators.
We use a neural net as the learning element of our control system. This is a practical problem
applicable to all types of aircraft ranging from drones to high-performance commercial aircraft.

1.6 Autonomous Learning Methods
This section introduces you to popular machine-learning techniques. Some will be used in the
examples in this book. Others are available in MATLAB products and open-source products.

9
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1.6.1 Regression

Regression is a way of fitting data to a model. A model can be a curve in multiple dimensions.
The regression process fits the data to the curve producing a model that can be used to predict
future data. Some methods, such as linear regression or least squares, are parametric in that
the number of parameters to be fit is known. An example of linear regression is shown in the
listing below and Figure 1.4. This model was created by starting with the line y = x and adding
noise to y. The line was recreated using a least squares fit via MATLAB’s pinv Pseudo-inverse
function.

The first part of the script generates the data.

Listing 1.1: Linear Regression to Data Generation

x = linspace(0,1,500)';
n = length(x);

% Model a polynomial, y = ax2 + mx + b
a = 1.0; % quadratic - make nonzero for larger errors
m = 1.0; % slope
b = 1.0; % intercept
sigma = 0.1; % standard deviation of the noise
y0 = a*x.ˆ2 + m*x + b;
y = y0 + sigma*randn(n,1);

The actual regression code is just three lines.

Listing 1.2: Linear Regression

a = [x ones(n,1)];
c = pinv(a)*y;
yR = c(1)*x + c(2); % the fitted line

The last part plots the results using standard MATLAB plotting functions. We use grid
on rather than grid. The latter toggles the grid mode and is usually ok, but sometimes
MATLAB gets confused. grid on is more reliable.

Listing 1.3: Linear Regression to Plots

h = figure;
h.Name = 'Linear Regression';
plot(x,y); hold on;
plot(x,yR,'linewidth',2);
grid on
xlabel('x');
ylabel('y');
title('Linear Regression');
legend('Data','Fit')

figure('Name','Regression Error')
plot(x,yR-y0);

10
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grid on
xlabel('x');
ylabel('\Delta y');
title('Error between Model and Regression')

This code uses pinv. We can solve the problem

Ax = b (1.1)

by taking the inverse of A if the length of x and b are the same.

x = A−1b (1.2)

This works because A is a square matrix, but only works if A is not singular, that is, it has a
valid inverse. If the length of x and b are the same, we can still find an approximation to x
where x = pinv(A)b. For example, in the first case A is 2-by-2. In the second case, it is 3-by-2,
meaning there are three elements of x and two of b.

>> inv(rand(2,2))

ans =

1.4518 -0.2018
-1.4398 1.2950

>> pinv(rand(2,3))

ans =

1.5520 -1.3459
-0.6390 1.0277
0.2053 0.5899

The system learns the parameters, slope, and y intercept, from the data. The more data, the
better the fit. As it happens, our model:

y = mx+ b (1.3)

is correct. However, if it were wrong, the fit would be poor. This is an issue with model-based
learning. The quality of the results is highly dependent on the model. If you are sure of your
model then it should be used. If not, other methods, such as unsupervised learning, may produce
better results. For example, if we add the quadratic term x2, we get the fit in Figure 1.5. Notice
how the fit is not as good as we might like.

In these examples, we start with a pattern that we assume fits the data. This is our model.
We fit the data to the model. In the first case, we assume that our system is linear; in the second
quadratic. If our model is good, the data will fit well. If we choose the wrong model, then the fit
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Figure 1.4: Learning with linear regression.
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Figure 1.5: Learning with linear regression for a quadratic.
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will be poor. If that is the case, we will need to try a different model. For example, our system
could be

y = cos(x) (1.4)

with the span of x over several cycles. Neither a linear nor a quadratic fit would be good in this
case. Limitations in this approach have led to other techniques, including neural networks.

1.6.2 Decision Trees

A decision tree is a tree-like graph used to make decisions. It has three kinds of nodes:

1. Decision nodes

2. Chance nodes

3. End nodes

You follow the path from the beginning to the end node. Decision trees are easy to understand
and interpret. The decision process is entirely transparent, although very large decision trees
may be hard to follow visually. The difficulty is finding an optimal decision tree for a set of
training data.

Two types of decision trees are classification trees that produce categorical outputs and
regression trees that produce numeric outputs. An example of a classification tree is shown in
Figure 1.6. This helps an employee decide where to go for lunch. This tree only has decision
nodes.

Figure 1.6: A classification tree.
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This may be used by management to predict where they could find an employee at lunch
time. The decisions are Hungry, Busy, and Have a Credit Card. From that, the tree could be
synthesized. However, if there were other factors in the decision of employees, for example,
is it someone’s birthday, this would result in the employee going to a restaurant, then the tree
would not be accurate.

Chapter 7 uses a decision tree to classify data. Classifying data is one of the most widely
used areas of machine learning. In this example, we assume that two data points are sufficient
to classify a sample and determine to which group it belongs. We have a training set of known
data points with membership in one of three groups. We then use a decision tree to classify the
data. We’ll introduce a graphical display to make understanding the process easier.

With any learning algorithm it is important to know why the algorithm made its decision.
Graphics can help you explore large data sets when columns of numbers aren’t terribly helpful.

1.6.3 Neural Networks

A neural net is a network designed to emulate the neurons in a human brain. Each “neuron” has
a mathematical model for determining its output from its input; for example, if the output is a
step function with a value of 0 or 1, the neuron can be said to be “firing” if the input stimulus
results in a 1 output. Networks are then formed with multiple layers of interconnected neurons.
Neural networks are a form of pattern recognition. The network must be trained using sample
data, but no a priori model is required. However, usually, the structure of the neural network is
specified by giving the number of layers, neurons per layer, and activation functions for each
neuron. Networks can be trained to estimate the output of nonlinear processes and the network
then becomes the model.

Figure 1.7 displays a simple neural network that flows from left to right, with two input
nodes and one output node. There is one “hidden” layer of neurons in the middle. Each node
has a set of numeric weights that is tuned during training. This network has two inputs and one
output, possibly indicative of a network that solves a categorization problem. Training such a
network is called deep learning.

A “deep” neural network is a neural network with multiple intermediate layers between the
input and output.

This book presents neural nets in several chapters. Chapter 8 provides an introduction to
the fundamentals of neural networks focusing on the neuron and how it can be trained. Chapter
9 provides an introduction to neural networks using a multi-layer feed-forward (MLFF) neural
network to classify digits. In this type of network, each neuron depends only on the inputs it
receives from the previous layer. The example uses a neural network to classify digits. We
will start with a set of six digits and create a training set by adding noise to the digit images.
We then see how well our learning network performs at identifying a single digit, and then
add more nodes and outputs to identify multiple digits with one network. Classifying digits is
one of the oldest uses of machine learning. The U.S. Post Office introduced zip code reading
years before machine learning started hitting the front pages of all the newspapers! Earlier digit
readers required block letters written in well-defined spots on a form. Reading digits off any
envelope is an example of learning in an unstructured environment.
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Figure 1.7: A neural net with one intermediate layer between the inputs on the left and the
output on the right. The intermediate layer is also known as a hidden layer.

X

Chapter 10 presents deep learning with distinctive layers. Several different types of ele-
ments are in the deep learning chain. This is applied to face recognition. Face recognition is
available in almost every photo application. Many social media sites, such as Facebook and
Google Plus, also use face recognition. Cameras have built-in face recognition, though not
identification, to help with focusing when taking portraits. Our goal is to get the algorithm to
match faces, not classify them. Data classification is covered in Chapter 8.

Chapter 11 introduces a neural network as part of an adaptive control system. This ties
together learning, via neural networks, and control.

1.6.4 Support Vector Machines

Support vector machines (SVMs) are supervised learning models with associated learning al-
gorithms that analyze data used for classification and regression analysis. An SVM training
algorithm builds a model that assigns examples into categories. The goal of SVMs is to pro-
duce a model, based on the training data, that predicts the target values.

In SVMs, nonlinear mapping of input data in a higher dimensional feature space is done
with kernel functions. In this feature space, a separation hyperplane is generated that is the
solution to the classification problem. The kernel functions can be polynomials, sigmoidal
functions, and radial basis functions. Only a subset of the training data is needed, these are
known as the support vectors [8]. The training is done by solving a quadratic program, which
can be done with many numerical software.
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1.7 Artificial Intelligence
1.7.1 What is Artificial Intelligence?

A test of artificial intelligence is the Turing test. The idea is that if you have a conversation
with a machine and you can’t tell it is a machine, then it should be considered intelligent. By
this definition, many robo-calling systems might be considered intelligent. Another example,
chess programs, can beat all but the best players, but a chess program can’t do anything but play
chess. Is a chess program intelligent? What we have now is machines that can do things pretty
well in a particular context.

1.7.2 Intelligent Cars

Our “artificial intelligence” example is really a blending of Bayesian estimation and controls.
It still reflects a machine doing what we would consider as intelligent behavior. This, of course,
gets back to the question of defining intelligence.

Autonomous driving is an area of great interest to automobile manufacturers and to the
general public. Autonomous cars are driving the streets today, but are not yet ready for general
use by the public. There are many technologies involved in autonomous driving. These include:

1. Machine vision – turning camera data into information useful for the autonomous control
system

2. Sensing – using many technologies including vision, radar, and sound to sense the envi-
ronment around the car

3. Control – using algorithms to make the car go where it is supposed to go as determined
by the navigation system

4. Machine learning – using massive data from test cars to create databases of responses to
situations

5. GPS navigation – blending GPS measurements with sensing and vision to figure out
where to go

6. Communications/ad hoc networks – talking with other cars to help determine where they
are and what they are doing

All of the areas overlap. Communications and ad hoc networks are used with GPS naviga-
tion to determine both absolute location (what street and address corresponds to your location)
and relative navigation (where you are with respect to other cars). In this context, the Turing
test would be if you couldn’t tell if a car was driven by a person or the computer. Now, since
many drivers are bad, one could argue that a computer that drove really well would fail the
Turing test! This gets back to the question of what intelligence is.

This example explores the problem of a car being passed by multiple cars and needing to
compute tracks for each one. We are really addressing just the control and collision avoidance
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problem. A single sensor version of Track Oriented Multiple Hypothesis Testing is demon-
strated for a single car on a two-lane road. The example includes MATLAB graphics that make
it easier to understand the thinking of the algorithm. The demo assumes that the optical or
radar pre-processing has been done and that each target is measured by a single “blip” in two
dimensions. An automobile simulation is included. It involves cars passing the car that is doing
the tracking. The passing cars use a passing control system that is in itself a form of machine
intelligence.

Our autonomous driving recipes use an Unscented Kalman Filter for the estimation of the
state. This is the underlying algorithm that propagates the state (that is, advances the state in
time in a simulation) and adds measurements to the state. A Kalman Filter, or other estimator,
is the core of many target-tracking systems.

The recipes will also introduce graphics aids to help you understand the tracking decision
process. When you implement a learning system you want to make sure it is working the way
you think it should, or understand why it is working the way it does.

1.7.3 Expert Systems

A system that uses a knowledge base to reason and present the user with a result and an ex-
planation of how it arrived at that result. Expert systems are also known as knowledge-based
systems. The process of building an expert system is called knowledge engineering. This in-
volves a knowledge engineer, someone who knows how to build the expert system, interviewing
experts for the knowledge needed to build the system. Some systems can induce rules from data,
speeding up the data acquisition process.

An advantage of expert systems, over human experts, is that knowledge from multiple ex-
perts can be incorporated into the database. Another advantage is that the system can explain
the process in detail so that the user knows exactly how the result was generated. Even an ex-
pert in a domain can forget to check certain things. An expert system will always methodically
check its full database. It is also not affected by fatigue or emotions.

Knowledge acquisition is a major bottleneck in building expert systems. Another issue is
that the system cannot extrapolate beyond what is programmed into the database. Care must
be taken with using an expert system because it will generate definitive answers for problems
where there is uncertainty. The explanation facility is important, because someone with domain
knowledge can judge the results from the explanation. In cases where uncertainty needs to be
considered, a probabilistic expert system is recommended. A Bayesian network can be used as
an expert system. A Bayesian network is also known as a belief network. It is a probabilistic
graphical model that represents a set of random variables and their dependencies. In the simplest
cases, a Bayesian network can be constructed by an expert. In more complex cases, it needs to
be generated from data from machine learning. Chapter 12 delves into expert systems.

In Chapter 14, we explore a simple case-based reasoning system. An alternative would be
a rule-based system.
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1.8 Summary
All of the technologies in this chapter are in current use today. Any one of them can form the
basis for a useful product. Many systems, such as autonomous cars, use several. We hope that
our broad view of the field of machine learning and our unique taxonomy, which shows the
relationships of machine learning and artificial intelligence to the classical fields of control and
optimization, are useful to you. In the remainder of the book we will show you how to build
software that implements these technologies. This can form the basis of your own more robust
production software, or help you to use the many fine commercial products more effectively.
Table 1.1 lists the scripts included in the companion code.

Table 1.1: Chapter Code Listing

File Description
LinearRegression A script that demonstrates linear regression and curve fitting.
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CHAPTER 2

Representation of Data for
Machine Learning in MATLAB

2.1 Introduction to MATLAB Data Types
2.1.1 Matrices

By default, all variables in MATLAB are double precision matrices. You do not need to declare
a type for these variables. Matrices can be multidimensional and are accessed using 1-based
indices via parentheses. You can address elements of a matrix using a single index, taken
column-wise, or one index per dimension. To create a matrix variable, simply assign a value to
it, such as this 2x2 matrix a:

>> a = [1 2; 3 4];
>> a(1,1)

1

>> a(3)
2

TIP A semicolon terminates an expression so that it does not appear in the command
window. If you leave out the semicolon, it will print in the command window. Leaving out
semicolons is a convenient way of debugging without using the MATLAB debugger, but it can
be hard to find those missing semicolons later!

You can simply add, subtract, multiply, and divide matrices with no special syntax. The
matrices must be the correct size for the linear algebra operation requested. A transpose is
indicated using a single quote suffix, A’, and the matrix power uses the operator ˆ.

>> b = a'*a;
>> c = aˆ2;
>> d = b + c;

©Michael Paluszek and Stephanie Thomas 2019
M. Paluszek and S. Thomas, MATLAB Machine Learning Recipes,
https://doi.org/10.1007/978-1-4842-3916-2 2
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By default, every variable is a numerical variable. You can initialize matrices to a given size
using the zeros, ones, eye, or rand functions, which produce zeros, ones, identity matrices
(ones on the diagonal), and random numbers respectively. Use isnumeric to identify numeric
variables.

Table 2.1: Key Functions for Matrices

Function Purpose
zeros Initialize a matrix to zeros
ones Initialize a matrix to ones
eye Initialize an identity matrix
rand, randn Initialize a matrix of random numbers
isnumeric Identify a matrix or scalar numeric value
isscalar Identify a scalar value (a 1 x 1 matrix)
size Return the size of the matrix

MATLAB can support n-dimensional arrays. A two-dimensional array is like a table. A
three-dimensional array can be visualized as a cube where each box inside the cube contains a
number. A four-dimensional array is harder to visualize, but we needn’t stop there!

2.1.2 Cell Arrays

One variable type unique to MATLAB is cell arrays. This is really a list container, and you can
store variables of any type in elements of a cell array. Cell arrays can be multi-dimensional, just
like matrices, and are useful in many contexts.

Cell arrays are indicated by curly braces, {}. They can be of any dimension and contain any
data, including string, structures, and objects. You can initialize them using the cell function,
recursively display the contents using celldisp, and access subsets using parentheses, just
like for a matrix. A short example is below.

>> c = cell(3,1);
>> c{1} = 'string';
>> c{2} = false;
>> c{3} = [1 2; 3 4];
>> b = c(1:2);
>> celldisp(b)
b{1} =
string

b{2} =
0

Using curly braces for access gives you the element data as the underlying type. When you
access elements of a cell array using parentheses, the contents are returned as another cell array,
rather than the cell contents. MATLAB help has a special section called Comma-Separated
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Lists, which highlights the use of cell arrays as lists. The code analyzer will also suggest more
efficient ways to use cell arrays. For instance,

Replace
a = {b{:} c};
with
a = [b {c}];
Cell arrays are especially useful for sets of strings, with many of MATLAB’s string search

functions optimized for cell arrays, such as strcmp.
Use iscell to identify cell array variables. Use deal to manipulate structure array and

cell array contents.

Table 2.2: Key Functions for Cell Arrays

Function Purpose
cell Initialize a cell array
cellstr Create a cell array from a character array
iscell Identify a cell array
iscellstr Identify a cell array containing only strings
celldisp Recursively display the contents of a cell array

2.1.3 Data Structures

Data structures in MATLAB are highly flexible, leaving it up to the user to enforce consistency
in fields and types. You are not required to initialize a data structure before assigning fields to
it, but it is a good idea to do so, especially in scripts, to avoid variable conflicts.

Replace
d.fieldName = 0;

with

d = struct;
d.fieldName = 0;

In fact, we have found it generally a good idea to create a special function to initialize
larger structures that are used throughout a set of functions. This is similar to creating a class
definition. Generating your data structure from a function, instead of typing out the fields in a
script, means that you always start with the correct fields. Having an initialization function also
allows you to specify the types of variables and provide sample or default data. Remember,
since MATLAB does not require you to declare variable types, doing so yourself with default
data makes your code that much clearer.

TIP Create an initialization function for data structures.

You make a data structure into an array simply by assigning an additional copy. The fields
must be identically named (they are case-sensitive) and in the same order, which is yet another
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reason to use a function to initialize your structure. You can nest data structures with no limit
on depth.

d = MyStruct;
d(2) = MyStruct;

function d = MyStruct

d = struct;
d.a = 1.0;
d.b = 'string';

MATLAB now allows for dynamic field names using variables, i.e.,
structName.(dynamicExpression). This provides improved performance over
getfield, where the field name is passed as a string. This allows for all sorts of inven-
tive structure programming. Take our data structure array in the previous code snippet, and let’s
get the values of field a using a dynamic field name; the values are returned in a cell array.

>> field = 'a';
>> values = {d.(field)}

values =
[1] [1]

Use isstruct to identify structure variables and isfield to check for the existence of
fields. Note that isempty will return false for a struct initialized with struct, even if it has
no fields.

>> d = struct
d =

struct with no fields.

>> isempty(d)

ans =
logical
0

Table 2.3: Key Functions for Structs

Function Purpose
struct Initialize a structure with or without fields
isstruct Identify a structure
isfield Determine if a field exists in a structure
fieldnames Get the fields of a structure in a cell array
rmfield Remove a field from a structure
deal Set fields in a structure array to a value
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2.1.4 Numerics

Although MATLAB defaults to doubles for any data entered at the command line or in a
script, you can specify a variety of other numeric types, including single, uint8, uint16,
uint32, uint64, logical (i.e., an array of Booleans). Use of the integer types is espe-
cially relevant to using large data sets such as images. Use the minimum data type you need,
especially when your data sets are large.

2.1.5 Images

MATLAB supports a variety of formats including GIF, JPG, TIFF, PNG, HDF, FITS, and BMP.
You can read in an image directly using imread, which can determine the type automatically
from the extension, or fitsread. (FITS stands for Flexible Image Transport System and
the interface is provided by the CFITSIO library.) imread has special syntaxes for some
image types, such as handling alpha channels for PNG, so you should review the options for
your specific images. imformats manages the file format registry and allows you to specify
handling of new user-defined types, if you can provide read and write functions.

You can display an image using either imshow, image, or imagesc, which scales the
colormap for the range of data in the image.

For example, we use a set of images of cats in Chapter 7, on face recognition. The following
is the image information for one of these sample images

>> imfinfo('IMG_4901.JPG')
ans =

Filename: 'MATLAB/Cats/IMG_4901.JPG'
FileModDate: '28-Sep-2016 12:48:15'

FileSize: 1963302
Format: 'jpg'

FormatVersion: ''
Width: 3264

Height: 2448
BitDepth: 24

ColorType: 'truecolor'
FormatSignature: ''
NumberOfSamples: 3

CodingMethod: 'Huffman'
CodingProcess: 'Sequential'

Comment: {}
Make: 'Apple'

Model: 'iPhone 6'
Orientation: 1
XResolution: 72
YResolution: 72

ResolutionUnit: 'Inch'
Software: '9.3.5'
DateTime: '2016:09:17 22:05:08'

YCbCrPositioning: 'Centered'
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DigitalCamera: [1x1 struct]
GPSInfo: [1x1 struct]

ExifThumbnail: [1x1 struct]

These are the metadata that tell camera software, and image databases, where and how the
image was generated. This is useful when learning from images as it allows you to correct for
resolution (width and height) bit depth and other factors.

If we view this image using imshow, it will publish a warning that the image is too big
to fit on the screen and that it is displayed at 33%. If we view it using image, there will be a
visible set of axes. image is useful for displaying other two-dimensional matrix data such as
individual elements per pixel. Both functions return a handle to an image object; only the axes’
properties are different.

>> figure; hI = image(imread('IMG_2398_Zoom.png'))
hI =

Image with properties:

CData: [680x680x3 uint8]
CDataMapping: 'direct'

Show all properties

Figure 2.1: Image display options.
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Table 2.4: Key Functions for Images

Function Purpose
imread Read an image in a variety of formats
imfinfo Gather information about an image file
imformats Determine if a field exists in a structure
imwrite Write data to an image file
image Display image from array
imagesc Display image data scaled to the current colormap
imshow Display an image, optimizing figure, axes, and image object prop-

erties, and taking an array or a filename as an input

rgb2gray Write data to an image file
ind2rgb Convert index data to RGB
rgb2ind Convert RGB data to indexed image data

fitsread Read a FITS file
fitswrite Write data to a FITS file
fitsinfo Information about a FITS file returned in a data structure
fitsdisp Display FITS file metadata for all HDUs in the file

2.1.6 Datastore

Datastores allowyou to interactwith files containing data that are too large to fit inmemory. There
are different types of datastores for tabular data, images, spreadsheets, databases, and custom
files. Each datastore provides functions to extract smaller amounts of data that fit in the memory
for analysis. For example, you can search a collection of images for those with the brightest
pixels or maximum saturation values. We will use our directory of cat images as an example.

>> location = pwd
location =
/Users/Shared/svn/Manuals/MATLABMachineLearning/MATLAB/Cats
>> ds = datastore(location)
ds =

ImageDatastore with properties:

Files: {
' .../Shared/svn/Manuals/MATLABMachineLearning/MATLAB/

Cats/IMG_0191.png';
' .../Shared/svn/Manuals/MATLABMachineLearning/MATLAB/

Cats/IMG_1603.png';
' .../Shared/svn/Manuals/MATLABMachineLearning/MATLAB/

Cats/IMG_1625.png'
... and 19 more

}
Labels: {}

ReadFcn: @readDatastoreImage
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Once the datastore is created, you use the applicable class functions to interact with it. Data-
stores have standard container-style functions such as read, partition, and reset. Each
type of datastore has different properties. The DatabaseDatastore requires the Database
Toolbox, and allows you to use SQL queries.

MATLAB provides the MapReduce framework for working with out-of-memory data in
datastores. The input data can be any of the datastore types, and the output is a key-value
datastore. The map function processes the datastore input in chunks and the reduce function
calculates the output values for each key. mapreduce can be sped up by using it with the
MATLAB Parallel Computing Toolbox, Distributed Computer Server, or Compiler.

Table 2.5: Key Functions for Datastore

Function Purpose
datastore Create a datastore
read Read a subset of data from the datastore
readall Read all of the data in the datastore
hasdata Check to see if there are more data in the datastore
reset Initialize a datastore with the contents of a folder
partition Excerpt a portion of the datastore
numpartitions Estimate a reasonable number of partitions

ImageDatastore Datastore of a list of image files.
TabularTextDatastore A collection of one or more tabular text files.
SpreadsheetDatastore Datastore of spreadsheets.
FileDatastore Datastore for files with a custom format, for which you provide a

reader function.
KeyValueDatastore Datastore of key-value pairs.
DatabaseDatastore Database connection, requires the Database Toolbox.

2.1.7 Tall Arrays

Tall arrays were introduced in R2016b Release of MATLAB. They are allowed to have more
rows than will fit in the memory. You can use them to work with datastores that might have
millions of rows. Tall arrays can use almost any MATLAB type as a column variable, including
numeric data, cell arrays, strings, datetimes, and categoricals. The MATLAB documentation
provides a list of functions that support tall arrays. Results for operations on the array are only
evaluated when they are explicitly requested using the gather function. The histogram
function can be used with tall arrays and will execute immediately.

TheMATLABStatistic andMachine Learning Toolbox™, Database Toolbox, Parallel Com-
puting Toolbox, Distributed Computing Server, and Compiler all provide additional extensions
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for working with tall arrays. For more information about this new feature, use the following
topics in the documentation:

• Tall Arrays

• Analysis of Big Data with Tall Arrays

• Functions That Support Tall Arrays (A–Z)

• Index and View Tall Array Elements

• Visualization of Tall Arrays

• Extend Tall Arrays with Other Products

• Tall Array Support, Usage Notes, and Limitations

Table 2.6: Key Functions for Tall Arrays

Function Purpose
tall Initialize a tall array
gather Execute the requested operations
summary Display summary information to the command line
head Access the first rows of a tall array
tail Access the last rows of a tall array
istall Check the type of array to determine if it is tall
write Write the tall array to disk

2.1.8 Sparse Matrices

Sparse matrices are a special category of matrix in which most of the elements are zero. They
appear commonly in large optimization problems and are used by many such packages. The
zeros are “squeezed” out and MATLAB stores only the nonzero elements along with index data
such that the full matrix can be recreated. Many regular MATLAB functions, such as chol or
diag, preserve the sparseness of an input matrix.

2.1.9 Tables and Categoricals

Tables were introduced in release R2013 of MATLAB and allow tabular data to be stored with
metadata in one workspace variable. It is an effective way of storing and interacting with data
that one might put in, or import from, a spreadsheet. The table columns can be named, assigned
units and descriptions, and accessed as one would fields in a data structure, i.e., T.DataName.
See readtable on creating a table from a file, or try out the Import Data button from the
command window.
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Table 2.7: Key Functions for Sparse Matrices

Function Purpose
sparse Create a sparse matrix from a full matrix or from a list of indices

and values
issparse Determine if a matrix is sparse
nnz Number of nonzero elements in a sparse matrix
spalloc Allocate a nonzero space for a sparse matrix
spy Visualize a sparsity pattern
spfun Selectively apply a function to the nonzero elements of a sparse

matrix
full Convert a sparse matrix to full form

Categorical arrays allow for storage of discrete non-numeric data, and they are often used
within a table to define groups of rows. For example, time data may have the day of the week,
or geographic data may be organized by state or county. They can be leveraged to rearrange
data in a table using unstack.

You can also combine multiple data sets into single tables using join, innerjoin, and
outerjoin, which will be familiar to you if you have worked with databases.

Table 2.8: Key Functions for Tables

Function Purpose
table Create a table with data in the workspace
readtable Create a table from a file
join Merge tables by matching up variables
innerjoin Join tables A and B retaining only the rows that match
outerjoin Join tables including all rows
stack Stack data from multiple table variables into one variable
unstack Unstack data from a single variable into multiple variables
summary Calculate and display summary data for the table

categorical Arrays of discrete categorical data
iscategorical Create a categorical array
categories List of categories in the array
iscategory Test for a particular category
addcats Add categories to an array
removecats Remove categories from an array
mergecats Merge categories
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2.1.10 Large MAT-Files

You can access parts of a large MAT-file without loading the entire file into the memory by
using the matfile function. This creates an object that is connected to the requested MAT-
file without loading it. Data are only loaded when you request a particular variable, or part of a
variable. You can also dynamically add new data to the MAT-file.

For example, we can load a MAT-file of neural net weights generated in a later chapter.

>> m = matfile('PitchNNWeights','Writable',true)
m =

matlab.io.MatFile

Properties:
Properties.Source: '/Users/Shared/svn/Manuals/

MATLABMachineLearning/MATLAB/PitchNNWeights.mat'
Properties.Writable: true

w: [1x8 double]

We can access a portion of the previously unloaded w variable, or add a new variable name,
all using this object m.

>> y = m.w(1:4)
y =

1 1 1 1
>> m.name = 'Pitch Weights'
m =

matlab.io.MatFile

Properties:
Properties.Source: '/Users/Shared/svn/Manuals/

MATLABMachineLearning/MATLAB/PitchNNWeights.mat'
Properties.Writable: true

name: [1x13 char]
w: [1x8 double]

>> d = load('PitchNNWeights')
d =

w: [1 1 1 1 1 1 1 1]
name: 'Pitch Weights'

There are some limits to the indexing into unloaded data, such as struct arrays and sparse
arrays. Also, matfile requires MAT-files using version 7.3, which is not the default for a
generic save operation as of R2016b Release of MATLAB. You must either create the MAT-
file using matfile to take advantage of these features or use the -v7.3’ flag when saving
the file.
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2.2 Initializing a Data Structure Using Parameters
It’s always a good idea to use a special function to define a data structure you are using as
a type in your codebase, similar to writing a class but with less overhead. Users can then
overload individual fields in their code, but there is an alternative way of setting many fields at
once: an initialization function that can handle a parameter pair input list. This allows you to
do additional processing in your initialization function. Also, your parameter string names can
be more descriptive than you would choose to make your field names.

2.2.1 Problem

We want to initialize a data structure so that the user clearly knows what he or she is entering.

2.2.2 Solution

The simplest way of implementing the parameter pairs is using varargin and a switch state-
ment. Alternatively, you could write an inputParser, which allows you to specify required
and optional inputs as well as named parameters. In that case, you have to write separate or
anonymous functions for validation that can be passed to the inputParser, rather than just
write out the validation in your code.

2.2.3 How It Works

We will use the data structure developed for the automobile simulation in Chapter 12 as an
example. The header lists the input parameters along with the input dimensions and units, if
applicable.

%% AUTOMOBILEINITIALIZE Initialize the automobile data structure.
%
%% Form
% d = AutomobileInitialize( varargin )
%
%% Description
% Initializes the data structure using parameter pairs.
%
%% Inputs
% varargin: ('parameter',value,...)
%
% 'mass' (1,1) (kg)
% 'steering angle' (1,1) (rad)
% 'position tires' (2,4) (m)
% 'frontal drag coefficient' (1,1)
% 'side drag coefficient' (1,1)
% 'tire friction coefficient' (1,1)
% 'tire radius' (1,1) (m)
% 'engine torque' (1,1) (Nm)
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% 'rotational inertia' (1,1) (kg-mˆ2)
% 'state' (6,1) [m;m;m/s;m/s;rad;rad/s]

The function first creates the data structure using a set of defaults, then handles the param-
eter pairs entered by a user. After the parameters have been processed, two areas are calculated
using the dimensions and the height.

function d = AutomobileInitialize( varargin )

% Defaults
d.mass = 1513;
d.delta = 0;
d.r = [ 1.17 1.17 -1.68 -1.68;...

-0.77 0.77 -0.77 0.77];
d.cDF = 0.25;
d.cDS = 0.5;
d.cF = 0.01; % Ordinary car tires on concrete
d.radiusTire = 0.4572; % m
d.torque = d.radiusTire*200.0; % N
d.inr = 2443.26;
d.x = [0;0;0;0;0;0];
d.fRR = [0.013 6.5e-6];
d.dim = [1.17+1.68 2*0.77];
d.h = 2/0.77;
d.errOld = 0;
d.passState = 0;
d.model = 'MyCar.obj';
d.scale = 4.7981;

for k = 1:2:length(varargin)
switch lower(varargin{k})

case 'mass'
d.mass = varargin{k+1};

case 'steering angle'
d.delta = varargin{k+1};

case 'position tires'
d.r = varargin{k+1};

case 'frontal drag coefficient'
d.cDF = varargin{k+1};

case 'side drag coefficient'
d.cDS = varargin{k+1};

case 'tire friction coefficient'
d.cF = varargin{k+1};

case 'tire radius'
d.radiusTire = varargin{k+1};

case 'engine torque'
d.torque = varargin{k+1};

case 'rotational inertia'
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d.inertia = varargin{k+1};
case 'state'

d.x = varargin{k+1};
case 'rolling resistance coefficients'

d.fRR = varargin{k+1};
case 'height automobile'

d.h = varargin{k+1};
case 'side and frontal automobile dimensions'

d.dim = varargin{k+1};
case 'car model'

d.model = varargin{k+1};
case 'car scale'

d.scale = varargin{k+1};
end

end

% Processing
d.areaF = d.dim(2)*d.h;
d.areaS = d.dim(1)*d.h;
d.g = LoadOBJ(d.model,[],d.scale);

To perform the same tasks with inputParser, you add a addRequired,
addOptional, or addParameter call for every item in the switch statement. The named
parameters require default values. You can optionally specify a validation function; in the
example below we use isNumeric to limit the values to numeric data.

>> p = inputParser
p.addParameter('mass',0.25);
p.addParameter('cDF',1513);
p.parse('cDF',2000);
d = p.Results

p =

inputParser with properties:

FunctionName: ''
CaseSensitive: 0
KeepUnmatched: 0

PartialMatching: 1
StructExpand: 1

Parameters: {1x0 cell}
Results: [1x1 struct]

Unmatched: [1x1 struct]
UsingDefaults: {1x0 cell}
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d =

struct with fields:

cDF: 2000
mass: 0.2500

In this case, the results of the parsed parameters are stored in a Results substructure.

2.3 Performing MapReduce on an Image Datastore
2.3.1 Problem

We discussed the datastore class in the introduction to the chapter. Now let’s use it to
perform analysis on the full set of cat images using mapreduce, which is scalable to very
large numbers of images. This involves two steps; first a map step that operates on the datastore
and creates intermediate values, and then a reduce step that operates on the intermediate values
to produce a final output.

2.3.2 Solution

We create the datastore by passing in the path to the folder of cat images. We also need
to create a map function and a reduce function, to pass into mapreduce. If you are using
additional toolboxes such as the Parallel Computing Toolbox, you would specify the reduce
environment using mapreducer.

2.3.3 How It Works

First, create the datastore using the path to the images.

>> imds = imageDatastore('MATLAB/Cats');
imds =

ImageDatastore with properties:

Files: {
' .../MATLABMachineLearning/MATLAB/Cats/IMG_0191.png';
' .../MATLABMachineLearning/MATLAB/Cats/IMG_1603.png';
' .../MATLABMachineLearning/MATLAB/Cats/IMG_1625.png'
... and 19 more

}
Labels: {}

ReadFcn: @readDatastoreImage

Second, we write the map function. This must generate and store a set of intermediate
values that will be processed by the reduce function. Each intermediate value must be stored
as a key in the intermediate key-value datastore using add. In this case, the map function will
receive one image each time it is called. We call it catColorMapper, since it processes the
red, green, and blue values for each image using a simple average.

33



CHAPTER 2 REPRESENTATIONOF DATA FOR MACHINE LEARNING IN MATLAB

function catColorMapper(data, info, intermediateStore)

% Calculate the average (R,G,B) values
avgRed = mean(mean(data(:,:,1)));
avgGreen = mean(mean(data(:,:,2)));
avgBlue = mean(mean(data(:,:,3)));

% Store the calculated values with text keys
add(intermediateStore, 'Avg Red', struct('Filename',info.Filename,'

Val', avgRed));
add(intermediateStore, 'Avg Green', struct('Filename',info.Filename,'

Val', avgGreen));
add(intermediateStore, 'Avg Blue', struct('Filename',info.Filename,'

Val', avgBlue));

The reduce function will then receive the list of image files from the datastore once for
each key in the intermediate data. It receives an iterator to the intermediate data store as well
as an output data store. Again, each output must be a key-value pair. The hasnext and
getnext functions used are part of the mapreduceValueIterator class. In this case, we find
the minimum value for each key across the set of images.

function catColorReducer(key, intermediateIter, outputStore)

% Iterate over values for each key
minVal = 255;
minImageFilename = '';
while hasnext(intermediateIter)

value = getnext(intermediateIter);

% Compare values to find the minimum
if value.Val < minVal

minVal = value.Val;
minImageFilename = value.Filename;

end
end

% Add final key-value pair
add(outputStore, ['Minimum - ' key], minImageFilename);

Finally, we call mapreduce using function handles to our two helper functions. Progress
updates are printed to the command line, first for the mapping step, and then for the reduce step
(once the mapping progress reaches 100%).

minRGB = mapreduce(imds, @catColorMapper, @catColorMapper);
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********************************
* MAPREDUCE PROGRESS *
********************************
Map 0% Reduce 0%
Map 13% Reduce 0%
Map 27% Reduce 0%
Map 40% Reduce 0%
Map 50% Reduce 0%
Map 63% Reduce 0%
Map 77% Reduce 0%
Map 90% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 33%
Map 100% Reduce 67%
Map 100% Reduce 100%

The results are stored in a MAT-file, for example, results 1 28-Sep-2016 16-28-
38 347. The store returned is a key-value store to this MAT-file, which in turn contains the
store with the final key-value results.

>> output = readall(minRGB)
output =

Key Value
_______________ ______________________________________________
''Minimum - Avg Red' '/MATLAB/Cats/IMG_1625.png'
''Minimum - Avg Blue' '/MATLAB/Cats/IMG_4866.jpg'
''Minimum - Avg Green' '/MATLAB/Cats/IMG_4866.jpg'

You’ll notice that the image files are different file types. This is because they came from
different sources. MATLAB can handle most image types quite well.

2.4 Creating a Table from a File
Often with big data we have complex data in many files. MATLAB provides functions to make
it easier to handle massive sets of data. In this section, we will collect data from a set of weather
files and perform a Fast Fourier Transform (FFT) on data from two years. First, we will write
the FFT function.

2.4.1 Problem

We want do FFTs.
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2.4.2 Solution

Write a function using fft and compute the energy from the FFT. The energy is just the real
part of the product of the FFT output and its transpose.

2.4.3 How It Works

The following functions takes in data y with a sample time tSamp and performs an FFT

function [e, w] = FFTEnergy( y, tSamp )

% Demo
if( nargin < 1 )

Demo;
return;

end

[n, m] = size( y );

if( n < m )
y = y';

end

n = size( y, 1 );

% Check if an odd number and make even
if(2*floor(n/2) ˜= n )

n = n - 1;
y = y(1:n,:);

end

x = fft(y);
e = real(x.*conj(x))/n;

hN = n/2;
e = e(1:hN,:);
r = 2*pi/(n*tSamp);
w = r*(0:(hN-1));

if( nargout == 0 )
tL = sprintf('FFT Energy Plot: Resolution = %10.2e rad/sec',r);
PlotSet(w,e','x label','Frequency (rad/sec)','y label', 'Energy',
'plot title', tL,'plot type', 'xlog', 'figure title', 'FFT');
clear e

end

We get the energy using these two lines

x = fft(y);
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Taking the real part just accounts for numerical errors. The product of a number and its
complex conjugate should be real.

The function computes the resolution. Notice it is a function of the sampling period and
number of points.

e = e(1:hN,:);

The built-in demo creates a series with a frequency at 1 rad/sec and a second at 2 rad/sec.
The higher frequency one, with an amplitude of 2, has more energy as expected.

end

function Demo
%% Demo
tSamp = 0.1;
omega1 = 1;
omega2 = 3;
t = linspace(0,1000,10000)*tSamp;
y = sin(omega1*t) + 2*sin(omega2*t);

Figure 2.2 shows the data and the FFT. Note the clearly visible frequencies in the FFT plot
that match the oscillations in the time plot.

Figure 2.2: The input data for the FFT and the results.
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2.5 Processing Table Data
2.5.1 Problem

We want to compare temperature frequencies in 1999 and 2015 using data from a table.
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2.5.2 Solution

Use tabularTextDatastore to load the data and perform an FFT on the data.

2.5.3 How It Works

First, let us look at what happens when we read in the data from the weather files.

>> tds = tabularTextDatastore('./Weather')

tds =

TabularTextDatastore with properties:

Files: {
' .../MATLABMachineLearning2/MATLAB/

Chapter_02/Weather/HistKTTN_1990.txt
';

' .../MATLABMachineLearning2/MATLAB/
Chapter_02/Weather/HistKTTN_1993.txt
';

' .../MATLABMachineLearning2/MATLAB/
Chapter_02/Weather/HistKTTN_1999.txt
'

... and 5 more
}

FileEncoding: 'UTF-8'
AlternateFileSystemRoots: {}

ReadVariableNames: true
VariableNames: {'EST', 'MaxTemperatureF', '

MeanTemperatureF' ... and 20 more}

Text Format Properties:
NumHeaderLines: 0

Delimiter: ','
RowDelimiter: '\r\n'

TreatAsMissing: ''
MissingValue: NaN

Advanced Text Format Properties:
TextscanFormats: {'%{uuuu-MM-dd}D', '%f', '%f' ... and 20

more}
TextType: 'char'

ExponentCharacters: 'eEdD'
CommentStyle: ''

Whitespace: ' \b\t'
MultipleDelimitersAsOne: false
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Properties that control the table returned by preview, read,
readall:
SelectedVariableNames: {'EST', 'MaxTemperatureF', '

MeanTemperatureF' ... and 20 more}
SelectedFormats: {'%{uuuu-MM-dd}D', '%f', '%f' ... and 20

more}
ReadSize: 20000 rows

WeatherFFT selects the data to use. It finds all the data in the mess of data in the files.
When running the script you need to be in the same folder as WeatherFFT.

tDS = tabularTextDatastore('./Weather/');
tDS.SelectedVariableNames = {'EST','MaxTemperatureF'};

preview(tDS)

secInDay = 86400;

z = readall(tDS);

% The first column in the cell array is the date. year extracts the
year

y = year(z{:,1});
k1993 = find(y == 1993);
k2015 = find(y == 2015);
tSamp = secInDay;
t = (1:365)*tSamp;
j = {[1 2]};

%% Plot the FFT

% Get 1993 data
d1993 = z{k1993,2}';
m1993 = mean(d1993);
d1993 = d1993 - m1993;

e1993 = FFTEnergy( d1993, tSamp );

% Get 2015 data
d2015 = z{k2015,2}';

If the data do not exist TabularTextDatastore puts NaN in the data points’ place.
We happened to pick two years without any missing data. We use preview to see what we are
getting.

>> WeatherFFT
Warning: Variable names were modified to make them valid MATLAB

identifiers.
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ans =

8x2 table

EST MaxTemperatureF
__________ _______________

1990-01-01 39
1990-01-02 39
1990-01-03 48
1990-01-04 51
1990-01-05 46
1990-01-06 43
1990-01-07 42
1990-01-08 37

In this script, we get output from FFTEnergy so that we can combine the plots. We chose
to put the data on the same axes. Figure 2.3 shows the temperature data and the FFT.

Figure 2.3: 1993 and 2015 data.
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We get a little fancy with plotset. Our legend entries are computed to include the mean
temperatures.

d2015 = d2015 - m2015;
[e2015,f] = FFTEnergy( d2015, tSamp );

lG = {{sprintf('1993: Mean = %4.1f deg-F',m1993) sprintf('2015: Mean
= %4.1f deg-F',m2015)}};

PlotSet(t,[d1993;d2015], 'x label', 'Days', 'y label','Amplitude (
deg-F)',...
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'plot title','Temperature', 'figure title', 'Temperature','legend',
lG,'plot set',j);

2.6 Using MATLAB Strings
Machine learning often requires interaction with humans, which often means processing speech.
Also, expert systems and fuzzy logic systems can make use of textual descriptions. MATLAB’s
string data type makes this easier. Strings are bracketed by double quotes. In this section, we
will give examples of operations that work with strings, but not with character arrays.

2.6.1 String Concatenation

2.6.1.1 Problem
We want to concatenate two strings.

2.6.1.2 Solution
Create the two strings and use the “+” operator.

2.6.1.3 How It Works
You can use the + operator to concatenate strings. The result is the second string after the first.

>> a = "12345";
>> b = "67";
>> c = a + b

c =

"1234567"

2.6.2 Arrays of Strings

2.6.2.1 Problem
We want any array of strings.

2.6.2.2 Solution
Create the two strings and put them in a matrix.

2.6.2.3 How It Works
We create the same two strings as above and use the matrix operator. If they were character
arrays we would need to pad the shorter with blanks to be the same size as the longer.

>> a = "12345";
>> b = "67";
>> c = [a;b]

c =

2$\times$1 string array
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"12345"
"67"

>> c = [a b]

c =

1$\times$2 string array

"12345" "67"

You could have used a cell array for this, but strings are often more convenient.

2.6.3 Substrings

2.6.3.1 Problem
We want to get strings after a fixed prefix.

2.6.3.2 Solution
Create a string array and use extractAfter.

2.6.3.3 How It Works
Create a string array of strings to search and use extractAfter.

>> a = ["1234";"12456";"12890"];
f = extractAfter(a,"12")

f =

3$\times$1 string array

"34"
"456"
"890"

Most of the string functions work with char, but strings are a little cleaner. Here is the
above example with cell arrays.

>> a = {'1234';'12456';'12890'};
>> f = extractAfter(a,"12")

f =

3$\times$1 cell array

{'34' }
{'456'}
{'890'}
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2.7 Summary
There are a variety of data containers in MATLAB to assist you in analyzing your data for
machine learning. If you have access to a computer cluster or one of the specialized computing
toolboxes you have even more options. Table 2.9 lists the functions and scripts included in the
companion code.

Table 2.9: Chapter Code Listing

File Description
AutomobileInitialize Data structure initialization example from Chapter 12.
catReducer Image datastore used with mapreduce.
FFTEnergy Computes the energy from an FFT.
weatherFFT Does an FFT of weather data.
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CHAPTER 3

MATLAB Graphics

One of the issues with machine learning is understanding the algorithms and why an algo-
rithm made a particular decision. In addition, you want to be able to easily understand the
decision. MATLAB has extensive graphics facilities that can be harnessed for that purpose.
Plotting is used extensively in machine learning problems. MATLAB plots can be two- or
three-dimensional. MATLAB also has many plot types such as line plots, bar charts, and pie
charts. Different types of plots are better at conveying particular types of data. MATLAB also
has extensive surface and contour plotting capabilities that can be used to display complex data
in an easy-to-grasp fashion. Another facility is 3D modeling. You can draw animated objects,
such as robots or automobiles. These are particularly valuable when your machine learning
involves simulations.

An important part of MATLAB graphics is Graphical User Interface (GUI) building.
MATLAB has extensive facilities for making GUIs. These can be a valuable way of making
your design tools or machine learning systems easy for users to operate.

This chapter will provide an introduction to a wide variety of graphics tools in MATLAB.
They should allow you to harness MATLAB graphics for your own applications.

3.1 2D Line Plots
3.1.1 Problem

You want a single function to generate two-dimensional line graphs, avoiding a long list of code
for the generation of each graphic.

3.1.2 Solution

Write a single function to take the data and parameter pairs to encapsulate the functionality of
MATLAB’s 2D line plotting functions. An example of a plot created with a single line of code
is shown in Figure 3.1.
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Figure 3.1: PlotSet’s built-in demo.
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3.1.3 How It Works

PlotSet generates 2D plots, including multiple plots on a page.
function h = PlotSet( x, y, varargin )
This code processes varargin as parameter pairs to set options. A parameter pair is two

inputs. The first is the name of the value and the second is the value. For example, the parameter
pair for labeling the x-axis is:

’x label’,’Time (s)’
vararginmakes it easy to expand the plotting options. The core function code is shown

below. We supply default values for the x and y axis labels and the figure name. The parameter
pairs are handled in a switch statement. The following code is the branch when there is only
one x-axis label for all of the plots. It arranges plots by the data in plotSet that is a cell array.

for k = 1:m
subplot(m,nCol,k);
j = plotSet{k};
for i = 1:length(j)

plotXY(x,y(j(i),:),plotType);
hold on

end

46



CHAPTER 3 MATLAB GRAPHICS

hold off
xlabel(xLabel{1});
ylabel(yLabel{k});
if( length(plotTitle) == 1 )

title(plotTitle{1})
else

title(plotTitle{k})
end
if( ˜isempty(leg{k}) )

legend(leg{k});
end
grid on

end

The plotting is done in a subfunction called plotXY. There you see all the familiar
MATLAB plotting function calls.

function plotXY(x,y,type)

switch type
case 'plot'

plot(x,y);
case {'log' 'loglog' 'log log'}

loglog(x,y);
case {'xlog' 'semilogx' 'x log'}

semilogx(x,y);
case {'ylog' 'semilogy' 'y log'}

semilogy(x,y);
otherwise

error('%s is not an available plot type',type);
end

The example in Figure 3.1 is generated by a dedicated demo function at the end of the
PlotSet function. This demo shows several of the features of the function. These include:

1. Multiple lines per graph

2. Legends

3. Plot titles

4. Default axes labels

Using a dedicated demo subfunction is a clean way of providing a built-in example of a function,
and it is especially important in graphics functions to provide an example of a typical plot. The
code is shown below.

function Demo

x = linspace(1,1000);
y = [sin(0.01*x);cos(0.01*x);cos(0.03*x)];
disp('PlotSet: One x and two y rows')
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3.2 General 2D Graphics
3.2.1 Problem

You want to represent a 2D data set in different ways. Line plots are very useful, but sometimes
it is easier to visualize data in different forms. MATLAB has many functions for 2D graphical
displays.

3.2.2 Solution

Write a script to show MATLAB’s different 2D plot types. In our example we use subplots
within one figure to help reduce figure proliferation.

3.2.3 How It Works

Use the NewFigure function to create a new figure window with a suitable name. Then run
the following script.

>> NewFigure('My figure name')

ans =

Figure (1: My figure name) with properties:

Number: 1
Name: 'My figure name'

Color: [0.9400 0.9400 0.9400]
Position: [560 528 560 420]

Units: 'pixels'

Show all properties

subplot(4,1,1);
plot(x,y);
subplot(4,1,2);
bar(x,y);
subplot(4,1,3);
barh(x,y);
ax4 = subplot(4,1,4);
pie(y)
colormap(ax4,'gray')

Four plot types are shown that are helpful in displaying 2D data. One is the 2D line plot, the
same as that used in PlotSet. The middle two are bar charts. The final is a pie chart. Each
gives you different insight into the data. Figure 3.2 shows the plot types.

There are many MATLAB functions for making these plots more informative. You can:

• Add labels

• Add grids
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Figure 3.2: Four different types of MATLAB 2D plots.
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• Change font types and sizes

• Change the thickness of lines

• Add legends

• Change axes limits

The last item requires looking at the axes’ properties. Here are the properties for the last
plot – the list is very long! gca is the handle to the current axes. get(gca) returns a huge
list, which we will not print here. Every single one of these can be changed by using the set
function:

set(gca,'YMinorGrid','on','YGrid','on')

This uses parameter pairs just like PlotSet. In this list, children are pointers to the chil-
dren of the axes. You can access those using get and change their properties using set. Any
item that is added to an axis, such as axis labels, titles, lines, or other graphics objects, are all
children of that axis.
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3.3 Custom Two-Dimensional Diagrams
3.3.1 Problem

Many machine learning algorithms benefit from two-dimensional diagrams such as tree dia-
grams, to help the user understand the results and the operation of the software. Such diagrams,
automatically generated by the software, are useful in many types of learning systems. This
section gives an example of how to write MATLAB code for a tree diagram.

3.3.2 Solution

Our solution is to use the MATLAB patch function to automatically generate the blocks, and
use line to generate connecting lines in the function TreeDiagram. Figure 3.3 shows the
resulting hierarchical tree diagram. The circles are in rows and each row is labeled.

3.3.3 How It Works

Tree diagrams are very useful for machine learning. This function generates a hierarchical tree
diagram with the nodes as circles with text within each node. The graphics functions used in
this function are:

1. line

2. patch

3. text

The data needed to draw the tree are contained in a data structure, which is documented in the
header. Each node has a parent field. This information is sufficient to make the connections.
The node data are entered as a cell array.

Figure 3.3: A custom tree diagram.

Row 1 1

Row 2 1 2 3

Row 3 1 4 2 5 6 7

Row 4 1 8 4 2 9 10 11 12
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The function uses a figure handle as a persistent variable so that the same figure can be
updated with subsequent calls, if desired.

if( ˜update )
figHandle = NewFigure(w.name);

else
clf(figHandle)

end

The core drawing code is in DrawNode, which draws the boxes and ConnectNode,
which connects the nodes with lines. Our nodes are circles with 20 segments. The linspace
code makes sure that both 0 and 2π are not in the list of angles.

function [xC,yCT,yCB] = DrawNode( x0, y0, k, w )

n = 20;
a = linspace(0,2*pi*(1-1/n),n);

x = w.width*cos(a)/2 + x0;
y = w.width*sin(a)/2 + y0;
patch(x,y,'w');
text(x0,y0,sprintf('%d',k),'fontname',w.fontName,'fontsize',w.

fontSize,'horizontalalignment','center');

xC = x0;
yCT = y0 + w.width/2;
yCB = y0 - w.width/2;

%% TreeDiagram>ConnectNode
function ConnectNode( n, nP, w )

x = [n.xC nP.xC];
y = [n.yCT nP.yCB];

line(x,y,'linewidth',w.linewidth,'color',w.linecolor);

The builtin in demo in TreeDiagram.

