

Identifying Malicious

Reverse Engineering

edited by

Abhishek Singh
Microsoft Corporation

Redmond, WA, USA

with contributions by

Baibhav Singh
Honeywell Technology Solutions Laboratory

Bangalore, India

1 3

Code Through

Editor:

Abhishek Singh

Microsoft Corporation

One Microsoft Way

Advanta-B/3099

Redmond, WA 98052–6399, USA

abhisheksingh243@gmail.com

with contributions by:

Baibhav Singh

Honeywell Technology Solutions Laboratory

151/1, Doraisanipalya, Bannerghatta Road

Bangalore – 560 076, India

ISBN: 978-0-387-09824-1 e-ISBN: 978-0-387-89468-3

Library of Congress Control Number:

2008942

© Springer Science+Business Media, LLC 2009

Printed on acid-free paper

springer.com

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

DOI: 10.1007/978-0-387-89468-3

254

Vulnerabilities have increased since 2007. Vulnerability researchers find it

difficult to get the source code of the software. Reverse engineering is one of

the effective methods to analyze binaries for identifying vulnerabilities.

The book first discusses the assembly language. The chapter not only

provides the fundamentals of assembly language. It also discusses about the

various calling conventions and data constructs.

Since the programs are tightly coupled with the operating system, the

second chapter discusses the fundamentals of operating system, about

concepts of processes, threads, segmentation, context switching and the

methods that can be used for synchronization between threads. Vista provides

various security features such as ASLR, and pointer encoding which provides

inherent protection against the vulnerabilities. The chapter also provides the

details of new cryptographic API’s in detail.

In chapter 3, PE file format, the executable and linking file format are

discussed.

Chapter 4 discusses various vulnerabilities such as buffer overflow, format

string vulnerability, SEH exception handler, Stack overflow, Off-by-One

vulnerability, and Integer Overflow. The chapter first discusses the details of

these vulnerabilities, using assembly code, The chapter also discusses the

analysis of exploits for these vulnerabilities.

The last chapter focuses on the fundamentals of reverse engineering. It

discusses the linear sweep disassembler, recursive disassembler, and various

evasion techniques which can be used by the disassembler. The detection of

hardware break point, software break point and the detection of virtual

machine are also presented. The chapter concludes with the methods, which

can be used to find the manual entry point of the executable and import table

reconstruction.

The concepts discussed in the book are of practical use and the exploits are

from the real world exploits. Although the book has been designed for those

who practice information security, it can also be used for advanced

information security level courses. The instructors can feel free to contact.

Abhishek Singh

Preface

Assembly Language

1.0 Introduction .. 1

1.1 Registers ... 1

1.1.1 General Purpose Register .. 1

1.1.2 FLAGS Register .. 2

1.2 80x86 Instruction Format .. 3

1.2.1 Instruction Prefix ... 4

1.2.2 Lock and Repeat Prefixes .. 4

1.2.4 Opcode ... 5

1.3 Instructions ... 7

1.3.1 Basic Instructions ... 7

1.4 Stack Setup ... 13

1.4.2 Local Data Space on the Stack .. 15

1.5 Calling Conventions .. 16

1.5.1 cdecl calling convention .. 16

1.5.2 fastcall calling convention ... 17

1.5.3 stdcall calling convention .. 17

1.6 Data Constructs .. 17

1.6.1 Global Variables .. 18

1.6.2 Local Variables .. 18

1.6.3 Registers .. 19

1.6.4 Imported Variables .. 19

1.6.5 Thread Local Storage (TLS) .. 20

1.6.6 Executable Data Section .. 20

1.7 Representation of Arithmetic Operations in Assembly 21

1.7.1 Multiplication .. 22

1.7.2 Division ... 22

1.7.3 Modulo ... 24

1.8 Representation of Data Structure in Assembly.. 24

1.8.1 Representation of Array in Assembly .. 24

1.8.2 Representation of Linked List in Assembly 25

1.9 Virtual Function Call in Assembly ... 26

1.9.1 Representation of classes in Assembly .. 27

1.10 Conclusion .. 28

1.4.1. Passing Parameters in C to the Procedure 13

1.3.2 Floating Point Instruction ... 10

1.2.3 Segment Override Prefixes .. 4

1.5.4 thiscall .. 17

Table of Contents

Fundamental of Windows

2.0 Introduction .. 29

2.1 Memory Management .. 29

2.1.1 Virtual Memory Management ... 29

2.1.1.1 Virtual Memory Management in Windows NT 32

2.1.1.2 Impact of Hooking ... 33

2.1.2 Segmented Memory Management ... 34

2.1.3 Paged Memory Management ... 36

2.2 Kernel Memory and User Memory .. 37

2.2.1 Kernel Memory Space ... 37

2.2.2 Section Object... 38

2.3 Virtual Address Descriptor ... 39

2.3.1 User Mode Address Space ... 39

2.3.2 Memory Management in Windows ... 39

2.3.3 Objects and Handles .. 40

2.4 Processes and Threads .. 41

2.4.1 Context Switching ... 43

2.4.1.1 Context Switches and Mode Switches.................................. 43

2.4.2 Synchronization Objects .. 44

2.4.2.1 Critical Section .. 44

2.4.2.2 Mutex ... 44

2.4.2.3 Semaphore ... 45

2.4.2.4 Event .. 45

2.5 Process Initialization Sequence ... 46

2.5.1 Application Programming Interface .. 47

2.6 Reversing Windows NT .. 48

2.6.1 ExpEchoPoolCalls .. 49

2.6.2 ObpShowAllocAndFree .. 49

2.6.3 LpcpTraceMessages .. 49

2.6.4 MmDebug .. 49

2.6.5 NtGlobalFlag ... 49

2.6.6 SepDumpSD .. 50

2.6.7 CmLogLevel and CmLogSelect .. 50

2.7 Security Features in Vista ... 50

2.7.1 Address Space Layout Randomization (ASLR) 50

2.7.2 Stack Randomization ... 51

2.7.3 Heap Defenses ... 52

2.7.4 NX .. 54

2.7.5 /GS ... 55

Table of Contentsviii

2.3.4 Named Objects .. 40

2.4.2.5 Metered Section ... 45

2.7.7 Cryptographic API in Windows Vista ... 58

2.7.6 Pointer Encoding ... 56

2.7.8 Crypto-Agility ... 59

2.7.9 CryptoAgility in CNG ... 60

2.7.10 Algorithm Providers .. 62

2.7.11 Random Number Generator ... 63

2.7.12 Hash Functions ... 64

2.7.13 Symmetric Encryption ... 65

2.7.14 Asymmetric Encryption ... 67

2.7.15 Signatures and Verification ... 68

2.8 Conclusion .. 68

Portable Executable File Format

3.0 Introduction .. 69

3.1 PE file Format ... 69

3.2 Import Address Table ... 77

3.3 Executable and Linking Format ... 79

3.3.1 ELF Header .. 79

3.3.2 The Program Header Table... 80

3.4 Conclusion .. 83

4.0 Introduction .. 85

4.1 Stack Overflow ... 85

4.1.1 CAN-2002-1123 Microsoft SQL Server 'Hello' Authentication

Buffer Overflow".. 88

4.1.2 CAN -2004-0399 Exim Buffer Overflow .. 88

4.1.3 Stack Checking .. 90

4.2 Off-by-One Overflow ... 90

4.2.1 OpenBSD 2.7 FTP Daemon Off-by-One ... 93

4.2.3 Non-Executable Memory ... 94

4.3 Heap Overflows ... 94

4.3.1 Heap Based Overflows .. 96

4.4 Integer Overflows ... 106

4.4.2 CAN-2004-0417 CVS Max dotdot Protocol Command

Integer Overflow ... 111

4.5 Format String .. 112

4.5.1. Format String Vulnerability .. 113

4.5.2 Format String Denial of Service Attack ... 115

4.5.3 Format String Vulnerability Reading Attack 115

4.6 SEH Structure Exception Handler .. 116

4.6.1 Exploiting the SEH .. 119

4.7 Writing Exploits General Concepts... 122

4.7.1 Stack Overflow Exploits .. 122

Table of Contents ix

Reversing Binaries for Identifying Vulnerabilities

4.4.1 Types Integer Overflow ... 108

4.7.2 Injection Techniques .. 123

4.7.3 Optimizing the Injection Vector .. 123

4.8 The Location of the Payload ... 123

4.8.1 Direct Jump (Guessing Offsets).. 124

4.8.2 Blind Return .. 124

4.8.3 Pop Return .. 124

4.8.4 No Operation Sled .. 125

4.8.5 Call Register ... 125

4.8.6 Push Return .. 126

4.8.7 Calculating Offset .. 126

4.9 Conclusion .. 126

Fundamental of Reverse Engineering

5.0 Introduction ... 127

5.1 Anti-Reversing Method ... 127

5.2.1 Anti Disassembly.. 128

5.2.1.1 Linear Sweep Disassembler.. 128

5.2.1.2 Recursive Traversal Disassembler...................................... 130

5.2.1.3 Evasion of Disassemble ... 131

5.2.3 Virtual Machine Obfuscation ... 139

5.3 Anti Debugging Techniques.. 140

5.3.1 BreakPoints... 142

5.3.1.1 Software Breakpoint ... 142

5.3.1.2 Hardware Breakpoint.. 143

5.3.1.3 Detecting Hardware BreakPoint ... 144

5.4 Virtual Machine Detection .. 145

5.4.2 Checking System Tables .. 145

5.4.3 Checking Processor Instruction Set ... 146

5.5 Unpacking ... 147

5.5.1 Manual Unpacking of Software.. 148

5.5.1.1 Finding an Original Entry Point of an Executable.............. 148

5.5.1.2 Taking Memory Dump ... 154

5.5.1.3 Import Table Reconstruction .. 156

5.5.1.4 Import Redirection and Code emulation 162

5.6 Conclusion... 166

Appendix ... 168

Table of Contentsx

5.2.2 Self Modifying Code ... 135

5.4.1 Checking Fingerprint Inside Memory, File System and Registry .. 145

Index ..187

Assembly Language

1.0 Introduction

Assembly language implements a symbolic representation of the numeric

machine codes and other constants needed to program a particular CPU

architecture. Ollydbg (available at http://www.ollydbg.de/) or IDA pro

(available at http://www.hex-rays.com/idapro/) are the two most commonly

used tools used to disassemble binary to extract assembly instructions from

machine level language. Operations of software are visible in the assembly

language. Understanding of assembly language is required to get a better

understanding of the low level software binaries. This chapter focuses on

assembly for 32- bit Intel Architecture (IA-32)

1.1 Registers

IA-32 has various registers. We can categories them according to their usage

as general purpose register, segment register, index register, instruction

pointer register and status registers. In addition, there are seven other registers

used for debugging any application. Beak points can be applied through these

registers. The letter “E” in the name of registers indicates that these registers

have been extended from the 16 bit Intel Architecture.

1.1.1 General Purpose Register

Segment registers are part of the x86 Segment Memory Model. The length of

these registers is 16 bit. These registers point to the memory segment. In X86

there are following segment registers.

CS (Code Segment registers) - points to the code segment of an

application.

DS (Data segment Registers) - points to the data segment of the

application.

1A. Singh (ed.), Identifying Malicious Code Through Reverse Engineering,

© Springer Science + Business Media, LLC 2009

Advances in Information Security 44, DOI: 10.1007/978-0-387-89468-3_1,

registers used for pointing address

SS (Stack Segment Register) - points to the stack segment of an

application. Its value is same as that of DS sometimes.

1.1.2 FLAGS register

The FLAGS registers are the status register that stores the information about

the status of the processor. Different bits denote different status of the

registers

? NT IO OF DF IF TP SF ZF ? AF ? PF ? CF

15 14 13 12 11 10 ß 0

Some common flags bits their description is given below.

CF à Carry Flag gets sets if the last operation has generated a carry.

? à Reserved by Intel for future use.

PF à Parity Flag indicates if the number of set bits is odd or even in the

binary representation of the result of the last operation

ZF à Zero Flag gets set to 1 if the result of last instruction is zero

SF à Sign flag gets sets if the result of the last operation was negative.

TP à This Flag is set when instruction is debugged set by step.

FE/FS/GS (Auxiliary segment registers) - These are extra segment

2 Assembly Language

32 Bit

16 Bit

8 Bit 8 Bit

E*X

*X

*H *L

DF à This flag is used by string processing instruction.

OF à Overflow Flag gets set if overflow is triggered by the last arithmetic

operation

IO à Two bits 12 and 13 in the FLAGS register denotes IO flag. This shows

the I/O privilege level of the current program or task.

 Register Usage of Register

 EAX, EBX,

EDX

They are used for integer, Boolean, logical or

memory operations.

 ESI/EDI Used as counter by repetitive instruction that

requires counting

 EBP Used as generic register. It is also used as a stack

based pointer. Stack based pointer is used to create

stack frame. Local and the parameters passed to the

function are accessed by stack frame. The base

pointer EBP points to the stack position. This

address is right after the return address for the

current function.

ESP ESP is a CPU’s stack pointer. Current position in

stack is stored in ESP register. This register gets

updated when anything is pushed to the stack.

Anything which is pushed to the stack is stored in

address in ESP.

 Figure 1.0 showing various registers and their usage.

 Besides the registers mentioned in figure1.0, IA-32 has a special

register called EFLAGS. This register comprises status and system flags.

Status flags which are updated by logical and integer instructions contain the

current logical state.

1.2 80x86 Instruction Format

The figure 1.1 shows the general instruction format. The instruction of 1A-32

concluded that the length of the instruction can be upto 16 bytes, but 80x86

doesn’t allow instruction greater than 15 bytes.

IF à If interrupt flag is set, it denotes CPU will handle hardware interrupts.

1.2 80x86 Instruction Format 3

is a subset of general instruction format. From the figure 1.1 it can be

Figure 1.1 Showing the General Instruction Format

1.2.1 Instruction prefix

instruction. These instruction prefixes can be divided into following four

groups. The behavior of various prefix bytes are mutually exclusive and

results are undefined if these mutually exclusive prefixes are added in front of

an instruction.

1.2.2 Lock and repeat prefixes:

 Lock prefix (0xF0) forces the operations to be atomic that can be used to

access exclusive shared memory in multiprocessor environment. The repeat

prefixes (0xF2 – REPNE/REPNZ and 0xF3 – REPE/REPZ) makes an

instruction to be repeated for each element of string. This prefix can only be

used with the string operations.

1.2.3 Segment override prefixes

Operand-size override prefixes (0x66) denote the size of the operand which

allows the a program to switch between 16 to 32 bit operand. If the instruction

Instruction prefix can be upto 4 bytes that define the behavior of the

4 Assembly Language

doesn’t contain this prefix then operand size will be of default size; else this

prefix will select non default size.

Address-size override prefixes (0x67) denote the addressing mode, which

allows the program to switch between 16 to 32 bit addressing. If the

instruction doesn’t contain this prefix, then address size will be of default size,

else this prefix will select non default address size.

1.2.4 Opcode

80x86 supports two Opcode size :one byte standard opcode and two- byte

opcode. The two-byte opcode instruction is prefixed with 0x0F opcode

expansion byte. The second byte in the two-byte opcode specifies the actual

instruction. Sometimes an additional 3-byte op code field is encoded in

ModR/M byte.

Various instruction classes use few bits of the opcode as a sign and direction

flag. The Zero th bit of the opcode specifies the size of the operand. If this

bit contains one then the operands are either 16-bits or 32-bits. Under 32-bit

operating systems, the default is 32-bit operands if this field contains a one.

Bit number one is the direction bit which identifies the direction of the

transfer. If this bit is zero, then the destination operand is a memory location.

If this bit is one, then the destination operand is a register.

For example: -

MODR/M AND SIB BYTES

REG specifies any of the eight register of the 80x86. This register can be

either source or destination. This can be determined with the help of d flag

present in the opcode field. The operand is the source if d ==0 and it is

destination id d==1. But for various single operand instruction the REG field

may contain an opcode extension rather than a register value.

The MOD and R/M fields specify the other operand in a two-operand

instruction. The following table specifies how the MOD and reg fields

together specify the addressing modes

There are two displacing modes -- 8 bit and 32 bit. 8 bit addressing mode

displacement exists for a displacement in between the range of -128 to 127.

As these displacements can be mentioned through one byte the instruction

51.2 80x86 Instruction Format

will be shorter as compared to 32 bit instruction. At most of the places these

shorter instructions are found to save lot of space.

In addition, there is one more addressing mode called scaled indexed

addressing mode. This represents addressing mode of the form [ebx + edx *

Figure 1.3 showing modes of addressing

6 Assembly Language

4]. The table show in figure 1.3 explains the mode of addressing.

1.3 Instructions

In IA-32, instructions comprise op code which will be followed by operand.

Op codes are the assembly instructions where as operands are the parameters

to the instructions. Operands work in three ways by using registers, immediate

or by using the memory address. When registers are used to access data, they

are stored in general purpose registers. In the immediate method, the constant

value is embedded in the code. This also indicates that a hard coded value is

used in the original program. When data resides in RAM then a memory

address is used to access them. Memory addresses are enclosed in brackets

denoting value at address. These addresses can either be hardcoded or the

address can be stored in registers. Registers can also be used to store the base

address along with a constant which represents an offset into that object.

1.3.1 Basic Instructions

Some of the most commonly used instructions are discussed below.

• test arg1, arg2 : Test instruction is used to perform bit-wise AND

on the two operands. however it has to be noted that it does not

store the result.

The flags that the test instruction modifies are as follows:

Ø Carry flag

Ø Overflow flag

Ø Piraty Flag

Ø Sign Flag

Ø Zero flag

• cmp arg1, arg2 : cmp instruction performs subtraction between the

two operands. however it does not store the result. If the result of

comparison is zero, the Zero Flag (ZF) is set.

The flags that test the cmp instruction modifies are as follows:

Ø Carry flag

Ø Auxiliary flag

Ø Overflow flag

Ø Piraty Flag

Ø Sign Flag

Ø Zero flag

• jmp loc: The instruction will load the EIP with the specified

address.

1.3 Instructions 7

•
the operands of previous cmp instructions are equal.

The jump condition: jump if Zero Flag == 1

• jne loc : This instruction will load EIP with the specified address.

This will happen when the operands of previous CMP instructions

are not equal.

The jump condition: jump if Zero Flag == 0

• jg loc: If the first operand of the previous CMP instruction is

greater than the second then the EIP is loaded with the specified

address.

The jump condition: jump if ZF=0 and SF=OF

• jge loc: If the first operand of the previous CMP instruction is

greater than or equal to the second then the EIP is loaded with the

specified address.

 SF=OF

• ja loc: The instruction will load the EIP with the specified address.

This will happen when the first operand of the previous CMP is

greater than the second.

CF=0 and ZF=0

• jae loc: This will load the EIP with the specified address if the first

operand of the previous CMP is greater than or equal to the second

jae, is the same as jge.

CF=0

• jl loc: The instruction “jl” represents jump if less than, this gets

executed or EIP is loaded with the specified address when the first

operand of the previous CMP is less then the second operand

SF != OF

• jle loc: : The instruction “jle” represents jump if less than or equal

to , this gets executed or the EIP is loaded with the specified

address when the first operand of the previous CMP is less than or

equal to then the second operand.

ZF=1 or SF != OF

• jo loc: This instruction loads the EIP with the specified instruction

if the overflow bit is set on a previous arithmetic expression.

OF=1

• jnz loc: This will load the EIP with the specified address. This will

happen then the zero bit is set from a previous arithmetic

expression.

 ZF=1

• jz loc: This operation will load the EIP with the specified address.

This will happen if the zero bit is set from a previous arithmetic

expression. This expression is identical to the je.

je loc: The instruction will load EIP with the specified address if

8 Assembly Language

ZF=0

• call proc : This operation is mostly used when subroutines are

called and will push EIP +4 onto the top of stack. After this the

instruction will jump to the specified location.

• ret [val] : This instruction will load the next value on the stack into

the EIP and then it will pop the stack the specified number of

times. The instruction will not pop any values off the stack if the

field “val” is not specified.

• loop arg : This instruction decrements ECX. It will jump to the

address specified by arg. Besides loop other instructions which

decrement the ECX counter are loope, loopne, loopnz, loopx.

• enter arg : This instruction allocates space on the stack and creates

a stack frame.

• leave: The instruction will destroy the current stack frame and

restore the previous frame.

• hlt : This instruction will halt the processor.

• nop: This instruction does nothing and wastes an instruction cycle.

It is converted into XCHG operation with the operands EAX and EAX.

• wait: This instruction waits for the CPU to finish its last

calculation.

• mov arg1 arg2: The “mov” instruction takes in two operands. The

destination operand which can be a memory address or the register

and source operands which can be an immediate, register or a

memory address. It moves the date from arg2 to arg1 (from source

to destination operand.)

• ADD arg1 arg2: The add instruction adds unsigned or signed

integers storing the result in arg1.

The flag that tests the cmp instruction modifies are as follows:

Ø Carry flag

Ø Auxiliary flag

Ø Overflow flag

Ø Piraty Flag

Ø Sign Flag

Ø Zero flag

• SUB arg1 arg2: The sub instruction subtracts the value of arg2

from arg1 and stores the value in arg1. The instruction is again

valid for both signed and unsigned integers.

The flags that test the cmp instruction modifies are as follows:

Ø Carry flag

Ø Auxiliary flag

Ø Overflow flag

91.3 Instructions

Ø Piraty Flag

Ø Sign Flag

Ø Zero flag

• MUL arg: The instruction will multiply the unsigned operand by

EAX. The result of the multiplication is stored in a 64-bit

EDX:EAX. The low 32 bits are stored in EAX and the high 32 bits

are stored in EDX.

• DIV arg : The instruction divides the 64 bit unsigned value stored

in EDX:EAX by the unsigned arg. The quotient is stored in EAX

and the remainder is stored in EDX.

• IMUL arg: By using the instruction, the signed operand is

multiplied by the EAX and the result is stored in EDX:EAX.

• IDIV arg: The instruction divides the 64-bit value stored in

EDX:EAX by the signed operand storing the quotient in EAX and

the remainder in EDX.

• SHR Op arg : It shifts the number stored in Op to the arg number of

the bit to the right.

• SHL Op arg : It shifts the number stored in Op to the arg number of

the bits to the left.

• CDQ : The instruction zero and extends the value. The instruction

sign extends an eight bit value to 32 or 64 bits.

• movsx : It copies the content of source to destination. Sign extends

the value. The extended value is dependent upon the operand-size

attributed. .

1.3.2 Floating point instruction

These floating point instructions are executed by the x87 coprocessor. On

encountering any floating point instruction, the x86 processor communicates

the instruction to x87. At the same time x86 instructions keep on executing

other instructions until and unless it encounters another floating point

instruction or next instruction require the result of executing floating point

instruction. In that case WAIT instruction is executed to halt the execution of

x86 processor. There are various compilers that emulate the x87 instruction.

This emulation is done through interrupt. Linker replaces the original floating

point instruction with the interrupt instruction. On the occurrence of these

interrupt, the interrupt handler function is executed that interprets and

emulate these instructions.

10 Assembly Language

There are 8 floating point registers; the name of these instructions are from

ST(0) to ST(7) . These are not real registers, but stack is used for this purpose.

Each register occupies 10 bytes. In addition to these 8 registers, there is a

register of 14 bytes for status and control information.

The floating point instruction can be classified into various categories -- data

movement instruction, conversion, arithmetic instruction, comparison

constant instructions, transcendental instructions, and miscellaneous

instructions.

The data movement instructions transfer data between the internal FPU

registers and memory. The instructions in this category are fld, fst, fstp, and

fxch. The fld converts 32 and 64 bit operand to an 80 bit extended precision

value and pushes it onto the floating point stack. The FLD instruction first

decrements the top of stack pointer that is denoted by bits 11-13 of the status

register and then stores the 80 bit value in the physical register specified by

the new TOS pointer. Just opposite to it is FSTP instruction that always pops

the top of stack. The FST and FSTP instructions copy the value on the top of

the floating point register stack to another floating point register or to a 32, 64,

or 80 bit memory variable. The floating point rounding control bit is referred

to the 80 bit extended precision value on the top of stack is rounded to the

smaller format (32, 64, or 80 bit memory variable). The FXCH instruction

exchanges the value on the top of stack with one of the other FPU registers.

There are two variants of FXCH instruction, one with a single FPU register as

an operand and the other with without any operands. If operand is mentioned

then this instruction exchanges the top of stack (tos) with the specified

register. If no operand case FXCH instruction swaps the value at top of stack

with ST1.

Various floating point instructions are available to compare real values. The

instructions such as FCOM, FCOMP and FCOMPP compare the two values

that are present on top of the stack. In case of floating point instruction, there

are no conditional jump instructions. To test the condition, the FSTSW and

SAHF instructions can be used. The FSTSW instruction copies the floating

point status register to the AX register and SAHF instruction copies the AH

register into the 80x86's condition code bits. After that normal x86

conditional jump instructions can be used to test condition. The FCOM,

FCOMP, and FCOMPP instructions either compare ST0 to the specified

operand. or compare ST0 against ST1 if no operand is specified and set the

processor flags accordingly. If the operand is 32 or 64 bit memory variable

then it is first converted into 80-bit extended precision value and then

compare ST0 against this value. FCOMP pops the ST0 after the comparison.

111.3 Instructions

As most of the floating point instruction requires with 32 or 64 bit memory

variable to convert the value into 80 bit extended precision value before

performing any operation and then it perform the require operation on these

variable. There are few FPU instructions that convert to or from integer or

binary coded decimal (BCD) format. For example, FILD instruction converts

a 16, 32, or 64 bit two's complement integer to the 80 bit extended precision

format and pushes the result onto the stack. Then, the floating point operation

can be done on this value.

Floating point instruction also supports arithmetic instruction set to perform

arithmetic operations. Few of the common instructions include FADD,

FSUBB ,FMUL, FDIV etc. These are lot of variant instructions available in

each category for example Add arithmetic instruction has following variants

fadd

faddp

 Pop the two values from the stack, addition is performed on them and the

result is pushed back to the stack

fadd st(i), st(0)

fadd st(0), st(i)

It is same as that of x86 ADD instruction, the value in the second register

operand gets added to the value in the first register operand. Here either of the

two register operands must be st(0)

faddp st(i), st(0) here st(0) must always be the second operand and its value is

added to the second register operand and then st(0) is popped.

fadd mem

Here the operand is a 32 or 64 bit memory operand. This instruction will

convert the 32 or 64 bit operands to an 80 bit extended precision value and

then will add the value in st(0).

These above instructions contain various types of operands, these are

1. Floating point stack that can be denoted as ST(i) where i can be 0 to 7

2. 10-byte memory operand containing a full precision floating point value.

3. 8-byte memory operand containing a double precision floating

4. 4-byte memory operand containing a single precision floating point

5. 10-byte operand containing a special Binary Coded Decimal format

6. 4-byte operand representing a signed integer in two's-complement notation.

12 Assembly Language

7. 2-byte operand representing a signed integer in two's-complement notation.

1.4 Stack Setup

Setting up of a Stack frame is required before entering a procedure. This stack

frame will be required to pass the parameters. The stack set up can be

identified by the following assembly code in binary.

 push ebp
 mov ebp, esp

The first instruction push ebp saves the value of register EBP into the stack.

Here EBP contains the address of the last stack frame created. Here the value

of Epb is saved as this value will be required after the completion of the

execution of the routine as the control will be returned to the called function

and its stack form is needed in order to access local variables and parameter.

The second instruction is moving the current stack pointer value to EBP

register. The current stack pointer value is moved to the EBP as further the

local and the parameter will be referred with EBP register.

EBP allows the use of a pointer as an index into the stack. It should not be

altered throughout the procedure. Each parameter passed to the procedure can

be accessed as an offset from EBP. This is known as a "standard stack frame."

Figure 2.0 Showing setting up of a Stack Frame

The procedure should preserve the content of the register ESI, EDI, EBP and

all the segment registers. An error will be generated if these registers are

corrupted. As shown in figure 2.0 these instructions are used for stack setup.

1.4.1 Passing Parameters in C to the Procedure

 C passes arguments to procedures on the stack. For example, consider

the following statements from a C main program:

1.4 Stack Setup 13

 |

 Figure 3.0 showing C code for adding two integers

arguments onto the stack in reverse order, then executes a call to

add_int. Upon entering add_int, the stack would contain the following:

 The method of passing parameters shown in figure 3.0 is called

passing by value. The variables a1 and a2 are declared as int variables, each

takes up one word on the stack. The code for Sum, which outputs the sum of

the input arguments via register EAX, looks similar to that shown in figure 4.0

Figure 4.0 Assembly instructions for code shown in figure 3.0

When C executes the function call to add_int, it pushes the input

14 Assembly Language

As shown in figure 4.0, the instructions push EBP, Mov EBP; ESP denotes

the initialization of a stack frame. The value is returned to the C code by using

EAX implicitly. RETN is used for returning from a procedure. This is due to

the fact that C takes care of removing the passed parameters from the stack.

As it can be seen in the above example, only one output value is returned.

 It might also happen that the value is passed by reference. For example the

function

add_int(b1,&b2);

The first argument is still passed by value (i.e., only its value is placed on the

stack), but the second argument is passed by reference (its address is placed

on the stack).

In this case, it has to be noted that the &c is pushed on the stack, not its value.

EAX is the only register which can be used by the assembly to return values

to the C calling program. In case the return value is less than 4 bytes, the

result is returned in the EAX register. If the return value is larger than 4

bytes, then the pointer is returned in EAX.

A short table of the C variable types and how they are returned by the

assembly code:

Register Containing

Return Value

 Data Type

AL Char

AX Shirt

EAX int long pointer(*)

Figure 5.0 C variables returned by assembly code.

1.4.2 Local Data Space on the Stack

 As shown in figure 3.0, the variable C is a local variable. By

subtracting the value form ESP that is current stack point, temporary storage

space is allocated in the stack for local variables. The space on the stack is

below the return address and the base pointer. Since in stack frame EBP

points to that, the assembly code which requires access to the variable can use

151.4 Stack Setup

in the figure is represented by the highlighted part. As shown in figure 6.0, for

the instruction

MOV DWORD PTR SS:[EBP-4],EDI

since the local variable is accessed using a fixed hardcoded offset, so it can be

assumed that the local variable is of the fixed size. Once the procedure is

executed it is also important to restore the stack space. This is done by adding

the value that is subtracted from the register ESP in the start of the function

and by restring the register value that has been restored in the stack.

Figure 6.0 Assembly code for C code show in figure 3.0

1.5 Calling Conventions

Calling conventions define how the functions are called in a program. They

decide the arrangement of data in a stack when a function call is made. In the

below mentioned sections some of the common calling convention are

discussed.

1.5.1 cdecl calling convention

The cdecl calling convention permits functions to receive a dynamic number

of parameters. The calling convention receives the parameters in a reverse

order with the first parameter pushed on to the top of the stack first and the

last parameter pushed last. In this calling convention, it is the responsibility

of the caller to restore the stack pointer after the execution of the called

function. As this category of function might have variable number of

argument and so stack pointer can only be restored by callee function. A

EBP and subtract offset from it. As shown in figure 6.0, the variable C shown

16 Assembly Language

function which takes one or more parameters and ends with a simple RET

with no operands is the cdecl function.

