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Preface

In the chapters that follow, I argue for two main points:

	 1.	 Product engineering on Ethereum is a distinct discipline, with its 

own set of challenges and constraints that make it an interesting 

and worthwhile endeavor – and one worthy of higher status than it 

currently enjoys.

	 2.	 Decentralization involves trade-offs, and sometimes these are 

trade-offs that aren’t worth making.

This is an opinionated book, which presents a vision for Ethereum – and a style of 

building products on it – that will be at odds with many current Ethereum developers. 

That’s okay: it’s up to you to decide whether my arguments are good and whether the 

vision I present is one you think is attractive. I don’t expect everybody to agree.

But, I hope, it’s also an informative book, an introduction for technical people 

on how Ethereum works and why building products on top of it is challenging and 

rewarding.

Much technical writing is focused on the practical, with explicit instructions on how 

to build such and such an application or how to use this or that library. In an ecosystem 

like crypto, where the core technologies and best practices change and develop every 

day, this sort of writing has an expiry date little longer than a pint of warm milk kept in a 

trench-coat pocket. Tutorials are important and can often be helpful, but my goal here is 

to write something with a little more longevity.

This book therefore tries to walk a delicate tightrope: rich with examples and trade-

offs, but also conceptual and philosophically minded. In all cases, I try to be pragmatic.  

I interweave code examples using various libraries, but the emphasis is on React 

frontend applications and the ethers.js and wagmi libraries that can power them. While 

the details of existing protocols and libraries will change, and the code may sour, the 

advice and mode of thinking will, I hope, remain cool and fresh.

My writing style here is that of a friend in the pub, talking through some interesting 

technology; I can therefore be a little verbose, sometimes. To remedy that, each main 

section of each chapter starts with a short summary in italics. If you’re completely new 
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to Ethereum and would like a friendly intro to the core concepts, “The Lifecycle of an 

Ethereum Request” section in Chapter 2 walks you through the basics by taking you on 

a tour, from start to finish, of how a transaction gets made and ends up in the network. If 

you’re unfamiliar with crypto more generally, then I highly recommend the Matt Levine 

Bloomberg article “The Crypto Story.”1

Crypto is full of strange memes and indecipherable acronyms, but I’ll try to 

keep them to a minimum. I also use a few terms interchangeably, unless I make the 

distinction explicit: “crypto” and “web3”; “account” and “wallet” (see the section 

“Accounts and Wallets” in Chapter 2 for some disambiguations here); I use “companies” 

and “DAOs” to refer more generally to organizations that build in the space; and, 

somewhat awkwardly, “web2” is a convenient shorthand for noncrypto Internet 

technology and its businesses, culture, norms, and processes.

And since this is a book about Ethereum, any generalizations I make about crypto 

apply only to this platform.

This book is not intended for beginners to programming or web development, so I 

will assume knowledge of terms like “state,” “interface,” and other common computer 

science terminology. I will assume that you are a mid- to senior-level engineer looking 

to understand the sorts of constraints Ethereum can put on your products. I won’t spend 

much time talking about how, for instance, it’s best to write a React component.

As I said at the beginning of this preface, this book also presents a new(ish) vision 

for crypto: one grounded in solving real problems, for real people, in real companies. It 

welcomes regulation, because regulation makes it possible for crypto to grow. I see the 

future of crypto’s growth at the intersection between traditional institutions and these 

new technologies, not as a disruption, but as a complement. It is a pragmatic vision, 

grounded in a belief in technology, not in memes or the ill-defined art of community 

building.

The longer I’ve been in the orbit of crypto, the greater I’ve seen the need for a culture 

of pragmatism, not idealism. This book is my small contribution toward that goal.

1 www.bloomberg.com/features/2022-the-crypto-story
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CHAPTER 1

Introduction
Lots of attention in the Ethereum ecosystem is paid to smart contracts: how to write 

them well, how to design their mechanisms, and how to deploy and manage them safely. 

These are important tasks, but they only express the responsibilities of one role: the 

protocol engineer. There are other roles that are equally important, and, in this chapter, 

we’ll look at these roles and how their relative status may change. Understanding the 

role of the product engineer, especially, will help frame the rest of the book. We’ll also 

look at an important principle that motivates much of the subsequent discussion: the 

Principle of Trust.

�Products, Protocols, and Platforms
The frontend and backend dichotomy should be replaced by a product, protocol, and 

platform trichotomy. Protocol engineering is important, interesting, and high status. 

Product and platform engineering are equally important, but less high status; both are 

becoming more so. When you separate out these roles clearly, and consider how they are 

integrated within a team, it becomes much easier to focus on solving customer problems. 

Crypto businesses are still businesses, and businesses should build products that solve 

problems for their customers.

I’ll start this book with a complaint: we should retire the terms “frontend” and 

“backend” engineer. They create an outmoded division of labor inside software 

companies that doesn’t map well to how software actually gets built. This is increasingly 

true in crypto, where computation is either hosted on-chain or (often) on some 

serverless platform.

These arbitrary titles also make hiring more difficult. Candidates with certain job 

titles on their CVs get pigeonholed into specific functions. “Frontend,” in particular, is 

often used snidely, as a pejorative, diminishing the responsibility of the engineer to “a 

mere pixel pusher,” leaving the more serious work to the proper programmers.
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They also make flourishing within roles more difficult. The glutinous, sticky 

contempt held by many “backend” engineers for the “frontend” means that talented 

programmers, with sophisticated and nuanced understandings of computer science, 

who write clean and reliable code, are either passed over or find themselves ossified, 

unable to be taken seriously, unable to grow.

Moreover, these terms refer only to structures internal to the company, structures 

that are completely irrelevant to customers and completely irrelevant to the products 

that we build for them.

In my opinion, a much better division is between product, protocol, and platform.

A product, protocol, and platform trichotomy could be similarly reductive to the 

frontend/backend dichotomy; as we’ll see, both “product” and “protocol” can mean a 

wide range of things and subdivide into more specialized roles. There are also parts of 

each role that overlap. But my contention here is not that it’s perfect: it’s that product, 

protocol, and platform is a more useful framing – a more effective way of structuring 

teams and a better way to think about building on Ethereum.

This distinction better defines where the shift in responsibility from outward-looking 

(products, tooling, marketing, user interfaces, and experiences) to inward-looking (APIs, 

internal tools, infrastructure) occurs.

It better explains where the focus of these engineers lies. It doesn’t get hung up on 

technological choices or prejudge abilities. And, as we’ll discuss more, it helps integrate 

these areas properly, in a way that emphasizes customer happiness.

Most of all, it helps put each of these functions on an equal footing – one team 

working together to build delightful and essential services.

In this section, we’ll discuss the product, protocol, platform trichotomy. We’ll 

introduce some of the themes of this book. And we’ll argue that crypto teams – and their 

customers – are better off when they conceive of what they’re doing as no different from 

any other business: building products for customers that give those customers value.

�Protocol Engineering
Let’s start by looking at protocol engineering and how it fits into the product 

development story.

Protocol engineers build the smart contracts that provide the core functionality for 

a crypto protocol. They are an essential part of any company that is building on top of 

a decentralized platform such as Ethereum. For a certain sort of programmer, protocol 

engineering is among the most attractive roles in crypto.

Chapter 1  Introduction
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Protocol engineering is intellectually challenging and complex, with many 

distinctive problems:

•	 Protocols need to be designed and verified.

•	 Protocols need to be modeled under both macro- and  

micro-economic variations.

•	 Protocols need to be tested against real data, real money, and real 
behavior and the insights from such testing integrated.

•	 At the same time, contracts are generally immutable, so getting it 

wrong early and iterating quickly is more difficult and requires more 

planning and forethought.

•	 Smart contracts need to be audited and are subject to fierce internal 

scrutiny and code review.

These are just some of the crucial tasks at which a protocol engineer needs to be 

competent to do their job well. And these are new constraints that typically don’t hold 

when building traditional software.

Protocol engineering is also fun and urgent. The environment is hugely adversarial: 

often within milliseconds of deploying a contract, there will be hundreds of bots (and 

humans) racing to find one of thousands of possible errors in your code or loopholes in 

your logic. And the results – millions of dollars of value running through your system; 

the mechanics of the protocol behaving just right; your code withstanding thousands of 

attacks and black swan events – can be very satisfying.

So it’s difficult and enjoyable, and it takes dedication and patience. The community 

is still nascent, grasping in the dark for the right tooling.

Protocol engineering feels like a new discipline; writing smart contracts feels like 

building at the frontier. We’re still figuring out how to do it.

All of this combines to make it an incredibly alluring profession. (Not to mention 

the constrained supply, high demand, and therefore high price that a competent 

protocol engineer can charge! At the time of writing, the average base salary for a Solidity 

developer, globally, is $101k per year.)

No wonder it is a high-status job.

Chapter 1  Introduction
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�Product Engineering
Product engineering is equally challenging and complex. It is, however, not as highly 

paid or high status.

Product engineers work across the stack, but always with an emphasis on the user’s 

experience and the user’s needs.

This, first and foremost, means the UI, the frontends that the user sees and interacts 

with, the user’s portal into the protocol. But it also means answering practical questions 

about the UX and broader questions about the information architecture:

•	 How does the user flow through the product; how do they achieve 
the goals that they set out to achieve?

•	 Indeed, what are their goals?

•	 At what point do we need the user to connect their wallet?

•	 What information do they need and when?

•	 What happens when something goes wrong?

•	 How can we communicate gas fees in the most useful way?

•	 How much can we rely on the security posture of the wallet, 

and how much trust engineering – see the next section “Crypto 

Engineering Is Trust Engineering” for more – do we need to do in our 

own application?

•	 Does the application work on mobile? Does it need to?

Aside from these more conceptual questions about UX and UI, product engineers are 

also responsible for making technical decisions that affect the product:

•	 Should the data be indexed or read live?

•	 What kind of a refresh rate does indexed data need?

•	 How should we transform and validate user inputs?

•	 How much responsibility for input validation should we delegate to 

the protocol?

Chapter 1  Introduction
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Most of all, it means understanding the user’s problem and working with protocol 

and platform to both integrate the stack of existing technologies and develop new 

technologies in service of solving it.

It is important that these questions – and the actual coding work that falls out of 

answering them – are squarely within the purview of the product engineering team. 

These questions have a direct impact on the user and their experience. They have 

a direct impact on what the user sees, touches, and feels and the psycho-emotional 

relationship that they have with the product and the broader brand.

The product engineer is responsible for the majority of the contact between the user 

and the protocol. This means that security is as important for the product engineer as for 

the smart contract engineer. The stakes are similarly high.

Therefore, teams need to place a significant focus on the user – the customer – and 

what they experience. This usually means a dedicated team, or a dedicated person, who 

considers these technical decisions always with the user’s experience in mind.

�Platform Engineering
Platform engineers play a crucial ancillary role in a crypto company, building tooling 

and infrastructure for the product and protocol to talk, both to the world and to 

each other.

Products need hosting, and that hosting needs to be designed and maintained. 

Hosting in crypto can be a lot more complicated than “chuck it on GitHub Pages and 

forget about it” – although that can be the best solution! – for several reasons:

•	 There may be auxiliary processes to run, such as indexers or 

relayers or bots.

•	 You may want to decentralize your frontend, either in part or 

entirely (see the section “Hosting” in Chapter 5 for an exploration of 

these issues).

•	 Being reactive to users is incredibly important, so you may need to 

integrate solid error logging and audibility and monitoring.

And it’s not just hosting and devops. All engineers – including protocol and product 

engineers – need good tooling. Software engineering is one of the few disciplines where it’s 

normal to build your own tools. But this is often itself a full-time job! Platform engineering 

teams can build such tools both for themselves and for the product and protocol teams.

Chapter 1  Introduction
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This is an especially important function and contributes significantly to overall 

product quality, because developer experience is causally prior to user experience. If the 

developer is having a horrible time, it usually shows in the quality of the product. Good 

tooling, while not sufficient for good products, is almost always necessary.

Many crypto teams avoid having separate platform engineers and integrate the work 

into their product and protocol teams. This is absolutely fine, but it’s useful to consider 

the platform role as a separate role nonetheless. Why?

Firstly, the shipping cycle for internal tools is often very different from that of 

product: how you structure your sprints, how you understand the problem space, and 

what solutions and trade-offs are acceptable can be wildly different for internal tools 

than for external products.

Secondly, the testing and audit requirements are generally much less strict: so you 

can afford to iterate more quickly, to follow the infamous move-fast-and-break-things 

model much more often.

Thirdly, you likely understand your “internal customers” much better than your 

“external customers.” This cuts both ways: as we’ve said already, you can spend less 

time and energy on user research and iterate more quickly; but it’s also important to 

treat the product and platform disciplines as separate precisely so that you don’t allow 

your platform mode to pollute your product mode, precisely so that you stay focused on 

understanding the user when you’re working on the product.

The Ethereum community has made many strides in the right direction, but at 

least at the time of writing, the quality of the tooling available for product and protocol 

engineers in crypto is still quite poor:

•	 Smart contracts are, quite rightly, considered to be APIs – see the 

section “Contracts Are APIs” in Chapter 4 – but the tooling for 
retrieving and updating and building against the interfaces of 

these APIs is still a mess. I discuss these problems in more detail 

in the section “Application Binary Interfaces,” also in Chapter 4; 

lots of work can be done here to improve, work for which platform 

engineers are essential.

•	 Tools for automated testing, especially automated integration testing 

between the various parts of a full-stack crypto application, are still 

nascent. Testing infrastructure for smart contracts themselves is 

Chapter 1  Introduction
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getting better; teams such as Paradigm are making good progress 

with tools like Foundry.1 But developing a full testing stack still 

requires a lot of code and a lot of awkward maneuvering.2

•	 Formal verification of crypto protocols is inaccessible and complex.

•	 DAO governance is still fundamentally broken, communities torn 

between the ideals of distribution and the prudence and necessity 

of effective governance. Token allocations are weighted toward a 

small cadre of teams, investors, and whales; at the same time, most 

DAOs preach democratic values such as broad-based consent 

and inclusivity. There are experiments to improve the quality and 

participation levels of voting, to pull back from a directly democratic 

mechanism and toward something more representative, but many 

more cycles of iteration are needed. Much communication happens 

principally through Discord, always a good example of the medium 

introducing noise into the message.

Solving these problems in a general way is the responsibility of the community at 

large. And a lot of the correct solutions are hard to predict a priori. They will emerge in 

path-dependent ways, incrementally, which is why it’s especially important to dedicate 

resources internally to solving local problems specific to your team.

Finally, platform engineers can also be responsible for a range of intermediary 

technical decisions, such as node hosting providers. There are significant technical 

complexities to building smart contracts and running products on top of them, and it 

can be useful to treat these complexities as a distinctive source of work for a distinctive 

team, rather than palming them off on product and protocol.

�Crypto Businesses
So we’ve outlined the roles that product, protocol, and platform engineers fulfill. Many 

teams will need to do all three, even if they carve up the responsibilities and job titles 

differently. How does this shake up in your actual hiring practices and in your team 

structure?

1 https://github.com/foundry-rs/foundry
2 We’ll talk about how to test the products you create in Chapter 5.
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Firstly, it’s important to understand them as three different functions. These are 

three different roles for which you are hiring and for which the balance must be carefully 

calibrated. A team with no protocol engineer lacks the ability to change the underlying 

data storage and computation; a team with no product engineer lacks the ability to build 

frontends for customers to use; a team with no platform engineer lacks the ability to host 

and monitor the product and build tooling to support the other functions. There may be 

separate people filling these roles or one person doing all three. But be under no illusion: 

they are different roles!

Secondly, these roles, while all crucial, have different relative importance. Many 

teams will need to do all three and will want to hire separately. But the relative 

ubiquitousness of product engineering with respect to the other roles offers a good 

reason for why it is especially important.

There are many crypto companies that don’t really need protocol engineering. 

Companies building frontends for existing protocols, for instance, won’t need dedicated 

protocol resources. Similarly, companies building wallet software, or some other user-

facing application with no smart contract component, probably won’t need a protocol 

engineer.

There are some crypto companies that don’t really need platform engineering – or at 

least can minimize it and integrate it into other functions. If their hosting requirements 

are small, and their existing tools are sufficient to support their development efforts, the 

platform role might be less important.

But in almost every case, there is a product component. Crypto companies still need 

to sell something, and there are few instances where selling something means launching 

a protocol and not building a frontend for it. The only condition under which product 

engineering is not important per se is when you’re building a protocol that is immutable, 

with a minimal surface area of governance, which provides a service only to other 

protocols. In these cases, it is unlikely you’ll need to hire an engineer to focus on product 

engineering alone.

But these cases are few and far between. And they are getting fewer. Product 

engineering is going to become more important over the next few years, not less.

Why? Two reasons:

	 1.	 The core technologies of crypto are beginning to settle: The 

core DeFi primitives – token standards, AMMs, lending markets, 

options, futures, derivatives – are becoming well established. The 

basic standards around NFTs and ownership are now reasonably 
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well understood. Efficiency improvements to the Ethereum 

blockchain and scaling technologies such as layer 2s are known 

quantities. This is not to say that the foundations are set: there can 

and should be much more innovation at the protocol level. But the 

basics are there. The concrete is still soft, but the foundations have 

been poured.

	 2.	 Fuelling the industry through the returns on token speculation 
is a haphazard, broken, and damaging model: It encourages 

mercenary capital and fragile communities and zero-sum value 

extraction. We should be building institutions that endure through 

legitimate defensibility, not institutions whose lives are snuffed 

out by a sudden drop in an illiquid token’s value. As crypto 

matures and regulation hardens, the ability to meme yourself into 

economic relevance will become more and more difficult.

And once the basics are there, what is next? Solving problems for customers. 

Creating products that people actually want to use, which suggests that the next stage 

of crypto’s development will be building out user-facing applications and improving 

user experiences around the primitives that exist today. This has a natural consequence: 

product engineering is going to increase in both absolute and relative importance.

Note T his book was written during the 2022 bear market. One useful function of 
bear markets is a renewed emphasis on products that solve problems and drive 
meaningful revenue – another reason to think that the product role will increase in 
importance!

Finally, this renewed emphasis on product and user experience means that product 

engineering needs to be a part of the story from the very beginning. Smart contracts 

should be designed in collaboration with product engineers so they expose the right 

methods and emit the most useful events. Tooling should be evaluated based on how 

significantly – even if indirectly – it improves the end-user experience. Innovations at 

the protocol level should be viewed through a prism of the functionality they unlock, not 

merely the elegance of their design. I’ll bang on this drum a lot throughout this book.

This section has sketched out the three key engineering roles that exist when 

building complex crypto products. The trichotomy is neither exclusive nor exhaustive: 
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there is overlap, and there are other important engineering functions that mature 

businesses need. But if there is one role among the three that does, and will continue to 

matter most, my money is on product.

We’re here to solve problems and serve customers. If we’re not, we’re not building 

businesses: we’re just building technology.

�Crypto Engineering Is Trust Engineering
The psychology of users matters, especially in crypto. Crypto teams can think of their job 

in terms of trust engineering: making product decisions to increase a user’s confidence in 

the product. Don’t move fast or break things; it is more rational to move slow and protect 

things. Trust engineering means changing your process as well as your product. Trust is 

built over time. Crypto needs more grown-ups.

�Products and Users
As we discussed in the previous section (“Products, Protocols, and Platforms”), most 

crypto teams are building companies. They exist to serve customers and capture a small 

part of the value that they create for those customers. This is why product engineering is 

especially important: product engineers are focused on building experiences for users, 

with a relentless focus on the user experience. This commitment to user experience and 

delight, I’ve argued, is crucial – and becoming more so.

One point I try to make in this book is that crypto companies aren’t at all that 

different from regular software companies. What I’ve said earlier is true of all software 

businesses, all businesses in general.

But there are important ways in which crypto companies are different, if not in kind 

certainly in degree.

The product experiences we are building have an altogether different flavor from 

what you might be used to. The stakes are so much higher. Potentially millions – or even 

billions – of dollars of value will flow through the products that you build.

This changes things. This changes the focus of your team. It changes your pace. It 

changes your temperament.

You are no longer just engineering a solution to a narrowly defined problem: you are 

engineering trust.
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�The Psychology of the User
Let’s start by considering the psychology of the user – not just the users we have today 

but also the users we hope to reach. As the tombstones in the graveyard of abandoned 

and sabotaged projects attest, in crypto, mistakes have truly significant consequences.

A common refrain in crypto is “not your keys, not your coins.” A purely custodial 

system is not a decentralized one, since it offers a single and vulnerable point of failure 

or attack. Crypto users, so the refrain goes, need to own their private keys outright.

But this generates serious usability problems. The basic wallet infrastructure is 

still so weak. The median user is not going to want to store 64 hexadecimal characters 

somewhere and take on the infosec risk attached. Swapping “64 hexadecimal 

characters” for “12 random words,” as in the case of seed phrases, is hardly better. 

It is not just awkward from a UX standpoint: it creates stress. Users have been given 

structural assurances from regulation, insurance, as well as common patterns of account 

recovery such as “reset password” functionality. They are psychologically unprepared 

and unwilling to take full control over private keys or private key analogues. Doing it 

safely, securing yourself from the barrage of technical and social attack vectors that exist 

in the adversarial environment, is an extremely tough job.

There seems to be a general presumption that there is some form of asset recovery 

available to users who lose their keys or general apathy toward those who do, expressed 

by the resigned and lazy epithet “with great power comes great responsibility.” In 

isolated cases, this might be true. But customers deserve better than that; as the user 

base shifts away from early adopters, they will demand better than that, and these 

handy libertarian dismissals do nothing to help promote the industry or the products 

we create. The asset recovery mechanisms that do exist are principally on-chain (e.g., 

smart contract wallets) and often inadequate or incomplete.3 And on-chain solutions 

can impose significant user experience burdens that make these products that much less 

attractive.

Furthermore, the mechanisms for asset recovery via off-chain legal structures are yet 

to be fully developed and will take time to mature and integrate properly. There are not 

3 Vitalik Buterin discusses some technical issues with implementing social recovery for on-chain 
smart contract accounts here: https://vitalik.ca/general/2021/01/11/recovery.html. 
This sort of approach feels directionally correct, but it addresses only a small part of what “asset 
recovery” requires.
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a lot of options of on-chain insurance – despite the laudable work of teams like Nexus 

Mutual4 – and the regulatory game is yet to be played.

There is an underlying point here: crypto is scary because generations of people have 

relied on trusted third parties to outsource their personal security posture. And as the 

dollar amount stored gets bigger, it gets scarier.

Crypto is also scary because the environment of crypto is one that breeds reasons 

to be fearful. It is foundationally adversarial. The financial incentives to play foul and 

act with malfeasance are obvious. What is less obvious is that one of the core goals 

of web3 – transparent and permissionless access – serves to double down on these 

incentives, attracting more foul play and minimizing its risks. Crypto feels a certain way, 

and it doesn’t take many rounds in a Discord chat room before realizing that the feeling, 

in large part, is one of “everybody is trying to scam you, all of the time.” Even battle-

hardened hedge fund managers and organized criminals – people who work in highly 

adversarial environments – have, over time, evolved systems of trust and centralization 

that allow the median participant to be able to operate psychologically and to therefore 

allow institutions to flourish. Crypto is yet to evolve such comprehensive systems, and 

the challenge of doing so while remaining faithful to the movement’s core vision is great.

The design space for attacks is always increasing as crypto systems become 

even more complicated. The more mechanisms a protocol introduces to lower 

the psychological burden of using it, the more complexity and therefore the more 

opportunities there are to attack it. The core problem is the parameters and bounds of 

trust haven’t been set yet. Users rely often on shaky intuitions: a product “looks a bit 

off,” or a conversation “feels fishy.” There isn’t a good vocabulary for describing these 

intuitions. Most of all, there has been insufficient attention paid to how important it is to 

build products in a way that bolsters user trust and minimizes user risk.

�Trust Engineering
So one essential task for the product engineer – working in tandem with protocol and 

product – is to give the user as many reasons as possible to trust their product. And, 

usually, the best way to convince someone that something is safer is to actually make 

it safer.