3.4 Three-Dimensional Box
There are two broad classes of three-dimensional graphics. One is to draw an object, like the
earth. The other is to draw large data sets. This recipe plus the following one will show you
how to do both.

51



CHAPTER 3 MATLAB GRAPHICS

3.4.1 Problem

We want to draw a three-dimensional box.

3.4.2 Solution

The function Box3 users the patch function to draw the object. An example is shown in
Figure 3.4.

3.4.3 How It Works

Three-dimensional objects are created from vertices and faces. A vertex is a point in space. You
create a list of vertices that are the corners of your 3D object. You then create faces that are lists
of vertices. A face with two vertices is a line, one with three vertices is a triangle. A polygon
can have as many vertices as you would like. However, at the lowest level, graphics processors
deal with triangles so you are better off making all patches triangles. You will notice the normal

Figure 3.4: A box drawn with patch.
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Figure 3.5: A patch. The normal is toward the camera or the “outside” of the object.
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vector. This is the outward vector. Your vertices in your patches should be ordered using the
right-hand rule, that is, if the normal is in the direction of your thumb, then the faces are ordered
in the direction of your fingers. In this figure, the order for the two triangles would be:

[3 2 1]
[1 4 3]

MATLAB lighting is not very picky about vertex ordering, but if you export a model, then you
will need to follow this convention. Otherwise, you can end up with inside-out objects!

The following code creates a box composed of triangle patches. The face and vertex arrays
are created by hand. Vertices are one vertex per row so vertex arrays are n by 3. Face arrays are
n by m where m is the largest number of vertices per face. In Box we work with triangles only.
All graphics processors ultimately draw triangles so, if you can, it is best to create objects only
with triangles.

function [v, f] = Box( x, y, z )

% Demo
if( nargin < 1 )

Demo
return

end

% Faces
f = [2 3 6;3 7 6;3 4 8;3 8 7;4 5 8;4 1 5;2 6 5;2 5 1;1 3 2;1 4 3;5

6 7;5 7 8];
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% Vertices
v = [-x x x -x -x x x -x;...

-y -y y y -y -y y y;...
-z -z -z -z z z z z]'/2;

% Default outputs
if( nargout == 0 )

DrawVertices( v, f, 'Box' );
clear v

end

The box is drawn using patch in the function DrawVertices. There is just one call
to patch. patch accepts parameter pairs to specify face and edge coloring and many other
characteristics of the patch. Only one color can be specified for a patch. If you wanted a box
with different colors on each side, you would need multiple patches. We turn on rotate3d so
that we can reorient the object with the mouse. view3 is a standard MATLAB view with the
eye looking down a corner of the grid box.

NewFigure(name)
patch('vertices',v,'faces',f,'facecolor',[0.8 0.1 0.2]);
axis image
xlabel('x')
ylabel('y')
zlabel('z')
See SimGUI.m and SimGUI.fig.
view(3)
grid on
rotate3d on

We use only the most basic lighting. You can add all sorts of lights in your drawing using
light. Light can be ambient or from a variety of light sources.

3.5 Draw a 3D Object with a Texture
3.5.1 Problem

We want to draw a planet with a texture.

3.5.2 Solution

Use a surface and overlay a texture onto the surface. Figure 3.6 shows an example with a recent
image of Pluto using the function Globe.

>> Globe

ans =

Figure (2: Globe) with properties:
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Figure 3.6: A three-dimensional globe of Pluto.

Number: 2
Name: 'Globe'

Color: [0.9400 0.9400 0.9400]
Position: [560 528 560 420]

Units: 'pixels'

Show all properties

3.5.3 How It Works

We generate the picture by first creating x, y, z points on the sphere and then overlaying a
texture that is read in from an image file. The texture map can be read from a file using imread.
If this is color, it will be a three-dimensional matrix. The third element will be an index to
the color, red, blue or green. However, if it is a grayscale image, you must create the three-
dimensional “color” matrix by replicating the image.

p = imread('PlutoGray.png');
p3(:,:,1) = p;
p3(:,:,2) = p;
p3(:,:,3) = p;

The starting p is a two-dimensional matrix.
You first generate the surface using the coordinates generated from the sphere function.

This is done with surface. You then apply the texture:
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for i= 1:3
planetMap(:,:,i)=flipud(planetMap(:,:,i));

end
set(hSurf,'Cdata',planetMap,'Facecolor','texturemap');
set(hSurf,'edgecolor', 'none',...

'EdgeLighting', 'phong','FaceLighting', 'phong',...
'specularStrength',0.1,'diffuseStrength',0.9,...
'SpecularExponent',0.5,'ambientStrength',0.2,...
'BackFaceLighting','unlit');

flipup makes the map look “normal.” Phong is a type of lighting. It takes the colors at
the vertices and interpolates the colors at the pixels on the polygon based on the interpolated
normals. Diffuse and specular refer to different types of reflections of light. They aren’t too
important when you apply a texture to the surface.

3.6 General 3D Graphics
3.6.1 Problem

We want to use 3D graphics to study a 2D data set. A 2D data set is a matrix or an n by m array.

3.6.2 Solution

Use MATLAB surface, mesh, bar and contour functions. TwoDDataDisplay gives an example
of a random data set with different visualizations is shown in Figure 3.7.

3.6.3 How It Works

We generate a random 2D data set that is 8x8 using rand. We display it in several ways in a
figure with subplots. In this case, we create two rows and three columns of subplots. Figure 3.7
shows six types of 2D plots. surf, mesh and surfl (3D shaded surface with lighting) are
very similar. The surface plots are more interesting when lighting is applied. The two bar3
plots show different ways of coloring the bars. In the second bar plot, the color varies with
length. This requires a bit of code changing the CData and FaceColor.

m = rand(8,8);

h = NewFigure('Two Dimensional Data');

colormap(h,'gray')

subplot(2,3,1)
surf(m)
title('surf')

subplot(2,3,2)
surfl(m,'light')
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Figure 3.7: Two-dimensional data shown with six different plot types.
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title('surfl')

subplot(2,3,3)
mesh(m)
title('mesh')

subplot(2,3,4)
bar3(m)
title('bar3')

subplot(2,3,5)
h = bar3(m);
title('bar3')

colorbar
for k = 1:length(h)
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zdata = h(k).ZData;
h(k).CData = zdata;
h(k).FaceColor = 'interp';

end

subplot(2,3,6)
contour(m);
title('contour')

3.7 Building a GUI
3.7.1 Problem

We want a GUI to provide a graphical interface for a second-order system simulation.

3.7.2 Solution

We will use the MATLAB GUIDE to build a GUI that will allow us to:

1. Set the damping constant

2. Set the end time for the simulation

3. Set the type of input (pulse, step or sinusoid)

4. Display the inputs and outputs plot

3.7.3 How It Works

We want to build a GUI to interface with SecondOrderSystemSim shown below. The first
part of SecondOrderSystemSim is the simulation code in a loop.

omega = max([d.omega d.omegaU]); % Maximum frequency for the
simulation

dT = 0.1*2*pi/omega; % Get the time step from the frequency
n = floor(d.tEnd/dT); % Get an integer numbeer of steps
xP = zeros(2,n); % Size the plotting array
x = [0;0]; % Initial condition on the [position;velocity]
t = 0; % Initial time

for k = 1:n
[˜,u] = RHS(t,x,d);
xP(:,k) = [x(1);u];
x = RungeKutta( @RHS, t, x, dT, d );
t = t + dT;

end
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Figure 3.8: Second-order system simulation.
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Running it gives the following plot Figure 3.8. The plot code is

[t,tL] = TimeLabel((0:n-1)*dT);

if( nargout == 0 )
PlotSet(t,xP,'x label',tL,'y label', {'x' 'u'}, 'figure title','

Filter');
end

TimeLabelmakes time units that are reasonable for the length of the simulation. It auto-
matically rescales the time vector. The function has the simulation loop built in.

The MATLABGUI building system, GUIDE, is invoked by typing guide at the command
line. We are using MATLAB R2018a. There may be subtle differences in your version.

There are several options for GUI templates, or a blank GUI. We will start from a blank
GUI. First, let’s make a list of the controls we will need from our desired features list above:

• Edit boxes for:

– Simulation duration

– Damping ratio

– Undamped natural frequency

– Sinusoid input frequency

– Pulse start and stop time
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Figure 3.9: Blank GUI.

• Radio button for the type of input

• Run button for starting a simulation

• Plot axes

We type “guide” in the command window and it asks us to either pick an existing GUI or
create a new one. We choose a blank GUI. Figure 3.9 shows the template GUI in GUIDE before
we make any changes to it. You add elements by dragging and dropping from the table at the
left.

Figure 3.10 shows the GUI inspector. You edit GUI elements here. You can see that the
elements have a lot of properties. We aren’t going to try and make this GUI really slick, but
with some effort you can make it a work of art. The ones we will change are the tag and text
properties. The tag gives the software a name to use internally. The text is just what is shown
on the device.

We then add all the desired elements by dragging and dropping. We choose to name our
GUI “GUI”. The resulting initial GUI is shown in Figure 3.11. In the inspector for each element
you will see a field for “tag.” Change the names from things like edit1 to names you can
easily identify. When you save them and run the GUI from the .fig file the code in GUI.m will
automatically change.

We create a radio button group and add the radio buttons. This handles disabling all but the
selected radio button. When you hit the green arrow in the layout box, it saves all changes to
the m-file and also simulates it. It will warn you about bugs.
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Figure 3.10: The GUI inspector.

At this point, we can start work on the GUI code itself. The template GUI stores its data,
calculated from the data the user types into the edit boxes, in a field called simdata. The
autogenerated code is in SimGUI.

When the GUI loads, we initialize the text fields with the data from the default data struc-
ture. Make sure that the initialization corresponds to what is seen in the GUI. You need to be
careful about radio buttons and button states.

function SimGUI_OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for SimGUI
handles.output = hObject;

% Get the default data
handles.simData = SecondOrderSystemSim;

% Set the default states
set(handles.editDuration,'string',num2str(handles.simData.tEnd));
set(handles.editUndamped,'string',num2str(handles.simData.omega));
set(handles.editPulseStart,'string',num2str(handles.simData.

tPulseBegin));
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Figure 3.11: Snapshot of the GUI in the editing window after adding all the elements.

set(handles.editPulseEnd,'string',num2str(handles.simData.tPulseEnd))
;

set(handles.editDamping,'string',num2str(handles.simData.zeta));
set(handles.editInputFrequency,'string',num2str(handles.simData.

omegaU));

% Update handles structure
guidata(hObject, handles);

When the start button is pushed we run the simulation and plot the results. This essentially
is the same as the demo code in the second-order simulation.

function start_Callback(hObject, eventdata, handles)

[xP, t, tL] = SecondOrderSystemSim(handles.simData);

axes(handles.position)
plot(t,xP(1,:));
ylabel('Position')
grid

axes(handles.input)
plot(t,xP(2,:));
xlabel(tL);
ylabel('input');
grid
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Figure 3.12: Snapshot of the GUI in simulation.

The callbacks for the edit boxes require a little code to set the data in the stored data. All
data are stored in the GUI handles. guidatamust be called to store new data in the handles.

function editDuration_Callback(hObject, eventdata, handles)

handles.simData.tEnd = str2double(get(hObject,'String'));
guidata(hObject, handles);

One simulation is shown in Figure 3.12. Another simulation in the GUI is shown in
Figure 3.13.

3.8 Animating a Bar Chart
Two-dimensional arrays are often produced as part of machine-learning algorithms. For situa-
tions where they change dynamically we would like to animate a display.
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Figure 3.13: Snapshot of the GUI in simulation.

3.8.1 Problem

We want to animate a 3D bar chart.

3.8.2 Solution

We will write code to animate the MATLAB bar3 function.

3.8.3 How It Works

Our function Bar3D will set up the figure using bar3 and then replace the values for the length
of the bars. This is trickier than it sounds.

The following is an example of bar3. We use the handle to get the z data.

>> m = [1 2 3;4 5 6];
h = bar3(m);
>> z = get(h(1),'zdata')
z =

NaN 0 0 NaN
0 1 1 0
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0 1 1 0
NaN 0 0 NaN
NaN 0 0 NaN
NaN NaN NaN NaN
NaN 0 0 NaN

0 4 4 0
0 4 4 0

NaN 0 0 NaN
NaN 0 0 NaN
NaN NaN NaN NaN

We see each column in the array. We will need to replace all four values for each number
in m. Look at h. It is length 3. Each column in m has a surface data structure.

>> h

h =

1x3 Surface array:

Surface Surface Surface

Figure 3.14 shows the bar graph.
The code is shown below. We have two actions, “initialize,” which creates the figure, and

“update,” which updates the z values. Fortunately, the z-values are always in the same spot so it

Figure 3.14: Two by three bar chart.
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is not too hard to replace them. colorbar draws the color bar seen on the right of Figure 3.15.
We use persistent to store the handle to bar3.

function Bar3D(action,v,xL,yL,zL,t)

if( nargin < 1 )
Demo
return

end

persistent h

switch lower(action)
case 'initialize'

NewFigure('3D Bar Animation');
h = bar3(v);

colorbar

xlabel(xL)
xlabel(yL)
xlabel(zL)
title(t);
view(3)
rotate3d on

case 'update'
nRows = length(h);
for i = 1:nRows

z = get(h(i),'zdata');
n = size(v,1);
j = 2;
for k = 1:n

z(j, 2) = v(k,i);
z(j, 3) = v(k,i);
z(j+1,2) = v(k,i);
z(j+1,3) = v(k,i);
j = j + 6;

end
set(h(i),'zdata',z);

end
end
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Figure 3.15: Two by three bar chart and the end of the animation.
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The figure at the end of the animation is shown in Figure 3.15.

3.9 Drawing a Robot
This section shows the elements of writing graphics code to draw a robot. If you are doing
machine learning involving humans or robots, this is a useful code to have. We’ll show how to
animate a robot arm.

3.9.1 Problem

We want to animate a robot arm.

3.9.2 Solution

We write code to create vertices and faces for use in the MATLAB patch function.

3.9.3 How It Works

DrawSCARA draws and animates a robot. The first part of the code really just organizes the
operation of the function using a switch statement.

switch( lower(action) )
case 'defaults'

m = Defaults;

case 'initialize'
if( nargin < 2 )

d = Defaults;
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else
d = x;

end

p = Initialize( d );

case 'update'
if( nargout == 1 )

m = Update( p, x );
else

Update( p, x );
end

end

Initialize creates the vertex and faces using functions Box, Frustrum and
UChannel. These are tedious to write and are geometry-specific. You can apply them to a
wide variety of problems, however. You should note that it stores the patches so that we just
have to pass in new vertices when animating the arm. The “new” vertices are just the vertices of
the arm rotated and translated to match the position of the arm. The arm itself does not deform.
We do the computations in the right order so that transformations are passed up/down the chain
to get everything moving correctly.

Update updates the arm positions by computing new vertices and passing them to the
patches. drawnow draws the arm. We can also save the frames to animate it using MATLAB’s
movie functions.

function m = Update( p, x )

for k = 1:size(x,2)

% Link 1
c = cos(x(1,k));
s = sin(x(1,k));

b1 = [c -s 0;s c 0;0 0 1];
v = (b1*p.v1')';

set(p.link1,'vertices',v);

% Link 2
r2 = b1*[p.a1;0;0];

c = cos(x(2,k));
s = sin(x(2,k));
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b2 = [c -s 0;s c 0;0 0 1];
v = (b2*b1*p.v2')';

v(:,1) = v(:,1) + r2(1);
v(:,2) = v(:,2) + r2(2);

set(p.link2,'vertices',v);

% Link 3
r3 = b2*b1*[p.r3;0;0] + r2;
v = p.v3;

v(:,1) = v(:,1) + r3(1);
v(:,2) = v(:,2) + r3(2);
v(:,3) = v(:,3) + x(3,k);

set(p.link3,'vertices',v);

% Link 4
c = cos(x(4,k));

s = sin(x(4,k));

b4 = [c -s 0;s c 0;0 0 1];
v = (b4*b2*b1*p.v4')';
r4 = b2*b1*[p.r4;0;0] + r2;

v(:,1) = v(:,1) + r4(1);
v(:,2) = v(:,2) + r4(2);
v(:,3) = v(:,3) + x(3,k);

set(p.link4,'vertices',v);

if( nargout > 0 )
m(k) = getframe;

else
drawnow;

end

end

The SCARA robot arm in the demo is shown at the end in Figure 3.16. The demo code
could be replaced by a simulation of the arm dynamics. In this case, we pick angular rates and
generate an array of angles. Note that this alternate demo function does not need to be a built-in
demo function at all. This same block of code can be executed directly from the command line.
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Figure 3.16: Robot arm generated by DrawSCARA.

function Demo

DrawSCARA( 'initialize' );
t = linspace(0,100);
omega1 = 0.1;
omega2 = 0.2;
omega3 = 0.3;
omega4 = 0.4;
x = [sin(omega1*t);sin(omega2*t);0.01*sin(omega3*t);sin(omega4*

t)];
DrawSCARA( 'update', x );
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3.10 Summary
This chapter has demonstrated graphics that can help you to understand the results of machine
learning software. Two- and three-dimensional graphics were demonstrated. The chapter also
showed how to build a Graphical User Interface to help you to automate functions. Table 3.1
lists the functions and scripts included in the companion code.

Table 3.1: Chapter Code Listing

File Description
Bar3D 3D bar plots
Box Draw a box.
DrawSCARA Draw a robot arm.
DrawVertices Draw a set of vertices and faces.
Frustrum Draw a frustrum (a cone with the top chopped off)
Globe Draw a texture-mapped globe.
PlotSet 2D line plots.
SecondOrderSystemSim Simulates a second-order system.
SimGUI Code for the simulation GUI.
SimGUI.fig The figure.
SurfaceOfRevolution Draw a surface of revolution
TreeDiagram Draw a tree diagram.
TwoDDataDisplay A script to display two-dimensional data in three-dimensional

graphics.
UChannel Draw a U shaped channel
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Kalman Filters

Understanding or controlling a physical system often requires a model of the system, that is,
knowledge of the characteristics and structure of the system. A model can be a pre-defined
structure or can be determined solely through data. In the case of Kalman Filtering, we create
a model and use the model as a framework for learning about the system. This is part of the
Control branch of our Autonomous Learning taxonomy from Chapter 1.

Autonomous 
Learning

Control
Intelligence

Machine 
Learning

What is important about Kalman Filters is that they rigorously account for uncertainty in a
system that you want to know more about. There is uncertainty in the model of the system, if
you have a model, and uncertainty (i.e., noise) in measurements of a system.

A system can be defined by its dynamical states and its parameters, which are nominally
constant. For example, if you are studying an object sliding on a table, the states would be
the position and velocity. The parameters would be the mass of the object and the friction
coefficient. There may also be an external force on the object that we may want to estimate.
The parameters and states comprise the model. You need to know both to properly understand
the system. Sometimes it is hard to decide if something should be a state or a parameter. Mass is
usually a parameter, but in a aircraft, car or rocket where the mass changes as fuel is consumed,
it is often modeled as a state.

The Kalman Filters, invented by R. E. Kalman and others, are a mathematical framework for
estimating or learning the states of a system. An estimator gives you statistically best estimates
of the dynamical states of the system, such as the position and velocity of a moving point mass.

© Michael Paluszek and Stephanie Thomas 2019
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Kalman Filters can also be written to identify the parameters of a system. Thus, the Kalman
Filter provides a framework for both state and parameter identification.

Another application of Kalman Filters is system identification. System identification is the
process of identifying the structure and parameters of any system. For example, with a simple
mass on a spring it would be the identification or determination of the mass and spring constant
values along with determining the differential equation for modeling the system. It is a form
of machine learning that has its origins in control theory. There are many methods of system
identification. In this chapter, we will only study the Kalman Filter. The term “learning” is not
usually associated with estimation, but it is really the same thing.

An important aspect of the system identification problem is determining what parameters
and states can actually be estimated given the measurements that are available. This applies
to all learning systems. The question is, can we learn what we need to know about something
through our observations? For this, we want to know if a parameter or state is observable and
can be independently distinguished. For example, suppose we are using Newton’s law:

F = ma (4.1)

where F is force, m is mass, and a is acceleration as our model, and our measurement is accel-
eration. Can we estimate both force and mass? The answer is no, because we are measuring the
ratio of force to mass

a =
F

m
(4.2)

We can’t separate the two. If we had a force sensor or a mass sensor we could determine each
separately. You need to be aware of this issue in all learning systems, including Kalman Filters.

4.1 A State Estimator Using a Linear Kalman Filter
4.1.1 Problem

You want to estimate the velocity and position of a mass attached through a spring and damper
to a structure. The system is shown in Figure 4.1. m is the mass, k is the spring constant, c is
the damping constant, and f is an external force. x is the position. The mass moves in only one
direction.

Suppose we had a camera that was located near the mass. The camera would be pointed at
the mass during its ascent. This would result in a measurement of the angle between the ground
and the boresight of the camera. The angle measurement geometry is shown in Figure 4.2. The
angle is measured from an offset baseline.

We want to use a conventional linear Kalman Filter to estimate the state of the system. This
is suitable for a simple system that can be modeled with linear equations.
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Figure 4.1: Spring-mass-damper system. The mass is on the right. The spring is on the top to
the left of the mass. The damper is below.
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Figure 4.2: The angle measurement geometry.
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4.1.2 Solution

First, we will need to define a mathematical model for the mass system and code it up. Then
we will derive the Kalman Filter from first principles, using Bayes theorem. Finally, we present
code implementing the Kalman Filter estimator for the spring-mass problem.

4.1.3 How It Works

Spring-Mass System Model
The continuous time differential equations modeling the system are

dr

dt
= v (4.3)

m
dv

dt
= f − cv − kx (4.4)
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This says the change in position r with respect to time t is the velocity v. The change in
velocity with respect to time (times mass) is an external force, minus the damping constant times
velocity, minus the spring constant times the position. The second equation is just Newton’s
law where the total force is F and the total acceleration, aT , is the total force divided by the
mass, F

m

F = f − cv − kx (4.5)
dv

dt
= aT (4.6)

To simplify the problem we divide both sides of the second equation by mass and get:

dr

dt
= v (4.7)

dv

dt
= a− 2ζωv − ω2x (4.8)

where
c

m
= 2ζω (4.9)

k

m
= ω2 (4.10)

a is the acceleration due to external forces f
m , ζ is the damping ratio, and ω is the undamped

natural frequency. The undamped natural frequency is the frequency at which the mass would
oscillate if there were no damping. The damping ratio indicates how fast the system damps and
what level of oscillations we observe. With a damping ratio of zero, the system never damps
and the mass oscillates forever. With a damping ratio of one you don’t see any oscillation. This
form makes it easier to understand what damping and oscillation to expect. You immediately
know the frequency and the rate at which the oscillation should subside. m, c, and k, although
they embody the same information, don’t make this as obvious.

The following shows a simulation of the oscillator with damping (OscillatorDamping
RatioSim). It shows different damping ratios. The loop that runs the simulation with different
damping ratios is shown.

for j = 1:length(zeta)
% Initial state [position;velocity]
x = [0;1];
% Select damping ratio from array
d.zeta= zeta(j);

% Print a string for the legend
s{j} = sprintf('zeta = %6.4f',zeta(j));
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for k = 1:nSim
% Plot storage
xPlot(j,k) = x(1);

% Propagate (numerically integrate) the state equations
x = RungeKutta( @RHSOscillator, 0, x, dT, d );

end
end

The results of the damping ratio demo are shown in Figure 4.3. The initial conditions are
zero position and a velocity of one. The responses to different levels of damping ratios are seen.
When zeta is zero it is undamped and oscillates forever. Critical damping, which is desirable
from minimizing actuator effort, is 0.7071. A damping ratio of 1 results in no overshoot to a
step disturbance. In this case, we have “overshoot,” since we are not at a rest initial condition.

Figure 4.3: Spring-mass-damper system simulation with different damping ratios zeta.
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The dynamical equations are in what is called state-space form because the derivative of the
state vector:

x =

[
r
v

]
(4.11)
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has nothing multiplying it and there are only first derivatives on the left-hand side. Sometimes
you see equations like:

Qẋ = Ax+Bu (4.12)

If Q is not invertible then you can’t do:

ẋ = Q−1Ax+Q−1Bu (4.13)

to make state space equations. Conceptually, if Q is not invertible, that is the same thing as
having fewer than N unique equations (where N is the length of x, the number of states).

All of our filter derivations work with dynamical equations in state space form. Also, most
numerical integration schemes are designed for sets of first-order differential equations.

The right-hand side for the state equations (first-order differential equations),
RHSOscillator, is shown in the following listing. Notice that if no inputs are requested, it
returns the default data structure. The code, if (nargin < 1), tells the function to return
the data structure if no inputs are given. This is a convenient way of making your functions
self-documenting and keeping your data structures consistent. The actual working code is just
one line.

xDot = [x(2);d.a-2*d.zeta*d.omega*x(2)-d.omegaˆ2*x(1)];

The following listing gives the simulation script OscillatorSim. It causes the right-
hand side, RHSOscillator, to be numerically integrated using the RungeKutta function.
We start by getting the default data structure from the right-hand side. We fill it in with our
desired parameters. Measurements y are created for each step, including random noise. There
are two measurements: position and angle.

The following code shows just the simulation loop of OscillatorSim. The angle mea-
surement is just trigonometry. The first measurement line computes the angle, which is a non-
linear measurement. The second measures the vertical distance, which is linear.

for k = 1:nSim
% Measurements
yTheta = atan(x(1)/baseline) + yTheta1Sigma*randn(1,1);
yR = x(1) + yR1Sigma*randn(1,1);

% Plot storage
xPlot(:,k) = [x;yTheta;yR];

% Propagate (numerically integrate) the state equations
x = RungeKutta( @RHSOscillator, 0, x, dT, dRHS );

end
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The results of the simulation are shown in Figure 4.4. The input is a disturbance acceleration
that goes from zero to its value at time t = 0. It is constant for the duration of the simulation.
This is known as a step disturbance. This causes the system to oscillate. The magnitude of the
oscillation slowly goes to zero because of the damping. If the damping ratio were 1, we would
not see any oscillation, as seen in Figure 4.3.

Figure 4.4: Spring-mass-damper system simulation. The input is a step acceleration. The oscil-
lation slowly damps out, that is, it goes to zero over time. The position r develops an offset due
to the constant acceleration.
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The offset seen in the plot of r can be found analytically by setting v = 0. Essentially, the
spring force is balancing the external force.

0 =
dv

dt
= a− ω2x (4.14)

x =
a

ω2
(4.15)

We have now completed the derivation of our model and can move on to building the Kalman
Filters.
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Kalman Filter Derivation
Kalman filters can be derived from Bayes’ Theorem. What is Bayes’ Theorem? Bayes’ Theo-
rem is:

P (Ai|B) =
P (B|Ai)P (Ai)∑

P (B|Ai)
(4.16)

P (Ai|B) =
P (B|Ai)P (Ai)

P (B)
(4.17)

which is just the probability of Ai given B. P means “probability.” The vertical bar | means
“given.” This assumes that the probability of B is not zero, that is, P (B) �= 0. In the Bayesian
interpretation, the theorem introduces the effect of evidence on belief. This provides a rigorous
framework for incorporating any data for which there is a degree of uncertainty. Put simply,
given all evidence (or data) to date, Bayes’ Theorem allows you to determine how new evidence
affects the belief. In the case of state estimation this is the belief in the accuracy of the state
estimate.

Figure 4.5 shows the Kalman Filter family and how it relates to the Bayesian Filter. In
this book we are covering only the ones in the colored boxes. The complete derivation of the
Kalman Filter is given below; this provides a coherent framework for all Kalman filtering im-
plementations. The different filters fall out of the Bayesian models based on assumptions about
the model and sensor noise and the linearity or nonlinearity of the measurement and dynamics
models. Let’s look at the branch that is colored blue. Additive Gaussian noise filters can be lin-
ear or nonlinear depending on the type of dynamical and measurement models. In many cases
you can take a nonlinear system and linearize it about the normal operating conditions. You can
then use a linear Kalman Filter. For example, a spacecraft dynamical model is nonlinear and an
Earth sensor that measures the Earth’s chord width for roll and pitch information is nonlinear.
However, if we are only concerned with Earth pointing, and small deviations from nominal
pointing, we can linearize both the dynamical equations and the measurement equations and
use a linear Kalman Filter.

If nonlinearities are important, we have to use a nonlinear filter. The Extended Kalman
Filter (EKF) uses partial derivatives of the measurement and dynamical equations. These are
computed each time step or with each measurement input. In effect, we are linearizing the sys-
tem each step and using the linear equations. We don’t have to do a linear state propagation,
that is, propagating the dynamical equations, and could propagate them using numerical inte-
gration. If we can get analytical derivatives of the measurement and dynamical equations, this
is a reasonable approach. If there are singularities in any of the equations, this may not work.

The Unscented Kalman Filter (UKF) uses the nonlinear equations directly. There are two
forms, augmented and non-augmented. In the former, we created an augmented state vector
that includes both the states and the state and measurement noise variables. This may result in
better results at the expense of more computation.

All of the filters in this chapter are Markov, that is, the current dynamical state is entirely
determined from the previous state. Particle filters are not addressed in this book. They are
a class of Monte Carlo methods. Monte Carlo (named after the famous casino) methods are
computational algorithms that rely on random sampling to obtain results. For example, a Monte
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Figure 4.5: The Kalman Filter family tree. All are derived from a Bayesian filter. This chapter
covers those in colored boxes.
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Carlo approach to our oscillator simulation would be to use the MATLAB function nrandn to
generate the accelerations. We’d run many tests to verify that our mass moves as expected.

Our derivation will use the notation N(μ, σ2) to represent a normal variable. A normal
variable is another word for a Gaussian variable. Gaussian means it is distributed as the normal
distribution with mean μ (average) and variance σ2. The following code from Gaussian com-
putes a Gaussian or Normal distribution around a mean of 2 for a range of standard deviations.
Figure 4.6 shows a plot. The height of the plot indicates how likely a given measurement of the
variable is to have that value.

%% Initialize
mu = 2; % Mean
sigma = [1 2 3 4]; % Standard deviation
n = length(sigma);
x = linspace(-7,10);

%% Simulation
xPlot = zeros(n,length(x));
s = cell(1,n);

for k = 1:length(sigma)
s{k} = sprintf('Sigma = %3.1f',sigma(k));
f = -(x-mu).ˆ2/(2*sigma(k)ˆ2);
xPlot(k,:) = exp(f)/sqrt(2*pi*sigma(k)ˆ2);

end
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Figure 4.6: Normal or Gaussian random variable about a mean of 2.

-8 -6 -4 -2 0 2 4 6 8 10
x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

G
au

ss
ia

n
Sigma = 1.0
Sigma = 2.0
Sigma = 3.0
Sigma = 4.0

Given the probabilistic state space model in discrete time [23]

xk = fk(xk−1, wk−1) (4.18)

where x is the state vector and w is the noise vector, the measurement equation is:

yk = hk(xk, vn) (4.19)

where vn is the measurement noise. This has the form of a hidden Markov model (HMM)
because the state is hidden.

If the process is Markovian, then the future state xk is dependent only on the current state
xk−1 and is not dependent on the past states. This can be expressed in the equation:

p(xk|x1:k−1, y1:k−1) = p(xk|xk−1) (4.20)

The | means given. In this case, the first term is read as “the probability of xk given x1:k−1 and
y1:k−1.” This is the probability of the current state given all past states and all measurements up
to the k − 1 measurement. The past, xk−1, is independent of the future given the present.

p(xk−1|xk:T , yk:T ) = p(xk−1|xk) (4.21)

where T is the last sample and the measurements yk are conditionally independent given xk;
that is, they can be determined using only xk and are not dependent on x1:k or y1:k−1. This can
be expressed as:

p(yk|x1:k, y1:k−1) = p(yk|xk) (4.22)

We can define the recursive Bayesian optimal filter that computes the distribution:

p(xk|y1:k) (4.23)
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given:

• The prior distribution p(x0), where x0 is the state prior to the first measurement,

• The state space model

xk ∼ p(xk|xk−1) (4.24)

yk ∼ p(yk|xk) (4.25)

• The measurement sequence y1:k = y1, . . . , yk.

Computation is based on the recursion rule

p(xk−1|y1:k−1) → p(xk|y1:k) (4.26)

This means that we get the current state xk from the prior state xk−1 and all the past measure-
ments y1:k−1. Assume that we know the posterior distribution of the previous time step:

p(xk−1|y1:k−1) (4.27)

The joint distribution of xk, xk−1 given y1:k−1 can be computed as:

p(xk, xk−1|y1:k−1) = p(xk|xk−1, y1:k−1)p(xk−1|y1:k−1) (4.28)

= p(xk|xk−1)p(xk−1|y1:k−1) (4.29)

because this is a Markov process. Integrating over xk−1 gives the prediction step of the optimal
filter, which is the Chapman–Kolmogorov equation

p(xk|y1:k−1) =

∫
p(xk|xk−1, y1:k−1)p(xk−1|y1:k−1)dxk−1 (4.30)

The Chapman–Kolmogorov equation is an identity relating the joint probability distributions of
different sets of coordinates on a stochastic process. The measurement update state is found
from Bayes’ Rule:

P (xk|y1:k) = 1

Ck
p(yk|xk)p(xk|yk−1) (4.31)

Ck = p(yk|y1:k−1) =

∫
p(yk|xk)p(xk|y1:k−1)dxk (4.32)

Ck is the probability of the current measurement, given all past measurements.
If the noise is additive and Gaussian with the state covariance Qn and the measurement

covariance Rn, the model and measurement noise have zero mean, and we can write the state
equation as:

xk = fk(xk−1) + wk−1 (4.33)
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where x is the state vector and w is the noise vector. The measurement equation becomes:

yk = hk(xk) + vn (4.34)

Given that Q is not time-dependent we can write:

p(xk|xk−1, y1:k−1) = N(xk; f(xk−1), Q) (4.35)

where recall that N is a normal variable, in this case, with mean xk; f(xk−1), which means (xk
given f(xk−1) and variance Q. We can now write the prediction step Equation 4.30 as:

p(xk|y1:k−1) =

∫
N(xk; f(xk−1), Q)p(xk−1|y1:k−1)dxk−1 (4.36)

We need to find the first two moments of xk. A moment is the expected value (or mean) of
the variable. The first moment is of the variable, the second is of the variable squared and so
forth. They are:

E[xk] =

∫
xkp(xk|y1:k−1)dxk (4.37)

E[xkx
T
k ] =

∫
xkx

T
k p(xk|y1:k−1)dxk (4.38)

E means expected value. E[xk] is the mean and E[xkx
T
k ] is the covariance. Expanding the first

moment and using the identity E[x] =
∫
xN(x; f(s),Σ)dx = f(s) where s is any argument.

E[xk] =

∫
xk

[∫
d(xk; f(xk−1), Q)p(xk−1|y1:k−1)dxk−1

]
dxk (4.39)

=

∫
xk

[∫
N(xk; f(xk−1), Q)dxk

]
p(xk−1|y1:k−1)dxk−1 (4.40)

=

∫
f(xk−1)p(xk−1|y1:k−1)dxk−1 (4.41)

Assuming that p(xk−1|y1:k−1) = N(xk−1; x̂k−1|k−1, P
xx
k−1|k−1) where P xx is the covariance

of x and noting that xk = fk(xk−1) + wk−1 we get:

x̂k|k−1 =

∫
f(xk−1)N(xk−1; x̂k−1|k−1, P

xx
k−1|k−1)dxk−1 (4.42)

For the second moment:

E[xkx
T
k ] =

∫
xkx

T
k p(xk|y1:k−1)dxk (4.43)

=

∫ [∫
N(xk; f(xk−1), Q)xkx

T
k dxk

]
p(xk−1|y1:k−1)dxk−1 (4.44)
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which results in:

P xx
k|k−1 = Q+

∫
f(xk−1)f

T (xk−1)N(xk−1; x̂k−1|k−1, P
xx
k−1|k−1)dxk−1 − x̂Tk|k−1x̂k|k−1

(4.45)

The covariance for the initial state is Gaussian and is P xx
0 . The Kalman Filter can be written

without further approximations as

x̂k|k = x̂k|k−1 +Kn

[
yk − ŷk|k−1

]
(4.46)

P xx
k|k = P xx

k|k−1 −KnP
yy
k|k−1

KT
n (4.47)

Kn = P xy
k|k−1

[
P yy
k|k−1

]−1
(4.48)

where Kn is the Kalman gain and P yy is the measurement covariance. The solution of these
equations requires the solution of five integrals of the form:

I =

∫
g(x)N(x; x̂, P xx)dx (4.49)

The three integrals needed by the filter are:

P yy
k|k−1 = R+

∫
h(xn)h

T (xn)N(xn; x̂k|k−1, P
xx
k|k−1)dxk − x̂Tk|k−1ŷk|k−1 (4.50)

P xy
k|k−1 =

∫
xnh

T (xn)N(xn; x̂k|k−1, P
xx
k|k−1)dx (4.51)

ŷk|k−1 =

∫
h(xk)N(xk; x̂k|k−1, P

xx
k|k−1)dxk (4.52)

Assume that we have a model of the form:

xk = Ak−1xk−1 +Bk−1uk−1 + qk−1 (4.53)

yk = Hkxk + rk (4.54)

where

• xk ∈ �n is the state of system at time k

• mk is the mean state at time k

• Ak−1 is the state transition matrix at time k − 1

• Bk − 1 is the input matrix at time k − 1

• uk − 1 is the input at time k − 1

• qk−1, N(0, Qk), is the Gaussian process noise at time k − 1

85



CHAPTER 4 KALMAN FILTERS

• yk ∈ �m is the measurement at time k

• Hk is the measurement matrix at time k. This is found from the Jacobian (derivatives) of
h(x).

• rk = N(0, Rk), is the Gaussian measurement noise at time k

• The prior distribution of the state is x0 = N(m0, P0) where parameters m0 and P0

contain all prior knowledge about the system. m0 is the mean at time zero and P0 is the
covariance. Since our state is Gaussian, this completely describes the state.

• x̂k|k−1 is the mean of x at k given x̂ at k − 1

• ŷk|k−1 is the mean of y at k given x̂ at k − 1

�n means real numbers in a vector of order n, that is, the state has n quantities. In probabilistic
terms the model is:

p(xk|xk−1) = N(xk;Ak−1xk−1, Qk) (4.55)

p(yk|xk) = N(yk;Hkxk, Rk) (4.56)

The integrals become simple matrix equations. In the following equations, P−
k means the co-

variance prior to the measurement update.

P yy
k|k−1 = HkP

−
k HT

k +Rk (4.57)

P xy
k|k−1 = P−

k HT
k (4.58)

P xx
k|k−1 = Ak−1Pk−1A

T
k−1 +Qk−1 (4.59)

x̂k|k−1 = m−
k (4.60)

ŷk|k−1 = Hkm
−
k (4.61)

The prediction step becomes:

m−
k = Ak−1mk−1 (4.62)

P−
k = Ak−1Pk−1A

T
k−1 +Qk−1 (4.63)

The first term in the above covariance equation propagates the covariance based on the state
transition matrix, A. Qk+1 adds to this to form the next covariance. Process noise Qk+1 is a
measure of the accuracy of the mathematical model,A, in representing the system. For example,
suppose A was a mathematical model that damped all states to zero. Without Q, P would go
to zero. But if we really weren’t that certain about the model, the covariance would never be
less than Q. Picking Q can be difficult. In a dynamical system with uncertain disturbances
you can compute the standard deviation of the disturbances to compute Q. If the model, A
were uncertain, then you might do a statistical analysis of the range of models. Or you can try
different Q in simulation and see which ones work the best!
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The update step is:

vk = yk −Hkm
−
k (4.64)

Sk = HkP
−
k HT

k +Rk (4.65)

Kk = P−
k HT

k S
−1
k (4.66)

mk = m−
k +Kkvk (4.67)

Pk = P−
k −KkSkK

T
k (4.68)

Sk is an intermediate quantity. vk is the residual. The residual is the difference between the
measurement and your estimate of the measurement given the estimated states. R is just the
covariance matrix of the measurements. If the noise is not white, a different filter should be
used. White noise has equal energy at all frequencies. Many types of noise, such as the noise
from an imager, is not really white noise, but is band limited, that is, it has noise in a limited
range of frequencies. You can sometimes add additional states toA to model the noise better, for
example, adding a low-pass filter to band limit the noise. This makes A bigger, but is generally
not an issue.

Kalman Filter Implementation
Now we will implement a Kalman Filter estimator for the mass-spring oscillator. First, we
need a method of converting the continuous time problem to discrete time. We only need to
know the states at discrete times or at fixed intervals, T . We use the continuous to discrete
transform, which uses the MATLAB expm function, which performs the matrix exponential.
This transform is coded in CToDZOH, the body of which is shown in the following listing. T is
the sampling period.

[n,m] = size(b);
q = expm([a*T b*T;zeros(m,n+m)]);
f = q(1:n,1:n);
g = q(1:n,n+1:n+m);

CToDZOH includes a demo for a double integrator. A double integrator is a system in which
the second derivative of the state is directly dependent upon an external input. In this example,
x is the state, representing a position, and a is an external input of acceleration.

d2r

dt2
= a (4.69)

Written in state space form it is:

dr

dt
= v (4.70)

dv

dt
= a (4.71)

or in matrix form
ẋ = Ax+Bu (4.72)
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where

x =

[
r
v

]
(4.73)

u =

[
0
a

]
(4.74)

A =

[
0 1
0 0

]
(4.75)

B =

[
0
1

]
(4.76)

To run the demo, simply run CToDZOH from the command line without any inputs.

>> CToDZOH
Double integrator with a 0.5 second time step.
a =

0 1
0 0

b =
0
1

f =
1.0000 0.5000

0 1.0000
g =

0.1250
0.5000

The discrete plant matrix f is easy to understand. The position state at step k + 1 is the state at
k plus the velocity at step k multiplied by the time step T of 0.5 s. The velocity at step k+ 1 is
the velocity at k plus the time step times the acceleration at step k. The acceleration at the time
k multiplies 1

2T
2 to get the contribution to the position. This is just the standard solution to a

particle under constant acceleration.

rk+1 = rk + Tvk +
1

2
T 2ak (4.77)

vk+1 = vk + Tak (4.78)

In matrix form this is:
xk+1 = fxk + buk (4.79)

With the discrete time approximation, we can change the acceleration every step k to get the
time history. This assumes that the acceleration is constant over the period T . We need to pick
T to be sufficiently small so that this is approximately true if we are to get good results.

The script for testing the Kalman Filter is KFSim.m. KFInitialize is used to initialize
the filter (a Kalman Filter, ’kf’, in this case). This function has been written to handle multiple
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types of Kalman Filters and we will use it again in the recipes for EKF and UKF (’ekf’ and
’ukf’ respectively). We show it below. This function uses dynamic field names to assign the
input values to each field.

The simulation starts by assigning values to all of the variables used in the simulation. We
get the data structure from the function RHSOscillator and then modify its values. We
write the continuous time model in matrix form and then convert it to discrete time. Note that
the measurement equation matrix that multiples the state, h, is [1 0], indicating that we are
measuring the position of the mass. MATLAB’s randn random number function is used to
add Gaussian noise to the simulation. The rest of the script is the simulation loop with plotting
afterward.

The first part of the script creates continuous time state space matrices and converts them to
discrete time using CToDZOH. You then use KFInitialize to initialize the Kalman Filter.

%% Initialize
tEnd = 100.0; % Simulation end time (sec)
dT = 0.1; % Time step (sec)
d = RHSOscillator(); % Get the default data structure
d.a = 0.1; % Disturbance acceleration
d.omega = 0.2; % Oscillator frequency
d.zeta = 0.1; % Damping ratio
x = [0;0]; % Initial state [position;velocity]
y1Sigma = 1; % 1 sigma position measurement

noise

% xdot = a*x + b*u
a = [0 1;-2*d.zeta*d.omega -d.omegaˆ2]; % Continuous time model
b = [0;1]; % Continuous time input

matrix

% x[k+1] = f*x[k] + g*u[k]
[f,g] = CToDZOH(a,b,dT); % Discrete time model
xE = [0.3; 0.1]; % Estimated initial state
q = [1e-6 1e-6]; % Model noise covariance ;

% [1e-6 1e-6] is for low model noise test
% [1e-4 1e-4] is for high model noise test

dKF = KFInitialize('kf','m',xE,'a',f,'b',g,'h',[1 0],...
'r',y1Sigmaˆ2,'q',diag(q),'p',diag(xE.ˆ2));

The simulation loop cycles through measurements of the state and the Kalman Filter update
and prediction state with the code KFPredict and KFUpdate. The integrator is between the
two to get the phasing of the update and prediction correct. You have to be careful to put the
predict and update steps in the right places in the script so that the estimator is synchronized
with simulation time.

%% Simulation
nSim = floor(tEnd/dT) + 1;
xPlot = zeros(5,nSim);
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for k = 1:nSim
% Position measurement with random noise
y = x(1) + y1Sigma*randn(1,1);

% Update the Kalman Filter
dKF.y = y;
dKF = KFUpdate(dKF);

% Plot storage
xPlot(:,k) = [x;y;dKF.m-x];

% Propagate (numerically integrate) the state equations
x = RungeKutta( @RHSOscillator, 0, x, dT, d );

% Propagate the Kalman Filter
dKF.u = d.a;
dKF = KFPredict(dKF);

end

The prediction Kalman Filter step, KFPredict, is shown in the following listing with
an abbreviated header. The prediction propagates the state one time step and propagates the
covariance matrix with it. It is saying that when we propagate the state, there is uncertainty, so
we must add that to the covariance matrix.

%% KFPREDICT Linear Kalman Filter prediction step.

function d = KFPredict( d )

% The first path is if there is no input matrix b
if( isempty(d.b) )

d.m = d.a*d.m;
else

d.m = d.a*d.m + d.b*d.u;
end

d.p = d.a*d.p*d.a' + d.q;

The update Kalman Filter step, KFUpdate, is shown in the following listing. This adds the
measurements to the estimate and accounts for the uncertainty (noise) in the measurements.

%% KFUPDATE Linear Kalman Filter measurement update step.

function d = KFUpdate( d )

s = d.h*d.p*d.h' + d.r; % Intermediate value
k = d.p*d.h'/s; % Kalman gain
v = d.y - d.h*d.m; % Residual
d.m = d.m + k*v; % Mean update
d.p = d.p - k*s*k'; % Covariance update
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You will note that the “memory” of the filter is stored in the data structure d. No persistent
data storage is used. This makes it easier to use these functions in multiple places in your code.
Note also that you don’t have to call KFUpdate every time step. You need only call it when
you have new data. However, the filter does assume uniform time steps.

The script gives two examples for the model noise covariance matrix. Figure 4.7 shows re-
sults when high numbers, [1e-4 1e-4], for the model covariance are used. Figure 4.8 shows
results when lower numbers, [1e-6 1e-6], are used. We don’t change the measurement co-
variance because only the ratio between noise covariance and model covariance is important.

When the higher numbers are used, the errors are Gaussian but noisy. When the low num-
bers are used, the result is very smooth, with little noise seen. However, the errors are large in
the low model covariance case. This is because the filter is essentially ignoring the measure-
ments, since it thinks the model is very accurate. You should try different options in the script
and see how it performs. As you can see, the parameters make a huge difference in how well
the filter learns about the states of the system.

Figure 4.7: The Kalman Filter results with the higher model noise matrix, [1e-4 1e-4].
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Figure 4.8: The Kalman Filter results with the lower model noise matrix, [1e-6 1e-6]. Less
noise is seen but the errors are large.
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4.2 Using the Extended Kalman Filter for State Estimation
4.2.1 Problem

We want to track the damped oscillator using an EKF with the nonlinear angle measurement.
The EKF was developed to handle models with nonlinear dynamical models and/or nonlinear
measurement models. The conventional, or linear, filter requires linear dynamical equations
and linear measurements models, that is, the measurement is a linear function of the state. If
the model is not linear, linear filters will not track the states very well.

Given a nonlinear model of the form:

xk = f(xk−1, k − 1) + qk−1 (4.80)

yk = h(xk, k) + rk (4.81)

The prediction step is:

m−
k = f(mk−1, k − 1) (4.82)

P−
k = Fx(mk−1, k − 1)Pk−1Fx(mk−1, k − 1)T +Qk−1 (4.83)
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F is the Jacobian of f . The update step is:

vk = yk − h(m−
k , k) (4.84)

Sk = Hx(m
−
k , k)P

−
k Hx(m

−
k , k)

T +Rk (4.85)

Kk = P−
k Hx(m

−
k , k)

TS−1
k (4.86)

mk = m−
k +Kkvk (4.87)

Pk = P−
k −KkSkK

T
k (4.88)

Fx(m,k−1) andHx(m,k) are the Jacobians of the nonlinear functions f and h. The Jacobians
are just a matrix of partial derivatives of F and H . This results in matrices from the vectors F
and H . For example, assume we have f(x, y), which is:

f =

[
fx(x, y)
fy(x, y)

]
(4.89)

The Jacobian is

Fk =

[
∂fx(xk,yk)

∂x
∂fx(xk,yk)

∂y
∂fy(xk,yk)

∂x
∂fy(xk,yk)

∂y

]
(4.90)

The matrix is computed at xk, yk.
The Jacobians can be found analytically or numerically. If done numerically, the Jacobian

needs to be computed about the current value ofmk. In the Iterated EKF, the update step is done
in a loop using updated values of mk after the first iteration. Hx(m,k) needs to be updated at
each step.

4.2.2 Solution

We will use the same KFInitialize function as created in the previous recipe, but now
using the ’ekf’ input. We will need functions for the derivative of the model dynamics, the
measurement, and the measurement derivatives. These are implemented in RHSOscillator
Partial, AngleMeasurement, and AngleMeasurementPartial.

We will also need custom versions of the filter to predict and update steps.

4.2.3 How It Works

The EKF requires a measurement function, a measurement derivative function, and a state
derivative function. The state derivative function computes the a matrix:

xk+1 = akxk (4.91)

You would only use the EKF if ak changed with time. In this problem, it does not. The
function to compute a is RHSOscillatorPartial. It uses CToDZOH. We could have
computed a once, but using CToDZOHmakes the function more general.
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function a = RHSOscillatorPartial( ˜, ˜, dT, d )

if( nargin < 1 )
a = struct('zeta',0.7071,'omega',0.1);
return

end

b = [0;1];
a = [0 1;d.omegaˆ2 -2*d.zeta*d.omega];
a = CToDZOH( a, b, dT );

Our measurement is nonlinear (being an arctangent) and needs to be linearized about each
value of position. AngleMeasurement computes the measurement, which is nonlinear but
smooth.

y = atan(x(1)/d.baseline);

AngleMeasurementPartial computes the derivative. The following function com-
putes the c matrix

yk = ckxk (4.92)

The partial measurement if found by taking the derivative of the arc-tangent of the angle
from the baseline. The comment reminds you of this fact.

% y = atan(x(1)/d.baseline);

u = x(1)/d.baseline;
dH = 1/(1+uˆ2);
h = [dH 0]/d.baseline;

It is convenient that the measurement function is smooth. If there were discontinuities,
the measurement partials would be difficult to compute. The EKF implementation can handle
either functions for the derivatives or matrices. In the case of the functions, we use feval to
call them. This can be seen in the EKFPredict and EKFUpdate functions.

EKFPredict is the state propagation step for an EKF. It numerically integrates the right-
hand side using RungeKutta. RungeKuttamay be overkill in some problems and a simple
Euler integration may be appropriate. Euler integration is just:

xk+1 = xk +ΔTf(x, u, t) (4.93)

where f(x, u, t) is the right-hand side that can be a function of the state, x, time t, and the
inputs u.

function d = EKFPredict( d )

% Get the state transition matrix
if( isempty(d.a) )

a = feval( d.fX, d.m, d.t, d.dT, d.fData );
else
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a = d.a;
end

% Propagate the mean
d.m = RungeKutta( d.f, d.t, d.m, d.dT, d.fData );

% Propagate the covariance
d.p = a*d.p*a' + d.q;

%% EKFUPDATE Extended Kalman Filter measurement update step.
%% Form
% d = EKFUpdate( d )
%
%% Description
% All inputs are after the predict state (see EKFPredict). The h
% data field may contain either a function name for computing
% the estimated measurements or an m by n matrix. If h is a function
% name you must include hX which is a function to compute the m by n
% matrix as a linearized version of the function h.
%
%% Inputs
% d (.) EKF data structure
% .m (n,1) Mean
% .p (n,n) Covariance
% .h (m,n) Either a matrix or name/handle of

function
% .hX (*) Name or handle of Jacobian function for

h
% .y (m,1) Measurement vector
% .r (m,m) Measurement covariance vector
% .hData (.) Data structure for the h and hX

functions
%
%% Outputs
% d (.) Updated EKF data structure
% .m (n,1) Mean
% .p (n,n) Covariance
% .v (m,1) Residuals

function d = EKFUpdate( d )

% Residual
if( isnumeric( d.h ) )

h = d.h;
yE = h*d.m;
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else
h = feval( d.hX, d.m, d.hData );
yE = feval( d.h, d.m, d.hData );

end

% Residual
d.v = d.y - yE;

% Update step
s = h*d.p*h' + d.r;
k = d.p*h'/s;
d.m = d.m + k*d.v;
d.p = d.p - k*s*k';

The EKFSim script implements the EKF with all of the above functions as shown in the
following listing. The functions are passed to the EKF in the data structure produced by
KFInitialize. Note the use of function handles using @, i.e., @RHSOscillator. Notice
that KFInitialize requires hX and fX for computing partial derivatives of the dynamical
equations and measurement equations.