1.5.2 fastcall calling convention

 This calling convention makes use of registers for passing the first

two parameters passed to a function. It makes use of registers ECX and EDX

to store the first and second parameters respectively. The remaining

parameters are passed through stack. Fastcall calling convention increases the

execution speed on the procedure as application accesses register rather than

stack value

1.5.3 stdcall calling convention

This is mostly used in windows. The argument passing method and the order

are opposite to the cdecl calling convention. In stdcall calle function is

responsible for clearing its own stack. However in cdecl functions, it is the

responsibility of the caller to clear the function stack. The stdcall function

uses the RET instruction for clearing the stack. It can receive operands which

specify the number of bytes to be cleared from the stack after jumping from

the stack. The operand passed to RET exposes the number of bytes passed as

a parameter. The operand has to be divided by four to get the number of

parameters.

1.5.4 thiscall

This is used by the C++ function call with a fixed number of parameters. For

this function call, a valid pointer is loaded in ECX, and the parameters are

pushed onto stack without using EDX as a valid C++ method function call. If

there are a dynamic number of parameters then the compiler will use cdel and

pass this pointer as the first parameter.

1.6 Data Constructs

This section presents the representation of data constructs by compiler in low

level assembly language. During reversing, this knowledge can help to

identify the data constructs in an assembly language.

1.6 Data Constructs 17

1.6.1 Global Variables

reside in a fixed memory address in an executable. As shown in figure 7.0,

variable d is a global variable.

Figure 7.0 Showing C code with a global variable.

When they are accessed, hardcoded addresses are used. This makes it easier

to spot the global variables in binary. As shown in figure 8.0, hard coded

address “FFFA5A5A” is being used to access the global variable. The

hardcoded address is mostly used by compilers for global variables.

Figure 8.0 showing the Assembly for global variable in figure 7.0

1.6.2 Local Variable

They are used by functions to store immediate values. These values can either

be stored in a stack or they can be stored in a register. For example, as shown

in figure 7.0 for the function mul_int, c is a local variable. Storing local

variables in stack has been discussed in detail in the section Stack Setup.

Global variables are initialized by the system when they are defined. They

18 Assembly Language

When the parameter area of the stack is written by the function, then it can

be inferred that the space is being used to hold some extra variables. A

function rarely returns value to the caller by writing parameters back to the

parameter area of the stack. Call by reference is used when parameters passed

by the called function is modified and again used by the calling function.

1.6.3 Registers

Registers are generally used to store the immediate value. They generate the

fastest code. Many compilers have various optimization techniques which aid

in generating optimized code. The variables which are used most extensively

are placed in registers. The “volatile” key word indicates that the variable will

be read and written asynchronously by the software and the hardware. So the

local variables which are declared as “volatile” are always accessed by using

the memory address. The “register” keyword indicates to the compiler that it

is a heavily used variable and should be placed in registers. However, it may

happen that the compiler will follow its own optimization algorithm and can

ignore the keyword “register”. Hence, for the keyword “register” there is no

distinguishable mark in the assembly code.

1.6.4 Imported Variables

They are global variables which are stored and maintained in another binary

module. For being able to successfully export a module, the exporting and the

importing module must both refer to the same variable name. It might happen

that the variable is exported by ordinals, so the variable is not named. Since

an imported variable involves an additional level of redirection, identifying

them is a simple process. The assembly for identifying the imported variable

is similar to that shown in figure 9.0

mov eax, DWORD PTR [Import Address Table Address]

mov ebx, DWORD PTR [eax]

The above mention code reads data from a pointer which in itself points to

another pointer. Here it has to be noted that the value is the value of the

Import Address Table Address. Hence any double pointer redirection, where

the first pointer is addressed to the Import Address Table is the reference to

the import variable.

A constant variable can be defined by using the #define directive. When a

#define directive is used, then the value is replaced in the preprocessing stage.

191.6 Data Constructs

Another method to define a constant variable it to define a global variable and

add the const keyword to the definition. This generates the code as if it is a

regular global variable. The enforcement of the const keyword is done by the

compiler. Some compilers can arrange the global variables in two sections,

one which is read only and another which is both readable and writeable. The

constants will be placed in the read only section.

1.6.5 Thread Local Storage (TLS)

TLS are generally used for managing thread specific data structures. One of

the methods to implement thread local storage programs is to use the TLS

API. The TLS API includes various functions TlsAlloc, TlsGetValue and

TlsSetValue. These API’s provide programs with the ability to manage a

small pool of thread local 32 bit value. Another approach can be to define a

global variable with the decspec(thread) attribute which places the variable in

a thread- local section of the image executable. For such cases the variable

can be identified as a thread local since the variable points to a different image

section than the rest of the global variables in the executables.

1.6.6 Executable Data Section

The executable data section is used to store the application data. This area is

generally used to store either the preinitialized data or global variables.

Figure 9.0 Showing C code having preinitialized data in local and global

variables.

20 Assembly Language

Preinitialized data comprises hard-coded values or constant data inside the

program. As shown in figure 9.0, testlocalstring and testglobalstring contain

preinitialized data. Some preinitialized data can be stored inside the code;

however when the size of data is too large, the compiler stores them inside

special areas in the program executable and generates code that references it

by address.

 Figure 10.0 showing the executable data section containing preinitialized

data in the executable data section.

As shown in the figure 10.0, the testlocalvariable is a local variable; however

it is still stored inside the preinitialized data section. As shown in figure 10.0,

the testglobalstring which is a global string is also stored inside the executable

data section. For global variables the value of the variables is retained

through out the program which can be accessed any where from the program.

With the preiniatialized data, a hardcoded memory address is used to access

the global variables. Hence besides an overlong value, another case where the

data is stored inside the executable data section is for the global variables.

1.7 Representation of Arithmetic Operations in Assembly

 The section discusses basic arithmetic operations and their

implementation by various compilers. Even though the IA-32 processor

provides instructions for multiplication and division, they can be slow. Hence

it might be implemented in different ways in a compiler. The SHL instruction

can be used to shift the values to the left which is the same as multiplying by

the power of 2. Similarly the SHR can be used to shift the value to the right

which is equivalent to dividing by the power of two. Multiplication and

division compilers can use SHL, SHR instructions and then use addition and

subtraction to compensate for the result.

1.7 Representation of Arithmetic Operations in Assembly 21

1.7.1 Multiplication

Generally when a variable is multiplied by another variable MUL/IMUL is

used. As shown for the code in 9.0, the multiplication instruction is shown in

Figure 11.0 showing the multiplication of variables in figure 9.0 for the

function mul_int.

However, instead of using IMUL or MUL, other instructions can be used as

well. For example, multiplying a number by three, is usually implemented by

shifting a number by 1 bit and adding the original value to the result. This is

done by using SHL and ADD or it can be done by using LEA.

 lea eax, DWORD PTR [eax+eax*2]

1.7.2 Division

The instructions DIV and IDIV are being used for division. They have latency

of around 50 clock cycles.

 Figure 12.0 C code showing division by 3.

As shown in figure 13.0 the division is identified by the IDIV operation. Even

though the operation is slow, it can easily be identified by reversing.

figure 11.0

22 Assembly Language

Figure 13.0 showing the assembly for the division shown in code mentioned

in figure 12.0

It might happen that the compiler can use an efficient division technique. One

of the methods is reciprocal multiplication which is an optimized division

technique. Reciprocal multiplication is based upon the concept of using

multiplication instead of division to implement division. It has to be noted that

multiplication is four to six times faster on the IA-32 processor. The basic

concept in reciprocal multiplication is to multiply the dividend by a fraction

which is the reciprocal of the divisor. For example, to divide x/y, compute 1/y

and multiply it with x. As the data type is represented only in integer the fixed

point arithmetic is used. It provides representation of fraction and real

numbers without a decimal point.

Figure 14.0 shows some of the 32-bit reciprocals used by the compilers. These

reciprocals are used along with the divisor which is the power of two.

Divisor Reciprocal

value

32-bit representation of

reciprocal

in source

Code

2 2/3 0xAAAAAAB 3

2 4/5 0xCCCCCCCD 5

4 2/3 0xAAAAAAAB 6

Figure 14.0 showing the some of the cases for reciprocal multiplication.

For a divisor with a power of two only right shifts are required. These

instructions help in achieving greater accuracy. In assembly instructions,

reciprocal multiplication is easy to identify.

Figure 14.1 Assembly code showing division by 5

The above shown code multiples the value in ecx with 0xCCCCCCCD, then it

shifts the value by four. The combination of division and multiplication is

equivalent to the divisor by five.

231.7 Representation of Arithmetic Operations in Assembly

Divisor

1.7.3 Modulo

To calculate modulo, division has to be performed; however a different part of

the result is required.

 Figure 14.2 Assembly code for Modulo

The code shown in the figure divided the divisor by 10, then it places the

result in EDX. The instruction idiv is used to perform a signed division

instruction. It places the result of the division in EAX and the remainder in

EDX. The instruction cdq, converts 64 bit dividend in EDX:EAX.

1.8 Representation of Data Structure in Assembly

Data structure is represented by a chunk of memory which represents a

collection of different type of fields. The arrangement which is of static size is

defined during compile time. It is also possible to create data structures in

which the last member is a variable size array and the code for the structure is

allocated dynamically at run time. Since the stack is of fixed size, for such

type of structure, the stack is not allocated. Compilers usually align the

structure to the processor’s word size. This alignment to the processor’s size

will happen even if the structure is not of the word size. For example, even

though Boolean uses one bit of storage, the compiler will allocate 32 bits of

storage space.

1.8.1 Representation of Array in Assembly

An array is defined as a list of data structures stored sequentially in the

memory. In assembly, the array access can be identified as the compiler in

the assembly instruction will use some variable, to the object’s base address.

As shown in figure 15.0, the function array_int initializes an array of size

integers. For the initialization of the array, the equivalent instructions in

assembly is shown in figure 16.0. The highlighted instruction, “DWORD PTR

SS:[EBP+EDI*4-2C]” is an access to array by using the base pointer.

24 Assembly Language

It might happen that the array contains some hard coded addresses in the high

level language. In such cases it will be difficult to identify the assembly

instruction of array from the assembly instruction of any other data structure.

 Figure 16.0 showing the assembly for array of integers.

Arrays are often accessed sequentially and like other data structures they are

not aligned by the compilers. Array of pointers, integers or single word sized

items consist of generic data structure. For the generic data type array, the

index is simply multiplied by the machines word size. For a 32- bit processor,

it resolves to multiply by four. To access the desired memory address, the

desired memory index is multiplied by four and the result should be added to

the array’s starting address. As shown in figure 16.0 DWORD PTR

SS:[EBP+EDI*4-2C]”, is used to access the memory address in the array.

EDI stores the index of the memory and [EBP-2C] is the array’s starting

address. The data structure array is similar to the conventional array with the

difference being that the item size can be of any value.

1.8.2 Representation of Linked List in Assembly

 Linked lists are used when the items are generally added or removed

from different parts of the list. Unlike arrays the items stored in the link list

cannot be directly accessed through their index. In the linked list, the items

 Figure 15.0 showing the array of integers.

1.8 Representation of Data Structure in Assembly 25

are scattered in the memory, and each item contains a pointer to the next item.

In case of a double list it will contain a pointer to the previous item as well. In

the case of an array, the items are stored sequentially. In the case of a single

link list the data structure contains a combination of payload and pointer to

the next. The pointer next points to the next item.

1.9 Virtual Function Call in Assembly

 Assembly code in Figure 19.0 shows the implementation of virtual

function call. It has to be noted that the CALL does not use a hard coded

address but is accessing data structure to get function’s call. ECX register is

used here for the address. This indicates that the function pointer resides

inside the object instances, which are an indicator of the virtual function call.

For the code shown in Figure 19.0, it also can be inferred that the function

takes in no parameter.

 mov eax, DWORD PTR [edi]

 mov ecx, edi

 call DWORD PTR [eax+4]

 In assembly, for INTEL and Microsoft compiler, any function call,

which loads a valid pointer into ECX, and indirectly calls a function whose

address is obtained via the same pointer, is a C++ virtual member function

call. For other compilers it might be tough because they do not use ECX for

passing this pointer. Constructors perform the initialization of virtual function

table pointers for inherited objects. For two constructors--one for base class

26 Assembly Language

and another for its inherited class--both of them initialize the object’s virtual

function table. The base class sets the virtual function pointer to its own copy.

This gets replaced, by the inherited class constructor, upon return of the

1.9.1 Representation of classes in Assembly

Classes in C++ contain a combination of data and code which operates on

them. This section discusses analyzing binary to analyze the classes in C++. A

class with no inheritance is similar to the data structure with associated

function. “this” pointer, which is used as an instance of class, is typically

passed via ECX register. The assembly code of accessing plain data structure

will be identical to the assembly code when plain data structure is accessed.

Figure 18.0 shows the inherited class memory layout.

Figure 18.0 Memory address layout for the class methods.

A non-virtual function call can be considered as a direct function call. For

this function call, this pointer is passed as the first argument. Some compilers

such as G++ push this pointer on to the stack where as other compilers such as

Intel’s and Microsoft compiler use ECX register to access the this pointer.

Virtual functions are implemented by the use of virtual function table.

Virtual function table is placed in the .rdata, the read-only data section of

executable. They contain hard-coded pointer to all the function

implementations in a class. This pointer in turn aid in finding the correct

function when call to these methods is made. Virtual function table are

created at compile time for the classes that define virtual function and for the

classes that are descendents and provide overload implementation of virtual

function defined in the other class. VFTABLE pointer is added by the

compiler during the runtime. During object instantiation, the VFTABLE

pointer is initialized to the correct virtual function table.

function call.

1.9 Virtual Function Call in Assembly

27

Class base
Base Class

instantiation

base Member

Lowest Memory

Address

Highest Memory

Address

Child class instance

Base member

Child member

int basemember 1

Class Child: Base {
int childmemeber

{

}

}

1.10 Conclusion

 This chapter presented the concepts of assembly language and

description of the commonly used assembly language instructions. It

discussed the stack setup and arrangement of local and global variables inside

the stack. Cdecl, fastcall , stdcall, this call are some of the ways by which

functions are called in a program. The chapter covered the local, global and

imported variables and their identification in assembly. Multiplication,

Division and modulo are some of the arithmetic operations. The chapter

discussed methods of identifying these arithmetic operations. The chapter

concluded by discussing various data structures and their implementation in

assembly. The chapter has covered low level topics that are required for

reverse engineering process.

28 Assembly Language

Fundamental of Windows

2.0 Introduction

 Programs are tightly coupled with the operating system. So for

reversing of binaries it becomes important to understand the principles and

features of operating system. Some of the features which are discussed in this

chapter are, virtual memory, portability, multithread, multiprocessor

capability, security and compatibility. Windows NT is a 32-bit computing

environment however, the current operating system also support 64-bit

versions. Windows NT was a combination of C and C++, so it can be

recompiled to run on different processors. It is also a fully pre-emptive

multithreaded system. Windows NT also provides support for multiprocessor

capability. This makes Windows NT suited for high performance computing.

In Windows NT every object has an access control list, which determines

which users are allowed to manipulate the objects. In terms of security, Vista

provides Address Space layout randomization (ASLR). ASLR involves

randomly arranging the positions of key data areas. This includes the base of

the executable and position of libraries, heap, and stack, in a process's address

space. ASLR is effective in prevention against the buffer overflow exploits.

Access Control List is provided for each file for windows NT. It supports

encryption for each file. Windows NT is compatible with the older version of

applications executing on a 16-bit platform. The chapter discusses these

points in detail.

2.1 Memory Management

 One of the most important parts of operating system is memory

management. Virtual memory is one of the solutions used for limited

memory. It increases the memory of computer system by sharing the memory

with the process.

2.1.1 Virtual Memory Management

 Whenever CPU needs data or executable program, it brings them into

memory. This is quite similar to the instructions and data when they are

brought into the cache. One of the ways to control the memory management is

A. Singh (ed.), Identifying Malicious Code Through Reverse Engineering,

© Springer Science + Business Media, LLC 2009

Advances in Information Security 44, DOI: 10.1007/978-0-387-89468-3_2,

29

by using combination of hardware memory controller along with the operating

system. Memory management is implemented using virtual memory. By using

virtual memory, each process appears to have available the full memory

resources of the system. Even though processes occupy the same virtual

memory, they will be mapped into completely different physical memory

area.

The part of program and data which are being executed lie in the main

memory. Virtual address translation is used for translation from physical

memory address to the data in the virtual memory address. Figure 1.0 shows

Figure 1.0 The name space to physical address mapping

The method to achieve the mapping is quite similar to the mapping main

memory to cache memory. It has to be noted that in the case of virtual address

mapping the relative speed of main memory to disk memory is high. This is

approximately 10,000 to 100,000. Therefore, cost of miss in main memory is

very high. In many processors direct mapping scheme is supported. Under this

scheme, a page map is maintained in physical memory. Each physical

memory reference requires both an access to page table and an operand. Most

of the memory references are indirect. Virtual to physical address mapping is

shown in Figure 2.0

Direct mapping from virtual to physical address will result in a considerable

performance penalty. This is avoided in most of the systems by using

translation lookaside buffer (TLB). TLB contains last few addresses and their

physical addresses. Hence, in most of the cases, virtual to physical memory

address does not require additional memory address. A typical virtual-to-

the relationship between the name variable and physical location.

30 Fundamental of Windows

Logical

Name

Virtual

Address

Physical

Address

Name Space

Logical Address Space

physical address mapping in a system containing a TLB is shown in Figure

3.0

If the addresses are 32 bits in size then the size of virtual address space is 2
32

bytes or 4 GB. Disk contains the sections of program and data which are not

executed normally. It might happen that the virtual memory refers to a

location which is not in physical memory. In such a case the execution of that

instruction is aborted. It can be restored when the required information is

placed in the main memory from the disk controller. The processor can be

executing another program in the meantime. The time to find the program is

not wasted by the processor. The time required to place the information in

memory can affect the time a user must wait for the result. A processor might

have to wait if many disk-seeks are required. Segmentation and Paging are

two of the size methods that can be used for memory management. In

Segmentation memory management the memory is in segments and in the

case of Paging memory management, the memory is in pages.

Figure 2.0 A direct mapped virtual to physical address translation

2.1 Memory Management 31

Virtual Address

Virtual Page Number Offset

Offset

Page Map

Physical Page Number

Base Address of Page

Figure 3.0 virtual to physical address translation mechanism with a TLB

2.1.1.1 Virtual Memory Management in Windows NT

 First-in first-out replacement policy is used by windows. The

oldest data is thrown out whenever there is a space crunch. In

Windows NT, address space is broken down into 4KB pages and it

maintains the information in the page table entry (PTE). The structure

of PTE is processor dependent. The page is marked as invalid if the

page is not mapped to the physical RAM. When the page contains DLL

code or executable module code, the page is brought in from the Swap

file. Windows NT keeps a track of free physical RAM in Page Frame

Data Base (PFD).This ensures the allocation of space in case of page

fault. Before discarding a page, Windows NT ensures that the page is

not dirty. If the page is dirty, the page is written to the secondary

storage before it can be written to the secondary storage. If the page is

not shared, the PFD contains the pointer to PTE. In the case the page is

shared, the PFD contains pointer to the corresponding PROTOPTE

entry. In this case the PFD also contains a reference count for the page.

32 Fundamental of Windows

Virtual address

Virtual page number offset

offset

Base address of Page

(physical memeory)

Page hit
TLB

Page

Map

in TLB

Page miss in TLB

Physical page

number

If the reference count for a page is 0, then it is discarded. PDF is an

array of 24-byte entry, one for each physical page. Hence, the size of

page is equal to the number of physical pages stored in the kernel
variable MmNumberOfPhysicalPages. The kernel variable

MmpfnDatabase contains pointer to the array. There can be different states to

a physical page. For example, the physical page can be free, in use, free but

dirty. PFD entry is linked in a double-linked list depending on the physical

page represented by it. Depending upon the state of physical page, PFD entry

is linked in a double-linked list, that is, if the PFD entry is representing use

pages, it is linked to the use pages list. In sum, there are six kinds of list. The

heads of these list are stored in the MmStandbyPageListHead,

MmStandbyPageListHead, MmModifiedNoWritePageListHead,

MmModifiedPageListHead, MmFreePageListHead, MmBadPageListHead,

MmZeroedPageListHead kernel variables. These heads are 16 bytes each. The

definition of the head is defined as follows.

typedef struct PageListHead {
 DWORD NumberOfPagesInList,
 DWORD TypeOfList,
 DWORD FirstPage,
 DWORD LastPage

} PageListHead_t;

The FirstPage field can be used as an index into the PFD which contains

pointer to the next page. PFD entry has the following structure definition.

typedef struct PfdEntry {

 DWORD NextPage,
 void *PteEntry/*PpteEntry,
 DWORD PrevPage,
 DWORD PteReferenceCount,
 void *OriginalPte,
 DWORD Flags;

} PfdEntry_t

2.1.1.2 Impact of Hooking

DLL codes are shared by all process and is write-protected. Hence, a process

cannot alter the code of a DLL. However, it is possible to hook to a DLL in

Windows NT. The first few bytes of a function need to be changed for

hooking in the function call. Hence, for hooking the attribute of a page

containing DLL code to read-write then the code bytes are altered. However,

when the page is altered, a separate copy of the page is made and the write

went to that page. This ensures that all the original pages use the unaltered

page. Windows NT uses one of the available PTE bits for distinguishing

pages which are marked as read-write and read-only.

332.1 Memory Management

Copy-on-write mechanism is used by Windows NT for various purposes. The

DLL data pages are shared with the copy-on-write purposes which ensure that

whenever a process writes to a data page, it makes a copy of the page. Other

processes use the original copy of the pages. Location of DLL can be at

different linear address for different processes. Depending upon the linear

address where DLL is loaded, DLL need to be adjusted. The process is called

as relocating the process. Windows NT marks the DLL code pages which are

relocating as copy-on-write. This ensures that the pages requiring page

relocation are copied per processes. Pages that do not have memory

references in them are shared by all processes. Hence it is recommended that

DLL has a preferred base address and loaded at the address. By specifying a

base address, it can be ensured that the DLL need not be relocated. Hence if

all processes load the DLL at preferred base address, they share the same copy

of DLL code.

Copy-on-write mechanism in the Windows NT is used by the POSIX

subsystem for implementing the fork system call. The fork system call is

being used to create a child process of calling process. The child process

shares the same state of code and data pages as the parent process. Since these

are two different processes, the data pages should not be shared by them. The

child process-invoked exec system call, which discards the current memory

image of the processes, loads a new executable module and starts executing

the new module. The fork-system call, marks the data pages as copy-on-write

to prevent the copying of data pages. Data pages are copied only if the parent

or the child writes to it. Copy-on-write is used to attain the efficiency in

Windows NT memory management.

2.1.2 Segmented memory management

The blocks in a segmented memory management system that are to be

replaced in main memory are potentially of unequal length and correspond to

program and data ``segments.'' The former segment could be, for example, a

subroutine or a procedure, whereas the latter segment could be either a data

structure or an array. In both cases, segments correspond to logical blocks of

code or data. Therefore, segments are ``atomic,'' because either the whole

segment or none of the segments should be present in main memory.

Although the segments may be placed anywhere in main memory, it is

imperative that the instructions or data in one segment be contiguous, as

shown in Figure 4.0

34 Fundamental of Windows

Segment 1

Segment 4

Segment 5

Segment 7

Segment 8

Figure 4.0 A segmented memory organization

Using segmented memory management, the memory controller needs to know

the location of the start and the end of each segment in physical memory. .

When segments are replaced, a single segment can only be replaced by a

segment of the same size, or by a smaller segment. After a time this results in

a ``memory fragmentation'', with many small segments residing in memory,

having small gaps between them. Because the probability that two adjacent

segments can be replaced simultaneously is quite low, large segments may not

get a chance to be placed in memory very often. In systems with segmented

memory management, segments are often ``pushed together'' occasionally to

limit the amount of fragmentation and allow large segments to be loaded.

 While using segmented memory management, it is mandatory that the

memory controller knows the location of the start and the end of each segment

in physical memory. In the case when segments are to be replaced, a single

segment can be replaced only by another segment that is of either the same

size or a smaller size. After a while, such segment replacements can lead to

“memory fragmentation,” where many small segments reside in memory

separated by small gaps. Given the low probability for two adjacent segments

to be replaced at the same time, it is often not possible for large segments to

be placed in memory. To limit the amount of fragmentation and allow large

segments to be loaded, the segments in segmented memory management are

often “pushed together” occasionally.

This is an efficient organization since not only an entire block of code is

available to the processor but also it is also easy for two processes to share the

same code in a segmented memory system. Hence there needs to be a single

copy of the code. Majority of the current processors support a hybrid of paged

memory management and segmented memory management, in which the

segments consist of multiples of fixed-size blocks.

352.1 Memory Management

2.1.3 Paged memory management

 In paged memory management, all of the segments are exactly the same size

(typically 256 bytes to 16 K bytes). Virtual ``pages'' in auxiliary storage (disk)

are mapped into fixed page-sized blocks of main memory with predetermined

page boundaries. The pages do not necessarily correspond to complete

functional blocks or data elements, as is the case with segmented memory

management. The physical address of the new page in memory has to be

determined, since the pages are not stored in contiguous memory location.

Page Translation table is used to determine the address of new page. Page

Translation uses associative memory to determine the physical address of the

new page in the main memory. If the page is not found in the main memory

then the CPU is interrupted then the page is requested from disk controller

and the execution starts on another process.

 Many other attributes are also usually included in a PTT. This is done by

adding extra fields to the table. Pages or segments may be characterized as

read-only, read-write. Moreover, it is common to include information about

access privileges to help ensure that one program does not inadvertently

corrupt the data of another program. The “dirty” bit indicates whether a page

has been written to, so that the page will be written back onto the disk if a

memory write has occurred onto that page. It is unusual to map all of main

memory using associative memory because the latter is very expensive;

therefore, only the physical addresses of recently accessed pages are

maintained in a small amount of associative memory and the remaining pages

in physical memory are maintained as a “virtual address translation table” in

main memory. If the virtual address is contained in the associative memory

then translation from virtual to physical address can be done in one memory

cycle. If the physical address must be recovered from the “virtual address

translation table” in main memory, at least one more memory cycle is needed.

Trade-off exists between the page size for a system and the size of the PTT

since if a processor has a small page size, the PTT must be large enough to

map all of the virtual memory space. The paged memory management system

provides inherent advantage over the segmented one is that the memory

controller, which is required to implement a paged memory management

system, is considerably simpler. In addition, the paged memory management

does not suffer from fragmentation as does segmented memory management,

although another kind of fragmentation does occur. A whole page is swapped

in or out of memory, even if it is not full of data or instructions.

Fragmentation is within a page in a paged memory management. It does not

persist in the main memory when new pages are swapped in. when a large

number of processes are executed ``simultaneously'' similar to a multiuser

36 Fundamental of Windows

system, the main memory may contain only a few pages for each process, and

all processes may have only enough code and data in main memory to execute

for a very short time before a page fault occurs. This situation, often called

“thrashing,” degrades the throughput of the processor severely because it

actually must spend time waiting for information to be read from or written to

2.2 Kernel Memory and User Memory

Memory management requires distinction between the kernel and the user

memory space. Differentiation between the user and the kernel space prevents

the bugs from user memory to be overwritten to the kernel space. It also

prevents malicious software in the user space from taking control of the

operating system.

Windows uses 4 GB of address space. Out of these 4 GB, 2 GB is used by

the application memory space and the remaining 2 GB by the kernel address

space. The upper 2GB of kernel space is protected from being used by the

program.

2.2.1. Kernel Memory Space

The 2 GB of the kernel code contains various components such as device

divers and the like. Figure 5.0 shows the layout for the widows kernel space.

Physical memory and various user configurable registry keys determine the

size of components which are allocated during the run time. Paged and in

paged pool in the kernel space comprises all the kernel mode components.

They are stored in the entire kernel mode. Caching is implemented in

windows by mapping files into memory and allowing system cache is the

place where windows cache manager stores all the currently cached file.

When a program later access file, using ReadFile or WriteFile API, the system

file internally access the mapped copy of the file cache manager API such as

CcCopyRead and CcCopyWrite. Terminal Services Session Space component

of the kernel mode component is used in WIN32K.SYS permits for multiple,

remote GUI sessions on a single windows system. This memory space is

made, “session private”. This enables to load the multiple instances of the

win32 subsystem. As shown in the Figure 5.0 page table and the hyper space

comprises the process-specific data which defines the current processes’

address space. System working set, comprises the system global data

structure which manages the system’s physical memory.

the disk.

2.2 Kernel Memory and User Memory

37

Figure 5.0 Showing Windows Kernel Space.

System-page Table Entries is a large virtual memory space which can be used

by the kernel and the drivers. A system page table entry which comprises of

virtual memory space is used for kernel allocation which is used by the kernel

and drivers. Device drivers make use of MmAllocateMappingAddress kernel

API for the allocation of System-Page Table entries.

2.2.2 Section Object

They are managed by the operating system. Mapping of the section object is

required before it can be accessed. Before the content of a section object can

be accessed they should be mapped. When the virtual address range is

allocated for the object and is accessible through address range, then the

object is mapped.

 Section object can be mapped to more than one place. It is one of the

convenient tools to share the memory between them. Section objects are also

called as memory mapped files. Section object can be classified into two parts

38 Fundamental of Windows

-- Page Backed file and File Backed. Page-backed section object is used for

the temporary storage of data between two processes. The section is initially

created empty then it can be mapped to any address space. File Backed object

is attached to a file in the physical space. It will contain the contents of the file

to which it is attached. Any changes or the modification which is made in the

object will be reflected in the file. It provides more convenience to access a

file using the object since, instead of using a cumbersome API, such as

ReadFile and WriteFile, object can directly access the file in memory using a

2.3 Virtual Address Descriptor

Virtual Address Descriptor (VAD) is used for managing the individual

process allocation. It is a binary tree which contains every address range in

use. There are two kinds of address ranges. Mapped allocation and private

allocations. A mapped allocation comprises the memory mapped files such as

executables and other files in the address space. Private allocation which are

generally used for heap and stacks.

2.3.1 User Mode Address Space

In user mode allocations there can be different types of memory. These types

include private allocations, Heaps, Stacks, Executables, and mapped view

sections. In private allocation, application requests a block of memory using

VirtualAlloc Win32 API. It has to be noted that it can allocate the whole

pages. They are mainly used for allocating stacks and heaps. The functions

such as malloc or system heap API such as HeapAlloc are being used for the

allocation of the heap memory. Heap manages the memory such that the block

of memory can be allocated and freed as required. VirtualAlloc API, can be

used by an application to implement its own heap by directly allocating

private block. A stack is allocated for each thread while it is being created.

User mode thread is private allocations. System allocates a stack for every

thread while it is being created. Executable code is loaded in memory as a

memory mapped file.

2.3.2 Memory Management in windows

Set of widows32 API can be used to access the virtual memory manager. It

can be used to directly allocate and free the memory in the user mode address

space.

pointer. They are generally used for loading the executable image.

2.3 Virtual Address Descriptor 39

VirtualAlloc is used to allocate a private memory block in a user mode

address space. The size of the block must be page aligned. The block of

memory must not be variable. Block of memory can either be reserved or it

can be committed. A reserved block differs from the committed block in the

sense that it only reserves address space. Virtual protect is used for to enforce

protection settings. It defines if the memory block is readable, writeable or

executable. VirtualQuery function provides the details such as type of block

like (private, section or an image) and if the block is reserved, committed or

unused. VirtualFree function frees the private allocation block.

ReadProcessMemory and WriteProcessMemory are the two windows APIs

that can be used to access another processes’ memory space.