4 https://nexusmutual.io
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Given these general concerns about the adversarial environment, then, what sorts 

of levers does the product engineer have to generate trust and reduce risk in their 

products?

One important place where teams sometimes begin is with the Silicon Valley mantra, 

“move fast and break things.” No! When you are dealing with millions of dollars, you 

should, in the words of my friend Ric Burton, “move carefully and check things.”5 

This means a lot of practical things, the details of which we’ll discuss later. But the 

most important of these entails an emphasis on product quality and slowing down to 

ensure it.

Crypto might move fast – and it does – but this needn’t frighten you into cutting 

corners in order to get to market quicker. There are rational reasons to reduce your 

product velocity in service of greater attention to security and quality: the expected value 

of not messing up far dwarfs the benefit of being a few days earlier to market.

This suggests a cardinal rule, something that should always be in the back of your 

mind when building products in the Ethereum ecosystem:

The Principle of Trust

Each interaction a user has with your product, whether positive or 

negative, should increase their trust in it.

If you are fighting in a competitive space for user attention, you needn’t worry. 

Competition should be no reason to abandon the Principle of Trust. The core principle 

of permissionless access means that user lock-in is lower. It is harder for companies 

in DeFi to build a moat from user lock-in (such as network effects). Indeed, reliability 

and trust can make up for all manner of sins. There are teams in crypto building poor 

quality products, or lending protocols offering relatively less interest on deposits, that 

still maintain large user bases, because of the reliability of the platform. Trust can be a 

moat, too!6

So we can, and should, focus rigorously on the quality of our products. We can 

pay attention to aspects of design and development that are often overlooked by 

5 https://twitter.com/ricburton/status/1219962369989758977
6 The idea of a business’s “moat” is generally attributed to Warren Buffett. I like the model put 
forward by Hamilton Helmer in his 7 Powers: The Foundations of Business Strategy, which 
describes a moat as a set of powers that provide persistent, differential returns in the face of 
competition. Applying Helmer’s framework to crypto companies is an interesting project, 
regrettably outside the scope of this book.
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overstretched teams looking to ship quickly. One example: Emphasize information 

architecture during design. What information does the user need, and what do they 

expect? How is this information revealed hierarchically? How is it auditable? User 

interfaces should provide information about where data comes from and justification 

for its calculations. This can be as simple as a link to the relevant transaction on 

Etherscan or as complex as a custom UI containing dynamic explanations of some 

specific, calculated number found in your app. Focus on clarity of information, and trust 

will follow.

Another important lever is error handling. Some errors that a normal user will face 

are deeply technical, such as an invalid nonce, which may not even be the fault of the 

user. Some errors are due to incorrect user input. Some errors are due to the dynamical 

properties of crypto: the prices of assets and gas rates will change between a first attempt 

and a retry, further compounding user stress and confusion and violating the Principle 

of Trust. The most important thing is to communicate errors to the user, simply and 

effectively. Spend time thinking about wording and integrating documentation into your 

product. Also, spend time thinking about how to engineer out errors through the UI or its 

behavior. If an underlying price has changed, can you detect it and reveal it to the user in 

a humane way? Even sophisticated users will need guidance. And all users deserve it.

Finally, aesthetics matter too. Products that are enjoyable to use and beautiful create 

more trust, as well as happier users.

A fourth way we can engineer more trust is to focus on the full user experience, from 

marketing to product to documentation to customer service. Tony Fadell makes this 

point well in his book Build:

[W]hen you’re creating a new product, regardless of whether it’s made of 
atoms or electrons, for businesses or consumers, the actual thing you’re 
building is only one tiny part of a vast, intangible, overlooked user journey 
that starts long before a customer ever gets their hands on your product and 
ends long after.

—Tony Fadell, Build (Chapter 3.1)

Fadell’s suggestion is that every touch point – every time your customers interact 

with your company – matters. Any chance you get to increase trust, you should take 

it. Trust, like respect, is built over years and destroyed in an instant. That’s why the 

Principle of Trust is framed in universal terms.
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Be responsive to requests and problems. If something goes wrong with your 

restaurant meal, your confidence in the restaurant increases beyond the baseline when 

the problem is fixed expediently and professionally. Companies get in trouble, not when 

they make mistakes, but when their processes and procedures are of an insufficient 

quality that they can’t correct those mistakes. Errors will happen. Get really good at 

fixing them, and you’ll get really good at engineering more trust.

Excellence starts long before a customer uses your product. Code review and 

external audits are essential for systems dealing with money and even more so for 

systems that operate in adversarial environments. Code review is important for the 

obvious reasons: it produces better code quality; it helps identify and fix smaller 

issues you would otherwise miss; it helps you when considering larger refactorings 

or alternative approaches; it helps you see the wood for the trees (and the trees for 

the wood). But it’s also important for less obvious reasons: it is a form of knowledge 

transfer. It gets more eyes on more parts of the system and helps reduce the bus quotient 

(the number of people who could be hit by a bus before the company is in danger). It 

is good for the robustness and antifragility of your team as well as the robustness and 

antifragility of the products you’re building.

External audits are important for similar sorts of reasons. But the other thing that 

audits provide is an artifact that signals trustworthiness. Auditors often provide a report. 

You can publish this report and show that you’ve addressed the issues within it. You can, 

and should, comment on the report and link to the commits and describe the changes 

you’ve made. Even the act of commissioning an audit is a good signal. Audits aren’t 

cheap; but neither are hacks.

Perhaps the most important thing you can do when trying to engineer trust is to 

always bias toward transparency.

One of the easiest ways to increase trust among a certain user base – that is, the 

current user base of tech-savvy crypto-natives – is to open source your code, to show to 

others that your code quality is high and to allow unaffiliated individuals to inspect and 

audit your code for you.

But transparency extends far beyond the code you write. You should be transparent 

with your errors: publish post-mortems when things go wrong, demonstrating that you 

understand the reasons and that you are working to fix them. You should be transparent 

with your reasoning: publish justifications for your product decisions and product 

strategy. This doesn’t mean you need to delegate these decisions out to others, but it 

does mean you need to communicate in a clear and considered way the inputs into your 

decision-making processes and the ways you evaluate the possible outcomes.
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Finally, and I want to underline this point, trust is built over time, and habits aimed 

at increasing trust need to be continuously renewed. It’s worth considering whether you 

can include certain indicators of trust in your internal metrics: Have we communicated 

with our users more than average this month? How easy is it for somebody to complain 

and feel as though the complaint has been heard? How reliable is our product? How 

reliable are the ancillary services such as customer support that go around our product? 

Constantly measuring and attending to indicators of trust is difficult, but extremely 

valuable.

�Professional Arbitrage
I hope that the preceding considerations are both sobering and invigorating: sobering 

so the importance of what we are building is not lost, and so the consequences of 

getting it wrong are not forgotten, and invigorating because the importance of what we 

are building means we can have a renewed sense of care and craftsmanship in how we 

build. We can afford to emphasize excellence.

Web2 engineers, with experience and focus and care, can do excellent work in web3, 

especially as product engineers. Understanding your discipline as trust engineering, 

considering user trust and confidence in everything we do, is a great way to differentiate 

yourself from the crowd. And none of it relies on skills idiosyncratic to crypto.

I’d like to underline this point again: none of this is crypto-specific. Many of the 

problems you face are crypto-flavored. But few of the solutions have to be! There have 

been reams written on how to write code well, how to write code in teams, how to 

respect your teammates and your users, how to understand your users’ problems, how 

to design your solutions so that they solve these problems effectively, how to revisit and 

revise your solutions to ensure that when the problems shift the solutions do too, and 

how to scale your solutions so that they continue to work when crossing over various 

memory and time boundaries. This is all work you have done in web2 and should 

continue to do in web3.

Finally, in the web3 world of incomprehensible memes and devastating hacks, all set 

in the tenor of cultural anarchy, your existing expertise is a form of superpower. Web2 

engineers moving into web3 are primed, perfectly, to take advantage of a rare form of 

professional arbitrage.

We can be the grown-ups in the room.
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�What’s Next
This chapter has introduced the notion of product engineering, distinguished it from 

the other roles in Ethereum engineering, laid out my basic reasons for why product 

engineering is important, and described the sorts of things that product engineers 

actually do. With that in mind, the chapters that follow are a deep dive into what this all 

looks like in practice.

In Chapter 2 (“Requests, Networks, and Accounts”), we’ll look at notions of 

identity. We’ll see how a user’s intentions are represented, how the user themselves 

is represented, and how the network is represented. More precisely, we’ll see how an 

Ethereum request gets from a user’s head to the blockchain and back again, and we’ll 

start to think about the various UX and product patterns that help make that happen.

In Chapter 3 (“Transactions”), we’ll build upon these core concepts, adding flesh 

to the bones. We’ll look at transactions in greater detail and consider how we should 

represent them in our UI. We’ll also think about how they can fail and how to build 

experiences that understand and can react to these failure modes.

Chapter 4 (“Contracts”) begins by discussing what smart contracts actually are and 

how they are programmed and executed on the EVM (Ethereum Virtual Machine). We’ll 

introduce a basic conceptual model for contracts – contracts as APIs – and see where 

this model breaks down. We’ll talk about the sorts of data that are available to product 

engineers, how smart contracts are constrained, and how we can work around these 

constraints using various indexing techniques.

In Chapter 5 (“Infrastructure”), we’ll see how we can ensure our applications are 

doing what we need them to do and where to put them when we want to get people 

using them. We’ll talk about decentralization in this context, too, looking at some of 

the difficulties of decentralized hosting and the centralized tendencies of the existing 

Internet infrastructure.

The penultimate Chapter 6 (“Decentralization”) takes a step back from the technical 

heart of the book, considering various memes and organizational structures that are 

currently in vogue. We’ll look at standards setting in the Ethereum ecosystem. We’ll 

consider how frontends might be decentralized and whether this is even desirable. And 

we’ll challenge whether decentralization should be the central meme in web3.

Finally, in Chapter 7 (“Conclusion”), we’ll talk about how crypto sits within broader 

patterns of technological change and what a world where crypto is essential might look 

like. This is the least technical of the chapters and the most speculative. I hope that, 
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by the end of this book, you’ll agree with me on the big things. But if you don’t, I hope 

that you’ll have a clear sense of what I am trying to say, and be eager to start a career in 

crypto in order to prove me wrong.

�Summary
In this chapter, we began by talking about the product, protocol, and platform 

dichotomy, motivating why each role is relevant and important. We also gave some 

reasons why product and platform roles deserve higher relative status than they 

currently enjoy. We then discussed the various psychological features of interacting with 

crypto products today and how the most important job of the product engineer is to 

engineer trust. Finally, we sketched out the rest of this book.
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CHAPTER 2

Requests, Networks, 
and Accounts
Requests are the messages, the bits of information which move state and intent around 

the system. Networks are the channels over which messages are sent. Accounts are the 

entities that send and sign those messages. In this chapter, we’ll develop a foundational 

understanding of these three central parts of the Ethereum design. We’ll look at how 

these concepts intertwine and how they affect the products we build.

�The Lifecycle of an Ethereum Request
Understanding the full lifecycle of an Ethereum request is an excellent way to introduce 

the platform’s core concepts. Transactions are state changers. Requests begin in a user’s 

head and are turned into a transaction by the app. They are signed and verified by wallet 

software and sent to a node. One node is selected as a block proposer, which is responsible 

for selecting, executing, and organizing transactions. Several other nodes are chosen 

to check the work of the block proposer. Once consensus is achieved, the transaction is 

considered confirmed, and the app can update its state.

The story of how an Ethereum request is made is far from straightforward: a request 

is born, lives, and resolves in a complex, path-dependent, and sometimes inscrutable 

way. It is not just complex at one level, but fractally so: every time you zoom in to one 

small piece of the network, more complexity emerges.

Understanding it fully could be the subject of several PhD theses. Its mechanisms sit 

at the intersection of advanced computer science, microeconomics, information theory, 

as well as practical matters of web application development, the infrastructure of the 

Internet, and systems engineering. But it’s helpful to see the story at the highest level – to 

get a sense of the broad integrative picture and to see how it all fits together.

© Jamie Rumbelow 2023 
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To that end, in this section, we’ll walk through the entire lifecycle of an Ethereum 

request. You’ll see NOTE blocks and footnotes, which nod toward the subtleties and 

complexities that I’ll otherwise pretend aren’t there. I also reference other chapters and 

sections of this book, which will discuss many of these ideas in a lot more detail.

In the next part, I’ll summarize the basics; the rest of the section will drill further 

into the details. So, if you’re in a hurry, you should be able to get a good grasp of the 

fundamentals by reading this list and skimming the sections that are interesting.

But before we begin on our journey, there are two important caveats to make.

Firstly, this chapter describes how transactions work under the Proof of Stake 

consensus mechanism. Secondly, there are two sorts of requests one might make to the 

Ethereum network: writes and reads. Writes cause changes to the global state; reads 

simply return values (or derivatives of values) from it. Reads are considerably simpler, so 

I won’t spend much time on them, though I’ll highlight in the text where the read path 

diverges. This section will focus on write requests.

�The Basic Story
Requests begin in the user’s head and end by effecting a change to the Ethereum global 

state. Each step between these two is designed to spread the responsibility between 

multiple, noncolluding parties, ensure the security and historical immutability of 

the system, and do so in a power- and resource-efficient way via its “Proof of Stake” 

consensus system.

Note  These properties might seem purely technical. But blockchain design is not 
merely a technical problem: since blockchains are also social systems, it is also a 
political problem; constraints on, for example, transaction power usage are driven, 
in part, by exogenous social and political demands.

There are a handful of standard actors in the story of how a request goes from, some 

with already familiar names, others more obscure, all with specific roles to play. These 

actors are as follows:

•	 A User, who wants to achieve some goal and is relying on you to help 

make it happen

•	 Your App, the frontend in which the User interacts with your system
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•	 The user’s Wallet, the piece of software they use to manage their 

Ethereum account(s) and sign transactions

•	 A Node, a copy of the Ethereum network software, connected to the 

wider network and exposing an HTTP RPC endpoint

•	 The Network, the set of all the nodes running on Ethereum and the 

emergent properties that exist through their interactions

•	 A Validator, a special type of node which can be chosen to construct, 

verify, confirm, or challenge the current block

•	 A Block proposer, a validator which is chosen to construct the 

current block

This is a simple cast and represents a simplified model. But these various actors 

combine and interact to shepherd a request from conception to completion. The basic 

story is straightforward:

	 1.	 The user signals their intent to do something, usually by triggering 

some sort of user interface event (e.g., clicking a button).

	 2.	 The app handles the event and constructs a transaction.

	 3.	 The user goes to their wallet to verify and sign the transaction.

	 4.	 The wallet – or sometimes the app1 – submits the transaction to 

the node.

	 5.	 The node verifies the transaction, and the app goes into a 

waiting state.

	 6.	 The node broadcasts the transaction to its peers on the network, 

the transaction being stored in the mempool of each node.

	 7.	 A single validator is assigned as the block proposer, responsible 

for selecting and executing the block and computing the next 

system state.

1 Once a request has been signed by the wallet, there is nothing stopping it being submitted to 
a node by some other party: the app’s frontend, some backend service, or some sort of relayer. 
Hardware wallets, for instance, sign the transaction on the hardware device and then pass the 
signed transaction payload back to the software wallet or app.
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	 8.	 A group of other validators are assigned to the validation 

committee.

	 9.	 The block proposer selects the transactions from the mempool 

and executes the requests.

	 10.	 Once the validators agree upon the contents of the next system 

state, the block is considered confirmed.

	 11.	 When the app sees the transaction is included in a confirmed 

block, it pulls any data needed, informs the user, and updates its 

state to reflect the new state of the network.

Truncated like this, it seems straightforward enough. Of course though, as ever, the 

devil is in the details. This list will form the basis of the rest of this section. Let’s dive in.

�Where Requests Originate
One crucial and often overlooked insight to building on Ethereum: All requests begin 

off-chain. Ethereum does not support autonomous contracts; requests are always 

initiated by an externally owned account (EOA).2 This means that every request comes 

from either a user or a user-like entity (e.g., a bot). All requests issue in some way 

from an intention to do something, rather than from the autonomous workings of a 

protocol itself.

This is a book about building products for users, so we’ll be thinking about it in user-

only terms. (There is of course an important role for bots too, but we’ll generally steer 

clear of these complications.) In most cases, this means that the user needs to initiate 

a request through some user interface. We’ll discuss how this happens in much more 

detail in other chapters and in a later section of this chapter. But the core idea is that the 

user interacts with the app, the app figures out the user’s intention, and the app pulls its 

data from and submits transactions to some node connected to the network, as shown in 

Figure 2-1.

2 In the early days of Ethereum, there were discussions of an ALARM opcode to trigger contracts 
at some later time, but it never made it into the protocol (https://github.com/ethereum/
go-ethereum/issues/117).
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Figure 2-1.  All requests begin with a user wanting something. Data flows from 
the node to the user via the app, and intention flows from the user to the node 
via the app

For frontends, this communication from the app to the node is usually done with 

the window.ethereum object, typically via a higher-level library like ethers.js.3 But as we’ll 

discuss later (sections “Contracts Are APIs” and “Indexing” in Chapter 4), the node can 

be treated as a general-purpose API interface, and so there are different approaches to 

getting data in and out of the blockchain.

In the case of read requests, this is all that needs to be done: the request needs no 

signing or confirmation, and the node can process the request and return the result to 

the user. In the case of write requests, it gets a little more complicated.

A write request involves a function call to the network that gives rise to some state 

change. Consensus needs to be reached over the new state, and the network needs to 

decide how to deal with the various competing requests vying for slot and block space. 

Moreover, the history of the blockchain needs to be agreed upon and secured. So the 

user needs to commit to paying something to the network both for its computational 

power and to sustain the incentive structure necessary for security. (There are still costs 

associated with fulfilling read requests – bandwidth, computation – but these are borne 

by the node provider rather than by the network.)

Ethereum uses a mechanism to gas to help price the work required to execute and 

confirm the transaction. The total amount of gas is determined by the complexity of the 

transaction: each EVM opcode has an amount of gas attached to it. Certain activities that 

cost more, like writing to permanent state, consume a higher amount of gas. Each unit 

3 ethers.js is a popular, TypeScript-friendly library for interacting with Ethereum smart contracts: 
https://docs.ethers.io/v5/
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of gas then costs a certain gas amount that the wallet software can specify. This creates 

a market, driven by supply and demand, for computation on the network. Gas therefore 

serves two important functions:

•	 Gas is used as a mechanism for paying for the computational 
resources required by a given transaction. Transactions provide 

a per-gas amount that they are willing to pay, including a base gas 

fee (set by the network) as well as a priority fee that can be used to 

incentivize validators to select one transaction over another. If the 

network is busy, then the gas price will be higher.

•	 Gas is used to solve the denial-of-service problem present in public 

networks like Ethereum. If submitting requests to the network is free, 

then this opens the door for a malicious actor to spam the network. 

If the user has to pay based on a market price, then the marginal next 

transaction in a block becomes more expensive, eventually pricing 

out a spammer.

Gas is thus an elegant solution to the problem of pricing network usage. High gas 

fees, often used as a criticism of Ethereum, are actually a symptom of its success: there 

is high demand for transaction space, and supply is limited. Attempts to scale Ethereum 

are concerned with moving this demand around (usually to layer 2s, which we’ll 

talk about in the section “Network and Account Switching” later in this chapter) and 

increasing the supply capacity (through upcoming network upgrades like sharding).

Anyway, the user is sent to their wallet software to sign and verify the transaction. 

At this point, they may need to make some meta-level decisions, especially around 

how much they are willing to pay for gas. Some wallets abstract this complexity away, 

showing only a price in USD or ETH. Others provide more configuration, allowing the 

user to specify max gas amounts and prices per gas unit. The wallet will also do its own 

checks, often verifying lower-level pieces of the transaction that are necessary for the 

effective functioning of the network. Some wallets will even simulate the transaction in 

memory and block the transaction if it believes it will revert.

If there are errors with the transaction construction, then the transaction is rejected. 

Once configured and confirmed, however, the wallet then produces a transaction 

hash, returns it to the app, and submits the transaction into the network, as shown in 

Figure 2-2.
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Figure 2-2.  If a transaction is valid, it is confirmed in the wallet software and sent 
to the node. If it isn’t, it gets bounced back to the app

Transaction hashes are unique identifiers, built by combining all the various 

properties of the transaction, including who is sending it and what its content contains – 

as well as when and in what sequence it appears in the account’s transactions – and 

getting the user to sign it. (See the section “What Does a Transaction Look Like?” in 

Chapter 3 for more on the properties of an individual transaction.)

When signing a transaction, the user applies their private key to the transaction 

details, which allows them to say that they do indeed wish to issue this transaction and 

that it is them issuing it. The signature and transaction details are then combined and 

sent into the keccak256 hashing algorithm.

Note W hat is a hashing function? A hashing function is a cryptographic 
mechanism for producing a fixed-length string from some input. Secure hashing 
functions have three important properties. They are deterministic, which means 
that the same input will always produce the same output. This allows them to be 
verified at some point in the future. They are irreversible, which means that there is 
no better way to determine the input from the output than by guessing at random. 
This allows them to be used in contexts where security matters. And they minimize 
collisions, which means that it is very unlikely that two different inputs produce 
the same output. This allows hashes to be used to indicate identity. Ethereum uses 
keccak256, which satisfies each of these properties.
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Keccak256 produces a 32-byte hexadecimal string, which is prepended with 0x to 

indicate that it is a hexadecimal. The app then records the transaction hash locally, so 

that it can monitor the blockchain for transaction approval.

�How Requests Are Confirmed
So, let’s recap. We have a transaction that describes a function call requesting a change 

to the state. The transaction is signed cryptographically to confirm that these are 

indeed the user’s wishes. The transaction is identified by a transaction hash. And the 

transaction is submitted by the node to the network.

Since this book is about users, we won’t spend much time on how the network 

processes these transactions. The Ethereum docs have some good content on 

Ethereum’s original validation mechanism, Proof of Work, and its newer, more 

computationally efficient mechanism, Proof of Stake.4 For our purposes, all we need to 

know is that there is a gap between submitting a transaction and that transaction being 

included in a block. Often transactions are included directly in the current block; in 

other cases, the transaction may take more blocks to be included. We’ll talk more about 

this in a moment.

The user’s wallet submits an HTTP request to a node’s RPC endpoint (cf. “Contracts 

Are APIs” in Chapter 4). The node takes this request, verifies it, and broadcasts it to its 

peers. Who are its peers? Its peers are just the other nodes it knows about; this is, in 

practice, always a small subset of the total nodes on the network (its “neighbors”) that it 

happens to be connected to.

Every node5 on the network contains a list of pending transactions. This list is 

called the mempool, a liminal space where new transactions await inclusion in a block. 

Figure 2-3 indicates that a transaction propagates to the mempools of every node when 

submitted.

4 https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/ and https://
ethereum.org/en/developers/docs/consensus-mechanisms/pos, respectively.
5 Well, not quite every node: only nodes that are participating in validation this epoch (a grouping 
of 32 slots/blocks). Participating nodes are reshuffled each epoch.
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Figure 2-3.  Every node in the network has their own copy of the mempool, a list of 
pending transactions

A validator node then is assigned, at random,6 as a block proposer. This validator 

chooses which transactions to select from the mempool (or elsewhere), based on the gas 

price and gas limit remaining in the block that the validator is constructing. Transactions 

can be left in the mempool for some time before they are verified. If gas fees suddenly 

spike and the submitted transaction is bidding too low, then the transaction will be left 

pending until fees are lowered. Transactions can also be dropped outright from the 

mempool if they are left too long; nodes have finite memory, and removing pending 

transactions from the mempool is one mechanism by which the nodes achieve reliable, 

sustained functioning.7 Similarly, if a transaction takes up a lot of total gas and there isn’t 

6 Well, not quite at random: there’s a weighting relative to the total ownership share of staked ETH 
among those validators participating in an epoch.
7 See, e.g., https://ethereum.stackexchange.com/questions/31303/when-are-pending-
transactions-dropped-from-the-blockchain for more details.
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enough space left in the current block, it might not be included in the next slot or two. 