%% Simulation
xPlot = zeros(5,nSim);

for k = 1:nSim
% Angle measurement with random noise
y = AngleMeasurement( x, dMeas ) + y1Sigma*randn;

% Update the Kalman Filter
dKF.y = y;
dKF = EKFUpdate(dKF);

% Plot storage
xPlot(:,k) = [x;y;dKF.m-x];

% Propagate (numerically integrate) the state equations
x = RungeKutta( @RHSOscillator, 0, x, dT, d );

% Propagate the Kalman Filter
dKF = EKFPredict(dKF);

end

Figure 4.9 shows the results. The errors are small. Since the problem dynamics are linear,
we don’t expect any differences from a conventional Kalman Filter.
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Figure 4.9: The Extended Kalman filter tracks the oscillator using the angle measurement.
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4.3 Using the Unscented Kalman Filter for State Estimation
4.3.1 Problem

You want to learn the states of the spring, damper, mass system given a nonlinear angle mea-
surement. This time we’ll use an UKF. With the UKF, we work with the nonlinear dynamical
and measurement equations directly. We don’t have to linearize them as we did for the EKF
with RHSOscillatorPartial and AngleMeasurementPartial. The UKF is also
known as a sigma σ point filter because it simultaneously maintains models one sigma (stan-
dard deviation) from the mean.

4.3.2 Solution

We will create an UKF as a state estimator. This will absorb measurements and determine the
state. It will autonomously learn about the state of the system based on a pre-existing model.

In the following text we develop the equations for the non-augmented Kalman Filter. This
form only allows for additive Gaussian noise. Given a nonlinear model of the form

xk = f(xk−1, k − 1) + qk−1 (4.94)

yk = h(xk, k) + rk (4.95)
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Define weights as

W 0
m =

λ

n+ λ
(4.96)

W 0
c =

λ

n+ λ
+ 1− α2 + β (4.97)

W i
m =

λ

2(n + λ)
, i = 1, . . . , 2n (4.98)

W i
c =

λ

2(n + λ)
, i = 1, . . . , 2n (4.99)

m are weights on the mean state( m for mean) and c weights on the covariances. Note that
W i

m = W i
c .

λ = α2(n+ κ)− n (4.100)

c = λ+ n = α2(n+ κ) (4.101)

c scales the covariances to compute the sigma points, that is, the distribution of points around
the mean for computing the additional states to propagate. α, β, and κ are scaling constants.
General rules for the scaling constants are:

• α – 0 for state estimation, 3 minus the number of states for parameter estimation.

• β – Determines the spread of sigma points. Smaller means more closely spaced sigma
points.

• κ – Constant for prior knowledge. Set to 2 for Gaussian processes.

n is the order of the system. The weights can be put into matrix form:

wm =
[
W 0

m · · ·W 2n
m

]T
(4.102)

W = (I − [wm · · ·wm])

⎡
⎢⎣

W 0
c · · · 0
...

. . .
...

0 · · · W 2n
c

⎤
⎥⎦ (I − [wm · · ·wm])T (4.103)

I is the 2n+1 by 2n+1 identity matrix. In the equation vector wm is replicated 2n+1 times.
W is 2n+ 1 by 2n+ 1.

The prediction step is:

Xk−1 =
[
mk−1 · · · mk−1

]
+

√
c
[
0

√
Pk−1 −√

Pk−1

]
(4.104)

X̂k = f(Xk−1, k − 1) (4.105)

m−
k = X̂kwm (4.106)

P−
k = X̂kWX̂T

k +Qk−1 (4.107)
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where X is a matrix where its column is the state vector possibly with an added sigma point
vector. The update step is:

X−
k =

[
m−

k · · · m−
k

]
+

√
c
[
0

√
P−
k −

√
P−
k

]
(4.108)

Y −
k = h(X−

k , k) (4.109)

μk = Y −
k wm (4.110)

Sk = Y −
k W [Y −

k ]T +Rk (4.111)

Ck = X−
k W [Y −

k ]T (4.112)

Kk = CkS
−1
k (4.113)

mk = m−
k +Kk(yk − μk) (4.114)

Pk = P−
k −KkSkK

T
k (4.115)

μk is a matrix of the measurements in which each column is a copy modified by the sigma
points. Sk and Ck are intermediate quantities. The brackets around Y −

k are just for clarity.

4.3.3 How It Works

The weights are computed in UKFWeight.

%% UKFWEIGHT Unscented Kalman Filter weight calculation
%% Form
% d = UKFWeight( d )
%
%% Description
% Unscented Kalman Filter weights.
%
% The weight matrix is used by the matrix form of the Unscented
% Transform. Both UKFPredict and UKFUpdate use the data structure
% generated by this function.
%
% The constant alpha determines the spread of the sigma points around
% x and is usually set to between 10e-4 and 1. beta incorporates
% prior knowledge of the distribution of x and is 2 for a Gaussian
% distribution. kappa is set to 0 for state estimation and 3 -
% number of states for parameter estimation.
%
%% Inputs
% d (.) Data structure with constants
% .kappa (1,1) 0 for state estimation, 3-#states for
% parameter estimation
% .m (:,1) Vector of mean states
% .alpha (1,1) Determines spread of sigma points
% .beta (1,1) Prior knowledge - 2 for Gaussian

99



CHAPTER 4 KALMAN FILTERS

%
%% Outputs
% d (.) Data structure with constants
% .w (2*n+1,2*n+1) Weight matrix
% .wM (1,2*n+1) Weight array
% .wC (2*n+1,1) Weight array
% .c (1,1) Scaling constant
% .lambda (1,1) Scaling constant
%

function d = UKFWeight( d )

% Compute the fundamental constants
n = length(d.m);
a2 = d.alphaˆ2;
d.lambda = a2*(n + d.kappa) - n;
nL = n + d.lambda;
wMP = 0.5*ones(1,2*n)/nL;
d.wM = [d.lambda/nL wMP]';
d.wC = [d.lambda/nL+(1-a2+d.beta) wMP];

d.c = sqrt(nL);

% Build the matrix
f = eye(2*n+1) - repmat(d.wM,1,2*n+1);
d.w = f*diag(d.wC)*f';

The prediction UKF step is shown in the following excerpt from UKFPredict.

%% UKFPREDICT Unscented Kalman Filter measurement update step

function d = UKFPredict( d )

pS = chol(d.p)';
nS = length(d.m);
nSig = 2*nS + 1;
mM = repmat(d.m,1,nSig);
x = mM + d.c*[zeros(nS,1) pS -pS];

xH = Propagate( x, d );
d.m = xH*d.wM;
d.p = xH*d.w*xH' + d.q;
d.p = 0.5*(d.p + d.p'); % Force symmetry

%% Propagate each sigma point state vector
function x = Propagate( x, d )
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for j = 1:size(x,2)
x(:,j) = RungeKutta( d.f, d.t, x(:,j), d.dT, d.fData );

end

UKFPredict uses RungeKutta for prediction, which is done by numerical integration.
In effect, we are running a simulation of the model and just correcting the results with the next
function, UKFUpdate. This gets to the core of the Kalman Filter. It is just a simulation of
your model with a measurement correction step. In the case of the conventional linear Kalman
Filter, we use a linear discrete time model.

The update UKF step is shown in the following listing. The update propagates the state one
time step.

%% UKFUPDATE Unscented Kalman Filter measurement update step.

function d = UKFUpdate( d )

% Get the sigma points
pS = d.c*chol(d.p)';
nS = length(d.m);
nSig = 2*nS + 1;
mM = repmat(d.m,1,nSig);
x = mM + [zeros(nS,1) pS -pS];
[y, r] = Measurement( x, d );
mu = y*d.wM;
s = y*d.w*y' + r;
c = x*d.w*y';
k = c/s;
d.v = d.y - mu;
d.m = d.m + k*d.v;
d.p = d.p - k*s*k';

%% Measurement estimates from the sigma points
function [y, r] = Measurement( x, d )

nSigma = size(x,2);

% Create the arrays
lR = length(d.r);
y = zeros(lR,nSigma);
r = d.r;

for j = 1:nSigma
f = feval(d.hFun, x(:,j), d.hData );
iR = 1:lR;
y(iR,j) = f;

end
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The sigma points are generated using chol. chol is Cholesky factorization and generates
an approximate square root of a matrix. A true matrix square root is more computationally
expensive and the results don’t really justify the penalty. The idea is to distribute the sigma
points around the mean and chol works well. Here is an example that compares the two
approaches:

>> z = [1 0.2;0.2 2]
z =

1.0000 0.2000
0.2000 2.0000

>> b = chol(z)
b =

1.0000 0.2000
0 1.4000

>> b*b
ans =

1.0000 0.4800
0 1.9600

>> q = sqrtm(z)
q =

0.9965 0.0830
0.0830 1.4118

>> q*q
ans =

1.0000 0.2000
0.2000 2.0000

The square root actually produces a square root! The diagonal of b*b is close to z, which is all
that is important.

The script for testing the UKF, UKFSim, is shown below. As noted earlier, we don’t need to
convert the continuous time model into discrete time as we did for the Kalman Filter and EKF.
Instead, we pass the filter the right-hand side of the differential equations. You must also pass
it a measurement model, which can be nonlinear. You add UKFUpdate and UKFPredict
function calls to the simulation loop. We start by initializing all parameters. KFInitialize
takes parameter pairs, after ’ukf’ to initialize the filter. The remainder is the simulation
loop and plotting. Initialization requires computation of the weighting matrices after calling
KFInitialize.

%% Initialize
dKF = KFInitialize( 'ukf','m',xE,'f',@RHSOscillator,'fData',d,...

'r',y1Sigmaˆ2,'q',q,'p',p,...
'hFun',@AngleMeasurement,'hData',dMeas,'dT',dT);

dKF = UKFWeight( dKF );

We show the simulation loop here:

%% Simulation
xPlot = zeros(5,nSim);
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for k = 1:nSim
% Measurements
y = AngleMeasurement( x, dMeas ) + y1Sigma*randn;

% Update the Kalman Filter
dKF.y = y;
dKF = UKFUpdate(dKF);

% Plot storage
xPlot(:,k) = [x;y;dKF.m-x];

% Propagate (numerically integrate) the state equations
x = RungeKutta( @RHSOscillator, 0, x, dT, d );

% Propagate the Kalman Filter
dKF = UKFPredict(dKF);

end

The results are shown in Figure 4.10. The errors ΔrE and ΔvE are just noise. The mea-
surement goes over a large angle range which would make a linear approximation problematic.

Figure 4.10: The Unscented Kalman filter results for state estimation.
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4.4 Using the UKF for Parameter Estimation
4.4.1 Problem

You want to learn the parameters of the spring-damper-mass system given a nonlinear angle
measurement. The UKF can be configured to do this.

4.4.2 Solution

The solution is to create a UKF configured as a parameter estimator. This will absorb mea-
surements and determine the undamped natural frequency. It will autonomously learn about the
system based on a pre-existing model. We develop the version that requires an estimate of the
state that could be generated with a UKF running in parallel, as in the previous recipe.

4.4.3 How It Works

Initialize the parameter filter with the expected value of the parameters, η [28]

η̂(t0) = E{η̂0} (4.116)

and the covariance for the parameters

Pηo = E{(η(t0)− η̂0)(η(t0)− η̂0)
T } (4.117)

The update sequence begins by adding the parameter model uncertainty, Q, to the covari-
ance, P ,

P = P +Q (4.118)

Q is for the parameters, not the states. The sigma points are then calculated. These are
points found by adding the square root of the covariance matrix to the current estimate of the
parameters.

ησ =
[
η̂ η̂ + γ

√
P η̂ − γ

√
P

]
(4.119)

γ is a factor that determines the spread of the sigma points. We use chol for the square root.
If there are L parameters, the P matrix is L× L, so this array will be L× (2L+ 1).

The state equations are of the form:

ẋ = f(x, u, t) (4.120)

and the measurement equations are:

y = h(x, u, t) (4.121)

x is the previous state of the system, as identified by the state estimator or other process. u
is a structure with all other inputs to the system that are not being estimated. η is a vector of
parameters that are being estimated and t is time. y is the vector of measurements. This is the
dual estimation approach in that we are not estimating x and η simultaneously.
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The script UKFPSim for testing the UKF parameter estimation is shown below. We are
not doing the UKF state estimation to simplify the script. Normally, you would run the UKF
in parallel. We start by initializing all parameters. KFInitialize takes parameter pairs to
initialize the filters. The remainder is the simulation loop and plotting. Notice that there is only
an update call, since parameters, unlike states, do not propagate.

for k = 1:nSim
% Update the Kalman Filter parameter estimates
dKF.x = x;

% Plot storage
xPlot(:,k) = [y;x;dKF.eta;dKF.p];

% Propagate (numerically integrate) the state equations
x = RungeKutta( @RHSOscillator, 0, x, dT, d );

% Incorporate measurements
y = LinearMeasurement( x ) + y1Sigma*randn;
dKF.y = y;
dKF = UKFPUpdate(dKF);

end

The UKF parameter update function is shown in the following code. It uses the state esti-
mate generated by the UKF. As noted, we are using the exact value of the state generated by the
simulation. This function needs a specialized right-hand side that uses the parameter estimate,
d.eta. We modified RHSOscillator for this purpose and wrote RHSOscillatorUKF.

function d = UKFPUpdate( d )

d.wA = zeros(d.L,d.n);
D = zeros(d.lY,d.n);
yD = zeros(d.lY,1);

% Update the covariance
d.p = d.p + d.q;

% Compute the sigma points
d = SigmaPoints( d );

% We are computing the states, then the measurements
% for the parameters +/- 1 sigma
for k = 1:d.n

d.fData.eta = d.wA(:,k);
x = RungeKutta( d.f, d.t, d.x, d.dT, d.fData );
D(:,k) = feval( d.hFun, x, d.hData );
yD = yD + d.wM(k)*D(:,k);

end
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pWD = zeros(d.L,d.lY);
pDD = d.r;
for k = 1:d.n

wD = D(:,k) - yD;
pDD = pDD + d.wC(k)*(wD*wD');
pWD = pWD + d.wC(k)*(d.wA(:,k) - d.eta)*wD';

end

pDD = 0.5*(pDD + pDD');

% Incorporate the measurements
K = pWD/pDD;
dY = d.y - yD;
d.eta = d.eta + K*dY;
d.p = d.p - K*pDD*K';
d.p = 0.5*(d.p + d.p'); % Force symmetry

%% Create the sigma points for the parameters
function d = SigmaPoints( d )

n = 2:(d.L+1);
m = (d.L+2):(2*d.L + 1);
etaM = repmat(d.eta,length(d.eta));
sqrtP = chol(d.p);
d.wA(:,1) = d.eta;
d.wA(:,n) = etaM + d.gamma*sqrtP;
d.wA(:,m) = etaM - d.gamma*sqrtP;

It also has its own weight initialization function UKFPWeight.m. The weight matrix is used
by the matrix form of the Unscented Transform. The constant alpha determines the spread of
the sigma points around the parameter vector and is usually set to between 10e-4 and 1. beta
incorporates prior knowledge of the distribution of the parameter vector and is 2 for a Gaussian
distribution. kappa is set to 0 for state estimation and 3 the number of states for parameter
estimation.

function d = UKFPWeight( d )

d.L = length(d.eta);
d.lambda = d.alphaˆ2*(d.L + d.kappa) - d.L;
d.gamma = sqrt(d.L + d.lambda);
d.wC(1) = d.lambda/(d.L + d.lambda) + (1 - d.alphaˆ2 + d.beta);
d.wM(1) = d.lambda/(d.L + d.lambda);
d.n = 2*d.L + 1;
for k = 2:d.n

d.wC(k) = 1/(2*(d.L + d.lambda));
d.wM(k) = d.wC(k);

end
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d.wA = zeros(d.L,d.n);
y = feval( d.hFun, d.x, d.hData );
d.lY = length(y);
d.D = zeros(d.lY,d.n);

RHSOscillatorUKF is the oscillator model used by the UKF. It has a different input
format than RHSOscillator. There is only one line of code.

xDot = [x(2);d.a-2*d.zeta*d.eta*x(2)-d.etaˆ2*x(1)];

LinearMeasurement is a simple measurement function for demonstration purposes. The
UKF can use arbitrarily complex measurement functions.

The results of a simulation of an undamped oscillator are shown in Figure 4.11. The fil-
ter rapidly estimates the undamped natural frequency. The result is noisy, however. You can
explore this script by varying the numbers in the script.

Figure 4.11: The Unscented Kalman parameter estimation results. p is the covariance. It shows
that our parameter estimate has converged.
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4.5 Summary
This chapter has demonstrated learning using Kalman Filters. In this case, learning is the es-
timation of states and parameters for a damped oscillator. We looked at conventional Kalman
Filters and Unscented Kalman Filters. We looked at the parameter learning version of the latter.
All examples were done using a damped oscillator. Table 4.1 lists the functions and scripts
included in the companion code.

Table 4.1: Chapter Code Listing

File Description
AngleMeasurement Angle measurement of the mass.
AngleMeasurementPartial Angle measurement derivative.
LinearMeasurement Position measurement of the mass.
OscillatorSim Simulation of the damped oscillator.
OscillatorDampingRatioSim Simulation of the damped oscillator with different damping ratios.
RHSOscillator Dynamical model for the damped oscillator.
RHSOscillatorPartial Derivative model for the damped oscillator.
RungeKutta Fourth-order Runge–Kutta integrator.
PlotSet Create two-dimensional plots from a data set.
TimeLabel Produce time labels and scaled time vectors.
Gaussian Plot a Gaussian distribution.
KFInitialize Initialize Kalman Filters.
KFSim Demonstration of a conventional Kalman Filter.
KFPredict Prediction step for a conventional Kalman Filter.
KFUpdate Update step for a conventional Kalman Filter.
EKFPredict Prediction step for an Extended Kalman Filter.
EKFUpdate Update step for an Extended Kalman Filter.
UKFPredict Prediction step for an Unscented Kalman Filter.
UKFUpdate Update step for an Unscented Kalman Filter.
UKFPUpdate Update step for an Unscented Kalman Filter parameter update.
UKFSim Demonstration of an Unscented Kalman Filter.
UKFPSim Demonstration of parameter estimation for the Unscented Kalman

Filter.
UKFWeights Generates weights for the Unscented Kalman Filter.
UKFPWeights Generates weights for the Unscented Kalman Filter parameter esti-

mator.
RHSOscillatorUKF Dynamical model for the damped oscillator for use in Unscented

Kalman Filter parameter estimation.
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Adaptive Control

Control systems need to react to the environment in a predictable and repeatable fashion. Con-
trol systems take measurements and use them to control the process. For example, a ship mea-
sures its heading and changes its rudder angle to attain a desired heading.

Autonomous 
Learning

Control
Intelligence

Machine 
Learning

Typically control systems are designed and implemented with all of the parameters hard
coded into the software. This works very well in most circumstances, particularly when the
system is well known during the design process. When the system is not well defined, or is
expected to change significantly during operation, it may be necessary to implement learning
control. For example, the batteries in an electric car degrade over time. This leads to less range.
An autonomous driving system would need to learn that that range was decreasing. This would
be done by comparing the distance traveled with the battery state of charge. More drastic, and
sudden, changes can alter a system. For example, in an aircraft the air data system may fail
owing to a sensor malfunction. If GPS were still operating, the plane would want to switch to a
GPS-only system. In a multi-input-multi-output control system a branch may fail, because of a
failed actuator or sensor. The system may have to modify to operating branches in that case.

Learning and adaptive control are often used interchangeably. In this chapter, you will learn
a variety of techniques for adaptive control for different systems. Each technique is applied to
a different system, but all are generally applicable to any control system.

Figure 5.1 provides a taxonomy of adaptive and learning control. The paths depend on the
nature of the dynamical system. The right-most branch is tuning. This is something a designer
would do during testing, but it could also be done automatically, as will be described in the
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Figure 5.1: Taxonomy of adaptive or learning control.
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self-tuning Recipe 5.1. The next path is for systems that will vary with time. Our first example
of a system with time-varying parameters applies Model Reference Adaptive Control (MRAC)
for a spinning wheel. This is discussed in Section 5.3.

The next example is for ship control. Your goal is to control the heading angle. The dy-
namics of the ship are a function of the forward speed. Although it isn’t really learning from
experience, it is adapting based on information about its environment.

The last example is a spacecraft with variable inertia. This shows very simple parameter
estimation.

5.1 Self Tuning: Modeling an Oscillator
We want to tune a damper so that we critically damp a spring system for which the spring
constant changes. Our system will work by perturbing the undamped spring with a step and
measuring the frequency using a fast Fourier transform (FFT). We then compute the damping
using the frequency and add a damper to the simulation. We then measure the undamped natural
frequency again to see that it is the correct value. Finally, we set the damping ratio to 1 and
observe the response. The system in shown in Figure 5.2.
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Figure 5.2: Spring-mass-damper system. The mass is on the right. The spring is on the top
to the left of the mass. The damper is below. F is the external force, m is the mass, k is the
stiffness, and c is the damping.
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In Chapter 4, we introduced parameter identification in the context of Kalman Filters, which
is another way of finding the frequency. The approach here is to collect a large sample of data
and process it in batches to find the natural frequency. The equations for the system are:

ṙ = v (5.1)

mv̇ = −cv − kr (5.2)

c is the damping and k is the stiffness. The damping term causes the velocity to go to zero. The
stiffness term bounds the range of motion (unless the damping is negative). The dot above the
symbols means the first derivative with respect to time, that is:

ṙ =
dr

dt
(5.3)

The equations state that the change in position with respect to time is the velocity and the mass
times the change in velocity with respect to time is equal to a force proportional to its velocity
and position. The second equation is Newton’s Law:

F = ma (5.4)

where F is force, m is mass, and a is acceleration.

TIP Weight is mass times the acceleration of gravity.

F = −cv − kr (5.5)

a =
dv

dt
(5.6)

111



CHAPTER 5 ADAPTIVE CONTROL

5.2 Self Tuning: Tuning an Oscillator
5.2.1 Problem

We want to identify the frequency of an oscillator and tune a control system to that frequency.

5.2.2 Solution

The solution is to have the control system measure the frequency of the spring. We will use an
FFT to identify the frequency of the oscillation.

5.2.3 How It Works

The following script shows how an FFT identifies the oscillation frequency for a damped
oscillator.

The function is shown in the following code. We use the RHSOscillator dynamical
model for the system. We start with a small initial position to get it to oscillate. We also have
a small damping ratio so that it will damp out. The resolution of the spectrum is dependent on
the number of samples:

r =
2π

nT
(5.7)

where n is the number of samples and T is the sampling period. The maximum frequency is:

ω =
nr

2
(5.8)

The following shows the simulation loop and FFTEnergy call.

%% Initialize
nSim = 2ˆ16; % Number of time steps
dT = 0.1; % Time step (sec)
dRHS = RHSOscillator; % Get the default data structure
dRHS.omega = 0.1; % Oscillator frequency
dRHS.zeta = 0.1; % Damping ratio
x = [1;0]; % Initial state [position;velocity]
y1Sigma = 0.000; % 1 sigma position measurement noise
%% Simulation
xPlot = zeros(3,nSim);

for k = 1:nSim
% Measurements
y = x(1) + y1Sigma*randn;
% Plot storage
xPlot(:,k) = [x;y];
% Propagate (numerically integrate) the state equations
x = RungeKutta( @RHSOscillator, 0, x, dT, dRHS );

end
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FFTEnergy is shown below.

function [e, w, wP] = FFTEnergy( y, tSamp, aPeak )

if( nargin < 3 )
aPeak = 0.95;

end

n = size( y, 2 );

% If the input vector is odd drop one sample
if( 2*floor(n/2) ˜= n )

n = n - 1;
y = y(1:n,:);

end

x = fft(y);
e = real(x.*conj(x))/n;

hN = n/2;
e = e(1,1:hN);
r = 2*pi/(n*tSamp);
w = r*(0:(hN-1));

if( nargin > 1 )
k = find( e > aPeak*max(e) );
wP = w(k);

end

The FFT takes the sampled time sequence and computes the frequency spectrum. We compute
the FFT using MATLAB’s fft function. We take the result and multiply it by its conjugate to
get the energy. The first half of the result has the frequency information. aPeak is to indicate
peaks for the output. It is just looking for values greater than a certain threshold.

Figure 5.3 shows the damped oscillation. Figure 5.4 shows the spectrum. We find the peak
by searching for the maximum value. The noise in the signal is seen at the higher frequencies.
A noise-free simulation is shown in Figure 5.5.

The tuning approach is to:

1. Excite the oscillator with a pulse

2. Run it for 2n steps

3. Do an FFT

4. If there is only one peak, compute the damping gain

The script TuningSim calls FFTEnergy.mwith aPeak set to 0.7. The value for aPeak
is found by looking at a plot and picking a suitable number. The disturbances are Gaussian
distributed accelerations and there is noise in the measurement.

113



CHAPTER 5 ADAPTIVE CONTROL

Figure 5.3: Simulation of the damped oscillator. The damping ratio, ζ is 0.5 and undamped
natural frequency ω is 0.1 rad/s.

Figure 5.4: The frequency spectrum. The peak is at the oscillation frequency of 0.1 rad/s.
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Figure 5.5: The frequency spectrum without noise. The peak of the spectrum is at 0.1 rad/s in
agreement with the simulation.

The results in the command window are:

TuningSim
Estimated oscillator frequency 0.0997 rad/s
Tuned
Tuned
Tuned

As you can see from the FFT plots in Figure 5.6, the spectra are “noisy” owing to the
sensor noise and Gaussian disturbance. The criterion for determining that it is underdamped is
a distinctive peak. If the noise is large enough we have to set lower thresholds to trigger the
tuning. The top left FFT plot shows the 0.1 rad/s peak. After tuning, we damp the oscillator
sufficiently so that the peak is diminished. The time plot in Figure 5.6 (the bottom plot) shows
that initially the system is lightly damped. After tuning it oscillates very little. There is a slight
transient every time the tuning is adjusted at 1.9, 3.6, and 5.5 s. The FFT plots (the top right
and middle two) show the data used in the tuning.

An important point is that we must stimulate the system to identify the peak. All system
identification, parameter estimation, and tuning algorithms have this requirement. An alterna-
tive to a pulse (which has a broad frequency spectrum) would be to use a sinusoidal sweep.
That would excite any resonances and make it easier to identify the peak. However, care must
be taken when exciting a physical system at different frequencies to ensure that it does not have
an unsafe or unstable response at natural frequencies.
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Figure 5.6: Tuning simulation results. The first four plots are the frequency spectrums taken at
the end of each sampling interval; the last shows the results over time.
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5.3 Implement Model Reference Adaptive Control
Our next example is to control a rotor with an unknown load so that it behaves in a desired
manner. The dynamical model of the rotary joint is [2]:

dω

dt
= −aω + buc + ud (5.9)

where the damping a and/or input constants b are unknown. ω is the angular rate. uc is the
input voltage and ud is a disturbance angular acceleration. This is a first-order system, which is
modeled by one first-order differential equation. We would like the system to behave like the
reference model:

dω

dt
= −amω + bmuc + ud (5.10)

Figure 5.7: Speed control of a rotor for the Model Reference Adaptive Control demo.

5.3.1 Problem

We want to control a system to behave like a particular model. Our example is a simple rotor.

5.3.2 Solution

The solution is to implement an MRAC function.

5.3.3 How It Works

The idea is to have a dynamical model that defines the behavior of your system. You want your
system to have the same dynamics. This desired model is the reference, hence the name Model
Reference Adaptive Control. We will use the MIT rule [3] to design the adaptation system. The
MIT rule was first developed at the MIT Instrumentation Laboratory (now Draper Laboratory),
which developed the NASA Apollo and Space Shuttle guidance and control systems.
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Consider a closed-loop system with one adjustable parameter, θ. θ is a parameter, not an
angle. The desired output is ym. The error is:

e = y − ym (5.11)

Define a loss function (or cost) as:

J(θ) =
1

2
e2 (5.12)

The square removes the sign. If the error is zero, the cost is zero. We would like to minimize
J(θ). To make J small, we change the parameters in the direction of the negative gradient of J
or:

dθ

dt
= −γ

∂J

∂θ
= −γe

∂e

∂θ
(5.13)

This is the MIT rule. If the system is changing slowly, then we can assume that θ is constant as
the system adapts. γ is the adaptation gain. Our dynamical model is:

dω

dt
= aω + buc (5.14)

We would like it to be the model:

dωm

dt
= amωm + bmuc (5.15)

a and b are the actual unknown parameters. am and bm are the model parameters. We would
like a and b to be am and bm. Let the controller for our rotor be:

u = θ1uc − θ2ω (5.16)

The second term provides the damping. The controller has two adaptation parameters. If they
are chosen to be:

θ1 =
bm
b

(5.17)

θ2 =
am − a

b
(5.18)

the input–output relations of the system and model are the same. This is called perfect model
following. This is not required. To apply the MIT rule write the error as:

e = ω − ωm (5.19)

With the parameters θ1 and θ2 the system is:

dω

dt
= −(a+ bθ2)ω + bθ1uc (5.20)
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where γ is the adaptation gain. To continue with the implementation, we introduce the operator
p = d

dt . We then write:

pω = −(a+ bθ2)ω + bθ1uc (5.21)

or

ω =
bθ1

p+ a+ bθ2
uc (5.22)

We need to get the partial derivatives of the error with respect to θ1 and θ2. These are:

∂e

∂θ1
=

b

p+ a+ bθ2
uc (5.23)

∂e

∂θ2
= − b2θ1

(p+ a+ bθ2)
2uc (5.24)

from the chain rule for differentiation. Noting that:

uc =
p+ a+ bθ2

bθ1
ω (5.25)

the second equation becomes:

∂e

∂θ2
=

b

p+ a+ bθ2
y (5.26)

Since we don’t know a, let’s assume that we are pretty close to it. Then let:

p+ am ≈ p+ a+ bθ2 (5.27)

Our adaptation laws are now:

dθ1
dt

= −γ

(
am

p+ am
uc

)
e (5.28)

dθ2
dt

= γ

(
am

p+ am
ω

)
e (5.29)

Let:

x1 =
am

p+ am
uc (5.30)

x2 =
am

p+ am
ω (5.31)
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which are differential equations that must be integrated. The complete set is:

dx1
dt

= −amx1 + amuc (5.32)

dx2
dt

= −amx2 + amω (5.33)

dθ1
dt

= −γx1e (5.34)

dθ2
dt

= γx2e (5.35)

(5.36)

Our only measurement would be ω, which would be measured with a tachometer. As noted
before, the controller is

u = θ1uc − θ2ω (5.37)

e = ω − ωm (5.38)
dωm

dt
= −amωm + bmuc (5.39)

The MRAC is implemented in the function MRAC shown in its entirety below. The con-
troller has five differential equations, which are propagated. The states are [x1, x2, θ1, θ2, ωm].
RungeKutta is used for the propagation, but a less computationally intensive lower order
integrator, such as Euler, could be used instead. The function returns the default data structure
if no inputs and one output is specified. The default data structure has reasonable values. That
makes it easier for a user to implement the function. It only propagates one step.

function d = MRAC( omega, d )

if( nargin < 1 )
d = DataStructure;
return

end

d.x = RungeKutta( @RHS, 0, d.x, d.dT, d, omega );
d.u = d.x(3)*d.uC - d.x(4)*omega;

%% MRAC>DataStructure
function d = DataStructure
% Default data structure

d = struct('aM',2.0,'bM',2.0,'x',[0;0;0;0;0],'uC',0,'u',0,'gamma',1,'
dT',0.1);

%% MRAC>RHS
function xDot = RHS( ˜, x, d, omega )
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% RHS for MRAC

e = omega - x(5);
xDot = [-d.aM*x(1) + d.aM*d.uC;...

-d.aM*x(2) + d.aM*omega;...
-d.gamma*x(1)*e;...
d.gamma*x(2)*e;...

-d.aM*x(5) + d.bM*d.uC];

Now that we have the MRAC controller done, we’ll write some supporting functions and then
test it all out in RotorSim.

5.4 Generating a Square Wave Input
5.4.1 Problem

We need to generate a square wave to stimulate the rotor in the previous recipe.

5.4.2 Solution

For the purposes of simulation and testing our controller we will generate a square wave with a
function.

5.4.3 How It Works

SquareWave generates a square wave. The first few lines are our standard code for running a
demo or returning the data structure.

function [v,d] = SquareWave( t, d )

if( nargin < 1 )
if( nargout == 0 )

Demo;
else

v = DataStructure;
end
return

end

if( d.state == 0 )
if( t - d.tSwitch >= d.tLow )

v = 1;
d.tSwitch = t;
d.state = 1;

else
v = 0;

end
else

if( t - d.tSwitch >= d.tHigh )
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v = 0;
d.tSwitch = t;
d.state = 0;

else
v = 1;

end
end

This function uses d.state to determine if it is in the high or low part of a square wave. The
width of the low part of the wave is set in d.tLow. The width in the high part of the square
wave is set in d.tHigh. It stores the time of the last switch in d.tSwitch.

A square wave is shown in Figure 5.8. There are many ways to specify a square wave. This
function produces a square wave with a minimum of zero and maximum of 1. You specify the
time at zero and the time at 1 to create the square wave.

Figure 5.8: Square wave.
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We adjusted the y-axis limit and line width using the code:

PlotSet(t,v,'x label', 't (sec)', 'y label', 'v', 'plot title','
Square Wave',...

'figure title', 'Square Wave');
set(gca,'ylim',[0 1.2])
h = get(gca,'children');
set(h,'linewidth',1);
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TIP h = get(gca,’children’) gives you access to the line data structure in a
plot for the most recent axes.

5.5 Demonstrate MRAC for a Rotor
5.5.1 Problem

We want to create a recipe to control our rotor using MRAC.

5.5.2 Solution

The solution is to use implement our MRAC function in a MATLAB script from Recipe 5.3.

5.5.3 How It Works

Model Reference Adaptive Control is implemented in the script RotorSim. It calls MRAC to
control the rotor. As in our other scripts, we use PlotSet for our 2D plots. Notice that we use
two new options. One ’plot set’ allows you to put more than one line on a subplot. The
other ’legend’ adds legends to each plot. The cell array argument to ’legend’ has a cell
array for each plot. In this case, we have two plots each with two lines, so the cell array is:

{{'true', 'estimated'} ,{'Control' ,'Command'}}

Each plot legend is a cell entry within the overall cell array.
The rotor simulation script with MRAC is shown in the following listing. The square wave

functions generates the command to the system that ω should track. RHSRotor,
SquareWave, and MRAC all return default data structures. MRAC and SquareWave are
called once per pass through the loop. The simulation right-hand side, that is the dynamics of
the rotor, in RHSRotor, is then propagated using RungeKutta. Note that we pass a pointer
to RHSRotor to RungeKutta.

%% Initialize
nSim = 4000; % Number of time steps
dT = 0.1; % Time step (sec)
dRHS = RHSRotor; % Get the default data structure
dC = MRAC;
dS = SquareWave;
x = 0.1; % Initial state vector

%% Simulation
xPlot = zeros(4,nSim);
theta = zeros(2,nSim);
t = 0;
for k = 1:nSim
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% Plot storage
xPlot(:,k) = [x;dC.x(5);dC.u;dC.uC];
theta(:,k) = dC.x(3:4);
[uC, dS] = SquareWave( t, dS );
dC.uC = 2*(uC - 0.5);
dC = MRAC( x, dC );
dRHS.u = dC.u;

% Propagate (numerically integrate) the state equations
x = RungeKutta( @RHSRotor, t, x, dT, dRHS );
t = t + dT;

end

TIP Pass pointers @fun instead of strings ’fun’ to functions whenever possible.

RHSRotor is shown below.

dRHS.u = dC.u;

% Propagate (numerically integrate) the state equations
x = RungeKutta( @RHSRotor, t, x, dT, dRHS );
t = t + dT;

end

%% Plot the results

The dynamics is just one line of code. The remaining returns the default data structure.
The results are shown in Figure 5.9. We set the adaptation gain, γ to 1. am and bm are set

equal to 2. a is set equal to 1 and b to 1
2 .

The first plot shows the estimated and true angular rates of the rotor on top and the control
demand and actual control sent to the wheel on the bottom. The desired control is a square wave
(generated by SquareWave). Notice the transient in the applied control at the transitions of
the square wave. The control amplitude is greater than the commanded control. Notice also that
the angular rate approaches the desired commanded square wave shape.

Figure 5.10 shows the convergence of the adaptive gains, θ1 and θ2. They have converged
by the end of the simulation.

Model Reference Adaptive Control learns the gains of the system by observing the response
to the control excitation. It requires excitation to converge. This is the nature of all learning
systems. If there is insufficient stimulation, it isn’t possible to observe the behavior of the
system, so there is not enough information for learning. It is easy to find an excitation for a
first-order system. For higher order systems, or nonlinear systems, this can be more difficult.
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Figure 5.9: MRAC control of a rotor.

Figure 5.10: Gain convergence in the MRAC controller.

125



CHAPTER 5 ADAPTIVE CONTROL

5.6 Ship Steering: Implement Gain Scheduling for Steering
Control of a Ship

5.6.1 Problem

We want to steer a ship at all speeds. The problem is that the dynamics are speed dynamics,
making this a nonlinear problem

5.6.2 Solution

The solution is to use gain scheduling to set the gains based on speeds. The gain scheduling
is learned by automatically computing gains from the dynamical equations of the ship. This is
similar to the self-tuning example except that we are seeking a set of gains for all speeds, not
just one. In addition, we assume that we know the model of the system.

Figure 5.11: Ship heading control for gain scheduling control.
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5.6.3 How It Works

The dynamical equations for the heading of a ship are in state space form [2]
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0

⎤
⎦ (5.40)

v is the transverse speed, u is the ship’s speed, l is the ship length, r is the turning rate, and ψ
is the heading angle. αv and αr are disturbances. The ship is assumed to be moving at speed
u. This is achieved by the propeller, which is not modeled. The control is rudder angle δ.
Notice that if u = 0, the ship cannot be steered. All of the coefficients in the state matrix are
functions of u, except for the heading angle. Our goal is to control heading given the disturbance
acceleration in the first equation and disturbance angular rate in the second.

The disturbances only affect the dynamic states, r and v. The last state, ψ is a kinematic
state and does not have a disturbance.
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Table 5.1: Ship Parameters [3]

Parameter Minesweeper Cargo Tanker
l 55 161 350

a11 -0.86 -0.77 -0.45
a12 -0.48 -0.34 -0.44
a21 -5.20 -3.39 -4.10
a22 -2.40 -1.63 -0.81
b1 0.18 0.17 0.10
b2 1.40 -1.63 -0.81

The ship model is shown in the following code, RHSShip. The second and third outputs
are for use in the controller. Notice that the differential equations are linear in the state and the
control. Both matrices are a function of the forward velocity. We are not trying to control the
forward velocity, it is an input to the system. The default parameters for the minesweeper are
given in in Table 5.1.These are the same numbers that are in the default data structure.

function [xDot, a, b] = RHSShip( ˜, x, d )

if( nargin < 1 )
xDot = struct('l',100,'u',10,'a',[-0.86 -0.48;-5.2 -2.4],'b'

,[0.18;-1.4],'alpha',[0;0;0],'delta',0);
return

end

uOL = d.u/d.l;
uOLSq = d.u/d.lˆ2;
uSqOl = d.uˆ2/d.l;
a = [ uOL*d.a(1,1) d.u*d.a(1,2) 0;...

uOLSq*d.a(2,1) uOL*d.a(2,2) 0;...
0 1 0];

b = [uSqOl*d.b(1);...
uOLˆ2*d.b(2);...
0];

xDot = a*x + b*d.delta + d.alpha;

In the ship simulation, ShipSim, we linearly increase the forward speed while command-
ing a series of heading psi changes. The controller takes the state space model at each time step
and computes new gains, which are used to steer the ship. The controller is a linear quadratic
regulator. We can use full state feedback because the states are easily modeled. Such controllers
will work perfectly in this case, but are a bit harder to implement when you need to estimate
some of the states or have unmodeled dynamics.
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for k = 1:nSim
% Plot storage
xPlot(:,k) = x;
dRHS.u = u(k);
% Control
% Get the state space matrices
[˜,a,b] = RHSShip( 0, x, dRHS );
gain(k,:) = QCR( a, b, qC, rC );
dRHS.delta = -gain(k,:)*[x(1);x(2);x(3) - psi(k)]; % Rudder angle
delta(k) = dRHS.delta;
% Propagate (numerically integrate) the state equations
x = RungeKutta( @RHSShip, 0, x, dT, dRHS );

end

The quadratic regulator generator code is shown in the following lists. It generates the
gain from the matrix Riccati equation. A Riccati equation is an ordinary differential equation
that is quadratic in the unknown function. In steady state, this reduces to the algebraic Riccati
equation, which is solved in this function.

function k = QCR( a, b, q, r )

[sinf,rr] = Riccati( [a,-(b/r)*b';-q',-a'] );

if( rr == 1 )
disp('Repeated roots. Adjust q, r or n');

end

k = r\(b'*sinf);

function [sinf, rr] = Riccati( g )
%% Ricatti
% Solves the matrix Riccati equation in the form
%
% g = [a r ]
% [q -a']

rg = size(g);

[w, e] = eig(g);

es = sort(diag(e));

% Look for repeated roots
j = 1:length(es)-1;

if ( any(abs(es(j)-es(j+1))<eps*abs(es(j)+es(j+1))) )
rr = 1;

else
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rr = 0;
end

% Sort the columns of w
ws = w(:,real(diag(e)) < 0);

sinf = real(ws(rg/2+1:rg,:)/ws(1:rg/2,:));

a is the state transition matrix, b is the input matrix, q is the state cost matrix, and r is the
control cost matrix. The bigger the elements of q, the more cost we place on deviations of
the states from zero. That leads to tight control at the expense of more control. The bigger
the elements of b, the more cost we place on control. Bigger b means less control. Quadratic
regulators guarantee stability if all states are measured. They are a very handy controller to
get something working. The results are given in Figure 5.12. Note how the gains evolve. The
gain on the angular rate r is nearly constant. Notice that the ψ range is very small! Normally,
you would zoom out the plot. The other two gains increase with speed. This is an example
of gain scheduling. The difference is that we autonomously compute the gains from perfect
measurements of the ship’s forward speed.

Figure 5.12: Ship steering simulation. The states are shown on the left with the forward velocity.
The gains and rudder angle are shown on the right. Notice the “pulses” in the rudder to make
the maneuvers.
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ShipSimDisturbance is a modified version of ShipSim, which is of shorter duration,
with only one course change, and with disturbances in both angular rate and lateral velocity. The
results are given in Figure 5.13.

Figure 5.13: Ship steering simulation. The states are shown on the left with the rudder angle.
The disturbances are Gaussian white noise.
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5.7 Spacecraft Pointing
5.7.1 Problem

We want to control the orientation of a spacecraft with thrusters for control.

5.7.2 Solution

The solution is to use a parameter estimator to estimate the inertia and feed it into the control
system.
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5.7.3 How It Works

The spacecraft model is shown in Figure 5.14.

Figure 5.14: Spacecraft model.

The dynamical equations are

I = I0 +mfr
2
f (5.41)

Tc + Td = Iθ̈ + ṁfr
2
f θ̇ (5.42)

ṁf = − Tc

rue
(5.43)

where I is the total inertia, I0 is the constant inertia for everything except the fuel mass, Tc is the
thruster control torque, Td is the disturbance torque, mf is the total fuel mass, rf is the distance
to the fuel tank center, r is the vector to the thrusters, ue is the thruster exhaust velocity, and
θ is the angle of the spacecraft axis. Fuel consumption is balanced between the two tanks so
that the center-of-mass remains at (0,0). The second term in the second equation is the inertia
derivative term, which adds damping to the system.

Our controller is a proportional derivative controller of the form:

Tc = Ia (5.44)

a = −K(θ + τ θ̇) (5.45)

K is the forward gain and τ the rate constant. We design the controller for a unit inertia and
then estimate the inertia so that our dynamical response is always the same. We will estimate
the inertia using a very simple algorithm:

Ik =
Tck−1

θ̈k − θ̈k−1

(5.46)

We will do this only when the control torque is not zero and the change in rate is not zero.
This is a first difference approximation and should be good if we don’t have a lot of noise. The
following shows a code snippet showing the simulation loop with the control system.
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%% Initialize
nSim = 50; % Number of time steps
dT = 1; % Time step (sec)
dRHS = RHSSpacecraft; % Get the default data structure
x = [2.4;0.;1]; % [angle;rate;mass fuel]

%% Controller
kForward = 0.1;
tau = 10;

%% Simulation
xPlot = zeros(6,nSim);
omegaOld = x(2);
inrEst = dRHS.i0 + dRHS.rFˆ2*x(3);
dRHS.tC = 0;
tCThresh = 0.01;
kI = 0.99; % Inertia filter gain

for k = 1:nSim
% Collect plotting information
xPlot(:,k) = [x;inrEst;dRHS.tD;dRHS.tC];
% Control
% Get the state space matrices
dRHS.tC = -inrEst*kForward*(x(1) + tau*x(2));
omega = x(2);
omegaDot = (omega-omegaOld)/dT;
if( abs(dRHS.tC) > tCThresh )

inrEst = kI*inrEst + (1-kI)*omegaDot/(dRHS.tC);
end
omegaOld = omega;
% Propagate (numerically integrate) the state equations
x = RungeKutta( @RHSSpacecraft, 0, x, dT, dRHS );

end

We only estimate inertia when the control torque is above a threshold. This prevents us
from responding to noise. We also incorporate the inertia estimator in a simple low pass filter.
The results are shown in Figure 5.15. The threshold has it only estimating inertia at the very
beginning of the simulation when it is reducing the attitude error.

This algorithm appears crude, but it is fundamentally all we can do in this situation given
just angular rate measurements. More sophisticated filters or estimators could improve the
performance.
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Figure 5.15: States and control outputs from the spacecraft simulation.
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5.8 Summary
This chapter has demonstrated adaptive or learning control. You learned about model tuning,
model reference adaptive control, adaptive control and gain scheduling. Table 5.2 lists the
functions and scripts included in the companion code.

Table 5.2: Chapter Code Listing

File Description
Combinations Enumerates n integers for 1:n taken k at a time.
FFTEnergy Generates fast Fourier transform energy.
FFTSim Demonstration of the fast Fourier transform.
MRAC Implement model reference adaptive control.
QCR Generates a full state feedback controller.
RHSOscillatorControl Right-hand side of a damped oscillator with a velocity gain.
RHSRotor Right-hand side for a rotor.
RHSShip Right-hand side for a ship steering model.
RHSSpacecraft Right-hand side for a spacecraft model.
RotorSim Simulation of model reference adaptive control.
ShipSim Simulation of ship steering.
ShipSimDisturbance Simulation of ship steering with disturbances.
SpacecraftSim Time varying inertia demonstration.
SquareWave Generate a square wave.
TuningSim Controller tuning demonstration.
WrapPhase Keep angles between −π and π.
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Fuzzy Logic

Fuzzy logic [26] is an alternative approach to control system design. Fuzzy logic works within
the framework of set theory and is better at dealing with ambiguities. For example, three sets
may be defined for a sensor: hard failure, soft failure, and no failure. The three sets may overlap
and at any given time the sensor may have a degree of membership in each set. The degree of
membership in each set can be used to determine what action to take. An algorithmic approach
would have to assign a number to the state of the sensor. This could be problematic and not
necessarily represent the actual state of the system. In effect, you would be applying a degree
of fuzziness.

Autonomous 
Learning

Control
Intelligence

Machine 
Learning

When you go to a doctor with pain the doctor will often try and get you to convert a fuzzy
concept, pain, into a number from 0 to 10. As pain is personal and your impression is imprecise,
you are giving a fuzzy concept or belief a hard number. As you may have experienced, this is
not terribly productive or useful.

Surveys do the same thing. For example, you will be asked to rate the service in a restaurant
from 0 to 5. You then rate a bunch of other things on the same scale. This allows the review
to come up with a number for your overall impression of the restaurant. Does the resulting 4.8
actually mean anything? Netflix abandoned the numerical ratings of movies you have seen for
thumbs up and down. It seems that they felt that a binary decision, really two sets, was a better
indicator than a number.

NASA and the U.S. Department of Defense like to use technology readiness levels that go
from 1 to 9 to determine where your work is in terms of readiness. Nine is a technology already
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CHAPTER 6 FUZZY LOGIC

operating in a target system. One is just an idea. All the other levels are fuzzy for anything
moderately complicated. Even giving a technology a 9 is not terribly informative. The M-16
rifle was deployed to Vietnam. It often jammed. In terms of TRL it was 9, but a 9 doesn’t say
how well it is working. Again, the readiness of the rifle, when you read soldiers’ and marines’
impressions, was best represented by fuzzy beliefs.

This chapter will show you how to implement a fuzzy logic control system for windshield
wipers. Unlike the other chapters, we will be working with linguistic concepts, not hard num-
bers. Of course, when you set your wiper motor speed you need to pick a number (defuzzify
your output), but all the intermediate steps employ fuzzy logic.

6.1 Building Fuzzy Logic Systems
6.1.1 Problem

We want to have a tool to build a fuzzy logic controller.

6.1.2 Solution

Build a MATLAB function that takes parameter pairs that define everything needed for the
fuzzy controller.

6.1.3 How It Works

To create a fuzzy system you must create inputs, outputs, and rules. You can also choose
methods for some parts of the fuzzy inference. The fuzzy inference engine has three steps:

1. Fuzzify

2. Fire

3. Defuzzify

The fuzzy system data are stored in a MATLAB data structure. This structure has the
following fields:

• Input {:}
• Output {:}
• Rules {:}
• Implication

• Aggregation

• Defuzzify

The first three fields are cell arrays of structs. There is a separate structure for rules and fuzzy
sets, described below. The last three fields are strings containing the names of the desired
functions.
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The fuzzy set structure has the following fields:

• name

• range(2) (two-element array with minimum and maximum values)

• comp {:} (cell array of label strings)

• type {:} (cell array of membership function names)

• params {:} (cell array of parameter vectors)

The fuzzy rule struct has the following fields:

• input(:) (vector of input component numbers)

• output(:) (vector of outputs)

• operator {:} (cell array of operator strings)

This is a lot of data to organize. We do it with the function BuildFuzzySystem. The
following code snippet shows how it assigns data to the data structure using parameter pairs.

d = load('SmartWipers');

j = 1;

for k = 1:2:length(varargin)
switch (lower(varargin{k}))

case 'id'
j = varargin{k+1};

case 'input comp'
d.input(j).comp = varargin{k+1};

case 'input type'
d.input(j).type = varargin{k+1};

case 'input name'
d.input(j).name = varargin{k+1};

case 'input params'

This code continues with other cases. If you don’t enter anything, BuildFuzzySystem
loads the Smart Wipers demo, as shown above. and returns it unchanged. For example, if you
just enter one input type you get:

SmartWipers = BuildFuzzySystem(...
'id',1,...
'input comp',{'Dry' 'Drizzle' 'Wet'} ,...
'input type', {'Trapezoid' 'Triangle' 'Trapezoid'}

,...
'input params',{[0 0 10 50] [40 50] [50 90 101

101]},...
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'input range',[0 100])

SmartWipers =
struct with fields:

SmartWipers: [1x1 struct]
input: [1x1 struct]

Fuzzy sets in this context consist of a set of linguistic categories or components defining
a variable. For instance, if the variable is “age,” the components might be “young,” “middle-
aged,” and “old.” Each fuzzy set has a range over which it is valid, for instance, a good range for
“age” may be 0 to 100. Each component has a membership function that describes the degree
to which a value in the set’s range belongs to each component. For instance, a person who is
50 would rarely be described as “young,” but might be described as “middle aged” or “old,”
depending on the person asked.

To build a fuzzy set, you must divide it into components. The following membership func-
tions are provided:

1. Triangular

2. Trapezoidal

3. Gaussian

4. General bell

5. Sigmoidal

Membership functions are limited in value to between 0 and 1. The membership functions
are shown in Figure 6.1.

The triangular membership function requires two parameters: the center of the triangle and
the half-width of the desired triangle base. Triangular membership functions are limited to
symmetrical triangles.

The trapezoid membership function requires four parameters: the left-most point, the start
of the plateau, the end of the plateau, and the right-most points.

A Gaussian membership function is a continuous function with two parameters: the center
of the bell and the width (standard deviation) of the bell. Gaussian membership functions are
symmetrical.