2.3.3 Objects and Handles

 The various types of kernel objects are section, files, and device

objects, synchronization objects, processes and threads. Centralized object

manager component is used by the Windows kernel manager. Objects such as

windows, menus and device context are managed by separate object manager

which are implemented inside WIN32K.SYS. Kernel directly accesses the

object using direct pointer to object data structure; however, applications uses

handles for accessing individual objects. Each entry in the handle table

comprises pointer to the underlying object. Besides the object pointer handle

entry also contains access mask which determines the type of operations to be

performed using the specific handle. Object access mask is a 32-bit integer,

the upper 16 bits comprises the generic access flag such as GENERIC_READ

and GENERIC_WRITE. The lower bit comprises object-specific flags such as

PROCESS_TERMINATE. This allows terminating a process using its handle.

KEY_ENUMERATE_SUB_KEYS this allows to enumerate subkey of an

open registry key.

2.3.4 Named Objects

They are arranged in the hierarchical directory. Conventional Win32 named

objects such as mutexes are stored in BaseNamedObject directory. The entire

named object Win32 APIs uses this directory. All the device objects are under

the Devices directory. The directory contains the entry for each device driver.

It also comprises devices which are not connected to the system. It comprises

logical devices such as TCP, and physical devices like Harddisk0.

GLOBAL?? is the symbolic link directory. They are old-style name for kernel

objects. Unnamed kernel objects are identified by their handles or kernel

object pointer.

40 Fundamental of Windows

2.4 Processes and Threads

of basic run-time resources. For communication between the processes, IPC

or inter process communication like pipes, and sockets are used. Threads are

light-weight processes and exist within the process; however, like processes

they require few resources. A process is an execution stream in the context of

a particular process state. A thread is a single sequence stream within in a

process. Execution stream is a sequence of instructions whereas process state

comprises registers, stack, memory, open file tables and signal information.

There is one process at a time in the case of uni programming. In the case of

multiprogramming, there are multiple processes at a time. In multi

programming, resources need to be shared between the processes. One of the

critical resources is CPU, OS executes on one process, and then takes away

CPU from the process and let another process executes it. It should ensure all

the processes get their fair share of CPU. Process abstraction is performed by

context switching to switch from one process to another. Details of context

switching are discussed in the section 2.4.1. A thread is an execution stream in

the context of a thread state. Multiple threads share the same address space.

Multiple threads read and write to same memory. However, each thread has

its own register and stack. Operating System will have its own thread for each

distinct activity and the thread will perform operating system activity on the

thread. A thread has or consists of a program counter (PC), a register set, and

a stack space. Threads are not independent of one other like processes as a

result threads shares with other threads their code section, data section, OS

resources also known as task, such as open files and signals. Threads like

processes share CPU and there is only one active thread at a time. Threads

within a process execute sequentially and can create children. If one thread is

blocked then other thread can execute. However threads differ from the

process in the respect that unlike processes threads are not independent of one

another. Unlike process all threads can access every address in the task.

Threads are designed to assist each other; however, processes might or might

not assist one another since process may originate from a different user. Since

thread can share common data, they do not need to use inter-process

communication. Threads can take advantage of the multiprocessors. Threads

only need stack and storage for registers hence they are cheap to create.

Thread makes use of little resources of an operating system. They do not need

new address space, global address space, program code or operating system

resources. Since in the case of thread, only PC, SP and registers are stored,

context switching is fast when working with the thread. User level threads are

implemented in the user-level libraries and are implemented as if they are

single-threaded processes. User level thread does not require modification to

Process has its own memory space or basically it comprises of private set

2.4 Processes and Threads 41

operating system. Each thread is represented by a PC, register and a small

control block which is stored in the user process address space. In the case of

user level thread, switching between the threads and synchronization between

the threads can be done without the intervention of the kernel. Switching of a

thread is cheap as compared to the procedure call. Because of the lack of

coordination between the thread and the operating system kernel, process as a

whole gets only one time slice which is irrespective of whether process has

one thread or 1000 threads. User-level threads require non-blocking system

call, that is, a multithreaded kernel, otherwise entire process will blocked in

the kernel. If one thread causes a page fault, the process blocks. In this

method the kernel knows about and manages the threads. Instead of thread

table in each process, the kernel has thread table for all the threads in the

system. Kernel makes use of process table to keep track of processes. Since

the kernel has knowledge of the threads, it might happen that the scheduler

may decide to give more time to one process having a large number of threads

than process having a small number of threads. The main drawback of kernel

level threads is they are slow and can be inefficient. Since kernel must

manage and schedule threads as well as processes, it requires thread control

block (TCB) for each thread to maintain information about threads. Hence

there is significant overhead and increased in kernel complexity. Threads do

not require space to share memory information, open file of I/O device in use

hence they are mush faster to switch between the threads. It is relatively easier

for a context switch between the threads. Moreover, unlike processes threads

allow sharing of information which cannot be shared in processes. This

includes sharing of code section, data section and operating system resources

such as open file, etc. If the kernel is single threaded, system call of one

thread will block the whole process and the CPU may be idle during the

blocking period. Multiprocesses have disadvantage over the threads since in

thread it might happen that one thread might overwrite the stack of another

thread. However, it also has to be noted that threads are meant to cooperate on

a single task. Threads are useful for satisfying the requests for a number of

computers on a LAN. Threads are suitable for applications which have more

than one task at a time. Any sequential process which cannot be divided into

parallel task will not benefit from thread. Code section, data section and

operating system resources such as open file are shared with other resources.

However, it is allocated its own stack, register set and a program counter. The

creation of a new process, is different from the thread. All the shared

resources of a thread are needed explicitly for each process. Hence the two

processes will have a different copy of code in the main memory to be able to

execute. This makes creation of new process costly as compared to new

thread.

42 Fundamental of Windows

2.4.1 Context Switching

Context switch, also known as process switch, involves switching of the

CPU from one process or thread to another. Process is an executing instance

of a program. Threads are light weight process containing program counter

and a stack. Contents of the CPU’s registers and program counter at any point

of time define the context. Contents of a CPU’s register and program counter

at any point in time define the context. Context switching involves suspending

the progression of one process and storing the CPU’s state for that process

somewhere in memory. It then involves retrieving the context of next process

from memory and restoring it in the CPU’s register and returning to the

location inside the program counter. It can be described as the kernel

suspending the execution of one process on the CPU and resuming the

execution of another process which has been suspended.

2.4.1.1 Context Switches and Mode Switches

Kernel mode is a privileged mode of the CPU on which kernel

executes and it provides access to all the memory locations and other system

resources. Context switches can happen only in the kernel mode. Other

applications can execute in user mode however they can execute portions of

the kernel code via system calls. System call comprises request in a operating

system by an active process for a task performed by the kernel. The task can

be input/output, that is, any movement of information is to or from the

combination of the CPU and main memory. Context switching is an essential

feature for multitasking operating system. As discussed in context switching,

multiple process execute on a single CPU without interfering each other.

Thus, context switching also provides illusion of concurrency. Context

switching of a process happens as a result of the scheduler making the switch

when a process has used up its CPU time slice or it can be as a result of

hardware interrupt. Hardware interrupt is a signal from the hardware such as

keyboard, mouse, modem, or system clock to the kernel, than an event such as

key press, mouse movement has occurred. Context switching can be done by

using hardware or by software. Hardware context switching is supported in

platforms like Intel 80386 and higher CPU. Software context switching can be

done on any CPU rather than hardware context switching so as to obtain

improved performance. In the case of hardware context switching all the CPU

states are saved. In the case of software context switching only the required

states are stored. Whereas in the case of hardware context switch all the CPU

states are saved. Software context switching allows for the possibility of

improving the switching code, thereby further enhancing efficiency, and that

it permits better control over the validity of the data that is being loaded.

432.4 Processes and Threads

Cost of context switching can be from order of nanoseconds for each of the

tens or hundred of switches per second. It can be one of the costly operations

on an operating system.

To explaining this with an example, the GetMessage function retrieves a

message from the calling thread's message queue. The function dispatches

incoming sent messages until a posted message is available for retrieval.

GetMessage extracts the next event however there are many times there is no

message. In such a scenario, GetMessage enters inside the waiting mode. It

stays in the mode until the new input is available.

2.4.2 Synchronization Objects

Even though threads though provide flexibility, however synchronization of

multiple threads is a challenging task. Threads will have to share the same

data objects between them. So multithreaded applications require the proper

design of a data structure and efficient locking mechanism. In a multithreaded

environment, if two or more threads can be blocked or put in a special wait

state by the kernel. They remain in the state until the wait condition is

satisfied. Hence the synchronization objects are supported by the kernel.

Scheduler has to be aware of the existence in order to determine when the

state has been satisfied. Critical Section, mutex, Semaphore, Event and the

metered sections are commonly used synchronization objects.

They are one of the most primitive synchronization objects in Win32. They

are used for exclusive access to shared data between threads within a single

process. The critical section code executed entirely in the user mode makes it

very fast. There is no penalty on transition between user and kernel mode. It

has to be noted that the events are kernel objects. So in the case of contention,

the transition to kernel mode must be made. The transition time is not

significant compared to the time the thread is blocked. Since the critical

section does not have a named kernel object associated with it, its main

disadvantage is it cannot synchronize access between processes.

Mutex is a kernel object. It is implemented as a kernel object. It can

synchronize between processes/threads; however, this ability comes at the

stake of speed. Whenever process calls wait function such as

44 Fundamental of Windows

2.4.2.1 Critical Section

2.4.2.2 Mutex

WaitForSingleobject, the transition between user mode and kernel mode is

made. Mutexes can be used to synchronize the exclusive access. Only one

thread can acquire mutex at a time. A thread can acquire mutex only on two

conditions, either it has to wait till the thread having the mutex is released or

until the thread holding the mutex terminates. In case of multi threading, it

might happen that two or more threads are waiting for the mutex. In such a

scenario, threads will receive the ownership of the mutex in the order in which

it was received.

They are similar to mutexes and are implemented as kernel objects. Hence

they can work across the processes and are relatively slow. Semaphore,

besides providing exclusive access to the shared object can be used for

resource counting. Where mutexes and critical sections allow only one thread

to gain access to a shared resource at a time, semaphores allow a set number

of threads to gain access to a shared resource. It may happen that the

maximum number is exceeded. In such a scenario, thread which requests the

ownership of the semaphore will either enter a wait state or until another

thread releases semaphore.

Events are primitive kernel synchronization objects on which other

synchronization objects can be built. By themselves they are relatively slow,

but they can synchronize access between processes by using named events.

Depending on how they are used, events are capable of providing resource

counting, but do not keep track of the count by themselves. Standard Win32

API WaitForSingleObject or WaitForMultipleObject is being

used for waiting an event.

Metered sections are an extension of critical sections. They provide ability to

synchronize the thread across processes and they provide resource counting

semantic similar to the semaphore kernel object. Metered section was to

develop to achieve synchronization with the speed of a critical section and the

cross-process resource counting of a semaphore. It was also designed to make

then compatible with all Win32 platforms.

452.4 Processes and Threads

2.4.2.3 Semaphore

2.4.2.4 Event

2.4.2.5 Metered Section

2.5 Process Initialization Sequence

The first step in the process initialization sequence is the creation of new

process object and new address space. A new API is created for a process

object and memory allocation is done when the Win32API

createprocesses is called. Createprocess maps NTDLL.DLL and

the program executable into the newly created address space.

CreateProcess not only creates process thread but also allocates address

space. The first threads executes inside the LdrpInitialization

function inside NTDLL.DLL. Primary executable import table is recursively

traversed by the LdrpInitialization. It then performs the mapping of

every executable which is required for executing the primary executable. The

control is then passed to LdrRunInitializeRoutines which is

internal NTDLL.DLL routine responsible for initialization all statically linked

DLL which is presently loaded in the NTDLL.DLL. The initialization process

consists of calling each DLL’s entry point with the

DLL_PROCESS_ATTACH constant. Once all the DLL are initialized,

LdrpInitialize calls the thread initialization routine. This routine is

BaseProcessStart function from kernel32.DLL. This function in

turn calls the executable WinMain entry point. Once the call the WinMain

entry point is made, the initialization routine is complete.

Figure 6.0 showing Win32 interface DLLs and their relation to the kernel

components.

46 Fundamental of Windows

Kernel32.Dll
Application

Modules

NTDLL.DLL USER32.DLL GDI32.DLL

WIN32K.SYSNTOSKRNL.EXE

2.5.1 Application Programming Interface

An application programming interface (API) is set of functions which are

used for interaction between the application and the operating system. The

core Win32 API comprises 2000 APIs which can be divided into three parts.

Kernel, USER and GDI. Figure 6.0 shows the relationship between the APIs.

KERNEL32.DLL contains the Kernel API’s. They include non-GUI related

API which includes file I/O, memory management, object management,

process and thread management. KERNEL32.DLL calls low level API from

NTDLL.DLL GDI32.DLL implements all the GDI APIs. They are

implemented in the WIN32 kernel. Actual interface to the Windows kernel is

Native API. It does not include any graphic related API. Set of functions

exported from NTDLL.DLL and from NTOSKRNL.EXE comprises native

API. It has to be noted that the Native API starts with Nt or Zw. In the user

mode implementation both the APIs point to the same piece of code; however,

it has to be noted that in the Kernel mode they are different. Nt version

comprises the actual implementation of API whereas Zw are stubs that gets

called through the system-call mechanism. Calling from system call

mechanism, from kernel mode, ensures that the call is from kernel mode.

Otherwise the call will be inferred to as a call from user mode. For user mode

calls, it will be verified that the parameters will contain user mode address.

Zw APIs simplify the process of calling function since in this case regular

kernel mode pointers can be passed.

When user mode applications make a call to the kernel function system call

mechanism takes place. The validation of parameter takes place at the

usermode side of API, after which the parameters are passed to the kernel

mode to execute the requested operation. The validation of parameters ensure

that the invalid address is not called. Invalid address may result in kernel

crash or it may result in taking control of the system. User mode code invokes

CPU instructions. The CPU instructions instruct the processor to switch to

privileged mode and make a call to dispatch routine. The dispatch routine

makes calls the specific system function requested from the user.

 In Windows 2000 and earlier system would invoke call to interrupt 2E for

making a call to kernel. In a typical sequence of instruction first the EAX

register is loaded with the service number followed by EDX register pointing

to the first parameter to the kernel mode function. The instruction int 2e is

invoked; processor uses IDT Interrupt Descriptor Table, to determine which

interrupt handler to call. The IDT tells which routine to call whenever an

interrupt or exception takes place. The interrupt 2E points to an internal

NTOSKRNL function called as KiSystemService.

KiSystemService is a kernel service dispatcher which verifies that the

2.5 Process Initialization Sequence 47

service number and stack pointer are valid. KiServiceTable array

comprises pointers to various kernel supported services. The request number

loaded in the EAX, is used by the KiSystemService for indexing into

the KiServiceTable. The int 2e stores the current value of EIP and

EFALGS.

 Current version of operating system uses different mechanism for

performing this. Instead of invoking an interrupt to perform the operation,

SYSENTER instruction is used to perform the operation. SYSENTER is a

kernel mode switch instruction that calls predetermined function whose

address is stored at special model specific register MSR called as

SYSENTER_EIP_MSR. The contents of MSR can be accessed from kernel

mode. SYSENTER does not store state information so by making a call to the

SystemCallStub operating system records the state of current user mode

stub in stack. This recorded user mode stub is used, when the kernel

completes the call and needs to go back to the user mode.

2.6 Reversing Windows NT

 The section discusses some of the basic techniques for reversing Windows

NT. The KERNEL32.DBG, NTDLL.DBG, NTOSKRNL.DBG files will be

required to debug kernel component. USER32.DBG, GDI32.DBG,

CSRSS.DBG, CSRSRV.DBG, WIN32K.DBG are the DBG files that are

required to explore USER and GDI component. Using symbolic loader these

DBG files are converted into the .NMS files stdcall and fastcall are the two

compiler calling conventions. Most of the functions in Windows NT follow

either of these calling conventions. The file NTPSKRNL.EXE comprises

many functions which follow fastcall calling convention. The parameters are

pushed from right to left by the caller and the parameters pop off the stack by

the called function. The stdcall calling convention provides the inherent

advantage that the code is compact. This is because of the fact that the

parameters reside in one place. It has to be noted that since fixed number of

parameters pop off, this calling convention cannot support variable number of

arguments. cdecl calling convention can be used to support this. The fastcall

calling convention is similar to stdcall, with the difference being the first two

parameters are passed in registers instead of being passed to a stack. Kernel

data variables can be used to control the output of debug messages. These bits

can be used to get more debug information from the operating system.

48 Fundamental of Windows

2.6.1 ExpEchoPoolCalls

 When the value of the variable is set to 1, information about each

memory allocation/deallocation which is performed can be obtained by using

the function.ExAllocatePoolWithTag and ExFreePool. The function provides

the information including size of the region allocated, if the pool which is

used is allocated or deallocated and the type of memory.

2.6.2 ObpShowAllocAndFree

 When the value of variable ObpShowAllocAndFree is set to 1, information

about creation and destruction of each executive object can be obtained. The

information also provides the type of object. Like if the object is Key,

Semaphore and so on.

2.6.3 LpcpTraceMessages

When the value of the variable LpcpTraceMessages is set to 1, information

about local procedure call (LCP) function can be obtained.

2.6.4 MmDebug

Different bits in the variable indicate different message generated by the

memory management system.

2.6.5 NtGlobalFlag

One bit of this variable enables the debug messages. Other bits control the

validations performed by the operating system and general operation of the

operating system. GFLAGS utility provides detailed description of individual

bits of NtGlobalFlag. The value of this variable is inherited by a variable in

NTDLL.DLL during the process startup. NTDLL.DLL uses the second bit of

this variable to show the loading of a process. During process startup, NTDLL

gets the value of this flag and sets its internal variable ShowSnap to 1 if the

second bit is set. Once this bit is set, the behavior of the PE executable/DLL

loader.c an be monitored. Windows NT will show names of all the imported

2.6 Reversing Windows NT 49

DLLs, plus it will show a real set of DLLs required to start an application. It

will also show you the address of initialization functions of each of these

DLLs as well as a lot of other information.

2.6.6 SepDumpSD

When the value of the variable is set to 1, the security descriptor is dumped in

the security handling related code.

2.6.7 CmLogLevel and CmLogSelect

The variables provide control over the debug messages given by the registry

handling code. The maximum value of CmLogLevel is 7. The volume of

message generated by the operating system can be controlled by setting the

individual bit in the CmLogSelect.

2.7 Security Features in Vista

Vista provides various security features. The following section discusses the

2.7.1 Address Space Layout Randomization (ASLR)

ASLR involves randomization of starting point of memory in stack and heap.

It makes it difficult for an exploit to locate the address of system API. Since it

becomes tough to locate the address of API, it becomes tough to run an

arbitrary code. In the case of other operating system, such as Windows XP,

the starting address of system API is known to attacker. Even though the

starting address may differ depending on the service pack level of the system,

however it can easily be calculated. ALSR includes randomization of address

of images and DLL, starting address of each stack and starting address of each

heap allocation.

One of the common attacks is to force an application to load the DLL. An

attacker can write a path into buffer with known location and redirect

execution to place where eliminating the precondition needed by the attacker.

The attacker has to know the address where it should be jumped. ASLR is

details of these security features.

50 Fundamental of Windows

done once per reboot. DLL will be loaded once per reboot. If all the processes

using a particular DLL unload ASLR, it would be loaded in the random place

in the next load. Some network service restarts itself on failure. This gives

attacker a chance to find where to call system API. Hence it is recommended

that the services be configured to restart automatically a small number of

times. ASLR provides protection against the attacks of worms. However, if

an application has format string vulnerability or information disclosure

vulnerability, it might be possible for an attacker to learn the memory

locations needed to over come this mitigation.

 The randomization is in the second most significant byte of the address. To

reduce virtual address space fragmentation, the library is relocated across 256

different possible addresses.

 When the two DLLs are loaded in the overlapping ranges, then the

last DLL which has to be loaded is relocated to a different address. The

relocation process can be time consuming since it will involve changing every

fixed address in the entire DLL to reflect the new starting point. Since

relocation is an expensive process, hence relocation should be prevented.

ASLR implementation deals with the performance concerns. It delays fixups

until that page of the DLL is loaded into memory. Generally, console

applications will use only a dozen or so functions exported by Kernel32.dll

and hence would require fixing up the pages required to load those functions.

DLLs do not set their own address space, Vista packs them in with as little

slack space between DLLs as possible. Since all the DLLs are loaded in the

contiguous space, there is effectively more space for other applications. It

also increases the cache performance.

2.7.2 Stack Randomization

Under the protection mechanism enforced by stack randomization, the base

address for every thread is changed. This makes it difficult for an attacker to

find a place to jump to within an application. /dynamicbase in the linker

options has to be used to get stack randomization. Even though the starting

address of the executable command is randomized, the offset between the

various code elements remains constant. Address of global variables is

randomized as well in the case of stack randomization. Generally it is not

recommended to store function pointer in global variables, stack

randomization makes it difficult to attack Encoded pointers. In a

multithreaded application, address of the stack buffer has been unpredictable

in multithreaded application. Even though the stack buffer is unpredictable in

2.7 Security Features in Vista 51

multithreaeded application, the location of stack for the main thread is

randomized. The offset between the stack and the main module code isn’t

fixed from one instance of the application to the next. Offset between the

stack and the main module’s code is altered from one instance of the

application to the next. There is no effect of stack randomization on

performance or compatibility issues.

2.7.3 Heap Defenses

The option /GS has made stack overflow difficult to exploit, however heap

overflow is simpler to exploit. As adversary can make execution flow to jump

into some spot in heap, it cannot control the precise address location. One of

attacks can be to put a series of NOP sleds followed by the shell code. This

will result in execution of NOP followed by the shell code. It might not be

possible to put a large amount of data in the heap so an alternative technique,

Heap Spraying can be used. The technique involves large copies of shell code

in the heap. The execution will jump to shell code, since a large amount of

allocation would end up in another location.

 In a double free vulnerability, a pointer is accidently freed twice.

When the chunk is freed, it is added to the free list for future use. It can be

later allocated and used, before getting freed again. Attacker can arbitrary set

the forward/backward links in a heap chunk. On the same free list, a free

chunk is added to a doubly linked list of other chunk. These forward and

backward pointers are stored within the chunk data itself, that is, at offset 0

and 4 of the chunk data. An attacker has control over the FreeList.Flink and

FreeList.Blink in the double freed chunk, making 4-byte overwrite trivial.

char* ptr_1 = new char[16];
 …………………………….
delete[] ptr_1;
// New allocation of some more memory
char* ptr_2 = new char[16];
// Note that ptr_1 has the same length as ptr_2
delete[] ptr_1;
// This will free ptr_2!
// Further memory allocation
char* ptr_3 = new char[16];
// ptr_3 will now be used to write memory that
// the code dealing with ptr_2 thinks is validated

 Figure 7.0 C code showing double free pointer vulnerability

52 Fundamental of Windows

 As shown in the code in figure 7.0, it can be seen for a double free

pointer vulnerability, there is a pattern of alloc(1), free(1), alloc(2), free(1),

alloc(3). The pointers 1,2 & 3 all point to the same address. The efficient

heap behavior reallocates recently freed memory which is of the same size.

The function which requested alloc(2), has a pointer to memory controlled by

the function that called alloc(3). To exploit, attacker has to control the

memory written in to alloc(3). Another attack pattern will have the alloc(1),

free(1), alloc(2), use(1), free(1) sequence of instructions.

char* ptr_1 = new CFoo;
// code comes here ……
delete[] ptr_1;
// Another allocation the same size follows it
// Note that ptr_1 and ptr_2 point to the same memory
char* ptr_2 = new CFoo;
// Copy some data into ptr_2
// code will change data at ptr_1. It will not knowing
// that ptr_2 has changed things
// If ptr_1 is a class, destructor will be called.
delete[] ptr_1;

Figure 8.0 C code showing double free pointer Vulnerability

As shown in the Figure 8.0, in this case, the code using ptr_2 is changing the

contents of the buffer pointed to by ptr_!. It has to be noted that the ptr_1

contains a valid data. There is some potential for the usage of ptr_2 to attack

ptr_1 and in this case, the converse is true as well–the usage of ptr_1 could

very easily cause the data kept in ptr_2 to become invalid.

To prevent such a kind of exploit, pointers are set to null, when they are freed.

However, the method of setting pointer to null will not be of much use if there

are multiple copies of the same pointer. If the pointers are set to null then the

use(1) will result in null deference crash. By setting pointer to null, the

pattern alloc(1), free(1), alloc(2), free(1), alloc(3), will be non exploitable.

This is because functions 2 and 3 will have allocation in different space.

These conditions can be located by the debugging assert which will help to

locate and fix these conditions. At run time the second delete will be begin.

Smart pointer classes are the other technique which can be used to fix all the

double-free bugs.

 The effect of heap overrun is dependent upon the heap manager which is

being used. In the case of Windows, heap places control data before and after

allocation, hence attacker can target both the control and the heap data which

532.7 Security Features in Vista

is kept on the heap in adjacent memory location. In Windows Vista there have

been several improvements in the heap.

 Vista performs a check for the validity of forward and backward links.

Free block has the address of previous and next free block. These addresses

are stored immediately after the block header. The value of the forward link

is the value to write and value of the backward link is where to write the

forward link value. This will result in arbitrary 4 bytes being written

anywhere in memory. Modification ensures that the structure at those

locations properly point to where it started. This was delivered in Windows

XP SP.

 The block header is XORs with a random number. This makes

determining the value which needs to be overwritten very difficult. The

performance impact is small; however the benefits are very large. The

previous 8-bit cookie has been repurposed to validate a large part of header.

As discussed earlier, the heap base is randomized and the function pointers

which are used by heap are encoded. Vista provides termination on heap

corruption in an application. However, it might happen that the exploit

happens before the heap manager notices corruption. In the earlier version,

the default behavior when the application heap became corrupted was to leak

the corrupted memory and keep on executing.

Low fragmentation heap (LFH) is generally used when program allocates

large amount of memory in various allocation sizes. LFH allocates blocks of

memory which are as long as 16 kilobytes (kb). For memory block which are

larger than 16KB, the LFH uses the standard heap. Fragmentation is

minimized by the LFP algorithm and improves Win32 heap allocation

performance. In comparison to Windows heap, the LFH are more resistant to

attacks. Vista makes use of LFH.

.

2.7.4 NX

NX, stands for short for “No eXecute”. As per the NX, if a page of memory,

whether it is on stack or heap is writeable, should not execute code from that

page. When a DLL is loaded after process initialization, the operating system

has to allocate pages and write instructions into process memory which a

system should be able to execute. If a shell code could first cause

VirtualProtect to be called with correct parameters, NX is then defeated.

NtSetInformationProcess disables NX for an entire process, unless the

application has been compiled with /NXCOMPAT. This functionality allows

54 Fundamental of Windows

for backward compatibility and allows an application to continue to work if it

happens to load a DLL that isn’t compatible with NX protection. Combination

of NX and ASLR can stop most of the attacks. In many of the system the

default BIOS option sets the NX to off.

Similar to ASLR and the heap settings, NXCOMPAT flag is set process wide.

NXCOMPACT flag is set in the linker option then the application will be

running NX irrespective of the option set in Windows. If NXCOMPAT:NO is

set, then NX will not apply to the application. NX option does not pose any

performance penalty or raises any performance impact. However, there can be

compatibility problem when there is an exception. If requirement of assembler

can be predicted, then it is advisable to write to memory and disable write at

the same time when execute is enabled on the page. In case applications

permit plugins, the plugins must be removed out of the processes.

2.7.5 /GS

/GS option places a randomly generated cookie placed between the return

address and the local variable on the stack. The cookie will guard the EBP

register which was pushed on to the stack. /GS is effective in preventing off-

by-one overflow attacks.

There will be several structured exception handlers SEH in windows. The _try

keyword declares a block that has an exception handler. The _except keyword

declares a block which behaves similar to a block declared with catch in C++.

When exception is raised, the exception handler is raised, exception record is

searched to determine if the exception needs to be handled. The program

might continue execution after the handler, fixes the problem and resumes the

execution after the handler fixes the problem and resumes execution. A

_finally block is a method for a C program to behave very similarly to how a

C++ application would use a destructor. The block of code inside _finally is

guaranteed to gets executed

__try
{
 // Code come here
}
__except(EXCEPTION_EXECUTE_HANDLER)
{
 // Code gets executed when there is some error.
}

552.7 Security Features in Vista

EXCEPTION_REGISTRATION structure is pushed onto the stack whenever

an exception handler is registered. The structure

EXCEPTION_REGISTRATION contains a pointer to the next

EXCEPTION_REGISTRATION structure along with the pointer to the next

EXCEPTION_REGISTRATION structure and the address of the current

exception handler. It has to be noted that there is a function pointer on the

stack which can be overwritten. To exploit this, buffer has to be overwritten

with the address of the attacker choice. This attack will work, regardless of

the code internal function. However, the overwrite should extend far enough

to hit the exception handler or an arbitrary DWORD overwrite and condition

for an exception should be caused prior to the function exiting normally. The

Visual Studio 2005 compiler treats calling an exception as if the function has

exited normally and checks the security cookie prior to executing the handle.

 For a 64-bit code, the exception records are compiled into the binary. They

are not kept onto the stack. Hence 64-bit executables are much safer at least

from the SHE attacks.

 Windows Vista supports pointer encoding, which provides developers

with an ability which makes it harder for an attacker to overwrite a pointer

with a valid value. This enables them to prevent them from buffer overrun. C

and C++ provide pointer which points to arbitrary memory locations. Code

can read from and write to arbitrary memory locations.

class foo {
public:
 foo() {
 dest = new char[64];
 data = new char[10];
}
~foo() {
 delete [] dest;
 delete [] data;
}
const char *Write_Data(const char *src, *src1) {
 if (dest) strcpy(dest,src);
 if (data) strcpy(data,src1);
 return src;
}
private:
 char *dest, *data;
};

56 Fundamental of Windows

2.7.6 Pointer Encoding

Figure 9.0 sample C code without pointer encoding

In the code shown in Figure 9.0, adversary has control over the src. When the

function Write_Data is called, overlong value is passed to the src, it will

overwrite data pointer. The pointer data will be few bytes higher in the

memory. The code shown in figure 10.0 the copies the src1 to data pointer

and effectively can write in memory This is heap overrun vulnerability. .

.

class foo {
public:
 foo() {
 dest = (char*)EncodePointer(new char[64]);
 data = (char*)EncodePointer(new char[10]);
}
~foo() {
 delete [] DecodePointer(dest);
 delete [] DecodePointer(data);
 data = dest = NULL;
}
const char *Write_Data(const char *src, char src1) {
 char *dec_dest = (char*)DecodePointer(dest);
 if (dec_dest) strcpy(dec_dest,src);
 char *dec_data = (char*)DecodePointer(data);
 if (dec_data) strcpy(dec_data,src);
 return src;
}
private:
 char *dec_dest, *dec_data;
};

Figure 10.0 shows the similar contrived C++ class code using pointer

encoding

The code shown in Figure 10 is similar to the original code shown in Figure 9,

except that the pointers are deemed long-lived and are encoded as soon as

they are created and then decoded prior to use. The class destructor sets the

pointers to NULL after the memory is deleted.

 Hence, the following steps need to be followed for pointer encoding.

First, memory is allocated or initialized and assigned the pointer to the

address. Then the pointer is encoded. When the pointer is used, it is decoded

to a temporary variable. When the pointer is not required, it is decoded and is

set to free and NULL. If the pointer is overwritten, DecodePointer it will just

give back a bad pointer.