In fact, block proposers have unilateral control over what gets added to the block and in 

what order, and so they are able to construct their own transactions to extract value from 

the network; the economics are more complex than just “pick the transaction with the 

highest gas bid.”8

Once the block proposer has selected and executed the transactions – in other 

words, once it has derived the new state – it then proposes the block to a committee of 

other validator nodes. This committee is selected, again, at random. The validators in the 

committee then each execute the transactions, comparing their results to the proposed 

block. They submit attestations: agreements with the block proposer that the result is 

indeed what the transaction code said it should be. This allows the validators as a group 

to reach consensus on the proposed block. Once consensus is reached, the block is 

considered confirmed (“finalized”). This flow is shown visually in Figure 2-4.

8 In the first draft of Chapter 6, I included a detailed discussion of Maximal Extractable Value 
(MEV), where validators add transactions to or reorganize blocks in order to perform various 
economic attacks on other transactions. This section was, I think, interesting, but felt like a bit too 
much of a tangent to the main thrust of the book. So here’s the short version: MEV arises because 
block validators have control over which transactions go into the block and in what order. So, for 
instance, a validator can evaluate what will happen to the price of a token after a swap and then 
arbitrage on the transaction by buying the token up to the price that the attacked transaction is 
willing to pay, then selling immediately afterward and pocketing the difference. These sorts of 
attacks – and they are attacks – are also a part of traditional markets (see, e.g., Michael Lewis’s 
Flash Boys, which explores the frontrunning of stock orders by high-frequency traders), so are 
not unique to crypto. But they represent serious amounts of money: some ~$300m was extracted 
by miners in 2021. What is unique to crypto, however, is that in crypto MEV extraction seems 
unavoidable. Projects such as Flashbots (www.flashbots.net) are building important parts of 
infrastructure to help identify, democratize, and limit the value extracted.
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Figure 2-4.  A transaction is submitted by the node on the left. The node executes 
the transaction to check its validity before sending it to the network for consensus. 
Block proposers select and execute the transactions; a committee of validators 
confirms the results. Only then is the block considered “added” to the chain

Much of the complexity in understanding this flow comes from the inaccessibility of 

the underlying networking principles and peer-to-peer communication. But the actual 

mechanism of consensus is relatively straightforward: do the work a few times by a few 

different people, calculate the new state, and ensure that the proposed block’s results do 

in fact follow from the code that the block is supposed to execute.
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How to do this in a way that ensures no foul play or collusion is a little more 

complicated. But there are some economic considerations built into the design of 

Ethereum’s Proof of Stake implementation that are designed to reduce the impact of 

bad actors:

•	 In order to be considered as validators by the network, each validator 

has to lock up at least 32 ETH.

•	 The more ETH a validator locks up, the higher the likelihood will be 

that the validator is chosen to be a block proposer.

•	 If a validator contests a block’s results, the validator is running the 

risk of forfeiting some of their staked ETH.

•	 If the network decides that the contestation is correct, the block 

proposer loses its ETH; if the network decides that the contestation is 

incorrect, the validators contesting lose theirs.

•	 Therefore, there is a financial incentive to reach consensus, and the 

penalty for cheating increases in proportion to the power that they 

have in the network.

Anybody can be a validator, and the randomness used to select the validator 

committee makes participating in the consensus layer accessible. In the case that a 

block is contested successfully, the canonical chain will be reverted, and the state of 

the blockchain will be updated. These reorganizations happen frequently on Proof of 

Stake Ethereum, since even when acting in good faith the decentralized nature of the 

network can mean that it takes a while to propagate, and block proposers can “miss” 

their slot. Slots might be constant, but arrival times are not. And sometimes there can be 

discrepancies between the logic run on some nodes and the logic run on others.9 When 

the chain is reorganized, blocks may go missing, which you’ll want to bear in mind when 

building products that require strong data freshness.

9 If proposer A is scheduled to build block 101 off block 100, and proposer B is scheduled to build 
off block 101, and the block doesn’t reach proposer B in time, then proposer B will assume that 
block 101 was missed and base their block 102 off block 100. Some nodes might have received 
block 101, so the network will need to reach consensus about which fork is the canonical 
one. This seems to be the most common reason for reorgs and why we see one-block reorgs 
quite regularly on mainnet Ethereum. Sam Lewis has a good blog post on investigating this 
phenomenon (www.samlewis.me/2022/03/beacon-chain-reorgs/).
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The fact that the chain is reorganized and that consensus is reached based on 

the attestations of a cohort of validators, who themselves are chosen based on their 

economic might, changes the trust dynamics of Proof of Stake from those of Proof of 

Work. Proof of Stake recognizes that there needs to be some level of trust. In a world 

where not everybody is building their own node, you need some trusted sources 

regardless – the makers of the node software – to provide bug fixes and efficiency 

improvements. You also need some trusted source of the rules of the network, and the 

history of the network, itself. There has to be some canonical form of the network, and 

this puts a requirement of trust on the existing network to provide it. The older Proof of 

Work mechanism provides these rules by redoing all the prior work and using that to get 

to the canonical form of the network. Proof of Stake sees this as an unnecessary source of 

inefficiency and looks to get the same level of security with fewer ongoing costs.10

Anyway, enough details, this simple microeconomic design helps underwrite trust 

in the network and keep it fair while giving it some major efficiency benefits over Proof 

of Work. Our transaction goes from mempool to the block proposer to the validator 

committee. Once these steps are complete, and enough time has passed to ensure there 

are no impending reorgs, the block is considered finalized.

�Once a Block Is Finalized
Once a block is finalized, it is then broadcast back through the network. At some point, 

it reaches the node that the app is listening to, often the original node from which the 

request was submitted.

Remember the transaction hash we stored earlier? This is where it comes back 

into play. For each new finalized block, the app checks the block to see whether the 

transaction has been included. Sometimes, this is direct: by listening for new blocks and 

running the check. Other times, this might be via a webhook or some other notification 

mechanism, where an app will register the transaction hash and say “tell me when this 

block is confirmed.”

Once the transaction is confirmed and the app finds out about it, the app parses the 

transaction results, pulling out any events that have been issued and any results that the 

transaction code itself might return.

10 For a more technical comparison of the trade-offs between the two mechanisms, read https://
vitalik.ca/general/2020/11/06/pos2020.html
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At this point, the app can then update its state accordingly. It does this by retrieving 

the relevant information it needs through direct read requests to the blockchain or via 

some sort of indexer (see the section “Indexing” in Chapter 4 for a detailed discussion of 

how these approaches work in practice).

And that is essentially it: the story of how a request originates, flows through 

the network, is selected, and is executed and its changes to the state confirmed and 

displayed.

Understanding how a request filters through the network is of crucial importance 

to anybody building with Ethereum. I hope this section has shown that it is also quite 

legible. The basic concepts are simple, and the tooling and infrastructure that supports 

the network is getting more sophisticated, robust, and developer-friendly every day.

The Ethereum ecosystem has evolved to a set of trade-offs, some explicit and some 

implicit in other technology choices. These trade-offs form the subject matter of most 

of the rest of this book, and each of the chapters that follow is, in one way or another, a 

discussion of these trade-offs and how they affect building further up the stack.

�Accounts and Wallets
“Wallet” is not a useful metaphor for Ethereum accounts nor for the software used to 

invoke them. Accounts don’t hold things, which obscures the mechanism of on-chain 

ledgers of record. Accounts don’t hold merely financial things, which constrains the 

imaginative power of what tokenized ownership claims can represent. Accounts aren’t 

physical, which means they can be represented in context-specific ways. Accounts, instead, 

are an identity.

As I’ll mention later (in Chapter 7), technologists use metaphors to make 

skeuomorphic links to bridge the old paradigm to the new. One of the most common 

examples of this in crypto is the concept of the “wallet.” This chapter argues that it’s also 

one of the most misleading.

Metaphors work by implying certain things about the subject based on the object. 

Good metaphors also have the nice property of illuminating the subject of the metaphor 

in ways that the reader doesn’t expect. A good metaphor can help reveal the shapes and 

contours of a subject by making us consider the subject from a new angle.
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What, then, does the metaphor of “wallet” imply? It suggests a few features:

	 1.	 A wallet holds things.

	 2.	 A wallet holds a specific sort of thing, namely, financial things 

(such as credit cards and cash).

	 3.	 A wallet is a physical item and plays the various roles that 

physical items do, such as signaling style, wealth, and status.

Crypto wallets have none of these features.

When people speak of “wallets,” they are usually conflating two distinct and different 

things: “wallet software,” which provides a user interface to blockchain and any integrated 

dapps, and “accounts,” which are the entity that represents identity on the blockchain.

Accounts are not wallets, and nor do they function like them. Accounts don’t hold 

things: accounts represent identity. Accounts aren’t limited to interacting with financial 

products: they interact with anything representable on the blockchain. Accounts, of 

course, aren’t physical items: they are an abstraction over an individual on a ledger.

Wallet software are not wallets, and nor do they function like them. Wallet software 

doesn’t hold things: it sits on the “many” side of a one-to-many relationship between 

accounts and their user interfaces. Wallet software isn’t limited to interacting with 

financial products for the same reason as accounts. And, like accounts, they are not 

physical or physically constrained.

It’s worth stopping at this point and asking why any of this matters. Isn’t it just a 

shallow, semantic dispute? No. Because as well as being illuminating about the subject, a 

metaphor can often constrain our understanding of the subject, especially if it becomes 

the primary mechanism through which the subject is known.

This has happened with the wallet metaphor in crypto, which is why I believe it’s 

especially important to pay attention to what wallets actually are, how the metaphor 

shapes our thinking, and how it limits our thinking too.

�Accounts Don’t Hold Things
An account is a pair of public and private keys. A private key is used to generate a 

public key, and the public key is used to generate an address. So when you see account 

addresses such as 0xd8da…6045 (one of Vitalik Buterin’s accounts), what you’re really 

seeing is the result of passing Vitalik’s private key through the set of cryptographic 

functions that produce these addresses.
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The details of how this works are interesting, but out of the scope of this book. All we 

need to know for now is that this process is deterministic, in the sense that it returns the 

same value for the same input, no matter how often you run it, and irreversible, in the 

sense that it’s very, very hard to get the private key from the account address.

Note H ow hard? There's no better way than guessing at random. Ethereum 
private keys are 256 bits. Since a bit has two possible states, guessing a 256 
bit sequence correctly at random has a chance of 1/2^256. There are ~10^78 
atoms in the observable universe, which is roughly 2^260. Account addresses are 
only 160 bits long, which means that there are multiple possible private keys, but 
2^160 is still a very big number, equivalent to a little bit less than the total number 
of atoms on Earth.

So if you know the private key, then you can generate the public key, but you can’t 

(easily) go in the other direction. This is one of the reasons why it’s so important to keep 

your private key private: your private key is the one piece of information somebody 

needs to get access to your account. Fortunately, most users don’t have to worry about 

the content of the private key at all: they can use wallet software that holds the private 

key in a secure way. But when building products you’ll always need to keep in mind that 

the private key is sacred.

How does this link to the wallet metaphor?

Well, I lied a little: accounts do “hold” something. They hold ether, the native 

token of the Ethereum blockchain. But this is by communal assent: a group of people, 

incentivized to follow the same set of rules, collectively agree that a certain amount 

of ether is owned by a specific account, and another amount of ether is owned by a 

different account. It’s the collective assent that underwrites the ownership claim, not the 

account itself.

If you’ve got cash in your wallet, you actually do have cash in your wallet. The state 

is in your pocket. If you’ve got ether in your account, you’ve got a claim on the group for 

the amount of that ether. It’s a guarantee, secured by cryptography and incentives, that 

when you decide you want to do something with that ether, we’ll all agree that you can.

So I’m also telling the truth: accounts don’t really hold that much at all, and the 

notion of “holding” your ether and your tokens is a euphemism. Your account is the 

mechanism of a record of ownership. The state is not in your pocket, it’s “over there.”
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This might seem a little opaque, so let’s consider some code. One of the clearest 

examples of how accounts don’t actually hold anything is the ERC-20 token standard.

This standard is the core primitive in DeFi, the simple brick from which we build 

this cathedral. It offers a consistent interface for smart contracts that behave as a record 

of ownership. Contracts have to choose to implement it – that’s why it’s a standard, not 

a rule; see the section “Standards” in Chapter 6 for more – but those that do share the 

same methods.

We can distill the essence of ERC-20 down to only two function signatures:11

function balanceOf

      (address owner)

      public returns (uint256 balance);

function transferFrom

      (address from, address to, uint256 value)

      public returns (bool success);

(The actual standard contains more than these two methods, but the rest are for 

convenience, expedience, and extensions to the functionality, rather than being central 

to the model of how tokens are represented by contracts that implement it. Most notably, 

missing from this definition is the notion of token approvals, which stipulate permissions 

around who can transfer the token and how many tokens they can transfer.)

These two functions tell us everything we need to know about a particular piece of 

state. What is that piece of state? It’s a mapping from an address to the number of tokens 

owned by that address:

mapping(address => uint256) private _balances;

_balances is a map – also known as a dictionary or an associative array – from an 

owner to the total amount owned. The total amount owned of what? The token that the 

contract represents.

11 These signatures are adapted from the OpenZeppelin ERC-20 contract, a commonly used 
implementation of the ERC-20 spec. I’ve taken out some noise, such as the virtually keyword, 
not relevant to the discussion.

Chapter 2  Requests, Networks, and Accounts



36

If we want to find out how much of the token we own, we call balanceOf, passing 

our address. If we want to send our tokens to somebody else, we call transferFrom, 

passing our address, the recipient’s address, and the amount we wish to send. The token 

contract does the work updating the list that it holds.

Think about this carefully: a token is just a smart contract that holds a list of who 

owns the token, plus a bit of metadata (such as the token’s name and symbol). The token 

contract code then specifies the rules around how that ownership list changes.

Your account doesn’t “hold” anything. It doesn’t know anything about the token, per 

se. It just gives you a way to identify a key in a mapping from accounts to a quantity. And 

a token is just a piece of code that understands how to update this map.

This is a very simple and powerful idea, because the token contract is able to 

stipulate its own rules and policies around who can transfer, who can be transferred, and 

what the balance is.

You could stipulate that only a specific whitelist of addresses should be able to 

receive the token, for instance, by restricting ownership of the token to a known set of 

individuals. You could exclude certain addresses. You could require a certain amount of 

ether in exchange for the token or even a certain amount of another token in exchange 

for the token. You could even change the amount transferred when somebody transfers 

it, deducting a fee. In other words, you can implement a monetary policy, controlling 

how the token enters the market, how it leaves it, and how it flows around between 

participants.

�Accounts Aren’t Limited
Since the token contract is the mechanism for recording who owns what, and stipulating 

the rules that govern that ownership, your account isn’t limited to holding financial 

instruments like cash or credit cards. Tokens can be used to represent basically anything.

Some tokens represent nonfungible assets, things that can’t be exchanged for 

another asset just like it. You will have heard of NFTs, and NFTs are token contracts 

much like the ERC-20 contract we just discussed. The biggest difference between ERC-20 

and ERC-721 – the basic standard for representing NFTs – is that the parameters of the 

function are slightly different:

function transferFrom

      (address from, address to, uint256 id)

      public virtual;
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An ERC-721 contract introduces the notion of an id and requires that the (owner, 

id) pair is globally unique. So a specific token – that is described by the contract and the 

specific ID the contract defines – is owned by one and only one person.

NFTs are often used for digital art or collectibles, but they can be used to represent 

ownership of lots more. In time, they may be used to represent ownership of real-world 

assets: houses, cars, paintings, bottles of wine.

NFTs can also be used for interesting, crypto-native use cases: Uniswap v3, for 

instance, mints an NFT that represents a deposit to a specific pool within a specific price 

range. This allows there to be a claim of ownership over a unique liquidity position.

Fungible tokens, too, can be used to represent many more types of things than just 

those that map to financial value. They can represent governance rights, as they do with 

the MKR token, which grants the right to vote on proposals of the Maker DAO. (At the 

time of writing, most governance tokens grant voting rights on a quantity basis: if you 

have more tokens, your vote represents a larger share of the voting power. But this isn’t 

the only model for governance designs made possible by the ERC-20 token standard.) 

They can also represent other sorts of values, such as carbon credits, or reputation, or 

points accumulated in a game.

The point is that the “wallet” metaphor suggests a constraint on the sorts of things 

that can be “held.” Since accounts don’t “hold” things, the design space for what sorts of 

ownership and participation claims they can represent is much, much bigger.

�Accounts Aren’t Physical Items
Finally, our third feature, accounts aren’t physical. This might seem like a silly point 

to make, but the fact that accounts aren’t physical items runs a little deeper than the 

obvious. Accounts aren’t physical items: they are abstractions over an individual, a face 

you can show to the blockchain.

And this means that your accounts aren’t tied to one place. If you know your private 

key, you can use your account in whatever interface you want.

This means that different interfaces can display different aspects of the same 

account. Some interfaces, such as the Rainbow wallet,12 put an emphasis on NFT 

collectibles, a kind of gallery or showcase. Others might focus on the purely financial 

aspects of the account, its deposits, loans, and investments. Perhaps an interface could 

12 https://rainbow.me
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be built around governance, showing the proposals and votes and engagements with 

protocols. Perhaps another could be built around whatever gaming tokens to which the 

account has claims. And so on.

When you start to consider these sorts of product implications of the fact that 

accounts aren’t physical items, it makes you realize that the design space for account 

interfaces is coextensive – overlapping – with the design space for tokens themselves. 

This “unbundling” of wallet experiences is made possible by the existence of this 

account abstraction. (Whether this actually happens is a different matter, but it’s a useful 

way of illustrating the flexibility of the account-as-identity model.)

It also pushes the sorts of signaling properties we mentioned earlier elsewhere. 

Perhaps people do signal with their wallet software – that is, their account interfaces – a 

little, using a newer or more feature-complete piece of software to indicate the sort of 

user they are and the sorts of things they are interested in. But the account itself is a very 

lightweight thing. The account is not the wallet software you use to interact with the 

account. And in this distinction lies the true power of the account abstraction.

This lack of physicality – this sense of account as an abstraction over an individual – 

also allows for another crucial feature of accounts, one we’ve not mentioned yet. 

Accounts don’t even need to be people. Many accounts on Ethereum are externally owned 

accounts (EOAs), which are the accounts we’ve been discussing. But many others 

are smart contract accounts (SCAs), accounts that are owned and operated by smart 

contracts themselves. In fact, as we’ll discuss in future chapters, contracts are deployed 

to account addresses. When you interact with a contract, then, you’re interacting with an 

account whose management is handled purely by code executed by the account itself.

�Accounts Are Identity
So what is an account, then, if not a wallet?

My answer: An account is an identity. It is a way of informing other participants 

that you are who you say you are. It is a username and password; it is a mechanism to 

authenticate yourself. It’s also a way of a smart contract identifying itself, a mechanism 

to authenticate the smart contract as the thing it says it is.

If accounts are identity, then it means you can separate out your identities 

depending on different contexts of usage. You might use an account to trade, another 

account to represent your investments, and a third to hold your claims to any artwork or 

collectibles. You might use accounts for different platforms with different risk profiles or 
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with different privacy considerations. You can separate out your identities in whatever 

way you choose, isolating your public, on-chain behavior into different categories. The 

ownership of a private key gives you full control over what aspect of yourself you wish to 

show to the world.

This use case of separating one’s identity into different public-facing accounts, 

differing aspects, is something that itself has been standardized by the Ethereum (and, 

before that, Bitcoin) communities. Hierarchical Deterministic (HD) accounts take the 

basic account derivation mechanism and encode structure into it. The core private key – 

a “master password” – is combined with a path. This path is an instance of an a priori 

agreed-upon schema that allows us to generate multiple accounts. This schema is based 

on the Bitcoin standard BIP-4413 and gives us a tree-like structure (“hierarchical”) that 

allows us to generate in a predictable fashion (“deterministic”) multiple accounts from 

the same private key, as in Figure 2-5.

Figure 2-5.  A private key is combined with a path to produce a new public key/
account. This allows the same user to generate multiple, apparently unrelated, 
accounts in a predictable way

13 https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
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Because the derivation method follows the same mechanism as the standard private 

key ➤ public key ➤ account route, it has the same properties of being deterministic and 

irreversible, which means that generated accounts will appear to be unrelated, offering 

the privacy and isolation benefits I mentioned earlier.14

This multiplicity of identities is essential to product building on Ethereum – it is 

one of its superpowers – and products should implement support for it in a deep way. 

Consider this: your identity goes with you wherever you take it. And where your identity 

goes, so do your claims of ownership. An Ethereum account, then, gives you a login 

system for free.15

This, combined with the standardization of interfaces such as ERC-20 and ERC-721, 

increases the power of the interfaces we can build substantially. To take a simple 

example, a tool for listing whatever ERC-20-compatible tokens are “held” by an account 

will work with any token that meets the requirements of that interface. It’s as if PayPal 

could support all currencies from day one, with no extra development work.

The wallet metaphor is generally broken, then, and can severely constrain your 

imagination vis-à-vis what accounts are capable of. For sure, there are ways in which 

an account can seem like a wallet: when you lose your account, just like your wallet, 

you lose the money in it; to that extent, the metaphor is true. But it’s true for different 

reasons. If you lose a physical wallet, you’ve actually lost the cash inside it. If you lose a 

crypto wallet, you’ve lost your ability to prove you are the person who owns the cash.

We are likely to continue using the term “wallet,” since that’s what the community 

uses, and there’s not much marginal benefit in changing this sort of heavily entrenched 

meme. Throughout this book, I try to use the term “account” to refer to the account and 

the term “wallet” to refer to the interface within which the account and user can interact. 

But I hope this section has given you a sense of how accounts actually work and why the 

design space for them is an awful lot bigger than a piece of folded leather that you keep 

in your pocket.

14 Most wallets support one version or another of HD derivation paths: see my “HD wallets 
and network switching” blog post for more (https://jamieonsoftware.com/2022/04/02/
hd-wallets-and-network-switching.html).
15 This approach is being standardized in EIP-4361 (https://eips.ethereum.org/EIPS/eip-
4361). Read https://login.xyz for more on how this can be integrated in your products.
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�Network and Account Switching
There are different sorts of networks: layer 1s and layer 2s. Layer 1s are the layer at which 

the blockchain reaches ultimate consensus. Layer 2s inherit the consensus properties 

of their layer 1 and provide scalability and additional functionality on top of it. Many 

products will need to support switching multiple networks. Products will need to handle 

various cases where the user’s wallet and the application are connected to different, or 

incompatible, networks. Managing your state centrally is a useful way to handle these 

cases. Products will also need to handle switching between different accounts.

This chapter is entitled “Requests, Networks, and Accounts.” So far, we’ve looked 

at requests and accounts and at the Ethereum network as a whole. In this section, we’ll 

discuss the proliferation of alternative Ethereum networks that you may come across 

when building. And we’ll start to bring these concepts together, seeing how accounts 

relate to networks, how your UI relates to an account, and the UX issues that these 

relationships can cause.

�Layers 1 and 2
It’s time to introduce some new vocabulary: layer 1 and layer 2. These terms are 

thrown around in Ethereum discourse very regularly, so it’s unfortunate that there isn’t 

complete consensus over their meaning. I’ll define them in the way I usually think about 

them here. There may be some subtle disagreements with my definitions. But these are 

mostly semantic disputes.

Layer 1 is the Ethereum mainnet network and any other network that operates at 

the same level. We can think of layer 1s as the base layer that provides the essential 

consensus mechanism of the blockchain. Other layer 1s include Bitcoin and Celo, as well 

as other EVM-compatible layer 1s, such as the public testnets (Görli and Rinkeby are two 

popular public testnets). Finally, a local fork of the mainnet is also considered a layer 1, 

since that’s where the consensus mechanism for your blockchain instance is running.