A general bell function is also continuous and symmetrical, but it has three parameters to
allow for a flattened top, making it similar to a smoothed trapezoid. It requires three parameters:
the center of the bell, the width of the bell at the points y = 0.5, and the slope of the function at
the points y = 0.5.

Just as a bell function is similar to a smoothed trapezoid, a sigmoidal membership function
is similar to a smoothed step function. It takes two parameters: the point at which y = 0.5 and
the slope of the function. As the slope approaches infinity the sigmoidal function approaches
the step function.
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Figure 6.1: Membership functions.

Fuzzy rules are if-then statements. For example, an air conditioner rule might say IF the
room temperature IS high, THEN the blower level IS high. In this case, “room temperature” is
the input fuzzy set, “high” is its component for this rule, “blower level” is the output fuzzy set,
and “high” is its chosen component.

6.2 Implement Fuzzy Logic
6.2.1 Problem

We want to implement fuzzy logic.

6.2.2 Solution

Build a fuzzy inference engine.

6.2.3 How It Works

Let’s repeat the three steps in fuzzy inference, adding two steps within defuzzify:

1. Fuzzify

2. Fire

3. Defuzzify

(a) Implication

(b) Aggregation
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The control flow is in the main function, called FuzzyInference. It just calls Fuzzify,
Fire, and Defuzzify in order. It calls warndlg if the inputs are not sensible.

function y = FuzzyInference( x, system )

if length(x) == length( system.input )
fuzzyX = Fuzzify( x, system.input );
strength = Fire( fuzzyX, system.rules );
y = Defuzzify( strength, system );

else
warndlg({'The length of x must be equal to the',...

'number of input sets in the system.'})
end

You will notice the use of eval to evaluate function names stored as strings as the input.
You could also store pointers and do the same thing. For example, for the function:

function y = MyFun(x)
y = x;

eval works on a string. Essentially, it applies the MATLAB parser to your own text. You can
make the string as complex as you want, albeit at the expense of readability. You can also do
things such as make self-modifying code.

>> eval(['MyFun(',sprintf('%f',2),')'])

ans =
2

It is cleaner and takes less processing time to use a pointer to the function.

>> feval(@MyFun,2)

ans =
2

feval works on a pointer to the function and is generally faster.

TIP Use feval instead of eval whenever possible.

The fuzzify sub-function code is shown below. It puts the data into the various input mem-
bership sets. An input may be in more than one set.

function fuzzyX = Fuzzify( x, sets )

m = length(sets);
fuzzyX = cell(1,m);
for i = 1:m

n = length(sets(i).comp);
range = sets(i).range(:);
if range(1) <= x(i) <= range(2)

140



CHAPTER 6 FUZZY LOGIC

for j = 1:n
fuzzyX{i}(j) = eval([sets(i).type{j} 'MF(x(i),[' num2str(sets(i

).params{j}) '])']);
end

else
fuzzyX{i}(1:n) = zeros(1,n);

end
end

The fuzzy rules fire in the following code. The code applies “Fuzzy AND” or “Fuzzy OR.”
“Fuzzy AND” is the minimum of a set of membership values. “Fuzzy OR” is the maximum of
a set of membership values. Suppose we have a vector [1 0 1 0]. The maximum value is 1
and the minimum is 0.

>> 1 && 0 && 1 && 0

ans =

logical
0

>> 1 || 0 || 1 || 0

ans =

logical
1

This corresponds to the fuzzy logic AND and OR.
The next code snippet shows the Fire sub-function in FuzzyInference.

function strength = Fire( FuzzyX, rules )

m = length( rules );
n = length( FuzzyX );

strength = zeros(1,m);

for i = 1:m
method = rules(i).operator;
for j = 1:n

comp = rules(i).input(j);
if comp ˜= 0

dom(j) = FuzzyX{j}(comp);
else

dom(j) = inf;
end

end
strength(i) = eval([method '(dom(find(dom<=1)))']);

end
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Finally, we defuzzify the results. This function first uses the implication functions to deter-
mine membership. It aggregates the output using the aggregate function which, in this case, is
max.

function result = Defuzzify( strength, system )

rules = system.rules;
output = system.output;

m = length( output );
n = length( rules );
imp = system.implicate;
agg = system.aggregate;
defuzz = system.defuzzify;
result = zeros(1,m);

for i = 1:m
range = output(i).range(:);
x = linspace( range(1),range(2),200 );
for j = 1:n

comp = rules(j).output(i);
if( comp ˜= 0 )

mf = [output(i).type{comp} 'MF'];
params = output(i).params{comp};
mem(j,:) = eval([ imp 'IMP(' mf '(x,params),strength(j))']);

else
mem(j,:) = zeros(size(x));

end
end
aggregate = eval([ agg '(mem)' ]);
result(i) = eval([ defuzz 'DF(aggregate, x)']);

end

6.3 Demonstrate Fuzzy Logic
6.3.1 Problem

We want a control system to select window wiper speed and interval based on rainfall.

6.3.2 Solution

Build a fuzzy logic control system using the tools we’ve developed.
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6.3.3 How It Works

To call a fuzzy system, use the function y = FuzzyInference( x, system ).
The script SmartWipersDemo implements the rainfall demo. We only show the code that

calls the inference engine. The fuzzy system is loaded using SmartWipers =
BuildFuzzySystem(), as discussed above.

% Generate regularly space arrays in the 2 inputs
x = linspace(SmartWipers.input(1).range(1),SmartWipers.input(1).range

(2),n);
y = linspace(SmartWipers.input(2).range(1),SmartWipers.input(2).range

(2),n);

PlotSet(1:n,[x;y],'x label','Input','y label',{'Wetness','Intensity'
},...

'figure title','Inputs','Plot Title',{'Wetness','Intensity'})

h = waitbar(0,'Smart Wipers Demo: plotting the rule base');
z1 = zeros(n,n);
z2 = zeros(n,n);
for k = 1:n

for j = 1:n
temp = FuzzyInference([x(k),y(j)], SmartWipers);
z1(k,j) = temp(1);
z2(k,j) = temp(2);

end
waitbar(k/n)

end
close(h);

NewFigure('Wiper Speed from Fuzzy Logic')

Smart wipers is a control system for an automatic windshield wiper [7]. First, the demo
will plot the input and output fuzzy variables. Fuzzy inference is performed on each set of crisp
inputs plotted. Figure 6.2 shows the inputs to the fuzzy logic system. Figure 6.3 shows the
outputs.

The inputs that are tested in the fuzzy logic system are given in Figure 6.4.
Figure 6.5 gives surface plots to show how the outputs relate to the inputs. The surface

plots are generated by the code below. We add a colorbar to make the plot more readable.
The color is related to z-value. We use view in the second plot to make it easier to read in the
figure. You can use rotate3d on to allow you to rotate the figure with the mouse.

NewFigure('Wiper Speed from Fuzzy Logic')
surf(x,y,z1)
xlabel('Raindrop Wetness')
ylabel('Droplet Frequency')
zlabel('Wiper Speed')
colorbar
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Figure 6.2: Rain wetness and intensity are the inputs for the smart wiper control system.

Figure 6.3: Wiper speed and interval are the outputs for the smart wiper control system.
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NewFigure('Wiper Interval from Fuzzy Logic')
surf(x,y,z2)
xlabel('Raindrop Wetness')
ylabel('Droplet Frequency')
zlabel('Wiper Interval')
view([142.5 30])

TIP Use rotate3d on to rotate a figure with the mouse.
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Figure 6.4: Rain wetness and intensity input numbers.

Figure 6.5: Wiper speed and interval versus droplet frequency and wetness.
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6.4 Summary
This chapter demonstrated fuzzy logic. A windshield wipers demonstration gives an example
of how it is used. Table 6.1 lists the functions and scripts included in the companion code.

Table 6.1: Chapter Code Listing

File Description
BuildFuzzySystem Builds a fuzzy logic system (data structure) using parameter pairs.
SmartWipersDemo Demonstrates a fuzzy logic control system for windshield wipers.
FuzzyPlot Plots a fuzzy set.
TriangleMF Triangle membership function.
TrapezoidMF Trapezoid membership function.
SigmoidalMF Display a neural net with multiple layers.
ScaleIMP Scale implication function.
ClipIMP Clip implication function.
GeneralBellMF General bell membership function.
GaussianMF Gaussian membership function.
FuzzyOR Fuzzy Or (maximum of membership values).
FuzzAND Fuzzy And (minimum of membership values).
FuzzyInference Performs fuzzy inference given a fuzzy system and crisp data x.
CentroidDF Centroid defuzzification.
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Data Classification with Decision
Trees

In this chapter, we will develop the theory for binary decision trees. Decision trees can be used
to classify data, and fall into the Learning category in our Autonomous Learning taxonomy. Bi-
nary trees are easiest to implement because each node branches to two other nodes, or none. We
will create functions for the Decision Trees and to generate sets of data to classify. Figure 7.1
shows a simple binary tree. Point “a” is in the upper left quadrant. The first binary test finds
that its x value is greater than 1. The next test finds that its y value is greater than 1 and puts it
in set 2. Although the boundaries show square regions, the binary tree really tests for regions
that go to infinity in both x and y.

Autonomous 
Learning

Control
Intelligence

Machine 
Learning

A binary decision tree is a decision tree in which at each decision node there are only two
decisions to make. Once you make a decision, the next decision node provides you with two
additional options. Each node accepts a binary value of 0 or 1. 0 sends you down one path, and
1 the other. At each decision node, you are testing a new variable. When you get to the bottom,
you will have found a path where all of the values are true. The problem with a binary tree of
n variables is that it will have 2n − 1 nodes. Four variables would require 15 decision nodes.
Eight would require 65 decision nodes, and so forth. If the order of testing variables is fixed,
we call it an ordered tree.
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Figure 7.1: A simple binary tree with one point to classify.

For classification, we are assuming that we can make a series of binary decisions to classify
something. If we can, we can implement the reasoning in a binary tree.

7.1 Generate Test Data
7.1.1 Problem

We want to generate a set of training and testing data for classification.

7.1.2 Solution

Write a function using rand to generate data over a selected range in two dimensions, x and y.

7.1.3 How It Works

The function ClassifierSet generates random data and assigns them to classes. The func-
tion call is:

function p = ClassifierSets( n, xRange, yRange, name, v, f, setName )

The first argument to ClassifierSets is the square root of the number of points. The
second, xRange, gives the x range for the data and the third, yRange, gives the y range. The
n2 points will be placed randomly in this region. The next argument is a cell array with the
names of the sets, name. These are used for plot labels. The remaining inputs are a list of
vertices, v, and the faces, f. The faces select the vertices to use in each polygon. The faces
connect the vertices into specific polygons. f is a cell array, since each face array can be of
any length. A triangle has a length of 3, a hexagon a length of 6. Triangles, rectangles, and
hexagons can be easily meshed so that there are no gaps.

Classes are defined by adding polygons that divide the data into regions. Any polygon can
be used. You should pick polygons so that there are no gaps. Rectangles are easy, but you could
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also use uniformly sized hexagons. The following code is the built-in demo. The demo is the
last subfunction in the function. This specifies the vertices and faces.

function Demo

v = [0 0;0 4; 4 4; 4 0; 0 2; 2 2; 2 0;2 1;4 1;2 1];
f = {[5 6 7 1] [5 2 3 9 10 6] [7 8 9 4]};
ClassifierSets( 5, [0 4], [0 4], {'width', 'length'}, v, f );

In this demo, there are three polygons. All points are defined in a square ranging from 0 to
4 in both the x and y directions.

The other subfunctions are PointInPolygon and Membership. Membership deter-
mines if a point is in a polygon. Membership calls PointInPolygon to assign points to
sets. ClassifierSets randomly puts points in the regions. It figures out which region each
point is in using this code in the function, PointInPolygon.

function r = PointInPolygon( p, v )

m = size(v,2);

% All outside
r = 0;

% Put the first point at the end to simplify the looping
v = [v v(:,1)];

for i = 1:m
j = i + 1;
v2J = v(2,j);
v2I = v(2,i);
if (((v2I > p(2)) ˜= (v2J > p(2))) && ...

(p(1) < (v(1,j) - v(1,i)) * (p(2) - v2I) / (v2J - v2I) + v(1,i)
))

r = ˜r;
end

end

This code can determine if a point is inside a polygon defined by a set of vertices. It is used
frequently in computer graphics and in games when you need to know if one object’s vertex
is in another polygon. You could correctly argue that this function could replace our decision
tree logic for this type of problem. However, a decision tree can compute membership for more
complex sets of data. Our classifier set is simple and makes it easy to validate the results.

Run ClassifierSets to see the demo. Given the input ranges, it determines the mem-
bership of randomly selected points. p is a data structure that holds the vertices and the mem-
bership. It plots the points after creating a new figure using NewFigure. It then uses patch
to create the rectangular regions.
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p.x = (xRange(2) - xRange(1))*(rand(n,n)-0.5) + mean(xRange);
p.y = (yRange(2) - yRange(1))*(rand(n,n)-0.5) + mean(yRange);
p.m = Membership( p, v, f );

NewFigure(setName);
i = 0;
drawNum = nˆ2 < 50;
for j = 1:n

for k = 1:n
i = i + 1;
plot(p.x(k,j),p.y(k,j),'marker','o','MarkerEdgeColor','k')
if( drawNum )

text(p.x(k,j),p.y(k,j),sprintf(' %3d',i));
end
hold on

end
end

m = length(f);
a = linspace(0,2*pi-2*pi/m,m)';
c = abs(cos([a a+pi/6 a+3*pi/5]));

for k = 1:m
patch('vertices',v,'faces',f{k},'facecolor',c(k,:),'facealpha',0.1)

end

xlabel(name{1});
ylabel(name{2});
grid on

The function shows the data numbers if there are fewer than 50 points. The MATLAB-
function patch is used to generate the polygons. The code shows a range of graphics coding
including the use of graphics parameters. Notice the way we create m colors.

TIP You can create an unlimited number of colors for plots using linspace and cos.

ClassifierTestSet can generate test sets or demonstrate a trained decision tree. The
drawing shows that the classification regions are regions with sides parallel to the x- or y-axes.
The regions should not overlap.
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Figure 7.2: Classifier set with three regions from the demo. Two are rectangles and one is
L-shaped.

7.2 Drawing Decision Trees
7.2.1 Problem

We want to draw a binary decision tree to show decision tree thinking.

7.2.2 Solution

The solution is to use MATLAB graphics functions, patch, text, and line to draw a tree.

7.2.3 How It Works

The function DrawBinaryTree draws any binary tree. The function call is

function d = DrawBinaryTree( d, name )

You pass it a data structure, d, with the decision criteria in a cell array. The name input is
optional. It has a default option for the name. The boxes start from the left and go row by row.
In a binary tree, the number of rows is related to the number of nodes through the formula for a
geometric series:

m = log2(n) (7.1)

where m is the number of rows and n is the number of boxes. Therefore, the function can
compute the number of rows.

The function starts by checking the number of inputs and either runs the demo or returns the
default data structure. When you write a function you should always have defaults for anything
where one is possible.
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TIP Whenever possible, have default inputs for function arguments.

It immediately creates a new figure with that name. It then steps through the boxes assigning
them to rows based on it being a binary tree. The first row has one box, the next two boxes, the
following four boxes, etc. As this is a geometric series, it will soon get unmanageable! This
points to a problem with decision trees. If they have a depth of more than four, even drawing
them is impossible. As it draws the boxes, it computes the bottom and top points, which will be
the anchors for the lines between the boxes. After drawing all the boxes, it draws all the lines.

All of the drawing functionality is in the subfunction DrawBox.

v = [x y 0;x y+h 0; x+w y+h 0;x+w y 0];

patch('vertices',v,'faces',[1 2 3 4],'facecolor',[1;1;1]);

text(x+w/2,y + h/2,t,'fontname',d.font,'fontsize',...
d.fontSize,'HorizontalAlignment','center');

%% DrawBinaryTree>DefaultDataStructure

This draws a box using the patch function and the text using the text function.
’facecolor’ is white. Red green blue (RGB) numbers go from 0 to 1. Setting
’facecolor’ to [1 1 1] makes the face white and leaves the edges black. As with all
MATLAB graphics, there are dozens of properties that you can edit to produce beautiful graph-
ics. Notice the extra arguments in text. Themost interesting is ’HorizontalAlignment’
in the last line. It allows you to center the text in the box. MATLAB does all the figuring of
font sizes for you.

The following listing shows the code in DrawBinaryTree, for drawing the tree, starting
after checking for demos. The function returns the default data structure if one output and no
inputs are specified. The first part of the code creates a new figure and draws the boxes at each
node. It also creates arrays for the box locations for use in drawing the lines that connect the
boxes. It starts off with the default argument for name. The first set of loops draws the boxes
for the trees. rowID is a cell array. Each row in the cell is an array. A cell array allows each
cell to be different. This makes it easy to have different length arrays in the cell. If you used a
standard matrix, you would need to resize rows as new rows were added.

if( nargin < 2 )
name = 'Binary Tree';

end

NewFigure(name);
m = length(d.box);
nRows = ceil(log2(m+1));
w = d.w;
h = d.h;
i = 1;
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x = -w/2;
y = 1.5*nRows*h;
nBoxes = 1;
bottom = zeros(m,2);
top = zeros(m,2);
rowID = cell(nRows,1);
% Draw a box at each node
for k = 1:nRows

for j = 1:nBoxes
bottom(i,:) = [x+w/2 y ];
top(i,:) = [x+w/2 y+h];
DrawBox(d.box{i},x,y,w,h,d);
rowID{k} = [rowID{k} i];
i = i + 1;
x = x + 1.5*w;
if( i > length(d.box) )

break;
end

end
nBoxes = 2*nBoxes;
x = -(0.25+0.5*(nBoxes/2-1))*w - nBoxes*w/2;
y = y - 1.5*h;

end

The remaining code draws the lines between the boxes.

for k = 1:length(rowID)-1
iD = rowID{k};
i0 = 0;
% Work from left to right of the current row
for j = 1:length(iD)

x(1) = bottom(iD(j),1);
y(1) = bottom(iD(j),2);
iDT = rowID{k+1};
if( i0+1 > length(iDT) )

break;
end
for i = 1:2

x(2) = top(iDT(i0+i),1);
y(2) = top(iDT(i0+i),2);
line(x,y);

end
i0 = i0 + 2;

end
end
axis off
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The following built-in demo draws a binary tree. The demo creates three rows. It starts with
the default data structure. You only have to add strings for the decision points. The boxes are
in a flat list.

function Demo
% Draw a simple binary data treea

d = DefaultDataStructure;
d.box{1} = 'a > 0.1';
d.box{2} = 'b > 0.2';
d.box{3} = 'b > 0.3';
d.box{4} = 'a > 0.8';
d.box{5} = 'b > 0.4';
d.box{6} = 'a > 0.2';
d.box{7} = 'b > 0.3';

DrawBinaryTree( d );

Notice that it calls the subfunction DefaultDataStructure to initialize the demo.

%% DrawBinaryTree>DefaultDataStructure
function d = DefaultDataStructure
% Default data structure

d = struct();
d.fontSize = 12;
d.font = 'courier';
d.w = 1;
d.h = 0.5;
d.box = {};

TIP Always have the function return its default data structure. The default should have
values that work.

It starts off with a default argument for name. The loops draw the boxes for the trees.
rowID is a cell array. Each row in the cell is an array. A cell array allows each cell to be
different. This makes it easy to have different length arrays in the cell. If you used a standard
matrix you would need to resize rows as new rows were added. The binary tree resulting from
the demo is shown in Figure 7.3. The text in the boxes could be anything you want.

The inputs for box could have been done in a loop. You could create them using sprintf.
For example, for the first box you could write:

d.box{1}= sprintf('%s %s %3.1f','a','>',0.1);

and put similar code in a loop.

154



CHAPTER 7 DATA CLASSIFICATIONWITH DECISION TREES

Figure 7.3: Binary tree from the demo in DrawBinaryTree.

7.3 Implementation
Decision trees are the main focus of this chapter. We’ll start with looking at how we determine
if our decision tree is working correctly. We’ll then hand-build a decision tree and finally write
learning code to generate the decisions for each block of the tree.

7.3.1 Problem

We need to measure the homogeneity of a set of data at different nodes on the decision tree. A
data set is homogeneous if the points are similar to each other. For example, if you were trying
to study grade points in a school with an economically diverse population, you would want to
know if your sample was all children from wealthy families. Our goal in the decision tree is to
end up with homogeneous sets.

7.3.2 Solution

The solution is to implement the Gini impurity measure for a set of data. The function will
return a single number as the homogeneity measure.

7.3.3 How It Works

The homogeneity measure is called the information gain (IG). The IG is defined as the increase
in information by splitting at the node. This is:

ΔI = I(p)− Nc1

Np
I(c1)− Nc2

Np
I(c2) (7.2)

where I is the impurity measure and N is the number of samples at that node. If our tree is
working, it should go down, eventually to zero or a very small number. In our training set, we
know the class of each data point. Therefore, we can determine the IG. Essentially, we have
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gained information if the mixing decreases in the child nodes. For example, in the first node
in a decision tree, all the data are mixed together. There are two child nodes for the first node.
After the decision in the first node, we expect that each child node will have more of one class
than does the other child node. We look at the percentages of classes in each node and look for
the maximum increase in nonhomogeneity.

There are three impurity measures:

• Gini impurity

• Entropy

• Classification error

Gini impurity, IG, is the criterion to minimize the probability of misclassification. We don’t
want to push a sample into the wrong category.

IG = 1−
c∑
1

p(i|t)2 (7.3)

p(i|t) is the proportion of the samples in class ci at node t. For a binary class entropy, IE , is
either zero or one.

IE = 1−
c∑
1

p(i|t) log2 p(i|t) (7.4)

Classification error, IC , is:
IC = 1−max p(i|t) (7.5)

We will use Gini impurity in the decision tree. The following code implements the Gini mea-
sure. The first part just decides whether it is initializing the function or updating. All data are
saved in the data structure d. This is often easier than using global data. One advantage is that
you can use the function multiple times in the same script or function without mixing up the
persistent data in the function.

function [i, d] = HomogeneityMeasure( action, d, data )

if( nargin == 0 )
if( nargout == 1 )

i = DefaultDataStructure;
else

Demo;
end
return

end

switch lower(action)
case 'initialize'

d = Initialize( d, data );
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i = d.i;
case 'update'

d = Update( d, data );
i = d.i;

otherwise
error('%s is not an available action',action);

end

Initialize initializes the data structure and computes the impurity measures for the
data. There is one class for each different value of the data. For example, [1 2 3 3] would
have three classes.

function d = Initialize( d, data )
%% HomogeneityMeasure>Initialize

m = reshape(data,[],1);
c = 1:max(m);
n = length(m);
d.dist = zeros(1,c(end));
d.class = c;
if( n > 0 )

for k = 1:length(c)
j = find(m==c(k));
d.dist(k) = length(j)/n;

end
end
d.i = 1 - sum(d.dist.ˆ2);

The demo is shown below. We try four different sets of data and get the measures. 0 is
homogeneous. 1 means there is no data.

function d = Demo
% Demonstrate the homogeniety measure for a data set.

data = [1 2 3 4 3 1 2 4 4 1 1 1 2 2 3 4]; fprintf(1,'%2.0f',data);
d = HomogeneityMeasure;
[i, d] = HomogeneityMeasure( 'initialize', d, data );
fprintf(1,'\nHomogeneity Measure %6.3f\n',i);
fprintf(1,'Classes [%1d %1d %1d %1d]\n',d.class);
fprintf(1,'Distribution [%5.3f %5.3f %5.3f %5.3f]\n',d.dist);

data = [1 1 1 2 2]; fprintf(1,'%2.0f',data);
[i, d] = HomogeneityMeasure( 'update', d, data );
fprintf(1,'\nHomogeneity Measure %6.3f\n',i);
fprintf(1,'Classes [%1d %1d %1d %1d]\n',d.class);
fprintf(1,'Distribution [%5.3f %5.3f %5.3f %5.3f]\n',d.dist);
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data = [1 1 1 1]; fprintf(1,'%2.0f',data);
[i, d] = HomogeneityMeasure( 'update', d, data );
fprintf(1,'\nHomogeneity Measure %6.3f\n',i);
fprintf(1,'Classes [%1d %1d %1d %1d]\n',d.class);
fprintf(1,'Distribution [%5.3f %5.3f %5.3f %5.3f]\n',d.dist);

data = []; fprintf(1,'%2.0f',data);
[i, d] = HomogeneityMeasure( 'update', d, data );
fprintf(1,'\nHomogeneity Measure %6.3f\n',i);
fprintf(1,'Classes [%1d %1d %1d %1d]\n',d.class);
fprintf(1,'Distribution [%5.3f %5.3f %5.3f %5.3f]\n',d.dist);

i is the homogeneity measure. d.dist is the fraction of the data points that have the value
of that class. The class is the distinct values. The outputs of the demo are shown below.

>> HomogeneityMeasure
1 2 3 4 3 1 2 4 4 1 1 1 2 2 3 4

Homogeneity Measure 0.742
Classes [1 2 3 4]
Distribution [0.312 0.250 0.188 0.250]
1 1 1 2 2

Homogeneity Measure 0.480
Classes [1 2 3 4]
Distribution [0.600 0.400 0.000 0.000]
1 1 1 1

Homogeneity Measure 0.000
Classes [1 2 3 4]
Distribution [1.000 0.000 0.000 0.000]

Homogeneity Measure 1.000
Classes [1 2 3 4]
Distribution [0.000 0.000 0.000 0.000]

The second to last set has a zero, which is the desired value. If there are no inputs it returns 1,
since by definition for a class to exist it must have members.

7.4 Creating a Decision tree
7.4.1 Problem

We want to implement a decision tree for classifying data with two parameters.

7.4.2 Solution

The solution is to write a binary decision tree function in MATLAB called DecisionTree.
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7.4.3 How It Works

A decision tree [20] breaks down data by asking a series of questions about the data. Our
decision trees will be binary in that there will be a yes or no answer to each question. For each
feature in the data, we ask one question per decision node. This always splits the data into
two child nodes. We will be looking at two parameters that determine class membership. The
parameters will be numerical measurements.

At the following nodes, we ask additional questions, further splitting the data. Figure 7.4
shows the parent/child structure. We continue this process until the samples at each node are
in one of the classes. At each node we want to ask the question that provides us with the most
information about the class in which our samples reside. In constructing our decision tree for a
two-parameter classification, we have two decisions at each node:

• Which parameter (x or y) to check.

• What value of the parameter to use in the decision.

Figure 7.4: Parent/child nodes.

Feature Question

Feature Question Feature Question

YesNo

Parent Node

Child Node

Training is done using the Gini values given in the previous recipe. We use the MATLAB-
function fminbnd at each node, once for each of the two parameters. fminbnd is a one-
dimensional local minimizer that finds the minimum of a function between two specified end-
points. If you know the range of interest, then this is a very effective way to find the minimum.

min
x

f(x) such that x1 < x < x2 (7.6)

There are two actions, “train” and “test.” “train” creates the decision tree and “test” runs the
generated decision tree. You can also input your own decision tree. FindOptimalAction
finds the parameter that minimizes the inhomogeneity on both sides of the division. The func-
tion called by fminbnd is RHSGT. We only implement the greater than action. The function
call is:

function [d, r] = DecisionTree( action, d, t )
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action is a string that is either “train” or “test.” d is the data structure that defines the tree.
t are the inputs for either training or testing. The outputs are the updated data structure and r
with the results.

The function is first called with training data and the action is “train.” The main function is
short.

switch lower(action)
case 'train'

d = Training( d, t );
d.box(1)

case 'test'
for k = 1:length(d.box)

d.box(k).id = [];
end
[r, d] = Testing( d, t );
for k = 1:length(d.box)

d.box(k)
end

otherwise
error('%s is not an available action',action);

end

We added the error case otherwise for completeness. Note that we use lower to eliminate
case sensitivity. Training creates the decision tree. A decision tree is a set of boxes con-
nected by lines. A parent box has two child boxes if it is a decision box. A class box has no
children. The subfunction Training trains the tree. It adds boxes at each node.

%% DecisionTree>Training
function d = Training( d, t )
[n,m] = size(t.x);
nClass = max(t.m);
box(1) = AddBox( 1, 1:n*m, [] );
box(1).child = [2 3];
[˜, dH] = HomogeneityMeasure( 'initialize', d, t.m );

class = 0;
nRow = 1;
kR0 = 0;
kNR0 = 1; % Next row;
kInRow = 1;
kInNRow = 1;
while( class < nClass )

k = kR0 + kInRow;
idK = box(k).id; % Data that is in the box and to use to compute

the next action
% Enter this loop if it not a non-decision box
if( isempty(box(k).class) )
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[action, param, val, cMin] = FindOptimalAction( t, idK, d.xLim,
d.yLim, dH );

box(k).value = val;
box(k).param = param;
box(k).action = action;
x = t.x(idK);
y = t.y(idK);
if( box(k).param == 1 ) % x

id = find(x > d.box(k).value );
idX = find(x <= d.box(k).value );

else % y
id = find(y > d.box(k).value );
idX = find(y <= d.box(k).value );

end
% Child boxes
if( cMin < d.cMin) % Means we are in a class box

class = class + 1;
kN = kNR0 + kInNRow;
box(k).child = [kN kN+1];
box(kN) = AddBox( kN, idK(id), class );
class = class + 1;
kInNRow = kInNRow + 1;
kN = kNR0 + kInNRow;
box(kN) = AddBox( kN, idK(idX), class );
kInNRow = kInNRow + 1;

else
kN = kNR0 + kInNRow;
box(k).child = [kN kN+1];
box(kN) = AddBox( kN, idK(id) );
kInNRow = kInNRow + 1;
kN = kNR0 + kInNRow;
box(kN) = AddBox( kN, idK(idX) );
kInNRow = kInNRow + 1;

end
end

% Update current row
kInRow = kInRow + 1;
if( kInRow > nRow )

kR0 = kR0 + nRow;
nRow = 2*nRow; % Add two rows
kNR0 = kNR0 + nRow;
kInRow = 1;
kInNRow = 1;

end
end

for k = 1:length(box)
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if( ˜isempty(box(k).class) )
box(k).child = [];

end
box(k).id = [];
fprintf(1,'Box %3d action %2s Value %4.1f\n',k,box(k).action,box(k)

.value);
end

d.box = box;

We use fminbnd to find the optimal switch point. We need to compute the homogeneity
on both sides of the switch and sum the values. The sum is minimized by fminbnd in the
subfunction FindOptimalAction. This code is designed for rectangular region classes.
Other boundaries won’t necessarily work correctly. The code is fairly involved. It needs to
keep track of the box numbering to make the parent child connections. When the homogeneity
measure is low enough, it marks the boxes as containing the classes.

The data structure box has multiple fields. One is the action to be taken in a decision box.
The param is 1 for x and anything else for y. That determines if it is making the decision based
on x or y. The value is the value used in the decision. child are indexes to the box children.
The remaining code determines which row the box is in. class boxes have no children. The
fields are shown in Table 7.1.

Table 7.1: Box Data Structure Fields

Field Decision Box Class Box
action String Not used
value Value to be used in the decision Not used
param x or y Not used
child Array with two children Empty
id Empty ID of data in the class
class Class ID Not used

7.5 Creating a Handmade Tree
7.5.1 Problem

We want to test a handmade decision tree.

7.5.2 Solution

The solution is to write a script to test a handmade decision tree.
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7.5.3 How It Works

We write the test script SimpleClassifierDemo shown below. It uses the ’test’ action
for DecisionTree. It generates 52 points. We create rectangular regions so that the face
arrays have four elements for each polygon. DrawBinaryTree draws the tree.

d = DecisionTree;

% Vertices for the sets
v = [ 0 0; 0 4; 4 4; 4 0; 2 4; 2 2; 2 0; 0 2; 4 2];

% Faces for the sets
f = { [6 5 2 8] [6 7 4 9] [6 9 3 5] [1 7 6 8] };

% Generate the testing set
pTest = ClassifierSets( 5, [0 4], [0 4], {'width', 'length'}, v, f,

'Testing Set' );

% Test the tree
[d, r] = DecisionTree( 'test', d, pTest );

q = DrawBinaryTree;
c = 'xy';
for k = 1:length(d.box)

if( ˜isempty(d.box(k).action) )
q.box{k} = sprintf('%c %s %4.1f',c(d.box(k).param),d.box(k).

action,d.box(k).value);
else

q.box{k} = sprintf('Class %d',d.box(k).class);
end

end
DrawBinaryTree(q);

m = reshape(pTest.m,[],1);

for k = 1:length(r)
fprintf(1,'Class %d\n',m(r{k}(1)));
for j = 1:length(r{k})

fprintf(1,'%d ',r{k}(j));
end
fprintf(1,'\n')

end

SimpleClassifierDemo uses the hand-built example in DecisionTree.

function d = DefaultDataStructure
%% DecisionTree>DefaultDataStructure
% Generate a default data structure
d.tree = DrawBinaryTree;
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d.threshold = 0.01;
d.xLim = [0 4];
d.yLim = [0 4];
d.data = [];
d.cMin = 0.01;
d.box(1) = struct('action','>','value',2,'param',1,'child',[2 3],'

id',[],'class',[]);
d.box(2) = struct('action','>','value',2,'param',2,'child',[4 5],'

id',[],'class',[]);
d.box(3) = struct('action','>','value',2,'param',2,'child',[6 7],'

id',[],'class',[]);

for k = 4:7
d.box(k) = struct('action','','value',0,'param',0,'child',[],'id'

,[],'class',[]);
end

Figure 7.5 shows the results from SimpleClassifierDemo. There are four rectangular
areas, which are our sets.

Figure 7.5: Data and classes in the test set.

We can create a decision tree by hand as shown Figure 7.6.
The decision tree sorts the samples into the four sets. In this case, we know the boundaries

and can use them to write the inequalities. In software, we will have to determine what values
provide the shortest branches. The following is the output of SimpleClassifierDemo.
The decision tree properly classifies all of the data.
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Figure 7.6: A manually created decision tree. The drawing is generated by DecisionTree.
The last row of boxes is the data sorted into the four classes. The last nodes are the classes.
Each box is a decision tree node.

>> SimpleClassifierDemo

Class 3
4 6 9 13 18
Class 2
7 14 17 21
Class 1
1 2 5 8 10 11 12 23 25
Class 4
3 15 16 19 20 22 24

7.6 Training and Testing
7.6.1 Problem

We want to train our decision tree and test the results.

7.6.2 Solution

We replicated the previous recipe, only this time we have DecisionTree create the decision
tree instead of creating it by hand.
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7.6.3 How It Works

TestDecisionTree trains and tests the decision tree. It is very similar to the code for the
hand-built decision tree demo, SimpleClassifierDemo. Once again, we use rectangles
for the regions.

% Vertices for the sets
v = [ 0 0; 0 4; 4 4; 4 0; 2 4; 2 2; 2 0; 0 2; 4 2];

% Faces for the sets
f = { [6 5 2 8] [6 7 4 9] [6 9 3 5] [1 7 6 8] };

% Generate the training set
pTrain = ClassifierSets( 40, [0 4], [0 4], {'width', 'length'},...

v, f, 'Training Set' );

% Create the decision tree
d = DecisionTree;
d = DecisionTree( 'train', d, pTrain );

% Generate the testing set
pTest = ClassifierSets( 5, [0 4], [0 4], {'width', 'length'},...

v, f, 'Testing Set' );

% Test the tree
[d, r] = DecisionTree( 'test', d, pTest );

q = DrawBinaryTree;
c = 'xy';
for k = 1:length(d.box)

if( ˜isempty(d.box(k).action) )
q.box{k} = sprintf('%c %s %4.1f',c(d.box(k).param),...

d.box(k).action,d.box(k).value);
else

q.box{k} = sprintf('Class %d',d.box(k).class);
end

end
DrawBinaryTree(q);

m = reshape(pTest.m,[],1);

for k = 1:length(r)
fprintf(1,'Class %d\n',m(r{k}(1)));
for j = 1:length(r{k})

fprintf(1,'%d ',r{k}(j));
end
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It uses ClassifierSets to generate the training data. The output includes the co-
ordinates and the sets in which they fall. We then create the default data structure and call
DecisionTree in training mode.

The tree is shown in Figure 7.9. The training data are shown in Figure 7.7 and the testing
data in Figure 7.8. We need enough testing data to fill the classes. Otherwise, the decision tree
generator may draw the lines to encompass just the data in the training set.

Figure 7.7: The training data. A large amount of data is needed to fill the classes.

The results are similar to the simple test.

Class 3
1 14 16 21 23
Class 2
2 4 5 6 9 13 17 18 19 20 25
Class 1
3 7 8 10 11 15 24
Class 4
12 22

The generated tree separates the data effectively.
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Figure 7.8: The testing data.

Figure 7.9: The tree derived from the training data. It is essentially the same as the hand-derived
tree. The values in the generated tree are not exactly 2.0.
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7.7 Summary
This chapter has demonstrated data classification using decision trees in MATLAB. We also
wrote a new graphics function to draw decision trees. The decision tree software is not general
purpose, but can serve as a guide to more general purpose code. Table 7.2 lists the functions
and scripts included in the companion code.

Table 7.2: Chapter Code Listing

File Description
ClassifierSets Generate data for classification or training.
DecisionTree Implements a decision tree to classify data.
DrawBinaryTree Generates data for classification or training.
HomogeneityMeasure Computes Gini impurity.
SimpleClassifierDemo Demonstrates decision tree testing.
SimpleClassifierExample Generates data for a simple problem.
TestDecisionTree Tests a decision tree.
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CHAPTER 8

Introduction to Neural Nets

Neural networks, or neural nets, are a popular way of implementing machine “intelligence.”
The idea is that they behave like the neuron in a brain. In our taxonomy, neural nets fall into the
category of true machine learning, as shown on the right.

Autonomous 
Learning

Control
Intelligence

Machine 
Learning

In this chapter, we will explore how neural nets work, starting with the most fundamental
idea with a single neuron and working our way up to a multi-layer neural net. Our example for
this will be a pendulum. We will show how a neural net can be used to solve the prediction
problem. This is one of the two uses of a neural net, prediction and categorization. We’ll start
with a simple categorization example. We’ll do more sophisticated categorization neural nets
in chapters 9 and 10.

8.1 Daylight Detector
8.1.1 Problem

We want to use a simple neural net to detect daylight.

© Michael Paluszek and Stephanie Thomas 2019
M. Paluszek and S. Thomas, MATLAB Machine Learning Recipes,
https://doi.org/10.1007/978-1-4842-3916-2 8
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8.1.2 Solution

Historically, the first neuron was the perceptron. This is a neural net with an activation function
that is a threshold. Its output is either 0 or 1. This is not really useful for problems such as the
pendulum angle estimation covered in the remaining recipes of this chapter. However, it is well
suited to categorization problems. We will use a single perceptron in this example.

8.1.3 How It Works

Suppose our input is a light level measured by a photo cell. If you weight the input so that 1 is
the value defining the brightness level at twilight, you get a sunny day detector.

This is shown in the following script, SunnyDay. The script is named after the famous
neural net that was supposed to detect tanks, but instead detected sunny days; this was due to all
the training photos of tanks being taken, unknowingly, on a sunny day, whereas all the photos
without tanks were taken on a cloudy day. The solar flux is modeled using a cosine and scaled
so that it is 1 at noon. Any value greater than 0 is daylight.

%% The data
t = linspace(0,24); % time, in hours
d = zeros(1,length(t));
s = cos((2*pi/24)*(t-12)); % solar flux model

%% The activation function
% The nonlinear activation function which is a threshold detector
j = s < 0;
s(j) = 0;
j = s > 0;
d(j) = 1;

%% Plot the results
PlotSet(t,[s;d],'x label','Hour', 'y label',...

{'Solar Flux', 'Day/Night'}, 'figure title','Daylight Detector',...
'plot title', 'Daylight Detector');

set([subplot(2,1,1) subplot(2,1,2)],'xlim',[0 24],'xtick',[0 6 12 18
24]);

Figure 8.1 shows the detector results. The set(gca,...) code sets the x-axis ticks to
end at exactly 24 h. This is a really trivial example, but does show how categorization works.
If we had multiple neurons with thresholds set to detect sun light levels within bands of solar
flux, we would have a neural net sun clock.
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Figure 8.1: The daylight detector.
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8.2 Modeling a Pendulum
8.2.1 Problem

We want to implement the dynamics of a pendulum as shown in Figure 8.2. The pendulum will
be modeled as a point mass with a rigid connection to its pivot. The rigid connection is a rod
that cannot contract or expand.

Figure 8.2: A pendulum. The motion is driven by the acceleration of gravity.
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8.2.2 Solution

The solution is to write a pendulum dynamics function in MATLAB. The dynamics will be
written in torque form, that is, we will model it as rigid body rotation. Rigid body rotation is
what happens when you spin a wheel. It will use the RungeKutta integration routine in the
General folder of the included toolbox to integrate the equations of motion.

8.2.3 How It Works

Figure 8.2 shows the pendulum. The easiest way to get the equations is to write it as a torque
problem, that is, as rigid body rotation. When you look at a two-dimensional pendulum, it
moves in a plane and its location has x and y coordinates. However, these two coordinates are
constrained by the fixed pendulum of length L. We can write:

L2 = x2 + y2 (8.1)

where L is the length of the rod and a constant and x and y are the coordinates in the plane.
They are also the degrees of freedom in the problem. This shows that x is uniquely determined
by y. If we write:

x = L sin θ (8.2)

y = L cos θ (8.3)

where θ is the angle from vertical, i.e., it is zero when the pendulum is hanging straight down,
we see that we need only one degree of freedom, θ, to model the motion. So our force problem
becomes a rigid body rotational motion problem. The torque is related to the angular accelera-
tion by the inertia as:

T = I
d2θ

dt2
(8.4)

where I is the inertia and T is the torque. The inertia is constant and depends on the square of
the pendulum length and the mass m:

I = mL2 (8.5)

The torque is produced by the component of the gravitational force, mg, which is perpendicular
to the pendulum, where g is the acceleration of gravity. Recall that torque is the applied force,
mg sin θ, times the moment arm, in this case L. The torque is therefore:

T = −mgL sin θ (8.6)

The equations of motion are then:

−mgL sin θ = mL2d
2θ

dt2
(8.7)
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or simplifying:

d2θ

dt2
+

( g

mL

)
sin θ = 0 (8.8)

We set:
g

mL
= Ω2 (8.9)

where Ω is the frequency of the pendulum’s oscillation. This equation is nonlinear because of
the sin θ. We can linearize it about small angles, θ, about vertical. For small angles:

sin θ ≈ θ (8.10)

cos θ ≈ 1 (8.11)

to get the linear constant coefficient equation. The linear version of sine comes from the Taylor’s
series expansion:

sin θ = θ − θ3

6
+

θ5

120
− θ7

5040
+ · · · (8.12)

You can see that the first term is a pretty good approximation around θ = 0, which is when the
pendulum is hanging vertically. We can actually apply this to any angle. Let θ = θ+ θk, where
θk is our current angle and θ is now small. We can expand the sine term:

sin (θ + θk) = sin θ cos θk + sin θk cos θ ≈ θ cos θk + sin θk (8.13)

We get a linear equation with a new torque term and a different coefficient for θ.

d2θ

dt2
+ cos θkΩ

2θ = −Ω2 sin θk (8.14)

This tells us that a linear approximation may be useful, regardless of the current angle.
Our final equations (nonlinear and linear) are:

d2θ

dt2
+Ω2 sin θ = 0 (8.15)

d2θ

dt2
+Ω2θ ≈ 0 (8.16)

The dynamical model is in the following code, with an excerpt from the header. This can be
called by the MATLAB Recipes RungeKutta function or any MATLAB integrator. There
is an option to use either the full nonlinear dynamics or the linearized form of the dynamics,
using a Boolean field called linear. The state vector has the angle as the first element and the
angle derivative, or angular velocity ω, as the second element. Time, the first input, is not used
because it only appears in the equations as dt, so it is replaced with a tilde. The output is the
derivative, xDot, of the state x. If no inputs are specified, the function will return the default
data structure d.
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% x (2,1) State vector [theta;theta dot]
% d (.) Data structure
% .linear (1,1) If true use a linear model
% .omega (1,1) Input gainss

function xDot = RHSPendulum( ˜, x, d )

if( nargin < 1 )
xDot = struct('linear',false,'omega',0.5);
return

end

if( d.linear )
f = x(1);

else
f = sin(x(1));

end

xDot = [x(2);-d.omegaˆ2*f];

The code for xDot has two elements. The first element is just the second element of the
state, because the derivative of the angle is the angular velocity. The second term is the angular
acceleration computed using our equations. The set of differential equations that is implemented
is a set of first-order differential equations:

dθ

dt
= ω (8.17)

dω

dt
= −Ω2 sin θ (8.18)

First order means there are only first derivatives on the left-hand side.
The script PendulumSim, shown below, simulates the pendulum by integrating the dy-

namical model. Setting the data structure field linear to true gives the linear model. Note
that the state is initialized with a large initial angle of 3 radians to highlight the differences
between the models.

%% Pendulum simulation
%% Initialize the simulation
n = 1000; % Number of time steps
dT = 0.1; % Time step (sec)
dRHS = RHSPendulum; % Get the default data structure
dRHS.linear = false; % true for linear model

%% Simulation
xPlot = zeros(2,n);
theta0 = 3; % radians
x = [theta0;0]; % [angle;velocity]
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for k = 1:n
xPlot(:,k) = x;
x = RungeKutta( @RHSPendulum, 0, x, dT, dRHS );

end

%% Plot the results
yL = {'\theta (rad)' '\omega (rad/s)'};
[t,tL] = TimeLabel(dT*(0:n-1));

PlotSet( t, xPlot, 'x label', tL, 'y label', yL, ...
'plot title', 'Pendulum', 'figure title', 'Pendulum State' );

Figure 8.3 shows the results of the two models. The period of the nonlinear model is not
the same as that of the linear model.

Figure 8.3: A pendulum modeled by the linear and nonlinear equations. The period for the
nonlinear model is not the same as for the linear model. The left-hand plot is linear and the
right nonlinear.

8.3 Single Neuron Angle Estimator
8.3.1 Problem

We want to use a simple neural net to estimate the angle between the rigid pendulum and
vertical.

8.3.2 Solution

We will derive the equations for a linear estimator and then replicate it with a neural net con-
sisting of a single neuron.
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8.3.3 How It Works

Let’s first look at a single neuron with two inputs. This is shown in Figure 8.4. This neuron has
inputs x1 and x2, a bias b, weights w1 and w2, and a single output z. The activation function σ
takes the weighted input and produces the output.

z = σ(w1x1 + w2x2 + b) (8.19)

Figure 8.4: A two input neuron.

Let’s compare this with a real neuron as shown in Figure 8.5. A real neuron has multiple
inputs via the dendrites. Some of these branch, which means that multiple inputs can connect
to the cell body through the same dendrite. The output is via the axon. Each neuron has one
output. The axon connects to a dendrite through the synapse. Signals pass from the axon to the
dendrite via a synapse.

Figure 8.5: A real neuron can have 10,000 inputs!
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There are numerous commonly used activation functions. We show three:

σ(y) = tanh(y) (8.20)

σ(y) =
2

1− e−y
− 1 (8.21)

σ(y) = y (8.22)
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The exponential one is normalized and offset from zero so that it ranges from -1 to 1. The
following code in the script OneNeuron computes and plots these three activation functions
for an input q.

%% Look at the activation functions
q = linspace(-4,4);
v1 = tanh(q);
v2 = 2./(1+exp(-q)) - 1;

PlotSet(q,[v1;v2;q],'x label','Input', 'y label',...
'Output', 'figure title','Activation Functions','plot title', '

Activation Functions',...
'plot set',{[1 2 3]},'legend',{{'Tanh','Exp','Linear'}});

Figure 8.6 shows the three activation functions on one plot.

Figure 8.6: The three activation functions.
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Activation functions that saturate model a biological neuron that has a maximum firing rate.
These particular functions also have good numerical properties that are helpful in learning.

Now that we have defined our neuron model, let’s return to the pendulum dynamics. The
solution to the linear pendulum equation is:

θ = a sinΩt+ b cos Ωt (8.23)

Given the initial angle θ0 and angular rate θ̇0, we get the angle as a function of time:

θ(t) =
θ̇0
Ω

sinΩt+ θ0 cos Ωt (8.24)
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For small Ωt:

θ(t) = θ̇0t+ θ0 (8.25)

which is a linear equation. Change this to a discrete time problem:

θk+1 = θ̇kΔt+ θk (8.26)

where Δt is the time step between measurements, θk is the current angle, and θk+1 is the angle
at the next step. The linear approximation to the angular rate is:

θ̇k =
θk − θk−1

Δt
(8.27)

so combining Eqs. 8.26 and 8.27, our “estimator” is

θk+1 = 2θk − θk−1 (8.28)

This is quite simple. It does not need to know the time step.
Let’s do the same thing with a neural net. Our neuron inputs are x1 and x2. If we set:

x1 = θk (8.29)

x2 = θk−1 (8.30)

w1 = 2 (8.31)

w2 = −1 (8.32)

b = 0 (8.33)

we get

z = σ(2θk − θk−1) (8.34)

which is, aside from the activation function σ, our estimator.
Continuing through OneNeuron, the following code implements the estimators. We input

a pure sine wave that is only valid for small pendulum angles. We then compute the neuron
with the linear activation function and then the tanh activation function. Note that the variable
thetaN is equivalent to using the linear activation function.

%% Look at the estimator for a pendulum
omega = 1; % pendulum frequency in rad/s
t = linspace(0,20);
theta = sin(omega*t);
thetaN = 2*theta(2:end) - theta(1:end-1); % linear estimator for "

next" theta
truth = theta(3:end);
tOut = t(3:end);
thetaN = thetaN(1:end-1);
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% Apply the activation function
z = tanh(thetaN);

PlotSet(tOut,[truth;thetaN;z],'x label','Time (s)', 'y label',...
'Next angle', 'figure title','One neuron','plot title', 'One neuron

',...
'plot set',{[1 2 3]},'legend',{{'True','Estimate','Neuron'}});

Figure 8.7 shows the two neuron outputs, linear and tanh, compared with the truth. The
one with the linear activation function matches the truth very well. The tanh does not, but that
is to be expected as it saturates.

Figure 8.7: The true pendulum dynamics compared with the linear and tanh neuron output.
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The one neuron function with the linear activation function is the same as the estimator by
itself. Usually output nodes, and this neural net has only an output node, have linear activation
functions. This makes sense, otherwise the output would be limited to the saturation value of
the activation functions, as we have seen with tanh. With any other activation function, the
output does not produce the desired result. This particular example is one in which a neural
net doesn’t really give us any advantage and was chosen because it reduces to a simple linear
estimator. For more general problems, with more inputs and nonlinear dependencies among the
inputs, activation functions that have saturation may be valuable.

For this, we will need a multi-neuron net to be discussed in the last section of the chapter.
Note that even the neuron with the linear activation function does not quite match the truth
value. If we were to actually use the linear activation function with the nonlinear pendulum, it
would not work very well. A nonlinear estimator would be complicated, but a neural net with
multiple layers (deep learning) could be trained to cover a wider range of conditions.
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8.4 Designing a Neural Net for the Pendulum
8.4.1 Problem

We want to estimate angles for a nonlinear pendulum.

8.4.2 Solution

Wewill use NeuralNetMLFF to build a neural net from training sets. (MLFF stands for multi-
layer, feed-forward). We will run the net using NeuralNetMLFF. The code for
NeuralNetMLFF is included with the neural net developer GUI in the next chapter.

8.4.3 How It Works

The script for this recipe is NNPendulumDemo. The first part generates the test data running
the same simulation as PendulumSim.m in Recipe 8.2. We calculate the period of the pendu-
lum in order to set the simulation time step at a small fraction of the period. Note that we will
use tanh as the activation function for the net.

% Demo parameters
nSamples = 800; % Samples in the simulation
nRuns = 2000; % Number of training runs
activation = 'tanh'; % activation function

omega = 0.5; % frequency in rad/s
tau = 2*pi/omega; % period in secs
dT = tau/100; % sample at a rate of 20*omega

rng(100); % consistent random number generator

%% Initialize the simulation RHS
dRHS = RHSPendulum; % Get the default data structure
dRHS.linear = false;
dRHS.omega = omega;

%% Simulation
nSim = nSamples + 2;
x = zeros(2,nSim);
theta0 = 0.1; % starting position (angle)
x(:,1) = [theta0;0];
for k = 1:nSim-1

x(:,k+1) = RungeKutta( @RHSPendulum, 0, x(:,k), dT, dRHS );
end

The next block defines the network and trains it using NeuralNetTraining.
NeuralNetTraining and NeuralNetMLFF are described in the next chapter. Briefly,
we define a first layer with three neurons and a second output layer with a single neuron; the
network has two inputs, which are the previous two angles.
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'plot title', 'Pendulum', 'figure title', 'Pendulum State' );

%% Define a network with two inputs, three inner nodes, and one
output

layer = struct;
layer(1,1).type = activation;
layer(1,1).alpha = 1;
layer(2,1).type = 'sum'; %'sum';
layer(2,1).alpha = 1;

% Thresholds
layer(1,1).w0 = rand(3,1) - 0.5;
layer(2,1).w0 = rand(1,1) - 0.5;

% Weights w(i,j) from jth input to ith node
layer(1,1).w = rand(3,2) - 0.5;
layer(2,1).w = rand(1,3) - 0.5;

%% Train the network
% Order the samples using a random list
kR = ceil(rand(1,nRuns)*nSamples);
thetaE = x(1,kR+2); % Angle to estimate
theta = [x(1,kR);x(1,kR+1)]; % Previous two angles
e = thetaE - (2*theta(1,:) - theta(2,:));
[w,e,layer] = NeuralNetTraining( theta, thetaE, layer );

PlotSet(1:length(e), e.ˆ2, 'x label','Sample', 'y label','Errorˆ2'
,...