572.7 Security Features in Vista

2.7.7 Cryptographic API in Windows Vista

 Windows Vista provides a new cryptography API called CNG:API

(Cryptography Next Generation) which serves as a replacement for the old

Cryptographic APIs. Figure 12.0 shows the design architecture of CNG. Not

only CNG provides support for all algorithm for Cryptographic API, it also

includes new algorithms. CNG provide two set of functions NCrypt*

BCrypt*.

Figure 11.0 Figure showing Algorithms for CNG

NCrypt* function: The function is a subset of CNG, which deals with key

management, key persistence and key isolation and public key operations.

NCrypt are available only to the user mode applications. NCrypt is the name

of the DLL and the header file, which provides high-level key storage facility.

BCrypt* function: The function is a subset of CNG, which provides low-level

cryptographic primitives, which run in process with the applications. The

keys are not stored, they are ephemeral. The keys are available in the kernel

mode and provide cryptographic framework for both the user mode and the

58 Fundamental of Windows

Win32 Applications

Secret

Agreement
Hash

SHA MD5

DH ECDH RNG

RSA

DH

3DESDESRC4 AES

ECDH

Random

Number

Generator

Symmetric

Encryption

Asymmetric

Encryption
Signature

kernel mode applications. BCrypt is the name of the DLL and the header file,

which provides base services for CNG.

Figure 12.0 Showing CNG Architecture

The CNG API is built on logical cryptographic interfaces. It takes interface-

centric approach which is different from algorithm-centric approach followed

by most of the cryptographic algorithms. It provides inherent advantage in

terms of flexibility for an application developer to replace an algorithm use by

an application which is found to be flawed.

BCRYPT_HANDLE is used for identifying the CNG objects which are

defined by the BCrypt. Algorithm is loaded by the

BCryptOpenAlgorithmProvider function, which loads an algorithm provider

based upon the choice of an algorithm and returns a handle for use in

subsequent calls to a CNG function.

Increase in processor speed and developments in algorithms make

cryptographic algorithms agile. Increase in speed of processor makes it

feasible for an algorithm to be cracked in a reasonable time. Some of the hash

functions such as MD4, MD5, SHA-1 are considered to be insecure.

592.7 Security Features in Vista

2.7.8 Crypto-Agility

Application

NCrypt

Key Storage

BCrypt

Cryptographic Primitives

Kernel Mode Driver

 Cryptographic constants are strings rather than numeric constants in

CNG. All the cryptographic algorithms are predefined in wincrypt.h which

makes it difficult to extend the cryptographic functionality as per the

application needs. In CNG, adding an algorithm is possible. String constant

can be defined for an algorithm. When an application uses the algorithm,

CNG will load the crypto-provider which is registered to the name. Custom

cipher-suites for SSL and TLS can be plugged in.

BCryptAddContextFunctionProvider: can be used to add new plugins.

 CNG does not require Microsoft to sign the implementation.

Cryptographic provider can be created by the cryptographer. Also it is

possible for an application to query CNG for supported algorithms. Figure

13.0 shows the algorithms supported by the default CNG provider in

Windows Vista.

60 Fundamental of Windows

2.7.9 Crypto-Agility in CNG

612.7 Security Features in Vista

Figure 13.0 Algorithm supported by the default CNG.

CNG also supports two kinds of random number generators (RNG), and both

are allowed under SDL: BCRYPT_RNG_ALGORITHM and

BCRYPT_RNG_FIPS186_DSA_ALGORITHM are the two random number

generators which are supported by CNG. However, it has to be noted that the

CNG password-based key derivation function is missing from CNG.

All CNG objects defined by BCrypt are identified by a

BCRYPT_HANDLE, and used to identify the CNG objects defined by the

BCrypt. Initially the algorithm provider is loaded based upon the choice of

algorithm and optional implementation. The function

BCryptOpenAlgorithmProvider is used to achieve the objective and the

functions then return a handle. The handle is used in subsequent calls to CNG

function. Error is indicated by the NTSTATUS type from the Windows

Driver Kit. This is used both for user mode and kernel mode programs.

62 Fundamental of Windows

2.7.10 Algorithm Providers

Figure 14.0 showing the sample implementation of BCryptOpenAlgorithm

Generally value 0 is passed both for the implementation and flag

parameters. The value 0 indicates that the default algorithm provider should

be loaded for the particular algorithm identified by the algorithm name

parameter. The NT_SUCCESS macro shown in Figure 14.0 indicates if the

value represents success or failure. It has to be noted that the loading of the

algorithm can be an expensive operation. Hence once the algorithm is loaded,

it should be re-used as much as possible. As shown in the Figure 15.0

algorithm provided can be unloaded by passing the handle returned by

BCryptOpenAlgorithmProvider to the BCryptoCloseAlgorithmProvider

function. Zero must be passed for the flags parameters.

 Figure 15.0 showing the closing of the algorithm

BCryptGenRandom function is used for to generate random number. It fills

in buffer with random generated value. BCRYPT_RNG_ALGORITHM

algorithm identifier denotes the default random number identifier. The

BCRYPT_RNG_FIPS186_DSA_ALGORITHM algorithm identifier is used

to meet the Federal Information Processing Standards (FIPS). It can be seen

that the function BCryptRandom function expects a pointer to UCHAR which

identifies the buffer. The function BCryptGenRandom provides an optional

flag which allows to provide entropy for random number generation

algorithm.

632.7 Security Features in Vista

2.7.11 Random Number Generation

Figure 16.0 showing code for random number generator

When the flag BCRYPT_RNG_USE_ENTROPY_IN_BUFFER is used

then the value passed in the buffer is used as an additional entropy in

calculating the random number and is returned in the same buffer.

The algorithm provider and the hash functions are represented by objects in

CNG. The functions BCryptSetProperty can be used to set the named

properties in the named objects and the function BCryptGetProperty is being

used to query the function name. Similar function is provided for handling

object property with NCrypt. A new hash object is created by using the

BCryptCreateHash function, which needs a buffer that is required for

processing. In kernel mode, care has to be taken while allocating memory.

Kernel mode also requires, managing the handle and hash table resources for

the hash object.

First parameter of the function BCryptGetProperty’s indicates the object to

query whereas the second parameter indicates the name of the property. Third

and Fourth parameters indicate the destination buffer where the property value

is stored and the size of the buffer. The noofbyteCopied parameter is useful

in the case where the size of buffer is unknown. Chunk of memory is

committed to the buffer for the hash object. Only in the kernel mode it matters

where the memory is stored. The hash object can be created by the

bCryptCreateHash function

BCRYPT_HANDLE algoProvider = 0;

NT_VERIFY(::BCryptOpenAlgorithmProvider (&

algoprovider, BCRYPT_RNG_ALGORITHM,0,0));

Int n= 20;

 for(int a=0; a< n; ++a)

{UINT rand =0;

 NT_VERIFY(::BCRYPTGenRandom(

 algorithmprovider,

reinterpret_cast<PUCHAR>(&rand), sizeof(UINT), 0));

Count <<rand << endl;

}

64 Fundamental of Windows

2.7.12 Hash Functions

Figure 17.0 showing code for hash function

. The first parameter to the hash function indicates the algorithm provider

which implements the hash interface. The second parameter indicates the

handle to the hash object. The last two parameters indicate the hash buffer and

its size. The hash object is destroyed by using BCryptDestroyHash function

and then the function frees the hash object buffer. For flags parameters, zero

is passed.

 It is also possible to duplicate the hash object which is useful in the

case when two or more hash values need to be produced based on some

common data. The function BCryptDuplicateHash is being used to duplicate

the hash function. The function will require a handle to the hash object for

duplication along with the new buffer which it will use for processing. For

duplicating a hash function first a single has object needs to be defined then it

has to be duplicated one or more times. After the duplication has been

achieved, the two hash objects contain the same state; however, they have no

connection to one another. Unique data can be added to each one producing a

hash value. If one hash object is destroyed it will not affect the other.

The function BCryptGenerateSymmetricKey function is used to generate

symmetric key. It involves first creating an algorithm provider followed by

determining the size of the object buffer. Once the size of buffer is

determined, then the buffer of that size is allocated.

652.7 Security Features in Vista

2.7.13 Symmetric Encryption

 Figure 18.0. Creation of a Symmetric Key Object

The first parameter to the function BCryptGenerateSymmetricKey denotes

that the algorithm provider implements a symmetric encryption algorithm.

Implementation of symmetric key algorithm is denoted by the second

parameter. Key buffer and its size are denoted by the second parameter. The

buffer containing the secret key shared by the sender and receiver is denoted

by the next two parameters. It can be any byte array or can be empty.

Generally it is a hash of a password. Since the flags for this function are not

defined, zero is passed as the parameter for the flag. BCryptDestroyKey

function is used to destroy the key object. After the key object is destroyed, it

is freed. The function BCryptEncrypt and BCryptDecrypt are being used for

the encryption and decryption of data. The function is used both for the

symmetric key and asymmetric key. The sender and the receiver share

common properties. They require a key created with the same secret and with

the matching properties values. They also require initialization vector which

are equal. For symmetric encryption algorithm, size of data block for the

algorithm needs to be determined. The size of block indicates the size of

initialization vector. Block cipher encrypts a fixed sized block of plaintext

into a block of cipher text of same size. Once the message to encrypt along

with the initialization vector is prepared, BCryptEncrypt function can be used

to encrypt the plain text message. BCryptEncrypt function is used for

encryption. The first parameter for the function denotes the key to use for

encryption. The next two parameters indicate the message which has to be

encrypted. The fourth parameter provides additional padding information for

asymmetric key algorithm. The flag BCRYPT_BLOCK_PADDING is used

with symmetric algorithms. The function BCryptEncrypt is called again which

contains buffer to receive the cipher text. The BCryptDecrypt function works

in the similar manner. First the size of cipher text is determined, followed by

66 Fundamental of Windows

Algorithm

Provider
Buffer Key

Open algorithm

Obtain Size of Object

Allocate <size>

Generate <algorithm, buffer, secret >

which the BCryptDecrypt function is called with the initialization vector and

the plaintext buffer to obtain the resulting decrypted message.

The advantage of Asymmetric algorithm is that the public key can be

shared with anyone; however, the computational cost of the algorithm is

higher than the symmetric key algorithm. Figure 18.0 shows the process for

the establishment of the asymmetric key.

Figure 18.0 showing the creation of asymmetric key

The function BCryptGenerateKeyPair s used to create the public and

private key. The first parameter to the function provides the details of the

algorithm provider which has implemented the asymmetric key algorithm.

Handle to the key object is received in the second object. Key size is indicated

in the third parameter. The size of key is indicated in bits. The size of key

affects the performance of the algorithm. Key size can also be used to

determine the block size. The block size can be determined by dividing the

key size by 8. BCryptSetProperty function is used to set the algorithm

specific key properties. The properties are set after the key pair is generated.

The BCryptFinalizeKeyPair function is being used to finalize the creation of

key object. This is done before the key pair can be used. BCryptEncrypt and

the BCryptDecrypt function can be used to encrypt and decrypt the block of

data. It might happen that the message to be encrypted is provided in a buffer

which is a multiple of the block size. The flag BCRYPT_PAD_NONE is used

to denote that there is no padding. The flag BCRYPT_PAD_PKCS1 flag tells

the algorithm provider to pad the input buffer to a multiple of block size. This

is done by using a random number which is based on the PKCS-1 standard.

The functions BCryptExportKey and BCryptImportKeyPair are used to export

and import keys. To import symmetric keys BCryptExport function can be

used to export symmetric key as well.

672.7 Security Features in Vista

2.7.14 Asymmetric Encryption

Algorithm

Provider

Open <algorithm>

Set Properties

Key

Finaize

Generate <algorithm, Key Size>

Asymmetric key algorithms are used to create digital signatures. Public

keys are used to generate signatures and private keys to verify the signatures.

BCryptSignHash function is used to calculate the signature. The calculation of

signature makes use of both the hash values as well as the private key for a

digital signature algorithm. The generation of signature comprises two parts.

The first part involves the calculation of the size of the resulting signature.

The second part involves computation of signature. Additional padding

information may also be required. The hash is computed independently and

then the hash value, publick key of the signature and the signature received to

the BCryptVerifySignature function for verification. The function

BCryptVerifySIgnature, returns STATUS_SUCESS in case of match between

the signature and the hash value. STATUS_INVALD_SIGNATURE is

returned if there is a mismatch in signature.

 2.8 Conclusion

The chapter provides basics of the operating system, which is important for

reverse engineering. Understanding the basic API offered by the operating

system is useful in deciphering the programs. Virtual memory provides

solution for memory management. Light-weight processes are called as

threads. Threads perform context switching which is also termed as process

switch. It involves switching of the CPU from one process or thread to

another. Even though threads provide flexibility, synchronization of multiple

threads is a challenging task. Critical Section, Mutex , Semaphore, Events,

and Metered Sections can be used for synchronization of threads. In Windows

NT KERNEL32.DBG, NTDLL.DBG, NTOSKRNL.DBG files will be

required to debug kernel component. USER32.DBG, GDI32.DBG,

CSRSS.DBG, CSRSRV.DBG, WIN32K.DBG are the DBG files that are

required to explore USER and GDI component. Vista is the latest operating

system. It provides address space layout randomization which makes it

difficult to execute on a local address space. The code should be compiled

with the /GS option and link with the /NXCOMPACT, /SAFESEH and

/DYNAMICBASE option. Pointer encoding is supported in Vista, it makes it

difficult for an attacker to overwrite a pointer with a valid value. Vista

provides, CNG (Cryptographic Next Generation) which provides

replacement for the old cryptographic API. NCrypt and BCrypt are the

subsets of CNG, which provide low-level cryptographic primitives.

68 Fundamental of Windows

2.7.15 Signatures and Verification

Portable Executable File Format

3.0 Introduction

PE stands for ‘portable executable’ file format. As the name suggests, the

format can be portable across all the 32-bit operating system and can be

executed on any version of windows. The format is also being used by 32-bit

dlls and Windows NT device derivers. The WINNT.H header file defines the

structure definition representation for the PE file format.

 Understanding of PE file format is not only required for reverse engineering,

3.1 PE file format

PE stands for Portable Executable file format. It is generated using the

Microsoft linker that has a .text section containing the code bytes

concatenated from all the object files.

Figure 1.0 Showing .text, .data, .rsrc. .reloc

As shown in the figure 1.0 the .data contains all the initialized global and

static data which can be classified into different categories. Initialized global

and static data are classified under the .data section while .bss section contains

but it is also required for understanding the concepts of operating system.

A. Singh (ed.), Identifying Malicious Code Through Reverse Engineering,

© Springer Science + Business Media, LLC 2009

Advances in Information Security 44, DOI: 10.1007/978-0-387-89468-3_3,

69

the uninitialized data. The .rdata section contains read only data such as string

literals and constants, debug directory, thread local storage directory. The

.edata section contains information about the functions exported from a DLL,

while the .idata contains information about the functions imported by an

executable or a DLL. Menu and dialog boxes are stored in the .rsrc section

and .reloc section stores the details for relocating the image while loading.

Figure 2.0 Showing PE Dos Header comes here.

 As shown in figure 2.0 the PE file format starts with a DOS stub with

a header. The PE header is located at the offset 0x3C from the beginning of

the file. The DOS header file is identified with the magic bytes “MZ”

indicating that it is DOS header file. At the address 0x3C from the image base

(or the address of the DOS header) is offset to the PE signature.

Figure 3.0 showing the PE header

70 Portable Executable File Format

As shown in figure 3.0, the field begins with the field PE\0\0 or | 50 45 00

00|. This header is followed by the COFF file header. The first field in the

format is the machine type field indicated by the field Machine in figure 3.0.

Its size is two bytes long. Value 0x8664 stands for AMD64, 0x14c stands for

IA32 or less often 0x200 for IA64 Itanium processors. This field is followed

by a two byte field which indicates the number of sections in the file. Its

maximum value can be 96. Followed by this is the TimeDateStamp after

which is the COFF symbol table. After this field, there is 4 byte field which

indicates the number of symbols which are present. The last two fields stands

for COFF fields of the size of two bytes, which indicate the size of the

optional header and a field called the characteristics which defines the specific

attributes to file. Its value determines if the file is a DLL, or a part of the

system file or if it uses 32- bit words and so on. The optional header can be

divided into three parts. The first eight fields are generic to the COFF.

Following this is the 21 windows-specific fields, following which are data

directories. The magic field represented as MagicNumber as shown in figure

3.0 can also be used to identify the PE version. The value of the field can be

PE32 or PE32+. The size field represented by SizeOfCode as shown in the

figure 3.0 displays the size of .text/code, .data and .bss section of the file.

Following this is the field AddressofEntryPoint, Address of the entry point or

the address where the code will start executing. After this as shown in figure

3.0 is the base address of code and data. These addresses are specified by the

field BaseOfCode and BaseOfData

Figure 4.0 Size of PE header continued.

3.1 PE file format 71

 The image base identified by the field ImageBase as shown in figure 3.0

specifies the address at which the image is loaded. The Microsoft document

specifies this value to be a multiple of 64 K. The field “Sizeof Image” as

shiwn in figure 4.0 specifies the total size of the file including size of file and

all the headers. The field “SizeofHeader” specifies the size of the headers.

The field “DLLCharacteristics” as shown in figure 4.0 is used for DLL and is

used when the DLL is loaded. 0x0040 denotes the base address, 0x0080

indicates that the code integrity checks have been made, 0x0100 indicates

that the image is no-execute compatible and 0x0400 denotes that the SHE

(structured exception handling) is not used by the file.

Figure 5.0 shows the data directories. Other types of data are defined in the

data directory.

Figure 5.0 Showing Export, Import and Resource Table

The export table as shown in figure 5.0 specifies the function exported by

the file. Similarly the import table specifies the functions imported by the file.

Resource table show in figure 5.0 specifies the resources like icons used by

the files where as exception table indicates the registered exception used by

the file. Base relocation in the file is specified in the base relocation table.

Compiler generated debugging information is stored in the Debug data

directory. Architecture is a reserved data directory and its value is set to zero.

Global pointer data directory stores the RVA of the value to be stored in the

global pointer register.

72 Portable Executable File Format

733.1 PE file format

Figure showing Optional Directory in the Portable Executable File Format

74 Portable Executable File Format

 Figure 6.0 showing TLS and and Import table

 Thread local Storage (TLS) show in figure 6.0 data directory indicates the

information used in the thread specific data storage. The local configuration

table has different uses in different windows versions. XP is used to register

the safeSEH function. The import address table (IAT) as shown in figure 6.0

is used to resolve the symbol address at run time. The reserved field must be

set to 0.

 The export table as mentioned above specifies the function exported by the

file. The export table is specified in the .edata section. The export directory

table describes the entirety of the export information. It comprises information

which can be used to resolve imports to the exported functions within the

image. The export address table comprises the address of the exported entry

points data and absolutes. The name pointer table consists of the arrays of

RVAs into the export name table. An ordinal number is used to index the

export address table. The Ordinal Base must be subtracted from the ordinal

number to index into the table. The ordinal table as shown in the figure

comprises an array of 16-bit ordinals into the export address table. The Export

Name Table Pointers and the Export Ordinal Table form two parallel arrays.

The exported address table ordinal numbers corresponding to the named

export referenced by corresponding export name table pointer is in the export

ordinal table array. The export name table comprises the null terminated

variable length string names of exported functions/data/etc. It comprises the

ASCII names for exported entries in the image. The Export Name Table

Pointers and the array of Export Ordinals along with the Export Name table

are used to translate a procedure name string into ordinal number. This is

performed by searching for a matching name string. Entry point information

in the export address table is located by the ordinal number.

753.1 PE file format

Figure 7.0 Showing Export Directory Table

As shown in the figure 7.0, the export directory table contains the

Export Flags, Time/Data Stamp, Major version/ Minor Version, Name RVA,

Ordinal base, Address Table RVA, Name PTR table RVA, Ordinal table

RVA. Name RVA is the relative virtual address of the DLL ASCII Name.

This is the address relative to the Image Base. Ordinal base is typically set to

1. This field specifies the starting ordinal number for the export address table

for the image. The field addresses table entries and the number of name

pointers denotes the number of entries in the address table and name table.

Address Table RVA denotes the relative virtual address of the export address

table. This is relative to the Image base. Name Table RVA contains the

virtual address of the export name table pointers relative to the beginning of

the Image base. Ordinal table RVA contains the relative virtual address of

export ordinal table entry relative to the beginning of the Image base. It is an

array of 16 bit indexes biased by the ordinal base into EAT. A symbol can be

resolved by using the following steps.

1. VA or the export directory table in the optional header has to be

obtained.

2. This VA is then used to locate the ordinal base, export directory

table and the ordinal RVAs.

3. Obtain the RVA of the name pointer RVA.

4. It has to be determined if the function is exported by name. This

is done by searching the export name table pointer.

5. Ordinal is then retrieved. This is done by using the index into the

name pointer table as an index into the ordinal table to retrieve

the ordinal.

76 Portable Executable File Format

6. Ordinal is taken and subtracted from the ordinal base and the

result is used as an index into the EAT. Data at this index is the

RVA for the exported function.

 The import data table is the same as the export data table. It uses import

table or .idata section similar to the export table. “Import Directory Table”,

“Import Lookup Table” and the “hint/name table” are the three structures used

3.2. Import Address Table

 Windows loader is responsible for reading in PE file structure and loading

the executable image in memory. Windows loader also loads all the .dll files

that an application uses and is responsible for mapping them into the address

space. The executable will require functions whose addresses are not static.

Import table, comprising function pointer, is used to get the addresses of the

functions when the dlls are loaded. It can be accessed either by the call

[pointer address] or by “Import Lookup Table” and the “hint/name table,”

which are the three structures used for importing symbol. Import directory

table uses import table or .idata section.

Figure 8.0 Showing Import Table

The Import Directory Table (shown in figure 8) comprises array of Import

Directory Entries, one entry of each DLL. The last directory entry is

identified by the NULL specifies the date and time when the import data was

presnapped or zero if not pre snapped, which denotes the end of the directory

table. Import flags are set to 0. Major and minor version field represents the

major and minor version of the dll being referenced. Name RVA field

specifies the relative virtual address relative to the Image base. Import

Lookup Table RVA contains the address relative to the beginning of the

image base, of the start of the import lookup for the image. Import Lookup

Table is an array of 32-bit integer, comprising bit field entry of ordinal or

hint/name RVA’s for each DLL. Last entry is indicated by the NULL.

for importing symbols

3.2 Import Address Table 77

Whether the import is done by name or by ordinal is indicated by the high

order bit. The set value of the bit indicates that it is imported by ordinal and

the bits 0 to 15 indicate the ordinals to import. When imported by name, the

bits 0 to 30 represent a 31- bit RVA into the hints/ name table for the name of

the imports.

Figure 9.0 Showing the Import Look up table

As shown in figure 9.0 in the Hint-Name Table, the PAD field is optional.

HINT is the DW hint into the export name table pointer. The value is used to

index the export name table pointer array, allowing faster ‘by name’ imports.

The field ASCII string as shown in the figure is terminated by NULL bytes.

 Figure 10.0 showing the load configuration structure

 Figure 10.0 shows the load configuration structure. Valid exception

handler is registered by the system. This prevents attackers from overwriting

an SHE entry and causing an exception to be raised and their code executed.

78 Portable Executable File Format

The “SE handler count” field in the “load configuration structure” denotes the

count of total number of handlers. The field “SE handler table” is a sorted

table of RVA, which corresponds to valid SHE handler for that image. The

security cookie is a pointer to a cookie. In Microsoft compiler, when the GS

flags are set the cookie, the stack bases cookie is used to prevent the

stackbased overflow. The value of the field

“IMAGE_DLLCHARACTERISTICS_NO_SEH” in the DLL characteristics

field of optional header specifies if the exception handler is in the list. If the

value is set then it denotes that the exception handler is in this list.

3.3 Executable and Linking Format

ELF (executable and linking format) is the default binary format on operating

systems such as Linux, Solaris and SVR4. It provides the capability of

dynamic linking, dynamic loading, imposing run time control on the program

and improved method of creating shared libraries. ELF file format enables

identification and parsing of object files on different platforms. Executable,

relocatable and shared objects are the different type of ELF files. They store

code, data and information about the program, which aids operating system in

performing actions on these files. An executable file contains the information

which is required for the operating system to create a process image. The

process image is required for accessing the data and executing the code.

Linking with other object files to create and executable file is done by the

relocatable file. Information required for static and dynamic linking is stored

in shared object file. ELF file format includes five sections. (1) ELF header

(2) The program header (3) The section header table (4) The ELF sections (5)

It is first section and at fixed position in the object file. The other headers may

or may not be present in the file. The header aids in identifying if the object

file is relocatable, executable, shared or core file. The header also provides

information about the program header table, Section header table and String

table. It also provides the associated numbers and the size entries for each

table. Location of first executable instruction is also located in the ELF

header. Figure 11.0 shows the ELF header

The ELF segments.

 3.3 Executable and Linking Format

79

3.3.1 ELF Header

Figure 11.0 Showing the ELF Header.

.

Figure 12.0 Showing Program Header

Program headers comprise a series of array where each entry is a structure.

The structure describes the segment in the object file or other information

required to create an executable process image. ELF header consists of the

size and number of entries in the table. Type, file offset, physical address,

virtual address, file size, memory image size, and alignment are contained in

each entry in the program header table. Process image for the object file is

created by the program header. The p_type field is shown in 12.0. If the value

of p_type is PT_LOAD, the operating system copies the segment into memory

according to the location and size information. If p_memsz is greater than

80 Portable Executable File Format

3.3.2 The Program Header Table

these p_filesz then these bytes are mapped into the segment. PT_LOAD

segment is succeeded by the PT_INTERP segment. PT_DYNAMIC segment

is related with the dynamic linking. PT_INTERP segment denotes the path

name of the program interpreter. PT_DYNAMIC segment is related to

dynamic linking. If a file contains segment PT_SHLIB, then it does not

confirm to ABI. It is defined but reserved. Segment of type PT_PHDR

indicates the size and location of the program header table. This is applicable

both in physical and in the memory image. It can appear only once and it

should occur before PT_LOAD segment. PT_LPROC and PT_HIPROC are

reserved for processor-specific functionality.

The member p_offset specifies the offset of the segment from the beginning of

the file and the member p_vaddr denotes the preferred virtual address of the

segment. The member p_filesz indicates the size of segment in the physical

file and the member p_memsz denotes the size of segment in memory. P_flags

denote the attributes of the segment. To load an executable, address for each

segment specified in the p_vaddr is used. Images have absolute references. If

the address is changed it will break. In the case of ASLR images and shared

library, make use of position-independent code. In case of PIC, instead of

using absolute references, relative references are used. When shared library is

used to access commonly used functions, series of intermediaries are used in

the case of ELF. They are global offset table (GOT or .got), the dynamic

segment/section (_DYNAMIC or .dynamic) and the procedure linkage table

(PLT or .plt). Every executable image which performs dynamic linking

contains segment .dynamic.

Offset Size Field Name

0 4 d_tag

4 4 d_tag

4 4 D_ptr

 Figure 13.0 Showing Dynamic Structures

 It contains two values, a tag followed by a union. The tag determines

the interpretation of union. The member d_val comprises integer with various

interpretations. The member d_ptr contains a VA. The figure 14.0 shows

different types of d_tag types, and whether they are optional or mandatory.

 _DNAMIC array is ended by DT_NULL. DT_PLTRELSZ element holds the

total size of the relocation entries associated with the PLT. DT_PLTESZ entry

81 3.3 Executable and Linking Format

Figure 14.0 showing defined d_tag Types

is present when DT_JMPREL is present. A DT_PLTGOT entry contains the

address corresponding with either the GOT or PLT. The DT_JMPREL entry

comprises a pointer to relocation entries associated only with the PLT. During

image initialization, these relocations are ignored and it uses a form of linking

known as lazy binding. As per the lazy binding, the relocation is ignored until

the actual use of symbols. There is increase in speed and efficiency and

dynamic module can be easily loaded.

_GLOBAL_OFFSET_TABLE comprises array of addresses, which are

absolute references and allow the position-independent code to have relative

address. Negative and positive indexes are both valid since, the symbol

_GLOBAL_OFFSET_TABLE does not need to refer to the beginning of the

.got segment. Dynamic linker processes the GOT by using the first entry

which is first element which contains the address of the _DYNAMIC

structure. Position-independent addresses are redirected to absolute locations

by the GOT, PLT performs for the same for functions. It determines the

absolute address of the function and updates GOT as necessary. The second

and the third entries in the GOT, upon the creation of image are defined as

follows.

The address of the GOT must reside in the ebx, if the PLT is PIC. The calling

function places the address into this register. The application is trying to call

fun which is located in the label PLT1. The first instruction under that label is

a jump into the GOT, which contains the address of the push and jmp

instructions. Variable name offset will specify the GOT entry used in the prior

jump along with a symbol table index fun in this instance. The application

then jumps to PLT0 and pushes the address of the second element of the GT

onto the stack. This provides dynamic linker a word to reference for

identification purposes. It then transfers control to the third GOT entry which

transfers control to the dynamic linker. The stack is then un-winded and it

then retrieves the identifying information and finds the absolute address for

the symbol. The absolute address is stored in the related GOT entry and the

82 Portable Executable File Format

control is handed over to the requested function. Dynamic linking is

accomplished by indirection and abstraction because, any further calls to this

function will jump directly to PLT0 since the GOT entry is modified.

Application makes a call to PLT when it does not know before hand what

address it is calling. If the address has not been resolved then the it calls

PLT, then jumps to the GOT, if the address has not already been resolved,

control is handed back into the PLT if the address has not been resolved.

The relocation entry is then pushed followed by jump to the first entry in

the PLT, which then hands control to the dynamic linker.

 This chapter presents the details of PE file format. The file format

comprises file headers, data directory, section table and various other sections.

It provides the details of import and export tables, Export directory, import

directory, relocation table and debug directory and the thread local storage.

Symbols imported in the file are loaded in the import table while the export

table lists all the symbols imported by the PE file. Further details of PE

specification can be obtained from Microsoft’s website at

www.microsoft.com/whdc/system/platform/firmware/

 Though PE file format is one of the important file formats, Appendix

lists some of the other file formats along with their hex signature which can be

used by IDS/IPS rules to identify the file. The appendix provides the

extension of the other file formats.

PECOFF.mspx.

833.4 Conclusion

3.4 Conclusion

Reversing Binaries for Identifying Vulnerabilities

4.0 Introduction

Vulnerability is defined as a bug or flaw in an application which allows

malicious intruders to compromise the system. In the case of remote code

execution vulnerability, the application takes the user input which can be a

command line parameter that a program receives, a file loaded into the

program, or a packet sent over the network. The input is then used to make a

program stray from its normal execution path. One of the simplest methods to

exploit vulnerability is to make the program crash. However shell codes

injected by the user input can be used to take control of a program.

This chapter discusses various vulnerabilities in an application. By using

case studies of real exploits it discusses the exploitation of vulnerabilities. The

chapter also discusses the identification of these vulnerabilities by analyzing

4.1 Stack Overflow

Buffer can be defined as a contiguous chunk of memory, which consists of

as array or pointer in C. In C code if no bound checking takes place, then a

Figure 1.0 showing the C code attempting to write past the buffer

Even though the code shown in figure 1.0 is valid code, it can be seen that the

program attempts to write past the allocated buffer, which will trigger

unexpected behavior. A stack is generally used whenever a function call is

made. A stack is a contiguous block of memory containing data. Stack pointer

user can write past the buffer.

assembly code.