The benefit to using a public testnet over a local fork is small. Because it’s public, 

it gives you the ability to share the state between users, which is helpful when testing 

between multiple people. But because it’s public, you don’t have much control over the 

token allocations or smart contract state. If you’re running a local fork, you can control 

all of this. We’ll discuss this in more detail in Chapter 5. But remember that you can 

share your local fork quite easily with tools like ngrok.
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Layer 2 is slightly more troublesome to define. Vitalik Buterin and the Ethereum 

Foundation put “scalability” at the heart of their definition of layer 2s: "their purpose 

is to increase scalability."16 But layer 2 developers have realized that separating their 

computational layer from that of the mainnet gives them the opportunity to introduce 

new functionality too. Aztec17 wraps up their layer 2 transactions in a Merkle tree, 

allowing users to transact between each other without revealing to the rest of the world 

the details of the transaction. The Boba Network18 goes even further, introducing cross-

chain messaging primitives and a natty off-chain computing platform.

So we can broaden the definition of layer 2: layer 2s extend the functionality of layer 

1 in some way, either by adding additional features (such as private transactions) or by 

making the existing functionality faster, more efficient, or more scalable – or, in the case 

of many layer 2s, by doing both.

While layer 2s are still in their infancy, there are meaningful applications that run 

on them. QuickSwap19 began as a fork of the Uniswap codebase, deployed on Polygon. 

Lyra20 provides options trading on Optimism. Angle Protocol21 issues their stablecoins 

on the Optimism and Ethereum mainnet. The popular 1inch22 trading router supports 

all of the preceding layer 2s and more. And in some cases, the functionality of a protocol 

is split between layers 1 and 2. In Chapter 4, we’ll talk about The Graph, a decentralized 

indexing protocol. The Graph uses Polygon to handle its payments and billing, while the 

core functionality of the network rests on the mainnet.

As I hope the previous few paragraphs have demonstrated, there are a lot of different 

layer 2s and even different and competing layer 1s. If you’re building an application 

against a local fork of the mainnet, your products will need to query against your own 

instance of the Ethereum blockchain. If you deploy beta features to a testnet, to allow 

16 https://vitalik.ca/general/2022/09/17/layer_3.htm
17 https://aztec.network/
18 https://boba.network
19 https://quickswap.exchange/
20 https://app.lyra.finance
21 https://app.angle.money/
22 https://app.1inch.io
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your more zealous fans to try out the functionality before you publish the work to 

the world at large, your products will need to query against the testnet. If you deploy 

contracts on one or several layer 2s, your products will need to query against whichever 

layer 2s you support. This means that your products will need to support multiple 

networks.

How are layer 2s distinguished at the protocol level? Wallet software and node 

software discriminate via the chainId and networkId parameters. The networkId 

parameter protects nodes from connecting to nodes on other networks. It is used at the 

networking layer of the protocol and isn’t something that product engineers typically 

need to worry about. chainId, introduced in EIP-155, operates at the transaction layer: 

it is used by wallets and apps to sign a transaction. This prevents a form of replay attack, 

where a transaction intended for one chain is submitted to another chain. You may 

need to think about the chainId parameter when connecting to the network, but most 

frontend tools (such as ethers.js) will read the chainId from the node provider, so it’s rare 

you’ll have to specify it explicitly.

Products will generally need to support multiple networks. However, there are 

actually two cross-cutting dimensions that we will need to consider. As we discussed 

earlier in this chapter, users can have multiple accounts in the same wallet software. 

These accounts provide for a multiplicity of identities on-chain. But accounts can also 

exist on multiple networks at once – a private key is a private key and will produce 

deterministically the same account identifier wherever it is used (and wherever the 

standard account ID generation algorithm is used). So you can expect a user to have 

multiple accounts within and across multiple networks. Your UI will need to handle this.

�Switching Between Networks
It is a frustrating limitation of most (all?) wallet software that the wallet can only be 

connected to one network at a time. It is also a frustrating limitation of most (all?) 

frontend libraries that the library can only be connected to one network at a time. One 

day, this may change, but for now, it’s an awkward constraint that our wallet software 

places on our libraries and our libraries place on our UIs. Your UI will almost always 

need to be able to switch between multiple networks:
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•	 Almost always the Ethereum mainnet, since most smart contracts 

are deployed there.

•	 Often other layer 1s, such as testnets or local forks. This is 

important for development purposes.

•	 One or several layer 2s, which users may wish to use for their lower 

transaction fees, scalability, or because of liquidity constraints.

Keeping multiple connections running at the same time is awkward and can make 

certain use cases (e.g., bridging tokens between two networks) difficult to build. To make 

matters worse, many wallets don’t persist network switches between tabs. Switching 

between networks and persisting the necessary application state is the current approach, 

although, as we’ll see shortly, it’s far from straightforward. There are, however, some 

simple tasks we can focus on.

�Provide a Mechanism to Switch Networks Inside Your UI

You don’t have control over the user’s wallet software, and users often may not check 

which network they’re connected to when they load your application. At the very least, 

you need to indicate the current network to the user, even if you don’t allow the user 

to switch networks. But if you’re showing the current network clearly, you’ll also want 

to indicate how the user can switch, at which point you might as well add a switcher 

yourself.

Uniswap handles this reasonably well, as shown in Figure 2-6.
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Figure 2-6.  If you click the network name at the top right in the Uniswap UI, you 
see the network selector

They’ve also added a nice touch: the app’s background color changes to help 

indicate which network the wallet is connected to. Try switching between wallets and 

see what happens to the background. These sorts of small, subtle cues can add helpful, 

subconscious context to a user trying to navigate between different networks. And 

another thing to consider is you may want to add support for a custom network, which, 

at the very least, will allow you to connect to local networks easily. It will also allow your 

more advanced users to run your UI on their own nodes.23

23 Since these are more advanced features, it might be worth enabling it based on your app’s 
environment. Production might not need custom networks, but staging and development almost 
certainly will.
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�Handle the Case Where Your User’s Wallet Software and Your UI 
Are Set to Different Networks

This interaction works in two directions. Your users can change their network in your 

application’s UI. In this case, then you’ll need to trigger a wallet_addEthereumChain 

event on your user’s wallet via a suitable provider. To request Polygon, for instance:

const provider = new ethers.providers.Web3Provider(window.ethereum, "any");

await provider.send("wallet_addEthereumChain", [

  {

    chainId: "0x89", // chain ID 137

    chainName: "Polygon Mainnet",

    nativeCurrency: {

      name: "MATIC",

      symbol: "MATIC",

      decimals: 18,

    },

    rpcUrls: ["https://polygon-rpc.com"],

    blockExplorerUrls: ["https://www.polygonscan.com/"],

  },

]);

This code will tell the user’s wallet to issue an add chain request, via the window.

ethereum object. Some wallets, such as MetaMask, support arbitrary chains in this way.

Note  Notice that the provider is the type of ethers.providers.
Web3Provider. Elsewhere, we use AlchemyProvider. The former points to the 
Ethereum object injected by our in-browser wallet. The latter points to the Alchemy 
node that we use to query the blockchain.

Other wallets, such as Argent, only support a limited subset, and for these wallets, 

wallet_addEthereumChain simply won’t work. Wagmi makes it even easier:

const network = useSwitchNetwork({

  chainId: 137

})
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While the basic code is straightforward, you’ll need to pay attention to the case 

where the user rejects the add chain request. There is a gap between what you want 

the user’s wallet to do and when it gets done: so you’ll need some sort of a “pending 

approval” state in your UI. And you’ll need to make sure you test it rigorously!

In the other direction, you can listen to the network event on the ethers.js provider, 

which will be triggered when the network is updated in the user’s wallet:

const provider = new ethers.providers.Web3Provider(window.ethereum, "any");

provider.on("network", (newNetwork, oldNetwork) => {

  if (!oldNetwork) return;

  // handle network change

})

This event wraps the chainChanged event emitted by the underlying provider 

(usually injected by wallet software such as MetaMask). This sort of code is best put 

somewhere high level in your frontend application. Wrapping the ethers setup in a 

React Provider, which then supplies the provider to downstream components using a 

React context, is quite straightforward. If you’re using wagmi, it’s even easier, since you 

can inject the provider directly into the WagmiConfig component and then use wagmi’s 

useProvider hook to pull it out in your application code as needed. Wagmi will then 

cause the relevant components to retrigger when the network changes at the wallet level.

�Handle the Case Where Either Your App or the User’s Wallet 
Doesn’t Support the Other Network

If your user’s wallet is set to Arbitrum, but your application doesn’t support it, you’ll 

need to disable the UI and show a modal. This modal should tell the user what has 

happened and give them instructions for how to get the application back in a usable 

state. Even if you do display a modal, you should probably still disable the UI until the 

problem is fixed. Modals can behave in funny ways, and the last thing you want to do 

is allow a bug in your modal code to cause a user to submit an incorrect transaction. 

Adding friction, creating redundant systems of protection, can be very useful in keeping 

your users safe and happy.
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�State Management

Finally, you’ll need to reset the relevant parts of the user interface and update the 

data you use and display. Gas fees, token prices, and token ownership levels will look 

different on different chains. The ethers.js documentation recommends a full-page 

reload.24 This is sometimes the easiest way to handle the behavior, but it’s not the 

most user-friendly, and you’ll still need to worry about persisting the chosen network 

between pages. An alternative approach is to use a state management container such 

as Redux25, Recoil,26 or native React contexts. These tools separate out your state from 

the components that use it, allowing state to traverse down the component hierarchy. 

When a network change occurs, you can issue an event that clears and reloads the 

relevant state, allowing the downstream components to rerender. This has a centralizing 

effect on your state management logic. You’ll generally want to put your contract read 

calls and indexer queries into a high-level wrapper component that loads the relevant 

state from the relevant place and puts it into your state management system. This has 

the handy benefit of putting everything in one place, which can often simplify the code 

and make it easier to refactor, but it’s not a panacea: if you query a smart contract using 

values that your user provides – such as a token quantity they wish to trade or the token 

for which they wish to swap it – then you’ll need to pass that state back up the hierarchy 

somehow. This can make things a little more complicated to reason about, but with 

some thoughtful design, tools like Redux can make this much easier. At any rate, this 

isn’t a React + Ethereum problem: it’s a React problem.

You can also use a centralized state store to make it easier to disable the UI. Putting 

a uiEnabled boolean in your store and then wrapping your inputs and buttons with a 

component that reads from this store (and disables the input if uiEnabled = true) is 

very useful for cases where the wallet’s capabilities and the UI’s capabilities clash.

24 https://docs.ethers.io/v5/concepts/best-practices/
25 https://redux.js.org
26 https://recoiljs.org
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What is essential to remember is that the erroneous data brought about by a network 

change can constitute a clear violation of the Principle of Trust. Whichever state 

management approach you take, keep it simple and be as consistent as you can with its 

application.27

�Switching Between Accounts
We’ve spoken about switching between networks. But there’s another dimension that is 

important: switching between accounts. This only happens in one direction – from the 

user’s wallet to your application – and is therefore more straightforward.

In the case that the user’s account changes at the wallet level, your wallet software 

will usually trigger an event on your provider. Like the chainChanged event we saw 

earlier, there’s an equivalent accountsChanged event that will trigger when the user 

connects one (or even several) of their accounts to your application.

Note W hile it's theoretically possible to connect more than one account to a 
frontend, in practice this rarely happens. Most wallets provide restricted, or even 
no, support for this functionality; very few UIs do. There is no expectation that the 
UI will support more than one account, and doing so will involve rethinking a lot of 
the basic interactions that your application provides.

The most recently connected account will generally be the only element of the 

accounts array that the event provides. So you can destructure it quite safely:

provider.on("accountsChanged", ([account]) => {

  if (!account) return;

  updateConnectedAccount(account);

})

And, of course, tools like wagmi will abstract this away from you entirely. If the 

account changes in the user’s wallet, your components will rerender as you’d expect.

27 Using a separate state management library, and consolidating your state logic into one or a few 
places, can also make it easier to unit test. In many cases, you can move the bulk of your state 
logic outside the React component tree entirely, which means you can write standard JS unit tests 
to ensure that the logic behaves itself.
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Your app will only have access to the accounts that the user has connected, so you 

won’t be able to request a switch to a different account directly. Using the wallet as the 

source of truth is the best – and the only – option you have. This is a good thing: there’s 

only one place the user can change their connected account, and there’s only one place 

you need to look for it.

This doesn’t absolve you of all responsibility: you’ll still need to reset the state if the 

user changes their connected account. But this can be done with the same general logic, 

ideally with a centralized state provider, that we used for handling network changes.

�Summary
In this chapter, we’ve discussed how requests originate and propagate through the 

Ethereum network, which eventually reaches consensus over their effects on the 

shared global state. We’ve discussed the notion of an account and how it is different 

in important respects from the “wallet” metaphor that is used in common parlance. 

Importantly, accounts are a form of identity, and this means that users may have 

multiple accounts. We’ve also seen how there are multiple networks that perform this 

consensus-building role and multiple layer 2s that provide additional functionality and 

scalability benefits. Your products will need to handle users switching between networks 

and switching between accounts.

In the next chapter, we’ll look at transactions in much more detail. What are 

transactions, and how are they structured? Transactions go through a variety of states 

during their lifecycle: How should these states be exposed to the user? What sort of 

contextual information should you display? How should you handle transaction errors?
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CHAPTER 3

Transactions
Ethereum is both a platform and a protocol: it is a place where something (accounts, 

code, state) is hosted and a set of rules for communicating between those things. Smart 

contracts are to Ethereum the platform as transactions are to Ethereum the protocol.

Transactions therefore sit at the very core of the conceptual model. They have some 

important properties:

•	 They compute values, normally based on state. A read transaction 

encodes a set of instructions to derive values from state. A write 

transaction encodes a set of instructions to modify that state. Smart 

contracts express the logic; transactions express the demand.

•	 They are public. Transactions are included in a block through a 

consensus mechanism that gains its decentralization and security 

from the fact that many unrelated people verify the inputs and 

outputs, and anybody can contest them. Transactions therefore have 

to be public.

•	 They are external: as was discussed in Chapter 2’s “The Lifecycle 

of an Ethereum Request” section, there is no such thing as an 

autonomous transaction.

•	 They carry user intention: since transactions are external, this also 

means that they are the result of something (or someone) outside the 

system wishing to interact with something inside the system. They 

relate to goals that users have.

These properties give a sense of both the centrality and the content of the role that 

transactions play in the Ethereum protocol.
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Note  Sometimes, you’ll need to trigger a transaction at some regular interval. 
One easy way is to write a script to run the transaction whenever required and 
then schedule it using some other tool. There are also some hosted services 
that perform this sort of function, such as OpenZeppelin’s Defender.1 There are 
attempts to move this logic on-chain; see, for instance, Gelato.2 Another way of 
doing it: Some protocols, especially those that integrate a token, can incentivize 
others to do the work for them, by paying users. This approach exchanges some 
reasonable amount of a protocol’s token for the assurance that the work will be 
done and the gas fees that performing this work will incur.

If Ethereum is a state machine, then transactions are what make it tick. This chapter 

takes a detailed look at this role, the structure of transactions, and some of the product 

implications.

�What Does a Transaction Look Like?
Transactions are the language of the Ethereum protocol. There are three types of 

transactions: transfers, contract calls, and contract creation calls. Transactions can be 

represented with a simple JSON structure. Transaction signatures provide assurances 

about the provenance and content of the transaction. Gas fees are payments for work and 

have interesting dynamics that can affect product experiences in interesting ways. Nonces 

solve the replay problem but create several others. Once submitted and included in a block, 

the status of a transaction can be inspected in the transaction receipt.

Transactions can be grouped, roughly, into three categories:

	 1.	 ETH transfers

	 2.	 Smart contract invocation

	 3.	 Contract deployments

1 www.openzeppelin.com/defender
2 http://gelato.network
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In this chapter, we’ll focus on (1) and (2); for more information on (3), see the next 

chapter. We use a transaction object to represent the transaction’s properties, and 

we can disambiguate between these different types of transactions based on whether 

certain properties have values. This is a bit vague, so see an example of what a low-level 

transaction looks like:3

{

  "chainId": 1,

  "to": "0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045",

  "value": 1000000000000000000,

  "gasLimit": 30000,

  "maxFeePerGas": 30,

  "maxPriorityFeePerGas": 1000,

  "nonce": 0,

  "data": null

}

This transaction payload is raw: there is no signature. We can also see that it’s in 

our first category of transaction. There is a to address and a value, but no data. This 

transaction therefore sends 1000000000000000000 worth of wei (1 eth) to the address 

0xd8d…045.

A transaction with no data is a simple transfer (category 1). If the transaction uses 

the zero address for to, but some data, then the EVM treats it as a contract deployment 

(category 3).

If the transaction has a nonzero to address and some data, then whether the 

transaction is considered to be a smart contract invocation depends on whether to refers 

to an EOA or a deployed contract. If the latter, the transaction is treated as an invocation. 

If the former, the transaction is treated as a transfer (with some general-purpose data 

attached; this can be used for, e.g., messaging). Smart contract invocations can also be 

combined with a value, in which case the value is transferred over to the contract.4

3 Ethereum actually reads transactions as an RLP-encoded array of values, but I’ve wrapped some 
JSON around it and represented the “raw” values to make things clearer.
4 This is true at the EVM level: compiled contracts using higher-level languages such as Solidity 
may (and, in fact, do) have subtly different semantics around payment.
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The raw transaction can give us more information beyond disambiguating the 

category. The chainId key, included in the transaction to prevent replaying transactions 

cross-chain, allows us to specify the chain (e.g., mainnet, one of the various public 

testnets, an EVM-compatible layer 2, a local testnet, etc.). The nonce prevents another 

class of replay attacks; the final part of this section considers nonces in more detail. The 

gas keys, gasLimit, maxPriorityFeePerGas, and maxFeePerGas, carry the user’s desired 

gas parameters, which we’ll discuss shortly.

Of course, most of these details are usually abstracted away by the wallet software. 

This is a very low-level representation of a transaction, and it’s quite possible you’ll 

ever need to worry about these properties or how they’re implemented. But the details 

are fascinating and reveal important structural features of Ethereum that bear upon 

products built on top of it.

Once a raw transaction has been constructed, it needs to be signed. It is to 

transaction signing that we now turn.

�Transaction Signing
Describing what a transaction is supposed to do is important. But transactions are 

being issued on a public network and are implicated in state changes of privately 

owned resources. It’s therefore imperative that there is some way of authorizing these 

transactions.

If you are writing a smart contract, then authorization is a matter of your contract’s 

code, its business logic. Contract authors can stipulate that only some addresses can 

interact with some methods and revert if the transaction sender isn’t on some whitelist. 

But this requires a msg.sender, a known transaction author. Contract-level code must 

be underwritten by some mechanism for securing the transaction itself. This is what 

signatures are designed to do.

A digital signature is an application of asymmetric cryptography that allows a 

message to be signed by a private key and then later verified by the corresponding public 

key. This sort of scheme provides two important checks:

	 1.	 The provenance of the message can be verified; it demonstrates 

that the holder of the private key really did wish to write the 

message.

	 2.	 The content of the message can be verified; it demonstrates that 

the message was not changed in transit.
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Being able to verify both provenance and content is incredibly important for 

Ethereum, because it means that transactions can be posted publicly and verified by any 

participant without any special centralized authentication scheme.

The mathematics of asymmetric cryptography are rather beautiful and absolutely 

worth the time to read about, but outside the scope of this book.5 For our current 

purposes, however, all we need to know is that there is an algorithm with which can use 

a public key to verify that a signature was generated with the message and corresponding 

private key, without the private key ever having to be revealed. This remarkably beautiful 

innovation allows us to publish our transactions publicly – required for peer-to-peer, 

decentralized communication – and those transactions be verifiable quickly. Signatures 

give us guarantees of provenance and guarantees of content.

This has a significant consequence: one of the most important aspects of your user’s 

journey will happen elsewhere, on some software that you don’t control. We’ll talk more 

about the UI implications of transaction signing, connecting to wallet software, etc., 

later in this chapter. But this sort of constraint is not typical for most software, which can 

carefully guide the user through the desired flow. Ethereum apps (normally) don’t have 

that privilege. Transaction signing is one of the most important flows in your product 

engineering, where your job as a software designer becomes a matter of integration 

rather than creation.

�Gas Fees
In Chapter 2, we introduced the notion of gas as a mechanism for paying for the 

computational resources required by a given transaction and to solve the denial-of-

service problem present for systems like Ethereum. Let’s recap our understanding of gas 

and consider how it might affect the products we build.

Gas is a unit of work. In the same way that burning a gallon of gasoline will allow 

your car to drive a certain distance, a unit of gas will allow the EVM to perform a certain 

amount of computation. Gas is how Ethereum meters computation.

5 A good StackExchange thread here explains Diffie-Hellman Key Exchange, a 
similar form of asymmetric cryptography, which is good for understanding the basic 
mathematical intuition: https://security.stackexchange.com/questions/45963/
diffie-hellman-key-exchange-in-plain-english
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Each EVM opcode has a different amount of gas required to perform it. This means 

that as a contract becomes more complex, performing more and more sophisticated 

functionality, a transaction becomes more expensive. The gasLimit and maxFeePerGas 

properties, then, allow the sender of the transaction to decide (a) how many units of 

work they wish to commit to spending and (b) how much they are willing to pay for each 

unit of work.

The gasLimit is somewhat analogous to how much gasoline you can fit in your car’s 

tank; the maxFeePerGas is analogous to the price per gallon or liter. The relationship 

between gas and transactions is a little fiddly, but there are some useful rules of thumb to 

remember. If a transaction reverts, the unspent gas will usually be refunded. But the user 

will still pay some gas, proportional to how much computation the block proposer has 

had to do so far.

Similarly, if the transaction is completed successfully before the gasLimit is reached, 

the remaining gas will be refunded. It is worth thinking about this in more detail for a 

moment. If a transaction is successful, how can there be unspent gas? Contracts can 

contain complex, Turing-complete logic dependent on state that might not be easily 

accessible to the account constructing the transaction. The scope and computational 

requirements of a transaction are often not necessarily knowable a priori; you don’t 

always know how much gas a given transaction is going to use. But this also means 

the EVM doesn’t know. And that means if you submit a transaction and don’t provide 

enough gas, the EVM will eat whatever you give it attempting to fulfill the transaction. If 

you provide 25,000 gas for a 30,000 job, the transaction will revert and you’ll get nothing 

back. It’s therefore usually a good idea to err on the side of more gas than you think 

you’ll need.

Besides being interesting per se, this discussion of gas has some important lessons 

for those building products:

	 1.	 You don't always know how much a transaction is going to cost. 
The market dynamics, along with the ever-changing interplay of 

transactions and state, means that both the price per unit of work 

and how much work needs to be done can be hard to predict. 

Ethereum has some interesting – and flawed – mechanisms for 

estimating gas. When building products, it’s your responsibility 

to think about how to communicate these variable costs to the 

user, either by integrating it directly into your apps or allowing the 

wallet software to handle it.
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	 2.	 Transaction cost varies with time as well as with transaction 
complexity. A transaction submitted at one time might be more 

expensive than at another: if the aims of the transaction are not 

especially time dependent, then it might not need to be this 

expensive. If the transaction cost is high, and the user can delay, 

it might be good to communicate this to the user or perhaps even 

defer the transaction automatically.

	 3.	 You can make transactions cheaper by doing some 
computation off-chain. This is a controversial approach, not 

often appreciated by the decentralization maximalists, but there 

are many occasions where performing work off-chain can be done 

without sacrificing the benefits of decentralization. (See Chapter 6 

for a bigger discussion of moving computation off-chain.)

Gas is a dynamic market, and its effect on product quality and user experience 

shouldn’t be ignored: it can add friction and confuse even the most technical of users, in 

ways that are hard to predict ahead of time. Gas is one unique dimension that builders 

on Ethereum need to consider and build around.

The gas values that users input when submitting a transaction are an upper limit: the 

per-unit price multiplied by the gas limit tells the user how much at most they are willing 

to pay for the transaction. But how much they actually pay is a function of whether the 

transaction succeeds, how much computation the network needed to do, and whether 

any remaining gas is returned.