'figure title','Training Error','plot title','Training Error','plot
type','ylog');

% Assemble a new network with the computed weights
layerNew = struct;
layerNew(1,1).type = layer(1,1).type;

The training data structure includes the weights to be computed. It defines the number of layers
and the type of activation function. The initial weights are random. Training returns the new
weights and the training error. We pass the training data in a random order to the function using
the index array k. This gives better results than if we passed it in the original order. We also
send the same training data multiple times using the parameter nRuns. Figure 8.8 shows the
training error. It looks good. To see the weights that were calculated, just display w at the
command line. For example, the weights of the output node are now:

>> w(2)
ans =

struct with fields:
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Figure 8.8: Training error.
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w: [-0.67518 -0.21789 -0.065903]
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type: 'tanh'

We test the neural net in the last block of code. We rerun the simulation and then run the
neural net using NeuralNetMLFF. Note that you may choose to initialize the simulation with
a different starting point than in the training data by changing the value of thetaD.

layerNew = struct;
layerNew(1,1).type = layer(1,1).type;
layerNew(1,1).w = w(1).w;
layerNew(1,1).w0 = w(1).w0;
layerNew(2,1).type = layer(2,1).type; %'sum';
layerNew(2,1).w = w(2).w;
layerNew(2,1).w0 = w(2).w0;
network.layer = layerNew;

%% Simulate the pendulum with a different starting point
x(:,1) = [0.1;0];

%% Simulate the pendulum and test the trained network
% Choose the same or a different starting point and simulate
thetaD = 0.5;
x(:,1) = [thetaD;0];
for k = 1:nSim-1

x(:,k+1) = RungeKutta( @RHSPendulum, 0, x(:,k), dT, dRHS );
end
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Figure 8.9: Neural net results: the simulated state, the testing error, and the truth angles com-
pared with the neural net’s estimate.

% Test the new network
theta = [x(1,1:end-2);x(1,2:end-1)];
thetaE = NeuralNetMLFF( theta, network );
eTSq = (x(1,3:end)-thetaE).ˆ2;

The results in Figure 8.9 look good. The neural net estimated angle is quite close to the
true angle. Note, however, that we ran exactly the same magnitude pendulum oscillation
(thetaD = theta0), which is exactly what we trained it to recognize. If we run the test
with a different starting point, such as 0.5 radians compared with the 0.1 of the training data,
there is more error in the estimated angles, as shown in Figure 8.10.

If we want the neural net to predict angles for other magnitudes, it needs to be trained
with a diverse set of data that models all conditions. When we trained the network we let it
see the same oscillation magnitude several times. This is not really productive. It might also be
necessary to add more nodes to the net or more layers to make a more general purpose estimator.
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Figure 8.10: Neural estimated angles for a different magnitude oscillation.
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8.5 Summary
This chapter has demonstrated neural learning to predict pendulum angles. It introduces the
concept of a neuron. It demonstrates a one-neuron network for a pendulum and shows how
it compares with a linear estimator. A perceptron example and a multi-layer pendulum angle
estimator are also given. Table 8.1 lists the functions and scripts included in the companion
code. The last two functions are borrowed from the next chapter, which will cover multi-layer
neural nets in more depth.

Table 8.1: Chapter Code Listing

File Description
NNPendulumDemo Train a neural net to track a pendulum.
OneNeuron Explore a single neuron.
PendulumSim Simulate a pendulum.
RHSPendulum Right-hand side of a nonlinear pendulum.
SunnyDay Recognize daylight.

Chapter 9 Functions
NeuralNetMLFF Compute the output of a multi-layer, feed-forward neural net.
NeuralNetTraining Training with back propagation.
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CHAPTER 9

Classification of Numbers Using
Neural Networks

Pattern recognition in images is a classic application of neural nets. This chapter builds upon the
previous one by exploring multi-layer networks, which fall into the Machine Learning branch
of our Autonomous Learning taxonomy. In this case, we will look at images of computer-
generated digits, and the problem of identifying the digits correctly. These images will rep-
resent numbers from scanned documents. Attempting to capture the variation in digits with
algorithmic rules, considering fonts and other factors, quickly becomes impossibly complex,
but with a large number of examples, a neural net can readily perform the task. We allow the
weights in the net to perform the job of inferring rules about how each digit may be shaped,
rather than codifying them explicitly.

Autonomous 
Learning

Control
Intelligence

Machine 
Learning

For the purposes of this chapter, we will limit ourselves to images of a single digit. The
process of segmenting a series of digits into individual images is one that may be solved by
many techniques, not just neural nets.

© Michael Paluszek and Stephanie Thomas 2019
M. Paluszek and S. Thomas, MATLAB Machine Learning Recipes,
https://doi.org/10.1007/978-1-4842-3916-2 9
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9.1 Generate Test Images with Defects
9.1.1 Problem

The first step in creating our classification system is to generate sample data. In this case, we
want to load in images of numbers for 0 to 9 and generate test images with defects. For our
purposes, defects will be introduced with simple Poisson or shot noise (a random number with
a standard deviation of the square root of the pixel values).

9.1.2 Solution

Wewill generate the images in MATLAB by writing a digit to an axis using text, then creating
an image using print. There is an option to capture the pixel data directly from print without
creating an interim file, which we will utilize. We will extract the 16x16 pixel area with our
digit, and then apply the noise. We will also allow the font to be an input. See Figure 9.1 for
examples.

Figure 9.1: A sample image of the digits 0 and 1 with noise added.

9.1.3 How It Works

The code listing for the CreateDigitImage function is below. The inputs are the digit and
the desired font. It creates a 16x16 pixel image of a single digit. The intermediate figure used
to display the digit text is invisible. We will use the ’RGBImage’ option for print to get
the pixel values without creating an image file. The function has options for a built-in demo
that will create pixels for the digit 0 and display the image in a figure if no inputs or outputs are
given. The default font if none is given is Courier.

function pixels = CreateDigitImage( num, fontname )

if nargin < 1
num = 0;
CreateDigitImage( num );
return;
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end
if nargin < 2

fontname = 'courier';
end

fonts = listfonts;
avail = strcmpi(fontname,fonts);
if ˜any(avail)

error('MachineLearning:CreateDigitImage',...
'Sorry, the font ''%s'' is not available.',fontname);

end

f = figure('Name','Digit','visible','off');
a1 = axes( 'Parent', f, 'box', 'off', 'units', 'pixels', 'position',

[0 0 16 16] );

% 20 point font digits are 15 pixels tall (on Mac OS)
% text(axes,x,y,string)
text(a1,4,10,num2str(num),'fontsize',19,'fontunits','pixels','unit','

pixels',...
'fontname',fontname)

% Obtain image data using print and convert to grayscale
cData = print('-RGBImage','-r0');
iGray = rgb2gray(cData);

% Print image coordinate system starts from upper left of the figure,
NOT the

% bottom, so our digit is in the LAST 16 rows and the FIRST 16
columns

pixels = iGray(end-15:end,1:16);

% Apply Poisson (shot) noise; must convert the pixel values to double
for the

% operation and then convert them back to uint8 for the sum. the
uint8 type will

% automatically handle overflow above 255 so there is no need to
apply a limit.

noise = uint8(sqrt(double(pixels)).*randn(16,16));
pixels = pixels - noise;

close(f);

if nargout == 0
h = figure('name','Digit Image');
imagesc(pixels);
colormap(h,'gray');
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grid on
set(gca,'xtick',1:16)
set(gca,'ytick',1:16)
colorbar

end

TIP Note that we check that the font exists using listfonts before trying to use it,
and throw an error if it’s not found.

Now, we can create the training data using images generated with our new function. In
the recipes below we will use data for both a single-digit identification and a multiple-digit
identification net. We use a for loop to create a set of images and save them to a MAT-file
using the helper function SaveTS. This saves the training sets with their input and output, and
indices for training and testing, in a special structure format. Note that we scale the pixel values,
which are nominally integers with a value from 0 to 255, to have values between 0 and 1.

Our data generating script DigitTrainingDatauses a for loop to create a set of noisy
images for each desired digit (between 0 and 9). It saves the data along with indices for data
to use for training. The pixel output of the images is scaled from 0 (black) to 1 (white), so it is
suitable for neuron activation in the neural net. It has two flags at the top, one for a one-digit
mode and a second to automatically change fonts.

%% Generate the training data

% Control switches
oneDigitMode = true; % the first digit is the desired output
changeFonts = true; % randomly select a font

% Number of training data sets
digits = 0:5;
nImagesPer = 20;

% Prepare data
nDigits = length(digits);
nImages = nDigits*nImagesPer;
input = zeros(256,nImages);
output = zeros(1,nImages);
trainSets = [];
testSets = [];
if (changeFonts)

fonts = {'times','helvetica','courier'};
else

fonts = 'times';
kFont = 1;

end
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% Loop through digits
kImage = 1;
for j = 1:nDigits

fprintf('Digit %d\n', digits(j));
for k = 1:nImagesPer

if (changeFonts)
% choose a font randomly
kFont = ceil(rand*3);

end
pixels = CreateDigitImage( digits(j), fonts{kFont} );
% scale the pixels to a range 0 to 1
pixels = double(pixels);
pixels = pixels/255;
input(:,kImage) = pixels(:);
if (oneDigitMode)

if (j == 1)
output(j,kImage) = 1;

end
else

output(j,kImage) = 1;
end
kImage = kImage + 1;

end
sets = randperm(10);
trainSets = [trainSets (j-1)*nImages+sets(1:5)]; %#ok<AGROW>
testSets = [testSets (j-1)*nImages+sets(6:10)]; %#ok<AGROW>

end

% Use 75% of the images for training and save the rest for testing
trainSets = sort(randperm(nImages,floor(0.75*nImages)));
testSets = setdiff(1:nImages,trainSets);

% Save the training set to a MAT-file (dialog window will open)
SaveTS( input, output, trainSets, testSets );

The helper function will ask for a filename and save the training set. You can load it at
the command line to verify the fields. Here’s an example with the training and testing sets
truncated:

>> trainingData = load('Digit0TrainingTS')
trainingData =

struct with fields:
Digit0TrainingTS: [1x1 struct]

>> trainingData.Digit0TrainingTS
ans =

struct with fields:
inputs: [256x120 double]
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desOutputs: [1x120 double]
trainSets: [1 3 4 5 6 8 9 ... 115 117 118 120]
testSets: [2 7 16 20 28 33 37 ... 112 114 116 119]

Note that the output field is a Boolean with a value of 1 when the image is of the desired
digit and 0 when it is not. In the single-digit data sets, selected by using the Boolean flag
oneDigitMode, the output is a single row. In a multi-digit set, it has as many rows as there
are digits in the set. The images use a randomly selected font from among Times, Helvetica, and
Courier if the changeFonts Boolean is true. Table 9.1 shows the three training sets created
using this script.

We have created the following sets for use in these recipes:

Table 9.1: Digit Training Sets

’Digit0TrainingTS’ Single-digit set with 120 images of the digits 0 through 5, all in the
same font

’Digit0FontsTS’ Single-digit set of 0 through 5 with random fonts
’DigitTrainingTS’ Multi-digit set with 200 images of the digits 0 through 9, same font

Figure 9.2 shows example images of the digit 2 in the three different fonts, from
Digit0TrainingTS.

Figure 9.2: Images of the digit 2 in different fonts.
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9.2 Create the Neural Net Functions
9.2.1 Problem

We want to create a neural net tool that can be trained to identify the digits. In this recipe
we will discuss the functions underlying the NeuralNetDeveloper tool, shown in the next
recipe. This interface does not use the latest graphic user interface (GUI)-building features of
MATLAB, so we will not get into detail about the GUI code itself although the full GUI is
available in the companion code.
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9.2.2 Solution

The GUI uses a multi-layer feed-forward (MLFF) neural network function to classify digits. In
this type of network, each neuron depends only on the inputs it receives from the previous layer.
We will discuss the function that implements the neuron.

9.2.3 How It Works

The basis of the neural net is the Neuron function. Our neuron function provides six different
activation types: sign, sigmoid mag, step, logistic, tanh, and sum [22]. This can be seen in
Figure 9.3.

The default type of activation function is tanh. Two other functions useful in multi-layer
networks are exponential (sigmoid logistic function):

1

1 + e−x
(9.1)

or sigmoid magnitude:
x

1 + |x| (9.2)

where “sigmoid” refers to a function with an S-shape.
It is a good idea to try different activation functions for any new problem. The activation

function is what distinguishes a neural network, and machine learning, from curve fitting. The
input x would be the sum of all inputs plus a bias.

TIP The sum activation function is linear and the output is just the sum of the inputs.

The following code shows Neuron, which implements a single neuron in the neural net.
It has as an input the type, or activation function, and the outputs include the derivative of this
function. A default type of log is enabled (for the sigmoid logistic function).

function [y, dYDX] = Neuron( x, type, t )

% Input processing
if( nargin < 1 )

x = [];
end
if( nargin < 2 )

type = [];
end
if( nargin < 3 )

t = 0;
end
if( isempty(type) )

type = 'log';
end
if( isempty(x) )
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Figure 9.3: Available neuron activation functions: sign, sigmoid mag, step, logistic (log), tanh,
and sum.
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sum Neuron

x = sort( [linspace(-5,5) 0 ]);
end

% Compute the function value and the derivative
switch lower( deblank(type) )

case 'tanh'
yX = tanh(x);
dYDX = sech(x).ˆ2;

case 'log'
% sigmoid logistic function
yX = 1./(1 + exp(-x));
dYDX = yX.*(1 - yX);

case 'mag'
% sigmoid magnitude function
d = 1 + abs(x);
yX = x./d;
dYDX = 1./d.ˆ2;

case 'sign'
yX = ones(size(x));
yX(x < 0) = -1;
dYDX = zeros(size(yX));

194



CHAPTER 9 CLASSIFICATION OF NUMBERS USING NEURAL NETWORKS

dYDX(x == 0) = inf;

case 'step'
yX = ones(size(x));
yX(x < t) = 0;
dYDX = zeros(size(yX));
dYDX(x == t) = inf;

case 'sum'
yX = x;
dYDX = ones(size(yX));

otherwise
error([type ' is not recognized'])

end

% Output processing
if( nargout == 0 )

PlotSet( x, yX, 'x label', 'Input', 'y label', 'Output',...
'plot title', [type ' Neuron'] );

PlotSet( x, dYDX, 'x label','Input', 'y label','dOutput/dX',...
'plot title',['Derivative of ' type ' Function'] );

else
y = yX;

end

Neurons are combined into the feed-forward neural network using a simple data structure
of layers and weights. The input to each neuron is a combination of the signal y, the weight w,
and the bias w0, as in this line:

y = Neuron( w*y - w0, type );

The output of the network is calculated by the function NeuralNetMLFF. This computes
the output of a MLFF neural net. Note that this also outputs the derivatives as obtained from
the neuron activation functions, for use in training. The function is described below:

%% NEURALNETMLFF Computes the output of a multilayer feed-forward
neural net.

% The input layer is a data structure that contains the network data.
% This data structure must contain the weights and activation

functions
% for each layer. Calls the Neuron function.
%
% The output layer is the input data structure augmented to include
% the inputs, outputs, and derivatives of each layer for each run.
%% Form
% [y, dY, layer] = NeuralNetMLFF( x, network )

The input and output layers are data structures containing the weights and activation func-
tions for each layer. Our network will use back propagation as a training method [19]. This is

195



CHAPTER 9 CLASSIFICATION OF NUMBERS USING NEURAL NETWORKS

a gradient descent method and it uses the derivatives output by the network directly. Because
of this use of derivatives, any threshold functions such as a step function are substituted with a
sigmoid function for the training to make it continuous and differentiable. The main parame-
ter is the learning rate α, which multiplies the gradient changes applied to the weights in each
iteration. This is implemented in NeuralNetTraining.

The NeuralNetTraining function performs training, that is, it computes the weights
in the neurons, using back propagation. If no inputs are given, it will do a demo for the network
where node 1 and node 2 use exp functions for the activation functions. The function form is
given below.

%% NEURALNETTRAINING Training using back propagation.
% Computes the weights for a neural net using back propagation. If no

inputs are
% given it will do a demo for the network where node 1 and node 2 use

exp
% functions. Calls NeuralNetMLFF which implements the network.
%
% sin( x) -- node 1
% \ / \
% \ ---> Output
% / \ /
% sin(0.2*x) -- node 2
%
%% Form
% [w, e, layer] = NeuralNetTraining( x, y, layer )

The back propagation is performed by calling NeuralNetMLFF in a loop for the number
of runs requested. A wait bar is displayed, since training can take some time. Note that this can
handle any number of intermediate layers. The field alpha contains the learning rate for the
method.

% Perform back propagation
h = waitbar(0, 'Neural Net Training in Progress' );
for j = 1:nRuns

% Work backward from the output layer
[yN, dYN,layerT] = NeuralNetMLFF( x(:,j), temp );
e(:,j) = y(:,j) - yN(:,1); % error

for k = 1:nLayers
layer(k,j).w = temp.layer(k,1).w;
layer(k,j).w0 = temp.layer(k,1).w0;
layer(k,j).x = layerT(k,1).x;
layer(k,j).y = layerT(k,1).y;
layer(k,j).dY = layerT(k,1).dY;

end

% Last layer delta is calculated first
layer(nLayers,j).delta = e(:,j).*dYN(:,1);
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% Intermediate layers use the subsequent layer's delta
for k = (nLayers-1):-1:1

layer(k,j).delta = layer(k,j).dY.*(temp.layer(k+1,1).w'*layer(k
+1,j).delta);

end
% Now that we have all the deltas, update the weights (w) and

biases (w0)
for k = 1:nLayers

temp.layer(k,1).w = temp.layer(k,1).w + layer(k,1).alpha*layer(
k,j).delta*layer(k,j).x';

temp.layer(k,1).w0 = temp.layer(k,1).w0 - layer(k,1).alpha*layer(
k,j).delta;

end

waitbar(j/nRuns);
end
w = temp.layer;
close(h);

9.3 Train a Network with One Output Node
9.3.1 Problem

Wewant to train the neural network to classify numbers. A good first step is identifying a single
number. In this case, we will have a single output node, and our training data will include our
desired digit, starting with 0, plus a few other digits (1–5).

9.3.2 Solution

We can create this neural network with our GUI, shown in Figure 9.4. The network flows from
left to right in the graphic. We can try training the net with the output node having different
types, such as sign and logistic. In our case, we start with a sigmoid function for the
hidden layer and a step function for the output node.

The box on the upper left of the GUI lets you set up the network with the number of inputs,
in this case one per pixel, the number of outputs, one because we want to identify one digit, and
the number of hidden layers. The box to the right lets us design each layer. All neurons in a
layer are identical. The box on the far right lets us set the weight for each input to the node and
the bias for the node. The path is the path to the training data. The display shows the resulting
network. The graphic is useful, but the number of nodes in the hidden layer make it hard to
read.

Our GUI has a separate training window, Figure 9.5. It has buttons for loading and saving
training sets, training, and testing the trained neural net. It will plot results automatically based
on preferences selected. In this case, we have loaded the training set from Recipe 9.1, which
uses multiple fonts, Digit0FontsTS, which is displayed in the top of the figure window.
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Figure 9.4: A neural net with 256 inputs, one per pixel, an intermediate layer with 30 nodes,
and one output.

9.3.3 How It Works

We build the network using the GUI with 256 inputs, one for each pixel; 30 nodes in one
hidden layer; and 1 output node. We load the training data from the first recipe into the Trainer
GUI, and must select the number of training runs. 2000 runs should be sufficient if our neuron
functions are selected properly. We have an additional parameter to select, the learning rate for
the back propagation; it is reasonable to start with a value of 1.0. Note that our training data
script assigned 75% of the images for training and reserved the remainder for testing, using
randperm to extract a random set of images. The training records the weights and biases for
each run and generates plots on completion. We can easily plot these for the output node, which
has just 30 nodes and one bias. See Figure 9.6.

The training function also outputs the training error as the net evolves and the root mean
square error (RMSE), which has dropped off to near 1e-2 by about run 1000.
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Figure 9.5: The neural net training GUI opens when the train button is clicked in the developer.

Since we have a large number of input neurons, a line plot is not very useful for visualizing
the evolution of the weights for the hidden layer. However, we can view the weights at any given
iteration as an image. Figure 9.8 shows the weights for the network with 30 nodes after training
visualized using imagesc. We may wonder if we really need all 30 nodes in the hidden layer,
or if we could extract the necessary number of features identifying our chosen digit with fewer.
In the image on the right, the weights are shown sorted along the dimension of the input pixels
for each node; we can clearly see that only a few nodes seem to have much variation from the
random values they are initialized with, especially nodes 14, 18, and 21. That is, many of our
nodes seem to be having no impact.

Since this visualization seems helpful, we add the code to the training GUI after the gen-
eration of the weights line plots. We create two images in one figure, the initial value of the
weights on the left and the training values on the right. The HSV colormap looks more striking
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Figure 9.6: Layer 2 node weights and biases evolution during training.
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Figure 9.7: Single digit training error and RMSE
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here than the default parula map. The code that generates the images in NeuralNetTrainer
looks like this:

% New figure: weights as image
newH = figure('name',['Node Weights for Layer ' num2str(j)]);
endWeights = [h.train.network(j,1).w(:);h.train.network(j,end).w(:)];
minW = min(endWeights);
maxW = max(endWeights);
subplot(1,2,1)
imagesc(h.train.network(j,1).w,[minW maxW])
colorbar
ylabel('Output Node')
xlabel('Input Node')
title('Weights Before Training')
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Figure 9.8: Single digit network, 30 node hidden layer weights. The plot on the left shows the
weight value. The plot on the right shows the weights sorted by pixel for each node.
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subplot(1,2,2)
imagesc(h.train.network(j,end).w,[minW maxW])
colorbar
xlabel('Input Node')
title('Weights After Training')

colormap hsv
h.resultsFig = [newH; h.resultsFig];

Note that we compute the minimum and maximum weight values among both the initial and
final iterations, to scale the two color maps the same. Now, since many of our 30 initial nodes
seemed unneeded, we reduce the number of nodes in that layer to 10, reinitialize the weights
(randomly), and train again. Now we get our new figure with the weights displayed as an image
before and after the training, Figure 9.9.

Now we can see more patches of colors that have diverged from the initial random weights
in the images for the 256 pixels weights, and we see clear variation in the weights for the second
layer as well. The GUI allows you to save the trained net for future use.
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Figure 9.9: Single digit network, 10-node hidden layer weights before and after training. The
first row shows the data for the first layer, and the second for the second layer, which has just
one output.
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9.4 Testing the Neural Network
9.4.1 Problem

We want to test the single-digit neural net that we trained in the previous recipe.

9.4.2 Solution

We can test the network with inputs that were not used in training. This is explicitly al-
lowed in the GUI, as it has separate indices for the training data and testing data. We se-
lected 75% of our sample images for training and saved the remaining images for testing in our
DigitTrainingData script from Recipe 9.1.
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9.4.3 How It Works

In the case of our GUI, simply click the test button to run the neural network with each of the
cases selected for testing.

Figure 9.10 shows the results for a network with the output node using the sigmoid mag-
nitude function and another case with the output node using a step function, i.e., the output is
limited to 0 or 1. Note that the first 20 images in the data set are the digit 0, with an output
value of 1, and the rest are the digits 1 to 5, with an output value of 0. For the step function,
the output is 1 for the first 20 sets and zero for all other sets, as desired. The sigmoid is similar,
except that instead of being 0 after 20 sets, the output varies between +0.1 and -0.1. Between
20 and 120, it almost averages to zero, the same as the result from the step function. This shows
that the activation functions are interpreting the data in a similar fashion.

Figure 9.10: Neural net results with sigmoid (left) and step (right) activation functions.
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9.5 Train a Network with Many Outputs
9.5.1 Problem

We want to build a neural net that can detect all ten digits separately.

9.5.2 Solution

Add nodes so that the output layer has ten nodes, each of which will be 0 or 1 when the repre-
sentative digit (0–9) is input. Try the output nodes with different functions, such as logistic and
step. Now that we have more digits, we will go back to having 30 nodes in the hidden layer.
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9.5.3 How It Works

Our training data now consist of all 10 digits, with a binary output of zeros with a 1 in the
correct slot. For example, the digit 1 will be represented as

[0 1 0 0 0 0 0 0 0]

The digit 3 would have a 1 in the fourth element. We follow the same procedure for training.
We initialize the net, load the training set into the GUI, and specify the number of training runs
for the back propagation.

Figure 9.11: Net with multiple outputs.

The training data, in Figure 9.12, shows that much of the learning is achieved in the first
3000 runs.

The test data, in Figure 9.13, show that each set of digits (in sets of 20 in this case, for 200
total tests) is correctly identified.
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Figure 9.12: Training RMSE for a multiple-digit neural net.
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Figure 9.13: Test results for a multiple-digit neural net.
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Once you have saved a net that is working well to a MAT-file, you can call it with new data
using the function NeuralNetMLFF.

>> data = load('NeuralNetMat');
>> network = data.DigitsStepNet;
>> y = NeuralNetMLFF( DigitTrainingTS.inputs(:,1), data.DigitsStepNet

)
y =

1
0
0
0
0
0
0
0
0
0

Again, it is fun to play with visualization of the neural net weights, to gain insight into the
problem, and our problem is small enough that we can do so with images. We can view a single
set of 256 weights for one hidden neuron as a 16x16 image, and view the whole set with each
neuron in its own row as before (Figure 9.14), to see the patterns emerging.

Figure 9.14: Multiple-digit neural net weights.
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You can see parts of digits as mini-patterns in the individual node weights. Simply use
imagesc with reshape like this:

>> figure;
>> imagesc(reshape(net.DigitsStepNet.layer(1).w(23,:),16,16));
>> title('Weights to Hidden Node 23')
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and see images as in Figure 9.15. These three nodes (chosen at random) show a 1, 2, and 3. We
would expect the 30 nodes to each have “noisy” replicas of the digits.

Figure 9.15: Multiple-digit neural net weights.
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9.6 Summary
This chapter has demonstrated neural learning to classify digits. An interesting extension to our
tool would be the use of image data stores, rather than a matrix representation of the input data.
Table 9.2 lists the functions and scripts included in the companion code.

Table 9.2: Chapter Code Listing

File Description
DigitTrainingData Create a training set of digit images.
CreateDigitImage Create a noisy image of a single digit.
Neuron Model an individual neuron with multiple activation functions.
NeuralNetMLFF Compute the output of a MLFF neural net.
NeuralNetTraining Training with back propagation.
DrawNeuralNet Display a neural net with multiple layers.
SaveTS Save a training set MAT-file with index data.
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CHAPTER 10

Pattern Recognition with Deep
Learning

Neural nets fall into the Learning category of our taxonomy. In this chapter, we will expand
our neural net toolbox with convolution and pooling layers. A general neural net is shown in
Figure 10.1. This is a “deep learning” neural net because it has multiple internal layers. Each
layer may have a distinct function and form. In the previous chapter, our multi-layer network
had multiple layers, but they were all functionally similar and fully connected.
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Control
Intelligence

Machine 
Learning

Figure 10.1: Deep learning neural net.
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A convolutional neural network is a type of deep learning network that is a pipeline with
multiple stages [18]. There are three types of layers:

• Convolutional layers (hence the name) – convolves a feature with the input matrix so that
the output emphasizes that feature. This finds patterns.

• Pooling layers – these reduce the number of inputs to be processed in layers further down
the chain.

• Fully connected layers

A convolutional neural net is shown in Figure 10.2. This is also a “deep learning” neural
net because it has multiple internal layers, but now the layers are of the three types described
above.

Figure 10.2: Deep learning convolutional neural net [13].
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We can have as many layers as we want. The following recipes will detail each step in the
chain. We will start by showing how to gather image data online. We won’t actually use online
data, but the process may be useful for your work.

We will then describe the convolution process. The convolution process helps to accent
features in an image. For example, if a circle is a key feature, convolving a circle with an input
image will emphasize circles.

The next recipe will implement pooling. This is a way of condensing the data. For example,
if you have an image of a face, you may not need every pixel. You need to find the major
features, mouth and eyes, for example, but may not need details of the person’s iris. This is
the reverse of what people do with sketching. A good artist can use a few strokes to clearly
represent a face. She then fills in detail in successive passes over the drawing. Pooling, at the
risk of losing information, reduces the number of pixels to be processed.
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We will then demonstrate the full network using random weights. Finally, we will train the
network using a subset of our data and test it on the remaining data, as before.

For this chapter, we are going to use pictures of cats. Our network will produce a probability
that a given image is a picture of a cat. We will train networks using cat images and also reuse
some of our digit images from the previous chapter.

10.1 Obtain Data Online for Training a Neural Net
10.1.1 Problem

We want to find photographs online for training a cat recognition neural net.

10.1.2 Solution

Use the online database ImageNet to search for images of cats.

10.1.3 How It Works

ImageNet, http://www.image-net.org, is an image database organized according to the WordNet
hierarchy. Each meaningful concept in WordNet is called a “synonym set.” There are more than
100,000 sets and 14 million images in ImageNet. For example, type in “Siamese cat.” Click
on the link. You will see 445 images. You’ll notice that there are a wide variety of shots from
many angles and a wide range of distances.

Synset: Siamese cat, Siamese
Definition: a slender short-haired blue-eyed breed of cat having a

pale coat with dark ears, paws, face, and tail tip.
Popularity percentile: 57%
Depth in WordNet: 8

This is a great resource! However, we are going to instead use pictures of our own cats for
our test to avoid copyright issues. The database of photos on ImageNet may prove to be an
excellent resource for you to use in training your own neural nets. However, you should review
the ImageNet license agreement to determine whether your application can use these images
without restrictions.

10.2 Generating Training Images of Cats
10.2.1 Problem

We want grayscale photographs for training a cat recognition neural net.

10.2.2 Solution

Take photographs using a digital camera. Crop them to a standard size manually, then process
them using native MATLAB functions to create grayscale images.
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10.2.3 How It Works

We first take pictures of several cats. We’ll use them to train the net. The photos are taken using
an iPhone 6. We limit the photos to facial shots of the cats. We then frame the shots so that
they are reasonably consistent in size and minimize the background. We then convert them to
grayscale.

We use the function ImageArray to read in the images. It takes a path to a folder con-
taining the images to be processed. A lot of the code has nothing to do with image processing,
just with dealing with unix files in the folder that are not images. ScaleImage is in the file
reading loop to scale them. We flip them upside down so that they are the right side up from our
viewpoint. We then average the color values to make grayscale. This reduces an n by n by 3
array to n by n. The rest of the code displays the images packed into a frame. Finally, we scale
all the pixel values down by 256 so that each value is from 0 to 1. The body of ImageArray
is shown in the listing below.

%% IMAGEARRAY Read an array of images from a directory
function [s, sName] = ImageArray( folderPath, scale )

c = cd;
cd(folderPath)

d = dir;
n = length(d);
j = 0;

s = cell(n-2,1);
sName = cell(1,length(n));
for k = 1:n

name = d(k).name;
if( ˜strcmp(name,'.') && ˜strcmp(name,'..') )

j = j + 1;
sName{j} = name;
t = ScaleImage(flipud(imread(name)),scale);
s{j} = (t(:,:,1)+ t(:,:,2) + t(:,:,3))/3;

end
end

del = size(s{1},1);
lX = 3*del;

% Draw the images
NewFigure(folderPath);
colormap(gray);
n = length(s);
x = 0;
y = 0;
for k = 1:n
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image('xdata',[x;x+del],'ydata',[y;y+del],'cdata', s{k} );
hold on
x = x + del;
if ( x == lX )

x = 0;
y = y + del;

end
end
axis off
axis image

for k = 1:length(s)
s{k} = double(s{k})/256;

end

cd(c)

The function has a built-in demo with our local folder of cat images. The images are scaled
down by a factor of 24, or 16, so that they are displayed as 64x64 pixel images.

%%% ImageArray>Demo
% Generate an array of cat images

c0 = cd;
p = mfilename('fullpath');
cd(fileparts(p));
ImageArray( fullfile('..','Cats'), 4 );
cd(c0);

The full set of images in the Cats folder, as loaded and scaled in the demo, is shown in
Figure 10.3.

Figure 10.3: 64x64 pixel grayscale cat images.
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ImageArray averages the three colors to convert the color images to grayscale. It flips
them upside down, since the image coordinates are opposite to that of MATLAB. We used
the GraphicConverterTM application to crop the images around the cat face and make them all
1024x1024 pixels. One of the challenges of image matching is to do this process automatically.
Also, typically training uses thousands of images. We will be using just a few to see if our neural
net can determine if the test image is a cat, or even one we have used in training! ImageArray
scales the image using the function ScaleImage, shown below.

%% SCALEIMAGE Scale an image by powers of 2.
function s2 = ScaleImage( s1, q )

% Demo
if( nargin < 1 )

Demo
return

end

n = 2ˆq;

[mR,˜,mD] = size(s1);

m = mR/n;

s2 = zeros(m,m,mD,'uint8');

for i = 1:mD
for j = 1:m

r = (j-1)*n+1:j*n;
for k = 1:m

c = (k-1)*n+1:k*n;
s2(j,k,i) = mean(mean(s1(r,c,i)));

end
end

end

Notice that it creates the new image array as uint8. Figure 10.4 shows the results of scaling a
full color image.
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Figure 10.4: Image scaled from 1024x1024 to 256x256.

10.3 Matrix Convolution
10.3.1 Problem

We want to implement convolution as a technique to emphasize key features in images, to make
learning more effective. This will then be used in the next recipe to create a convolving layer
for the neural net.

10.3.2 Solution

Implement convolution using MATLAB matrix operations.

10.3.3 How It Works

We create an n-by-n mask that we apply to an m-by-m, where m is greater than n. We start in
the upper left corner of the matrix, as shown in Figure 10.5. We multiply the mask times the
corresponding elements in the input matrix and do a double sum. That is the first element of the
convolved output. We then move it column by column until the highest column of the mask is
aligned with the highest column of the input matrix. We then return it to the first column and
increment the row. We continue until we have traversed the entire input matrix and our mask is
aligned with the maximum row and maximum column.

The mask represents a feature. In effect, we are seeing if the feature appears in different
areas of the image. We can have multiple masks. There is one bias and one weight for each
element of the mask for each feature. In this case, instead of 16 sets of weights and biases,
we only have 4. For large images, the savings can be substantial. In this case, the convolution
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Figure 10.5: Convolution process showing the mask at the beginning and end of the process.
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works on the image itself. Convolutions can also be applied to the output of other convolutional
layers or pooling layers, as shown in Figure 10.2.

Convolution is implemented in Convolve.m. The mask is input a and the matrix to be
convolved is input b.

function c = Convolve( a, b )

% Demo
if( nargin < 1 )

Demo
return

end

[nA,mA] = size(a);
[nB,mB] = size(b);
nC = nB - nA + 1;
mC = mB - mA + 1;
c = zeros(nC,mC);
for j = 1:mC

jR = j:j+nA-1;
for k = 1:nC

kR = k:k+mA-1;
c(j,k) = sum(sum(a.*b(jR,kR)));

end
end
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The demo, which convolves a 3x3 mask with a 6x6 matrix, produces the following 4x4 matrix
output.

>> Convolve
a =

1 0 1
0 1 0
1 0 1

b =
1 1 1 0 0 0
0 1 1 1 0 1
0 0 1 1 1 0
0 0 1 1 0 1
0 1 1 0 0 1
0 1 1 0 0 1

ans =
4 3 4 1
2 4 3 5
2 3 4 2
3 3 2 3

10.4 Convolution Layer
10.4.1 Problem

We want to implement a convolution connected layer. This will apply a mask to an input image.

10.4.2 Solution

Use code from Convolve to implement the layer. It slides the mask across the image and the
number of outputs is reduced.

10.4.3 How It Works

The “convolution” neural net scans the input with the mask. Each input to the mask passes
through an activation function that is identical for a given mask. ConvolutionLayer has
its own built-in neuron function shown in the listing.

%% CONVOLUTIONLAYER Convolution layer for a neural net
function y = ConvolutionLayer( x, d )

% Demo
if( nargin < 1 )

if( nargout > 0 )
y = DefaultDataStructure;

else
Demo;

end
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return
end

a = d.mask;
aFun = str2func(d.aFun);
[nA,mA] = size(a);
[nB,mB] = size(x);
nC = nB - nA + 1;
mC = mB - mA + 1;
y = zeros(nC,mC);
scale = nA*mA;
for j = 1:mC

jR = j:j+nA-1;
for k = 1:nC

kR = k:k+mA-1;
y(j,k) = sum(sum(a.*Neuron(x(jR,kR),d, aFun)));

end
end

y = y/scale;

%%% ConvolutionLayer>Neuron
function y = Neuron( x, d, afun )
% Neuron function
y = afun(x.*d.w + d.b);

Figure 10.6 shows the inputs and outputs from the demo (not shown in the listing). The
tanh activation function is used in this demo. The weights and biases are random. The con-
volution of the mask, which is all ones, is just the sum of all the points that it multiplies. The
output is scaled by the number of elements in the mask.

10.5 Pooling to Outputs of a Layer
10.5.1 Problem

We want to pool the outputs of the convolution layer to reduce the number of points we need to
process in further layers. This uses the Convolve function created in the previous recipe.

10.5.2 Solution

Implement a new function to take the output of the convolution function.
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Figure 10.6: Inputs and outputs for the convolution layer.
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10.5.3 How It Works

Pooling layers take a subset of the outputs of the convolutional layers and pass that on. They do
not have any weights. Pooling layers can use the maximum value of the pool or take the median
or mean value. Our pooling function has all three as options. The pooling function divides the
input into n-by-n subregions and returns an n-by-n matrix.

Pooling is implemented in Pool.m. Notice we use str2func instead of a switch state-
ment. a is the matrix to be pooled, n is the number of pools, and type is the name of the
pooling function.

function b = Pool( a, n, type )

% Demo
if( nargin < 1 )

Demo
return

end

if( nargin <3 )
type = 'mean';

end

n = n/2;
p = str2func(type);

nA = size(a,1);
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nPP = nA/n;

b = size(n,n);
for j = 1:n

r = (j-1)*nPP +1:j*nPP;
for k = 1:n

c = (k-1)*nPP +1:k*nPP;
b(j,k) = p(p(a(r,c)));

end
end

These two demos create four pools from a 4x4 matrix. Each number in the output matrix is
a pool of one quarter of the input matrix. It uses the default ’mean’ pool method.

>> Pool([1:4;3:6;6:9;7:10],4)
ans =

2.5000 4.5000
7.0000 9.0000

>> Pool([1:4;3:6;6:9;7:10],4,'max')
ans =

4 6
8 10

Pool is a neural layer whose activation function is effectively the argument passed to Pool.

10.6 Fully Connected Layer
10.6.1 Problem

We want to implement a fully connected layer.

10.6.2 Solution

Use FullyConnectedNN to implement the network.

10.6.3 How It Works

The “fully connected” neural net layer is the traditional neural net where every input is con-
nected to every output, as shown in Figure 10.7. We implement the fully connected network
with n inputs and m outputs. Each path to an output can have a different weight and bias.
FullyConnectedNN can handle any number of inputs or outputs. The listing below shows
the data structure function as well as the function body.

% FullyConnectedNN>Demo

function y = FullyConnectedNN( x, d )

% Demo
if( nargin < 1 )
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Figure 10.7: Fully connected neural net. This shows only one output.
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if( nargout > 0 )
y = DefaultDataStructure;

else
Demo;

end
return

end

y = zeros(d.m,size(x,2));

aFun = str2func(d.aFun);

n = size(x,1);
for k = 1:d.m

for j = 1:n
y(k,:) = y(k,:) + aFun(d.w(j,k)*x(j,:) + d.b(j,k));

end
end

function d = DefaultDataStructure
%%% FullyConnectedNN>DefaultDataStructure
% Default Data Structure

Figure 10.8 shows the outputs from the built-in function demo. The tanh activation func-
tion is used in this demo. The weights and biases are random. The change in shape from input
to output is the result of the activation function.
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Figure 10.8: The two outputs from the FullyConnectedNN demo function are shown versus
the two inputs.
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10.7 Determining the Probability
10.7.1 Problem

We want to calculate a probability that an output is what we expect from neural net outputs.

10.7.2 Solution

Implement the Softmax function. Given a set of inputs, it calculates a set of positive values that
add up to 1. This will be used for the output nodes of our network.

10.7.3 How It Works

The softmax function is a generalization of the logistic function. The equation is:

pj =
eqj∑N
k=1 e

qk
(10.1)

where q is a vector of inputs, N is the number of inputs, and p are the output values that total 1.
The function is implemented in Softmax.m.

function [p, pMax, kMax] = Softmax( q )

q = reshape(q,[],1);
n = length(q);
p = zeros(1,n);
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den = sum(exp(q));

for k = 1:n
p(k) = exp(q(k))/den;

end

[pMax,kMax] = max(p);

The built-in demo passes in a short list of outputs.

function Demo
%% Softmax>Demo
q = [1,2,3,4,1,2,3];
[p, pMax, kMax] = Softmax( q )
sum(p)

The results of the demo are:

>> Softmax
p =

0.0236 0.0643 0.1747 0.4748 0.0236 0.0643
0.1747

pMax =
0.4748

kMax =
4

ans =
1.0000

The last number is the sum of p, which should be (and is) 1.

10.8 Test the Neural Network
10.8.1 Problem

We want to integrate convolution, pooling, a fully connected layer, and Softmax so that our
network outputs a probability.

10.8.2 Solution

The solution is to write a convolutional neural net. We integrate the convolution, pooling, fully
connected net and Softmax functions. We then test it with randomly generated weights.

10.8.3 How It Works

Figure 10.9 shows the image processing neural network. It has one convolutional layer, one
pooling layer, a fully connected layer and the final layer is the Softmax.

223



CHAPTER 10 PATTERN RECOGNITIONWITH DEEP LEARNING

Figure 10.9: Neural net for image processing.
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ConvolutionNN implements the network. It uses the functions ConvolutionLayer,
Pool, FullyConnectedNN and Softmax that we have implemented in the prior recipes.
The code in ConvolutionNN, which implements the network, is shown below, in the sub-
function NeuralNet. It can generate plots if requested using mesh.

function r = NeuralNet( d, t, ˜ )
%%% ConvolutionalNN>NeuralNet
% Execute the neural net. Plot if there are three inputs.

% Convolve the image
yCL = ConvolutionLayer( t, d.cL );

% Pool outputs
yPool = Pool( yCL, d.pool.n, d.pool.type );

% Apply a fully connected layer
yFC = FullyConnectedNN( yPool, d.fCNN );
[˜,r] = Softmax( yFC );

% Plot if requested
if( nargin > 2 )

NewFigure('ConvolutionNN');
subplot(3,1,1);
mesh(yCL);
title('Convolution Layer')
subplot(3,1,2);

mesh(yPool);
title('Pool Layer')
subplot(3,1,3);

mesh(yFC);
title('Fully Connected Layer')

end
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ConvolutionNN has additional subfunctions for defining the data structure and training
and testing the network.

We begin by testing the neural net initialized with random weights, using TestNN. This is
a script that loads the cat images using ImageArray, initializes a convolutional network with
random weights, and then runs it with a selected test image.

>> TestNN
Image IMG_3886.png has a 13.1% chance of being a cat

As expected, an untrained neural net does not identify a cat! Figure 10.10 shows the output of
the various stages of network processing.

Figure 10.10: Stages in convolutional neural net processing.
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10.9 Recognizing a Number
10.9.1 Problem

We want to determine if an image is that of the number 3.

10.9.2 Solution

We train the neural network with a series of images of the number 3. We then use one picture
from the training set and a separate picture and compute the probabilities that they are the
number 3.
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10.9.3 How It Works

We first run the script Digit3TrainingData to generate a training set. This is a simpli-
fied version of the training image generation script in Chapter 5, DigitTrainingData. It
only produces one digit, in this case the number 3. input has all 256 bits of an image in a
single column. output has the output number 1 for all images. We cycle among three fonts
’times’,’helvetica’,’courier’ for variety. This will make the training more ef-
fective when the neural net sees different fonts. Unlike the script in Chapter 4, we store the
images as 16x16 pixel images. We also save the three arrays, ’input’, ’trainSets’,
’testSets’ in a .mat file directly using save.

%% Generate net training data for the digit 3
digits = 3;
nImagesPer = 20;

% Prepare data
nDigits = length(digits);
nImages = nDigits*nImagesPer;
input = cell(1,nImages);
output = zeros(1,nImages);
fonts = {'times','helvetica','courier'};

% Loop
kImage = 1;
for j = 1:nDigits

fprintf('Digit %d\n', digits(j));
for k = 1:nImagesPer

kFont = ceil(rand*length(fonts));
pixels = CreateDigitImage( digits(j), fonts{kFont} );

% Scale the pixels to a range 0 to 1
input{kImage} = double(pixels)/255;
kImage = kImage + 1;

end
sets = randperm(10);

end

% Use 75% of the images for training and save the rest for testing
trainSets = sort(randperm(nImages,floor(0.75*nImages)));
testSets = setdiff(1:nImages,trainSets);

save('digit3.mat', 'input', 'trainSets', 'testSets');

We then run the script TrainNNNumber to see if the input image is the number 3. This
script loads in the data from the .mat file into the workspace so that input, trainSets, and
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testSets are available directly. We get the default data structure from ConvolutionalNN
and modify the settings for the optimization for fminsearch.

%% Train a neural net on a single digit
% Trains the net from the images in the loaded mat file.

% Switch to use one image or all for training purposes
useOneImage = false;

% This is needed to make runs consistent
rng('default')

% Load the image data
load('digit3');

% Training
if useOneImage

% Use only one image for training
trainSets = 2;

testSets = setdiff(1:length(input),trainSets);
end
fprintf(1,'Training Image(s) [')
fprintf(1,'%1d ',trainSets);
d = ConvolutionalNN;
d.opt = optimset('TolX',1e-5,'MaxFunEvals',400000,'maxiter',200000);
d = ConvolutionalNN( 'train', d, input(trainSets) );
fprintf(1,']\nFunction value (should be zero) %12.4f\n',d.fVal);

% Test the net using a test image
for k = 1:length(testSets)

[d, r] = ConvolutionalNN( 'test', d, input{testSets(k)} );
fprintf(1,'Test image %d has a %4.1f%% chance of being a 3\n',

testSets(k),100*r);
end

% Test the net using a test image
[d, r] = ConvolutionalNN( 'test', d, input{trainSets(1)} );

fprintf(1,'Training image %2d has a %4.1f%% chance of being a 3\n',
trainSets(1),100*r);

We set rng(’default’), since fminsearch uses random numbers at times. This
makes each run the same. We run the script twice. The first time we use one number for
training using the Boolean switch at the top. The second time we use the full training set, like
in Chapter 9, setting the Boolean to false. We set tolX = 1e-5. This is the tolerance on
the weights, which we are trying to solve. Making it smaller doesn’t improve anything. If
you make it really large, like 1, it will degrade the learning. The number of iterations needs
to be greater than 10,000. Again, if you make it too small it won’t converge. For one training
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image, the script returns that the probability of image 2 or 19 being the number 3 is now 80.3%
(presumably numbers with the same font). Other test images range from 35.6% to 47.4%.

>> TrainNNNumber
Training Image(s) [2 ]
Function value (should be zero) 0.1969
Test image 1 has a 35.6% chance of being a 3
Test image 6 has a 37.1% chance of being a 3
Test image 11 has a 47.4% chance of being a 3
Test image 18 has a 47.4% chance of being a 3
Test image 19 has a 80.3% chance of being a 3
Training image 2 has a 80.3% chance of being a 3
>> TrainNNNumber
Training Image(s) [2 3 4 5 7 8 9 10 12 13 14 15 16 17 20 ]
Function value (should be zero) 0.5734
Test image 1 has a 42.7% chance of being a 3
Test image 6 has a 42.7% chance of being a 3
Test image 11 has a 42.7% chance of being a 3
Test image 18 has a 42.7% chance of being a 3
Test image 19 has a 42.7% chance of being a 3
Training image 2 has a 42.7% chance of being a 3

When we use a lot of images for training representing the various fonts, the probabilities
become consistent, though not as high as we would like. Although fminsearch does find
reasonable weights we could not say that this network is very accurate.

10.10 Recognizing an Image
10.10.1 Problem

We want to determine if an image is that of a cat.

10.10.2 Solution

We train the neural network with a series of cat images. We then use one picture from the
training set and a separate picture reserved for testing and compute the probabilities that they
are cats.

10.10.3 How It Works

We run the script TrainNN to see if the input image is a cat. It trains the net from the images
in the Cats folder. Many thousands of function evaluations are required for meaningful training,
but allowing just a few function evaluations shows that the function is working.

%% Train a neural net on the Cats images
p = mfilename('fullpath');
c0 = cd;
cd(fileparts(p));
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folderPath = fullfile('..','Cats');
[s, name] = ImageArray( folderPath, 4 );
d = ConvolutionalNN;

% Use all but the last for training
s = s(1:end-1);

% This may take awhile
% Use at least 10000 iterations to see a higher change of being a cat

!
disp('Start training...')
d.opt.Display = 'iter';
d.opt.MaxFunEvals = 500;
d = ConvolutionalNN( 'train', d, s );

% Test the net using the last image that was not used in training
[d, r] = ConvolutionalNN( 'test', d, s{end} );

fprintf(1,'Image %s has a %4.1f%% chance of being a cat\n',name{end
},100*r);

% Test the net using the first image
[d, r] = ConvolutionalNN( 'test', d, s{1} );

fprintf(1,'Image %s has a %4.1f%% chance of being a cat\n',name
{1},100*r);

The script returns that the probability of either image being a cat is now 38.8%. This is
an improvement considering we only trained it with one image. It took a couple of hours to
process.

>> TrainNN

Exiting: Maximum number of function evaluations has been exceeded
- increase MaxFunEvals option.
Current function value: 0.612029

Image IMG_3886.png has a 38.8% chance of being a cat
Image IMG_0191.png has a 38.8% chance of being a cat

fminsearch uses a direct search method (Nelder–Mead simplex), and it is very sensitive
to initial conditions.

In fact, using this search method poses a fundamental performance barrier for this neural
net training, especially for deep learning, where the combinatorics of different weight combos
are so big. Better (and faster) results with a global optimization method are likely.

The training code from ConvolutionNN is shown below. It uses MATLAB
fminsearch. fminsearch tweaks the gains and biases until it gets a good fit between
all the images input and the training image.
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function d = Training( d, t )
%%% ConvolutionalNN>Training

d = Indices( d );
x0 = DToX( d );
[x,d.fVal] = fminsearch( @RHS, x0, d.opt, d, t );
d = XToD( x, d );

We can improve the results with:

• Adjust fminsearch parameters.

• More images.

• More features (masks).

• Change the connections in the fully connected layer.

• Adding the ability of ConvolutionalNN to handle RGB images directly, rather than
converting them to grayscale.

• Use a different search method such as a genetic algorithm.

10.11 Summary
This chapter has demonstrated the steps for implementing a convolutional neural network using
MATLAB. Convolutional neural nets were used to process pictures of numbers and cats for
learning. When trained, the neural net was asked to identify other pictures to determine if they
were pictures of a cat or a number. Table 10.1 lists the functions and scripts included in the
companion code.

Table 10.1: Chapter Code Listing

File Description
Activation Generate activation functions.
ConvolutionalNN Implement a convolutional neural net.
ConvolutionLayer Implement a convolutional layer.
Convolve Convolve a 2D array using a mask.
Digit3TrainingData Create training data for a single digit.
FullyConnectedNN Implement a fully connected neural network.
ImageArray Read in images in a folder and convert to grayscale.
Pool Pool a 2D array.
ScaleImage Scale and image.
Softmax Implement the Softmax function.
TrainNN Train the convolutional neural net with cat images.
TrainNNNumber Train the convolutional neural net on digit images.
TestNN Test the convolutional neural net on a cat image.
TrainingData.mat Data from TestNN.
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Neural Aircraft Control

Longitudinal control is the control of an aircraft that needs to work at the altitude and speed
changes. In this chapter, we will implement a neural net to produce the critical parameters for a
nonlinear aircraft control system. This is an example of online learning and applies techniques
from multiple previous chapters.