A. Singh (ed.), Identifying Malicious Code Through Reverse Engineering,

© Springer Science + Business Media, LLC 2009

Advances in Information Security 44, DOI: 10.1007/978-0-387-89468-3_4,

85

point to the top of the data. As shown in figure 3.0, function parameters are

pushed from right to left and are followed by pushing the return address

(return address is the address which needs to be executed when a function

returns.), and frame pointer (FP) on to the stack. A frame pointer is used as a

reference to the local variables and to the function parameters. Local

automatic variables are pushed after the FP

 Figure 2.0 Showing the C code using Buffers

 Function Return Address

 Bottom of Memory

 Top of Memory
Figure 3.0 showing the stack function for C code in 11.0

 The program shown in figure 2.0 is guaranteed to cause unexpected

behavior as a string of length greater than 10 has been copied to a buffer that

has been allocated 10 bytes.

86 Reversing Binaries for Identifying Vulnerabilities

Figure 4.0 showing the assembly for the C code shown in figure 2.0

These extra bytes will run past the buffer, and will overwrite the space,

which has been allocated for FP, return address and so on. The extra bytes

corrupt the process stack and overwrite the functions’ return address. The

code, which must be executed, should be placed in the buffer’s overflowing

area, and hence by overwriting the function’s return address; the intended

code can be executed. Figure 4.0 shows the assembly instruction for the

function foo of the C code shown in figure 2.0. While analyzing the assembly

for stack overflow vulnerability several patterns need to be searched. Stack

size has to be monitored first. This can be identified by instruction SUB ESP

at the beginning of program. As shown in figure 4.0 a SUB ESP, 0C exists.

Functions will have a large local variable space in stack, as they take in a

large buffer and put it on the stack. Once the size of buffer is determined, the

next step will be to identify the pointer to the beginning of that space. This

generally can be identified by searching for a LEA instruction. For example

for the instruction LEA, if the operand is [ESP - 0x15] or [EBP - 0x20], then

the constant should be equivalent to the space being allocated. As shown in

figure 4.0, the string “I am overflowing buffer” gets which is more than 10

bytes gets copied in the allocated space. (as shown in figure 2.0) Mostly

overflow attacks make use of string manipulation routines. For example,

strcpy stops copying when the NULL terminator character is encountered. It

might happen that the caller will supply a string which is long resulting in an

overflow.

4.1 Stack Overflow 87

4.1.1 CAN-2002-1123 Microsoft SQL Server 'Hello' Authentication

Buffer Overflow".

For this vulnerability, the vulnerability exists in the SSnetlib.dll library. The

assembly code is from memory on a Windows 2000 machine with Microsoft

SQL server 2000 SP2. Figure 5.0 shows the malicious assembly code.

Figure 5.0 showing the assembly instruction for the Ssnetlib.dll.

The assembly instruction CALL <JMP.&MSVCRT.strcpy> has two

parameters. The first parameter contains the destination address to which the

data at the address has to be copied; the second parameter refers to the

memory location which contains the TDS payload. The payload is copied into

the memory on stack which is referenced by the first parameter. As seen from

the assembly instruction, the size of the destination buffer is 512 bytes. If the

size of buffer is greater than 512 bytes, an access violation interrupt will be

raised. Also, if the size of the buffer is specified to be small, 0 or NULL bytes,

a large payload will overwrite the return address.

4.1.2 CAN -2004-0399 Exim Buffer Overflow

For CAN-2004-0399, vulnerability existed in processing the sender’s address

when it is supplied to exit by an SMTP command “MAIL FROM:

sender_address”. From the source code analysis shown in 6.0, if the sender’s

email address exceeds 256 bytes, it will result in overflow of fixed size stack

buffer “buffer”. The function sprintf() will result in buffer overflow.

88 Reversing Binaries for Identifying Vulnerabilities

Figure 6.0 showing the vulnerable code

 “Exim Header Syntax Checking Remote Stack Buffer Overrun

Vulnerability”, happens when the vulnerable process copies a malicious string

to a fixed size buffer of 64. The code for the function which can overflow is

shown in figure 6.0. The length of the string is not checked. Headers which

can trigger the vulnerability are “from”, “sender”, “reply-to”, “to”, “cc” and

“bcc” followed by enough spaces to overflow the 64 byte buffer.

Figure 7.0 showing the vulnerable code for Exim Header Syntax Checking

Buffer Overflow.

894.1 Stack Overflow

4.1.3 Stack Checking

The latest version of the MS compiler provides protection against stack

overflow attacks. They achieve stack overflow protection by placing a cookie

between the last local variable and the function’s return value. This cookie

should be validated before the function’s return address. In case of buffer

overflow the value of the cookie will be modified and the execution of the

program will stop. The cookie for the Windows operating system is placed in

a protected module (_security_cookie). The module is initialized by the

_security_init_cookie when the module is loaded and is randomized. The

randomization is based on the current process and the thread ID’s along with

the current time.

4.2 Off-by-One Overflow

In Off-by-One overflows, the operation is performed on a buffer which is

allocated by that size. The string in order to terminate must include a null

byte terminator. It might happen that the string is not terminated by a null

terminator. This will result in a string to edge with another buffer on the stack.

In such a scenario, there will be no separation, between the strings hence

causing an overflow. For example, as shown in figure 8.0, the size of the

buffer is 300. In the function foo three hundred and one ‘A’ are copied in the

buffer. This results in overwriting the null character and hence results in an

Figure 8.0 C code showing Off-by-one error

Off-by-One Overflow.

90 Reversing Binaries for Identifying Vulnerabilities

The assembly instruction for the function foo in the code in figure 8.0 is

shown in figure 9.0. In the assembly code it can be seen that memory is first

allocated then it is filled with FFFA5A5A. Figure 10.0 shows the memory

map. The address 0012FE2C holds the value of the counter. As it can be seen

from the assembly instructions in figure 10.0, the instructions

 INC DWORD PTR SS:[EBP+EDI-130],BL

 CMP DWORD PTR SS:[EBP-4],12C

increments the value at the counter at address 0012FE2C , and compares it

with hexa 12C equivalent to decimal 300. If the value of the counter is less

than 300, the A is copied by using the instruction

 MOV BYTE PTR SS:[EBP+EDI-130], BL

Figure 9.0 Showing the assembly language for the C code shown in the figure

8.0

Figure 10.0 Memory map showing the FFFA5A5A in the allocated space and

counter at address 0012FE2C.

4.2 Off-by-One Overflow 91

The figure 11.0 shows the memory map, for the function foo shown in figure

8.0, when the value of counter a reaches 300. As per the memory map, the

allocated buffer of size 300 is filled with A.

Figure11.0 Memory map showing the FFFA5A5A in the allocated space and

counter holding value of 12C at address 0012FE2C.

However, as in the function foo shown in figure 12.0 the loop gets executed

301 times. The last execution of the loop results in rewriting at the address

space 0012FDC8. As shown in the figure, the value 12C is overwritten with

141. This is due to the Off-by-One error. The value at the address is

overwritten, and as the value 141 is less than 12C, the loop terminates.

However, by carefully crafting exploits, it might be possible to rewrite other

sections of memory.

In figure 12.0 ,Memory map showing the 41 in the allocated space and

counter at address 0012FE2C is overwritten due to the off by one error.

 Sometimes it might happen that the buffers are allocated on the stack,

however, it might not copy enough data to cause an overflow. It might not be

possible to rewrite via the ret. In such a scenario, it is possible to rewrite the

other important data like EBP which might be used later. In Off by One

overflow, overflows comprise overflowing the buffers adjacent to stored EBP

on the stack in a called function. This creates a fake frame for the caller

function. Hence, when the caller function exits, it is forced to use the return

address supplied by an attacker in an overflowed buffer or somewhere else in

memory.

92 Reversing Binaries for Identifying Vulnerabilities

4.2.1 OpenBSD 2.7 FTP Daemon Off-by-One

 A buffer overflow was discovered in OpenBSD distribution in a piece

of code handling directory names. The vulnerable piece of code is shown in

figure 13.0

 MAXPATHLEN is defined in <sys/param.h>,and is of size 1024

bytes. The for() loop correctly bounds variable i to < 1023, such that when the

loop has ended, no byte past npath[1023] should be written with \0. However,

since i is also incremented in the nested statements as ++i it becomes equal to

1024, and npath[1024] is past the end of the allocated buffer space and a null

byte is written into npath[1024], overwriting the least significant byte of EBP.

Figure 13.0 Vulnerable code in OpenBSD FTP Daemon

This can be exploited as an off-by-one overflow. The vulnerability was fixed

using the code shown in figure 14.0 .

Figure 14.0 Modified Code with no Off-by-One Vulnerability

934.2 Off-by-One Overflow

The pointers p and ep guarantee that the closing quotation mark is inserted

only if the end of the buffer npath[1023] has not been achieved yet. Pointer p

is also always less than ep , and is not greater than &npath[sizeof(npath)]-1.

Hence when the code *p='\0'; is executed, the null byte is never written past

the allocated space.

4.2.3 Non-Executable Memory

Non-executable memory can also be used to prevent buffer overflow. There

are certain memory pages which are defined to be non-executable by the

processor. Non-executable memory pages can be used to store data. The

processor will not execute code stored in these memory pages. The operating

system can label stack and data pages as non-executable which will prevent an

attacker from running code on them using buffer overflow. Recent versions

of Intel, AMD processors, IA-64 processors provide support for non-

executable memory. Windows XP service pack 2 and above, Solaris 2,6 and

above and Linux provide support for non-executable memory.

 It might be possible to exploit the system having non-executable

memory. One of technique used is return-to-libc. By using this technique, the

function’s return address is pointed to a well known, function, (runtime

library function or a system API) which will enable access to the process. This

technique defeats non-executable stacks. However it requires complicated

exploits.

4.3 Heap Overflows

Heap is used from dynamic allocation of data. Address space is allocated in

the same segment as stack; however, it grows towards a stack from a higher

Figure 15.0 Showing the memory arrangement.

address to a lower address.

94 Reversing Binaries for Identifying Vulnerabilities

Memory is allocated by the malloc functions like malloc(), HeapAlloc(),

new(). As shown in figure 16.0, the buffers buffer_overflow, buffer_normal

are allocated to size 15. The function strcpy is used to copy the string “normal

buffer” to buffer buffer_normal. In the next instruction, an overlong string is

copied in the buffer buffer_overflow. As shown in figure 17.0, copying overly

long strings in the buffer buffer_overflow results in them overflowing the

allocated heap buffer_normal, and they are copied with the aaaaa. The heap

overflow does not necessarily result in crashing of an executable. Similar

kinds of overflow can be executed on the stack variables, which are located in

the BSS segment.

Figure 16.0 showing C code of heap Overflow

Heaps are arranged as a linked list. In heaps, the pointers to the next and

previous heap are placed before and after the actual block of data. Heap

Overflow or the malloc exploit belongs to the other class of exploits which

can be used to take control of the program. In heap-based overflow, the

program receives data of unexpected lengths which are copied into a small

size buffer.

Figure 17.0 Output of the C code shown in figure

4.3 Heap Overflows 95

This will result in rewriting the address of the block following the heap block

in memory. When the heap manager traverses the modified linked list it will

result in the program crashing. It has to be noted in heap-based overflow that

the Heap grows upwards or the new variable which is created in the heap is

located at the higher memory address. Hence the buffer which overflowed is

located lower on the heap. As shown in figure18.0, heap allocation consists

of a minimum of eight block size. Besides this there is an additional overhead

of eight block. This is known as a heap control block.

Figure 18.0 showing the layout of Heap.

Besides crashing a program as each block has pointer to “next” and “prev”

it might be possible to overwrite memory in address space. To prevent heap

based overflow the canary value has to be placed between all the variables, on

the heap space. This canary value must not be altered through out the

execution of a program.

4.3.1 Heap Based Overflows

Linux OS makes use of dlmalloc. The heap memory is organized into chunks.

The chunks contain the information which is used by dlmalloc to allocate free

memory efficiently.

Figure 32.0 Heap Memory from dlmalloc’s view.

96 Reversing Binaries for Identifying Vulnerabilities

The value of the prev_size element contains the size of the chunk of the

previous to the current one. The value exists only when the chunk before it is

unallocated. Under this scenario, when the chunk of the previous to current

one is allocated, the prev_size is not used and is used by the data element to

save four bytes. The size of the currently allocated chunk is stored in the size

element. It has to be noted that four is added to the length argument and it is

then rounded to the next double word boundary when the function call malloc

is called. It might happen that some of the bits are set to zero due to rounding,

in such a case, dmalloc uses them as flags for attributes on the current chunk.

For exploitation of a heap, the lowest most bit is important. This bit holds the

value of PREV_INUSE flag, which indicates whether the previous chunk is

allocated or not. The element data denotes the space allocated by the malloc()

returned as a pointer. In this space, data used by the application is copied.

When the free function call is made, the dlmalloc first checks if the

neighboring blocks are free. If the neighboring blocks are free, then the

neighboring chunk is merged with the current chunk providing a large block

of free memory.

Figure 33.0 showing freed dlmalloc block.

The fd and bk pointers which stand for forward and backward replace the first

eight bytes of the previously used memory. Whenever free is called, a check

is made to ensure if there are any unallocated chunks. The unused memory is

the old memory which was in the chunk. It has to be noted that in dlmalloc,

management information for the memory chunks is stored in-band with the

data. When a chunk of memory is unallocated using free(), then the chunk is

checked to ensure that it borders the top-most chunk. It might happen that the

chunk which is being freed is set to “not-in-use”. In such a scenario, the

precious chunk is taken from the linked list. It is then merged with the chunk

which is currently free.

Prev_size

Size

fd

bk

Unused Memory

974.3 Heap Overflows

Figure 33.0 showing a vulnerable program using malloc.

 In figure 33.0, strcpy is performed without bounds checking into the

buffer_overflow buffer. The pointer *buffer_overflow points to 200 bytes of

memory. If the input is more than 200 bytes, then it will overflow *buffer

normal as the two chunks are adjacent in memory. The prev_size, size and

data of the buffer_normal will be overwritten. This vulnerability can be

exploited by crafting a malicious chunk of fd and bk pointers which control

the order of the linked list. The fd and bk pointers will have to be changed for

the address to be overwritten with the address of the exploit code. It might

happen that the overflowed chunk can be at the border of the top-most chunk.

In such a scenario, a macro unlink can be used.

Figure 34.0 showing psuedo code for unlink macro.

As the value of the bk and the fd pointer can be manipulated, a fake chunk can

be crafted. For the fake chunk, the size value has the least significant bit set to

0 (PREV_INUSE off). The prev_size and size value has to be small enough.

Large values may return an in memory access error. It also has to be noted

that 12 has to be subtracted from the address which we are trying to overwrite.

98 Reversing Binaries for Identifying Vulnerabilities

Figure 35.0 showing fake chunk

The address of the return location -12 will overwrite bk +8. A jump

instruction has to be inserted at the return address. This will get past the

malicious instruction at the return address + 8. Figure 36.0 shows the two

chunks, after the overflow occurs with the chunk. The overwritten chunk is

unlinked when the second free in vulnerable program is called. For the exploit

code to get executed, the pointer bk should point to it.

Figure 36.0 showing over written chunk

The vulnerability exists in MJPEG codec routine. The reason of the

vulnerability is inappropriate validity that results in the mismatch between the

buffer allocation size and the number of bytes to be read.

AVI File format:

Figure 36.1 is the structure diagram describing the RIFF from of the MPEG

AVI format.

994.3 Heap Overflows

Figure 36.1 showing the RIFF diagram from MPEG AVI format.

Brief Technical Details

When MJPEG AVI format file is encountered in DirectX software, AVI filter

communicates with the MJPEG decoder filter. At the time of establishing the

communication with MJPEG decoder, information about the dimension of the

image is sent. This dimension information is required at the initialization

because output sample buffer is allocated accordingly. As AVI filter should

know the information about the dimension of the image the dimension

information is indicated in a BITMAPINFOHEADER structure. This

BITMAPINFOHEADER structure is found at the stream format chunk. So

the memory allocation for streaming is based on the dimension information

present in the BITMAPINFOHEADER structure.

MJPEG data format has internal header that indicates the dimension

information about the image. MJPEG decoder parsers the dimension

information stored in the header and accordingly determines the number of

bytes to be read in the allocated buffer. Its mandate to ensure image

dimensions information stored in BITMAPINFOHEADER and MJPEG

internal header should match.

Manipulating AVI file

To exploit this vulnerability, the malicious AVI file should indicate the

dimension (size) information of image stored in the BITMAPINFOHEADER

less than the dimension information indicated by the header of MJEPEG file.

This will make number of byte to read greater than allocation size which in

turn results in heap overflow.

This can be achieved either by decreasing the dimension indicated in

the image size tag in BITMAPINFOHEADER structure or by increasing the

size indicated in the MJEPEG structure.

100 Reversing Binaries for Identifying Vulnerabilities

Approach 1:

Decreasing the number indicated in the image size tag in

BITMAPINFOHEADER structure Use “010” editor to manipulate the value

BITMAPINFOHEADER as indicated below

 Figure 36.2 Snapshot of file using 010 editor using original value

Approach 2:

Increasing the size indicated in the following MJEPEG header structure.

This header structure is preceded with each I-frame(in steaming sub chuck).

Header code (4 bytes)

width (4 bytes, integer, MSB)

height (4 bytes, integer, MSB)

aspectRatioCode (4 bytes, integer, MSB)

frameRateCode (4 bytes, integer, MSB)

bitRate (4 bytes, integer, MSB)

vbvBufferSize (4 bytes, integer, MSB)

constrainedParamFlag (4 bytes, integer, MSB)

By increasing the dimension of the image in the above data structure will

result into the heap overflow.

1014.3 Heap Overflows

Note: - we cannot write exploit by only using approach 1

Figure 36.3 showing manipulated value

Reversing to analyze Vulnerability

The fix for this vulnerability is available with the patch “KB951698”. The

name of the vulnerable binary is quartz.dll Apply bindiff on vulnerable

binary with the patched binary (quarts.dll) Figure 36.4 is the output of the

bindiff showing the list of the functions that are changed

102 Reversing Binaries for Identifying Vulnerabilities

Figure 36.4 showing the output of bindiff function. .

There are approximately 50 functions that have been changed for the patch

binary.

Figure 36.5 showing functions which have been modified.

Carefully analyzing the function sub_7488AB68 (ID 8) will take close to

the routine where the fixed code has been added. The address of the routine

in which validation has be added 74882EBA and its equivalent subroutine in

vulnerable dll is at 74882EFC

Vulnerability 1: -

1034.3 Heap Overflows

The assembly code shown in figure 36.6 is vulnerable because the size of

image (number of bytes to be read) is calculated using the parameter present

in JEPEG header and the JEPEG header parameters are not validated against

the parameters stored in the BITMAPINFOHEADER that is used for

calculating the size for allocating memory.

Figure 36.6 showing the assembly

Vulnerability 2: -

Figure 36.7 shows the code for data into the streaming buffer. The filling of

buffer is done in reverse order. If the pointers into the allocated buffer

decrement below the beginning of the allocated streaming buffer the rest of

the scan lines are read into a stack buffer of size 0x2000. The code shown in

figure 36.7 is vulnerable as the scan line can be of any size and the size of the

buffer is 0x2000. This can result into buffer overflow.

104 Reversing Binaries for Identifying Vulnerabilities

Figure 36.7 shows the assembly code

Writing Exploit:-

The binary can be exploited in various ways. Following are the two

techniques that can be used to write an exploit

Technique 1:-

1. Change the width value stored in the JPEG header such that it

becomes greater than the “biwidth” value stored in

BITMAPINFOHEADER structure.

2. This will result in heap overflow.

Following is the reason

The following two lines of the “vulnerable code 1 snippet”

calculates the number of bytes for each scan line

.text:74882FC2 mov esi, [eax+4] ;

.text:74882FC5 imul esi, [edi+224h] ;

Here the first line access “biwidth” value stored in

BITMAPINFOHEADER structure and the second statement is

access the JPEG header information to calculate the number

bytes for each scan line. if we increase this value in the JPEG

header heap overflow can very easily be triggered. That can

1054.3 Heap Overflows

result in overwriting the next pointer value of the heap data

structure.

Technique 2:-

1. Change the value of “biheight” member of

BITMAPINFOHEADER structure such that the image height

stored in the JPEG header should be greater then the

BITMAPINFOHEADER.biheight. This will force the binary to fill

scan lines in the buffer which is of size 2000.

Following is the reason for it

Reading size is calculated by referring the

BITMAPINFOHEADER.biheight. Please refer following line

from the “vulnerable code 1 snippet”

.text:74882FD8 mov eax, [eax+8]

.text:74882FDB dec eax

.text:74882FDC imul eax, esi
Here the first line access “biheight” value stored in

BITMAPINFOHEADER structure.

Number of time loop need to be executed is determined by the

value stored as a height field in the JPEG header.

Please refer following line from the “vulnerable code 2

snippet”

.text:74883068 cmp ecx, [edi+278h]

.text:7488306E jnb short loc_748830AA

 So buffer overflow can be triggered if we change the JPEG header

accordingly and rest of the scan lines will be stored in the buffer of limited

size.

4.4 Integer Overflows

 Integer overflow happens because of the values held in a numeric data

types are limited by the data type’s size in bytes. In ANSCI C, the character’s

size is 1 Byte, short takes 2 bytes, integer takes 2 bytes and long is 4 bytes in

size. The range of data types depends upon whether they are signed or

unsigned. A signed 2 bytes short will take values from -32767 and 32767 ,

whereas an unsigned short will take values between 0 and 65535. This is

important to note because if an attempt is made to put a value in a data type

which is too small to hold for unsigned data types, the higher order bits will

be dropped. Modulo arithmetic is performed on the value before they are

stored.

106 Reversing Binaries for Identifying Vulnerabilities

 Stored = value % (limit +1)

This ensures that high unsigned values fit the data type. Explaining it with an

example, if the maximum value which an unsigned data type can hold is

65535 and if a value of 65536 is entered, then 0 will be stored. This can be

computed by 65536 % (62535 +1) = 0

Figure 19.0 C code showing signed and unsigned comparison

For signed data types, the first half of the range (0 thru 0111 1111 1111 1111)

are used for positive numbers. This is done in order of least to greatest. The

second half of the range is used for negative numbers in order of least to

greatest. So if the maximum limit for the signed type is 32767, and if 32768 is

being stored in the data type, it will be represented as 1000 0000 0000 0000

and the value -32768 will be stored.

Figure 20.0 showing the assembly instruction for signed and unsigned

comparison in C code shown in figure 19.0

4.4 Integer Overflows 107

Conditional and unconditional codes are the two different conditional codes

in IA-32 assembly language. The conditional code used in a conditional jump

exposes the exact data type, used in comparison, in the original source code.

As shown in figure 20.0, if the instruction JG /JLE/JGE is used then it denotes

that the buffer length/length is treated as a signed integer by the compiler. If

the instruction JA/JBE/JAE/JNB is used, then the compiler is treating buffer

length/length as the unsigned integer.

4.4.1 Types Integer Overflow

 Signed overflow bugs happen generally when

• Signed integers are used for comparison

• Signed integers are used for arithmetic

• Unsigned integers are compared with the signed integer.

Figure 21.0 c code for signed integer comparison leading to overflow.

 Signed integer overflow is explained with the example shown in

figure 21.0. As shown in figure 21.0, the signed integer b has value 0x7fffffff.

Character buffer of size 20 is allocated. As shown in figure 22.0, in the

assembly, this value is loaded in the DWORD PTR SS:[EBP-4]. This value is

then moved to EDI, which is incremented by 1. This is then compared with

20. Since the instruction JGE is used in comparison, from assembly it can be

inferred that the value 0x7fffffff stored in ESI, has been declared as signed.

So the instruction EDI +1, will result in -2147483648. This is less than 0x14

so the comparison will be false, resulting in a buffer overflow. Here, it can be

108 Reversing Binaries for Identifying Vulnerabilities

seen that signed integer comparison can result in passing the checks. In many

of the applications, these types of checks are present to ensure that the value

passed inside the buffer is less than the size of the buffer. Buffer length should

always be an unsigned value as there cannot be negative or zero buffer length.

Hence signed buffer checks which can be identified by instructions

JG/JGE/JLE can result in an overflow.

Figure 22.0 showing the assembly code for the C code shown in figure 7.0

For signed integer overflow, movsx is the other instruction which should be

monitored in assembly code for overflow.

 movsx esi, DWORD PTR SS:[EBP-4]

Figure 23.0 copying using movsx instructions

 The code shows in Figure 23.0 copies the parameters from stack to esi

register. It treats the length stored in SS:[EBP-4] as signed short and hence the

sign extends it. In case, the parameter (which could be buffer length) has its

most significant bit set, it will be converted into a negative 32- bit number.

For example, if the length is 0x9600 (equivalent to 38400 in decimal), it will

become 0xffff9600 (equivalent to 4294940160). If the esi holds the length of

data which can be copied in the buffer, the instruction shown in figure 23.0

will result in buffer overflow. If the length is defined as an unsigned short, the

instruction MOVZX will be used. MOVZX makes the extended integer zero

during conversion. The most significant word in the target 32-bit integer is set

to zero. Hence the numeric value remains the same.

1094.4 Integer Overflows

Figure 24.0 C code for the Unsigned Integer overflow.

 Like the signed integer overflow, unsigned integers can also be used

to perform overflow. As discussed earlier for an unsigned integer, if an

attempt is made to store the value which is greater than the data type, the

integer will be truncated. As shown in figure 24.0 for the C code, the value of

the unsigned int b is 0xffffffff. The operation b+1, will result in 0, hence the

buffer will be allocated and will be overflowed by strcmp instruction. As

shown in figure 25.0, in the assembly, the instruction JNB is used. JNB

denotes that the value stored in EDI is an unsigned integer.

Figure 25.0 Assembly code for the C code shown in figure 9.0 showing

unsigned Integer Overflow.

110 Reversing Binaries for Identifying Vulnerabilities

In an application code, the integer overflow can be exploited, when

calculation is made, about how large a buffer must be allocated. Application

code generally makes use of calloc or malloc routines. These routines aid the

reservation of space by multiplying the number of elements by the size of an

object. Signed/unsigned checks can lead to error conditions. If there are some

comparison checks signed bufferlen <= Max buffer size, or if the signed

buffer length is less than zero, it will satisfy the condition that the signed

buffer length should be less than the maximum buffer size. It also has to be

noted that the buffer lengths which are entered as inputs cannot be negative

values. A negative value is treated as a very large number. If the memory

allocation has been done based on an unsigned integer data type or if the value

is wrapped around then there will be very less memory. If the comparison is

done based on the signed integer value, and some other number, or the

condition signed integer value is less than the other number value, and if the

other number value has overflowed into a negative value, the comparison will

pass.

Overflow

 A new memory buffer is allocated when the CVS server gets a Max-

dotdot command and converts it into a numeric string. This numeric string is

passed by the CVS client to an integer value. For storing the path names, the

CVS server allocates the memory which is two times larger than the supplied

number in the Max-dotdot command along with the length of original

temporary path names. The C code shown in figure 26.0 shows the vulnerable

function in the server.c file which performs the calculation.

Figure 26.0 Vulnerable C code in Server.c

 It can be seen that the lim is defined as a signed integer. 2147483634 is the

minimum value for a 32 bit platform which will result in integer overflow.

The code that fills the new buffer is shown in figure 27.0

1114.4 Integer Overflows

4.4.2 CAN-2004-0417 CVS Max dotdot Protocol Command Integer

Figure 27.0 C code filling the buffer

Figure 28.0 Format Specifiers in C function

In case of integer overflow, the memory buffer will be too small to store all

the data copied to it, hence a heap overflow will be triggered.

4.5 Format String

 Various functions like printf(), fprintf(), vprintf() and sprintf () use

%d It converts an integer to a signed decimal string

%u This converts an integer to an unsigned decimal string

%i This converts an integer to a signed decimal string. An integer may

be in decimal or octal format.

%o This converts the integer to unsigned octal strings

%X This converts an integer to unsigned hexadecimal string

%c This converts an integer to the Unicode characters it represents

%s This inserts the string

%f This converts the floating point number to a signed decimal string

%e or %E This converts the floating point to a scientific notation in the form

x.yyye+-zz. If the precision is 0, then no decimal point is displayed in

the output.

%g or %G Uses exponential format if exponent is greater than -4 or less than

precision, decimal format otherwise.

%n Records the number of characters so far.

%r String (converts any python object using repr()).

%p The void * pointer argument is printed in hexadecimal

formats strings. The format gives the programmer a degree of control over

112 Reversing Binaries for Identifying Vulnerabilities

how the text should be printed, therefore allowing the programmer to control

the output. Figure 28.0 shows the list of format specifiers in the C function.

These format functions take the format strings as the first argument and an

equal number of variables for the format strings. Therefore, if four format

specifiers exist in a function there will be four arguments in the function. The

format string controls the behavior of the format function. The function

retrieves the parameters requested by the format string from the stack. For

example for the C instruction

printf (“ The value of %d : %08x\n", a, &a);

from within the printf function the stack looks like:

ESP → Return Address

ESP+4 → Offset of string “The value of %d : %08x\n”

ESP+8 →Value of a

ESP+12 → Address of a

The format function now parses the format string ‘a’, by reading a single

character at a time. If it is not `%', the character is copied to the output. If the

character is %, the character behind the `%' specifies the type of parameter

that should be evaluated. The string \%%" has a special meaning: it is used to

print the escape character `%'. Every other parameter relates to data, which is

located on the stack. The format specifiers direct the function to read from the

corresponding arguments. If the address is not in the valid range it might

result in a read violation

4.5.1 Format String Vulnerability

The behavior of the function can be controlled by using format strings. Poorly

written C programs use printf(string1) (lets call it a first function), instead of

printf(“%s”,string1) (Lets call it a second function). Functionally, the first

function works well. The format function is passed to the address of the

string, as compared to the address of a format string and it iterates the printing

of each character.

4.5 Format String 113

Figure 29.0 showing C code with and without format specifiers.

 However, if String string1 = “%08x.%08x.%08x.%08x” in the function

printf(string) and is passed as a parameter then, the printf function will print

the address of memory locations instead of the value of the string. This is

exploited for format string vulnerability. The functions that are prone to

format string vulnerabilities are printf, fprintf, sprintf, snprintf, vfprintf,

vprintf, vsprintf, vsnprintf.

Figure 30.0 showing the assembly code by IDA pro for the C code in figure

The figure 29.0 shows the C code with and without format specifiers. The first

printf() does not makes use of format specifiers and is prone to format string

vulnerability. In the case of the second printf(), a format specifier is specified.

Figure 30.0 shows the assembly instructions by using IDA pro disassembler

of the C code shown in figure 29.0. For the printf without format specifiers, as

seen in assembly, only the variable is pushed on to the stack., where as for the

second printf, format specifiers along with the variable are pushed onto the

114 Reversing Binaries for Identifying Vulnerabilities

stack. While analyzing binaries which are not prone to format string

vulnerability, if n number of arguments is pushed on to the stack before

making a call to the printf family of functions, an n number of format

specifiers should be pushed onto the stack. If the number of format specifiers

is less than number of arguments, then the assembly code is prone to format

string vulnerability.

 The attack due to the format string vulnerability can be divided into

three parts: format string vulnerability denial of service attack; format string

vulnerability reading attack and format string vulnerability writing attack. The

format specifier “%n”, directs the function to store the number of characters

that have been output so far to an integer indicated by a pointer to an

argument. This conversion specifier gives the attacker a capability to write to

the random memory address and perform format string write attacks.