Determining an accurate amount of gas to be consumed is, for reasons we’ve 

already discussed, not that straightforward. Smart contract functionality cannot easily be 

predicted ahead of time. Smart contracts often contain functions with loops, functions 

with stochastic behavior, and functions that rely on runtime state to determine control 

flow. The current state of the blockchain can change as validators add and remove 

transactions from the current block. And EIP-114 adds an invariant to certain EVM 

opcodes such that they withhold 1/64th of the remaining gas once they reach a stack 

depth of 1024.6 In short, it can get messy.7

6 For more, see https://github.com/ethereum/EIPs/issues/114
7 For a flavor of quite how messy, accurate Ethereum gas estimation is the subject of at least one 
PhD thesis: https://ieeexplore.ieee.org/document/9678932
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There are, however, techniques that can be used, and these techniques are generally 

already implemented in geth and other Ethereum node software. The approach is 

essentially a binary search: execute the bytecode with varying amounts of gas, from zero 

to the block’s maximum remaining gas, finding the midpoint on each iteration, and 

thereby return the minimum amount of gas required to let the transaction run without 

returning an out of gas error. This is effective, and fairly quick, but the returned value still 

comes with some wide error bars. This is how most nodes generate gas estimates, and 

they expose this functionality with the eth_estimateGas RPC method.

eth_estimateGas takes roughly the same parameters as eth_call: the from and to 

addresses, any ether value sent with the transaction, and the data string (as well as the 

standard gas parameters). It won’t consume any gas when running, but it will estimate 

the gas using the preceding mechanism and return the rough gas amount.

Note  You may notice that ethers.js throws up “cannot estimate gas” errors 
when you try to submit an invalid transaction. Internally, ethers make two RPC 
calls: one to estimate the gas quantity, which calls eth_estimateGas, and one 
to actually send the transaction. If the transaction fails at the first step, ethers will 
throw a “cannot estimate gas” error with a contract error included elsewhere in the 
exception. You might want to parse this error and display something more useful to 
the user.

So eth_estimateGas will give you a rough estimate of the gas quantity required. You 

may want to add some buffer to this gas amount, perhaps 10%, to ensure that your users 

submit a high enough gas limit to cover any uncertainty in the estimate. Tools like ethers.

js, if not provided with explicit gas parameters, will calculate the gas upper limit using 

this sort of technique.

The gas equation contains two terms: the gas quantity and the per-unit price. We’ve 

just described how you can estimate the gas quantity; what about the price?
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Gas price is also not that straightforward to estimate. As we’ve already described, 

gas is a dynamic market, so what you’re actually trying to do is figure out what price is 

both high enough to incentivize somebody to include the transaction in a block and 

not so high that you spend money you don’t need to. This is ultimately something that 

your user will have to decide: How eager are they to get this transaction confirmed? How 

much would they pay to have it executed right now; or, alternatively, how much money 

are they willing to trade off for time?

But, most of the time, most users won’t be that discriminating. A lot of the time, gas 

prices are low enough that the marginal increase or decrease won’t affect their demand. 

In this case, we can take the average of the last few blocks’ median gas price. ethers.js has 

a getFeeData() function that returns sensible gas and priority fee values that you can 

use as a default.

Finally, it’s worth considering how you should display this information to your users. 

The vocabulary is technical, and the ideas are not straightforward. Does the user need 

to know about gas? Or can your user interface make these decisions automatically, wrap 

it up in a “transaction fee,” and ignore the gas market entirely? We’ll discuss this a little 

more in the “Transaction UX” section of this chapter.

�Nonces and Replay Attacks
A foreseeable attack vector in decentralized networks that publish transactions publicly 

is to take a user’s transaction from some time t and to play it again at time t+1, allowing 

the attacker to essentially hijack the user’s signature. If A sends 1 eth to B, B could 

resubmit the previous transaction again and again, draining A’s account. One potential 

solution is to add a timestamp, but this would require clock synchronization across all 

participants. A simpler solution is to use an incremental integer and enforce an invariant 

such that the next transaction requires a higher integer than the current transaction. 

This integer is called a nonce, and it is included in the raw transaction. Signing the 

transaction, therefore, is also signing the nonce, and thus changing the nonce requires a 

new transaction signature.

Consider another problem: an account signs two transactions at a similar time. Both 

are submitted into the mempool within a few milliseconds of one another, during the 

same slot. Transaction 1 sends 20 eth somewhere; transaction 2 sends 15 eth somewhere 

else. The account has 30 eth. If transaction 1 is executed first, the account will have 10 
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eth remaining, and transaction 2 will revert. If transaction 2 is executed first, the account 

will have 15 eth remaining, and transaction 1 will revert. Under such circumstances, 

there is no principled way for the block proposer to select whether transaction 1 or 2 

should be executed. The block proposer, in effect, gets to decide who receives the eth 

and who doesn’t. A nonce invariant, as described earlier, forces the transactions into a 

sequence decided by the agent making those transactions.

Nonces are a simple solution to these important problems, and the implementation 

complexity is much less than an equivalent timestamp implementation would be. 

However, nonces put a reasonably strong constraint on transactions and can cause 

problems when the rules are not respected.

Firstly, Ethereum will require that the nonce increments strictly by one each time. 

If, for whatever reason, there is a gap between the account’s current nonce and the 

submitted nonce – even if the latter is higher than the former – the transaction will be left 

in the mempool until the gap is filled.8 Transactions also can’t be revoked: the purpose of 

the signature, in part, is to make a claim irrevocable. Managing revocations in a general 

way across a decentralized system is a difficult problem and is best handled at the 

application layer. The only way to override a currently pending transaction is to submit 

another transaction with the same nonce, providing a higher priority fee, in an attempt 

to convince validators to choose the overriding transaction over the pending one.

Secondly, it can create testing problems. If you are running a local fork of the 

mainnet and perform some transactions using, for instance, your local MetaMask, your 

wallet will increase and store the nonce. You then need to manually reset your wallet 

each time you reset the local testing environment. It is a small inconvenience, but it 

definitely is an inconvenience and can easily dissuade a tired developer from testing a 

full range of scenarios locally.

Thirdly, it creates concurrency issues. If submitting multiple transactions 

asynchronously, you will need to create some way to manage nonce assignment, 

perhaps by centralizing transaction construction within your codebase. Centralizing 

transaction construction also needs to be done with care, since transactions effect state 

changes and therefore often need to be submitted and confirmed in sequence.

8 It isn’t clear to me why this requirement was stipulated, and I can’t think of any backward 
compatibility issues that would arise from simply removing it. If you know why, I’d love to hear 
from you.
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�Transaction Receipts
Once a transaction has been successfully broadcast to the network, the node will return 

a transaction receipt. We’ve already mentioned how the transaction will undergo state 

changes while it’s being processed. The transaction receipt allows you to request the 

transaction’s status at the current time and therefore periodically check to see whether it 

has been processed.

The transaction receipt also contains some useful information that is generated 

during, and because of, the execution process. Let’s look at the receipt for the 

transaction 0xad2...98d9:

{

  to: null,

  from: '0x490...E8C',

  contractAddress: '0xcAf…dE5',

  transactionIndex: 29,

  gasUsed: BigNumber { _hex: '0x2ba042', _isBigNumber: true },

  blockHash: '0x6c0...160',

  transactionHash: '0xad2...98d',

  blockNumber: 13619386,

  confirmations: 2213039,

  cumulativeGasUsed: BigNumber { _hex: '0x449c13', _isBigNumber: true },

  �effectiveGasPrice: BigNumber { _hex: '0x1a1b952fda', _

isBigNumber: true },

  status: 1,

  type: 2,

  ...

}

(I retrieved this receipt by running provider.getTransactionReceipt against an 

Alchemy node, using ethers.js; you may see a different format if using a different tool. 

I have also shortened some of the hex data fields and removed the logs entries for the 

purpose of readability. We’ll talk about logs in more detail in the next chapter.)

9 0xad25be756c3dc12db179548dee5f7dbb07d4c763aa5d30d60db44e34ccef798d, which deployed 
ParaSwap’s PSP token to the Ethereum mainnet.
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The definition of each of the fields is quite straightforward:

•	 The blockHash and blockNumber fields tell us which block the 

transaction was included in.

•	 The to and from fields are from the transaction payload: a null value 

in the to field means that this transaction is a contract deployment.

•	 gasUsed and effectiveGasPrice tell us the gas quantity and unit 

price consumed for this transaction; cumulativeGasUsed tells us how 

much gas has been consumed as of this transaction within this block.

•	 The transactionHash is the unique identifier for this transaction; 

the transactionIndex tells us where this transaction sits within this 

block’s transaction ordering.

•	 confirmations gives us the number of blocks in the current chain 

since the block in which the transaction was verified, which can be 

used as a measure of confidence that the chain won’t be reordered.

•	 type, a property introduced in EIP-2718, allows for nodes to 

implement different types of transactions – a type of 2 indicates this is 

a transaction following EIP-1559 semantics.

•	 And status tells us whether the transaction failed (0) or 

succeeded (1).

So if we want to check our transaction’s status while it’s still pending, we’ll need 

to use the transactionHash from the receipt, query the current receipt, and check the 

status property. Most frontend tools will abstract away this complexity, but it can be 

helpful to understand what’s happening underneath. If a transaction has a receipt at all, 

that means it’s been included in a block: status then tells you whether the execution 

was successful or not. Depending on the confidence requirements of your application, 

you may also want to wait for a specific number of confirmations before you display the 

transaction as confirmed in your UI.

It is a bit peculiar, isn’t it? The conventional idea of a “confirmed” is a binary state: 

either something is confirmed or it isn’t. In the strange land of Ethereum, where the 

guarantees of history are given by consensus over facts rather than the facts themselves, 

confirmation is a matter of confidence: confidence that this block won’t be challenged, 
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rearranged, or dropped entirely. It means the reporting of the transaction’s status is a 

matter of judgment for the product engineer, something relative to the demands of the 

specific product and its users.

�Transaction UX
Ethereum puts lots of constraints on the UX of your product, but many of these constraints 

can be worked around. Transaction construction should always be framed in terms of 

the user’s model, rather than crypto’s model. Progressive expansion can be used to hide 

complexities and reveal them as the user needs to know. Blocking the UI and forcing the 

user through a single flow can be much simpler than handling everything asynchronously. 

All transactions should be validated as much as possible before they reach the blockchain; 

all errors should be surfaced as soon as possible. Transactions can be represented in code 

as an object separate from the UI used to implement it, which has numerous benefits. The 

status of a transaction requires paying attention to block confirmations and data updates, 

not just what the network reports; the status of the system should always be visible to the 

user. Crypto products don’t need to be educational about crypto, and crypto products don’t 

need to be single-page apps.

Transactions are a leaky form of abstraction. On the one hand, the natural 

inclination is to hide as much as possible from the user: a user doesn’t want to submit 

a transaction, they want to swap some tokens, or buy an NFT, or vote on a governance 

issue. It’s tempting to think that you can sweep away the transaction mechanism 

entirely. On the other hand, submitting a transaction is a fundamentally technical 

action, one that requires not just a sensible UI but an integration of the frontend with 

the wallet software, the node, any indexing service, and, most importantly, the user’s 

intentions and desires. Users may want to adjust the gas prices they pay, and they 

may wish to verify the transaction data before it is committed on-chain. The Principle 

of Trust hangs in the balance: if too much of the technical details are displayed, you 

risk alienating nontechnical users; if too little, you risk obfuscating the details and 

complicating verification.

The core problem is that the user’s wallet will inevitably display the transaction 

details in a more general-purpose way than your frontend. When designing products 

around Ethereum transactions, you’ll need to understand the user’s context and mental 

states – the fuzzier psychosocial elements of design – as well as the actual mechanics of 

how a user goes from intention to action.
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And the stakes here are high. Transactions are painful: and I mean this literally. 

Psychological research has shown that people experience stress and pain when spending 

money due to loss aversion.10 Priming the user to expect a transaction, clarifying the 

consequences, and minimizing the number of decisions they need to make can help 

reduce this stress. This all comes down to the UX and UI decisions you make around 

your transaction interface.

Alas, very little about the broader Ethereum user experience has been designed 

with this stress in mind. Every year, the Ethereum community has to solve challenging 

computer science problems just to make the thing continue to function and grow. 

Ethereum has thus attracted many incredibly bright, quantitatively minded engineers 

from the cryptography, programming, and economics worlds. Protocol- and network-

level decisions are made based on these sorts of constraints, working up to the 

application level, rather than thinking about the application level and working down 

to the network. The job of the product designer and the product engineer is to bridge 

this gap.

If you ask several designers what the core problems with Ethereum UX are, you’ll see 

common pain points emerge very quickly:

•	 The terminology is overly technical. Gas, priority fees, transaction 

hashes, calldata, hex data, blocks. These are not things normal 

people should have to care about.

•	 Account addresses are 42-character long strings of alphanumeric 
nonsense. Protocols like ENS aim to address this, but abstracting 

addresses away entirely is essentially impossible.

•	 There are different levels of concerns – data, protocol, application, 
wallet, network, and more – all of which impact the user’s 
experience. One example is not many UIs tell their users that the 

network is congested. Some wallet software will warn you when the 

network is congested, when gas fees are high: Argent, for instance, 

throws up a warning when the current gas fees are large relative to 

the transaction’s dollar value. Informing the user over this wide 

variety of dimensions makes it challenging to create consistent 

experiences.

10 Zellermayer, O. (1996). The pain of paying.
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•	 Connecting wallets to the right network, as we’ve already 

discussed, is fraught with UX challenges.

•	 The responsibility for transaction construction is split between 
wallets and dapps. The wallet software can override the products’ 

values, and the product usually can’t control how the wallet software 

will display the transaction details.

•	 Most dapps don't work on mobile or only work on specific browsers. 

Even dapps that nominally work on mobile devices aren’t designed 

for those devices, and the UX is degraded accordingly.

The scale of the UX problems in crypto is so vast, an entire book could – and 

should! – be written about it. In this section, however, we’re going to focus on the 

UI surrounding transactions specifically and explore some of the basic constraints, 

problems, and potential solutions that you can use. More generally, I hope this section 

gives you some intuition pumps for topics around user experience, as well as cue up 

the sorts of questions you might ask yourself when designing and building products on 

Ethereum.

All this should, under no circumstances, be considered an indictment of the 

ecosystem. There are lots of very smart product people working with Ethereum, thinking 

deeply and pushing far to reform, improve, and innovate. It’s also very early: what 

applications are popular and useful are constantly changing; the underlying technology 

is being built bottom-up by a community, and many standards are still being worked 

out; the cultural properties of Ethereum that sit underneath it all are in rapid flux. 

But there is a lot of bad UX in crypto, and doing it well is another form of professional 

arbitrage: it signals care, thought, and attention. It is also the only hope of scaling crypto 

to normal consumers.

I’ll break the discussion up into three categories:

•	 Clarification: How to communicate properties of the transaction

•	 Control: How to allow users to adjust those properties before they 

submit the transaction

•	 Confirmation: How to reveal the status and effects of transactions 

once submitted
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What follows is neither exhaustive nor relevant for every application nor even 

especially novel. (Most of the examples I give are taken from decentralized token swap 

providers, because the basic user flows are simple and well known.) Rather, it’s a 

starting point: an initial set of thoughts and examples of how Ethereum’s idiosyncratic 

computation model affects a UI and an illustration of the sort of things you can 

think about.

�Clarification
We’ll start by considering how our products can communicate the properties and 

behaviors of a transaction. As we’ve mentioned several times already, transactions are 

a result of a user’s intention. Users want to achieve a goal by submitting a transaction; 

the transaction is not the territory! Explaining what a transaction aims to do is a central 

part of aligning the user’s intentions with the actual mechanics of interacting with the 

protocol.

Understanding this intention, then, is at the heart of designing intuitive interfaces for 

what the user actually wants to do. And understanding this begins with understanding 

how the user thinks about what they’re trying to do. What is their model of the world? 

What is their model of transacting? Once we understand the answers to those questions, 

we can see how it diverges from the model of the world – and, a fortiori, of transactions – 

that crypto suggests to our designs.

How do we understand our users’ worldviews? We talk to them. We observe them 

using our applications. We develop user profiles and design with those profiles in mind. 

In short, we do all the same sorts of things that we do when designing products not 

intended to run on Ethereum!

�The User’s Model

One place where this schism between crypto’s model and our user’s model becomes 

clear is in the units that we use to represent the transaction. Gas fees are always paid in 

ether, whereas many transactions implicate other ERC-20 tokens (or, indeed, nontoken 

actions) to power their behavior. The problem is that users – even advanced users – 

don’t have a good sense for how much one ether actually costs. Try it: without checking 

the current price or using a calculator, ask yourself to put a dollar value on four gwei 

right now. You might be able to guess the rough order of magnitude, but “four gwei” is, at 

first blush, a somewhat meaningless quantity. Instead of using gwei/ether, use a familiar 
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currency such as USD, EUR, or GBP (or, ideally, support all three and more). Even the 

tokens are generally thought of in terms of their own units or dollar amounts, typically 

not in terms of ether.

Aave gives a simple example of how this can be done well, abstracting away the gwei 

units entirely from the gas fees and revealing the relationship between token quantity 

and USD, as seen in Figure 3-1.

Figure 3-1.  Aave displays an estimated gas fee, priced in USD, at the bottom of 
its transaction UIs. Each token quantity is related to a common reference value 
(also USD)

This problem is, of course, a specific form of a more general problem: the 

terminology that crypto has converged upon is often not what is useful to the user! Lots 

of DeFi protocols lean on properties of the protocol to provide the basic conceptual 

framework for the product, but the protocol is at a different level to the product, and it’s 

not always desirable or necessary to do so. Abstract quantities such as APYs can often 

be better explained in terms of daily/weekly/monthly returns in dollars (see Figure 3-2). 

The “24-hour volume” can often be better explained in terms of today’s fee accrual. 

Total Value Locked (TVL), sometimes used to indicate the popularity of a pool and to 

calculate the marginal return of the next dollar invested, can often be better explained in 

terms of the expected trend. And so on.
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Figure 3-2.  The Beethoven platform displays a “potential weekly yield” value, 
which can be expanded into precise APR numbers

What we’re trying to do is figure out why a user wants to submit a transaction and 

give them the information that they need to make the various decisions they’ll have 

to make. Should I submit a transaction? What parameters do I provide? What are the 

expected outcomes from this transaction? At what point will my returns exceed the gas 

fees? These kinds of questions are actually not about transactions at all! They’re about 

how the user achieves their goals. And therefore, they are generally not best answered by 

referring to underlying properties of the protocol. Instead, your product should rely on 

the user’s domain rather than crypto’s domain.

Let’s extract this insight out into a principle:

Matching Models

The design should speak the users’ language. Use words, phrases, 

and concepts familiar to the user, rather than internal jargon. 

Follow real-world conventions, making information appear in a 

natural and logical order.

Matching Models is at the base of good design, because it encourages you to design 

tools that fit snugly with the user’s existing conceptual scheme; it encourages you to 

minimize friction. If “gwei” or “ether” or “TVL” is entirely incidental to your use case, 

if these concepts are merely implementation details, then they don’t need to be in your 

interface. This also gives us a sense of why designing a transaction interface is specific 

to your application. If you are doing something different from other services, your 

transaction UI should probably look different from those other services. Why? Because 
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relying on community norms to indicate everything is going to obscure what makes your 

protocol unique, make the UI less useful, and force one model on your users that doesn’t 

align with the model they have when they try to solve the problem your application is 

solving. Aave, again, does this well, communicating through a clear graph the various 

APR rates and how they change with respect to the utilization rate of the pool, as in 

Figure 3-3.

Figure 3-3.  Aave displays how the borrow APR rates change when the utilization 
rate changes. This sort of representation of complex data begins with a user-level 
question – “If a lot more people borrow money from this pool, how will it affect my 
borrowing rates?” – and answers it with a common visual device, a graph

This sort of information visualization allows users to understand the nuances of your 

specific protocol, not just relying on existing knowledge of common crypto terms, but 

framing it in terms of the behavior of this protocol for this user. This is why it’s incredibly 

important to understand both what your protocol does (and what it does differently) and 

what your users think, feel, and intend to do when interacting with it.

�Dynamic Systems

Another important point to remember when designing transaction interfaces is that user 

decisions will have effects that may constrain future user actions. These are dynamic 

systems, systems that change over time. The Balancer UI in Figure 3-4 provides a helpful 

example of this sort of thinking in action.
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Figure 3-4.  Balancer issues a helpful warning when the user is going to trade 
away too much of their ether to pay for the transaction fees

While this is certainly imperfect – ideally, the system would abstract away the notion 

of gas fees entirely, since they’re likely not present in the user’s model – it nonetheless 

gives a sense of how a system needs to nudge users away from being in bad states and 

toward being in good states. We might frame this in terms of increasing optionality or 

just being a steward of a happy user experience. But the most important thing is that we 

inform the user as soon as we can tell they are likely to get stuck and give them advice as 

to how to avoid it.

Error Recognition

Error messages should be expressed in plain language (no error 

codes), precisely indicate the problem, and constructively suggest 

a solution. Errors should be obvious and clear. Warnings should 

be used to indicate when errors might occur in the future.

We’ll revisit Error Recognition in the following parts of this section.

�Transaction Intent

Another important constraint that Ethereum’s transaction model forces upon us: 

transactions, at the network level, are opaque bytecode strings. We’ll discover in Chapter 4  

that they contain a rather predictable and elegant structure, but our users should never 

need to know about it. Because our transactions must at some point be passed off to 

the wallet, and the wallet is inevitably going to display the transaction in a less user 

model–specific manner, we should do everything we can to communicate the purpose, 

configuration, and consequences of the transaction long before we ask the user to change 
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anything or submit it. Some Ethereum standards exist to try to mediate the relationship 

between the transaction in your UI and the transaction in the wallet software’s UI, but it is 

not a panacea.11

There are things we can do in our UI to obey Matching Models and better 

communicate transaction intent. This starts with the page title, the call-to-action 

text, and any other forms of context signposting. Buttons should be labeled with the 

appropriate action: “Swap Tokens” is better than “Exchange,” which is better in turn 

than “Send Transaction.” “Transaction fee” or “Service fee” or even “Network fee” is 

better than “Gas fee,” since most users don’t – and don’t need to – know what gas is. 

Explaining everything in natural language is helpful, avoiding jargon. We’ll see more 

of this in the “Confirmation” section: give transactions natural language descriptions 

with contextual information (“Swapping 10 DAI to ETH”), and use these descriptions in 

confirmation modals and status updates.

Related: Signal outcomes early. What does this transaction achieve? Once the user 

has submitted it, and it is confirmed, what are its effects? Compound does this neatly, 

and almost imperceptibly, by indicating the resulting increase in a borrow limit when 

supplying funds to its pools with a simple arrow, as in Figure 3-5.

Figure 3-5.  Compound shows how borrow limits are adjusted by using an arrow 
to indicate a change from one value to another

Matching Models and Error Recognition are helpful heuristics to apply to almost 

any form of transaction construction interface, because they’re grounded in a simple 

principle: meet the users where they are, and guide them to where you want them to 

be. These clarificatory principles can also be used for marketing purposes as well as 

for improving the UX. ParaSwap displays a table with the prices and fees for competing 

pools, as seen in Figure 3-6.

11 EIP-712, for instance, allows for structured data objects rather than raw text when signing 
messages (which is not the same thing as signing a transaction; https://eips.ethereum.
org/EIPS/eip-712). Some wallets, including MetaMask, will inspect the smart contract ABI 
where possible and parse the transaction data, showing more structured data in the wallet’s 
confirmation screen. Not every wallet does this, and no wallet does it perfectly. Even if they did, 
the data it would show would be the data that the protocol sees, which is generally not using the 
same conceptual model as the user.
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Figure 3-6.  ParaSwap shows not just what this transaction will do but also 
how it compares to a similar swap on other platforms. Thus, the UI can be both 
clarificatory and a helpful marketing tool – assuming that your platform is 
competitive!

This sort of table is useful for the user, because it gives them a sense of the broader 

market and allows them to contextualize the trade they’re making. But it’s also useful for 

ParaSwap, because it allows them to show off their superior rates. And it’s a natural fit for 

the Principle of Trust, because it signals transparency.

Let’s have a brief think about how we might actually implement this in a frontend. 