Autonomous 
Learning

Control
Intelligence

Machine 
Learning

The longitudinal dynamics of an aircraft are also known as the pitch dynamics. The dynam-
ics are entirely in the plane of symmetry of the aircraft. The plane of symmetry is defined as
a plane that cuts the aircraft in half vertically. Most airplanes are symmetric about this plane.
These dynamics include the forward and vertical motion of the aircraft and the pitching of the
aircraft about the axis perpendicular to the plane of symmetry. Figure 11.1 shows an aircraft in
flight. α is the angle-of-attack, the angle between the wing and the velocity vector. We assume
that the wind direction is opposite that of the velocity vector, that is, the aircraft produces all of
its wind. Drag is along the wind direction and lift is perpendicular to drag. The pitch moment is
around the center of mass. The model we will derive uses a small set of parameters, yet repro-
duces the longitudinal dynamics reasonably well. It is also easy for you to modify the model to
simulate any aircraft of interest.
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Figure 11.1: Diagram of an aircraft in flight showing all the important quantities for longitudinal
dynamics simulation.
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11.1 Longitudinal Motion
The next few recipes will involve the longitudinal control of an aircraft with a neural net to
provide learning. We will:

1. Model the aircraft dynamics

2. Find an equilibrium solution about which we will control the aircraft

3. Learn how to write a sigma-pi neural net

4. Implement the PID control

5. Implement the neural net

6. Simulate the system

In this recipe, we will model the longitudinal dynamics of an aircraft for use in learning
control. We will derive a simple longitudinal dynamics model with a “small” number of param-
eters. Our control will use nonlinear dynamics inversion with a proportional integral differential
(PID) controller to control the pitch dynamics [16, 17]. Learning will be done using a sigma-pi
neural network.

We will use the learning approach developed at NASA Dryden Research Center [30]. The
baseline controller is a dynamic inversion type controller with a PID control law. A neural
net [15] provides learning while the aircraft is operating. The neural network is a sigma-pi type
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network meaning that the network sums the products of the inputs with their associated weights.
The weights of the neural network are determined by a training algorithm that uses:

1. Commanded aircraft rates from the reference model

2. PID errors

3. Adaptive control rates fed back from the neural network

11.1.1 Problem

We want to model the longitudinal dynamics of an aircraft.

11.1.2 Solution

The solution is to write the right-hand side function for the aircraft longitudinal dynamics dif-
ferential equations.

11.1.3 How It Works

We summarized the symbols for the dynamical model in Table 11.1 Our aerodynamic model is
very simple. The lift and drag are:

L = pSCL (11.1)

D = pSCD (11.2)

where S is the wetted area, the area that interacts with the airflow and is the area that is counted
in computing the aerodynamic forces, and p is the dynamic pressure, the pressure on the aircraft
caused by its velocity:

p =
1

2
ρv2 (11.3)

where ρ is the atmospheric density and v is the magnitude of the velocity. Atmospheric density
is a function of altitude. For low-speed flight this is mostly the wings. Most books use q for
dynamic pressure. We use q for pitch angular rate (also a convention), so we use p for pressure
here to avoid confusion.

The lift coefficient, CL is:
CL = CLαα (11.4)

and the drag coefficient, CD is:
CD = CD0 + kC2

L (11.5)

The drag equation is called the drag polar. Increasing the angle of attack increases the aircraft
lift, but also increases the aircraft drag. The coefficient k is:

k =
1

πε0AR
(11.6)
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Table 11.1: Aircraft Dynamics Symbols

Symbol Description Units
g Acceleration of gravity at sea-level 9.806 m/s2

h Altitude m
k Coefficient of lift induced drag
m Mass kg
p Dynamic pressure N/m2

q Pitch angular rate rad/s
u x-velocity m/s
w z-velocity m/s
CL Lift coefficient
CD Drag coefficient
D Drag N
Iy Pitch moment of inertia kg-m2

L Lift N
M Pitch moment (torque) Nm
Me Pitch moment due to elevator Nm
re Elevator moment arm m
S Wetted area of wings (the area that contributes to lift and drag) m2

Se Wetted area of elevator m2

T Thrust N
X X force in the aircraft frame N
Z Z force in the aircraft frame N
α Angle of attack rad
γ Flight path angle rad
ρ Air density kg/m3

θ Pitch angle rad

where ε0 is the Oswald efficiency factor, which is typically between 0.75 and 0.85. AR is the
wing aspect ratio. The aspect ratio is the ratio of the span of the wing to its chord. For complex
shapes, it is approximately given by the formula:

AR =
b2

S
(11.7)

where b is the span and S is the wing area. Span is measured from wingtip to wingtip. Gliders
have very high aspect ratios and delta-wing aircraft have low aspect ratios.

The aerodynamic coefficients are nondimensional coefficients that when multiplied by the
wetted area of the aircraft, and the dynamic pressure, produce the aerodynamic forces.
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The dynamical equations, the differential equations of motion, are [5]:

m(u̇+ qw) = X −mg sin θ + T cos ε (11.8)

m(ẇ − qu) = Z +mg cos θ − T sin ε (11.9)

Iy q̇ = M (11.10)

θ̇ = q (11.11)

m is the mass, u is the x-velocity, w is the z-velocity, q is the pitch angular rate, θ is the pitch
angle, T is the engine thrust, ε is the angle between the thrust vector and the x-axis, Iy is the
pitch inertia, X is the x-force, Z is the z-force, and M is the torque about the pitch axis. The
coupling between x and z velocities is due to writing the force equations in the rotating frame.
The pitch equation is about the center of mass. These are a function of u, w, q, and altitude, h,
which is found from:

ḣ = u sin θ − w cos θ (11.12)

The angle of attack, α is the angle between the u and w velocities and is:

tanα =
w

u
(11.13)

The flight path angle γ is the angle between the vector velocity direction and the horizontal. It
is related to θ and α by the relationship:

γ = θ − α (11.14)

This does not appear in the equations, but it is useful to compute when studying aircraft motion.
The forces are:

X = L sinα−D cosα (11.15)

Z = −L cosα−D sinα (11.16)

The moment, or torque, is assumed because of the offset of the center-of-pressure and center of
mass, which is assumed to be along the x-axis:

M = (cp − c)Z (11.17)

where cp is the location of the center of pressure. The moment due to the elevator is:

Me = qreSe sin(δ) (11.18)

Se is the wetted area of the elevator and rE is the distance from the center of mass to the
elevator. The dynamical model is in RHSAircraft. The atmospheric density model is an
exponential model and is included as a subfunction in this function. RHSAircraft returns
the default data structure if no inputs are given.
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function [xDot, lift, drag, pD] = RHSAircraft( ˜, x, d )

if( nargin < 1 )
xDot = DataStructure;
return

end

g = 9.806; % Acceleration of gravity (m/sˆ2)

u = x(1); % Forward velocity
w = x(2); % Up velocity
q = x(3); % Pitch angular rate
theta = x(4); % Pitch angle
h = x(5); % Altitude

rho = AtmDensity( h ); % Density in kg/mˆ3

alpha = atan(w/u);
cA = cos(alpha);
sA = sin(alpha);

v = sqrt(uˆ2 + wˆ2);
pD = 0.5*rho*vˆ2; % Dynamic pressure

cL = d.cLAlpha*alpha;
cD = d.cD0 + d.k*cLˆ2;

drag = pD*d.s*cD;
lift = pD*d.s*cL;

x = lift*sA - drag*cA;
z = -lift*cA - drag*sA;
m = d.c*z + pD*d.sE*d.rE*sin(d.delta);

sT = sin(theta);
cT = cos(theta);

tEng = d.thrust*d.throttle;
cE = cos(d.epsilon);
sE = sin(d.epsilon);

uDot = (x + tEng*cE)/d.mass - q*w - g*sT + d.externalAccel(1);
wDot = (z - tEng*sE)/d.mass + q*u + g*cT + d.externalAccel(2);
qDot = m/d.inertia + d.externalAccel(3);
hDot = u*sT - w*cT;

xDot = [uDot;wDot;qDot;q;hDot];
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We will use a model of the F-16 aircraft for our simulation. The F-16 is a single engine su-
personic multi-role combat aircraft used by many countries. The F-16 is shown in Figure 11.2.

Figure 11.2: F-16 model.

The inertia matrix is found by taking this model, distributing the mass amongst all the
vertices, and computing the inertia from the formulas

mk =
m

N
(11.19)

c =
∑
k

mkrk (11.20)

I =
∑
k

mk(rk − c)2 (11.21)

where N is the number of nodes and rk is the vector from the origin (which is arbitrary) to
node k.

inr =

1.0e+05 *

0.3672 0.0002 -0.0604
0.0002 1.4778 0.0000

-0.0604 0.0000 1.7295
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Table 11.2: F-16 Data

Symbol Field Value Description Units
CLα cLAlpha 6.28 Lift coefficient
CD0 cD0 0.0175 Zero lift drag coefficient
k k 0.1288 Lift coupling coefficient
ε epsilon 0 Thrust angle from the x-axis rad
T thrust 76.3e3 Engine thrust N
S s 27.87 Wing area m2

m mass 12,000 Aircraft mass kg
Iy inertia 1.7295e5 z-axis inertia kg-m2

c− cp c 1 Offset of center-of-mass from the center-of-
pressure

m

Se sE 3.5 Elevator area m2

re (rE) 4.0 Elevator moment arm m

The F-16 data are given in Table 11.2.
There are many limitations to this model. First of all, the thrust is applied immediately with

100% accuracy. The thrust is also not a function of airspeed or altitude. Real engines take some
time to achieve the commanded thrust and the thrust levels change with airspeed and altitude. In
the model, the elevator also responds instantaneously. Elevators are driven by motors, usually
hydraulic, but sometimes pure electric, and they take time to reach a commanded angle. In
our model, the aerodynamics are very simple. In reality, lift and drag are complex functions of
airspeed and angle of attack and are usually modeled with large tables of coefficients. We also
model the pitching moment by a moment arm. Usually, the torque is modeled by a table. No
aerodynamic damping is modeled although this appears in most complete aerodynamic models
for aircraft. You can easily add these features by creating functions:

C_L = CL(v,h,alpha,delta)
C_D = CD(v,h,alpha,delta)
C_M = CL(v,h,vdot,alpha,delta)

11.2 Numerically Finding Equilibrium
11.2.1 Problem

We want to determine the equilibrium state for the aircraft. This is the orientation at which all
forces and torques balance.

11.2.2 Solution

The solution is to compute the Jacobian for the dynamics. The Jacobian is a matrix of all first-
order partial derivatives of a vector valued function, in this case the dynamics of the aircraft.
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11.2.3 How It Works

We want to start every simulation from an equilibrium state. This is done using the function
EquilibriumState. It uses fminsearch to minimize:

u̇2 + ẇ2 (11.22)

given the flight speed, altitude, and flight path angle. It then computes the elevator angle needed
to zero the pitch angular acceleration. It has a built-in demo for equilibrium level flight at 10 km.

function [x, thrust, delta, cost] = EquilibriumState( gamma, v, h, d
)

%% Code
if( nargin < 1 )

Demo;
return

end

% [Forward velocity, vertical velocity, pitch rate pitch angle and
altitude

x = [v;0;0;0;h];
[˜,˜,drag] = RHSAircraft( 0, x, d );
y0 = [0;drag];
cost(1) = CostFun( y0, d, gamma, v, h );
y = fminsearch( @CostFun, y0, [], d, gamma, v, h );
w = y(1);
thrust = y(2);
u = sqrt(vˆ2-wˆ2);
alpha = atan(w/u);
theta = gamma + alpha;
cost(2) = CostFun( y, d, gamma, v, h );
x = [u;w;0;theta;h];
d.thrust = thrust;
d.delta = 0;
[xDot,˜,˜,p] = RHSAircraft( 0, x, d );

CostFun is the cost functional given below.

function cost = CostFun ( y, d, gamma, v, h )
%% EquilibriumState>CostFun
% Cost function for fminsearch. The cost is the square of the

velocity
% derivatives (the first two terms of xDot from RHSAircraft).
%
% See also RHSAircraft.
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w = y(1);
d.thrust = y(2);
d.delta = 0;
u = sqrt(vˆ2-wˆ2);
alpha = atan(w/u);
theta = gamma + alpha;
x = [u;w;0;theta;h];
xDot = RHSAircraft( 0, x, d );
cost = xDot(1:2)'*xDot(1:2);

The vector of values is the first input. Our first guess is that thrust equals drag. The vertical
velocity and thrust are solved for by fminsearch. fminsearch searches over thrust and
vertical velocity to find an equilibrium state.

The results of the demo are:

>> EquilibriumState
Velocity 250.00 m/s
Altitude 10000.00 m
Flight path angle 0.00 deg
Z speed 13.84 m/s
Thrust 11148.95 N
Angle of attack 3.17 deg
Elevator -11.22 deg
Initial cost 9.62e+01
Final cost 1.17e-17

The initial and final costs show how successful fminsearch was in achieving the objective
of minimizing the w and u accelerations.

11.3 Numerical Simulation of the Aircraft
11.3.1 Problem

We want to simulate the aircraft.

11.3.2 Solution

The solution is to create a script that calls the right-hand side of the dynamical equations,
RHSAircraft in a loop, and plot the results.

11.3.3 How It Works

The simulation script is shown below. It computes the equilibrium state, then simulates the
dynamics in a loop by calling RungeKutta. It applies a disturbance to the aircraft. It then
uses PlotSet to plot the results.

240



CHAPTER 11 NEURAL AIRCRAFT CONTROL

%% Initialize
nSim = 2000; % Number of time steps
dT = 0.1; % Time step (sec)
dRHS = RHSAircraft; % Get the default data structure

h = 10000;
gamma = 0.0;

v = 250;
nPulse = 10;
[x, dRHS.thrust, dRHS.delta, cost] = EquilibriumState( gamma, v, h,

dRHS );
fprintf(1,'Finding Equilibrium: Starting Cost %12.4e Final Cost %12.4

e\n',cost);

accel = [0.0;0.1;0.0];

%% Simulation
xPlot = zeros(length(x)+2,nSim);
for k = 1:nSim

% Plot storage
[˜,L,D] = RHSAircraft( 0, x, dRHS );
xPlot(:,k) = [x;L;D];
% Propagate (numerically integrate) the state equations
if( k > nPulse )

dRHS.externalAccel = [0;0;0];
else

dRHS.externalAccel = accel;
end
x = RungeKutta( @RHSAircraft, 0, x, dT, dRHS );
if( x(5) <= 0 )

break;
end

end

The applied external acceleration puts the aircraft into a slight climb with some noticeable
oscillations.

>> AircraftSimOpenLoop
Velocity 250.00 m/s
Altitude 10000.00 m
Flight path angle 0.57 deg
Z speed 13.83 m/s
Thrust 12321.13 N
Angle of attack 3.17 deg
Elevator 11.22 deg
Initial cost 9.62e+01
Final cost 5.66e-17
Finding Equilibrium: Starting Cost 9.6158e+01 Final Cost 5.6645e

-17
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The simulation results are shown in Figure 11.3. The aircraft climbs steadily. Two oscillations
are seen. A high frequency one primarily associated with pitch and a low frequency one with
the velocity of the aircraft.

Figure 11.3: Open loop response to a pulse for the F-16 in a shallow climb.

11.4 Activation Function
11.4.1 Problem

We are going to implement a neural net so that our aircraft control system can learn. We need
an activation function to scale and limit measurements.

11.4.2 Solution

Use a sigmoid function as our activation function.

11.4.3 How It Works

The neural net uses the following sigmoid function

g(x) =
1− e−kx

1 + e−kx
(11.23)
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The sigmoid function with k = 1 is plotted in the following script.

s = (1-exp(-x))./(1+exp(-x));

PlotSet( x, s, 'x label', 'x', 'y label', 's',...
'plot title', 'Sigmoid', 'figure title', 'Sigmoid' );

Results are shown in Figure 11.4.

Figure 11.4: Sigmoid function. At large values of x, the sigmoid function returns ±1.

11.5 Neural Net for Learning Control
11.5.1 Problem

We want to use a neural net to add learning to the aircraft control system.

11.5.2 Solution

Use a sigma-pi neural net function. A sigma-pi neural net sums the inputs and products of the
inputs to produce a model.

11.5.3 How It Works

The adaptive neural network for the pitch axis has seven inputs. The output of the neural net-
work is a pitch angular acceleration that augments the control signal coming from the dynamic
inversion controller. The control system is shown in Figure 11.5. The left-most box produces
the reference model given the pilot input. The output of the reference model is a vector of the
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desired states that are differenced with the true states and fed to the PID controller and the neu-
ral network. The output of the PID is differenced with the output of the neural network. This is
fed into the model inversion block that drives the aircraft dynamics.

Figure 11.5: Aircraft control system. It combines a PID controller with dynamic inversion to
handle nonlinearities. A neural net provides learning.

Model 
Inversion

Neural 
Network

Reference 
Model

Pilot Input

PID 
Controller

Aircraft
+

- -

The sigma-pi neural net is shown in Figure 11.6 for a two-input system.

Figure 11.6: Sigma-pi neural net. Π stands for product and Σ stands for sum.

The output is:

y = w1c+w2x1 +w3x2 + w4x1x2 (11.24)
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The weights are selected to represent a nonlinear function. For example, suppose we want to
represent the dynamic pressure:

y =
1

2
ρv2 (11.25)

We let x1 = ρ and x2 = v2. Set w4 =
1
2 and all other weights to zero. Suppose we didn’t know

the constant 1
2 . We would like our neural net to determine the weight through measurements.

Learning for a neural net means determining the weights so that our net replicates the function it
is modeling. Define the vector z, which is the result of the product operations. In our two-input
case this would be:

z =

⎡
⎢⎢⎣

c
x1
x2
x1x2

⎤
⎥⎥⎦ (11.26)

c is a constant. The output is:

y = wT z (11.27)

We could assemble multiple inputs and outputs:

[
y1 y2 · · · ] = wT

[
z1 z2 · · · ] (11.28)

where zk is a column array. We can solve for the weights w using least squares given the
outputs, y, and inputs, x. Define the vector of y to be Y and the matrix of z to be Z . The
solution for w is:

Y = ZTw (11.29)

The least squares solution is:

w =
(
ZZT

)−1
ZY T (11.30)

This gives the best fit to w for the measurements Y and inputs Z . Suppose we take another
measurement. We would then repeat this with bigger matrices. As a side note, you would really
compute this using an inverse. There are better numerical methods for doing least squares.
MATLAB has the pinv function. For example:

>> z = rand(4,4);
>> w = rand(4,1);
>> y = w'*z;
>> wL = inv(z*z')*z*y'
wL =

0.8308
0.5853
0.5497
0.9172
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>> w
w =

0.8308
0.5853
0.5497
0.9172

>> pinv(z')*y'
ans =

0.8308
0.5853
0.5497
0.9172

As you can see, they all agree! This is a good way to initially train your neural net. Collect
as many measurements as you have values of z and compute the weights. Your net is then ready
to go.

The recursive approach is to initialize the recursive trainer with n values of z and y.

p =
(
ZZT

)−1
(11.31)

w = pZY (11.32)

The recursive learning algorithm is:

p = p− pzzT p

1 + zT pz
(11.33)

k = pz (11.34)

w = w + k
(
y − zTw

)
(11.35)

RecursiveLearning demonstrates recursive learning or training. It starts with an initial
estimate based on a four-element training set. It then recursively learns based on new data.

wN = w + 0.1*randn(4,1); % True weights are a little different
n = 300;
zA = randn(4,n); % Random inputs
y = wN'*zA; % 100 new measurements

% Batch training
p = inv(Z*Z'); % Initial value
w = p*Z*Y; % Initial value

%% Recursive learning
dW = zeros(4,n);
for j = 1:n

z = zA(:,j);
p = p - p*(z*z')*p/(1+z'*p*z);
w = w + p*z*(y(j) - z'*w);
dW(:,j) = w - wN; % Store for plotting

end
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%% Plot the results
yL = cell(1,4);
for j = 1:4

yL{j} = sprintf('\\Delta W_%d',j);
end

PlotSet(1:n,dW,'x label','Sample','y label',yL,...
'plot title','Recursive Training',...
'figure title','Recursive Training');

Figure 11.7 shows the results. After an initial transient, the learning converges. Every time
you run this you will get different answers because we initialize with random values.

Figure 11.7: Recursive training or learning. After an initial transient the weights converge
quickly.

You will notice that the recursive learning algorithm is identical in form to the Kalman Filter
given in Section 4.1.3. Our learning algorithm was derived from batch least squares, which is
an alternative derivation for the Kalman Filter.
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11.6 Enumeration of All Sets of Inputs
11.6.1 Problem

One issue with a sigma-pi neural network is the number of possible nodes. For design purposes,
we need a function to enumerate all possible sets of combinations of inputs. This is to determine
the limitation of the complexity of a sigma-pi neural network.

11.6.2 Solution

Write a combination function that computes the number of sets.

11.6.3 How It Works

In our sigma-pi network, we hand-coded the products of the inputs. For more general code, we
want to enumerate all combinations of inputs. If we have n inputs and want to take them k at a
time, the number of sets is:

n!

(n − k)!k!
(11.36)

The code to enumerate all sets is in the function Combinations.

function c = Combinations( r, k )

%% Demo
if( nargin < 1 )

Combinations(1:4,3)
return

end

%% Special cases
if( k == 1 )

c = r';
return

elseif( k == length(r) )
c = r;
return

end

%% Recursion
rJ = r(2:end);
c = [];
if( length(rJ) > 1 )

for j = 2:length(r)-k+1
rJ = r(j:end);
nC = NumberOfCombinations(length(rJ),k-1);
cJ = zeros(nC,k);
cJ(:,2:end) = Combinations(rJ,k-1);
cJ(:,1) = r(j-1);
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if( ˜isempty(c) )
c = [c;cJ];

else
c = cJ;

end
end

else
c = rJ;

end
c = [c;r(end-k+1:end)];

This handles two special cases on input and then calls itself recursively for all other cases. Here
are some examples:

>> Combinations(1:4,3)
ans =

1 2 3
1 2 4
1 3 4
2 3 4

>> Combinations(1:4,2)
ans =

1 2
1 3
1 4
2 3
2 4
3 4

You can see that if we have four inputs and want all possible combinations, we end up
with 14 in total! This indicates a practical limit to a sigma-pi neural network, as the number of
weights will grow fast as the number of inputs increases.

11.7 Write a Sigma-Pi Neural Net Function
11.7.1 Problem

We need a sigma-pi net function for general problems.

11.7.2 Solution

Use a sigma-pi function.
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11.7.3 How It Works

The following code shows how we implement the sigma-pi neural net. SigmaPiNeuralNet
has action as its first input. You use this to access the functionality of the function. Actions
are:

1. “initialize” – initialize the function

2. “set constant” – set the constant term

3. “batch learning” – perform batch learning

4. “recursive learning” – perform recursive learning

5. “output” – generate outputs without training

You usually go in order when running the function. Setting the constant is not needed if the
default of one is fine.

The functionality is distributed among sub-functions called from the switch statement.
The demo shows an example of using the function to model dynamic pressure. Our inputs

are the altitude and the square of the velocity. The neural net will try to fit:

y = w1c+ w2h+ w3v
2 + w4hv

2 (11.37)

to
y = 0.6125e−0.0817h.1.15v2 (11.38)

We first get a default data structure. Then we initialize the filter with an empty x. We then
get the initial weights by using batch learning. The number of columns of x should be at least
twice the number of inputs. This gives a starting p matrix and initial estimate of weights. We
then perform recursive learning. It is important that the field kSigmoid is small enough so
that valid inputs are in the linear region of the sigmoid function. Note that this can be an array
so that you can use different scalings on different inputs.

function Demo
% Demonstrate a sigma-pi neural net for dynamic pressure
x = zeros(2,1);

d = SigmaPiNeuralNet;
[˜, d] = SigmaPiNeuralNet( 'initialize', x, d );

h = linspace(10,10000);
v = linspace(10,400);
v2 = v.ˆ2;
q = 0.5*AtmDensity(h).*v2;

n = 5;
x = [h(1:n);v2(1:n)];
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d.y = q(1:n)';
[y, d] = SigmaPiNeuralNet( 'batch learning', x, d );

fprintf(1,'Batch Results\n# Truth Neural Net\n');
for k = 1:length(y)

fprintf(1,'%d: %12.2f %12.2f\n',k,q(k),y(k));
end

n = length(h);
y = zeros(1,n);
x = [h;v2];
for k = 1:n

d.y = q(k);
[y(k), d] = SigmaPiNeuralNet( 'recursive learning', x(:,k), d );

end

The batch results are as follows for five examples of dynamic pressures at low altitude. As
you can see the truth model and neural net outputs are quite close:

>> SigmaPiNeuralNet
Batch Results
# Truth Neural Net
1: 61.22 61.17
2: 118.24 118.42
3: 193.12 192.88
4: 285.38 285.52
5: 394.51 394.48

The recursive learning results are shown in Figure 11.8. The results are pretty good over a
wide range of altitudes. You could then just use the “update” action during aircraft operation.

11.8 Implement PID Control
11.8.1 Problem

We want a PID controller to control the aircraft.

11.8.2 Solution

Write a function to implement PID control. The inputs will be the pitch angle error.
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Figure 11.8: Recursive training for the dynamic pressure example.

11.8.3 How It Works

Assume we have a double integrator driven by a constant input:

ẍ = u (11.39)

where u = ud + uc.
The result is:

x =
1

2
ut2 + x(0) + ẋ(0)t (11.40)

The simplest control is to add a feedback controller

uc = −K (τdẋ+ x) (11.41)

where K is the forward gain and τ is the damping time constant. Our dynamical equation is
now:

ẍ+K (τdẋ+ x) = ud (11.42)

The damping term will cause the transients to die out. When that happens, the second derivative
and first derivatives of x are zero and we end up with an offset:

x =
u

K
(11.43)
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This is generally not desirable. You could increase K until the offset were small, but that
would mean your actuator would need to produce higher forces or torques. What we have at the
moment is a proportional derivative (PD) controller. Let’s add another term to the controller:

uc = −K

(
τdẋ+ x+

1

τi

∫
x

)
(11.44)

This is now a proportional integral derivative (PID) controller. There is now a gain proportional
to the integral of x. We add the new controller, and then take another derivative to get:

...
x +K

(
τdẍ+ ẋ+

1

τi
x

)
= u̇d (11.45)

Now in steady state:

x =
τi
K

u̇d (11.46)

If u is constant, the offset is zero. Define s as the derivative operator.

s =
d

dt
(11.47)

Then:

s3x(s) +K

(
τds

2x(s) + sx(s) +
1

τi
x(s)

)
= sud(s) (11.48)

Note that:
uc(s)

x(s)
= K

(
1 + τds+

1

τis

)
(11.49)

where τd is the rate time constant, which is how long the system will take to damp and τi is how
fast the system will integrate out a steady disturbance.

where s = jω and j =
√−1. The closed loop transfer function is:

x(s)

ud(s)
=

s

s3 +Kτds2 +Ks+K/τi
(11.50)

The desired closed loop transfer function is:

x(s)

ud(s)
=

s

(s+ γ)(s2 + 2ζσs+ σ2)
(11.51)

or

x(s)

ud(s)
=

s

s3 + (γ + 2ζσ)s2 + σ(σ + 2ζγ)s+ γσ2
(11.52)
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The parameters are:

K = σ(σ + 2ζγ) (11.53)

τi =
σ + 2ζγ

γσ
(11.54)

τd =
γ + 2ζσ

σ(σ + 2ζγ)
(11.55)

This is a design for a PID. However, it is not possible to write this in the desired state space
form:

ẋ = Ax+Au (11.56)

y = Cx+Du (11.57)

because it has a pure differentiator. We need to add a filter to the rate term so that it looks like:

s

τrs+ 1
(11.58)

instead of s. We aren’t going to derive the constants and will leave it as an exercise for the
reader. The code for the PID is in PID.

function [a, b, c, d] = PID( zeta, omega, tauInt, omegaR, tSamp )

% Demo
if( nargin < 1 )

Demo;
return

end

% Input processing
if( nargin < 4 )

omegaR = [];
end

% Default roll-off
if( isempty(omegaR) )

omegaR = 5*omega;
end

% Compute the PID gains
omegaI = 2*pi/tauInt;

c2 = omegaI*omegaR;
c1 = omegaI+omegaR;
b1 = 2*zeta*omega;
b2 = omegaˆ2;
g = c1 + b1;
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kI = c2*b2/g;
kP = (c1*b2 + b1.*c2 - kI)/g;
kR = (c1*b1 + c2 + b2 - kP)/g;

% Compute the state space model
a = [0 0;0 -g];
b = [1;g];
c = [kI -kR*g];
d = kP + kR*g;

% Convert to discrete time
if( nargin > 4 )

[a,b] = CToDZOH(a,b,tSamp);
end

It is interesting to evaluate the effect of the integrator. This is shown in Figure 11.9. The
code is the demo in PID. Instead of numerically integrating the differential equations we convert
them into sampled time and propagate them. This is handy for linear equations. The double
integrator equations are in the form:

xk+1 = axk + buk (11.59)

y = cxk + duk (11.60)

This is the same form as the PID controller.

% The double integrator plant
dT = 0.1; % s
aP = [0 1;0 0];
bP = [0;1];
[aP, bP] = CToDZOH( aP, bP, dT );

% Design the controller
[a, b, c, d] = PID( 1, 0.1, 100, 0.5, dT );

% Run the simulation
n = 2000;
p = zeros(2,n);
x = [0;0];
xC = [0;0];

for k = 1:n
% PID Controller
y = x(1);
xC = a*xC + b*y;
uC = c*xC + d*y;
p(:,k) = [y;uC];
x = aP*x + bP*(1-uC); % Unit step response

end
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Figure 11.9: Proportional integral derivative control given a unit input.

It takes about 2 minutes to drive x to zero, which is close to the 100 seconds specified for
the integrator.

11.9 PID Control of Pitch
11.9.1 Problem

We want to control the pitch angle of an aircraft with a PID controller.

11.9.2 Solution

Write a script to implement the controller with the PID controller and pitch dynamic inversion
compensation.

11.9.3 How It Works

The PID controller changes the elevator angle to produce a pitch acceleration to rotate the
aircraft. The elevator is the moveable horizontal surface that is usually on the tail wing of
an aircraft. In addition, additional elevator movement is needed to compensate for changes in
the accelerations due to lift and drag as the aircraft changes its pitch orientation. This is done
using the pitch dynamic inversion function. This returns the pitch acceleration, which must be
compensated for when applying the pitch control.

256



CHAPTER 11 NEURAL AIRCRAFT CONTROL

function qDot = PitchDynamicInversion( x, d )

if( nargin < 1 )
qDot = DataStructure;
return

end

u = x(1);
w = x(2);
h = x(5);

rho = AtmDensity( h );

alpha = atan(w/u);
cA = cos(alpha);
sA = sin(alpha);

v = sqrt(uˆ2 + wˆ2);
pD = 0.5*rho*vˆ2; % Dynamic pressure

cL = d.cLAlpha*alpha;
cD = d.cD0 + d.k*cLˆ2;

drag = pD*d.s*cD;
lift = pD*d.s*cL;

z = -lift*cA - drag*sA;
m = d.c*z;
qDot = m/d.inertia;

The simulation incorporating the controls is AircraftSim below. There is a flag to turn
on control and another to turn on the learning control. We command a 0.2-radian pitch angle
using the PID control. The results are shown in Figure 11.10, Figure 11.11 and Figure 11.12.

The maneuver increases the drag and we don’t adjust the throttle to compensate. This will
cause the airspeed to drop. In implementing the controller we neglected to consider coupling
between states, but this can be added easily.
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Figure 11.10: Aircraft pitch angle change. The aircraft oscillates because of the pitch dynamics.

11.10 Neural Net for Pitch Dynamics
11.10.1 Problem

We want a nonlinear inversion controller with a PID controller and the sigma-pi neural net.

11.10.2 Solution

Train the neural net with a script that takes the angle and velocity squared input and computes
the pitch acceleration error.

11.10.3 How It Works

The PitchNeuralNetTraining script computes the pitch acceleration for a slightly dif-
ferent set of parameters. It then processes the delta-acceleration. The script passes a range of
pitch angles to the function and learns the acceleration. We use the velocity squared as an input
because the dynamic pressure is proportional to the velocity squared. The base acceleration (in
dRHSL) is for our “a-priori” model. dRHS is the measured values. We assume that these are
obtained during flight testing.

% This is from flight testing
dRHS = RHSAircraft; % Get the default data structure has F-16 data
h = 10000;
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Figure 11.11: Aircraft pitch angle change. Notice the changes in lift and drag with angle.

Figure 11.12: Aircraft pitch angle change. The PID acceleration is much lower than the pitch
inversion acceleration.
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gamma = 0.0;
v = 250;

% Get the equilibrium state
[x, dRHS.thrust, deltaEq, cost] = EquilibriumState( gamma, v, h,

dRHS );

% Angle of attack
alpha = atan(x(2)/x(1));
cA = cos(alpha);
sA = sin(alpha);

% Create the assumed properties
dRHSL = dRHS;
dRHSL.cD0 = 2.2*dRHS.cD0;
dRHSL.k = 1.0*dRHSL.k;

% 2 inputs
xNN = zeros(2,1);
d = SigmaPiNeuralNet;
[˜, d] = SigmaPiNeuralNet( 'initialize', xNN, d );

theta = linspace(0,pi/8);
v = linspace(300,200);
n = length(theta);
aT = zeros(1,n);
aM = zeros(1,n);

for k = 1:n
x(4) = theta(k);
x(1) = cA*v(k);
x(2) = sA*v(k);
aT(k) = PitchDynamicInversion( x, dRHSL );
aM(k) = PitchDynamicInversion( x, dRHS );

end

% The delta pitch acceleration
dA = aM - aT;

% Inputs to the neural net
v2 = v.ˆ2;
xNN = [theta;v2];

% Outputs for training
d.y = dA';
[aNN, d] = SigmaPiNeuralNet( 'batch learning', xNN, d );
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% Save the data for the aircraft simulation
thisPath = fileparts(mfilename('fullpath'));
save( fullfile(thisPath,'DRHSL'),'dRHSL' );
save( fullfile(thisPath,'DNN'), 'd' );

for j = 1:size(xNN,2)
aNN(j,:) = SigmaPiNeuralNet( 'output', xNN(:,j), d );

end

% Plot the results

The script first finds the equilibrium state using EquilibriumState. It then sets up the
sigma-pi neural net using SigmaPiNeuralNet. PitchDynamicInversion is called
twice, once to get the model aircraft acceleration aM (the way we want the aircraft to behave)
and once to get the true acceleration aT. The delta acceleration, dA is used to train the neural
net. The neural net produces aNN. The resulting weights are saved in a .mat file for use in
AircraftSim. The simulation uses dRHS, but our pitch acceleration model uses dRHSL.
The latter is saved in another .mat file.

>> PitchNeuralNetTraining
Velocity 250.00 m/s
Altitude 10000.00 m
Flight path angle 0.00 deg
Z speed 13.84 m/s
Thrust 11148.95 N
Angle of attack 3.17 deg
Elevator 11.22 deg
Initial cost 9.62e+01
Final cost 1.17e-17

As can be seen, the neural net reproduces the model very well. The script also outputs DNN.
mat, which contains the trained neural net data.

11.11 Nonlinear Simulation
11.11.1 Problem

We want to demonstrate our learning control system for controlling the longitudinal dynamics
of an aircraft.
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Figure 11.13: Neural net fitted to the delta acceleration.

11.11.2 Solution

Enable the control functions to the simulation script described in AircraftSimOpenLoop.

11.11.3 How It Works

After training, the neural net in the previous recipe we set addLearning to true. The weights
are read in. We command a 0.2-radian pitch angle using the PID learning control. The results
are shown in Figure 11.14, Figure 11.15, and Figure 11.16. The figures show without learning
control on the left and with learning control on the right.

Learning control helps the performance of the controller. However, the weights are fixed
throughout the simulation. Learning occurs prior to the controller becoming active. The control
system is still sensitive to parameter changes since the learning part of the control was computed
for a pre-determined trajectory. Our weights were determined only as a function of pitch angle
and velocity squared. Additional inputs would improve the performance. There are many
opportunities for you to try to expand and improve the learning system.
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Figure 11.14: Aircraft pitch angle change. Lift and drag variations are shown.

Figure 11.15: Aircraft pitch angle change. Without learning control, the elevator saturates.
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Figure 11.16: Aircraft pitch angle change. The PID acceleration is much lower than the pitch
dynamic inversion acceleration.

11.12 Summary
This chapter has demonstrated adaptive or learning control for an aircraft. You learned about
model tuning, model reference adaptive control, adaptive control, and gain scheduling. You
also learned how to use a neural net as part of an aircraft control system. Table 11.3 lists the
functions and scripts included in the companion code.

Table 11.3: Chapter Code Listing

File Description
AircraftSim Simulation of the longitudinal dynamics of an aircraft.
AtmDensity Atmospheric density using a modified exponential model.
EquilibriumState Finds the equilibrium state for an aircraft.
PID Implements a PID controller.
PitchDynamicInversion Pitch angular acceleration.
PitchNeuralNetTraining Train the pitch acceleration neural net.
QCR Generates a full state feedback controller.
RecursiveLearning Demonstrates recursive neural net training or learning.
RHSAircraft Right-hand side for aircraft longitudinal dynamics.
SigmaPiNeuralNet Implements a sigma-pi neural net.
Sigmoid Plots a sigmoid function.
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Multiple Hypothesis Testing

12.1 Overview
Tracking is the process of determining the position of other objects as their position changes
with time. Air traffic control radar systems are used to track aircraft. Aircraft in flight must
track all nearby objects to avoid collisions and to determine if they are threats. Automobiles
with radar cruise control use their radar to track cars in front of them so that the car can maintain
safe spacing and avoid a collision.

Autonomous 
Learning

Control
Intelligence

Machine 
Learning

When you are driving, you maintain situation awareness by identifying nearby cars and
figuring out what they are going to do next. Your brain processes data from your eyes to
characterize a car. You track objects by their appearance, since, in general, the cars around you
all look different. Of course, at night you only have tail lights so the process is harder. You can
often guess what each car is going to do, but sometimes you guess wrong and that can lead to
collisions.

Radar systems just see blobs. Cameras should be able to do what your eyes and brain do,
but that requires a lot of processing. As noted, at night it is hard to reliably identify a car. As
the blobs are measured by radar we want to collect all blobs, as they vary in position and speed,
and attach them to a particular car’s track. This way we can reliably predict where it will go
next. This leads to the topic of this chapter, track-oriented multiple hypothesis testing (MHT).

© Michael Paluszek and Stephanie Thomas 2019
M. Paluszek and S. Thomas, MATLAB Machine Learning Recipes,
https://doi.org/10.1007/978-1-4842-3916-2 12
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Table 12.1: Multiple Hypothesis Testing Terms

Term Definition
Clutter Transient objects of no interest to the tracking system.
Cluster A collection of tracks that are linked by common observations.
Error Ellipsoid An ellipsoidal volume around an estimated position.
Family A set of tracks with a common root node. At most, one track per family

can be included in a hypothesis. A family can at most represent one
target.

Gate A region around an existing track position. Measurements within the gate
are associated with the track.

Hypothesis A set of tracks that do not share any common observations.
N-Scan Pruning Using the track scores from the last N scans of data to prune tracks. The

count starts from a root node. When the tracks are pruned, a new root
node is established.

Observation A measurement that indicates the presence of an object. The observation
may be of a target or be spurious.

Pruning Removal of low-score tracks.
Root Node An established track to which observations can be attached and which

may spawn additional tracks.
Scan A set of data taken simultaneously.
Target An object being tracked.
Trajectory The path of a target.
Track A trajectory that is propagated.
Track Branch A track in a family that represents a different data association hypothesis.

Only one branch can be correct.
Track Score The log-likelihood ratio for a track.

Track-oriented MHT is a powerful technique for assigning measurements to tracks of ob-
jects when the number of objects is unknown or changing. It is absolutely essential for accurate
tracking of multiple objects. MHT terms are defined in Table 12.1.

Hypotheses are sets of tracks with consistent data, that is, where no measurements are
assigned to more than one track. The track-oriented approach recomputes the hypotheses using
the newly updated tracks after each scan of data is received. Rather than maintaining, and
expanding, hypotheses from scan to scan, the track-oriented approach discards the hypotheses
formed on scan k − 1. The tracks that survive pruning are propagated to the next scan k where
new tracks are formed, using the new observations, and reformed into hypotheses. Except for
the necessity to delete some tracks based upon low probability, no information is lost because
the track scores that are maintained contain all the relevant statistical data.

The software in this chapter uses a powerful track-pruning algorithm that does the pruning
in one step. Because of its speed, ad-hoc pruning methods are not required, leading to more
robust and reliable results. The track management software is, as a consequence, quite simple.
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The MHT Module requires the GNU Linear Programming Kit (GLPK;
http://www.gnu.org/software/glpk/) and specifically, the MATLAB mex wrapper GLPKMEX
(http://glpkmex.sourceforge.net). Both are distributed under the GNU license. Both the GLPK
library and the GLPKMEX program are operating-system-dependent and must be compiled
from the source code on your computer. Once GLPK is installed, the mex must be generated
from MATLAB from the GLPKMEX source code.

The command that is executed from MATLAB to create the mex should look like:

mex -v -I/usr/local/include glpkcc.cpp /usr/local/lib/libglpk.a

where the “v” specifies verbose printout and you should replace /usr/local with your
operating-system dependent path to your installation of GLPK. The resulting mex file (Mac) is:

glpkcc.mexmaci64

The MHT software was tested with GLPK version 4.47 and GLPKMEX version 2.11.

12.2 Theory
12.2.1 Introduction

Figure 12.1 shows the general tracking problem in the context of automobile tracking. Two
scans of data are shown. When the first scan is done, there are two tracks. The uncertainty
ellipsoids are shown and they are based on all previous information. In the k− 1 scan (a scan is
a set of measurements taken at the same time), three measurements are observed. Each scan has
multiple measurements, the measurements in each new scan are numbered beginning with 1,
and the measurement numbers are not meant to imply any correlation across subsequent scans.
One and 3 are within the ellipsoids of the two tracks, but 2 is in both. It may be a measurement
of either of the tracks or a spurious measurement. In scan k, four measurements are taken. Only
measurement 4 is in one of the uncertainty ellipsoids. Three may be interpreted as spurious,
but it is actually because of a new track from a third vehicle that it separates from the blue
track. Measurement 1 is outside of the red ellipsoid, but is actually a good measurement of
the red track and (if correctly interpreted) indicates that the model is erroneous. 4 is a good
measurement of the blue track and indicates that the model is valid. Measurement 2 of scan k
is outside both uncertainty ellipsoids. The illustration shows how the tracking system should
behave, but without the tracks it would be difficult to interpret the measurements. As shown a
measurement can be:

1. Valid

2. Spurious

3. A new track

“Spurious” means that the measurement is not associated with any tracked object and isn’t a
new track. We can’t determine the nature of any measurement without going through the MHT
process.
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Figure 12.1: Tracking problem.

We define a contact as an observation where the signal-to-noise ratio is above a certain
threshold. The observation then constitutes a measurement. Low signal-to-noise ratio obser-
vations can happen in both optical and radar systems. Thresholding reduces the number of
observations that need to be associated with tracks, but may lose valid data. An alternative is to
treat all observations as valid, but adjust the measurement error accordingly.

Valid measurements must then be assigned to tracks. An ideal tracking system would be
able to categorize each measurement accurately and then assign them to the correct track. The
system must also be able to identify new tracks and remove tracks that no longer exist. A
tracking system may have to deal with hundreds of objects (perhaps after a collision or because
of debris in the road).

A sophisticated system should be able to work with multiple objects as groups or clusters if
the objects are more or less moving in the same direction. This reduces the number of states a
system must handle. If a system handles groups, then it must be able to handle groups spawning
from groups.

If we were confident that we were only tracking one vehicle, all of the data might be incor-
porated into the state estimate. An alternative is to incorporate only the data within the covari-
ance ellipsoids and treat the remainders as outliers. If the latter strategy were taken, it would be
sensible to remember that data in case future measurements were also “outliers,” in which case
the filter might go back and incorporate different sets of outliers into the solution. This could
easily happen if the model were invalid, for example, if the vehicle, which had been cruising at a
constant speed, suddenly began maneuvering and the filter model did not allow for maneuvers.

The multiple model filters helps with the erroneous model problem and should be used any
time a vehicle might change mode. It does not tell us how many vehicles we are tracking,
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however. With multiple models, each model would have its own error ellipsoids and the mea-
surements would fit one better than the other, assuming that one of the models was a reasonable
model for the tracked vehicle in its current mode.

12.2.2 Example

Referring to Figure 12.1 in the first scan, we have three measurements. 1 and 3 are associated
with existing tracks and are used to update those tracks. 2 could be associated with either. It
might be a spurious measurement or it could be a new track, so the algorithm forms a new
hypothesis. In scan 2 measurement 4 is associated with the blue track. 1, 2, and 3 are not within
the error ellipsoids of either track. Since the figure shows the true track, we can see that 1 is
associated with the red track. Both 1 and 2 are just outside the error ellipsoid for the red track.
Measurement 2 in scan 2 might be consistent with measurement 2 in scan 1 and could result in a
new track. Measurement 3 in scan 2 is a new track, but we likely don’t have enough information
to create a track until we have more scans of data.

12.2.3 Algorithm

In classical multiple target tracking, [24], the problem is divided into two steps, association
and estimation. Step 1 associates contacts with targets and step 2 estimates each target’s state.
Complications arise when there is more than one reasonable way to associate contacts with
targets. The multiple hypothesis testing (MHT) approach is to form alternative hypotheses to
explain the source of the observations. Each hypothesis assigns observations to targets or false
alarms.

There are two basic approaches to MHT [3]. The first, following Reid [21], operates within
a structure in which hypotheses are continually maintained and updated as observation data
are received. In the second, the track-oriented approach to MHT, tracks are initiated, updated,
and scored before being formed into hypotheses. The scoring process consists of comparing the
likelihood that the track represents a true target versus the likelihood that it is a collation of false
alarms. Thus, unlikely tracks can be deleted before the next stage, in which tracks are formed
into a hypothesis. It is a good thing to discard the old hypotheses and start from scratch each
time because this approach maintains the important track data while preventing an explosion of
an impractically large number of hypotheses.

The track-oriented approach recomputes the hypotheses using the newly updated tracks
after each scan of data is received. Rather than maintaining, and expanding, hypotheses from
scan to scan, the track-oriented approach discards the hypotheses formed on scan k-1. The
tracks that survive pruning are predicted to the next scan k where new tracks are formed, using
the new observations, and reformed into hypotheses. Except for the necessity to delete some
tracks based upon low probability or N-scan pruning, no information is lost because the track
scores that are maintained contain all the relevant statistical data.

Track scoring is done using log-likelihood ratios. LR is the likelihood ratio, LLR the
log-likelihood ratio, and L is the likelihood.

L(K) = log[LR(K)] =

K∑
k=1

[LLRK(k) + LLRS(k)] + log[L0] (12.1)
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where the subscript K denotes kinematic (position) and the subscript S denotes signal (mea-
surement). It is assumed that the two are statistically independent.

L0 =
P0(H1)

P0(H0)
(12.2)

where H1 and H0 are the true target and false alarm hypotheses. log is a natural logarithm.
The likelihood ratio for the kinematic data is the probability that the data are a result of the true
target divided by the probability that the data are due to a false alarm:

LRK =
p(DK |H1)

p(DK |H0)
=

e−d2/2/((2π)M/2
√|S|

1/VC
(12.3)

where

1. M in the denominator of the third formula is the measurement dimension

2. VC is the measurement volume

3. S = HPT T +R the measurement residual covariance matrix

4. d2 = yTS−1y is the normalized statistical distance for the measurement

The statistical distance is defined by the residual y, the difference between the measurement
and the estimated measurement, and the covariance matrix S. The numerator is the multivariate
Gaussian.

12.2.4 Measurement Assignment and Tracks

The following are the rules for each measurement:

1. Each measurement creates a new track.

2. Each measurement in each gate updates the existing track. If there is more than one
measurement in a gate, the existing track is duplicated with the new measurement.

3. All existing tracks are updated with a “missed” measurement, creating a new track.

Figure 12.2 gives an example. We are starting with two tracks. There are two tracks and three
measurements. All three measurements are in the gate for track 1, but only one is in the gate
for track 2. Each measurement produces a new track. The three measurements produce three
tracks based on track 1 and the one measurement produces one track based on track 2.

There are three types of tracks created from each scan, in general:

1. An existing track is updated with a new measurement, assuming it corresponds to that
track.

2. An existing track is carried along with no update, assuming that no measurement was
made for it in that scan.
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3. A completely new track is generated for each measurement, assuming that the measure-
ment represents a new object.

Each track also spawns a new track assuming that there was no measurement for the track.
Thus in this case, three measurements and two tracks result in nine new tracks. Tracks 7–9 are
initiated based only on the measurement, which may not be enough information to initiate the
full state vector. If this is the case, there would be an infinite number of tracks associated with
each measurement, not just one new track. If we have a radar measurement we have azimuth,
elevation, range, and range rate. This gives all position states and one velocity state.

Figure 12.2: Measurement and gates. M0 is an “absent” measurement. An absent measurement
is one that should exist, but does not.

12.2.5 Hypothesis Formation

In MHT, a valid hypothesis is any compatible set of tracks. In order for two or more tracks to be
compatible, they cannot describe the same object, and they cannot share the same measurement
at any of the scans. The task in hypothesis formation is to find one or more combinations of
tracks that: 1) are compatible, and 2) maximize some performance function.

Before discussing the method of hypothesis formation, it is useful to first consider track
formation and how tracks are associated with unique objects. New tracks may be formed in one
of two ways:

1. The new track is based on some existing track, with the addition of a new measurement.

2. The new track is NOT based on any existing tracks; it is based solely on a single new
measurement.
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Recall that each track is formed as a sequence of measurements across multiple scans.
In addition to the raw measurement history, every track also contains a history of state and
covariance data that is computed from a Kalman Filter. Kalman Filters are explored in Chapter
8. When a new measurement is appended to an existing track, we are spawning a new track that
includes all of the original track’s measurements, plus this new measurement. Therefore, the
new track is describing the same object as the original track.

A new measurement can also be used to generate a completely new track that is independent
of past measurements. When this is done, we are effectively saying that the measurement does
not describe any of the objects that are already being tracked. It therefore must correspond to a
new/different object.

In this way, each track is given an object ID to distinguish which object it describes. Within
the context of track-tree diagrams, all of the tracks inside the same track-tree have the same
object ID. For example, if at some point there are 10 separate track-trees, this means that 10
separate objects are being tracked in the MHT system. When a valid hypothesis is formed, it
may turn out that only a few of these objects have compatible tracks.

The hypothesis formation step is formulated as a mixed integer linear program (MILP) and
solved using GLPK. Each track is given an aggregate score that reflects the component scores
attained from each measurement. The MILP formulation is constructed to select a set of tracks
that add up to give the highest score, such that:

1. No two tracks have the same object ID

2. No two tracks have the same measurement index for any scan

In addition, we extend the formulation with an option to solve for multiple hypotheses,
rather than just one. The algorithm will return the “M best” hypotheses, in descending order of
score. This enables tracks to be preserved from alternate hypotheses that may be very close in
score to the best.

12.2.6 Track Pruning

The N-scan track pruning is carried out every step using the last n scans of data. We employ a
pruning method in which the following tracks are preserved:

• Tracks with the “N” highest scores

• Tracks that are included in the “M best” hypotheses

• Tracks that have both 1) the object ID and 2) the first “P” measurements found in the “M
best” hypotheses.

We use the results of hypothesis formation to guide track pruning. The parameters N, M,
and P can be tuned to improve performance. The objective with pruning is to reduce the number
of tracks as much as possible, while not removing any tracks that should be part of the actual
true hypothesis.
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The second item listed above is to preserve all tracks included in the “M best” hypotheses.
Each of these is a full path through a track-tree, which is clear. The third item listed above is
similar, but less constrained. Consider one of the tracks in the “M best” hypotheses. We will
preserve this full track. In addition, we will preserve all tracks that stem from scan “P” of this
track.

Figure 12.3 provides an example of which tracks in a track-tree might be preserved. The
diagram shows 17 different tracks over five scans. The green track represents one of the tracks
found in the set of “M best” hypotheses, from the hypothesis formation step. This track would
be preserved. The orange tracks all stem from the node in this track at scan 2. These would be
preserved if we set P = 2 from the description above.

Figure 12.3: Track pruning example. This shows multiple scans (simultaneous measurements)
and how they might be used to remove tracks that do not fit all of the data.
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12.3 Billiard Ball Kalman Filter
12.3.1 Problem

You want to estimate the trajectory of multiple billiard balls. In the billiard ball example, we
assume that we have multiple balls moving at once. Let’s say we have a video camera placed
above the table, and we have software that can measure the position of each ball for each video
frame. That software cannot, however, determine the identity of any ball. This is where MHT
comes in. We use MHT to develop a set of tracks for the moving balls.