4.5.2 Format String Denial of Service Attack

The format strings vulnerabilities can be used to make a process crash. In

UNIX, illegal pointer access is caught by a kernel and it sends a SIGSEGV

signal. The process is terminated and dumps core. Supplying format strings

can easily trigger invalid pointer accesses and hence perform a denial of

service attack.

 Figure 31.0 printf functions with format specifiers

In figure 31.0, %d will display memory from an address that is supplied on

the stack, which stores other data also. If a large number of %d are specified,

then an instruction might read from illegal addresses, which are not mapped.

This in turn will result in a denial of service attack. Similarly, %s can also be

used to read the data from the stack. Again, a large number of %s will try to

read the data from illegal addresses, which again will result in a crash.

4.5.3 Format String Vulnerability Reading Attack

Format strings can be used to perform reading attacks where the content of

stacks can be viewed. For example, C instructions like

printf(“%08x.%08x.%08x.%08x\n”); will give the following output:

0012ffc0.0040212bc.00000001.00144d28.00144440

1154.5 Format String

This is a partial dump of the stack memory. Based on the size of the format

string and the size of the output buffer, a large part of stack memory can be

reconstructed. It is also possible to retrieve the entire stack memory. The %s

format parameter can be used to read from the memory address. The %s can

retrieve the address and print the desired value. If, in the C instruction the

fourth parameter is %s,

 printf("%08x.%08x.%08x.%s\n");

the value located at the address 0x00144440 will be printed. If the value at the

address is a string or the address is of a legal value, then the value will be

printed. This information can in turn be used to find out the flow of program,

local variables and can be used for successful exploitation. If the value of

address is not a legal value, as seen earlier, it will result in a segmentation

fault. %x, %d and %c are the format specifiers which can be used to view the

content of stacks. %x and %d retrieve the double word from the stack and

display them in hexadecimal or decimal format. The format specifier %x

displays only one double word, which is located on the top of the stack.

Format specifier %c, retrieves the paired double word from the stack. It then

converts it into the single byte of type character and displays it as a character,

discarding the three most significant bytes. Hence, N specifiers display 4*N

bytes. The maximum depth is equal to 2*Y, where Y is the maximum allowed

4.6 SEH (Structure Exception Handler)

SEH (Structure Exception Handler) is one of the most reliable ways to gain

the code execution flow to execute shell code through stack-based overflow.

SEH structure exception handler mechanism can be used to handle both

hardware as well as software exceptions. Through SEH, the application can

dynamically register and unregister exception handler function in SEH chain.

And at the time of exception, this SEH chain is accessed and each of the

exception handlers in the chain is given the opportunity to either handle the

exception or pass it on to the next exception handler. The way the chain is

maintained and accessed is discussed below. The sample asm program shown

in figure 38.1 explains it in detail.

size of user input in bytes.

116 Reversing Binaries for Identifying Vulnerabilities

 Figure 38.1 C code having exception

The list of registered exception handler functions is maintained through linked

list data structure. This list is called SEH chain. The nodes of these lists are

created on the stack.
The structure of each node of this link list is as follows:-

_EXCEPTION_REGISTRATION {

 struc prev dd ?

 handler dd ?

}_EXCEPTION_REGISTRATION ends

The operating system maintains this list for each and every thread.

The disassembled code shown in figure 38.2 of application in figure 38.1

will explain in great detail about the internals how SEH blocks are registered

and maintained in the chain. The instruction in figure 38.2 registers the new

exception handler in the SEH chain.

4.6 SEH (Structure Exception Handler) 117

Figure 38.2 showing the disassembled code of C

The first instruction PUSH XXXX. Push is the address of the exception

handler function. This is the function that needs to be called when an

exception occurs while executing instruction the current thread contest. After

pushing the exception handler function a next instruction is to Push the fs[0]

value. Fs registers can be used to access the thread environment block of

currently executing thread. And the very first four byte of the thread

environment block points to the head of the SEH chain. The instruction push

fs[0] pushes the start of the SEH chain address in Stack. Pushing these two

values creates a complete exception node in the stack. And the current value

of ESP points to this newly created node. The next instruction mov fs[0] , esp

moves the address of the newly created node into the TEB of currently

executing thread. This implies three instructions are creating a node and

adding an exception handler node in the SEH chain in which the first two

instruction is creating a node in the stack and the last instruction adds the

newly created node at the top of the list. When an exception occurs in any

thread this chain in accessed and exception handlers listed in the top of the

node is invoked first.

The SHE chain can be viewed in olly dbg though the option view >> SEH

chain. As shown in figure 38.3

118 Reversing Binaries for Identifying Vulnerabilities

 Figure 38.3 showing SEH chain

4.6.1 Exploiting the SEH

As shown in figure 38.3, each exception register node is created on the stack

and hence SHE vulnerability can be exploited. As already discussed each

structure record contains the address of the handler function and pointer to the

next record. The handler function address is referred and it is called when any

exception occurs while executing any instruction. By overwriting the

exception handler routine function address that is stored in the stack and flow

of the application can be changed and further it can result in execution of

malicious code. The code in figure 38.4 is of sample vulnerable application

with SEH implementation

1194.6 SEH (Structure Exception Handler)

Figure 38.4 showing sample SEH application

The figure 38.5 shows the status of the stack after creating and registering the

exception handler node in SEH chain. As shown in the figure 38.5 the node is

created in the stack. Here the vulnerability is application is coping the

command line parameter passed to an application in a stack buffer without

verifying the length of the buffer which can lead to buffer overflow. The

figure 38.5 also shows where the passed command line parameter is getting

stored in the buffer.

Figure 38.6 shows how this vulnerability is exploited in such a way that it

overwrites the function address of exception handler routine that can further

lead in changing the execution flow of an application. Here by providing very

long string of “AAAA….. “ overwite the stack location that stores the value

of the exception hander functions address with the value 0x41414141. Now if

this application raises any exception then rather than executing the original

exception handler location 0x41414141 will get invoked. Instead of writing

“AAA…” exploit code can be written which can lead to the execution of the

code.

120 Reversing Binaries for Identifying Vulnerabilities

Figure 38.5 Showing the status of stack

Figure 38.6 Showing the exploitation of the vulnerability

1214.6 SEH (Structure Exception Handler)

 4.7 Writing Exploits General Concepts

Writing exploits involve understanding vulnerabilities in an application. This

section discusses the stack overflow and heap overflow which is important in

4.7.1 Stack Overflow Exploits

Figure 37.0 shows the stack organization of IA-32 Intel 32 Bit x86

architecture. The stack on IA-32 grows downwards. This is unlike SPARC

architecture where the stack grows upwards. LIFO (Last in First Out) is used

to push variables in the stack. The stack stores parameters, buffers and return

Figure 37.0 Stack organization of IA-32.

Figure 38.0 shows two buffers, buffer1 [] and buffer2 [] pushed on the stack.

As can be seen, buffer1 [] was the first buffer pushed on to the stack and

buffer2 [] was the second buffer pushed on to the stack.

 If buffer1[] as shown in figure 38.0 has more elements than its size, it

will end up writing in the buffer buffer2[]. EIP stores the return address.

Overflowing buffer1[] will rewrite EIP as well and the attacker can control the

memory address that is returned to the calling function.

Figure 38.0 showing the buffer stored in the Stack for IA-32.

writing exploits.

address for the function.

122 Reversing Binaries for Identifying Vulnerabilities

Once the control to process is reached, the next step involves diverting the

control. This is accomplished by pointing the EIP to the payload. For

successful exploitation, the payload has to be first injected in the buffer. Then

the controlled EIP is directed to the payload to be executed.

 To execute an exploit, it is mandatory that the large buffer is inserted

in the overflowable buffer which can be accomplished by automating buffer

filling over the network or crafting a malicious file which is accessed by the

vulnerable process.

The custom operational code (opcode) which is required to control the

instruction pointer on the remote machine is called as injection vector. The

4.8 The Location of the Payload

 The payload and the injection vector can be located at different

places. However a stack can be used for both. When a stack is used for the

both the payload and the injection vector then if the size of the payload starts

before the injection vector, it has to be ensured that no collision occurs

between them. In case of collision, a jump has to be included in the payload

such that the payload can jump over the injection code and can continue on

the other side of the injection vector. The other option would be to place the

payload at a location which is different from the injection vector. A possible

candidate for storing the payload is the buffer where the program stores its

information. Files on disk, environment variables controlled by a local user,

environment variables which are passed within a web request and the user

controlled fields within a network protocol are some of the places which can

be used to store the payload. After injecting the payload, the instruction

pointer will have to be loaded with the address of the payload. Storing the

payload somewhere other than the stack provides the inherent advantage that

the payload can be of a large size.

 Once the payload has been injected, the task is to get the instruction

pointer to load the address of the payload. The beauty of storing the payload

somewhere other than the stack is that amazingly tight and difficult-to-exploit

objective of the injection vector is to ready the payload to be executed.

4.8 The Location of the Payload 123

4.7.2 Injection Techniques

4.7.3 Optimizing the Injection Vector

buffer overflows suddenly become possible (e.g., we are free from constraints

on the size of the payload). A single “off-by-one” error can still be used to

take control of a computer.

 After loading the payload, the next step involves executing the

payload. The saved EIP, on the stack has to be modified so that it points to the

modified payload. The next section discusses the techniques for jumping to

the payload.

4.8.1 Direct Jump (Guessing Offsets)

By using this method, the overflow code is jumped directly to the memory

location. The direct jump means that the overflow code was told to jump

directly to a specific location in memory. In this case, it might happen that

the address of the stack may contain null characters so the payload has to be

placed before the injector. This limits the available space for the payload. The

address of the payload might not always be the same. Hence, a reasonable

guess has to be made about the address. Generally, this method is preferred in

UNIX as in UNIX the null character does not contain the address of the stack

in UNIX. The direct jump is generally preferred when the payload is placed

some where other than on the stack.

4.8.2 Blind Return

The ret instruction causes the EIP to be loaded with the value in ESP, which

points to the current stack location. When the ret is executed, the topmost

value in the stack is loaded into the EIP resulting in the EIP pointing to the

new code address. If the EIP is injected with a value which points to the ret

instruction, then the value stored at the ESP is loaded in the ESI.

4.8.3 pop Return

It might happen that the top of the stack does not point to the address of the

buffer storing the exploit code. In such a scenario, the injected EIP can be set

to point to a series of pop instructions which is followed by ret. Before a value

can be used for the EIP register, a series of pop operations will result in

popping the stack a number of times. Adding a series of pop techniques will

work, if the address which is near the top of the stack points to within the

attacker’s buffer. Before the useful address is reached, the attacker points to a

series of pop instructions.

124 Reversing Binaries for Identifying Vulnerabilities

- pop EBX 5B

- pop ECX 59

- pop EAX 58

- pop ESI 5E

- pop EDI 5F

- pop EBP 5D

- ret C3

4.8.4 No Operation Sled

Injection of the direct address of payload requires guessing the exact location

of payload in memory. It is quite possible that the payload is not always at the

same address. It commonly occurs that the software package is recompiled on

different systems with different compilers having different optimization

techniques. To overcome the limitations of precise addresses of exploit code,

NOP sleds are used. An NOP instruction does nothing, however it takes one

byte of address space. These NOPs are added before the exploit code. Since

the buffer now comprises NOPs followed by the exploit code, any address

containing NOPs can be used. If the return address contains an address of any

of the NOP instructions then firstly the NOP instructions are executed

followed by the exploit code. It has to be noted that the larger the size of NOP

sleds, the less precision is required in guessing the address of the payload.

This method is used when the register is loaded with the address which points

to the exploit code. The EIP will have to be loaded with the instruction which

enables the call to register. This method is commonly used in Windows based

exploits as there are many commands at fixed addresses in the kernel32.dll.

This method can be used at any process.

- call EAX FF D0
- call EBX FF D3
- call ECX FF D1
- call EDX FF D2
- call ESI FF D6
- call EDI FF D7
- call ESP FF D4

1254.8 The Location of the Payload

4.8.5 Call Register

4.8.6 Push Return

The push return method is used when the register is loaded with the address of

the exploit code and the call instruction cannot be located. The other option

will be to locate the push <register> which is followed by ret.

4.8.7 Calculating Offset

If the attacker has access to a computer, exploit code can be compiled directly

onto the computer. The injection code can calculate its base and assumed that

the program which is being attacked has the same base. To execute exploit

code, the attacker in such a scenario will have to specify the offset from this

address for a direct jump, i.e., the base+offset value of the attacking code is

similar to the victim code.

4.9 Conclusion

Poorly written code can lead to vulnerable software. The most commonly

found vulnerabilities are buffer overflow, heap overflow, integer overflow and

format string vulnerability. In most cases, the source code of the software

may not be available so binary analysis is required. Format string

vulnerability in software can be identified by monitoring the printf family of

functions in IDA pro. The number of arguments passed to the function should

be equivalent to the format specifiers. For stack overflow, the stack size has to

be monitored first. This can be identified by monitoring SUB ESP instructions

in the assembly code of stack. The SUB ESP instruction will give the size of

stack. After the stack size is determined to check for buffer overflow,

generally the LEA instruction can be monitored. The operand to the LEA

instruction will identify the usage of the allocated space. Off-by-one overflow

happens when the string is not terminated by a null character. It might lead to

other important data like EBP, which might be used later. Integer overflow

happens because the values held in a numeric data type are limited by the data

type’s size in bytes. For identifying integer overflows, it has to be first

identified in the assembly if the buffer length is signed or unsigned. If the

instruction JG /JLE/JGE is used, then it denotes that the buffer length/length

is treated as a signed integer by the compiler, if the instruction

JA/JBE/JAE/JNB is used then the compiler is treating buffer length/length as

the unsigned integer. Heaps are stored in memory as a linked list with each

pointer having a pointer to the next one. Heap overflow results in rewriting

the pointer to the next block. Heap overflow may not result in a crash.

126 Reversing Binaries for Identifying Vulnerabilities

Fundamental of Reverse Engineering

5.0 Introduction

Reverse engineering is a technique to find the design of a software from its

binary. Vulnerability researchers, academics, and security professionals use

this technique to learn design of software for various proposes such as writing

an anti privacy wrapper softwares. Reverse engineering is also used in

malware analysis, copyright and patent litigation, discovery of undocumented

APS, malware creation, recovery of data from the proprietary file formats. If

the aim of reverse engineering is to copy or duplicate programs, it may result

in a copyright violation. However in most of the cases, the licensed use of

software prohibits reverse engineering.

This chapter discusses the anti-reversing techniques, which include concept of

disassembly, anti debugging, and virtual machine detection. This is followed

by a discussion on the packers and their protection mechanism. Packers,

which disassemble the binaries, also prevent reverse engineering of software.

The chapter concludes with the unpacking mechanisms. Some of these

sections also appeared in the book titled “Vulnerability Analysis and Defense

5.1 Anti-Reversing Method

Anti-reversing methods are applied in malicious software, licenses copy

protections and digital rights management. Anti-reversing methods are

included in binary to increase the complexity of reversing the binary file.

Anti-reversing methods evade the tools that are used by the reverse engineers

by exploiting its design, implementation, functionalities or vulnerabilities.

Although anti-reversing methods reduce the efficiency of an application,

increasing its code size and sometimes affects the robustness of an

application; however anti reversing is required to prevent from binary

analysis. Anti-reversing methods are commonly used for performing anti-

disassembly, self-modifying codes, anti debugging, and for virtual machine

detection.

 for the Internet”.

A. Singh (ed.), Identifying Malicious Code Through Reverse Engineering,

© Springer Science + Business Media, LLC 2009

Advances in Information Security 44, DOI: 10.1007/978-0-387-89468-3_5,

127

 5.2.1 Anti Disassembly

Anti Disassembly is an anti-reversing methods used to

disassemblers. This enables the disassemblers to generate incorrect

disassembled code. The knowledge of anti disassembly will help to better

understand the working of disassembler. There are basically two types of

dissemblers. They are Linear Sweep Disassembler and Recursive Traversal

Disassembler.

5.2.1.1 Linear Sweep Disassembler

Linear Sweep Disassembler as shown in figure 1 starts it’s processing from

the beginning of the software binary and decodes the instructions in sequence

until it reaches the end of the binary.

Figure 1: Working Logic of Liner Sweep Disassembler

128 Fundamental of Reverse Engineering

evade

Start

Yes

No

If count

< size

Stop

Read information

stored from

PEheader

Disassemble the CPU

instructions located

at file offset (

start + count)

Increment count =
count +

disassembled
instruction length

Set variables start, size & count

Start = File offset of the code

Section;

size = size of the code section;

Count = 0;

Although the method is quite fast, it cannot be used to detect and handle

data/code mix-up regions in the executable. Data code mix-up region is a

location in the executable binary, where certain data bytes are present within

the instruction byte. One of the very common examples of data code as shown

in figure 2 mix-up is a switch table generated by the compiler, while using

switch statements

Figure 2: Data Code Mix-up

As shown in figure 2, the address values from 00401054 to 00401064 are non-

executable data bytes, which are present before and after the executable

instruction bytes. In order to optimize the performance of the application,

some compliers add data within the code block, making it difficult for Linear

Sweep Disassembler to disassemble the code. The Linear Sweep

Disassembler assumes every byte as an executable instruction byte, failing to

determine whether the byte has to be treated as data or instruction. This results

in generation of incorrect assembly instructions. A Linear Sweep disassembler

 5.1 Anti-Reversing Method 129

will generate assembly code (as shown in figure 3) in the place of switch

table, as the Linear Sweep disassembler will treat jump table as an instruction

byte and not as a data byte.

Figure 3: Disassembled Jump Table

5.2.1.2 Recursive Traversal Disassembler

Recursive Traversal Disassemblers are smart disassemblers compared to the

Linear Sweep disassemblers. Similar to Linear Sweep Disassemblers,

Recursive Traversal Disassemblers start processing the binary from the

beginning of a file. In contrast to the Linear Sweep Disassembler, the order of

processing of bytes in the software binary file is not sequential. The

disassembling flow depends on the control flow of the program. The next byte

to be processed depends on the last processed instruction. If the last processed

instruction is jump/call then jump/call instruction will be processed else the

next consecutive instruction will be processed. The flow chart shown in

Figure 5 shows the working of Recursive Traversal Disassembler

Due to its complex logic, recursive traversal disassemblers are not as fast as

Linear Sweep disassemblers. The disassembled output generated by recursive

traversal disassemblers is more accurate compared to the results generated by

a Linear Sweep disassembler. The control flow processing strategy helps

recursive disassembler in easily identifying data code mix-up.

130 Fundamental of Reverse Engineering

Figure 5 Working Logic of Recursive Traversal Disassembler

5.2.1.3 Evasion of Disassemble

In order to evade any disassembler (Linear Sweep or recursive) data-code

mix-up blocks has to be added in such a way that the code disassembler gets

confused in identifying the correct data byte, at the time of disassembling.

However, it should be ensured that it does not affect the execution or behavior

of the program.

The Linear Sweep disassembler can be successfully evaded by using the code

shown in figure 6.0. Linear Sweep disassemblers are easier to evade.

131 5.1 Anti-Reversing Method

Start

Read PEheader

Information

Disassemble

CPU instruction

at offset next

Next = jmp

offset

If End of

subroutine

No

if opcode is

uncondition

al jmp

If opcode is

conditional

jmp / call

No

Yes

Yes

Yes

Path =

path-1;

Stop

Next =

branch [path]

branch [path] = next + last

instruction length;

path = path + 1;

next = offset of

conditional jmp/call;

next = next +

last disassembled

instruction length

If path

< 0

Yes

No

No

Set Variables next, path
and branch

next = entry point;
path = 0;

branch [MAX] = {0};

Figure 6:0 Showing the Linear Sweep Disassembler.

The equivalent assembly code for the figure shown in 6.0 is shown in figure

7.0

Figure 7.0 Showing the resulting assembly of the code in shown in figure

6.0

The code shown in figure 7.0 will insert short jumps of one byte within an

application code. The figure 8.0 shows how the assembly block incorporates

the short jump instruction.

 Figure 8.0 Assembly block incorporating the short jump instruction

If the code shown in figure 8.0 is opened in any Linear Sweep Disassembler,

it will generate disassembled output as shown in figure 9.0.

 Figure 9.0 Assembly block generated by Linear Sweep Disassembler

It can be inferred that the Linear Sweep Disassembler is not able to

disassemble last two instructions correctly. As shown in figure 9.0 rather than

interpreting byte at address 0040102E as data byte and next two instructions

as cmp and jge, it is interpreting the next two instructions as jnb and pop. So

these kind of short jumps are well enough to evade Linear Sweep

Disassembler. These short jumps are basically inserting a data byte in between

the application code. The Linear Sweep Disassembler works on an

assumption that every byte in code section belongs to executable instruction.

Hence, it is interpreting the byte at address 0040102E as a part of CPU

instruction. However, as it is a non-executable data byte at the time of

execution, the control never comes to the instruction 0040102E, resulting in a

132 Fundamental of Reverse Engineering

wrong disassembly. However, the disassembled output generated by any

Recursive Traversal Disassembler (like IDA pxro or ollydbg) easily detects

this short jump technique and generates the following correct sequence of

instruction.

 Figure 10.0 Assembly code generated by the Recursive Traversal

Disassembler.

As the processing of Recursive Traversal Disassembler depends on the control

flow of the application, it can easily identify the non-executable data bytes.

Evading Recursive Traversal Disassembler can be slight challenging. It can be

done using opaque predicate. Opaque predicates are false condition

statements, which appear to be conditional but in reality it is unconditional.

The conditional branch splits the flow into two paths. The opaque predicates,

inserts condition in such a way that one path leads to the real code and the

other path to the junk code. The junk code never gets executed.

Figure 11.0 Showing Opaque Predicate

As shown in figure 11.0 the first instruction in this block assigns value 4 to

eax register. The next instruction compares the value stored in eax (which is

4) with the constant value 6. The comparison will never be equal. Hence,

every time the comparison fails, the control will be passed to the code under

the label real code. This is an ideal example of opaque predicate. Although

the above code looks like a conditional jump, in reality, the code will only

have a fixed flow.

133 5.1 Anti-Reversing Method

Figure 12.0 Code with opaque predicate block.

Code in figure 12.0 shows the assembly code of a sample application

containing opaque predicate block. This code when opened in any recursive

traversal disassembler will give the output as shown in figure shown in figure

13.0

Figure 13.0 Code showing the output by recursive traversal disassembler.

As shown in figure 13 the recursive traversal disassembler is not able to

disassemble the last two instructions correctly. Rather than interpreting the

byte at address 00401036 as data and next instructions as mov and cmp,

recursive traversal disassemblers interprets the instructions as je, jne and jpo.

Opening the code in linear sweep disassembler also gives incorrect

disassembled output. Hence, opaque instruction can be used to evade both the

Linear Sweep and the Recursive Traversal dissasembler. The value of eax and

flag register might change, which may lead to the execution of junk code or

some other code. Execution of junk code may affect the control flow and the

data flow of the program. Hence, to design an opaque instruction, it is

required that the flow of instructions should be as desired and value of

registers should ensure the correctness of control flow and the data flow.

Figure 14.0 Flag based opaque predicate.

The figure 14.0 shows one of the opaque instructions in which the value of

register is not getting altered. As shown in figure 14.0 the first two

134 Fundamental of Reverse Engineering

instructions are checking overflow flags of the flag register and if it is set then

the control will jump to condition 2 or it will jump to condition 1. The

instruction present here is again checking for overflow. However, it is ensured

that the control is passed to the Real_code.

Figure 15.0 shows the disassembled code with and without anti disassembly

macro.

Figure 16.0 showing the code using anti disassembly macro.

The figure 15.0 shows the sample code of an application that does not uses

any anti-disassembly method. Figure 16.0 shows the equivalent code using

anti-disassembly macro to evade the disassembler like OllyDbg.

5.2.2 Self-modifying code

Self-modifying code (SMC) is one of the methods to prevent application from

reverse engineering. This method can further be extended to some advanced

135 5.1 Anti-Reversing Method

method like polymorphism and metamorphism to prevent disassembly from

generating the original code of an application. SMC is the method in which

the application itself modifies its instruction at the time of execution. By

incorporating SMC application developers hide their protected code from

disassembler.

The use of SMC in protecting the application from getting reverse engineered

is explained with the help of the following case study. The figure 17.0 shows

a sample function called Check Number, which checks whether the integer is

odd or even.

Figure 17.0 showing a sample function which checks if integer is odd or

even.

The figure 18.0 shows the sample code, which can be used to prevent the

disassembler from the disassembling the highlighted code shown in 17.0

The code shown in the figure 18.0 when opened in any disassembler will not

show the instructions, which are highlighted in figure 17.0. The application

does not store the instruction set but it is XORing the bytes with the key

0xBADB. At the time of execution the code show in 19.0 block decodes the

instructions and revives it back to its original state so that it can be executed

correctly. Hence, it becomes tough for a disassembler to disassemble the code.

136 Fundamental of Reverse Engineering

Figure 18.0 Sample function with SCM implementation.

Figure 19.0 Decoding routines.

The processing unit block (decryption block length) of the decryption routine

is DWORD (four bytes). So three more nops are added to make the size a

multiple of four.

137 5.1 Anti-Reversing Method

Dynamic/Runtime decryption and encryption is another method,

which works similar to that of SMC. This is used for anti-reversing.

Application developer needs to add certain predefined macros in their

application code, which they want to protect from getting reversed.

Figure 20.0 showing template of Dynamic Encryption\Decryption

As show in figure 20.0 CRYPT_BEGINE and CRYPT_END are the macros

used to select a block of code, which has to be protected from getting

reversed. At the time of packing or protecting, binary packer will encrypt the

selected block of code and insert certain bytes, to transfer control to the

routine that is responsible for decrypting and encrypting the byte instruction

before and after its execution. As the instruction bytes are encrypted, the

executable in disassembler will result in some junk instructions at the time of

opening. However, to analyze the code protected by dynamic encryption and

decryption, a hardware break point needs to be applied to the protected

instruction without breaking the encryption algorithm.

As the decryption routine is called first, it that decrypts the protected

instruction and passes the control to the decrypted instruction byte, thereby

applying the hardware break point to the protected code, resulting in

termination of the execution. This retrieves the original code.

Polymorphism is another technique, which can be used by the virus writers to

evade virus-detecting software. Polymorphism is the technique in which the

virus code in each infected machine is represented differently/in a unique

way. Signature based antivirus, searches for unique pattern. Changing the

pattern of bytes for each infection makes the job more complicated. The

concept being for every new victim a new key is generated and the body of

the virus is encrypted with the help of the new key. For each infection, this

makes byte pattern completely different. More advanced polymorphic engines

not only change the key for protecting the sensitive code - they also change

the algorithm of encryption and decryption, so that they don’t get detected on

the basis of encryption or decryption routine. Apart from this a good

polymorphic engine will have the ability to generate different set of

instructions, which do same work. For a code, it is possible to have n number

of equivalent codes, which will perform the same operation but will look

different.

138 Fundamental of Reverse Engineering

Figure 21.0 showing instructions

For example, the code shown in figure 21.0 is equivalent to the code shown in

figure 22.0

Figure 22.0 showing instructions equivalent to 20.0

A good polymorphic engine also generates calls to dummy routines,

conditional jumps and junk instructions. For hiding the control flow and the

data flow of the program, various polymorphic engine generators insert calls

to dummy routine, which tries to evade reverse engineering. Anti-debugging

instructions are basically used to detect the presence of debugger and if a

debugger is found then the program tries to evade it. Some of the most

common anti-debugging techniques are discussed in the anti-debugging

section. A combination of these techniques can make reversing of the

decryption routine a complex task.

5.2.3 Virtual Machine Obfuscation

One of the most effective and powerful ways to achieve obfuscation is by

implementing virtual machine. Basically in this technique the protected

instruction sets are translated into P-codes, which are interpreted and executed

at the runtime environment of virtual machine. Complete virtual machine

implementation is required to reverse the protected code. The virtual machine

provides the inherent advantage of modifying the standard CPU instruction

present in executable into some customized form, which can be interpreted

and executed only at the run time. Since the protected instruction does not

have standard CPU instruction in the executable,, the debugger will not

recognize and disassemble these instructions. At the time of execution, these

customized instructions are executed by customized runtime environment.

Hence, it does not require decoding these protected instructions back to the

original form.

139 5.1 Anti-Reversing Method

Figure 23.0 showing virtual machine implementation.

5.3 Anti Debugging Techniques

This section discusses about some of the debugger checks. Debugger Checks

present in the executable helps to detect the availability of debugger in order

to prevent the application from getting debugged IsdebuggerPresent window

API is one of the API that can be used to find whether the application is

getting debugged or not. The return type of this function is Boolean, true in

case the application is debugged else false. So the simplest method is to call

this API and check for the return value. The code shown in the figure 23.0

Figure 24.0 code showing the details of Iddebugger API

The First statement MOV EAX, DWORD PTR FS:[18] is moving the value

of current executing thread environment block into EAX register. The

instruction EAX, DWORD PTR DS:[EAX+30] is storing the value of

Process Environment Block in the register EAX . It then returns the value

PEB, which stores the status of the process. If the status value is 0, the process

is not debugged. If the status value is non zero, the process is debugged.

 Instead of calling the API, for detecting debugger program, the

application detects the presence of debugger by embedding the code as shown

in the figure 25.0 as the API calls can be easily recognized and patched.

shows the details of the API.

140 Fundamental of Reverse Engineering

stored in “BeingDebugged”. “Being Debugged” is a structure member of

Figure 25.0 code showing embedding of Instructions

NtGlobalFlag present inside PEB, can also be used to detect debugger. The

figure shown in figure 26.0 displays the code which can be used to detect

debugger using NtGlobalFlag.

 Figure 26.0 Code using NtGlobalFlag.

As shown in the figure 26.0, anti global present at offset 0x68 in process

environment block is accessed, checked and compared with the value 0x70. If

the value is equal to 0x70, then debugger is present else the program is

executing directly. LdrInitializeThunk is the loader initialization routine that

is executed first on the execution of the process. The function checks for

GlobalFlag settings and then sets PEB→ NtGlobal field accordingly. The

function LdrInitializeThunk present in ntdll needs to be examined. If there is

no defined values for "GlobalFlag" under the registry Image File Execution

Options (HKM\software\Microsoft\WindowsNT\CurrentVersion\IMAGE File

Execution option) and if the flag PEB→BeingDebugged is set, then

PEB→NtGlobalFlag will be filled with the flag value 0x70. The flag value

0x70 is OR of

#define FLG_HEAP_ENABLE_TAIL_CHECK 0x00000010

#define FLG_HEAP_ENABLE_FREE_CHECK 0x00000020

#define FLG_HEAP_VALIDATE_PARAMETERS 0x00000040

The presence of debugger can also be checked by CPU cycles. Several CPU

cycles are spent by the debugger event handling. Hence, a check on CPU

cycle can be used to find out the presence of debugger. If the number of CPU

cycles is more than the normal execution then it means that the application

has began to debug. In order to find out the CPU cycles, x86 instruction

RTDSC can be used. RTDC stands for Read Time Stamp Counter. The output

of the instruction is a 64-bit value in registers EDX:EAX represents the count

of ticks from the processor reset. The code shown in the figure 26.0 can be

used to detect debugger.

5.3 Anti Debugging Techniques 141

 Figure 27.0 Code used to detect debugger

 In the code shown in the figure 26.0, it is assumed that the normal CPU cycle

spent for the execution between the two consecutive RTDC instructions will

be less then 0x250. The presence of debugger can also be checked by

verifying the access token privilege. For any process “setdebugprivilege” is

disabled. However, if any debugger loads the application then it gets enabled.