The trick is to engineer a layer between the smart contract and the UI code, representing 

the transaction as a meaningful domain object with properties, behaviors, and metadata. 

This can be as simple as a JS object representing an individual transaction:

const swapTransaction = {

  metadata: {

    title: "Swap Tokens",

    �titleInProgress: (data) => `Swapping ${data.fromToken} to ${data.toToken}`,
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    callToAction: "Swap",

  },

  submit: (data) => provider.sendTransaction(data),

};

This allows us to isolate the transaction’s behavior and metadata into one place, 

giving us a standardized interface. (By moving the submit logic here too, we can hide any 

default/app-level settings from the transaction UI code entirely.) The titleInProgress 

key is a function that takes our transaction data and returns a string; this shows how 

adding this abstraction can become quite powerful, allowing our metadata to be context 

sensitive. This can make the individual transaction UI simpler and will allow us to extend 

the transaction object to support some of the other types of UX improvements we’ll 

discuss elsewhere in this chapter. It also allows us to move the transaction details outside 

of a specific frontend component, assisting separation of concerns and code cleanliness.

Regardless of how it’s implemented, by trying always to explain transactions and 

their behaviors in natural language aligned with the user’s model, you can strip away 

complexity from your UI, focus users toward interacting with your protocol rather than 

trying to understand it, and thus build an interface more effective and empathetic.

�Control
But sometimes complexity is necessary. Sometimes, you require several inputs from 

users, or even several transactions, in order to provide value. At this point, we’ll need to 

consider how the user provides these inputs. How should a user control the properties of 

the transaction they are to submit?

�Progressive Expansion

One important constraint that is often overlooked, but falls out directly from Matching 

Models, is that the right level of abstraction for the protocol is unlikely to be the right level 

of abstraction for the user. Protocols think in terms of uint256 values, account addresses, 

and arrays of bytes. These are syntactic properties, not semantic properties, of the 

input, so they are rarely, if ever, the model with which the user is thinking. Almost every 

product does this already, to some degree: token amounts are inputted in decimal form, 

rather than the e^18 raw values in which they’re represented by the protocol; tokens are 

selected from lists rather than via contract addresses; helpful metadata and imagery is 
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shown to indicate the meaning of what’s being transacted. But many UIs don’t go nearly 

far enough. As we saw in “Clarification,” UIs can represent values in terms in which the 

user is already thinking. Putting a layer of abstraction between the user and the protocol 

is thus a liberating move conducive to good design, because it gives you the chance to 

align the UI with the user’s model rather than the protocol’s.

There is one obvious thing that you can do and that most product designers already 

do: provide different UIs for inputs of different types. Some numbers are bounded by 

ranges and can be inputted with a slider. Some numbers have a set of sensible defaults 

that are best expressed with a dropdown or radio select. Other numbers require explicit 

input boxes. Boolean values can be inputted with a toggle, etc.

But better designed input fields are inferior to no input fields at all; in many cases, you 

simply don’t need to provide a configurable value. The frontend can calculate appropriate 

values or fall back to sensible defaults. One helpful approach here is to use progressive 

expansion: gradually showing more complexity as the user requests it and relying on 

such sensible defaults when the user doesn’t. Matcha, for instance, offers an “Advanced 

Settings” panel on their standard swap interface that allows users to set slippage 

parameters, the exchange list they’re trading from, and gas prices, as shown in Figure 3-7.

Figure 3-7.  Matcha has an “Advanced Settings” panel that reveals configurable 
values only if the user needs to change them

Chapter 3  Transactions



75

Lots of trading UIs have some sort of “Advanced Settings” panel. But Matcha’s goes 

deeper: the gas price setting also expands progressively, letting users select a custom gas 

price after clicking through, as shown in Figure 3-8.

Figure 3-8.  Clicking “Gas Price” reveals a second level of configuration

This is a great instance of progressive expansion, because it demonstrates that 

there can be multiple layers of configurability. Only some users will want to change the 

defaults at all, and only a subset of those users will want to change the gas price in gwei 

directly. Giving those users the flexibility to adjust these values, but adding a source of 

friction to do so, will help sort users into those with expertise and those who are happy 

to let the app make those decisions for them. SushiSwap takes this idea even further, 

allowing users to enable an “Expert Mode” toggle that not only reveals more granular 

configuration but also disables various security checks, as seen in Figure 3-9.
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Figure 3-9.  SushiSwap allows advanced users to adjust the user flow mechanisms 
directly. A stellar example of progressive expansion (or, in this case, contraction)

…and SpookySwap even displays an entirely new UI when their “Expert Mode” is 

enabled.

Some values are reasonably general and can be pulled out of the specific transaction 

context entirely: gas fees are a good example here, since every transaction that the user 

submits will require a gas fee setting. If you’re not going to abstract away gas, and allow 

the user to configure their gas prices, then you might consider moving it outside of the 

context of any given transaction and instead let the user configure it globally across your 

app. Alchemix provides a “gas fee” dropdown that configures the gas price offered for 

subsequent transactions, regardless of what those transactions are (see Figure 3-10).
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Figure 3-10.  Alchemix allows users to configure gas at the application level, rather 
than on a per-transaction basis

This sort of technique works well for gas, but could be used for other transaction 

properties too. If your product deals with leverage, and your users are likely to use 

similar amounts of leverage on every trade, then you might want to move leverage out of 

the individual transaction UI and into the global UI. Similarly with slippage, most users 

may be happy setting a basic acceptable slippage percentage and tweaking occasionally. 

The benefit to this approach, of course, is that it reduces the number of configurable 

fields you need to include in your individual transaction UI, which reduces friction and 

can simplify the UI considerably. You might be able to get rid of a progressive expansion 

mechanism entirely if you can push the configurable values somewhere more general. 

(This approach, by the way, also works well for display configuration; see, for instance, 

in Figure 3-10 how Alchemix allows for base currency changes. This doesn’t affect the 

transaction details, but it does affect the display.)
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�Transaction Sequencing

A slightly more challenging control problem concerns transaction sequencing: 

sometimes, multiple transactions are required to complete a specific user journey. 

Because Ethereum transactions are asynchronous, and we have to pass over 

responsibility for transaction submission to the wallet, this can present awkward 

sequencing issues and race conditions. What should happen if the first transaction 

fails? What about if the first succeeds, but the second is never submitted? What about 

if the first transaction succeeds, but is misconfigured in some subtle way that prevents 

the second from being successful? What about if the user leaves mid-journey and 

comes back? Managing the system state across multiple transactions is less than 

straightforward.

The first thing to check is whether it is possible to combine the steps into one smart 

contract call. If a user journey is supposed to represent an atomic set of changes, then 

by far the easiest way to implement the user journey is to actually make them an atomic 

set of changes. In previous projects, I have had some success from simply asking the 

protocol team to add a single wrapper function to the contract that calls out to the 

underlying steps, consolidating these separate calls into one interface.12 Or, better yet, 

try implementing it yourself: add the wrapper function, write some unit tests, submit a 

PR, and see how you get on. At the very least, you’ll learn a bit more about the protocol. 

ParaSwap, in Figure 3-11, shows how combining two stages (in this case, swapping and 

transferring) can extend the functionality of a basic exchange in a small but potentially 

important way.

12 For more on smart contract function calls, and why this isn’t always easy, see Chapter 4.
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Figure 3-11.  ParaSwap has a swap-and-transfer dialog that combines two 
separate stages into one function call, which allows for an atomic update of both 
token quantities and owner

There are, however, lots of scenarios when this won’t be possible. The contracts in 

question may already be deployed. The protocol team may have frozen the feature set 

and may be mid-audit. You might not own the contract: it might be some third-party 

code you can’t control. Or the protocol team might not be accommodating for some 

other reason.

In these cases, you’ll need to design your product around the necessity for multicall 

logic. One important approach, which can be easy to forget, is just to force the user to 

go through each step sequentially. You can see a simple example of this in most token-

related interfaces: users need to submit one transaction to approve the contract’s 

spending of the tokens and another to actually perform the update. Check out the 

Uniswap interface, as shown in Figure 3-12. When a token is not approved, the “Swap” 

button is disabled. The user first needs to issue an allowance transaction.
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Figure 3-12.  Uniswap (and basically everybody else) blocks the “main” token 
action until approvals are given

If the approval has already been given, the “Allow” button isn’t rendered, and the 

“Swap” button is enabled. This forces the user to execute a two-step process. This is, of 

course, hardly some great insight. But there are other contexts in which this two-stage 

process can be displayed more explicitly. You could, for instance, paginate the flow 

rather than update the dialog automatically. This allows you to focus the user on one 

specific task, exhibiting a meaningfully different UI for each stage, especially important 

when both steps allow for configuration. This also allows you to display a progress 

indicator. In these cases, you’ll want to load the current user’s state at the page level 

rather than the dialog level. Whether you do it via updating the UI dynamically or by 

blocking progress more explicitly via pagination, the point here is to block progress in 

the UI until you can be assured that the currently connected account is indeed in the 

state that it needs to be to continue.
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We can extend the basic abstract transaction method that we discussed in the 

“Clarification” section to make these sorts of checks easier to reason about.  

A transaction object could support a permissible() function, which could take the 

proposed transaction data, query for more information, and return true if and only if the 

transaction is ready to be submitted:13

const swapTransaction = {

  // ...

  permissible: async (data, currentAccount) => {

    const userAllowance = await tokenContract.allowance(

      currentAccount.address,

      CONTRACT_ADDRESS

    );

    if (userAllowance.data.lt(data.amount)) {

      return {

        permissible: false,

        errors: [Errors.InsufficientTokenApproval]

      };

    }

    return { permissible: true, errors: [] }

  }

};

The UI could then, for instance, call permissible() with the transaction data to 

check whether the Swap button should be enabled and use its errors return value to 

display the Approve button.

Finally, some transactions are optional, in the sense that they will affect future 

transactions but aren’t required. In these cases, you can nudge the user toward taking 

these optional steps by exposing them in the UI. Balancer suggests wrapping more stETH 

for its wstETH pool, as in Figure 3-13.

13 Don’t worry too much about the actual implementation here: we’ll talk more about contract 
calls in future chapters. This code is meant as indicative, a way to demonstrate how various types 
of checks can be included in the transaction layer I’m suggesting.
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14 There are some proposed approaches to make transactions reversible, notably the ERC-20R 
proposal (https://mirror.xyz/kaili.eth/gB-rx89sNAT3CVuxWo6xVFS5ptNcllW7cVWVCfcFa6k), 
which rely on smart cryptography and decentralized jury systems to adjudicate competing claims. 
I suspect that they won’t be accepted as core standards for cultural reasons. It’s also not obvious 
to me that transaction reversibility should be implemented at the protocol level: it doesn’t get 
us much more than a simpler escrow system, implemented at the application level in a smart 
contract, would.

Figure 3-13.  Balancer’s wstETH pool points you toward wrapping more 
stETH. While not required, Balancer nudges the user effectively by noting that such 
an action is possible at this stage in the user journey

Transaction sequencing is very use case specific, but it’s likely that, at some point, 

you’ll want to do something like this. Blocking the UI, paginating it, or even displaying 

the two actions in an ordered list can be a helpful way to indicate that the order matters. 

But you’ll need to ensure that the user will be able to return to the same state if they 

close their browser, navigate away, or otherwise leave the journey midway through. 

Querying the blockchain for the user’s current state on page load gives you the flexibility 

to adapt your UI accordingly.

�Reversibility and Validation

One important constraint of Ethereum that has significant downstream effects on the 

products you build is that transactions aren’t reversible.14 Once the user has submitted a 

transaction, they’ve paid some gas fees. If the transaction is successful, they’ve modified 

the state. This makes it exceedingly important that you pay attention to possible 

violations of the Principle of Trust. If the user configures something incorrectly, they 

might end up submitting an invalid transaction or, worse, a perfectly valid transaction 

that doesn’t express their intentions. Progressive expansion helps, since it forces the 
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user to decide whether they are sophisticated enough to configure. But it doesn’t solve 

the problem, since you can’t guarantee that they won’t misjudge their abilities or make 

mistakes.

One potential solution to avoiding transaction errors – and something I’ve not seen 

implemented in DeFi products before – is to delay submitting a transaction by some 

period of time (say, 10 seconds) before it is submitted to the node. This could behave 

similarly to the “Undo” feature in Gmail, as shown in Figure 3-14.

Figure 3-14.  Gmail gives you the chance to “Undo” a sent email, within 10–15 
seconds of the email being sent. A delayed send mechanism for transactions might 
be a natty bit of UX

Such an undo feature won’t work for every transaction. Some transactions are 

time sensitive: prices on a trade may change which can cause a revert due to slippage 

checks; new blocks might alter existing state. You can only be certain of the current 

state of the protocol at the moment you inspect it. But this is always a risk: data flows 

comparatively slowly through a decentralized network; some nodes only have a partial 

view of the mempool; indexing adds more delays. You will always need to handle cases 

where the transaction fails, for one reason or another. An “undo” or “cancel” feature 

gives your users an emergency exit, a chance to revoke the transaction quickly if they 

realize they’ve made a mistake. The biggest drawback, and the reason why, I suspect, 

this is rarely implemented, is that not every wallet – most notably MetaMask – supports 

the eth_signTransaction call. When not supported, the wallet will be responsible for 

submitting the transaction to the network, not the dapp, and this precludes a delayed 

send mechanism. But eth_signTransaction is a part of the core Ethereum JSON-RPC 

spec, and I expect that over time most wallets will support it.

Of course, the best way to reduce user regret is to not allow the user to regret their 

transaction in the first place. This allows us to bring Error Recognition back into the 

discussion. Error Recognition tells us that we should do our damndest to make sure that 

the user knows they are likely to cause errors, as early as we can. This centers around one 

core approach: always, always, always validate the user’s inputs. Validation allows us to 

catch errors before they occur. Is a value obviously incorrect? Don’t let the user proceed! 

Does a value look unusual/implausible? Warn the user!
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Matcha offers a good model for warnings (Figure 3-15). If a user tries to issue a large 

trade on a low liquidity pool, the UI will warn the user that they are about to lose some 

money to slippage and force them to confirm again.

Figure 3-15.  Matcha adds an extra step to its trade modal when the expected 
slippage is large. Introducing this sort of friction is crucial; it gives users time to 
reflect about the consequences of the irreversible transaction they’re about to submit

But warnings needn’t just take over the page, as in the Figure 3-15 case: user 

input should be validated just as it is in web2, by triggering error states on the inputs 

themselves. I won’t include an image here, as it’s such a common pattern, but I mention 

it here because the basic flow is still incredibly important. Inline validation states also 

allow the UI to render potential fixes. Has the user inputted a greater number of tokens 

than their account owns? Add a “MAX” button that sets the input to the correct token 

amount. The purpose of this sort of validation logic is to preempt a smart contract revert: 

smart contract errors are often underdescribed, overly technical, or just plain unhelpful. 

If you can copy the validation logic that the smart contract checks, as well as any other 

logic that might help nudge the user’s input in the right direction, you can create much 

more enjoyable and tasteful experiences for your users using an idiom (i.e., input 

validation) that they already understand.
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This validation logic can also be included in the transaction object, using the familiar 

pattern of normalize and validate:

const swapTransaction = {

  // ...

  normalize: (data) => ({

    ...data,

    amount: BigNumber.from(data.amount),

  }),

  validate: (data) => {

    let errors = [];

    let valid = true;

    if (!VALID_TOKENS.includes(data.token)) {

      valid = false;

      errors.push({

        field: 'token',

        �message: `unknown token "${data.token}", valid tokens: ${VALID_

TOKENS.join(', ')}`

      });

    }

    if (data.amount.lte(0)) {

      valid = false;

      errors.push({

        field: 'amount',

        message: 'amount must be more than 0',

        actions: [{

          label: 'Set to max',

          action: setInput(user.balances[data.fromToken])

        }]

      });

    }

    return { valid, errors };

  },
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(Once again, the point of this code is not the implementation per se, it’s that 

wrapping the transaction metadata and validation code in a transaction object can help 

isolate the relevant behavior and clean up the UI code.)15 It is, incidentally, surprising 

how few crypto frontend codebases represent transactions in the way I’ve been 

describing: many simply call the smart contract directly with the input and allow the 

ABI/tools to do whatever syntax validation it can and let the smart contract itself pick up 

the slack. But this sort of information is several steps away from the user’s input. A user 

has to submit a transaction before they find out whether the smart contract has failed, 

and this is true even if the tool (such as ethers.js) is running eth_estimateGas before 

proposing the transaction to the network. And this says nothing about the quality and 

user-friendliness of the average smart contract error. If you add another layer between 

the user’s input and the smart contract, then you can do smart validation and suggest 

ways to fix the problems quickly and dynamically at the point that the user is constructing 

the transaction, not afterward.

This sort of validation behavior is expressive of another general principle that we can 

extract:

Status Visibility

The design should always keep users informed about what is 

going on, through appropriate feedback within a reasonable 

amount of time. When users know the current system status, they 

learn the outcome of their prior interactions and determine next 

steps. Predictable interactions create trust in the product as well 

as the brand.

Status Visibility is essential when we’re working in an asynchronous environment, 

because we want to reveal the status of a transaction as soon as possible, in time for the 

user to course-correct. If we can match the input requirements of the smart contract 

in our own code, then we can hugely increase the user’s confidence when submitting 

(and before paying gas fees). Whatever we can do to prevent failed transactions from 

occurring makes our lives easier as well as our users’.

15 Another benefit to this sort of transaction object is that the various transaction behaviors can 
be isolated from the React render cycle. This means that our validation code can be unit tested, 
perhaps only requiring some basic dependency injection. In general, extracting business logic 
outside of React can be a useful way to increase test coverage without needing to worry about the 
underlying render logic and the awkwardness of tools like react-test-renderer.
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�Confirmation
We’ve shown how it’s possible to clarify the properties of a transaction, its intent 

and its likely consequences, in a more user-friendly way. We’ve also described some 

approaches to improving the UX of transaction configuration. It’s now time to look at 

the third stage in the transaction’s story: once it has been submitted, how do we best 

indicate its status and its actual effects?

�Transaction Status

As we’ve already mentioned, Ethereum transactions are executed asynchronously: they 

are submitted to the network and at some point in the future will be included in a block 

and validated by the committee of participating nodes. This means that we need to 

handle the asynchronous behavior in our UI.

Of course, the easiest way to handle asynchronous behavior is to make it 

synchronous! There’s no reason why you can’t disable your UI and put the frontend 

into a loading state until the transaction is successful. The SPA focus of a lot of crypto 

frontends can lead you to some dark and confusing places: often the cleanest thing to do 

is to get the user to wait for the transaction to be properly processed. This also allows you 

to combine on-chain asynchronous requests with on-chain transactions, if your use case 

demands it, as with Ramp in Figure 3-16.
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Figure 3-16.  Ramp, a crypto on-ramp platform, handles both on- and off-chain 
asynchronous behaviors by leaving the UI in a pending state until it is confirmed. 
This is one tasty bit of UX design

Where possible, just block the UI. It’s generally not a big imposition to your users, is 

usually easier to implement, and, as Figure 3-16 demonstrates, can often leave you more 

room to display other important bits of information. There are very few instances where 

this isn’t – at least directionally – the right approach. If, however, your use case demands 
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that the user can continue to interact with the UI, then you’ll need to handle the 

transaction status updates in another way. Many UIs provide transaction notifications in 

a snackbar-style interface. Figure 3-17 shows some examples from an old Blocknative UI 

library that helps generate these sorts of alerts.

Figure 3-17.  The Blocknative assist library (https://github.com/blocknative/
assist) provides a standard set of transaction notifications. It’s an old library and 
hasn’t been updated since 2019, but it gives a sense of what this sort of UI might 
look like

Integrating these sorts of notifications is a good idea, because it gives your users a 

sense of progress as well as informs them of the actual current state of the transaction. 

You might also want to integrate other asynchronous mechanisms to update the user 

regarding the transaction status, such as email, text, or browser notifications, if possible 

and where appropriate. Respecting the user’s time and allowing them to leave your 

frontend and come back later is a great way to engineer trust and create delightful 

experiences.

Once the transaction has been validated and we have a receipt, there’s another 

constraint we need to bear in mind: blocks can be reorganized. This means that even 

inclusion in the last block is not a strict confirmation. Confirmation is a matter of 

confidence, not a binary state, and so we’ll need to be able to wait for a sufficient number 

of blocks until we can be sure that we can confirm the results to the user. This is not the 

sort of thing that a user should have to care about, and so therefore the best thing to 

do is (usually) stipulate a level of confidence – five blocks? Ten blocks? – based on our 

use case, and communicate to the user. Blocks are validated every 12 seconds, so we 

can include a reasonably accurate progress bar or countdown timer. Even if we decide 

not to update the user via a progress bar, we should definitely not indicate that the 

transaction is successful until we meet our confidence threshold. That a transaction 

has been accepted into a block is not its success state: only once we are confident that the 

transaction won’t be reversed by the next validator can we be sure that the transaction 

has successfully, and irreversibly, been added to the blockchain.

Chapter 3  Transactions

https://github.com/blocknative/assist
https://github.com/blocknative/assist


90

Once again, these considerations are expressive of the important heuristic of Status 

Visibility: the current status of a transaction isn’t always obvious to the user. It’s often 

hidden behind a few clicks in the user’s wallet, and therefore transaction status should 

be immediately surfaced in the dapp itself.

�Updating State

There is one final constraint that we should think about. The effects of transactions – 

that is, the updates to state – will take time to filter through the network (and any 

intermediaries, such as indexers), before our app is able to see them. This can cause 

some strange race conditions, where the transaction is marked as complete in our UI but 

the data itself isn’t updated to reflect it. This can, at worst, be a violation of the Principle 

of Trust and becomes especially pernicious if there is some subsequent problem pulling 

the updated data from on-chain sources. If the indexer goes down, or the websocket 

connection is dropped at just the wrong time, we can display all the wrong information 

at just the moment the user needs it to be correct. At best, the UI updates can appear as 

if from nowhere, several render cycles after the transaction is marked successful. This 

might be good enough for a small demo, but if we’re trying to create beautiful, tasteful 

products, we should aim for something better.

A simple way to minimize this sort of behavior is to add a delay between confirming 

the transaction and fetching the new state. If we wait, say, two seconds between 

registering the confirmed transaction and displaying the transaction success state, we 

give the intermediaries some leeway to fetch and update the state. This, unfortunately, 

won’t fix every problem: we won’t be updating our UI atomically, so there may still be 

funky rendering behavior, and we’ll also still be vulnerable to flaky connections and 

unreliable indexers.

A more robust approach is to add a transaction lock and report our transaction as 

successful based not only on the transaction’s status itself but on its changes to the 

state. The logic for locking and unlocking will vary depending on the effects that the 

transaction has: it’s a lock based on the object-level properties of the state change, not 

the meta-level properties that the state change has occurred (e.g., the transaction being 

confirmed). So we’ll need to decide for each transaction what sort of state update we 

consider to be successful. This might be listening out for specific contract events (see 

Chapter 4) or checking for specific changes in values.
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We can add this logic quite neatly to the transaction object that we’ve been 

interweaving with the UI discussion:

const swapTransaction = {

  // ...

  unlock: async (data, user) => {

    const currentBalance = await tokenContract

      .balanceOf(user.address);

    return currentBalance.gte(data.amount);

  },

In this example, we check to see whether the user’s balance of a token is greater than 

or equal to the amount we specified in the transaction data. This gives us a guarantee 

that the transaction actually occurred and that the data has reached our frontend. We 

can wait for the transaction’s confirmation, then poll the unlock() function every 200ms 

or so using setTimeout() to ensure that the transaction has made it fully through the 

lifecycle and that our frontend reflects its changes.

This approach allows us to disable our UI, or indicate a refresh, until the lock is 

removed. This is much easier when you’re controlling the user flow via a sequence of 

steps: in this case, you can simply prevent the next page from ever being seen until the 

data has been updated in the background. But even if your application is more dynamic, 

you can disable the relevant portions of the UI, or at the very least display a loading 

indicator, until the lock is removed.