12.3.2 Solution

The solution is to create a linear Kalman Filter.

12.3.3 How It Works

The core estimation algorithm for the MHT system is the Kalman Filter. The Kalman Filter
consists of a simulation of the dynamics and an algorithm to incorporate the measurements. For
the examples in this chapter we use a fixed gain Kalman Filter. The model is:

xk+1 = axk + buk (12.4)

yk = cxk (12.5)

xk is the state, a column vector that includes position and velocity. yk is the measurement vector.
uk is the input, the accelerations on the billiard balls. c relates the state to the measurement, y.
If the only measurement were position then:

c =
[
1 0

]
(12.6)

This is a discrete time equation. Since the second column is zero, it is only measuring position.
Let’s assume we have no input accelerations. Also assume that the time step is τ . Then our
equations become:

[
s
v

]
k+1

=

[
1 τ
0 1

] [
s
v

]
k

(12.7)

yk =
[
1 0

] [ s
v

]
k

(12.8)

where s is position and v is velocity, yk = s. This says that the new position is the old position
plus velocity times time. Our measurement is just position. If there are no external accelera-
tions, the velocity is constant. If we can’t measure acceleration directly then this is our model.
Our filter will estimate velocity given changes in position.

A track, in this case, is a sequence of s. MHT assigns measurements, y to the track. If we
know that we have only one object and that our sensor is measuring the track accurately, and
doesn’t have any false measurements or possibility of missing measurements, we can use the
Kalman Filter directly.
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The KFBilliardsDemo simulates billiard balls. It includes two functions to represent
the dynamics. The first is RHSBilliards, which is the right-hand-side of the billiards ball
dynamics, which were just given above. This computes the position and velocity given exter-
nal accelerations. The function BilliardCollision applies conservation of momentum
whenever a ball hits a bumper. Balls can’t collide with other balls. The first part of the script
is the simulation that generates a measurement vector for all of the balls. The second part of
the script initializes one Kalman Filter per ball. This script perfectly assigns measurements to
each track. The function KFPredict is the prediction step, i.e., the simulation of the ball
motion. It uses the linear model described above. KFUpdate incorporates the measurements.
MHTDistance is just for information purposes. The initial positions and velocity vectors of
the balls are random. The script fixes the seed for the random number generator to make every
run the same, which is handy for debugging. If you comment out this code each run will be
different.

Here, we initialize the ball positions.

% The number of balls and the random initial position and velocity
d = struct('nBalls',3,'xLim',[-1 1], 'yLim', [-1 1]);
sigP = 0.4; % 1 sigma noise for the position
sigV = 1; % 1 sigma noise for the velocity
sigMeas = 0.00000001; % 1 sigma noise for the measurement

% Set the initial state for 2 sets of position and velocity
x = zeros(4*d.nBalls,1);
rN = rand(4*d.nBalls,1);

for k = 1:d.nBalls
j = 4*k-3;
x(j ,1) = sigP*(rN(j ) - 0.5);
x(j+1,1) = sigV*(rN(j+1) - 0.5);
x(j+2,1) = sigP*(rN(j+2) - 0.5);
x(j+3,1) = sigV*(rN(j+3) - 0.5);

end

We then simulate them. Their motion is in a straight line unless they collide with a bumper.

% Sensor measurements
nM = 2*d.nBalls;
y = zeros(nM,n);
iY = zeros(nM,1);

for k = 1:d.nBalls
j = 2*k-1;
iY(j ) = 4*k-3;
iY(j+1) = 4*k-1;

end

for k = 1:n

275



CHAPTER 12 MULTIPLE HYPOTHESIS TESTING

% Collisions
x = BilliardCollision( x, d );

% Plotting
xP(:,k) = x;

% Integrate using a 4th Order Runge-Kutta integrator
x = RungeKutta(@RHSBilliards, 0, x, dT, d );

% Measurements with Gaussian random noise
y(:,k) = x(iY) + sigMeas*randn(nM,1);

end

We then process the measurements through the Kalman Filter. KFPredict predicts the
next position of the balls and KFUpdate incorporates measurements. The prediction step does
not know about collisions.

%% Implement the Kalman Filter

% Covariances
r0 = sigMeasˆ2*[1;1]; % Measurement covariance
q0 = [1;60;1;60]; % The baseline plant covariance diagonal
p0 = [0.1;1;0.1;1]; % Initial state covariance matrix

diagonal

% Plant model
a = [1 dT;0 1];
b = [dTˆ2/2;dT];
zA = zeros(2,2);
zB = zeros(2,1);

% Create the Kalman Filter data structures. a is for two balls.
for k = 1:d.nBalls

kf(k) = KFInitialize( 'kf', 'm', x0(4*k-3:4*k), 'x', x0(4*k-3:4*k)
,...

'a', [a zA;zA a], 'b', [b zB;zB b],'u'
,[0;0],...

'h', [1 0 0 0;0 0 1 0], 'p', diag(p0), ...
'q', diag(q0),'r', diag(r0) );

end

% Size arrays for plotting
pUKF = zeros(4*d.nBalls,n);
xUKF = zeros(4*d.nBalls,n);
t = 0;
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for k = 1:n
% Run the filters
for j = 1:d.nBalls

% Store for plotting
i = 4*j-3:4*j;
pUKF(i,k) = diag(kf(j).p);
xUKF(i,k) = kf(j).m;

% State update
kf(j).t = t;
kf(j) = KFPredict( kf(j) );

% Incorporate the measurements
i = 2*j-1:2*j;
kf(j).y = y(i,k);
kf(j) = KFUpdate( kf(j) );

end

t = t + dT;

end

The results of the Kalman Filter demo are shown in Figure 12.4, Figure 12.5 and Fig-
ure 12.6. The covariances and states for all balls are plotted, but we only show one here. The
covariances always follow the same trend with time. As the filter accumulates measurements
it adjusts the covariances based on the ratio between the model covariance, i.e., how accurate
the model is assumed to be, and the measurement covariances. The covariances are not related
to the actual measurements at all. The Kalman Filter errors are shown in Figure 12.6. They
are large whenever the ball hits a bumper, since the model does not include collisions with the
bumpers. They rapidly decrease because our measurements have little noise.

The following code, excerpted from the above demo, is specialized drawing code to show
the billiards on the table. It calls plot for each ball. Colors are taken from the array c and are
blue, green, red, cyan, magenta, yellow, and black. You can run this from the command line
once you have computed xP and yP, which are the x and y positions of the balls. The code uses
the legend handles to associate the balls with the tracks in the plot in the legend. It manually
sets the limits (gca as a handle to the current axes).

% Plot the simulation results
NewFigure( 'Billiard Balls' )
c = 'bgrcmyk';
kX = 1;
kY = 3;
s = cell(1,d.nBalls);
l = [];
for k = 1:d.nBalls

plot(xP(kX,1),xP(kY,1),['o',c(k)])
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Figure 12.4: The four balls on the billiards table.

Figure 12.5: The filter covariances.

278



CHAPTER 12 MULTIPLE HYPOTHESIS TESTING

Figure 12.6: The filter errors.

hold on
l(k) = plot(xP(kX,:),xP(kY,:),c(k));
kX = kX + 4;
kY = kY + 4;
s{k} = sprintf('Ball %d',k);

end

xlabel('x (m)');
ylabel('y (m)');
set(gca,'ylim',d.yLim,'xlim',d.xLim);
legend(l,s)
grid on

You can change the covariances, sigP,sigV,sigMeas in the script and see how it im-
pacts the errors and the covariances.
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12.4 Billiard Ball MHT
12.4.1 Problem

You want to estimate the trajectory of multiple billiard balls.

12.4.2 Solution

The solution is to create an MHT system with a linear Kalman Filter. This example involves
billiard balls bouncing off of the bumpers of a billiard table. The model does not include the
bumper collisions.

12.4.3 How It Works

The following code adds the MHT functionality. It first runs the demo, just like in the example
above, and then tries to sort the measurements into tracks. It only has two balls. When you run
the demo you will see the graphical user interface (GUI), Figure 12.7, and the Tree, Figure 12.8,
change as the simulation progresses. We only include the MHT code in the following listing.

% Create the track data data structure
mhtData = MHTInitialize('probability false alarm', 0.001,...

'probability of signal if target present',
0.999,...

'probability of signal if target absent',
0.001,...

'probability of detection', 1, ...
'measurement volume', 1.0, ...
'number of scans', 3, ...
'gate', 0.2,...
'm best', 2,...
'number of tracks', 1,...
'scan to track function',

@ScanToTrackBilliards,...
'scan to track data',struct('r',diag(r0),'p',

diag(p0)),...
'distance function',@MHTDistance,...
'hypothesis scan last', 0,...
'filter data',kf(1),...
'prune tracks', 1,...
'remove duplicate tracks across all trees'

,1,...
'average score history weight',0.01,...
'filter type','kf');

% Create the tracks
for k = 1:d.nBalls

trk(k) = MHTInitializeTrk( kf(k) );
end
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% Size arrays
b = MHTTrkToB( trk );

%% Initialize MHT GUI
MHTGUI;
MLog('init')
MLog('name','Billiards Demo')
TOMHTTreeAnimation( 'initialize', trk );
TOMHTTreeAnimation( 'update', trk );

t = 0;

for k = 1:n

% Get the measurements - zScan.data
z = reshape( y(:,k), 2, d.nBalls );
zScan = AddScan( z(:,1) );
for j = 2:size(z,2)

zScan = AddScan( z(:,j),[],zScan);
end

% Manage the tracks and generate hypotheses
[b, trk, sol, hyp] = MHTTrackMgmt( b, trk, zScan, mhtData, k, t );

% Update MHTGUI display
if( ˜isempty(zScan) && graphicsOn )

if (treeAnimationOn)
TOMHTTreeAnimation( 'update', trk );

end
MHTGUI(trk,sol,'hide');
drawnow

end

t = t + dT;
end

% Show the final GUI
if (˜treeAnimationOn)

TOMHTTreeAnimation( 'update', trk );
end
if (˜graphicsOn)

MHTGUI(trk,sol,'hide');
end
MHTGUI;

The parameter pairs in MHTInitialize are described in Table 12.2.
Figure 12.7 shows the MHT GUI. This shows the GUI at the end of the simulation. The

table shows scans on the x-axis and tracks on the y-axis (vertical). Each track is numbered as
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Table 12.2: Multiple Hypothesis Testing Parameters

Term Definition
’probability false alarm’ The probability that a measurement is

spurious
’probability of signal if target present’ The probability of getting a signal if the

target is present
’probability of signal if target absent’ The probability of getting a signal if the

target is absent
’probability of detection’ Probability of detection of a target
’measurement volume’ Scales the likelihood ratio.
’number of scans’ The number of scans to consider in hy-

pothesis formulation
’gate’ The size of the gate
’m best’ Number of hypotheses to consider
’number of tracks’ Number of tracks to maintain
’scan to track function’ Pointer to the scan to track function.

This is custom for each application.
’scan to track data’ Data for the scan to track function
’distance function’ Pointer for the MHT distance function.

Different definitions are possible.
’hypothesis scan last’ The last scan used in a hypothesis
’prune tracks’ Prune tracks if true
’filter type’ Type of Kalman Filter
’filter data’ Data for the Kalman Filter
’remove duplicate tracks across all trees’ If true removed duplicate tracks from all

trees
’average score history weight’ A number to multiply the average score

history
’create track’’ If entered it will create a track instead of

using an existing track

xxx.yyy, where xxx is the track and yyy is the tag. Every track is assigned a new tag number. For
example, 95.542 is track 95 and tag 542 means it is the 542nd track generated. The numbers
in the table show the measurements associated with the track and the scan. TRK 3.21 and
TRK 3.57 are duplicates. In both cases one measurement per scan is associated with the TRK.
Their scores are the same because they are consistent. We can only pick one or the other for
our hypothesis. TRK 95.542 doesn’t get a measurement from scan 77, but for the rest of the
scans it gets measurement 2. Scans 77 through 80 are active. A scan is a set of four position
measurements. The summary shows there are seven active tracks, but we know (although the
software does not necessarily) that there are only four balls in play. The number of scans are
the ones currently in use to determine valid tracks. There are two active hypotheses.

Figure 12.8 shows the decision tree. You can see that with scan 80, two new tracks are
created. This means that MHT thinks that there could be as many as four tracks. However, at
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Figure 12.7: The multiple hypothesis testing (MHT) graphic user interface (GUI).

this point only two tracks, 3 and 95, have multiple measurements associated with them.
Figure 12.9 shows the information window. This shows the MHT algorithm’s thinking. It

gives the decisions made with each scan.
The demo shows that the MHT algorithm correctly associates measurements with tracks.
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Figure 12.8: The MHT tree. The blue bars gives the score assigned to each track. Longer is
better. The numbers in the framed black boxes are the track numbers.
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Figure 12.9: The MHT information window. It tells you what the MHT algorithm is thinking.
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12.5 One-Dimensional Motion
12.5.1 Problem

You want to estimate the position of an object moving in one direction with unknown accelera-
tions.

12.5.2 Solution

The solution is to create a linear Kalman Filter with an acceleration state.

12.5.3 How It Works

In this demo, we have a model of objects that includes an unknown acceleration state.

⎡
⎣ s

v
a

⎤
⎦
k+1

=

⎡
⎣ 1 τ 1

2τ
2

0 1 τ
0 0 1

⎤
⎦
⎡
⎣ s

v
a

⎤
⎦
k

(12.9)

yk =
[
1 0 0

] ⎡⎣ s
v
a

⎤
⎦
k

(12.10)

where s is position, v is velocity and a is acceleration. yk = s. τ is the time step. The input to
the acceleration state is the time rate of change of acceleration.

The function DoubleIntegratorWithAccel creates the matrices shown above:

>> [a, b] = DoubleIntegratorWithAccel( 0.5 )

a =
1.0000 0.5000 0.1250

0 1.0000 0.5000
0 0 1.0000

b =
0
0
1

with τ = 0.5 s.
We will set up the simulation so that one object has no acceleration, but starts in front of

the other. The other will overtake the first. We want to see if MHT can sort out the trajectories.
Passing would happen all the time with autonomous driving.

The following code implements the Kalman Filters for two vehicles. The simulation runs
first to generate the measurements. The Kalman Filter runs next. Note that the plot array is
updated after the filter update. This keeps it in sync with the simulation.
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%% Run the Kalman Filter
% The covariances
r = r(1,1);
q = diag([0.5*aRand*dTˆ2;aRand*dT;aRand].ˆ2 + q0);

% Create the Kalman Filter data structures
d1 = KFInitialize( 'kf', 'm', [0;0;0], 'x', [0;0;0], 'a', a, 'b',

b, 'u',0,...
'h', h(1,1:3), 'p', diag(p0), 'q', q, 'r', r );

d2 = d1;
d1.m = x(1:3,1) + sqrt(p0).*rand(3,1);
d2.m = x(4:6,1) + sqrt(p0).*rand(3,1);
xE = zeros(6,n);

for k = 1:n
d1 = KFPredict( d1 );
d1.y = z(1,k);
d1 = KFUpdate( d1 );

d2 = KFPredict( d2 );
d2.y = z(2,k);
d2 = KFUpdate( d2 );

xE(:,k) = [d1.m;d2.m];
end

We use PlotSet with the argument ’plot set’ to group inputs and the argument
’legend’ to put legends on each plot. ’plot set’ takes a cell array of 1 × n arrays
and ’legend’ takes a cell array of cell arrays as inputs. We don’t need to numerically in-
tegrate the equations of motion because the state equations have already done that. You can
always propagate a linear model in this fashion. We set the model noise matrix using aRand,
but don’t actually input any random accelerations. As written, our model is perfect, which is
never true in a real system, hence the need for model uncertainty.

Figure 12.10 shows the states and the errors. The filters track all three states for both objects
pretty well. The acceleration and velocity estimates converge with 10 s. It does a good job of
estimating the fixed disturbance acceleration despite only having a position, s, measurement.
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Figure 12.10: The object states and filter errors.

12.6 One-Dimensional Motion with Track Association
The next problem is one in which we need to associate measurements with a track.

12.6.1 Problem

You want to estimate the position of an object moving in one direction with measurements that
need to be associated with a track.

12.6.2 Solution

The solution is to create an MHT system with the Kalman Filter as the state estimator.

12.6.3 How It Works

The MHT code is shown below. We append the MHT software to the script shown above. The
Kalman Filters are embedded in the MHT software. We first run the simulation and gather the
measurements and then process them in the MHT code.

% Initialize the MHT parameters
[mhtData, trk] = MHTInitialize( 'probability false alarm', 0.001,...

'probability of signal if target
present', 0.999,...

'probability of signal if target
absent', 0.001,...

'probability of detection', 1, ...
'measurement volume', 1.0, ...
'number of scans', 3, ...
'gate', 0.2,...
'm best', 2,...
'number of tracks', 1,...
'scan to track function',

@ScanToTrack1D,...
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'scan to track data',struct('v',0)
,...

'distance function',@MHTDistance,...
'hypothesis scan last', 0,...
'prune tracks', true,...
'filter type','kf',...
'filter data', f,...
'remove duplicate tracks across all

trees',true,...
'average score history weight'

,0.01,...
'create track', '');

% Size arrays
m = zeros(3,n);
p = zeros(3,n);
scan = cell(1,n);
b = MHTTrkToB( trk );

TOMHTTreeAnimation( 'initialize', trk );
TOMHTTreeAnimation( 'update', trk );

% Initialize the MHT GUI
MHTGUI;
MLog('init')
MLog('name','MHT 1D Demo')

t = 0;

for k = 1:n

% Get the measurements
zScan = AddScan( z(1,k) );
zScan = AddScan( z(2,k), [], zScan );

% Manage the tracks
[b, trk, sol, hyp] = MHTTrackMgmt( b, trk, zScan, mhtData, k, t );

% Update MHTGUI display
MHTGUI(trk,sol,'update');

% A guess for the initial velocity of any new track
for j = 1:length(trk)

mhtData.fScanToTrackData.v = mhtData.fScanToTrackData.v + trk(j
).m(1);

end
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mhtData.fScanToTrackData.v = mhtData.fScanToTrackData.v/length(trk)
;

% Animate the tree
TOMHTTreeAnimation( 'update', trk );
drawnow;
t = t + dT;

end

Figure 12.11 shows the states and the errors. The MHT-hypothesized tracks are a good fit
to the data.

Figure 12.11: The MHT object states and estimated states. The colors are switched between
plots.

Figure 12.12 shows the MHT GUI and the tree. Track 1 contains only measurements from
object 2. Track 2 contains only measurements from object 1. Three hundred and fifty-four and
360 are spurious tracks. Three hundred and fifty-four has a measurement 1 for scan 177, but
none for the following scan. Three hundred and sixty was created on scan 180 and has just one
measurement. One and 2 have the same score. The results show that the MHT software has
successfully sorted out the measurements and assigned them correctly. At this point, the end of
the sim, four scans are active.

12.7 Summary
This chapter has demonstrated the fundamentals of multiple hypothesis testing. Table 12.3 lists
the functions and scripts included in the companion code.
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Figure 12.12: The GUI and MHT tree. The tree shows the MHT decision process.

Scan 177

Scan 178

Scan 179

Scan 180 2 0 2

2 2

2 2

0 2

1

0 1

1

1

1

2

0

0

0

2

354

2

360

Table 12.3: Chapter Code Listing

File Description
AddScan Add a scan to the data.
CheckForDuplicateTracks Look through the recorded tracks for duplicates.
MHTDistanceUKF Compute the MHT distance.
MHTGUI.fig Saved layout data for the MHT GUI.
MHTGUI GUI for the MHT software.
MHTHypothesisDisplay Display hypotheses in a GUI.
MHTInitialize Initialize the MHT algorithm.
MHTInitializeTrk Initialize a track.
MHTLLRUpdate Update the log likelihood ratio.
MHTMatrixSortRows Sort rows in the MHT.
MHTMatrixTreeConvert Convert to and from a tree format for the MHT data.
MHTTrackMerging Merge MHT tracks.
MHTTrackMgmt Manage MHT tracks.
MHTTrackScore Compute the total score for the track.
MHTTrackScoreKinematic Compute the kinematic portion of the track score.
MHTTrackScoreSignal Compute the signal portion of the track score.
MHTTreeDiagram Draw an MHT tree diagram.
MHTTrkToB Convert tracks to a B matrix.
PlotTracks Plot object tracks.
Residual Compute the residual.
TOMHTTreeAnimation Track-oriented MHT tree diagram animation.
TOMHTAssignment Assign a scan to a track.
TOMHTPruneTracks Prune the tracks.
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CHAPTER 13

Autonomous Driving with Multiple
Hypothesis Testing

In this chapter, we will apply the multiple hypothesis testing (MHT) techniques from the pre-
vious chapter to the interesting problem of autonomous driving. Consider a primary car that is
driving along a highway at variable speeds. It carries a radar that measures azimuth, range, and
range rate. Cars pass the primary car, some of which change lanes from behind the car and cut
in front. The multiple hypothesis system tracks all cars around the primary car. At the start of
the simulation there are no cars in the radar field of view. One car passes and cuts in front of
the radar car. The other two just pass in their lanes. You want to accurately track all cars that
your radar can see.

Autonomous 
Learning

Control
Intelligence

Machine 
Learning

There are two elements to this problem. One is to model the motion of the tracked automo-
biles using measurements to improve your estimate of each automobile’s location and velocity.
The second is to systematically assign measurements to different tracks. A track should rep-
resent a single car, but the radar is just returning measurements on echoes, it doesn’t know
anything about the source of the echoes.

You will solve the problem by first implementing a Kalman Filter to track one automobile.
We need to write measurement and dynamics functions that will be passed to the Kalman filter,
and we need a simulation to create the measurements. Then we will apply the MHT techniques
developed in the previous chapter to this problem.

© Michael Paluszek and Stephanie Thomas 2019
M. Paluszek and S. Thomas, MATLAB Machine Learning Recipes,
https://doi.org/10.1007/978-1-4842-3916-2 13
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We’ll do the following things in this chapter.

1. Model the automobile dynamics

2. Model the radar system

3. Write the control algorithms

4. Implement visualization to let us see the maneuvers in 3D

5. Implement the Unscented Kalman Filter

6. Implement MHT

13.1 Automobile Dynamics
13.1.1 Problem

We need to model the car dynamics. We will limit this to a planar model in two dimensions.
We are modeling the location of the car in x/y and the angle of the wheels, which allows the
car to change direction.

13.1.2 Solution

Write a right-hand side function that can be called RungeKutta.

13.1.3 How It Works

Much like with the radar, we will need two functions for the dynamics of the automobile.
RHSAutomobile is used by the simulation. RHSAutomobile has the full dynamic model
including the engine and steering model. Aerodynamic drag, rolling resistance and side force
resistance (the car doesn’t slide sideways without resistance) are modeled. RHSAutomobile
handles multiple automobiles. An alternative would be to have a one-automobile function and
call RungeKutta once for each automobile. The latter approach works in all cases, except
when you want to model collisions. In many types of collisions two cars collide and then stick,
effectively becoming a single car. A real tracking system would need to handle this situation.
Each vehicle has six states. They are:

1. x position

2. y position

3. x velocity

4. y velocity

5. Angle about vertical

6. Angular rate about vertical
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The velocity derivatives are driven by the forces and the angular rate derivative by the
torques. The planar dynamics model is illustrated in Figure 13.1 [29]. Unlike the reference, we
constrain the rear wheels to be fixed and the angles for the front wheels to be the same.

Figure 13.1: Planar automobile dynamical model.

The dynamical equations are written in the rotating frame.

m(v̇x − 2ωvy) =

4∑
k=1

Fkx − qCDxAxux (13.1)

m(v̇y + 2ωvx) =

4∑
k=1

Fky − qCDyAyuy (13.2)

Iω̇ =

4∑
k=1

r×k Fk (13.3)

where the dynamic pressure is:

q =
1

2
ρ
√

v2x + v2y (13.4)

and

v =

[
vx
vy

]
(13.5)
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The unit vector is:

u =

[
vx
vy

]
√

v2x + v2y

(13.6)

The normal force is mg, where g is the acceleration of gravity. The force at the tire contact
point, where the tire touches the road, for tire k is:

Ftk =

[
T/ρ− Fr

−Fc

]
(13.7)

Figure 13.2: Wheel force and torque.

where ρ is the radius of the tire and Fr is the rolling friction and is:

Fr = f0 +K1v
2
tx (13.8)

where vtx is the velocity in the tire frame in the rolling direction. For front wheel drive cars, the
torque, T , is zero for the rear wheels. The contact friction is:

Fc = μcmg
vty
|vt| (13.9)

This the force perpendicular to the normal rolling direction of the wheel, that is, into or out of
the paper in Figure 13.2. The velocity term ensures that the friction force does not cause limit
cycling. That is, when the y velocity is zero, the force is zero. μc is a constant for the tires.

The transformation from tire to body frame is:

c =

[
cos δ − sin δ
sin δ cos δ

]
(13.10)
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where δ is the steering angle so that:

Fk = cFtk (13.11)

vt = cT
[
vx
vy

]
(13.12)

The kinematical equations that related yaw angle and yaw angular rate are

θ̇ = ω (13.13)

and the inertial velocity V , the velocity needed to tell you where the car is going, is:

V =

[
cos θ − sin θ
sin θ cos θ

]
v (13.14)

We’ll show you the dynamics simulation when we get to the graphics part of the chapter in
Section 13.4

13.2 Modeling the Automobile Radar
13.2.1 Problem

The sensor utilized for this example will be the automobile radar. The radar measures azimuth,
range, and range rate. We need two functions: one for the simulation and the second for use by
the Unscented Kalman Filter.

13.2.2 Solution

Build a radar model in a MATLAB function. The function will use analytical derivations of
range and range rate.

13.2.3 How It Works

The radar model is extremely simple. It assumes that the radar measures line-of-site range,
range rate, and azimuth, the angle from the forward axis of the car. The model skips all the
details of radar signal processing and outputs those three quantities. This type of simple model
is always best when you start a project. Later on, you will need to add a very detailed model
that has been verified against test data to demonstrate that your system works as expected.

The position and velocity of the radar are entered through the data structure. This does not
model the signal-to-noise ratio of a radar. The power received by a radar goes as 1

r4 . In this
model, the signal goes to zero at the maximum range that is specified in the function. The range
is found from the difference in position between the radar and the target. If δ is the difference,
we write:

δ =

⎡
⎣ x− xr

y − yr
z − zr

⎤
⎦ (13.15)
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Range is then:

ρ =
√

δ2x + δ2y + δ2z (13.16)

The delta velocity is:

ν =

⎡
⎣ vx − vxr

vy − vyr
vz − vzr

⎤
⎦ (13.17)

In both equations, the subscript r denotes the radar. The range rate is:

ρ̇ =
νT δ

ρ
(13.18)

The AutoRadar function handles multiple targets and can generate radar measurements for
an entire trajectory. This is really convenient because you can give it your trajectory and see
what it returns. This gives you a physical feel for the problem without running a simulation. It
also allows you to be sure the sensor model is doing what you expect! This is important because
all models have assumptions and limitations. It may be that the model really isn’t suitable for
your application. For example, this model is two-dimensional. If you are concerned about your
system getting confused about a car driving across a bridge above your automobile, this model
will not be useful in testing that scenario.

Notice that the function has a built-in demo and, if there are no outputs, will plot the results.
Adding demos to your code is a nice way to make your functions more user friendly to other
people using your code and even to you when you encounter the code again several months after
writing the code! We put the demo in a subfunction because it is long. If the demo is one or
two lines, a subfunction isn’t necessary. Just before the demo function is the function defining
the data structure.

The second function, AutoRadarUKF is the same core code, but designed to be compati-
ble with the Unscented Kalman Filter. We could have used AutoRadar, but this is more con-
venient. The transformation matrix, cITOC (inertial to car transformation) is two-dimensional,
since the simulation is in a flat world.

s = sin(d.theta);
c = cos(d.theta);
cIToC = [c s;-s c];
dR = cIToC*x(1:2);
dV = cIToC*x(3:4);

rng = sqrt(dR'*dR);
y = [rng; dR'*dV/rng; atan(dR(2)/dR(1))];

The radar returns range, range rate, and the azimuth angle of the target. Even though we
are using radar as our sensor, there is no reason why you couldn’t use a camera, laser range-
finder or sonar instead. The limitation in the algorithms and software provided in this book is
that it will only handle one sensor. You can get software from Princeton Satellite Systems that
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expands this to multiple sensors. For example, cars carry radar, cameras, and lidar. You may
want to integrate all of their measurements together. Figure 13.3 shows the internal radar demo.
The target car is weaving in front of the radar. It is receding at a steady velocity, but the weave
introduces a time-varying range rate.

Figure 13.3: Built-in radar demo. The target is weaving in front of the radar.

13.3 Automobile Autonomous Passing Control
13.3.1 Problem

To have something interesting for our radar to measure, we need our cars to perform some
maneuvers. We will develop an algorithm for a car to change lanes.

13.3.2 Solution

The cars are driven by steering controllers that execute basic automobile maneuvers. Throttle
(accelerator pedal) and steering angle can be controlled. Multiple maneuvers can be chained
together. This provides a challenging test for the MHT system. The first function is for au-
tonomous passing and the second performs the lane change.
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13.3.3 How It Works

The AutomobilePassing implements passing control by pointing the wheels at the target.
It generates a steering angle demand and torque demand. Demand is what we want the steering
to do. In a real automobile, the hardware will attempt to meet the demand, but there will be
a time lag before the wheel angle or motor torque meets the wheel angle or torque demand
commanded by the controller. In many cases, you are passing the demand to another control
system that will try and meet the demand. The algorithms are quite simple. They don’t care
if anyone gets in the way. They also don’t have any control for avoiding another vehicle. The
code assumes that the lane is empty. Don’t try this with your car! The state is defined by the
passState variable. Prior to passing, the passState is 0. During the passing, it is 1.
When it returns to its original lane, the state is set to 0.

% Lead the target unless the passing car is in front
if( passee.x(1) + dX > passer.x(1) )

xTarget = passee.x(1) + dX;
else

xTarget = passer.x(1) + dX;
end

% This causes the passing car to cut in front of the car being passed
if( passer(1).passState == 0 )

if( passer.x(1) > passee.x(1) + 2*dX )
dY = 0;
passer(1).passState = 1;

end
else

dY = 0;
end

% Control calculation
target = [xTarget;passee.x(2) + dY];
theta = passer.x(5);
dR = target - passer.x(1:2);
angle = atan2(dR(2),dR(1));
err = angle - theta;
passer.delta = gain(1)*(err + gain(3)*(err - passer.errOld));
passer.errOld = err;
passer.torque = gain(2)*(passee.x(3) + dV - passer.x(3));

The second function performs a lane change. It implements lane change control by pointing
the wheels at the target. The function generates a steering angle demand and a torque demand.
The default gains work reasonably well. You should always supply defaults that make sense.

% Default gains
if( nargin < 5 )

gain = [0.05 80 120];
end
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% Lead the target unless the passing car is in front
xTarget = passer.x(1) + dX;

% Control calculation
target = [xTarget;y];
theta = passer.x(5);
dR = target - passer.x(1:2);
angle = atan2(dR(2),dR(1));
err = angle - theta;
passer.delta = gain(1)*(err + gain(3)*(err - passer.errOld));
passer.errOld = err;
passer.torque = gain(2)*(v - passer.x(3));

13.4 Automobile Animation
13.4.1 Problem

We want to visualize the cars as the maneuver.

13.4.2 How It Works

We create a function to read in .obj files. We then write a function to draw and animate the
model.

13.4.3 Solution

The first part is to find an automobile model. A good resource is TurboSquid https://www.
turbosquid.com. You will find thousands of models. We need .obj format and prefer a low
polygon count. Ideally, we want models with triangles. In the case of the model found for
this chapter, it had rectangles so we converted them to triangles using a Macintosh application,
Cheetah3D https://www.cheetah3d.com. An OBJ model comes with an .obj file, an .mtl file
(material file), and images for textures. We will only use the .obj file.

LoadOBJ loads the file and puts it into a data structure. The data structure uses the g field
of the OBJ file to break the file into components. In this case, the components are the four tires
and the rest of the car. The demo is just LoadOBJ( ’MyCar.obj’ ). You do need the
extension, .obj. The car is shown in Figure 13.4.

The image is generated with one call to patch per component.
The first part of DrawComponents initializes the model and updates it. We save, and

return, pointers to the patches so that we only have to update the vectors with each call.
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Figure 13.4: Automobile 3D model.
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switch( lower(action) )
case 'initialize'

n = length(g.component);
h = zeros(1,n);

for k = 1:n
h(k) = DrawMesh(g.component(k) );

end

case 'update'
UpdateMesh(h,g.component,x);

otherwise
warning('%s not available',action);

end

The mesh is drawn with a call to patch. patch has many options that are worth exploring.
We use the minimal set. We make the edges black to make the model easier to see. The Phong
reflection model is an empirical lighting model. It includes diffuse and specular lighting.

function h = DrawMesh( m )

h = patch( 'Vertices', m.v, 'Faces', m.f, 'FaceColor', m.color,...
'EdgeColor',[0 0 0],'EdgeLighting', 'phong',...
'FaceLighting', 'phong');
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Updating is done by rotating the vertices around the z-axis and then adding the x and y
positional offsets. The input array is [x;y;yaw]. We then set the new vertices. The function can
handle an array of positions, velocities, and yaw angles.

function UpdateMesh( h, c, x )

for j = 1:size(x,2)
for k = 1:length(c)

cs = cos(x(3,j));
sn = sin(x(3,j));
b = [cs -sn 0 ;sn cs 0;0 0 1];
v = (b*c(k).v')';
v(:,1) = v(:,1) + x(1,j);
v(:,2) = v(:,2) + x(2,j);
set(h(k),'vertices',v);

end
end

The graphics demo AutomobileDemo implements passing control.
AutomobileInitialize reads in the OBJ file. The following code sets up the graphics
window:

% Set up the figure
NewFig( 'Car Passing' )
axes('DataAspectRatio',[1 1 1],'PlotBoxAspectRatio',[1 1 1] );

h(1,:) = DrawComponents( 'initialize', d.car(1).g );
h(2,:) = DrawComponents( 'initialize', d.car(2).g );

XLabelS('X (m)')
YLabelS('Y (m)')
ZLabelS('Z (m)')

set(gca,'ylim',[-4 4],'zlim',[0 2]);

grid on
view(3)
rotate3d on

During each pass through the simulation loop, we update the graphics. We call
DrawComponents once per car along with the stored patch handles for each car’s com-
ponents. We adjust the limits so that we maintain a tight focus on the two cars. We could have
used the camera fields in the axes data structure for this too. We call drawnow after setting the
new xlim for smooth animation.
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% Draw the cars
pos1 = x([1 2]);
pos2 = x([7 8]);
DrawComponents( 'update', d.car(1).g, h(1,:), [pos1;pi/2 + x( 5)] );
DrawComponents( 'update', d.car(2).g, h(2,:), [pos2;pi/2 + x(11)] );

xlim = [min(x([1 7]))-10 max(x([1 7]))+10];
set(gca,'xlim',xlim);
drawnow

Figure 13.5 shows four points in the passing sequence.

Figure 13.5: Automobile simulation snap shots showing passing.

302



CHAPTER 13 AUTONOMOUS DRIVING WITH MULTIPLE HYPOTHESIS TESTING

13.5 Automobile Simulation and the Kalman Filter
13.5.1 Problem

You want to track a car using radar measurements to track an automobile maneuvering around
your car. Cars may appear and disappear at any time. The radar measurement needs to be turned
into the position and velocity of the tracked car. In between radar measurements you want to
make your best estimate of where the automobile will be at a given time.

13.5.2 Solution

The solution is to implement an Unscented Kalman Filter to take radar measurements and up-
date a dynamical model of the tracked automobile.

13.5.3 How It Works

We first create the function RHSAutomobileXY with the Kalman Filter dynamical model.
The Kalman Filter right-hand side is just the differential equations.

ẋ = vx (13.19)

ẏ = vy (13.20)

v̇x = 0 (13.21)

v̇y = 0 (13.22)

The dot means time derivative or rate of change with time. These are the state equations
for the automobile. This model says that the position change with time is proportional to the
velocity. It also says the velocity is constant. Information about velocity changes will come
solely from the measurements. We also don’t model the angle or angular rate. This is because
we aren’t getting information about it from the radar. However, you may want to try including it!

The RHSAutomobileXY function is shown below; it is of only one code! This is because
it just models the dynamics of the point mass.

xDot = [x(3:4);0;0];

The demonstration simulation is the same simulation used to demonstrate the multiple hypoth-
esis system tracking. This simulation just demonstrates the Kalman Filter. Since the Kalman
Filter is the core of the package, it is important that it works well before adding the measurement
assignment part.

MHTDistanceUKF finds the MHT distance for use in gating computations using the Un-
scented Kalman Filter (UKF). The MHT distance is the distance between the observation and
predicted locations. The measurement function is of the form h(x,d), where d is the UKF data
structure. MHTDistanceUKF uses sigma points. The code is similar to UKFUpdate. As the
uncertainty gets smaller, the residual must be smaller to remain within the gate.
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pS = d.c*chol(d.p)';
nS = length(d.m);
nSig = 2*nS + 1;
mM = repmat(d.m,1,nSig);
if( length(d.m) == 1 )

mM = mM';
end

x = mM + [zeros(nS,1) pS -pS];

[y, r] = Measurement( x, d );
mu = y*d.wM;
b = y*d.w*y' + r;
del = d.y - mu;
k = del'*(b\del);

%% MHTDistanceUKF>Measurement
function [y, r] = Measurement( x, d )
% Measurement from the sigma points

nSigma = size(x,2);
lR = length(d.r);
y = zeros(lR,nSigma);
r = d.r;
iR = 1:lR;

for j = 1:nSigma
f = feval( d.hFun, x(:,j), d.hData );
y(iR,j) = f;
r(iR,iR) = d.r;

end

The simulation UKFAutomobileDemo uses a car data structure to contain all of the car
information. A MATLAB function AutomobileInitialize takes parameter pairs and
builds the data structure. This is a lot cleaner than assigning the individual fields in your script.
It will return a default data structure if nothing is entered as an argument.

The first part of the demo, is the automobile simulation. It generates the measurements
of the automobile positions to be used by the Kalman Filter. The second part of the demo
processes the measurements in the UKF to generate the estimates of the automobile track. You
could move the code that generates the simulated data into a separate file if you were reusing
the simulation results repeatedly.

The results of the script are shown in Figure 13.6, Figure 13.7, and Figure 13.8.
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Figure 13.6: Automobile trajectories.

Figure 13.7: The true states and Unscented Kalman Filter (UKF) estimated states.
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Figure 13.8: The MHT distance between the automobiles during the simulation. Notice the
spike in distance when the automobile maneuver starts.

13.6 Automobile Target Tracking
13.6.1 Problem

We need to demonstrate target tracking for automobiles.

13.6.2 Solution

Build an automobile simulation with target tracking.

13.6.3 How It Works

The simulation is for a two-dimensional model of automobile dynamics. The primary car is
driving along a highway at variable speeds. It carries a radar. Many cars pass the primary car,
some of which change lanes from behind the car and cut in front. The MHT system tracks all
cars. At the start of the simulation there are no cars in the radar field of view. One car passes
and cuts in front of the radar car. The other two just pass in their lanes. This is a good test of
track initiation.

The radar, covered in the first recipe of the chapter, measures range, range rate, and azimuth
in the radar car frame. The model generates those values directly from the target and from the
tracked cars’ relative velocity and positions. The radar signal processing is not modeled, but
the radar has field-of-view and range limitations. See AutoRadar.
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The cars are driven by steering controllers that execute automobile maneuvers. Throttle
(accelerator pedal) and steering angle can be controlled. Multiple maneuvers can be chained
together. This provides a challenging test for the MHT system. You can try different maneuvers
and add additional maneuver functions of your own.

The Unscented Kalman Filter described in Chapter 4 is used in this demo as the radar is a
highly nonlinear measurement. The UKF dynamical model, RHSAutomobileXY, is a pair of
double integrators in the inertial frame relative to the radar car. The model accommodates steer-
ing and throttle changes by making the plant covariance, both position and velocity, larger than
would be expected by analyzing the relative accelerations. An alternative would be to use inter-
active multiple models (IMMs) with a “steering” model and “acceleration” model. This added
complication does not appear to be necessary. A considerable amount of uncertainty would be
retained even with IMM, since a steering model would be limited to one or two steering angles.
The script implementing the simulation with MHT is MHTAutomobileDemo. There are four
cars in the demo; car 4 will be passing. Figure 13.10 shows the radar measurement for car 3,
which is the last car tracked. The MHT system handles vehicle acquisition well. The MHT
GUI in Figure 13.11 shows a hypothesis with three tracks at the end of the simulation. This is
the expected result.

Figure 13.9: Automobile demo car trajectories.
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Figure 13.12 shows the final tree. There are several redundant tracks. These tracks can be
removed, since they are clones of other tracks. This does not impact hypothesis generation.
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Figure 13.10: Automobile demo radar measurement for car 3.

Princeton Satellite Systems

Radar: Auto 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

R
an

ge
 (

m
) 

   
   

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

R
an

ge
 R

at
e 

(m
/s

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

A
zi

m
ut

h 
(r

ad
) 

  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

V
al

id
   

   
   

  

Time (min)

Figure 13.11: The MHT GUI shows three tracks. Each track has consistent measurements.
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Figure 13.12: The final tree for the automobile demo.
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13.7 Summary
This chapter has demonstrated an automobile tracking problem. The automobile has a radar
system that detects cars in its field of view. The system accurately assigns measurements to
tracks and successfully learns the path of each neighboring car. You started by building an Un-
scented Kalman Filter to model the motion of an automobile and to incorporate measurements
from a radar system. This is demonstrated in a simulated script. You then build a script that
incorporates track-oriented multiple hypothesis testing to assign measurements taken by the
radar of multiple automobiles. This allows our radar system to autonomously and reliably track
multiple cars.

You also learned how to make simple automobile controllers. The two controllers steer the
automobiles and allow them to pass other cars.

Table 13.1 lists the functions and scripts included in the companion code.
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Table 13.1: Chapter Code Listing

File Description
AutoRadar Automobile radar model for simulation.
AutoRadarUKF Automobile radar model for the UKF.
AutomobileDemo Demonstrate automobile animation.
AutomobileInitialize Initialize the automobile data structure.
AutomobileLaneChange Automobile control algorithm for lane changes.
AutomobilePassing Automobile control algorithm for passing.
DrawComponents Draw a 3D model.
LoadOBJ Load an .obj graphics file.
MHTAutomobileDemo Demonstrate the use of multiple hypothesis testing for automobile

radar systems.
RHSAutomobile Automobile dynamical model for simulation.
RHSAutomobileXY Automobile dynamical model for the UKF.
UKFAutomobileDemo Demonstrate the UKF for an automobile.
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CHAPTER 14

Case-Based Expert Systems

In this chapter, we will introduce case-based expert systems, an example of the Artificial Intel-
ligence branch of our Autonomous Learning taxonomy. There are two broad classes of expert
systems, rule-based and case-based. Rule-based systems have a set of rules that are applied
to come to a decision; they are just a more organized way of writing decision statements in
computer code. These systems provide a way of automating the process when decision-making
involves hundreds or thousands of rules. Case-based systems decide by example, that is, a set
of predefined cases.

Autonomous 
Learning

Control
Intelligence

Machine 
Learning

Learning in the context of an expert system depends strongly on the configuration of the
expert system. There are three primary methods, which vary in the level of autonomy of learning
and the average generalization of the new knowledge of the system.

The least autonomous method of learning is the introduction of new rule sets in simple
rule-based expert systems. Learning of this sort can be highly tailored and focused, but is done
entirely at the behest of external teachers. In general, quite specific rule-based systems with
extremely general rules tend to have issues with edge cases that require exceptions to their rules.
Thus, this type of learning, although easy to manage and implement, is neither autonomous nor
generalizable.

The second method is fact-gathering. The expert system makes decisions based on the
known cause and effect relationships, along with an evolving model of the world; learning,
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then is broken up into two sub-pieces. Learning new cause and effect system rules is very
similar to the type of learning described above, requiring external instruction, but can be more
generalizable (as it is combined with more general world knowledge than a simple rule-based
system might have). Learning new facts, however, can be very autonomous and involves the
refinement of the expert system’s model of reality by increasing the amount of information that
can be taken advantage of by the automated reasoning systems.

The third method is fully autonomous-based reasoning, where actions and their conse-
quences are observed, leading to inferences about what prior and action combinations lead
to what results. For instance, if two similar actions result in positive results, then those priors,
which are the same in both cases, can begin to be inferred as necessary preconditions for a
positive result from that action. As additional actions are seen, these inferences can be refined
and confidence can increase in the predictions made.

The three methods are listed in increasing difficulty of implementation. Adding rules to a
rule-based expert system is quite straightforward, although rule dependencies and priorities can
become complicated. Fact-based knowledge expansion in automated reasoning systems is also
fairly straightforward, once suitably generic sensing systems for handling incoming data are set
up. The third method is by far the most difficult; however, rule-based systems can incorporate
this type of learning. In addition, more general pattern recognition algorithms can be applied to
training data (including on-line, unsupervised training data) to perform this function, learning
to recognize, e.g., with a neural network, patterns of conditions that would lead to positive or
negative results from a given candidate action. The system can then check possible actions
against these learned classification systems to gauge the potential outcome of the candidate
actions.

In this chapter, we will explore case-based reasoning systems. This is a collection of cases
with their states and values given by strings. We do not address the problem of having databases
with thousands of cases. The code we present would be too slow. We will not deal with a system
that autonomously learns. However, the code in this chapter can be made to learn by feeding
back the results of new cases into the case-based system.

14.1 Building Expert Systems
14.1.1 Problem

We want a tool to build a case-based expert system. Our tool needs to work for small sets of
cases.

14.1.2 Solution

Build a function, BuildExpertSystem, that accepts parameter pairs to create the case-
based expert system.
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14.1.3 How It Works

The knowledge base consists of states, values, and production rules. There are four parts of a
new case: the case name, the states and values, and the outcome. A state can have multiple
values.

The state catalog is a list of all of the information that will be available to the reasoning
system. It is formatted as states and state values. Only string values are permitted. Cell arrays
store all the data.

The default catalog is shown below for reaction wheel control system. The cell array of
acceptable or possible values for each state follows the state definition:

{
{'wheel-turning'}, {'yes','no'};
{'power'}, {'on','off'};
{'torque-command'}, {'yes','no'}

}

Our database of cases is designed to detect failures. We have three things to check to see if
the wheel is working. If the wheel is turning and power is on and there is a torque command,
then it is working. The wheel can be turning without a torque command or with the power off
because it would just be spinning down from prior commands. If the wheel is not turning, the
possibilities are that there is no torque command or that the power is off.

14.2 Running an Expert System
14.2.1 Problem

We want to create a case-based expert system and run it.

14.2.2 Solution

Build an expert system engine that implements a case-based reasoning system. It should be
designed to handle small numbers of cases and be capable of updating the case database.

14.2.3 How It Works

Once you have defined a few cases from your state catalog, you can test the system. The
function CBREngine implements the case-based reasoning engine. The idea is to pass it a
case, newCase, and see if it matches any existing cases stored in the system data structure. For
our problem we think that we have all the cases necessary to detect any failure. We do string
matching with a built-in function using strcmpi. We then find the first value that matches.

The algorithm finds the total fraction of the cases that match to determine if the example
matches the stored cases. The engine is matching values for states in the new case against
values for states in the case database. It weights the results by the number of states. If the new
case has more states than an existing case, it biases the result by the number of states in the
database case divided by the number of states in the new case. If more than one case matches
the new case and the outcomes for the matching cases are different, the outcome is declared

313



CHAPTER 14 CASE-BASED EXPERT SYSTEMS

“ambiguous”. If they are the same, it gives the new case that outcome. The case names make it
easier to understand the results. We use strcmpi to make string matches case insensitive.

function [outcome, pMatch] = CBREngine( newCase, system )

% Find the cases that most closely match the given state values
pMatch = zeros(1,length(system.case));
pMatchF = length(newCase.state); % Number of states in the new case
for k = 1:length(system.case)

f = min([1 length(system.case(k).activeStates)/pMatchF]);
for j = 1:length(newCase.state)

% Does state j match any active states?
q = StringMatch( newCase.state(j), system.case(k).activeStates );
if( ˜isempty(q) )

% See if our values match
i = strcmpi(newCase.values{j},system.case(k).values{q});
if( i )

pMatch(k) = pMatch(k) + f/pMatchF;
end

end
end

end

i = find(pMatch == 1);
if( isempty(i) )

i = max(pMatch,1);
end

outcome = system.case(i(1)).outcome;

for k = 2:length(i)
if( ˜strcmp(system.case(i(k)).outcome,outcome))

outcome = 'ambiguous';
end

end

The demo script, ExpertSystemDemo, is quite simple. The first part builds the system.
The remaining code runs some cases. ’id’ denotes the index of the following data in its cell
array. For example, the first three entries are for the catalog and they are items 1 through 3.
The next three are for cases and they are items 1 through 4. As BuildExpertSystem goes
through the list of parameter pairs, it uses the last id as the index for subsequent parameter
pairs.

system = BuildExpertSystem( [], 'id',1,...
'catalog state name','wheel-turning',...
'catalog value',{'yes','no'},...
'id',2,...
'catalog state name','power',...
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'catalog value',{'on' 'off'},...
'id',3,...
'catalog state name','torque-command',...
'catalog value',{'yes','no'},...
'id',1,...
'case name', 'Wheel operating',...
'case states',{'wheel-turning', 'power',

'torque-command'},...
'case values',{'yes' 'on' 'yes'},...
'case outcome','working',...
'id',2,...
'case name', 'Wheel power ambiguous',...
'case states',{'wheel-turning', 'power',

'torque-command'},...
'case values',{'yes' {'on' 'off'} 'no'

},...
'case outcome','working',...
'id',3,...
'case name', 'Wheel broken',...
'case states',{'wheel-turning', 'power',

'torque-command'},...
'case values',{'no' 'on' 'yes'},...
'case outcome','broken',...
'id',4,...
'case name', 'Wheel turning',...
'case states',{'wheel-turning', 'power'

},...
'case values',{'yes' 'on'},...
'case outcome','working',...
'match percent',80);

newCase.state = {'wheel-turning', 'power', 'torque-command'};
newCase.values = {'yes','on','no'};
newCase.outcome = '';

[newCase.outcome, pMatch] = CBREngine( newCase, system );

fprintf(1,'New case outcome: %s\n\n',newCase.outcome);

fprintf(1,'Case ID Name Percentage Match\n');
for k = 1:length(pMatch)

fprintf(1,'Case %d: %-30s %4.0f\n',k,system.case(k).name,pMatch(k)

*100);
end
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As you can see, we match two cases, but because their outcome is the same the wheel is de-
clared working. The wheel power ambiguous is called that because the power could be on or off,
hence ambiguous. We could add this new case to the database using BuildExpertSystem.

We used fprintf in the script to print the following results into the command window.

>> ExpertSystemDemo
New case outcome: working

Case ID Name Percentage Match
Case 1: Wheel working 67
Case 2: Wheel power ambiguous 67
Case 3: Wheel broken 33
Case 4: Wheel turning 44

This example is for a very small case-based expert system with a binary outcome. Multiple
outcomes can be handled without any changes to the code. However, the matching process is
slow, as it cycles through all the cases. A more robust system, handling thousands of cases,
would need some kind of decision tree to cull the cases tested. For example, suppose we had
several different components that we were testing. For example, with a landing gear we need
to know that the tire is not flat, the brakes are working, the gear is deployed, and the gear is
locked. If the gear is not deployed, we no longer have to test the brakes or the tires or that the
gear is locked.

14.3 Summary
This chapter has demonstrated a simple case-based reasoning expert system. The system can
be configured to add new cases based on the results of previous cases. An alternative would be
a rule-based system. Table 14.1 lists the functions and scripts included in the companion code.

Table 14.1: Chapter Code Listing

File Description
BuildExpertSystem Function to build a case-based expert system database.
CBREngine Case-based reasoning engine.
ExpertSystemDemo Expert system demonstration.
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APPENDIX A

A Brief History of Autonomous
Learning

A.1 Introduction
In the first chapter of this book, you were introduced to autonomous learning. You saw that
autonomous learning could be divided into the areas of machine learning, controls, and artificial
intelligence (AI). In this appendix we will provide some background on how each area evolved.
Automatic control predates artificial intelligence. However, we are interested in adaptive or
learning control, which is a relatively new development and really began evolving around the
time that artificial intelligence had its foundations. Machine learning is considered an offshoot
of artificial intelligence. However, many of the methods used in machine learning came from
different fields of study, such as statistics and optimization.