When the debugger has this privilege enabled in its security token, it inherits

the security token of the debugger at the time of loading any process into

debugger. This enables the “setdebugprivilege” for the application.

The access token privilege check can be done by the application by

performing successful operation with the help of debug privilege flags. One of

the operations is to open a process like CSRSS.EXE, which permits access

only to the system process . If the application is able to open these processes

correctly then it can be inferred that the debug privilege in the application is

enabled.

5.3.1 Breakpoints

For debugging purposes break ponts are used. Break points causes intentional

pausing of program. Break point can be classified into two parts.

5.3.1.1. Software breakpoint

In order to apply software break point the byte present at a particular location

is modified and replaced with 0xCC. This will result in the generation of

interrupt 3 i.e. breakpoint interrupt. Debugger debugging the program catches

this exception and replaces the original byte at the location (where 0xCC is

inserted) before passing the control back to the application.

142 Fundamental of Reverse Engineering

 5.3.1.2 Hardware breakpoint

Debugger uses CPU debug register in order to apply hardware break points.

There are 8 debug registers present in the system ranging from DR0-DR7.

The processor uses only 6 debug resisters in order to control the debug

feature. These registers can be accessed by the variable of MOV instruction;

however, these instruction have to be executed at privilege zero.

These registers store the linear address of the breakpoint. The stored linear

address can be the same as the physical addresses or it needs to be translated

to the physical addresses. The translation is required when the paging is

enabled.

The break point conditions is further determined with the help of

debug register DR7. It also determines selective enabling and disabling of

these conditions. For each debug address register DR0-DR3 there is a

corresponding R/W0 to R/W4 field. These fields are of two-bit size. These

two bits determine the type of action, which will result in termination of the

execution. The description of these bits is as follows.

00 à Break on Execution

01 à Break on write

10 à Not Defined.

11 à Break on data read or write

Similarly, Len0 to Len4 fields of size two bits is associated with the

corresponding debug address register DR0-DR3.

Its meaning can be interpreted as follows.

00 à one byte length

01 à two-byte length

10 à undefined

11à four-byte lengths

If the break point condition is set as break on execution and the length bits

contains value other than 00, then it will be interpreted as invalid condition.

As shown in the figure, bits L0 to L3 and G0 to G3 indicate selective

enabling of the corresponding four debug addresses at D0-D3. If local

enabling is set it means that the

breakpoint is applicable for a particular task. However, if global enabling is

set then it signifies that the condition is enabled for all the tasks. The local

enable bits get reset after every task switching, in order to avoid unwanted

break point condition for other tasks. In order to apply breakpoint condition to

all tasks, global enabling flag is used. The significance of LE and GE bits are

used to control “exact data breakpoint match” feature of the processor. If any

of these bits are set then processor slows down the execution so that data

1435.3 Anti Debugging Techniques

breakpoint is reported on the instruction that causes them. DR6 is the debug

status register which is accessed by the debugger to determine the debug

condition that has occurred. When the processor detects an enabled debug

exception, it sets the low-order bits of this register (0,1,2,3) before entering

the debug exception handler.

The software break point can be detected as follows. To rehash, the software

break point is applied by replacing the byte with 0xCC (interrupt 3). So, the

software break point can be detected by searching for the presence of 0xCC at

the start of instruction.

Calculating the check sum of the protected block and comparing it with the

original checksum can also detect software break point. After applying

software break point, the bytes are replaced with 0xCC. Hence, the new

checksum will be different from the old one.

5.3.1.3 Detecting Hardware Breakpoint

Detection of hardware breakpoint requires the debug register to check the

values stored inside them. The debug registers cannot be accessed in ring3. In

order to access the value of Debug register, structure exception handler can be

used;

it reads the value stored inside the debug register. Using the Context structure,

which is passed as a parameter to the exception handler, can check the value

of debug register. The code shown in the figure 27.0 shows the detection of

hardware break point.

 Figure 28.0 showing the detection of hardware breakpoint.

144 Fundamental of Reverse Engineering

5.4 Virtual Machine Detection

Use of VmWare for the malware analysis is discussed in the chapter of

Malware. The use of Virtual machine provides the following functionality.

• Multiple Operating system

• Snap shot of the machine state

• Easy To Monitor

Since security researcher use Virtual Machine for the analysis of malwares,

the malware writer generally adds some checks to detect the presence of

virtual machine environment. In the next subsection, detection of VM is

The run time environment of the virtual machine contains signatures like

VMware, vmx. in the process/services, filename and registry entry. This can

be searched to detect the presence of virtual machine. This technique can be

evaded through hooking the system calls and manipulating its input and

output.

5.4.2 Checking system tables

Vmwares can be detected by putting checks on the pointers, which point to

the kernel data structure like Interrupt Descriptor Table (IDT), Global

Descriptor Table (GDT) and Local Descriptor Table (LDT). This technique

provides the inherent advantage to almost all kind of Virtual machines,

Windows and Linux operating system. It might be difficult to evade, as this

technique is an integral part of the virtual machine environment.

One of the common examples for the implementation of the system table

check (for the detection of virtual machine) is redpill, developed by Joanna

Rutkowska. Redpill uses an instruction called SIDT (Store Interrupt

Descriptor Table).SIDT stores the address of interrupt Descriptor table pointer

in the memory through the register Interrupt Descriptor Table Register

(IDTR). The logic inside this tool is based on the fact that the location of IDT

in the host machine is far lesser than the location of IDT in the guest machine.

The code compares the location of IDT with the constant 0xD0000000 and if

the value is found to be less than 0xD0000000 then the tool will assume that it

discussed.

5.4 Virtual Machine Detection

145

5.4.1 Checking fingerprint inside memory, file system and registry

is running on the host machine else it will give a message that it is running on

the Virtual machine. This tool is found to be very acute in Linux as well as

Windows Operating System. The code shown in figure 29.0 demonstrate the

approach.

 Figure 29.0 showing the code of redpill.

Extending the logic of Red Pill, Tobias Klein has written a new tool Scoopy

Suite, which apart from checking IDT also checks the location of GDT, LDT

using SIDT, SGDT, and SLDT processor instructions. The logic inside the

tool is same as that of the red pill. Rather than depending only on IDT, this

tool counts on other structures as well.

In Windows Operating System, it checks the starting byte of the pointer to

IDT structure; if the starting byte starts with 0x80 then it will assume that it is

running in the host system. In Linux, it checks the value with 0xc0. Then the

code checks for the logic, to compare the pointer in GDT’s location with

0xc0XXXXXX. If the pointer of LDT is located at 0x0000, then it means that

it is running in the real system else it is running in the Virtual PC.

5.4.3 Checking processor instruction set

Processor instructions can be used to detect virtual machine. There are few

non-standard x86 instructions that are used by Virtual PC for guest-to-host

communication. However, execution of these non-standard instructions in

host PC would result in processor exception or error. Operating system will

search for the exception handler to handle the exception or will terminate the

program. These instructions can be used by the application to determine if the

application is running in Virtual PC or in the host system. The tool like

VMdetect uses the process instruction set check, to detect Virtual PC.

The code shown in the figure 30.0 can be used to detect VMWare. The

IsInsideVMWare() will return True if it is a Virtual Machine else it will return

False.

146 Fundamental of Reverse Engineering

Figure 30.0 Code for detection of VmWare.

The magic number 0x564D5868 (in ASCII ’VMXh’) is loaded in the EAX

register. The parameter of the command that has to be sent is loaded in EBX

register. The command is loaded in the ECX register. For example, in the

figure 29.0, the command 0x0A, is loaded. This command returns the version

number of VMWare through the port ‘VX’. After the execution, if ’VMXh’

is present in the EBX register, then it can be inferred that VMWare is being

5.5 Unpacking

Executable packing is carried out to compress and/or encode the original code

and data present in the executable. At the time of execution, the original

data/code is decoded back and the execution control is passed to it, Packing

process does not affect the functional behavior of any application. Hence it is

difficult for the normal user to identify it. One of the main usage of packing

an executable is to prevent reverse engineering or to obfuscate the content of

used.

5.5 Unpacking

147

the executable. Although it cannot prevent reverse engineering, it can make

reverse engineering more tedious. Loading the packed executable in any

disassembler will generate invalid set of instructions. Hence it is required to

unpack the executable for a better and effective analysis of a packed

executable. The following section discusses the process of unpacking of any

window binary

5.5.1 Manual Unpacking of Software

The process of manual unpacking can be classified into 3 steps. The first step

involves finding the original entry point of an executable, second step

involves taking process dump and the third involves fixing entries in import

address table. After performing the first two steps, static analysis on the code

can be performed. After performing the third step, dynamic analysis can be

performed.

Before explaining the intricacies to find original entry point, few of the

basic concepts about packing process, will be discussed. To protect

application from getting reverse, packer encodes/encrypts the original

application so that when opened in any disassembler / debugger, it will not

show the correct or the original sequence of instructions. However, at the time

of execution the encrypted code has to be decoded or decrypted back to

interpret the original executable properly. So to achieve the objective of

decoding the binary correctly, packers add some instructions in the packed

executable, in order to unpack the encoded/encrypted executable. The

instructions added by the packer perform decoding/decryption process. The

process of decryption is performed in memory at the time of execution,

restoring the state of the application. Packer works on any standard and

precompiled executable. Hence, the unpacking module has to be independent

of the original application. Packer works on any standard and precompiled

executable. Hence, the unpacking module has to be independent of the

original application.

148 Fundamental of Reverse Engineering

5.5.1.1 Finding an Original Entry Point of an Executable

Figure 31.0 showing the instruction for Unpacking code module.

Packers can add independent instructions (unpacking module) in the encoded

executable. These instructions perform the task of decrypting the encoded

executables. It can either be added after encode/encrypted executable image

or before encode/encrypted executable image. Almost all the packers, add

instruction after encode/encrypted executable image (means at higher virtual

offset). The second approach of adding instructions is to decoded or decrypt

executable before the executable image that is not feasible. In a 32 bit

windows all executable get mapped/loaded at base address 0x00400000. At

the time of linking (after compilation) the linker links an application by

assuming that application will get loaded at a base address of 0x00400000. If

the instruction to decode is added before the executable, then the virtual

address of the original image base of an application is no longer 0x00400000,

as the original resolved virtual address by the linker will be different from the

currently loaded executable. This will result in an abnormal behavior of an

executable.

1495.5 Unpacking

 Figure 32.0 Figure for unpacking instructions.

As shown in the figure 32.0 the instruction

.text:00401025 jmp ds:off_401054[edx*4]

at address 00401025 is referring to a memory location 00401054. The linker

has resolved these address references with references to image base, which is

0x00400000. If a packet adds any bytes before the image of original

application, then the original code of an application will get mapped to the

base address greater than 0x040000 (>= x0040000 + size of the byte added).

At the time of execution, address resolved by the linker will result in an

abnormal crash. Hence, all the address references should be done with

reference to the new image base. This in turn will add to the complexity of

address references. So, the packets prefer to load the unpacking instructions

after the image of original applications, which will be used to find the

Original Entry Point (OEP).

The unpacking instructions are present after the encoded executable image.

However, it gets the control to decode the encoded bytes, post which, it

transfers the control to decode the original instruction

To find the original entry point, first load the application in any debugger

and turn on the tracing options. This will log all executed instructions with their

corresponding address. When the program is executed the debugger will log all

executed instructions and will update the trace log accordingly. Terminate the

150 Fundamental of Reverse Engineering

process, when the original application gets executed. During the analysis of

trace logs, it can be inferred that the higher address instructions will get

executed first. To find the instruction, which transfers control from higher

address to lower address, locate two consecutive instructions such that the

address of first instruction is high with reference to second instruction. As

discussed above, the unpacking module located at higher address passes control

to the decode application at lower address, where the lower address is the OEP.

 Another approach for finding OEP is by using Ollydbg plugin in

OllyBone developed by Joe Stewart. Details of this plugin are available at

http://www.joestewart.org/ollybone. The plugin uses the concept of split TLB.

The Intel processor to protect memory pages from execution while allowing

read/write access uses TLB. TLB is a cache buffer used for virtual – physical

address translation. It is used to enhance the performance of the system by

providing information without performing an expensive page table walk

operation for memory access. Whenever the CPU wants to access the given

virtual address, it will first check if the TLB has a cached translation. If the

address is found on the TLB it will take the physical address from TLB,

otherwise it will perform a page table look up for the required address

translation.

 Intel from Pentium architecture has started providing split TLB

architecture. In split TLB architecture, virtual/physical translations are cached

into two independent TLBs depending on the access type. Virtual / physical

translations are cached into two independent TLB’s. This depends upon the

access type. Instruction fetch related memory access will load the ITLB and

update the DTLB for data access. OllyBone comprises of a windows kernel

driver that implements the page protection for arbitrary memory page access.

It also consists of an OllyDb plugin that can be used to communicate with the

driver. If a protected page is accessed by the CPU for execution, it will result

in calling of INT1 handler, which in turn will return the control to OllyDbg.

The following steps have to be followed to use this plug-in for finding out

OEP.

• Load the packed program.

• Find out which section in the memory map will be executing when

the unpacking is finished. Most probably, this section will be the first

section seen through PE Editor.

• Set break-on-execute flag for the section, which will load the kernel

driver into memory and protect the desired physical memory pages

from being executed.

• Run the program.

• OllyDbg will break when CPU tries to execute the first instruction in

the selected section. The instruction at which OllyDbg breaks will be

the original entry point (OEP).

1515.5 Unpacking

Some packers not only add unpacking code in the higher address of the newly

created segment but also make use of free space of the section in original

application, where OEP resides. To explain it further, the figure 32.0 shows

the original application before packing.

Figure 33.0 showing the original application before unpacking

Figure 34.0 shows the original application after unpacking

The last four segments are added by the packer after encoding the

original executable image. Before packing, the virtual size of the .text

segment was 0x3d33 and after packing , the packing routines has increased to

a size of 0x4000. 0x4000 is the maximum value that a packer can specify.

The virtual size of the section is 0x4000 and the virtual offset is 0x1000. If the

virtual size is more than 0x4000, then it will result in overlapping with the

next section. (The next section starts from 0xt5000).

152 Fundamental of Reverse Engineering

Figure 35.0 showing the working of packers

As shown in the figure 35.0 the packers add some code in the void space

available in the first section. These unpacking modules are located at

different segments and transfers control to the OEP. If the packing modules

are located in the void space, then it will be difficult to find the OEP by using

the methods, which makes use of plugins like OllyBonE.

Besides the above-mentioned methods there are some other methods, which

can be used to find out the original entry point. This technique drives its

strength from the fact that at the time of linking, the executable linker prep

ends a start module at the entry point of an application This module is

executed first before executing the main program and it sets the environment

ready for execution. Since the linker adds similar code to all the application,

one of the techniques for finding the OEP is to locate for the signature of

startup module. Few plugins like generic OEP finder of Peid, stores the

signature of various startup modules of different linkers. Using the plugins

like generic OEP finder can use these signatures to find OEP.

. In order to locate OEP manually, break points can be applied on the

following API’s

• GetVersion

• GetVersionExA

• GetEnvironmentVariable

• LoadLibrary

• Getproc address

• IniHeap

Unpacking routine

Code and data added

by packers

Data Segment

Resource Segment

Passing

control

Original

Application Code

Segment

Instructions added

by packers

1535.5 Unpacking

These APIs are called by the startup routines in order to set up the execution

environment. By applying break point, API’s will become closer to OEP. As

the startup module calls these API’s, and the address of the startup module is

OEP, the start of the function needs to be determined. The start of the function

can be recognized by the following code.

Push ebp

Mov ebp,esp

These two instructions are used to create a stack frame; local variables can be

accessed through ebp register. However, some compilers that perform

optimization might not use ebp register for creating stack frame instead use a

ebp as a general purpose register. So these instructions may not be at the start

of the program.

5.5.1.2 Taking Memory Dump

After locating the original entry point the next step is to get the memory dump

of a process. Memory dump of the process, which will result in the original

executable, is done after the completion of unpacking process. To get the

memory dump the application will have to be looped at the OEP. Following

steps can be used to get the memory dump.

Figure 36.0 showing the memory dump.

154 Fundamental of Reverse Engineering

 • Apply hardware break point at the OEP.

 In case of software break point, debugger puts byte 0xCC at the

location where the breakpoint is applied. This results in interrupt 3, post

which, the debugger takes the control and replaces 0xcc with original bytes.

Since the unpacking module gets control first (before control reaches to OEP)

the unpacking instruction will treat 0xcc as an encode byte and will try to

decode it, which will result in generation of junk code and the application will

crash. In case of hardware beak point, the information is stored in the debug

register and no code change is required.

• Executing the Application. The Application will stop at OEP.

• Change the instruction and make it loop back to itself and then detach it

from debugger.

• Next step will be to take the memory dump. Proc dump (available at) can

be used to take the dump of process.

 Figure 37.0 showing proc dump

• Proc dump reads the information stored in the PE header to find out

segment information like virtual size and virtual address. It then dumps

the segments and file as it is in the hard disk. Now the size in file address

and RVA size has to be the same. But the section information in the

original application contains different virtual and raw address. So the

dump needs to be fixed

1555.5 Unpacking

 Figure 38.0 Showing Information from PE header

• The next step involves the changing of the entry point of the PE

header to the original entry point using PE editor.

• Open the application in a hex editor like “cygus hex editor” (available

for download). Go to the entry point of the application and restore the

original byte, which was present before replacing it with jmp loop

back bytes.

The memory dump from original application, which can be obtained from

the above-mentioned steps, can be loaded in IDA pro for static analysis.

Dynamic analysis requires reconstruction of import symbols and import

data structures. Imported functions, are certain functions in the caller module,

which doesn’t have the code in the executable. The executable stores only

certain information about these functions; loader use this information at load

time and stores the addresses of the functions in the executable enabling the

caller modules to call the functions using these addresses.

For storing these imports information and address, certain well-defined data

structures should be known in order to reconstruct them. The following code

represents the NTHeader present inside the PEheader.

Struct IMAGE_NT_HEADERS STRUCTURE {

Signature dd ?

IMAGE_FILE_HEADER FileHeader

156 Fundamental of Reverse Engineering

5.5.1.3 Import Table Reconstruction

IMAGE_OPTIONAL_HEADER optionalHeader

}

Data directory is the last member of IMAGE_OPTIONAL_HEADER. Data

directory is an array 16 IMAGE_DATA_DIRECTORY structure. Following

figure will explain about these structures as discussed above.

Each member of the data directory is a structure called

IMAGE_DATA_DIRECTORY, which has the following definition: -

Struct IMAGE_DATA_DIRECTORY STRUCT {

 VirtualAddress dd ?

 ISize dd ?

}

Second entry comprises of Import Symbols. So the virtual Address field

will contain the address of IMAGE_IMPORT_DESCRIPTOR array and isize

will contains the size in byte of the data structure pointed by virtual address.

 Figure 39.0 showing the import table structure

IMAGE_IMPORT_DESCRIPTOR is a data structure, which stores

information about import symbols. There is one

IMAGE_IMPORT_DESCRIPTOR for each imported executable. The end of

the IMAGE_IMPORT_DESCRIPTOR array is indicated by an entry with

fields all set to 0.

The structure of IMAGE_IMPORT_DESCRIPTOR is as follows: -

Struct IMAGE_IMPORT_DESCRIPTOR STRUCT {

OriginalFirstThunk dd ?

TimeDateStamp dd ?

ForwarderChain dd ?

1575.5 Unpacking

Name1 dd ?

FirstThunk dd ?

}

Figure 40.0 Shows the organization of IMAGE_IMPORT_DESCRIPTOR

using PEView.

IMAGE_IMPORT_DESCRIPTOR comprises of many structures, which

are discussed below.

• OriginalFirstThunk: - This member contains the RVA (pointer)

of an array of IMAGE_TUNK_DATA structures.

IMAGE_TUNK_DATA structures, is a union of dword size. This

can be considered as a pointer to IMAGE_IMPORT_BY_NAME

structure. The structure of IMAGE_IMPORT_BY_NAME

structure is as follows: -

IMAGE_IMPORT_BY_NAME STRUCT

 Hint

 Name1

IMAGE_IMPORT_BY_NAME ENDS

 It contains the index of the export table of the DLL. The

loader uses this field so that it can look up for the function

in the DLL's export table quickly. This value is not

mandatory and in some cases you will find that the linker

will set its value to 0.

158 Fundamental of Reverse Engineering

Figure 41.0 Showing the organization of import data structure.

i. Time/Date Stamp: - After the image is bound, this field is set

to the time/data stamp of the DLL. This field is not

mandatory; it can be zero.

ii. Forwarder Chain: - The index of the first forwarder

reference. This field is not mandatory; it can be zero.

iii. Name: - This member contains the RVA (pointer) of an

ASCII string that contains the name of the DLL.

iv. FirstThunk:- As the name suggests the FirstThunk is very

similar to that of OriginalFirstThunk . Similar to FirstThunk it

also contains pointer (RVA) to array of

IMAGE_THUNK_DATA structures. Although both the

arrays contain same value, they are at different locations in

the executable.

To reconstruct the import, table name of the entire imported API is

required. One of the ways is to search for the name of the imported APIs in

the dump executable. However, the unpacking module may distort the name

of few or all API after using / loading the address, so the method of getting

the list is not reliable. Another method of knowing the name of the API is by

1595.5 Unpacking

using tools like Re-Virgin (available at) or Imp-REC(available at). These

tools require the address and the length of the IAT (Import Address Table as

discussed earlier array of IMAGE_THUNK_DATA structures, it is a location

where loader loads addresses of the imported functions). Hence the location

and the length of IAT is required. To rehash, IAT stores the address of the

API. In order to call the API, the application must refer IAT and the call will

be redirected to IAT.

In order to find out the address of the import table, analysis of the code of

unpacking application is required. This will give the indirect call referring

memory location, which stores the address of the function. This resolves to

determine the instruction template CALL DWORD PTR [XXXXX]. Here

XXXX can be the address or name of the API, as few disassemblers resolved

the name of the API. As shown in figure 41.0 the highlighted instruction,

which is calling the function indirectly by referring the memory location

needs to be determined.

 Figure 42.0 shows the function

Once the instruction template CALL DWORD PTR [XXXXX] is located ,

the next step involves reading the address [XXXXX], or 0x40801C and

jumping to that address. This address will be in the IAT.

160 Fundamental of Reverse Engineering

 Figure 43.0 shows the memory location by using memory view of

Olydbg.

The figure 43.0 figure shows the memory organization at the 0x40801C

desired location. Since the last byte in every DWORD entry ends with 7C,

indicating the address of function of Kernel32.dll, it can be concluded that this

memory is residing inside IAT. Generally the byte in the import tables will be

in an ordered way.

The reason is that, it stores the addresses of API for a dll. The first byte of the

address will be similar. For example, in the enclosed figure, the first byte of

the instruction is 7C. So it can be concluded that the import table will start

from the address xxxx and end at the address xxxxx

By providing the inputs (start address of IAT and the length of IAT) to Re-

Virgin, the name of the API used by the original program can be listed. The

figure 44.0 shows the output of the Re-Virgin tool after providing it with the

address range of IAT.

1615.5 Unpacking

 Figure 44.0 showing the output of Re-Virgin Tool.

Although the name of API can be determined with the help of above

mentioned procedure, the techniques like, import redirection, code emulation

the unpacking process can be made a challenging task.

ImpREC functionality can be extended and customized for a particular packer

through plugins that help to find out the name of the API’s. The following

link will explain how to write plugins for Import REC.After determining the

name of all the API’s used by the application, the next step will be to structure

the import name table such that the loader is able to load the executable.

Manual Import Name Table Reconstruction

There can be two approaches to construct import address. The first approach

can be termed as

• Top to bottom approach. For this

 IMPORT_DESCRIPTOR structure entry then

 IMAGE_TUNK_DATA structure and then following it

 IMAGE_IMPORT_BY_NAME structure is constructed.

• Bottom to Top Approach.

IMAGE_IMPORT_BY_NAME then

IMAGE_TRUNK_DATA and then IMPORT_DESCRIPTOR

162 Fundamental of Reverse Engineering

5.5.1.4 Import redirection and Code emulation

Here, the import table reconstruction will be done by using the second

approach.

Figure 45.0 Shows import table reconstruction.

The first step requires the construction of IMPORT_DESCRIPTOR. The

structure of IMPORT_DESCRIPTOR will be as follows

IMAGE_IMPORT_BY_NAME STRUCT

 Hint dw ?

 Name1 db ?

IMAGE_IMPORT_BY_NAME ENDS

Since the “hint” field is not essential, its value can be set to 0. Since the name

of all API’s used by the steps mentioned in previous section know the

application, the free space is needed in the exe to construct the import name

table. The free space should be long enough such that all the API entries can

be adjusted.

1635.5 Unpacking

START

No

No

No

Yes

STOP

Yes

Yes
Constructed

for all API

Construct
IMAGE_IMPO
RT_BY_NAME

Construct
IMAGE_TUNK

DATA

Construct
IMAGE_IMPORT
_DESCRIPTOR

Constructe
d for all dll

Constructed for
all

IMAGE_IMPORT
_BY_NAME

Figure 46.0 shows the import table reconstruction

Figure 46.0 shows the reconstructed IMAGE_IMPORT_BY_NAME for

the all API’s referring to the list of API names. The above-mentioned figure

shows the entry of IMAGE_IMPORT_BY_NAME for each API containing

the value in Hint as 0, and the name of the API. The next step requires the

reconstruction of IMAGE_TUNK_DATA structure. The

IMAGE_TRUNK_DATA is a structure which contains DWORD (pointer to

IMAGE_IMPORT_BY_NAME entry). Construction of

IMAGE_TUNK_DATA data structure pointing to each

IMAGE_IMPORT_BY_NAME entry will be required. For this, the free

space inside the executable will be required. The free space should be greater

than or equal to (Total number of API +1) * size of (DWORD), so that the

entry for all the API calls will be available. The last entry will contain the

value Zero indicating the end of the entry of IMAGE_TUNK_DATA

structure.

164 Fundamental of Reverse Engineering

Figure 47.0 showing the reconstruction of IMAGE_TRUNK_DATA

Reconstruction of IMAGE_TUNK_DATA is explained in the figure 47.0.

As shown in the figure, the IMAGE_IMPORT_BY_NAME entry for the API,

Dispatch MessageA is at the address 0x0000497E. The final entry will contain

value zero, indicating the termination of the array of this structure. In the

figure 47.0, it can be seen that the value 7E 49 00 00 stored at address

0x00004700 is denoting the address 0x0000497E.

The similar steps will have to be followed for all the API’s. After which the

final step requires the construction of IMPORT_DESCRIPTOR. The structure

of IMPORT_DESCRIPTOR is as follows.

IMAGE_IMPORT_DESCRIPTOR STRUCT

 OriginalFirstThunk dd ?

 TimeDateStamp dd ?

 ForwarderChain dd ?

 Name1 dd ?

 FirstThunk dd ?

IMAGE_IMPORT_DESCRIPTOR ENDS

OriginalFirstThynk: It is a dword, which will point to an array of newly,

reconstructed IMAGE_TUN_DATA structure. For example as shown in the

figure, 46.0 it will contain the value 0x00004700 at the starting RVA of the

array of IMAGE_TUNK_DATA

TimeDateStamp, not a mandatory field so it can be set to zero.

 ForwordChain not a mandatory field so it can be set to zero

1655.5 Unpacking

Name1 is a pointer to the name of the DLL for which reconstruction of the

IMAGE_IMPORT_BY_NAME has been done. In the case shown in the

figure, the RVA of ASCII string of. “Kernel32.dll” is stored.

FirstThunk is a pointer to an array IMAGE_TUNK_DATA structure where

loader will store the address of imported functions for that particular DLL, so

that applications can call these functions. Its address is used throughout the

exe so it remains fixed. Hence, it cannot be changed and it will point to the

array of IMAGE_TUNK_DATA structure, which is already discovered for

finding out the name of the API.

To summarize, the reconstruction of single DLL has been done. The step has

5.6 Conclusion

Software reverse engineering is a very handy mechanism on the binary to

reveal the design of the software. In order to protect the binary from getting

reversed, binary code is added with various anti reversing techniques. Anti

Disassembly technique is used to confuse the disassembler. This forces the

disassemblers to generate incorrect disassembled code by exploiting the

implementation design of the disassemblers. Anti-disassembly techniques can

successfully confuse linear and Recursive Traversal Disassemblers as well.

 Apart from exploiting the implementation design there are also some

other techniques like, Self code modification, dynamic encryption, decryption

which encodes the instruction bytes so that the disassembler does not

disassemble the instruction properly and decode it only at the time of

execution. There is one more technique called as virtual machine runtime

environment, which changes the standard x86 instruction byte into p-codes

that can only be understood and executed by the customized runtime

environment of virtual machine. Anti debugging techniques basically detect

the presence of debugger environment. If the application has already started

debugging, anti debugger does something really bad and exits the program.

Debugging can also be detected through break points. There are two type of

break points namely, software and hardware break point. Software break

points can be detected by checking the integrity of the code and hardware

breakpoints are detected through debug register. Virtual machine (like VM

ware) provides the feature of multiple OS in a machine. There are certain

techniques that detect the presence of virtual machine environment and exeunt

the program. Nearly, all-malicious software is protected with a packer.

Packing is done to protect software from reverse engineering. Packers encode

to be repeated for each DLL.

166 Fundamental of Reverse Engineering

the original bytes of an application and add unpacking subroutine into the

packed executable so that at the time of execution, it decodes these

instructions back to its original form and then transfer the control to the

original application. For analysis, packed application needs to be unpacked.

Unpacking process can be divided into three steps.

1. Finding Original Entry Point OEP is the instruction address to which

unpacking module transfers the control after unpacking/decoding the original

application.

2. Taking memory dump and updating PE header: - The application has to be

in decoded state at the time of execution so taking memory dump can retrieve

the original application. Few information stored in PE header like entry point

and section size need to be updated accordingly.

3. Import table reconstruction: - As packers destroy the import information

after loading the module, reconstruction is needed to import the table.

After performing these steps the application is unpacked and can be

further analyzed.