This is, naturally, quite a bit more complex than just checking the transaction status, 

so you’ll want to weigh up the benefits of this approach with the cost of writing it and 

the ongoing costs of maintaining it. But if the effects of a transaction are fairly legible, 

then it can help remove a class of race conditions and substantially improve the UX. In 

some use cases, it won’t be practical or relevant. But it’s much better to let the user know 

that something is happening and only return control to them when that something is 

done. That something is done not when the transaction is added to a block nor when it 

is confirmed: it is done when your local instance of the application is aware of the state 

changes.
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�Some Final Thoughts on UX
If you’re well-read in the design thinking literature, the three principles that we extracted 

in this section – Matching Models, Error Recognition, and Status Visibility – may seem 

rather familiar. If you’re especially well-read in the design thinking literature, you 

may know why: each one was taken – with a little rewording – from Jakob Nielsen’s 10 

Usability Heuristics for User Interface Design, an important and helpful list of heuristics 

for good design.16 Why is this pertinent? Firstly so that I can avoid plagiarism and also 

because it means that very little of this is new. The vast majority of good UX principles 

are timeless and apply just as readily to crypto applications as to web apps as to 

dishwashers as to bicycles as to governments. While crypto does present an interesting 

set of novel challenges, these characteristics shouldn’t be used as an excuse for 

sloppy design. Many hundreds of thousands of very bright people have been building 

interfaces for augmenting intelligence and achieving goals for centuries, from the abaci 

of Mesopotamia to the iPhone of today. Products built on Ethereum are a part of this 

legacy, not apart from it.

I’ll conclude this section by addressing a few common pieces of crypto UX advice 

and why I think they are erroneous.

Firstly, just because your application is built on crypto, it doesn’t mean that your 

application needs to educate people about crypto. If a user needs to know that an 

application is running on Ethereum, then it’s quite possible that the application is 

resting on a leaky set of abstractions, violating the Matching Models heuristic. In other 

words, Ethereum will truly be considered a UX success when it sits underneath a rich 

application ecosystem without ever infecting those applications with its own vocabulary. 

Sometimes, doing so is inevitable, but, in general, we shouldn’t need to teach users 

new patterns or behaviors. Many, if not most, contemporary crypto applications are 

reimplementations of existing applications on a decentralized substrate. This means that 

there are already well-known and intuitive ways of thinking about the problem. Where 

possible, we should rely on these existing memes and models.

Secondly, your application doesn't need to be a SPA. Or, at least, it certainly doesn’t 

need to look like one: if you have a specific workflow, then you can force the user 

through that workflow page by page. Blocking the next steps until a transaction has been 

16 www.nngroup.com/articles/ten-usability-heuristics/

Chapter 3  Transactions

http://www.nngroup.com/articles/ten-usability-heuristics/


93

submitted is a common and reliable way to ensure the right sequence of user actions. 

And it also allows you to restore the user to their current state when they leave and come 

back. Not everything needs to be maximally dynamic.

Thirdly, and building on the first point, you should aim wherever possible to distance 

your UI from the underlying smart contract. Errors should be parsed and reformatted, 

displayed for them in their language and with an idiom common to your user’s model 

and your product’s brand. This has engineering benefits as well as UX benefits: it makes 

your application more robust to changes in the underlying contract, because you’re 

creating layers of abstraction between them.

Lots of the UX problems we’ve talked about here come from constraints that 

you can’t control: the wallet software, the asynchronous nature of the network, data 

availability, and the user’s idiosyncratic inputs. But these constraints can often be 

worked around, and it’s imperative in these cases to focus on product quality. Build 

around the constraints, and you’ll have a more beautiful and tasteful product.

Your job, ultimately, is to be like the annoying venture capitalist in a coffee shop 

meeting. Constantly ask: How can I add value? If you can’t, then nobody is going to use 

your product. But worse is when you know you add value, but nobody else can recognize 

it, because your interface is clunky and counterintuitive. Adhering to the principles 

outlined here, ignoring them when the trade-off is appropriate, and always revising and 

iterating your UI based on user feedback, usually won’t lead you astray.17

�Summary
We’ve covered a lot of ground in this chapter. Transactions are the language of the 

Ethereum protocol, and as such those of us building products on top of the platform 

have to think deeply and build tools around their idiosyncrasies. Signatures and gas 

fees demand extra steps and force integrations between software you control – your 

apps – and software you don’t – the user’s wallet interface. They generate new classes 

of runtime errors and exist within underdeveloped UI paradigms. Nonces solve an 

17 The Blocknative team has assembled a helpful checklist of usability issues that you can work 
against. It includes some parts of what we’ve discussed here and also covers other parts of the UX, 
such as wallet connections. https://github.com/blocknative/dapp-usability-checklist/
blob/master/README.md
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important problem in the system design, but they too are not without complications. 

It is these sorts of complications that give building on Ethereum its distinctive – and 

sometimes unpalatable – flavor.

Transaction UX is complicated, but can be made simpler by referring back to 

Jakob Nielsen’s 10 Usability Heuristics for User Interface Design. We should clarify the 

properties and intention of transactions in terms that the user has already, not crypto-

specific terms that we think they should know (the Matching Models heuristic). We 

should gradually increase the specificity of our user’s input through techniques such as 

progressive expansion, allowing our interface to make sensible assumptions and simplify 

the UI. We should validate inputs as much as possible ahead of time, predicting potential 

errors and nudging our user toward the correct behaviors (the Error Recognition 

heuristic). We should help guide our users through sequences of transactions by 

blocking the UI where appropriate. Similarly, we should help guide our users through 

the lifecycle of a transaction by revealing its status clearly and visibly (the Status Visibility 

heuristic). Crypto products don’t need to educate their users about crypto – indeed, a 

successful product is one that solves the user’s problem without needing to mention the 

underlying implementation details – and crypto products don’t need to always behave 

like SPAs. Our job as designers is to let the user solve their problems, and our job as 

developers is to do so in a tasteful and robust manner.

In this chapter, we’ve made several opaque references to smart contracts. In the next 

chapter, we’ll begin to make the opaque translucent, building up intuitions around how 

smart contracts work and exploring their various properties.
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CHAPTER 4

Contracts
Smart contracts are the programs of Ethereum. But they’re also APIs, and their design 

characteristics can affect the products we build significantly. In this chapter, we’ll 

explore how smart contracts work, what their interfaces look like, what sorts of primitives 

they express, and what sorts of abstractions we can build upon those primitives. We’ll 

also explore indexing, a powerful approach to separate data processing concerns from 

your products and the protocols they interface with.

�Smart Contracts
Ethereum uses smart contracts to allow for a general form of programmable state changes. 

Smart contracts are uniform blocks of bytecode that get run on the EVM; functions are a 

useful fiction added by higher-level languages such as Solidity. Smart contracts are APIs 

that you use to read from and update the global state. ABIs allow you to describe these 

APIs, making the contract run as bytecode easier to integrate with. You can use helpful 

command-line tools and some ingenuity to reverse-engineer transaction calldata, which 

helps reveal the predictable structure behind the hexadecimal. ABIs reflect the interfaces 

of the smart contracts from which they’re compiled, so they need to be designed with the 

products in mind and updated when the contract updates.

The Bitcoin whitepaper from 2008 was a remarkable innovation, because it managed  

to solve a trenchant issue in the design of electronic currencies. A digital currency where 

individuals sign transactions using digital signatures would generally suffer from the 

double-spend problem: How does the system prevent somebody from sending the same 

assets twice? Traditionally, digital currencies resolve this problem by introducing a 

trusted third party. But trusted third parties introduce their own trade-offs:

Completely non-reversible transactions are not really possible, since financial  
institutions cannot avoid mediating disputes. The cost of mediation 
increases transaction costs, limiting the minimum practical transaction 

© Jamie Rumbelow 2023 
J. Rumbelow, Building With Ethereum, https://doi.org/10.1007/978-1-4842-9045-3_4

https://doi.org/10.1007/978-1-4842-9045-3_4


96

size and cutting off the possibility for small casual transactions ... With the 
possibility of reversal, the need for trust spreads. Merchants must be wary of 
their customers, hassling them for more information than they would  
otherwise need. A certain percentage of fraud is accepted as unavoidable.1

In short, trusted third parties increase costs and reduce the privacy benefits to using 

digital signatures. Bitcoin removed the need for this trust by creating a mechanism for 

distributed, trustless consensus of a payment mechanism.

We can model these payments neatly. Consider a standard database table. Each row 

represents an object, each column represents an attribute, and each cell represents a 

value (Figure 4-1).

Figure 4-1.  Rows are objects, objects have attributes, and those (object, attribute) 
pairs have values

So a single object (row) might have several attributes (columns) with corresponding 

values (cells). We can model Bitcoin accounts in the same way (Figure 4-2).

1 From the Bitcoin whitepaper (https://web.archive.org/web/20140320135003/https://
bitcoin.org/bitcoin.pdf); do read the whole thing, it’s excellent.
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Figure 4-2.  Bitcoin accounts modeled in terms of objects, attributes, and values

So a Bitcoin account (row) has two attributes: an id and a balance. A Bitcoin  

transaction moves an amount from one value on one row to another value on another 

row, as in Figure 4-3.2

2 Bitcoin is actually implemented as an Unspent Transaction Output (UTXO); a Bitcoin 
transaction doesn’t update an account in place, it destroys the first row and replaces it with the 
new value. This is an important part of the Bitcoin mechanism and is the most significant way in 
which this naïve account-based model doesn’t fit to how Bitcoin actually works. But this isn’t a 
book about Bitcoin; these paragraphs are used to motivate how and why Ethereum generalizes 
Bitcoin’s functionality.
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Figure 4-3.  Transferring an amount from one account to another can be modeled 
as moving it from one value on one row to another value on another row

Our transfer function knows how to read our table and move an amount from one 

row to the other. What if we wanted to support multiple balances per account? We could 

add a second balance column. We’d then need to introduce a second transfer function 

which moved amounts from and to the second column. We might also want to introduce 

two other functions, to allow movement of amounts between the columns. Let’s see what 

this looks like in Figure 4-4.
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Figure 4-4.  If we add more columns, we need more functions to describe 
the movement of values between those columns (and between rows within a 
single column)

This is already getting confusing, and if we wanted any more attributes than two, it 

would quickly get out of hand.

Instead of adding a bunch of columns (and the corresponding transfer functions), 

we could generalize the idea. Instead of attributes known a priori, we could say that 

rows can have any number of columns that they want, of whatever type they want. Each 

account then functions as its own database table, with its own, distinctive columns and 

rows, as in Figure 4-5.
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Figure 4-5.  Each row has its own distinctive set of columns

But this raises a bunch of implementation questions. How does a row specify  

that it holds certain attributes? (What does that even mean?) What’s the logic for moving 

between columns of different types? Some computations won’t even know which  

columns they want to update until they’re already running: if a column name is  

generated dynamically, for instance, it won’t know that it needs to change some value 

until after the user has begun the computation. So what would the semantics for a  

transfer look like if the column names are not known ahead of time? And, finally, what 

if the computation wanted to restrict which columns and rows can be updated based on 

who has permission? These sorts of issues are tricky to reason about when you’re  

thinking in terms of a database table.

What you really need is a programming language: a way of declaring in code what 

data transformations you want to make and where. You could run an API that hosts 

blocks of code, and these blocks of code can then specify their own semantics for  

changes to the state.

What Ethereum gives us is a way of doing exactly this, but in a distributed and  

trustless manner. Our blocks of code are called smart contracts; these contracts can 

specify which attributes they care about, and, crucially, these contracts decide the rules 

through which the values of those attributes change. Smart contracts are therefore just 

computer programs, with some state, running on a computing platform hosted on the 

decentralized Ethereum network. This platform is called the Ethereum virtual machine.

This chapter explores smart contracts in a technical and detailed way. How do smart 

contracts work? How do they store state, and how do products read this state? And, 

above all, what does all this mean for the user?
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�What Does a Smart Contract Look Like?
As we’ve just discussed, smart contracts are programs. Programs are generally written 

in programming languages, with different languages designed to run at different levels 

of the stack, and for different sorts of programming. Ethereum is no exception: there are 

high-level languages and lower-level languages and the bytecode that sits underneath 

them. The most popular and well-known high-level smart contract programming 

language is called Solidity, and it’s as close to an “official” high-level language as the 

Ethereum ecosystem is likely to get.

Contracts written in Solidity – or in any other high-level language, for that matter – get 

compiled down to bytecode. The bytecode is then executed on the EVM. This is essentially 

analogous to how hardware computers work: the bytecode refers to various operations that 

are executed on the abstract model – the instruction set – that the computer’s hardware 

exposes. The CPU knows where to look for instructions (generally some a priori known  

portion of the computer’s memory) and then reads the instructions sequentially. To make 

it easier to reason about, bytecode is mapped to a very slightly higher-level language 

called assembly. I’ll use “bytecode” and “assembly” interchangeably here, but note that 

they are different.3

Note T he EVM is a stack machine, which means that working values are moved 
from temporary memory and permanent storage into a last-in, first-out list of 
values called a stack. It extends the standard sort of stack functions – arithmetic 
operations such as ADD, MUL, SUB, MOD, and friends; comparators such as LT, 
GT, and EQ; memory management functions such as MLOAD and MSTORE; and 
control flow operators such as JUMP and JUMPI – with various opcodes related to 
the Ethereum blockchain as a blockchain: ADDRESS, which returns the currently 
executing contract’s address; GASPRICE, which returns the current gas price; 
BALANCE, which returns the ETH balance of a given account; and much more.

3 Assembly code statements usually map 1:1 to the corresponding bytecode, and often assembly 
interpreters support comments, symbolic labels of various blocks of code, in-code constants such 
as strings, and other tools for making the code more legible, but as a general matter we can treat 
them as equivalents.
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But the EVM is a virtual machine because contracts don’t know in advance what 

underlying hardware the contracts will be run on. A validator node might be running on 

anything from a dedicated rig with custom chips to a Raspberry Pi. The EVM provides 

an abstraction layer between the code and the hardware, allowing the program to run 

anywhere that can support the EVM.

Writing a simple contract directly in bytecode is an informative exercise: you’ll learn a 

lot in a short time how powerful the EVM can be, how it actually functions, and also how 

pleasurable writing code in modern languages is by comparison.4 But for real-world  

programs, there are very few circumstances under which you will ever need to write directly 

in assembly. Higher-level languages are not only easier to write and read, they are also 

generally more performant and safer: the compiler knows a lot about how the EVM works 

and is able to add constraints to your code (such as strict typing and overflow/underflow 

checks) that make your code less error-prone and, in many cases, faster.

With that in mind, let’s take a look at a simple contract written in Solidity:

pragma solidity ^0.8.3;

contract HelloWorld {

    function greeting() public pure returns (string memory message) {

        message = "Hello, World!";

    }

}

There is quite a lot going on – Solidity, much like Swift, has a tendency to  

introduce new keywords in order to extend the language while maximizing backward 

compatibility – but the basic logic is simple. We specify a contract and give it a name. We 

then expose a public function called greeting. greeting takes no arguments and is marked 

pure – a way to tell Solidity that it doesn’t access any storage – which allows the compiler 

to be stricter with the range of operations it will accept and optimize the code accordingly. 

greeting also returns a string which is held in memory. This string, called message, is set to 

“Hello, World!” and the value of the string is set into the function’s return data.

When compiled to assembly, it looks like this:

4 You’ll also develop a renewed appreciation for the first generations of programmers, who 
wrote their software in assembly languages similar to the EVM’s. For two great examples, see the 
source code to an early version of Microsoft’s BASIC product (https://github.com/microsoft/
GW-BASIC) or the Apollo 11 Guidance Computer source code by Margaret Hamilton’s team at MIT 
(https://github.com/chrislgarry/Apollo-11).
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PUSH1 80 PUSH1 40 MSTORE CALLVALUE DUP1 ISZERO PUSH2 0010 JUMPI PUSH1 00 

DUP1 REVERT JUMPDEST POP PUSH2 017c DUP1 PUSH2 0020 PUSH1 00 CODECOPY PUSH1 

00 RETURN INVALID PUSH1 80 PUSH1 40 MSTORE CALLVALUE DUP1 ISZERO ...

...and it goes on for another 1677 characters. I’ll spare you the full bytecode here,  

but do run it through the compiler and take a look.5 This assembly can then be  

transpiled into raw bytecode. For instance, the first few opcodes (up to and including  

the first CALLVALUE statement) become

60 80 60 40 52 34

It is this bytecode that the EVM executes. As you can see, writing in bytecode  

directly, or even the higher-level assembly, is far from straightforward and exposes 

the internals of the EVM to the programmer. Much of the assembly is not the program 

“proper”: it has been amended by the compiler to handle bootstrapping and function  

execution. This bootstrapping logic may well vary between different compiler versions 

and different higher-level languages. What you write and what the compiler gives you are 

far from identical, functionally speaking.

For our current purposes, it is important to note that the entire smart contract’s  

code is contained in this sequence of bytecode. A smart contract is simply its bytecode. 

And invoking the smart contract is the same thing as running the bytecode on the  

EVM – with the contract’s state and the state of the broader blockchain harnessed 

around it – executing it fully for each function call.

Where is it executed? It’s executed on the EVM. When a smart contract that writes 

to storage is executed, it needs to be validated by the rest of the network, so it is sent to 

the network to be executed and confirmed via the consensus mechanism (discussed in 

Chapter 1). When a smart contract that doesn’t give rise to any state changes is executed, 

like ours, it can be run by whatever node receives the request. In both cases, the contract 

is run on the EVM hosted by a node.

A more abstract way to think of a smart contract, then, is a sequence of bytecode 

that performs a computation somewhere. The computation itself might be performed 

“over here,” on a local node, or it might be performed “over there,” on a set of  

validator nodes. This difference, and how it is implemented, is interesting and  

technical and outside the scope of this book. But it gives us a sense of what a smart  

contract is: it’s a set of instructions for some computer to perform on our behalf.

5 A good tool for playing with Solidity online is www.evm.codes/playground
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The upshot of all this is that a smart contract is just a block of code, and that block of 

code is run whenever we call it. It might be structured into functions, as our example was. 

It might not be. We can call these functions, we may or may not pass some arguments to 

the functions, things may or may not happen, and we may or may not get a return value.

But what we can be sure of is that when we invoke a smart contract, we are running 

the contract in its entirety, and it is up to the contract to implement the conditional logic 

necessary to read our request and direct it within the assumed control flow of the  

contract. Functions are therefore a form of useful fiction, invisible to the EVM. We’ll  

explore what this means in more detail – and how it affects building products – later in 

this chapter.

�Contracts Are APIs
We began this chapter describing the most basic representation that a contract has: the 

bytecode that the EVM executes directly. We showed how higher-level languages such 

as Solidity wrap this bytecode in a different abstraction: one of functions and parameters 

and control structures. We also discussed how these programs are executed on a virtual 

machine, completely independent of the underlying hardware. This is a bottom-up 

inventory of the pieces of our contract.

These pieces, when assembled, give us something resembling the contracts as we 

thought of them during the introduction: as a way of expressing, in a Turing-complete 

language, transformations from one state to another. They also give us the framework for 

how we should think about contracts from the top-down: contracts are APIs.

An API, as you will know, is an Application Programming Interface: a protocol for  

communicating between two programs. It exposes an interface for applications to talk to one 

another through code. Our smart contract is an application responsible for managing state; 

our frontend is an application responsible for displaying and interacting with that state.

A large part of a product engineer’s job is to understand the relationship between 

these two applications, to understand how to integrate their frontend, toolchain,  

analytics pipeline, or other off-chain applications with the underlying smart contract. 

And integrating with a smart contract is much the same as integrating with an API.

Of course, actually doing it has some complications, but the model in your head 

needn’t be any more complex than that. A smart contract is an API. The API is an  

interface to some computation and some state. You call it when you want things and 

when you want things to happen.
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So how do you call the API? Well, as we discussed in Chapter 2, you don’t interact 

with the blockchain “directly.” Your products will communicate with a node hosted on 

your behalf, and it is these nodes that provide the API. For this purpose, Ethereum nodes 

expose a JSON-RPC API that supports various standard methods.

It’s worth reading the Ethereum docs6 for the full list, but the two methods we’ll be 

interested in here are eth_call, which is used for executing read transactions, and  

eth_sendRawTransaction, which is used for executing write transactions.

eth_call takes a simple JSON object as a payload. In its most basic form, it requires 

only one parameter:

{

  "to": "0x6B175474E89094C44Da98b954EedeAC495271d0F"

}

Issuing a generic read request to a contract is equivalent to saying “run the contract’s 

bytecode.” If the address is an EOA and not a contract, it’s equivalent to saying “do  

nothing.” Since at the EVM level there is no such thing as a function, running a contract 

runs the entire contract’s code. Even when calling contracts written in a higher-level 

language such as Solidity, this is a valid request – Solidity will return 0x if a contract is 

invoked and no methods are defined – it’s just not that useful.

We might wish to send some data along with our request so the contract can make 

some decisions about what we want to do:

{

"to": "0x6B175474E89094C44Da98b954EedeAC495271d0F",

"data": "0x0000000000000000000000000000000000000000000000000000000000000001

"

}

(Note that the calldata is hex-encoded and is a padded 32-byte word.) In this case, 

the contract can use the CALLDATALOAD opcode to bring the data value into the stack and 

begin operating with it. For instance, a basic contract written in bytecode might take the 

value from the calldata, add one to it, and return the resulting value:

PUSH1 0

CALLDATALOAD

6 https://ethereum.org/en/developers/docs/apis/json-rpc
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PUSH1 1

ADD

PUSH1 0

MSTORE

PUSH1 32

PUSH1 0

RETURN

A more complicated contract might use the calldata to point to various sections of 

the code, allowing the user to invoke a subset of the contract’s functionality. This, of 

course, is exactly what the Solidity compiler does for us: it wraps our contract code with 

an efficient routing logic. Here’s an example of a data field of a random transaction I 

pulled from Etherscan:

0x095ea7b3000000000000000000000000eafa962e6b2b49308bfbaca5d9955f46422dd9f7

00000000000000000000000000000000000000000007a1200000000000000000

This is basically incomprehensible: don’t worry, we’ll parse and explain it later! For 

now, all we need to understand is that this data field, like most transactions, is giving the 

contract bootstrap code instructions for which function to call, with which parameters.

As well as passing data, we can also send an amount of eth along with our contract 

call. This is what value is used for:

{

      "to": "0x6B175474E89094C44Da98b954EedeAC495271d0F",

      "value": "0x1"

}

In this case, the contract can use the CALLVALUE opcode to retrieve the value,  

send it elsewhere, or ignore it altogether. We won’t linger on bytecode contracts for 

much longer, but it is useful to illustrate quite how simple the basic implementation of 

a contract is: it is a place where code is stored, and you can send it ether and data. We 

cover the various other properties of a transaction in Chapter 3 and explore the different 

semantics of transactions when these properties are used in combination.

One peculiarity you might have noticed earlier: eth_call supports keys that are 

related to write transactions. value is the amount of ether to be sent with the transaction, 

and value transfer requires a write to the blockchain. This exposes an interesting  

implementation detail of EVM clients.
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eth_call can be used to simulate transactions, which allows the wallet and frontend 

to check that the transaction won’t revert before any gas gets spent. The thing can be 

done via eth_estimateGas, which returns an estimated quantity of gas (we discuss this 

more in Chapter 3). eth_call is just a way of marking a transaction to the processing 

node as a read-only request. Nodes see that the transaction is marked read only and will 

prevent it from writing any state changes to the blockchain.

eth_sendRawTransaction is in some ways even simpler, because it takes a single 

parameter: the hex-encoded, signed bytecode string that describes the transaction.  

We won’t worry about transaction signing here, but in order for a node to write to the 

blockchain, it needs a transaction cryptographically signed by the sender, to ensure its 

authenticity, as well as the gas required to process it.

Both of these methods are used by a node to read, verify, and calculate the desired 

state. Read transactions are executed locally by the node, the value returned to the 

sender. Write transactions are verified like read transactions, then broadcast  

to the network, as described in Chapter 2.