A.2 Artificial Intelligence
Artificial Intelligence research began shortly after World War II [22]. Early work was based
on knowledge of the structure of the brain, propositional logic, and Turing’s theory of com-
putation. Warren McCulloch and Walter Pitts created a mathematical formulation for neural
networks based on threshold logic. This allowed neural network research to be split into two
approaches. One centered on biological processes in the brain and the other on the application
of neural networks to artificial intelligence. It was demonstrated that any function could be
implemented through a set of such neurons and that a neural net could learn. In 1948, Weiner’s
book, “Cybernetics,” was published, which described concepts in control, communications, and
statistical signal processing. The next major step in neural networks was Hebb’s book in 1949,
”The Organization of Behavior,” connecting connectivity with learning in the brain. His book
became a source of learning and adaptive systems. Marvin Minsky and Dean Edmonds built
the first neural computer in 1950.

In 1956, Allen Newell and Herbert Simon designed a reasoning program, the Logic Theorist
(LT), which worked non-numerically. The first version was hand simulated using index cards.
It could prove mathematical theorems and even improve on human derivations. It solved 38 of
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the 52 theorems in Principia Mathematica. LT employed a search tree with heuristics to limit
the search. LT was implemented on a computer using IPL, a programming language that led to
Lisp, a programming language that is discussed below.

Blocks World was one of the first attempts to demonstrate general computer reasoning. The
blocks world was a micro world. A set of blocks would sit on a table, some sitting on other
blocks. The AI systems could rearrange blocks in certain ways. Blocks under other blocks could
not be moved until the block on top was moved. This is not unlike the Towers of Hanoi problem.
Blocks World was a spectacular advancement as it showed that a machine could reason at least
in a limited environment. Blocks World was an early example of the use of machine vision.
The computer had to process an image of Blocks World and determine what was a block and
where they were located.

BlocksWorld and Newell’s and Simons’ LT was followed up by the General Problem Solver
(GPS). It was designed to imitate human problem solving methods. Within its limited class of
puzzles it could solve them much like a human. Although GPS solved simple problems such
as the Towers of Hanoi, Figure A-1, it could not solve real-world problems because the search
was lost in a combinatorial explosion that represented the enumeration of all choices in a vast
decision space.

Figure A-1: Towers of Hanoi. The disks must be moved from the first peg to the last without
ever putting a bigger diameter disk on top of a smaller diameter disk.

In 1959, Herman Gelernter wrote the Geometry Theorem prover, which could prove theo-
rems that were quite tricky. The first game-playing programs were written at this time. In 1958,
John McCarthy invented the language Lisp (LISt Processing), which was to become the main
AI language. It is now available as Scheme and Common Lisp. Lisp was introduced only one
year after FORTRAN. A typical Lisp expression is:

(defun sqrt-iter (guess x)
(if (good-enough-p guess x)

guess
(sqrt-iter (improve guess x) x)))

This computes a square root through recursion. Eventually, dedicated Lisp machines were
built, but they went out of favor when general purpose processors became faster.

Time sharing was invented at MIT to facilitate AI research. Professor McCarthy created
a hypothetical computer program, Advice Taker, a complete AI system that could embody
general world information. It would have used a formal language such as predicate calculus.

318



APPENDIX A A BRIEF HISTORY OF AUTONOMOUS LEARNING

For example, it could come up with a route to the airport from simple rules. Marvin Minsky
arrived at MIT in 1958 and began working on micro-worlds. Within these limited domains
AI could solve problems, such as closed-form integrals in calculus. Minsky wrote the book
“Perceptrons” (with Seymour Papert), which was fundamental in the analysis of artificial neural
networks. The book contributed to the movement toward symbolic processing in AI. The book
noted that single neurons could not implement some logical functions such as exclusive-or and
erroneously implied that multi-layer networks would have the same issue. It was later found
that three-layer networks could implement such functions.

TIP Three-layer networks are the minimum to solve most learning problems.

More challenging problems were tried in the 1960s. Limitations in the AI techniques be-
came evident. The first language translation programs had mixed results. Trying to solve prob-
lems by working through massive numbers of possibilities (such as in chess) ran into compu-
tation problems. Human chess play has many forms. Some involve memorization of patterns,
including openings where the board positions are well-defined and end games when the num-
ber of pieces is relatively low. Positional play involves seeing patterns on the board through the
human brain’s ability to process patterns. Someone who is a good positional player will arrange
her pieces on the board so that the other player’s options are restricted. Localized pattern recog-
nition is seen in mate-in-n problems. Human approaches are not really used in computer chess.
Computer chess programs have become very capable primarily because of faster processors and
the ability to store openings and end games. Multi-layer neural networks were discovered in
the 1960s, but not really studied until the 1980s.

In the 1970s, self-organizing maps using competitive learning were introduced [12]. A
resurgence in neural networks happened in the 1980s. Knowledge-based systems were also
introduced in the 1980s. From Jackson [14],

An expert system is a computer program that represents and reasons with knowl-
edge of some specialized subject with a view to solving problems or giving advice.

This included expert systems that could store massive amounts of domain knowledge. These
could also incorporate uncertainty in their processing. Expert systems are applied to medical
diagnoses and other problems. Unlike AI techniques up to this time, expert systems could deal
with problems of realistic complexity and attain high performance. They also explain their
reasoning. This last feature is critical in their operational use. Sometimes these are called
knowledge-based systems. A well-known open source expert system is CLIPS (C Language
Integrated Production System).

Back propagation for neural networks was re-invented in the 1980s leading to renewed
progress in this field. Studies began both of human neural networks (i.e., the human brain) and
the creation of algorithms for effective computational neural networks. This eventually led to
deep learning networks in machine learning applications.

Advances were made in the 1980s as AI researchers began to apply rigorous mathematical
and statistical analysis to develop algorithms. Hidden Markov Models were applied to speech.
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A Hidden Markov Model is a model with unobserved (i.e., hidden) states. Combined with mas-
sive databases, they have resulted in vastly more robust speech recognition. Machine translation
has also improved. Data mining, the first form of machine learning as it is known today, was
developed. Chess programs improved initially through the use of specialized computers, such
as IBM’s Deep Blue. With the increase in processing power, powerful chess programs that are
better than most human players are now available on personal computers.

The Bayesian network formalism was invented to allow for the rigorous application of un-
certainty in reasoning problems. In the late 1990s, intelligent agents were introduced. Search
engines, bots, and web site aggregators are examples of intelligent agents used on the Internet.
Figure A-2 gives a timeline of selected events in the history of autonomous systems.

Figure A-2: Artificial intelligence timeline.
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Today, the state of the art in AI includes autonomous cars, speech recognition, planning
and scheduling, game playing, robotics, and machine translation. All of these are based on AI
technology. They are in constant use today. You can take a PDF document and translate it into
any language using Google translate. The translations are not perfect. One certainly would not
use them to translate literature.

Recent advances in AI include IBM’s Watson. Watson is a question-answering comput-
ing system with advanced natural language processing and information retrieval from massive
databases. It defeated champion Jeopardy players in 2011. It is currently being applied to
medical problems and many other complex problems.

A.3 Learning Control
Adaptive or intelligent control was motivated in the 1950s [2] by the problems of aircraft con-
trol. Control systems of that time worked very well for linear systems. Aircraft dynamics could
be linearized about a particular speed. For example, a simple equation for total velocity in level
flight is:

m
dv

dt
= T − 1

2
ρCDSv

2 (A-1)

This says the mass m times the change in velocity per time, dv
dt , equals the thrust T , the force

from the aircraft engine, minus the drag. CD is the aerodynamic drag coefficient and S is the
wetted area (i.e., the area that causes drag such as the wings and fuselage). The thrust is used
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for control. This is a nonlinear equation in velocity v because of the v2 term. We can linearize
it around a particular velocity vs so that v = vδ + vs and get:

m
dvδ
dt

= T − ρCDSvsvδ (A-2)

This equation is linear in vδ. We can control velocity with a simple thrust control law:

T = Ts − cvδ (A-3)

where Ts = 1
2ρCDSv

2
s . c is the damping coefficient. ρ is the atmospheric density and is a

nonlinear function of altitude. For the linear control to work the control must be adaptive. If we
want to guarantee a certain damping value, which is the quantity in parentheses:

m
dvδ
dt

= − (c+ ρCDSvs) vδ (A-4)

we need to know ρ, CD, S, and vs. This approach leads to a gain scheduling control system
where we measure the flight condition – altitude, velocity – and schedule the linear gains based
on the where the aircraft is in the gain schedule.

In the 1960s, progress was made on adaptive control. State Space theory was developed,
which made it easier to design multi-loop control systems, that is, control systems that con-
trolled more than one state at a time with different control loops. The general space controller is:

ẋ = Ax+Bu (A-5)

y = Cx+Du (A-6)

u = −Ky (A-7)

where A, B, C , and D are matrices, x is the state, y is the measurement, and u is the control
input. A state is a quantity that changes with time that is needed to define what the system is
doing. For a point mass that can only move in one direction, the position and velocity make up
the two states. If A completely models the system and y contains all of the information about
the state vector x, then this system is stable. Full state feedback would be x = −Kx, where
K can be computed to have guaranteed phase and gain margins (that is, tolerance to delays
and tolerance to amplification errors). This was a major advance in control theory. Before this,
multi-loop systems had to be designed separately and combined very carefully.

Learning control and adaptive control were found to be realizable from a common frame-
work. The Kalman Filter, also known as linear quadratic estimation, was introduced.

Spacecraft required autonomous control, since they were often out of contact with the
ground or the time delays were too long for effective ground supervision. The first digital
autopilots were on the Apollo spacecraft, which first flew in 1968 on Apollo 7. Don Eyles book
[9] gives the history of the Lunar Module Digital Autopilot. Geosynchronous communications
satellites were automated to the point where one operator could fly a dozen satellites.
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Advances in system identification, the process of just determining parameters of a system
(such as the drag coefficient above) were made. Adaptive control was applied to real prob-
lems. Autopilots have progressed from fairly simple mechanical pilot augmentation systems to
sophisticated control systems than can takeoff, cruise, and land under computer control.

In the 1970s, proof of adaptive control stability was made. Stability of linear control systems
was well established, but adaptive systems are inherently nonlinear. Universally stabilizing con-
trollers were studied. Progress was made in the robustness of adaptive control. Robustness is
the ability of a system to deal with changes in parameters that were assumed to be known, some-
times due to failures in the systems. It was in the 1970s that digital control became widespread,
replacing traditional analog circuits composed of transistors and operational amplifiers.

Adaptive controllers started to appear commercially in the 1980s. Most modern single-loop
controllers have some form of adaptation. Adaptive techniques were also found to be useful for
tuning controllers.

More recently, there has been a melding of artificial intelligence and control. Expert systems
have been proposed that determine what algorithms (not just parameters) to use depending on
the environment. For example, during a winged reentry of a glider, the control system would
use one system in orbit, a second at high altitudes, a third during high Mach (Mach is the ratio of
the velocity to the speed of sound) flight, and a fourth at low Mach numbers and during landing.
An F3D Skynight used the Automatic Carrier Landing System on 12 August 1957. This was
the first shipboard test of the landing system designed to land aircraft on board autonomously.
Naira Hovakimyan (U of IL U-C), and also Nahn Nguyen (NASA) were pioneers in this area.
Adaptive control was demonstrated on sub-scale F-18s, which controlled and landed the aircraft
after most of one wing was lost!

A.4 Machine Learning
Machine learning started as a branch of artificial intelligence. However, many techniques are
much older. Thomas Bayes created Bayes theorem in 1763. Bayes theorem is:

P (Ai|B) =
P (B|Ai)P (Ai)∑

P (B|Ai)
(A-8)

P (Ai|B) =
P (B|Ai)P (Ai)

P (B)

which is just the probability of Ai given B. This assumes that P (B) �= 0. In the Bayesian in-
terpretation, the theorem introduces the effect of evidence on belief. One technique, regression,
was discovered by Legendre in 1805 and Gauss in 1809.

As noted in the section on artificial intelligence, modern machine learning began with data
mining, which is the process of getting new insights from data. In the early days of AI, there
was considerable work on machines learning from data. However, this lost favor and in the
1990s it was reinvented as the field of machine learning. The goal was to solve practical prob-
lems of pattern recognition using statistics. This was greatly aided by the massive amounts
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of data available online along with the tremendous increase in processing power available to
developers. Machine learning is closely related to statistics.

In the early 1990s, Vapnik and co-workers invented a computationally powerful class of su-
pervised learning networks known as support vector machines (SVMs). These networks could
solve problems of pattern recognition, regression, and other machine learning problems.

A growing application of machine learning is autonomous driving. Autonomous driving
makes use of all aspects of autonomous learning, including controls, artificial intelligence and
machine learning. Machine vision is used in most systems as cameras are inexpensive and
provide more information than lidar, radar or sonar (which are also useful). It isn’t possible
to build really safe autonomous driving systems without learning through experience. Thus,
designers of such systems put their cars on the roads and collect experiences that are used to
fine tune the system.

Other applications include high-speed stock trading and algorithms to guide investments.
These are under rapid development and are now available to the consumer. Data mining and
machine learning are in use to predict events, both human and natural. Searches on the internet
have been used to track disease outbreaks. If there are a lot of data, and the internet makes
gathering massive data easy, then you can be sure that machine learning techniques are being
applied to mine the data.

A.5 The Future
Autonomous learning in all its branches is undergoing rapid development today. Many of the
technologies are used operationally even in low-cost consumer technology. Virtually every
automobile company in the world, and many non-automotive companies, are working to perfect
autonomous driving. Military organizations are extremely interested in artificial intelligence
and machine learning. Combat aircraft today have systems to take over from the pilot to prevent
planes from crashing to the ground.

Although completely autonomous systems are the goal in many areas, the meshing of hu-
man and machine intelligence is also an area of active research. Much AI research has been to
study how the human mind works. In addition to improving performance by tapping into the
extraordinary power of the brain, this work will also enable machine learning systems to mesh
more seamlessly with human beings. This is critical for autonomous control involving people,
but may also allow people to augment their own abilities.

This is an exciting time for machine learning! We hope that this book helps you to bring
your own advances to machine learning!
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Software for Machine Learning

B.1 Autonomous Learning Software
There are many sources for machine learning software. Machine learning encompasses both
software to help the user learn from data and software that helps machines learn and adapt
to their environment. This book gives you a sampling of software that you can use immedi-
ately. However, the software is not designed for industrial applications. This chapter describes
software that is available for the MATLAB environment. Both professional and open source
MATLAB software is discussed. The book may not cover every available package as new
packages are continually becoming available and older packages may become obsolete.

The packages you select for your project depend on your goal and your level of software
expertise. Many of the packages in this chapter are research tools that can be used to design,
analyze, and improve various types of machine learning systems, but to turn them into deploy-
able, production quality systems would require compiling, integrating and testing software that
is custom developed for each application. Other packages, such as commercial expert system
shells, can be deployed as your application. You’ll look for packages that are most compatible
with your deployment environment. For example, if your goal is an embedded system, you will
need development tools for the embedded processors and packages that are most compatible
with that development environment.

This chapter includes software for what is conventionally called “machine learning.” These
are the statistics functions that help to give us an insight into data. These are often used in the
context of “big data.” It also includes descriptions of packages for other branches of autonomous
learning systems, such as system identification. System identification is a branch of automatic
control that learns about the systems under control, allowing for better and more precise control.

The chapter, for completeness, also covers popular software that is MATLAB-compatible,
but requires extra steps to use it from within MATLAB. Examples include R, Python, and
SNOPT. In all cases, it is straightforward to write MATLAB interfaces to these packages. Using
MATLAB as a front end can be very helpful and allow you to create integrated packages that
include MATLAB, Simulink, and the machine learning package of your choice.

© Michael Paluszek and Stephanie Thomas 2019
M. Paluszek and S. Thomas, MATLAB Machine Learning Recipes,
https://doi.org/10.1007/978-1-4842-3916-2

325

https://doi.org/10.1007/978-1-4842-3916-2


APPENDIX B SOFTWARE FOR MACHINE LEARNING

You will note that we include optimization software. Optimization is a tool used as part of
machine learning to find the best or “optimal” parameters. We use it in this book in our decision
tree chapter.

Don’t be upset if we didn’t include your favorite package, or your package! We apologize
in advance.

B.2 Commercial MATLAB Software
B.2.1 MathWorks Products

TheMathWorks sells several packages for machine learning. These are in the Machine Learning
branch of our taxonomy shown in Figure 1.3. The MathWorks products provide high-quality
algorithms for data analysis along with graphics tools to visualize the data. Visualization tools
are a critical part of any machine learning system. They can be used for data acquisition, for
example, for image recognition or as part of systems for autonomous control of vehicles, or for
diagnosis and debugging during development. All of these packages can be integrated with each
other and with other MATLAB functions to produce powerful systems for machine learning.
The most applicable toolboxes that we will discuss are:

• Statistics and Machine Learning Toolbox

• Neural Network Toolbox

• Computer Vision System Toolbox

• System Identification Toolbox

• MATLAB for Deep Learning

• Fuzzy Logic Toolbox

B.2.1.1 Statistics and Machine Learning Toolbox
The Statistics and Machine Learning Toolbox provides data analytics methods for gathering
trends and patterns from massive amounts of data. These methods do not require a model for
analyzing the data. The toolbox functions can be broadly divided into Classification Tools,
Regression Tools, and Clustering Tools.

Classification methods are used to place data into different categories. For example, data, in
the form of an image, might be used to classify an image of an organ as having a tumor. Classifi-
cation is used for handwriting recognition, credit scoring, and face identification. Classification
methods include support vector machines (SVMs), decision trees and neural networks.

Regression methods let you build models from current data to predict future data. The
models can then be updated as new data become available. If the data are only used once to
create the model, then it is a batch method. A regression method that incorporates data as it
becomes available is a recursive method.
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Clustering finds natural groupings in data. Object recognition is an application of clustering
methods. For example, if you want to find a car in an image you look for data that are associated
with the part of an image that is a car. Although cars are of different shapes and sizes, they have
many features in common.

The toolbox has many functions to support these areas and many that do not fit neatly into
these categories. The Statistics and Machine Learning Toolbox is an excellent place to start for
professional tools that are seamlessly integrated into the MATLAB environment.

B.2.1.2 Neural Network Toolbox
The MATLAB Neural Network Toolbox is a comprehensive neural net toolbox that seamlessly
integrates with MATLAB. The toolbox provides functions to create, train, and simulate neural
networks. The toolbox includes convolutional neural networks and deep learning networks.
Neural networks can be computationally intensive owing to the large numbers of nodes and
associated weights, especially during training. The Neural Network Toolbox allows you to
distribute computation across multicore processors and graphical processing units (GPUs) if
you have the Parallel Computing Toolbox, another MATLAB add-on. You can extend this even
further to a network cluster of computers using the MATLAB Distributed Computing Server™.
As with all MATLAB products, the Neural Network Toolbox provides extensive graphics and
visualization capabilities that make it easier to understand your results.

The Neural Network Toolbox is capable of handling large data sets. This could be giga-
bytes or terabytes of data. This makes it suitable for industrial strength problems and complex
research. MATLAB also provides videos, webinars, and tutorials, including a full suite of re-
sources for applying deep learning.

B.2.1.3 Computer Vision System Toolbox
The MATLAB Computer Vision System Toolbox provides functions for developing computer
vision systems. The toolbox provides extensive support for video processing, but also includes
functions for feature detection and extraction. It also supports 3D vision and can process infor-
mation from stereo cameras. 3D motion detection is supported. This is particularly helpful if
your inputs are from cameras.

B.2.1.4 System Identification Toolbox
The System Identification Toolbox provides MATLAB functions and Simulink blocks for con-
structing mathematical models of systems. You can identify transfer functions from input/out-
put data and perform parameter identification for models. Both linear and nonlinear system
identification is supported. This could be used as part of a control system. It is often helpful
to divide your system into parts that can have equations as models and parts that can’t be mod-
eled with equations. Your system can learn the parameters of the former part with the System
Identification Toolbox.
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B.2.1.5 MATLAB for Deep Learning
MATLAB for Deep Learning allows you to design, build, and visualize convolutional neural
networks. You can easily implement models such as GoogLENet, VGG-16, VGG 19, AlexNet,
and ResNet-59. It has extensive capabilities for visualization and debugging of neural networks.
This is important to ensure that your system is behaving properly. It includes a number of pre-
trained models. Deep Learning is a type of neural net. You can use this when the Neural Net
Toolbox functions aren’t sufficient for your system. You can use both toolboxes together, along
with all the other MATLAB toolboxes.

B.2.2 Princeton Satellite Systems Products

Several of our own commercial packages provide tools within the purview of autonomous
learning.

B.2.2.1 Core Control Toolbox
The Core Control Toolbox provides the control and estimation functions of our Spacecraft Con-
trol Toolbox with general industrial dynamics examples, including robotics and chemical pro-
cessing. The suite of Kalman Filter routines includes conventional filters, Extended Kalman
Filters, and Unscented Kalman Filters. The Unscented Filters have a fast sigma point calcula-
tion algorithm. All of the Kalman Filters use a common code format with separate prediction
and update functions. This allows the two steps to be used independently. The filters can handle
multiple measurement sources that can be changed dynamically, with measurements arriving at
different times.

Add-ons for the Core Control Toolbox include Imaging and Target Tracking modules.
Imaging includes lens models, image processing, ray tracing, and image analysis tools.

B.2.2.2 Target Tracking
The Target Tracking module employs track-oriented multiple hypothesis testing. Track-oriented
multiple hypothesis testing is a powerful technique for assigning measurements to tracks of
objects when the number of objects is unknown or changing. It is absolutely essential for
accurate tracking of multiple objects.

In many situations a sensor system must track multiple targets, like in rush hour traffic.
This leads to the problem of associating measurements with objects, or tracks. This is a crucial
element of any practical tracking system.

The track-oriented approach recomputes the hypotheses using the newly updated tracks af-
ter each scan of data is received. Rather than maintaining, and expanding, hypotheses from scan
to scan, the track-oriented approach discards the hypotheses formed on scan k − 1. The tracks
that survive pruning are propagated to the next scan k, where new tracks are formed, using the
new observations, and reformed into hypotheses. The hypothesis formation step is formulated
as a mixed integer linear program (MILP) and solved using a GLPK (GNULinear Programming
Kit). Except for the necessity to delete some tracks based upon low probability, no information
is lost because the track scores that are maintained contain all the relevant statistical data.
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The MHT Module uses a powerful track-pruning algorithm that does the pruning in one
step. Because of its speed, ad-hoc pruning methods are not required, leading to more robust and
reliable results. The track management software is, as a consequence, quite simple.

All three Kalman Filters in the Core Toolbox, including Extended and Unscented, can be
used independently or as part of the MHT system. The Unscented Kalman Filter automatically
uses sigma points and does not require derivatives to be taken of the measurement functions or
linearized versions of the measurement models.

Interactive multiple model systems (IMMs) can also be used as part of the MHT system.
IMMs employ multiple dynamic models to facilitate tracking maneuvering objects. One model
might involve maneuvering while another models constant motion. Measurements are assigned
to all of the models. The IMMs are based on Jump Markovian Systems.

B.3 MATLAB Open Source Resources
MATLAB open source tools are a great resource for implementing state-of-the-art machine
learning. Machine learning and convex optimization packages are available.

B.3.1 DeepLearnToolbox

The Deep Learn Toolbox by Rasmus Berg Palm is a MATLAB toolbox for Deep Learning. It
includes Deep Belief Nets, Stacked Autoencoders, Convolutional Neural Nets, and other neural
net functions. It is available through the MathWorks File Exchange.

B.3.2 Deep Neural Network

The Deep Neural Network by Masayuki Tanaka provides deep learning tools of deep belief
networks of stacked restricted Boltzmann machines. It has functionality for both unsupervised
and supervised learning. It is available through the MathWorks File Exchange.

B.3.3 MatConvNet

MatConvNet implements Convolutional Neural Networks for image processing. It includes a
range of pre-trained networks for image processing functions. You can find it by searching on
the name, or at the time of printing at http://www.vlfeat.org/matconvnet/. This package is open
source and is open to contributors.

B.4 Non- MATLAB Products for Machine Learning
There are many products, both open source and commercial, for machine learning. We cover
some of the more popular open-source products. Both machine learning and convex optimiza-
tion packages are discussed.
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B.4.1 R

R is open-source software for statistical computing. It compiles on MacOS, UNIX, and Win-
dows. It is similar to the Bell Labs S language developed by John Chambers and colleagues. It
includes many statistical functions and graphics techniques.

You can use R in batch mode from MATLAB using the system command. Write

system('R CMD BATCH inputfile outputfile');

This runs the code in inputfile and puts it into outputfile. You can then read the
outputfile into MATLAB.

B.4.2 scikit-learn

scikit-learn is a machine learning library for use in Python. It includes a wide variety of tools
including:

1. Classification

2. Regression

3. Clustering

4. Dimensionality reduction

5. Model selection

6. Preprocessing

scikit-learn is well suited to a wide variety of data mining and data analysis problems.
MATLAB supports the reference implementation of Python, CPython. Mac users and Linux

users already have Python installed. Windows users need to install a distribution.

B.4.3 LIBSVM

LIBSVM [6] is a library for SVMs. It has an extensive collection of tools for SVMs, includ-
ing extensions by many users of LIBSVM. LIBSVM Tools include distributed processing and
multi-core extensions. The authors are Chih-Chung Chang and Chih-Jen Lin. You can find it at
https://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

B.5 Products for Optimization
Optimization tools often are used as part of machine learning systems. Optimizers minimize
a cost given a set of constraints on the variables that are optimized. The maximum or min-
imum value for a variable is one type of constraint. Constraints and costs may be linear or
nonlinear.
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B.5.1 LOQO

LOQO [27] is a system for solving smooth constrained optimization problems, available from
Princeton University. The problems can be linear or nonlinear, convex or nonconvex, con-
strained or unconstrained. The only real restriction is that the functions defining the problem
be smooth (at the points evaluated by the algorithm). If the problem is convex, LOQO finds a
globally optimal solution. Otherwise, it finds a locally optimal solution near to a given starting
point.

Once you compile the mex-file interface to LOQO, you must pass it an initial guess and
sparse matrices for the problem definition variables. You may also pass in a function handle to
provide animation of the algorithm at each iteration of the solution.

B.5.2 SNOPT

SNOPT [10] is a software package for solving large-scale optimization problems (linear and
nonlinear programs) hosted at the University of California, San Diego. It is especially effective
for nonlinear problems whose functions and gradients are expensive to evaluate. The functions
should be smooth but need not be convex. SNOPT is designed to take advantage of the sparsity
of the Jacobian matrix, effectively reducing the size of the problem being solved. For optimal
control problems, the Jacobian is very sparse because you have a matrix with rows and columns
that span a large number of time points, but only adjacent time points can have nonzero entries.

SNOPT makes use of nonlinear function and gradient values. The solution obtained will
be a local optimum (which may or may not be a global optimum). If some of the gradients are
unknown, they will be estimated by finite differences. Infeasible problems are treated methodi-
cally via elastic bounds. SNOPT allows the nonlinear constraints to be violated and minimizes
the sum of such violations. Efficiency is improved in large problems if only some of the vari-
ables are nonlinear, or if the number of active constraints is nearly equal to the number of
variables.

B.5.3 GLPK

GLPK (GNU Linear Programming Kit) solves a variety of linear programming problems. It
is part of the GNU project (https://www.gnu.org/software/glpk/). The most well-known one is
solving the linear program:

Ax = b (B-1)

y = cx (B-2)

where it is desired to find x, which, when it is multiplied by A, equals b. c is the cost vector,
which, when multiplied by x, gives the scalar cost of applying x. If x is the same length as b
the solution is:

x = A−1b (B-3)

Otherwise, we can use GLPK to solve for x, which minimizes y. GLPK can solve this problem
and others where one or more elements of x has to be an integer or even just 0 or 1.
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B.5.4 CVX

CVX [4] is a MATLAB-based modeling system for convex optimization. CVX turns MATLAB
into a modeling language, allowing constraints and objectives to be specified using standard
MATLAB expression syntax.

In its default mode, CVX supports a particular approach to convex optimization that we call
disciplined convex programming. Under this approach, convex functions and sets are built up
from a small set of rules from convex analysis, starting from a base library of convex functions
and sets. Constraints and objectives that are expressed using these rules are automatically trans-
formed to a canonical form and solved. CVX can be used for free with solvers such as SeDuMi
or with commercial solvers if a license is obtained from CVX Research.

B.5.5 SeDuMi

SeDuMi [25] is MATLAB software for optimization over second-order cones, currently hosted
at Lehigh University. It can handle quadratic constraints. SeDuMi was used in Acikmese [1].
SeDuMi stands for Self-Dual-Minimization. It implements the self-dual embedding technique
over self-dual homogeneous cones. This makes it possible to solve certain optimization prob-
lems in one phase. SeDuMi is available as part of YALMIP and as a standalone package.

B.5.6 YALMIP

YALMIP is free MATLAB software by Johan Lofberg that provides an easy-to-use interface
to other solvers. It interprets constraints and can select the solver based on the constraints.
SeDuMi and MATLAB’s fmincon from the Optimization Toolbox are available solvers.

B.6 Products for Expert Systems
There are dozens, if not hundreds, of expert system shells. For MATLAB users, the most useful
shells are ones for which the C or C++ code is available. It is straightforward to write an
interface in C using a .mex file. CLIPS is an expert system shell https:http://www.clipsrules.
net/?q=AboutCLIPS. It stands for ’C’ Language Integrated Production System. It is a rule-
based language for creating expert systems. It allows users to implement heuristic solutions
easily. It has been used for many applications including:

• An intelligent training system for space shuttle flight controllers

• Applications of artificial intelligence to space shuttle mission control

• PI-in-a-Box: A knowledge-based system for space science experimentation

• The DRAIR Advisor: A knowledge-based system for materiel deficiency analysis

• The Multi-mission VICAR Planner: Image processing for scientific data

• IMPACT: Development and deployment experience of network event correlation appli-
cations

332

https:http://www.clipsrules.net/?q=AboutCLIPS
https:http://www.clipsrules.net/?q=AboutCLIPS


APPENDIX B SOFTWARE FOR MACHINE LEARNING

• The NASA personnel security processing expert system

• Expert system technology for nondestructive waste assay

• Hybrid knowledge-based system for automatic classification of B-scan images from ul-
trasonic rail inspection

• An expert system for recognition of facial actions and their intensity

• Development of a hybrid knowledge-based system for multi-objective optimization of
power distribution system operations

CLIPS is currently maintained by Gary Riley who has written the book, “Expert Systems:
Principles and Programming,” now in its fourth edition. In the next section we will learn about
.mex files to interface CLIPS, and other software, with MATLAB.

B.7 MATLAB MEX files
B.7.1 Problem

CLIPS needs to be connected to MATLAB.

B.7.2 Solution

The solution is to create a .mex file to interface MATLAB and CLIPS.

B.7.3 How It Works

Look at the file MEXTest.c. This is a C file with the accompanying header, .h, file.

//
// MEXTest.c
//

#include "MEXTest.h"
#include "mex.h"

void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray

*prhs[] )
{

// Check the arguments
if( nrhs != 2 )
{

mexErrMsgTxt("Two inputs required.");
}
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if( nlhs != 1 )
{

mexErrMsgTxt("One output required.");
}

}

and MEXTest.h

//
// MEXTest.h
//

#ifndef MEXTest_h
#define MEXTest_h

#include <stdio.h>

#endif /* MEXTest_h */

You can edit these files in MATLAB or in any text editor.
Now type in the command line

>> mex MEXTest.c
Building with 'Xcode Clang++'.
MEX completed successfully.

mex just calls your development system’s compiler and linker. “XCode” is the MacOS de-
velopment environment. “Clang” is a C/C++ compiler. You end up with the file MEXTest.
mexmaci64 if you are using MacOS. Typing help MEXTest in the command window does
not return anything. If you want help, add a file MEXTest.m such as:

function CLIPS
%% Help for the CLIPS.cpp file

If you try and run the function you will get:

>> MEXTest
Error using MEXTest
Two inputs required.

The CLIPS .mex file isn’t much more complicated. The CLIPS .mex file reads in a rules
file and then takes inputs to which the rule is applied. The rule file is Rules.CLP and is:

(defrule troubleshoot-car
(wheel-turning no) (power yes) (torque-command yes)
=>
(cbkFunction))

defrule defines a rule. cbkFunction is the call back function. It is called (also known as
fired) if the rule troubleshoot-car is true. If all conditions are true it fires cbkFunction.
You can write the rules file using any text editor. To run the .mex file you need to type:

334



APPENDIX B SOFTWARE FOR MACHINE LEARNING

>> mex CLIPS.c -lCLIPS
Building with 'Xcode Clang++'.
MEX completed successfully.

“-lCLIPS” loads the dynamics library libCLIPS.dylib. This dynamics library was
built using XCode on the MacOS from CLIPS source code, which is a set of C files. Now you
are ready to run the function. Type the facts into the command window:

>> facts = '(wheel-turning no) (power yes) (torque-command yes)'

facts =
'(wheel-turning no) (power yes) (torque-command yes)'

To run the function, call CLIPS with this facts variable,

>> CLIPS(facts)

ans =
'Wheel failed'

Now see if it knows when the wheel is working. Change the first fact to “yes.”

>> facts = '(wheel-turning yes) (power yes) (torque-command yes)';
>> CLIPS(facts)

ans =
'Wheel working'

You can use this function to create any expert system by making a more elaborate rule base.

335



Bibliography

[1] Behcet Acikmese and Scott R. Ploen. Convex Programming Approach to Powered
Descent Guidance for Mars Landing. Journal of Guidance, Control, and Dynamics,
30(5):1353–1366, 2007.

[2] K. J. Åström and B. Wittenmark. Adaptive Control, Second Edition. Addison-Wesley,
1995.

[3] S.S. Blackman and R.F. Popoli. Design and Analysis of Modern Tracking Systems. Artech
House, 1999.

[4] S. Boyd. CVX: Matlab Software for Disciplined Convex Programming. http://cvxr.com/
cvx/, 2015.

[5] A. E. Bryson Jr. Control of Spacecraft and Aircraft. Princeton, 1994.

[6] Chih-Chung Chang and Chih-Jen Lin. LIBSVM–A Library for Support Vector Machines.
https://www.csie.ntu.edu.tw/∼cjlin/libsvm/, 2015.

[7] Ka Cheok et al. Fuzzy Logic-Based Smart Automatic Windshield Wiper. IEEE Control
Systems, December 1996.

[8] Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Machine Learning,
20:273–297, 1995.

[9] Don Eyles. Sunburst and Luminary: An Apollo Memoir. Fort Point Press, 2018.

[10] Philip Gill, Walter Murray, and Michael Saunders. SNOPT 6.0 Description. http://www.
sbsi-sol-optimize.com/asp/sol products snopt desc.htm, 2013.

[11] J. Grus. Data Science from Scratch. O’Reilly, 2015.

[12] S. Haykin. Neural Networks. Prentice-Hall, 1999.

[13] Matthijs Hollemans. Convolutional Neural Networks on the iPhone with VGGNet. http://
matthijshollemans.com/2016/08/30/vggnet-convolutional-neural-network-iphone/, 2016.

[14] P. Jackson. Introduction to Expert Systems, Third Edition. Addison-Wesley, 1999.

© Michael Paluszek and Stephanie Thomas 2019
M. Paluszek and S. Thomas, MATLAB Machine Learning Recipes,
https://doi.org/10.1007/978-1-4842-3916-2

337

http://cvxr.com/cvx/
http://cvxr.com/cvx/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.sbsi-sol-optimize.com/asp/sol_products_snopt_desc.htm
http://www.sbsi-sol-optimize.com/asp/sol_products_snopt_desc.htm
http://matthijshollemans.com/2016/08/30/vggnet-convolutional-neural-network-iphone/
http://matthijshollemans.com/2016/08/30/vggnet-convolutional-neural-network-iphone/
https://doi.org/10.1007/978-1-4842-3916-2


BIBLIOGRAPHY

[15] Byoung S. Kim and Anthony J. Calise. Nonlinear Flight Control Using Neural Networks.
Journal of Guidance, Control, and Dynamics, 20(1):26–33, 1997.

[16] J. B. Mueller. Design and Analysis of Optimal Ascent Trajectories for Stratospheric Air-
ships. PhD thesis, University of Minnesota, 2013.

[17] J. B. Mueller and G. J. Balas. Implementation and Testing of LPV Controllers for the
F/A-18 System Research Aircraft. In Proceedings, number AIAA-2000- 4446. AIAA,
August 2000.

[18] Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, Caroline Suen, Adam Coates,
Andrew Maas, Awni Hannun, Brody Huval, Tao Wang, and Sameep Tandon. UFDL
Tutorial. http://ufldl.stanford.edu/tutorial/, 2016.

[19] Nils J. Nilsson. Artificial Intelligence: A New Synthesis. Morgran Kaufmann Publishers,
1998.

[20] Sebastian Raschka. Python Machine Learning. [PACKT], 2015.

[21] D. B. Reid. An Algorithm for Tracking Multiple Targets. IEEE Transactions on Automatic
Control, AC=24(6):843–854, December 1979.

[22] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Third Edition.
Prentice-Hall, 2010.

[23] S. Sarkka. Lecture 3: Bayesian Optimal Filtering Equations and the Kalman Filter. Tech-
nical Report, Department of Biomedical Engineering and Computational Science, Aalto
University School of Science, February 2011.

[24] L. D. Stone, C. A. Barlow, and T. L. Corwin. Bayesian Multiple Target Tracking. Artech
House, 1999.

[25] Jos F. Sturm. Using SeDuMi 1.02, a MATLABToolbox for Optimization Over Symmetric
Cones. http://sedumi.ie.lehigh.edu/wp-content/sedumi-downloads/usrguide.ps, 1998.

[26] K Terano, Asai T., and M. Sugeno. Fuzzy Systems Theory and Its Applications. Academic
Press, 1992.

[27] R. J. Vanderbei. LOQO USERS MANUAL VERSION 4.05. http://www.princeton.edu/
∼rvdb/tex/loqo/loqo405.pdf, September 2013.

[28] M. C. VanDyke, J. L. Schwartz, and C. D. Hall. Unscented Kalman Filtering for Spacecraft
Attitude State and Parameter Estimation. Advances in Astronautical Sciences, 2005.

338

http://ufldl.stanford.edu/tutorial/
http://sedumi.ie.lehigh.edu/wp-content/sedumi-downloads/usrguide.ps
http://www.princeton.edu/~rvdb/tex/loqo/loqo405.pdf
http://www.princeton.edu/~rvdb/tex/loqo/loqo405.pdf


BIBLIOGRAPHY

[29] Matthew G. Villella. Nonlinear Modeling and Control of Automobiles with Dynamic
Wheel-Road Friction and Wheel Torque Inputs. PhD thesis, Georgia Institute of Tech-
nology, April 2004.

[30] Peggy S. Williams-Hayes. Flight Test Implementation of a Second Generation Intelligent
Flight Control System. Technical Report NASA/TM-2005-213669, NASA Dryden Flight
Research Center, November 2005.

339



Index

A
Adaptive control, 9

MRAC (see Model Reference Adaptive
Control (MRAC))

self tuning
modeling an oscillator, 110–111
tuning an oscillator, 112–116

ship steering, 126–130
spacecraft pointing, 130–133
square wave, 121–122

Artificial intelligence (AI)
back propagation, 319
Bayesian network, 320
Blocks World, 318
chess programs, 319, 320
Cybernetics, 317
definition of, 16
expert systems, 17
Google translate, 320
GPS, 318
Hidden Markov Models, 319–320
intelligent cars, 16–17
knowledge-based systems, 319
limitations, 319
Lisp, 318
LT, 317–318
military organizations, 323
neural networks, 317
timeline of, 320
time sharing, 318–319
Towers of Hanoi, 318

Automobile animation, 299–302
Automobile demo

car trajectories, 307

final tree, 309
radar measurement, 308

Automobile dynamics
planar model, 293–294
RungeKutta, 292
vehicle states, 292
wheel force and torque, 294–295

AutomobilePassing, 297–299
Automobile radar, 295–297
Automobile simulation

Kalman Filter, 303–306
snap shots, 302

Automobile target tracking, 306–309
Automobile 3D model, 300
Autonomous driving, 323

automobile animation, 299–302
automobile dynamics, 292–295
AutomobilePassing, 297–299
automobile radar, 295–297
automobile simulation and Kalman Filter,

303–306
technology, 16

Autonomous learning
AI, 317–320
categories of, 7–8
learning control, 320–322
machine learning, 322–323
software, 325–326

AutoRadar function, 296

B
Bayesian network, 17, 320
Bayes theorem, 322
Billiard ball Kalman filter, 274–279

© Michael Paluszek and Stephanie Thomas 2019 341
M. Paluszek and S. Thomas, MATLAB Machine Learning Recipes,
https://doi.org/10.1007/978-1-4842-3916-2

https://doi.org/10.1007/978-1-4842-3916-2


INDEX

Binary decision trees
autonomous learning taxonomy, 147
box data structure fields, 162
child boxes, 161
classification error, 156
ClassifierSet, 148–151
distinct values, 158
entropy, 156
FindOptimalAction, 159
fminbnd, 159
Gini impurity, 155, 156
homogeneity measure, 156–158
IG, 155
MATLAB function patch, 150
parent/child nodes, 159
PointInPolygon, 149
testing data, 148, 165–168
training, 160–162, 167–168

Blocks World, 318

C
Case-based expert systems

autonomous learning taxonomy, 311
building, 312–313
functions and scripts, 316
running
BuildExpertSystem, 314–316
CBREngine, 313
ExpertSystemDemo, 314
fprintf, 316
strcmpi, 313–314

catColorReducer, 34
Cat images

grayscale photographs, 211
ImageArray, 212–213
ScaleImage, 214–215
64x64 pixel, 213

Cell arrays, 20–21
Chapman–Kolmogorov equation, 83
Cholesky factorization, 102
C Language Integrated Production System

(CLIPS), 319, 332–333

Classification tree, 13
Comma-Separated Lists, 20–21
Commercial software

MathWorks products, 326–328
PSS products, 328–329

Computer Vision System Toolbox, 327
ConnectNode, 51
Convolution process, 216

deep learning, 210
layers, 210
stages, 225

Core Control Toolbox, 328
CVX, 332
Cybernetics, 317

D
Damped oscillator, 114
Data mining, 323
Datastores

functions, 26
properties, 25

Data structures, 21–22
parameters, 30–33

Daylight detector, 171–173
Decision trees, 13–14
Deep learning, 14, 328

convolutional neural net, 210
neural net, 209

Deep Learn Toolbox, 329
Deep Neural Network, 329
Digits

CreateDigitImage function, 188–190
DigitTrainingData, 190–192
feed-forward neural network, 195
grayscale, conversion, 189
GUI, 192
MLFF neural network function, 193
multiple outputs
MAT-file, 206
multiple-digit neural net, 205–207
training data, 204

NeuralNetDeveloper tool, 192
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NeuralNetMLFF, 196–197
NeuralNetTraining, 196
Neuron activation functions, 192–195
Poisson or shot noise, 188
SaveTS function, 190
single output node
default parula map, 200
Digit0FontsTS, 197–198
NeuralNetTrainer, 200
node weights, 202
RMSE, 198, 200
sigmoid function, 197
single digit training error, 200

testing, 202–203
DrawBinaryTree

cell array, 152
data structure, 151
DefaultDataStructure, 154
demo, 155
DrawBox, 152
lines, 153
patch function, 152
resize rows, 152–153
RGB numbers, 152
sprintf, 154
text function, 152

DrawNode, 51
dynamicExpression, 22

E
Euler integration, 94
Extended Kalman Filter (EKF), 92–97

F
Fact-gathering, 311–312
Fast Fourier Transform (FFT), 9, 35, 110
FFTEnergy, 112
Filter covariances, 278
Filter errors, 279, 287
Flexible Image Transport System (FITS), 23
F-16 model, aircraft, 237–238
FORTRAN, XVII, 318

Frequency spectrum, 114
without noise, 115

Function PlotSet, XVIII–XIX
Fuzzy logic

AND and OR, 141
BuildFuzzySystem, 137–138
Defuzzify, 142
description, 135
Fire, 141
Fuzzify, 140–141
MATLAB data structure, 136
membership functions, 138–139
set structure, 137
smart wipers
rain wetness and intensity, 144, 145
wiper speed and interval, 144
wiper speed and interval vs. droplet
frequency and wetness, 145

G
Gaussian membership function, 138
General bell function, 138
General Problem Solver (GPS), 318
GNU Linear Programming Kit (GLPK), XIX,

328, 331
Google translate, 320
Graphical user interface (GUI), 45, 280

blank, 60
inspector, 61
snapshot
editing window, 62
simulation, 63, 64

GraphicConverter application, 214
Graphics

animation, bar chart, 63–67
building GUI, 58–63
custom two-dimensional diagrams, 50–51
general 2D, 48–49
three-dimensional box, 51–54
3D graphics, 56–58
3D object with texture, 54–56
2D line plots, 45–47
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H
Hidden Markov Models (HMM),

82, 319–320

I, J
Images

display options, 24
formats, 23
functions, 25
information, 23–24

Inclined plane, 2
Information gain (IG), 155
Interactive multiple model

systems (IMMs), 329

K
Kalman Filters, 8

automobile simulation, 303–306
Chapman–Kolmogorov equation, 83
Cholesky factorization, 102
derivation, 80
Euler integration, 94
extended, angle measurement, 97
family tree, 81
HMM, 82
implementation, 87
linear, 74–92
Monte Carlo methods, 80–81
noise matrix, 91, 92
normal/Gaussian random variable, 82
OscillatorDamping RatioSim, 76
OscillatorSim, 78
parameter estimation, UKF, 104–107
RHSOscillator, 78
Spring-mass-damper system, 75, 77, 79
state estimation
EKF, 92–97
linear, 74–92
UKF, 97–103

undamped natural frequency, 76
Kernel function, 15
Knowledge-based systems, 17, 319

L
Large MAT-files, 29
Learning control, aircraft, 320–322

dynamic pressure, 245
Kalman Filter, 247
least squares solution, 245
longitudinal dynamics, 261–264
neural net, 243
PID controller, 244
pinv function, 245
recursive learning algorithm, 246, 247
sigma-pi neural net, 243, 244

LIBSVM, 330
Linear Kalman Filter, 74–92
Linear regression, 12
Lisp, 318
Logic Theorist (LT), 317–318
Log-likelihood ratio, 269–270
Longitudinal control, aircraft, 231

differential equations, 235
drag polar, 233
dynamics symbols, 233–234
F-16 model, 237–238
learning approach, 232
longitudinal dynamics, 232, 233
Oswald efficiency factor, 234
RHSAircraft, 235–236
sigma-pi type network, 232–233
training algorithm, 233

LOQO, 331

M
Machine learning

AI, 322
autonomous driving, 323
Bayes theorem, 322
concept of learning, 4–6
data mining, 323
definition of, 2
elements
data, 2
models, 3
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training, 3
examples, XVII
feedback control, 8–9
FORTRAN, XVII
SVMs, 323
taxonomy, 6–8

Mapreduce
datastore, 33–35
framework, 26
progress, 35
valueIterator class, 34

MatConvNet, 329
MAT-file function, 29
MathWorks products

Computer Vision System Toolbox, 327
Deep Learning, 328
Neural Network Toolbox, 327
Statistics and Machine Learning

Toolbox, 326–327
System Identification Toolbox, 327

MATLAB toolbox
functions, XVIII
html help, XVIII
scripts, XVIII

Matrices, 19–20
Membership functions, fuzzy logic

Gaussian, 138
general bell, 138
sigmoidal, 138
trapezoid, 138
triangular, 138

MEX files, 333–335
Mixed integer linear program (MILP), 272
Model Reference Adaptive Control (MRAC)

implementation, 117–121
rotor, 123–125

Monte Carlo methods, 80–81
Multi-layer feed-forward (MLFF), 14, 193
Multiple hypothesis testing (MHT), 269

estimated states, 289
GUI, 283, 308
information window, 284

measurement and gates, 271
object states, 287, 289
testing parameters, 282
tree, 284

N
Nelder–Meade simplex, 229
Neural aircraft control

activation function, 242–243
Combination function, 248–249
equilibrium state, 238–240
learning control (see Learning control,

aircraft)
longitudinal dynamics simulation, 232
nonlinear simulation, 261–264
numerical simulation, 240–242
pitch angle, PID controller, 256–258
sigma-pi net neural function, 249–251

Neural networks/nets, 14–15
convolution layer, 217–218
daylight detector, 171–173
description, 171
fully connected layer, 220–222
image processing, 224
image recognition, 228–230
matrix convolution, 215–217
number recognition, 225–228
pendulum (see Pendulum)
pitch dynamics, 258–261
pooling to outputs, 218–220
probability determination, 222–223
single neuron angle estimator, 177–181
testing, 223–225
training image generation, 211–215

Neural Network Toolbox, 327
New track measurements, 268
Nonlinear simulation, aircraft control,

261–264
Non-MATLAB products

LIBSVM, 330
R, 330
scikit-learn, 330
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Normal/Gaussian random variable, 82
Numerics, 23

O
One-dimensional motion, MHT, 285–287

track association, 287–289
Online learning, 4
Open source resources

Deep Learn Toolbox, 329
Deep Neural Network, 329
MatConvNet, 329

Optimization tools
CVX, 332
GLPK, 331
LOQO, 331
SeDuMi, 332
SNOPT, 331
YALMIP, 332

OscillatorDamping RatioSim, 76–77
OscillatorSim, 78

P, Q
Parallel Computing Toolbox, 26, 33, 327
patch function, 50, 52, 54
Pattern recognition, 187
Pendulum

activation function, 183
dynamics, 173
linear equations, 175, 177
magnitude oscillation, 185–186
NeuralNetMLFF, 182–184
NeuralNetTraining, 182
NNPendulumDemo, 182
nonlinear equations, 177
PendulumSim, 176
RungeKutta integration, 174, 175
Taylor’s series expansion, 175
torque, 174
xDot, 176

Perceptrons, 319
Pitch angle, PID controller, 256–258
Pitch dynamics, 231

neural net, 258–261

Planar automobile dynamical model, 293
PlotSet function, 46, 47
plotXY function, 47
Pluto, 3D globe, 55
Princeton Satellite Systems (PSS) products

Core Control Toolbox, 328
Target Tracking, 328–329

Processing table data, 37–41
Proportional integral derivative (PID)

controller
closed loop transfer function, 253
coding, 254–255
derivative operator, 253
design, 254
double integrator equations, 255
feedback controller, 252
nonlinear inversion controller, 258
pitch angle, 251, 256–258
recursive training, 252

R
R, 330
Recursive learning algorithm, 246, 247
Regression, 10–13
RHSAircraft, 240
RHSOscillator, 78
Riccati equation, 128
Root mean square error (RMSE), 198, 200, 205
Rotor, MRAC

gain convergence, 125
RungeKutta, 123–124
speed control, 117
SquareWave, 123

Rule-based expert systems, 311, 312
RungeKutta, 240

S
SCARA robot, 69, 70
scikit-learn, 330
Second-order system, 58, 59
SeDuMi, 332
Semi-supervised learning, 4
Ship steering
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gains and rudder angle, 129
Gaussian white noise, 130
heading control, 126
parameters, 127
Riccati equation, 128–129
ShipSim, 127

Sigma-pi neural net function, 243, 244,
248–251

Sigmoidal membership function, 138
Sigmoid function, 242
Simple binary tree, 147–148
Simple machines, 2
Single neuron angle estimator

activation functions, 178–179
linear estimator, 177
OneNeuron, 180
tanh neuron output, 181

SNOPT, 331
Softmax function, 222
Software

autonomous learning, 325–326
commercial MATLAB, 326–329
expert systems, 332–333
MATLABMEX files, 333–335
MATLAB open source resources, 329
non-MATLAB products, 329–330
optimization tools, 330–332

Solar flux, 172
Spacecraft model, 131
Spacecraft simulation, 133
Sparse matrices, 27, 28
sphere function, 55
Spring-mass-damper system, 75, 77, 79, 111
Spurious measurement, tracking, 267
Square wave, 122
Statistics and Machine Learning Toolbox,

326–327
Strings

arrays of, 41
concatenation, 41
substrings, 42

Supervised learning, 3

Support vector machines (SVMs), 15, 323
Synonym set, 211
System Identification Toolbox, 327

T
Table creation, FFTs, 35–37
Tables and categoricals, 27–28
TabularTextDatastore, 38–41
Tall arrays, 26–27
Target Tracking, 328–329
Towers of Hanoi, 318
Tracking

algorithm, 269–270
definition of, 265
hypothesis formation, 271–272
measurements, 269
assignment, 270–271
new track, 268
spurious, 267
valid, 268

problem, 268
track pruning, 272–273

Track-oriented multiple hypothesis testing
(MHT), 17, 265, 266, 328

Trapezoid membership function, 138
Tree diagrams, graphics functions, 50
Triangular membership function, 138
Two by three bar chart, 65, 67
2D plot types, 48–49

U
Undamped natural frequency, 76
Unscented Kalman Filter (UKF), 8, 303

non-augmented Kalman Filter, 97–103
parameter estimation, 104–107
true and estimated states, 305

Unsupervised learning, 4

V, W, X
Valid measurements, tracking, 268
varargin, 30–32, 46

Y, Z
YALMIP, 332
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