5.6 Conclusion 167

APPENDIX

Hex Signature ASCII

Signature

File Description

Extension
11 byte offset]

00 00 00 00 00 00
00 00
00 00 00 00 00 00
00 00
00 00 00 00 00 00
00 00

 Palmpilot

Database/Document File

PDB

00 00 01 00 Windows icon file ICO
00 00 01 Bx MPEG video file MPEG

, MPG

00 00 02 00 Windows cursor file

QuattroPro for

Windows Spreadsheet

file

CUR

WB2

00 00 02 00 06
04 06 00
08 00 00 00 00 00

 Lotus 1-2-3

spreadsheet (v1) file

WK1

00 00 1A 00 00
10 04 00
00 00 00 00

 Lotus 1-2-3

spreadsheet (v3) file
WK3

00 00 1A 00 02
10 04 00
00 00 00 00

 Lotus 1-2-3

spreadsheet (v4) file
WK4

00 00 49 49 58
50 52 or
00 00 4D 4D 58

50 52

..IIXP
R
..MMXP

R

Quark Express

document

QXD

[7 byte offset]
00 00 FF FF FF FF

[7
byte
offset]
..ÿÿÿÿ

Windows Help file HLP

00 01 00 00 4D 53
49 53
41 4D 20 44 61 74
61 62
61 73 65

....MS
IS
AM Datab
ase

Microsoft Money file MNY

00 1E 84 90 00 00
00 00

 Netscape

Communicator (v4)

mail folder

SNM

00 5C 41 B1 FF .\A±. Mujahideen Secrets 2

encrypted file

ENC

[512 byte offset]
00 6E 1E F0

[512
byte
offset]

PowerPoint

presentation subheader
PPT

File

.n.ð (MS Office)
01 00 00 00 Extended (Enhanced)

Windows Metafile

Format, printer spool

file

EMF

01 00 00 00 01 Unknown type

picture file

PIC

01 10 Novell LANalyzer

capture file
TR1

01 DA 01 01 00 03 .Ú.... Silicon Graphics

RGB Bitmap

RGB

01 FF 02 04 03 02 .ÿ.... Micrografx vector

graphic file

DRW

02 64 73 73 .dss Digital Speech

Standard (Olympus,

Grundig, & Phillips)

03 MapInfo Native Data

Format

dBASE III file

DAT

DB3
03 00 00 00 41 50

50 52
....AP

PR
Approach index file ADX

04 . dBASE IV data file DB4
00 01 01 OpenFlight 3D file FLT
00 06 15 61 00 00

00 02
00 00 04 D2 00 00
10 00

 Netscape Navigator

(v4) database file
DB

00 11 AF FLIC Animation file FLI

07 A common

signature and file

extension for many

drawing

programs

DRW

07 64 74 32 64
64 74 64

.dt2ddt
d

DesignTools 2D

Design file
DTD

08 dBASE IV or

dBFast configuration

file

DB

512 byte offset]
09 08 10 00 00 06
05 00

 Excel spreadsheet

subheader (MS Office)
XLS

0A nn 01 01 ZSOFT Paintbrush

file

PCX

0C ED .i Monochrome

Picture TIFF bitmap

file (unconfirmed)

MP

169Appendix

0D 44 4F 43 .DOC DeskMate

Document file

DOC

0E 57 4B 53 .WKS DeskMate

Worksheet

WKS

[512 byte
offset]
0F 00 E8 03

[512
byte
offset]
..è.

PowerPoint

presentation subheader

(MS Office)

PPT

11 00 00 00 53
43 43 41

....SCC
A

Windows prefetch

file

PF

1A 00 00 ... Lotus Notes

database template
NTF

1A 00 00 04 00
00

 Lotus Notes

database

NSF

1A 0x LH archive file, old

version

(where x = 0x2, 0x3,

0x4, 0x8 or 0x9

for types 1-5,

respectively)

ARC

1A 0B Compressed archive

file

(often associated with

Quake Engine games)

PAK

1A 35 01 00 .5.. GN Nettest

WinPharoah capture

file

ETH

1F 8B 08 ... GZIP archive file GZ
1F 9D 90 Compressed tape

archive file
TAR.Z

21 12 !. AIN Compressed

Archive

AIN

21 3C 61 72 63
68 3E 0A

!<arch>. Unix archiver (ar)

files and Microsoft

Program Library

Common Object File

Format (COFF)

LIB

21 42 44 4E Microsoft Outlook

Personal Folder file

PST

23 20 Cerius2 file MSI
23 20 4D 69 63

72 6F 73
6F 66 74 20 44 65
76 65
6C 6F 70 65 72 20
53 74
75 64 69 6F

Micros
oft Deve
loper St
udio

Microsoft

Developer Studio

project file

DSP

23 21 41 4D 52 #!AMR Adaptive Multi- AMR

170 Appendix

Rate ACELP

(Algebraic Code

Excited Linear

Prediction)

Codec, commonly

audio format with

GSM cell phones
24 46 4C 32 40

28 23 29
20 53 50 53 53 20
44 41
54 41 20 46 49 4C
45

$FL2@(#)
 SPSS DA
TA FILE

SPSS Data file SAV

25 21 50 53 2D
41 64 6F
62 65 2D 33 2E 30
20 45
50 53 46 2D 33 20
30

%!PS-Ado
be-3.0 E
PSF-3.0

Adobe

encapsulated

PostScript file

(If this signature is

not at the immediate

beginning of the file,

it will occur early

in the file, commonly

at byte offset 30)

EPS

25 50 44 46 %PDF
Trailers:

0A 25 25 45
4F 46 0A
(.%%EOF.)
0D 0A 25 25
45 4F 46 0D
0A
(..%%EOF..)
0D 25 25 45
4F 46 0D
(.%%EOF.)

Adobe Portable

Document Format

and Forms Document

file

28 54 68 69 73
20 66 69
6C 65 20 6D 75 73
74 20
62 65 20 63 6F 6E
76 65
72 74 65 64 20 77
69 74
68 20 42 69 6E 48
65 78
20

 Macintosh BinHex

4 Compressed

Archive

HQX

2A 2A 2A 20 20
49 6E 73
74 61 6C 6C 61 74
69 6F
6E 20 53 74 61 72
74 65

*** Ins
tallatio
n Starte
d

Symantec Wise

Installer log file

LOG

171Appendix

64 20
[2 byte offset]

2D 6C 68
[2 byte

offset]
-lh

Compressed

archive file

LHA,

LZH

2E 52 45 43 .REC RealPlayer video

file (V11 and later)

IVR

1A 52 54 53 20
43 4F 4D
50 52 45 53 53 45
44 20
49 4D 41 47 45 20
56 31
2E 30 1A

.RTS COM
PRESSED
IMAGE V1
.0.

Runtime Software

disk image

DAT

1D 7D .} WordStar Version

5.0/6.0 document

WS

2E 72 61 FD 00 .ra.. RealMedia streaming

media file

RA

2E 73 6E 64 .snd Sun Microsystems

audio file format
AU

30 0 Microsoft security

catalog file

CAT

30 00 00 00 4C
66 4C 65

 Windows Event

Viewer file

EVT

30 26 B2 75 8E
66 CF 11
A6 D9 00 AA 00
62 CE 6C

0&²u.fÏ
.
¦Ù.ª.bÎl

Microsoft Windows

Media Audio/Video File

(Advanced Streaming

Format)

ASF,

WMA,

WMV

30 31 4F 52 44
4E 41 4E
43 45 20 53 55
52 56 45
59 20 20 20 20
20 20 20

01ORDNA
N
CE SURVE
Y

National Transfer

Format Map File
NTF

31 BE or
32 BE

1¾
2¾

Microsoft Write file WRI

34 CD B2 A1 4Í²¡ Extended tcpdump

(libpcap) capture file

(Linux/Unix)

37 7A BC AF 27
1C

7z¼¯'. 7-Zip compressed file 7Z

38 42 50 53 8BPS Photoshop image file PSD
3C < Advanced Stream

redirector file.

BizTalk XML-Data

Reduced Schema file

ASX

XDR

3C 21 64 6F 63
74 79 70

<!docty
p

AOL HTML mail file DCI

3C 3F 78 6D 6C
20 76 65
72 73 69 6F 6E

<?xml
ve
rsion=

Windows Visual

Stylesheet XML file

MANIFEST

172 Appendix

3D
3C 3F 78 6D 6C

20 76 65
72 73 69 6F 6E
3D 22 31
2E 30 22 3F 3E

<?xml
ve
rsion="1
.0"?>

XML User Interface

Language file

XUL

3C 3F 78 6D 6C
20 76 65
72 73 69 6F 6E
3D 22 31
2E 30 22 3F 3E
0D 0A 3C
4D 4D 43 5F 43
6F 6E 73
6F 6C 65 46 69
6C 65 20
43 6F 6E 73 6F
6C 65 56
65 72 73 69 6F
6E 3D 22

<?xml
ve
rsion="1
.0"?>..<
MMC_Cons
oleFile
ConsoleV
ersion="

Microsoft

Management Console

Snap-in Control file

MSC

[24 byte
offset]
3E 00 03 00 FE
FF 09 00
06

[24
byte
offset]
>...þÿ..

Quatro Pro for

Windows 7.0 Notebook

file

WB3

3F 5F 03 00 Windows Help index

file

Windows Help file

GID
 HLP

[32 byte
offset]
40 40 40 20 00
00 40 40
40 40

[32
byte
offset]
@@@ ..@@
@@

EndNote Library File ENL

41 43 53 44 ACSD Miscellaneous AOL

parameter and

information files

41 4D 59 4F AMYO Harvard Graphics

symbol graphic

SYW

41 4F 4C 44 42 AOLDB AOL and AIM buddy

list file

ABY, IDX

41 4F 4C 49 44
58

AOLIDX AOL client

preferences/settings file

(MAIN.IND)

IND

41 4F 4C 49 4E
44 45 58

AOLINDE
X

AOL address book

index file

ABI

41 4F 4C 56 4D
31 30 30

AOLVM10
0

AOL personal file

cabinet (PFC) file
n/a

41 72 43 01 ArC. FreeArc compressed

file

ARC

42 45 47 49 4E
3A 56 43

BEGIN:V
C

vCard file VCF

173Appendix

41 52 44 0D 0A ARD..
42 4C 49 32 32

33 51
BLI223Q Thomson Speedtouch

series WLAN router

firmware

BIN

42 4D BM Windows (or

device-independent)

bitmap image

BMP,

DIB

42 5A 68 BZh bzip2 compressed

archive

BZ2,

TAR.BZ2,

TBZ2, TB2
43 42 46 49 4C

45
CBFILE WordPerfect

dictionary file

(unconfirmed)

CBD

43 44 30 30 31 CD001 ISO-9660 CD Disc

Image

(This signature usually

occurs at byte 8001,

8801, or 9001.)

ISO

43 4F 4D 2B COM+ COM+ Catalog file CLB
43 52 45 47 CREG Windows 9x

registry hive

DAT

43 52 55 53 48
20 76

CRUSH v Crush compressed

archive
CRU

43 57 53 CWS Shockwave Flash

file (v5+)
SWF

43 61 74 61 6C
6F 67 20
33 2E 30 30 00

Catalog
3.00.

WhereIsIt Catalog

file
CTF

43 6C 69 65 6E
74 20 55
72 6C 43 61 63 68
65 20
4D 4D 46 20 56 65
72 20

Client U
rlCache
MMF Ver

IE History DAT file DAT

44 42 46 48 DBFH Palm Zire photo

database

DB

44 4D 53 21 DMS! Amiga DiskMasher

compressed archive

DMS

44 4F 53 DOS Amiga disk file ADF

45 52 46 53 53
41 56 45
44 41 54 41 46 49
4C 45

ERFSSAVE
DATAFILE

Kroll EasyRecovery

Saved Recovery State

file

DAT

45 56 46 EVF EnCase evidence

file

Enn

(where nn

are numbers

174 Appendix

46 41 58 43 4F
56 45 52
2D 56 45 52

FAXCOVER
-VER

Microsoft Fax

Cover Sheet
CPE

46 45 44 46 FEDF (Unknown file type) SBV
46 4C 56 FLV Flash video file SWF
46 4F 52 4D 00 FORM. Audio Interchange

File

AIFF

46 57 53 FWS Shockwave Flash

file

SWF

46 72 6F 6D 20
20 20 or
46 72 6F 6D 20

3F 3F 3F or
46 72 6F 6D 3A

20

FHom
FHom ???
FHom:

A commmon file

extension for e-mail

files. Signatures shown

here

are for Netscape,

Eudora, and a generic

signature, respectively.

EML is also used by

Outlook Express and

QuickMail

ELM

47 46 31 50 41
54 43 48

GF1PATCH Advanced Gravis

Ultrasound patch file

PAT

47 49 46 38 37
61 or
47 49 46 38 39

61

GIF87a
GIF89a

Graphics

interchange format file

Trailer: 00 3B (.;)

GIF

47 50 41 54 GPAT GIMP (GNU Image

Manipulation Program)

pattern file

PAT

47 58 32 GX2 Show Partner

graphics file (not

confirmed)

GX2

48 48 47 42 31 HHGB1 Harvard Graphics

presentation file

SH3

49 20 49 I I Tagged Image File

Format file

TIF, TIFF

49 44 33 ID3 MPEG-1 Audio

Layer 3 (MP3) audio

file

MP3

49 49 2A 00 II*. Tagged Image File

Format file (little

endian, i.e., LSB first

in the byte; Intel)

TIF, TIFF

49 53 63 28 ISc(Install Shield v5.x

or 6.x compressed file

CAB

49 54 53 46 ITSF Microsoft HTML

Help Compiled Help

CHM

175Appendix

Hex Signature ASCII
Signature

File Description File

Extension
49 6E 6E 6F 20

53 65 74
75 70 20 55 6E 69
6E 73
74 61 6C 6C 20 4C
6F 67
20 28 62 29

Inno Set
up Unins
tall Log
 (b)

Inno Setup Uninstall

Log file

DAT

4A 41 52 43 53
00

JARCS. JARCS compressed

archive

JAR

4A 47 03 0E 00
00 00 or
4A 47 04 0E 00

00 00

JG.....
JG.....

AOL ART file ART

4C 00 00 00 01
14 02 00

L....... Windows shortcut

file

LNK

4C 01 L. Microsoft Common

Object File Format

(COFF) relocatable

object code file for an

Intel 386 or

later/compatible

processors

OBJ

4C 4E 02 00 LN.. Windows Help file HLP
4D 49 4C 45 53 MILES Milestones v1.0

project management

and scheduling

software

(Also see "MV2C" and

"MV214" signatures)

MLS

4D 4D 00 2A MM.* Tagged Image File

Format file (big

endian, i.e., LSB last in

the byte; Motorola)

TIF, TIFF

4D 4D 00 2B MM.+ BigTIFF files;

Tagged Image File

Format files >4 GB

TIF, TIFF

4D 4D 4D 44
00 00

MMMD.. Yamaha Corp.

Synthetic music

Mobile Application

Format (SMAF)

for multimedia files

that can be played on

hand-held devices.

MMF

4D 53 43 46 MSCF Microsoft cabinet

file

Powerpoint

CAB

PPZ

SNP

176 Appendix

Packaged Presentation

Microsoft Access

Snapshot Viewer file
4D 53 46 54 02

00 01 00
MSFT.... OLE, SPSS, or

Visual C++ type

library file

TLB

4D 53 5F 56 4F
49 43 45

MS_VOICE Sony Compressed

Voice File

Sony Memory Stick

Compressed Voice file

CDR,

DVF

MSV

4D 54 68 64 MThd Musical Instrument

Digital Interface

(MIDI) sound file

MID,

MIDI

4D 56 MV CD Stomper Pro

label file

DSN

4D 56 32 43 MV2C Milestones v2.1a

project management

and scheduling

software

(Also see "MILES"

and "MV214"

signatures)

MLS

4D 56 32 31 34 MV214 Milestones v2.1b

project management

and scheduling

software

(Also see "MILES"

and "MV2C" signature

MLS

4D 5A MZ Windows/DOS

executable file.

MS audio

compression manager

driver.

Library cache file.

Control panel

application.

Font file.

ActiveX or OLE

Custom Control.

OLE object library.

Screen saver.

COM,

DLL, DRV,

EXE, PIF,

QTS, QTX,

SYS

ACM

AX

CPL

FON

OCX

OLB
SCR

VBX

177Appendix

VisualBASIC

application.

Windows virtual

device drivers

VXD,

386

4D 5A 90 00 03
00 00 00

MZ...... Acrobat plug-in

DirectShow filter

Audition graphic

filter file (Adobe)

API

AX

FLT

4D 5A 90 00 03
00 00 00
04 00 00 00 FF FF

MZ......
....ÿÿ

ZoneAlam data file ZAP

4D 69 63 72 6F
73 6F 66
74 20 56 69 73 75
61 6C
20 53 74 75 64 69
6F 20
53 6F 6C 75 74 69
6F 6E
20 46 69 6C 65

Microsof
t Visual
 Studio
Solution
 File

Visual Studio .NET

Solution file
SLN

[84 byte
offset]
4D 69 63 72 6F 73
6F 66
74 20 57 69 6E 64
6F 77
73 20 4D 65 64 69
61 20
50 6C 61 79 65 72
20 2D
2D 20

[84 byte
offset]
Microsof
t Window
s Media
Player -
-

Windows Media

Player playlist
WPL

4E 41 56 54 52
41 46 46
49 43

NAVTRAFF
IC

TomTom traffic

data file
DAT

4E 45 53 4D 1A
01

NESM.. NES Sound file NSF

4E 49 54 46 30 NITF0 National Imagery

Transmission Format

(NITF) file

NTF

4E 61 6D 65 3A
20

Name: Agent newsreader

character map file
COD

4F 50 4C 44 61
74 61 62
61 73 65 46 69 6C
65

OPLDatab
aseFile

Psion Series 3

Database file
DBF

4F 67 67 53 00
02 00 00
00 00 00 00 00 00

OggS....
......

Ogg Vorbis Codec

compressed

Multimedia file

OGA,

OGG, OGV,

OGX
4F 7B O{ Visio/DisplayWrite

4 text file
DW4

178 Appendix

(unconfirmed)
50 00 00 00 20 00
00 00

P... ... Quicken

QuickFinder

Information File

IDX

50 35 0A P5. Portable Graymap

Graphic

PGM

50 41 43 4B PACK Quake archive file PAK

50 45 53 54 PEST PestPatrol data/scan

strings

DAT

50 49 43 54 00
08

PICT.. ADEX Corp.

ChromaGraph

Graphics Card Bitmap

Graphic file

IMG

[92 byte
offset]
51 45 4C 20

92 byte
offset]
QEL

Quicken data file QEL

51 46 49 FB QFI. QEMU Qcow Disk

Image

IMG

51 57 20 56 65
72 2E 20

QW Ver. Quicken data file ABD,

QSD
52 45 47 45 44

49 54
RAZATDB1 Shareaza (Windows

P2P client) thumbnail

DAT

52 45 47 45 44
49 54

REGEDIT Windows NT

Registry and Registry

Undo files

REG,

SUD

52 45 56 4E 55
4D 3A 2C

REVNUM:, Antenna data file ADF

52 49 46 46 xx
xx xx xx
41 56 49 20 4C 49
53 54

RIFF….
AVI LIST

Windows Audio

Video Interleave file

AVI

52 49 46 46 xx
xx xx xx
51 4C 43 4D 66 6D
74 20

RIFF....
QLCMfmt

Compact Disc

Digital Audio (CD-

DA) file

QCP

52 49 46 46 xx
xx xx xx
52 4D 49 44 64 61
74 61

RIFF....
RMIDdata

Windows Musical

Instrument Digital

Interface File

RMI

52 49 46 46 xx
xx xx xx
57 41 56 45 66 6D
74 20

RIFF....
WAVEfmt

Audio for windows

file

WAV

52 54 53 53 RTSS Windows NT

Netmon capture file

CAP

52 61 72 21 1A
07 00

Rar!... WinRAR

compressed archive

file

RAR

53 43 48 6C SCHl Need for Speed: AST

179Appendix

Underground Audio

file
53 43 4D 49 SCMI Img Software Set

Bitmap

IMG

53 48 4F 57 SHOW Harvard Graphics

DOS Ver. 2/x

Presentation file

SHW

53 49 45 54 52
4F 4E 49
43 53 20 58 52 44
20 53
43 41 4E

SIETRONI
CS XRD S
CAN

Sietronics CPI XRD

document

CPI

53 49 54 21 00 SIT!. StuffIt compressed

archive
SIT

53 4D 41 52 54
44 52 57

SMARTDRW SmartDraw

Drawing file

SDR

53 51 4C 4F 43
4F 4E 56
48 44 00 00 31 2E
30 00

SQLOCONV
HD..1.0.

DB2 conversion file CNV

53 6D 62 6C Smbl (Unconfirmed file

type. Likely type is

Harvard Graphics

Version 2.x graphic

symbol or Windows

SDK graphic symbol)

SYM

53 74 75 66 66
49 74 20
28 63 29 31 39 39
37 2D

StuffIt
(c)1997-

StuffIt compressed

archive
SIT

55 43 45 58 UCEX Unicode extensions UCE

55 46 41 C6 D2
C1

UFAÆÒÁ UFA compressed

archive

UFA

55 46 4F 4F 72
62 69 74

UFOOrbit UFO Capture v2

map file

DAT

56 43 50 43 48
30

VCPCH0 Visual C

PreCompiled header

file

PCH

56 45 52 53 49
4F 4E 20

VERSION Visual Basic User-

defined Control file

 CTL

57 4D 4D 50 WMMP Walkman MP3

container file

DAT

57 53 32 30 30
30

WS2000 WordStar for

Windows Ver. 2

document

WS2

[29,152 byte
offset]
57 69 6E 5A 69 70

[29,152
byte
offset]

WinZip compressed

archive
ZIP

180 Appendix

WinZip
58 43 50 00 XCP Cinco NetXRay,

Network General

Sniffer, and

Network Associates

Sniffer capture file

CAP

58 50 43 4F 4D
0A 54 79
70 65 4C 69 62

XPCOM.Ty
peLib

XPCOM type

libraries for the XPIDL

compiler

XPT

58 54 XT.. MS Publisher

border

BDR

5A 4F 4F 20 ZOO ZOO compressed

archive

ZOO

5B 47 65 6E 65
72 61 6C
5D 0D 0A 44 69 73
70 6C
61 79 20 4E 61 6D
65 3D
3C 44 69 73 70 6C
61 79
4E 61 6D 65

[General
]..Displ
ay Name=
<Display
Name

MS Exchange 2007

extended configuartion

file

ECF

5B 4D 53 56 43 [MSVC Microsoft Visual

C++ Workbench

Information File

VCW

5B 50 68 6F 6E
65 5D

 Dial-up networking

file (unconfirmed)

DUN

5B 56 45 52 5D
0D 0A 09 or
5B 76 65 72 5D

0D 0A 09 or

[VER]...
[ver]...

AMU Pro document SAM

5B 57 69 6E 64
6F 77 73
20 4C 61 74 69 6E
20

[Windows
 Latin

Microsoft Code

Page Translation file

CPX

5B 66 6C 74 73
69 6D 2E
30 5D

[fltsim.
0]

Flight Simulator

Aircraft Configuration

file

CFG

5F 43 41 53 45
5F

CASE EnCase case file

(and backup)

CAS,

CBK
60 EA `ê Compressed archive

file
ARJ

63 75 73 68 00
00 00 02
00 00 00

cush....
...

Photoshop Custom

Shape

CSH

64 00 00 00 d... Intel

PROset/Wireless

Profile

P10

64 73 77 66 69 dswfile Microsoft Visual DSW

181Appendix

6C 65 Studio workspace file
66 4C 61 43 00

00 00 22
fLaC..." Free Lossless Audio

Codec file

FLAC

6C 33 33 6C l33l Skype user data file

(profile and contacts)

DBB

[4 byte offset]
6D 6F 6F 76

0x66-72-65-65
0x6D-64-61-74
0x77-69-64-65
0x70-6E-6F-74
0x73-6B-69-70

[4 byte
offset]
moov

Free
mdat
wide
pnot
skip

QuickTime movie

file
MOV

72 65 67 66 regf Windows registry

hive file

DAT

72 74 73 70 3A
2F 2F

rtsp:// RealMedia metafile RAM

73 6C 68 21 or
73 6C 68 2E

slh!
slh.

Allegro Generic

Packfile Data file

(0x21 = compressed,

0x2E = uncompressed)

DAT

73 72 63 64 6F
63 69 64
3A

srcdocid
:

CALS raster bitmap

file

CAL

73 7A 65 7A szez PowerBASIC

Debugger Symbols file
PDB

75 73 74 61 72 ustar Tape Archive file TAR

76 32 30 30 33
2E 31 30
0D 0A 30 0D 0A

v2003.10
..0..

Qimage filter FLT

78 x Mac OS X Disk

Copy Disk Image file

DMG

7B 0D 0A 6F 20 {..o Windows

application log

LGC,

LGD
7B 5C 72 74 66

31
{\rtf1

Trailer:

5C 70 61
72 20 7D
7D (\par
}})

Rich text format

word processing file

RTF

7E 42 4B 00 ~BK. Corel Paint Shop

Pro image file
PSP

7F 45 4C 46 .ELF Executable and

linking format in

Linux/unix

n/a

80 Relocatable object OBJ

182 Appendix

code
80 00 00 20 03

12 04
 Dreamcast audio

file

ADX

89 50 4E 47 0D
0A 1A 0A

 Portable Network

Graphic File

PNG

8A 01 09 00 00
00 E1 08
00 00 99 19

......á.
....

MS Answer Wizard

file

AW

91 33 48 46 '3HF Hamarsoft HAP 3.x

compressed archive

HAP

95 00 or
95 01

..

..
PGP secret keying

file

PKR

9C CB CB 8D 13
75 D2 11
91 58 00 C0 4F 79
56 A4

.ËË..UÒ.
.X.ÀOyV¤

Outlook address file WAB

[512 byte
offset]
A0 46 1D F0

[512
byte
offset]
 F.ð

PowerPoint

presentation subheader

(MS Office

PPT

A1 B2 C3 D4 ¡²ÃÔ tcpdump (libpcap)

capture file

(Linux/Unix)

A1 B2 CD 34 ¡²Í4 Extended tcpdump

(libpcap) capture file

(Linux/Unix)

A9 0D 00 00 00
00 00 00

©....... Access Data FTK

evidence file
DAT

AC 9E BD 8F 00
00

¬.½... Quicken data file QDF

B1 68 DE 3A ±hÞ: Graphics Multipage

PCX bitmap file

DCX

B5 A2 B0 B3 B3
B0 A5 B5

µ¢°³³°¥µ (Unknown file

type...)

CAL

BE 00 00 00 AB
00 00 00
00 00 00 00 00

¾...«...
....

MS Write file WRI

C3 AB CD AB Ã«Í« MS Agent Character

file

ACS

C5 D0 D3 C6 ÅÐÓÆ Adobe encapsulated

PostScript file

EPS

CA FE BA BE Êþº¾ Java bytecode file CLASS
CD 20 AA AA 02

00 00 00
Í ªª.... Norton Anti-Virus

quarantined virus file

n/a

CF 11 E0 A1 B1
1A E1 00

Ï.à¡±.á. Perfect Office

document

[Note similarity to MS

Office header, below]

DOC

183Appendix

CF AD 12 FE Ï.þ Outlook Express e-

mail folder

DBX

D2 0A 00 00 Ò... GN Nettest

WinPharoah filter file

FTR

D4 2A Ô* AOL history (ARL)

and typed URL (AUT)

files

ARL,

AUT

D7 CD C6 9A ×ÍÆ. Windows graphics

metafile

WMF

DC DC ÜÜ Corel color palette

file

CPL

DC FE Üþ eFax file format EFX
E3 82 85 96 ã... Windows password

file

PWL

EB 3C 90 2A ë<.* GEM Raster file IMG
[512 byte

offset]
EC A5 C1 00

[512
byte
offset]
ì¥Á.

Word document

subheader (MS Office)

DOC

ED AB EE DB í"îÛ RedHat Package

Manager file
RPM

[512 byte
offset]
FD FF FF FF nn 02

 Excel spreadsheet

subheader (MS Office)

(where nn = 0x10,

0x22, 0x23, 0x28, or

0x29)

XLS

[512 byte
offset]
FD FF FF FF 20 00
00 00

[512
byte
offset]
ýÿÿÿ ...

Developer Studio

File Workspace

Options subheader

(MS Office).

Excel spreadsheet

subheader (MS Office)

OPT

XLS

512 byte
offset]
FD FF FF FF xx xx
xx xx
xx xx xx xx 04 00
00 00

[512
byte
offset]
ýÿÿÿ....
........

Thumbs.db

subheader (MS Office)

DB

FF ÿ Windows

executable (SYS) file
SYS

FF 00 02 00 04
04 05 54
02 00

ÿ.....
.T
..

Works for Windows

spreadsheet file
WKS

FF 46 4F 4E 54 ÿFONT Windows

international code page
CPI

184 Appendix

FF 4B 45 59 42
20 20 20

ÿKEYB Keyboard driver file SYS

FF 57 50 43 ÿWPC WordPerfect text

and graphics file

FF Ex
FF Fx

ÿ.
ÿ.

MPEG audio file

frame

MPEG,

MPG, MP3
FF FF FF FF ÿÿÿÿ DOS system driver SYS

FF FE 23 00 6C 00
69 00
6E 00 65 00 20 00
31 00

ÿþ#.l.i.
n.e. .1.

Windows MSinfo

file

MOF

185Appendix

Index

ADD 9

AES 58

Assembly 1

ASLR 51

Asymmetric Encryption 67

Algorithm Provider 63

Auxiliary Segment Register 2

Array in Assembly 24

Anti Debugging 140

Anti Disassembly 128

Anti – Reversing technique 127

AVI 99

Base Relocation Table 73

BCrypt 59

Bound Import Table 74

Blind Return 124

Break Points 144

Call Register 125

Calling Convention 16

Calculating Offset 126

Carry Flag 2

Cdecl calling convention 17

Code Segment Register 1

Code Emulation 162

Context Switching 43

CmLogLevel 50

CmLogLevelSet 50

CNG 58

Critical section 45

Cryptographic Agility 59

Data Segment Register 1

Data Constructs 17

Dos Header 70

DES 58

Debugging Information 73

Division 23

Direct Jump 126

Dlmalloc 96

ELF Header 79

Executable Format 79

Executable Data Section 20

ExpEchoPoolCalls 49

Exploiting SEH 119

Evasion of Disassembl

Events 45

Flag Register 2

Fast call calling convention 17

Format String 112

Floating point instructions 11

Global Descriptor Table 145

Global Variables 18

GS 55

Hardware breakpoint 143

Heap Overflow 94

Hash Functions 64

Heap Defenses 53

Imported Variables 19

Import Redirection 162

Import Table 73

Import Table Reconstruction 158

Integer Overflows 106

Interrupt Flag 3

Interrupt Descriptor Table 145

Injection Techniques 123

IO Flag 3

Jmp 7

Kernel Memory Management 37

Application Programming Interface 47

Arithmetic Operation in Assembly 21

Detecting hardware Breakpoint 144

188 Index

Linking File Format 79

Linked List 26

Linear Sweep Disassemble 130

Local Variable 19

Lock and Repeat Prefix 4

LpcpTraceMessage 50

Memory Management 29

Metered Section 46

MmDebug 49

Modulo 24

Mode Switches 43

Multiplication 22

Mutexes 45

Named Object 41

NtGlobalFlag 49

NOP 9

No Operation Sled 125

Non executable Memory 94

NX 54

Objects and Handles 40

ObpShowAllocAndFree 50

Off-by-One Overflow 90

Opcode

Original First Thunk 158

Overflow Flag 3

Paged Memory Management 36

Parity Flag 2

Pointer Encoding 57

Pop Return 126

PE file format 69

Processes 41

Process Initialization Sequence 46

Random Number Generator 64

RSA 58

Register 1,19

Representation of class in

assembly 27

Reversing Windows NT 48

Section Object 39

Security in Vista 50

SepDumpSD 50

Semaphore 46

Segment Override Prefixes 5

Self-modifying code 137

Sign Flag 2

Structure Exception Handler 116

Signature and Verification 68

Software Breakpoint 142

Stack Segment Register 2

Stdcall calling convention 17

Stack Checking 90

Stack Overflow 85

Stack Setup 13

Stack Randomization 52

Sub 9

Symmetric Encryption 65

Synchronization Objects 44

Thiscall calling convention 18

Threads 41

Thread Storage Table 73

Threaded Local Storage 20

Unpacking 147

User Memory Management 37

User Mode Address Space 39

Virtual Address Descriptor 39

Vista 50

Virtual Function 26

Virtual Machine De 6

Virtual Memory Management 29

Virtual Machine Obfuscation 139

Windows NT 49

Zero Flag 2

80x86 Instruction Format 3

Segmented Memory Management 34

Recursive Traversal Disassembler 132