What node you use – what actual instance of the node software you connect to – is 

up to you. You can run your own node, participating in the network fully. But for most 

products, this is overkill. Running a node can be technically challenging: you are  

responsible for operating and scaling a complicated piece of software. Fortunately, there 

are several node-as-a-service providers that host a node for you, allowing you to read 

from and write to the blockchain with no operational overhead.

At the time of writing, the two most popular services are Alchemy7 and Infura.8 Both 

offer a similar product range, comparable speed and scalability, and a familiar use-based 

pricing model. Both also offer generous free plans, so it’s easy to build and begin to serve 

customers without paying a penny. While Alchemy and Infura are the market leaders, 

there are other service providers that compete by providing adjacent APIs or support for 

different networks, such as QuickNode.9 Even traditional cloud infrastructure providers 

such as Cloudflare, Amazon, and Google offer hosted Ethereum node services. Every 

provider implements the full Ethereum JSON-RPC specification.

7 www.alchemy.com
8 http://infura.io
9 www.quicknode.com
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Choosing between these providers is an important, but ultimately reversible,  

decision, so my advice is not to sweat it. I generally use Alchemy and have found their 

service excellent and their support superlative. But the core product is consumed in a 

simple way: many of the applications you build will only rely on basic EVM behavior, and 

therefore you can switch between node providers by changing a few lines of code.

Your node, then, whether hosted by a provider or run internally, is the gateway you 

use to connect to the various SCs (smart contracts) you interact with. It is the gateway to 

your API. You construct messages according to a standard set of conventions and submit 

them to the EVM via a node. The node executes the request and returns the response. (In 

practice, you don’t even need to worry about that; later, we’ll introduce frontend tooling 

that abstracts away the transaction construction process entirely.)

But before we move on to discussing how you construct these transactions, it’s  

worth thinking about what the contracts-as-APIs model suggests and how far it applies. 

While the basic model seems correct, modern APIs have evolved to be functional and 

consumer focused, and the commonplace idea of an API has evolved far beyond. There 

are complications when integrating with smart contracts that are often not present with 

standard API integrations, and it’s important not to think of smart contracts as much 

more than a list of functions.

Read functions of modern APIs have several desirable properties that  

contracts-as-APIs lack:

•	 Modern APIs are often self-documenting and discoverable. 

Parameter names, structured values, and what endpoints can be 

queried are often revealed by the API itself. Smart contracts don’t 

have this sort of self-documenting behavior. Instead, product 

engineers rely on ABIs to describe the API, which we’ll discuss in the 

next section.

•	 Modern APIs often provide filtering, sorting, searching, and other 

forms of data manipulation and querying. Smart contracts don’t. 

When querying a smart contract, you’ll usually get a raw form of the 

data and will have to filter and query it yourself. We’ll discuss this in 

much more detail toward the end of this chapter.

•	 Modern APIs often provide standardized error codes and messages, 

using HTTP status codes, custom error objects, or a combination of 

both. Error handling when interacting with the EVM can be quite a 
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bit more complicated. We discussed how it works – and, importantly, 

how it affects products – in the previous chapter.

•	 Modern APIs are often versioned, allowing the API developer to 

release backward-incompatible changes and allow clients to migrate 

over. Contracts at the bytecode level are immutable, but there are 

different methods used to version contracts which have various 

positives and negatives. Contract versioning is mostly a matter for 

protocol teams and therefore out of the scope of this book.

Modern APIs also provide support to clients making writes that smart contracts  

typically don’t:

•	 Modern APIs often return the results of state changes instantly. 

Smart contracts generally don’t. If an API is putting data into 

a centralized database, it can make certain guarantees about 

data durability at the moment it issues the write; SCs rely on a 

decentralized network to provide those guarantees, so estimating the 

duration and detecting when a transaction is successful can be more 

complicated.

•	 Modern APIs often provide syntax and semantic input validation. 

Smart contracts often don’t, both because of gas costs – superfluous 

validation steps can be expensive – and because Solidity puts strict 

constraints on types, so a lot of the contract-level validation can be 

handled by the type checker.

Contracts are APIs, but these differences show that they are, in some ways,  

a primitive form of APIs, without the modern creature comforts of purpose-designed 

client libraries, rich and expressive self-documentation, complete input validation, and 

immediate feedback. Tooling has been developed to try to smooth over these rougher 

edges, and much of this book is concerned with how to smooth over them further. But 

computing is the science of the art of trade-offs, and this is no different: executing your 

code on a decentralized platform puts new and sometimes unfamiliar constraints on 

how to build products.

Commonly, the contracts-as-APIs model pushes a lot of work onto the frontend. 

Many crypto frontends are just UI wrappers around the contracts: they query the  

contracts directly and perform all filtering, sorting, etc., locally. This expands the  

remit of what product engineers need to care about. Often, a lot of business logic is held 
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in the frontend. This logic is important and can be sophisticated: testing it properly is 

an important part of the job. Frontends also need to handle loading and confirmation 

states, data updates, and all the rest of the complexity associated with an external data 

store that can change underneath you. Toward the end of this chapter, we’ll discuss 

how indexing can simplify some of these challenges, but be in no doubt: this can all get 

complicated. Most importantly, you can rarely rely on the smart contract to give you what 

you need in the format in which you need it. You should treat the protocol as a simple 

database table and generally consider yourself responsible for anything more advanced. 

We’ll underline this point throughout this chapter.

From the perspective of a product, then, smart contracts should be treated as little 

more than a list of functions. This, however, raises a more specific question: If a smart 

contract should be treated as a list of functions, and the functions are useful fictions over 

a contract expressed in bytecode, how do we actually call them?

�Application Binary Interfaces
So far, we’ve learned a lot about how smart contracts are implemented under the hood:

•	 Contracts are blocks of bytecode executed on the EVM.

•	 The EVM has no notion of a function; functions are a useful fiction.

•	 Nevertheless, products can treat smart contracts as lists of functions.

•	 These functions can be called through a JSON-RPC node, via  

eth_call (for reads) or eth_sendRawTransaction (for writes).

As we’ve seen already, contracts at the raw bytecode level are rather inscrutable. 

Even what constitutes a function call is a little unclear, since the very concept of 

 a function is an abstraction provided to us by our higher-level language. This section is 

concerned with what this actually means in practice.

When you call a smart contract, the EVM executes whatever it finds at the contract’s 

address. The EVM does not know about which function you wish to call, nor does it care. 

It’s up to the contract’s bytecode to handle an incoming request: decode the input, figure 

out what the user intends to do, disambiguate any values, and route these values through 

some sort of control flow. In other words, the contract itself implements its own function 

dispatch code.

Fortunately, as we’ve discussed, the compiler handles this for us when we write  

code in a higher-level language. Equally fortunately, most compilers have converged  
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on a standardized way of doing it, which means that Solidity contracts can call Vyper 

functions, Vyper contracts can call Solidity functions, and that products off-chain can 

call functions written in either without needing to change the encoding to reflect the 

contract’s higher-level language.

So, both Solidity and Vyper – and most other high-level smart contract  

languages – implement a standard set of representations for functions and parameters, 

allowing us to move from the scary and formless bytestring in the data field to  

something with some predictable structure.

This standard set of representations is an encoding, a set of rules that describes how 

to transform data into data that describes a function call and back again. This encoding 

is called an ABI, an Application Binary Interface. The rest of this section describes  

Ethereum ABIs in some detail. This stuff might seem overly formal, and deeply technical, 

and it is: but it’s also one of the core pieces of infrastructure that links together products 

and smart contracts. Ignoring it and expecting to understand product engineering on 

Ethereum is equivalent to ignoring HTTP and expecting to understand websites; it’s  

possible to get by, but implausible to understand, without it.

The best way to understand these encodings is to use them a few times, calling  

different functions with different values and observing how the changes in input affect 

the encoded output. But hidden behind the black box, illegible bytecode is a predictable 

and rather straightforward structure. In particular, this structure can be exposed visually, 

as in Figure 4-6.

Figure 4-6.  We can break up the bytecode into different sections visually

In the rest of this section, we will apply this visual pattern to show how the encoded 

bytecode expresses the function calls and real-world values to which we wish to refer.
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�Function and Argument Selectors

Remember the purpose of our encoding is to provide a standard way of selecting which 

function we’d like and specifying its arguments. So our encoding starts with the function 

selector.

In a standard smart contract function call transaction, the function selector is  

always the first four bytes of the ABI calldata and corresponds to the first four bytes of 

the hex-encoded hashed form of the canonical representation of the function signature. 

What does that mean? It sounds more complicated than it is. It boils down to this  

simple recipe:

	 1.	 Write the canonical representation of the function signature. 
This means the function’s name and the types of its arguments, in 

order, in a specific, familiar form.10 For example, let’s say we have a 

balanceOf function, with a single argument of type address. We’d 

write it as balanceOf(address).

	 2.	 Hash the function signature using the standard keccak hash-
ing function. balanceOf(address) hashes to 0x70a08231b98e-

f4ca268c9cc3f6b4590e4bfec28280db06bb5d45e689f2a360be.

	 3.	 Take the first four bytes. Since a byte is eight bits, and therefore 

has 2^8 = 256 values, it can fit in two hex-encoded characters 

(since hex encoding has 16 possible values, instead of 2, and 16^2 

= 256). So we want the first eight characters of the hex encoding, 

which gives us four bytes. (Remember that the 0x can be ignored; 

it’s just an indicator that what is to follow is hex-encoded.) So our 

first four bytes are 0x70a08231.

	 4.	 And that’s it! The call’s data field will begin with 0x70a08231, 

which allows the dispatch code to identify the function balanceOf 

with a single address argument.

10 “Canonical” here just means “standard.” The ABI spec was developed into something 
resembling its current form during January 2015, before the network was launched in July 
of that year. By January 6, 2015, the spec used the first four bytes of the hashed function 
signature to encode the function selector (https://github.com/ethereum/wiki/wiki/
Ethereum-Contract-ABI/e4a68831309765a13569a7bcba5359de0e38738e).
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This is how we generate the function selector. (Another cool thing to notice: The  

argument types are included in the canonical representation. This means that higher-level 

languages like Solidity can support multiple dispatch on argument type; the ABI encodes 

the difference between balanceOf(address) and balanceOf(bool). The return type isn’t 

included, so we can infer that Solidity doesn’t support multiple dispatch on return type.)

We do the exact same thing that the dispatcher does, and then the dispatcher lines 

up the corresponding block of code to the function name we give it. That gets us our 

function. (In computer science lingo, the compiled contract contains a hash table  

from encoded function signatures to the location of the corresponding function  

implementation.) Since the dispatcher has done this process already, the dispatcher also 

now knows how many arguments there are and what types to expect for those  

arguments. The remaining calldata is the values for the arguments.

Sleuthing with Calldata

Let’s dig into the calldata a little more and apply what we’ve learned to see how far we 

can reverse-engineer the scary data field earlier.

Each argument is padded to 32 bytes – so calldata length in bytes will always be a 

number divisible by 32, plus 4 for the signature – and there is a single 32-byte slot for 

each parameter. Some parameters are dynamically sized: in these cases – either an  

array, map, tuple, or a string/byte type – there is a 32-byte slot to encode the length  

and as many other slots needed to encode the individual values. Since the values are 

hex-encoded, 32 bytes is a 64-character string.11

Note T here are lots of excellent tools to help decoding and understanding  
hex values. I like the cast command-line tool from the Foundry project  
(http://foundry.paradigm.xyz) and especially the checkthechain tool 
(https://github.com/fei-protocol/checkthechain). Getting comfortable 
with tooling like this makes your life infinitely easier, and we’ll see lots of 
examples of how.

11 In binary, one byte is in the range 00000000 to 11111111. In hex encoding, one byte is in 
the range 0x00 to 0xFF. So a single byte is two characters long, and a 32-byte string is 64 
characters long.
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So our balanceOf(address) function needs a single 32-byte slot to encode a 20-byte  

address, plus the initial four bytes to encode the function signature. If we wanted to 

encode a call to get the balance of the null address, for instance, we can use the same 

bytecode as we saw in Figure 4-6:

0x70a082310000000000000000000000000000000000000000000000000000000000000000

We can apply the same visual approach to understanding the scary data value in the 

previous section. See Figure 4-7.

Figure 4-7.  Our 4-byte function selector is followed by two 32-byte arguments

Our original data string:

 0x095ea7b3000000000000000000000000eafa962e6b2b49308bfbaca5d9955f 

46422dd9f70000000000000000000000000000000000000000007a1200000000000000000

Checking our visual representation tells us that our function selector is 0x095ea7b3, 

and the argument list is

 000000000000000000000000eafa962e6b2b49308bfbaca5d9955f46422dd9f700000000 

000000000000000000000000000000000007a1200000000000000000.

The argument list is 64 bytes long, which suggests there are two 32-byte arguments. 

The first 32 bytes, our first argument:

 000000000000000000000000eafa962e6b2b49308bfbaca5d9955f46422dd9f7

We can use the ctc CLI tool to decode it to an integer representation:

$ ctc int 0x000000000000000000000000eafa962e6b2b49308bfbaca5d9955 

f46422dd9f7 1341492109310741895632184445170726783872781900279

A big number: We now know there aren’t any dynamically sized arguments in our  

calldata. If there were, then we would need 13414921093107418956321844451707267838 

72781900279 32-byte slots! That would be a little excessive. So the argument list is  
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definitely two arguments, not an array, or a string. It’s also not a mapping: if it were a 

mapping, we’d expect to see a 0x0 value, since the storage layout rules work a little dif-

ferently.12 We have 64 bytes in our argument list, and the first argument isn’t 1.

We have two arguments:

000000000000000000000000eafa962e6b2b49308bfbaca5d9955f46422dd9f7

and

00000000000000000000000000000000000000000007a1200000000000000000

The first argument is probably an address. Why? Because the word is 20 bytes  

padded up to 32 bytes, and addresses are of length 20 bytes in hex. We can search the  

address in Etherscan to confirm. Our function selector therefore is of the form  

someFunctionName(address,unknownType).

The second argument could be anything. If we try to decode it into an integer, we get 

another large number:

$ ctc int 0x00000000000000000000000000000000000000000007a1200000000000000000

9223372036854775808000000

If we divide this number by 1e18 – ERC-20 tokens often have 18 decimal place preci-

sion – we get 92233.72036854775808000000, which feels like a reasonable number of 

tokens to expect from some random transaction. But at this point, we’re only doing 

guesswork.

Still, we’ve made some progress! Understood through this visual pattern, our bytecode 

string looks a little less scary. We still don’t know what the function would be called in 

Solidity, because we only have the hashed function selector, and hashes aren’t reversible. 

But we have an understanding of the structure and can infer a reasonable amount of  

information from just looking at this structure.

12 Mappings store their data in the slot pointed to by the keccak256 hash of the mapping’s index 
and the mapping’s slot index. So if we wanted to get the value of a mapping stored at slot 0, at the 
string key foo, we’d need to calculate keccak("foo0") and then find the value at whatever slot 
that hex result gave us. Careful here, as certain keys also follow padding rules. See https://docs.
soliditylang.org/en/v0.8.17/internals/layout_in_storage.html#mappings-and-dynamic-
arrays for more. We’ll look at how we can read mappings in more detail in Chapter 5 (section 
“Setting State Directly”).
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Finally, let’s cross-reference what we know with the excellent 4byte directory. If 

we use the ctc tool ($ ctc 4byte 0x095ea7b3) to check our function signature, we see 

three13 matching function signatures:

watch_tg_invmru_2f69f1b(address,address)

sign_szabo_bytecode(bytes16,uint128)

approve(address,uint256)

We can exclude the second signature easily: our first argument is an address of 20 

bytes and so therefore isn’t a bytes16. We can also probably exclude the first signature: 

the second argument likely isn’t an address, because it’s very unlikely that the first 19 

characters of an address are zeroes! So we can, with some confidence, conclude that the 

matching function signature is the third option, approve(address,uint256).

You won’t need to do this sort of sleuthing very often, but understanding how it 

works is helpful. Moreover, this approach also extends to more complex cases. Suppose 

we have a contract that performs a calculation on an initialValue and a struct with two 

values, a value int and an enabled boolean. Our contract might look like this:

pragma solidity ^0.8.16;

struct ToggledValue {

  uint value;

  bool enabled;

}

contract ToggledValueCalculator {

    �function calculate(uint initialValue, ToggledValue calldata value)  

public pure returns (uint) {

        if (value.enabled) {

            return initialValue + value.value;

        }

        return initialValue;

    }

}

13 As a useful exercise, consider why we often get more than one function signature for a given 
hash. Also consider what might happen if we defined two functions with the same function 
signature in the same contract.
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We take the canonical form of uint (which is short for uint256), and we encode the 

struct as a tuple. Our function selector therefore looks like calculate(uint256,(uin

t256,enabled)). With the initial value 0 and a ToggledValue of (404,true), we get

0x96ccb50300000000000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000000024000000000000 

000000000000000000000000000000000000000000000000000200000000000000000000000 

000000000000000000000000000000000003430340000000000000000000000000000000000 

000000000000000000000000000001

which can be split up as in Figure 4-8.

Figure 4-8.  The visual decoding is especially useful for larger 
bytecode strings

Glancing at our visual encoding, we can see that our function selector is the first four 

bytes, 0x96ccb503. We then have the initial uint256 value:

0000000000000000000000000000000000000000000000000000000000000000

Then we have the offset for the tuple:

0000000000000000000000000000000000000000000000000000000000000024

Dynamic values, such as tuples and arrays, are encoded at the end of the function 

list. So instead of providing the tuple values themselves, we first provide the offset to 

where in the calldata the tuple begins. In our case, it’s 36 bytes in: 4 bytes for the 

function name plus the 32 bytes for the initial value. 36 in hex is 0x24.

At that offset, we provide the length of the tuple:

0000000000000000000000000000000000000000000000000000000000000002

followed by the two values in sequence:

0000000000000000000000000000000000000000000000000000000000343034
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and

0000000000000000000000000000000000000000000000000000000000000001

Function and argument selectors look a lot more complicated than they actually 

are. Once parsed and broken down into function selector, plus argument list, and once 

the arrangement of dynamic values such as arrays and tuples are taken into account, 

the values can be read quite naturally. The trickiest bit is remembering that you’re in 

hexadecimal!

We will, however, only get so far without knowledge of the underlying contract. That 

knowledge is what the ABI gives us.

�ABI Schemas

Armed with our visual approach, and some sleuthing, the long strings of bytecode 

attached to transactions’ calldatas look a little more familiar, even perhaps accessible. 

But in order to build a product against a set of contracts we know, we’re still missing 

something important.

We know how to construct our calldata given we know the function. But contracts 

are APIs and can be thought of as a list of functions. An API without documentation 

would be an extremely hard thing to navigate; an ABI without a schema would be equally 

challenging.

It’s especially difficult here because the mechanism that we use to generate the function 

selector – keccak256 hashing – isn’t reversible. If you don’t already know what the  

function signature looks like, it’s impossible to get the human-readable function name from 

the encoded selector. The only thing you can do is have a list of function selectors and their 

corresponding signatures and map from selectors to signatures manually.

So each ABI offers a schema, a JSON file, an artifact that the compiler outputs  

alongside the bytecode for the contract, which describes the functions that the contract 

exposes. This is handy, because we can pull the schema into our frontend tooling and 

generate an API in our local language that allows us to call smart contract functions 

without ever considering the encoding step. As you build products on Ethereum, you’ll 

see these ABI schemas everywhere: interacting with smart contracts would be nigh on 

impossible without them.
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Because a contract is just a list of functions – and, as we’ve discovered, some  

dispatch code for switching between them – the ABI is also just a list of functions. For 

each function, the corresponding ABI describes the inputs and their types, the outputs 

and their types, and any events that the function might emit (we’ll talk more about 

events in a bit). An example ABI for our balanceOf(address) function:

[{

  "inputs": [

    { "internalType": "address", "name": "account", "type": "address" }

  ],

  "name": "balanceOf",

  "outputs": [

    { "internalType": "uint256", "name": "", "type": "uint256" }

  ],

  "stateMutability": "view",

  "type": "function"

}]

This is incredibly helpful, because it gives us a description of the public interface 

for the API that we’re building against. We have the name in English, the parameters in 

the inputs array, the values it outputs, and the function’s state mutability, a Solidity 

keyword that describes whether the function reads from, writes to, or doesn’t even touch 

the state.

What this ABI document gives us, then, is the list of functions we can call in our 

product. As I just mentioned, this list can be passed into our frontend tooling. ethers.js, 

for instance, has a Contract object that takes the ABI array as a parameter:

const contract = new ethers.Contract(contractAddress, abi);

The ethers.js system will read the ABI and generate functions on the contract  

object that we can call directly:

const result = await contract.balanceOf(accountAddress);
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Importantly, it also marshals values into appropriate types. Values from smart 

contracts are often large numbers, far beyond what JS’s native number handling can 

handle. So balanceOf-style calls will generally return an instance of ethers.BigNumber, 

an ethers.js-specific class that provides indefinitely large number representation and 

operation.14

Thanks to tooling like ethers.js, then, we can take an ABI and build against the  

contract, insulated from the underlying calldata entirely.

�The Origins of ABIs
ABIs are important to validate, because changes to the contract’s interface might change 

the ABI. Since the deployed contract is just bytecode, and we use the ABI to map our 

function calls onto this bytecode, if the bytecode changes and we don’t update the ABI 

then our product could break at runtime.

This is especially important during development, when the underlying interface can 

change quite a bit as the functionality is refined. Product engineers should be in constant 

contact with protocol engineers, providing feedback on interfaces. There are lots of useful 

questions you can ask during contract development and review:

•	 Does the contract have the read functions you need?

•	 Do you need to pull a specific element from some map, and does the 

contract provide a getter for this map?

•	 What are the invariants for function arguments? Do they have 

minima/maxima that you need to validate in the frontend or design 

the UI around? What is the expected range for a return value?

•	 Under what conditions does the contract revert?

•	 Can the contract be paused in some way? In what other ways might 

the contract not work correctly at runtime?

14 Be careful not to confuse ethers.BigNumber and one of the other JS big number libraries, such 
as bignumber.js. Many crypto frontends import both for various reasons. I’ve lost many hours of 
my life due to strange conversions between the two. TypeScript in-editor type hints help a little, 
but it’s very easy to squint and miss the difference.
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•	 Is there another interface in the application that has the same shape? 

Could we make sure that the method names and argument types are 

the same and in that way increase the amount of frontend code we 

can reuse?

•	 Does it emit events? Are the event arguments indexed? Are the event 

arguments you need indexed?

Being attentive during the smart contract development process can help shape the 

interface to the product’s needs, and asking the preceding questions, regularly and  

forcefully, is a large part of making that happen. This extends also to the functionality  

of the contract itself. Could a parameter be validated more rigorously? Could an error 

message be more explicable or easier to parse? Will a particular user flow require  

several transactions, and, if so, can the contract expose a wrapper function to perform 

the flow in one? Your job as a product engineer is to worry not just about the technology 

but the humans using it, and this means pushing to ensure that the contract is easy to 

build against and produces minimal friction to the users.

It’s also important to consider where you’re getting the ABIs from. When using ABIs 

with a tool like ethers.js, as gestured to earlier, you’ll need access to the ABI in your frontend 

code. Where is that coming from? If you’re building against your protocol team’s in-house 

codebase, you might be able to copy the ABI directly from the repository into your  

frontend. But what if your protocol team is shipping quickly and regularly? In that case, you 

might want to add an automated step to your build process to copy it across for you.

Some open source protocols may publish their ABIs in their GitHub repositories, but 

many don’t. In those cases, you may need to clone the repository, install its dependencies, 

and figure out how to build it. Many legitimate protocols will also verify their contracts on 

Etherscan, which you can find on the contract’s Etherscan page. Copying this ABI code 

into your repository can be the quickest way to begin building against the contract, but 

you’ll need to check frequently to make sure the code doesn’t change. Etherscan has an 

API which you can use to pull the latest ABI for a given contract, if one exists. You may also 

need to worry about whether the contract is a proxy contract, in which case you may wish 

to use the ABI of the underlying contract the proxy is proxying into.
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In short, none of this is easy, and the tooling just isn’t good enough yet.15 One open 

source project idea is to package up many common contract ABIs into npm packages, to 

allow product engineers to add them as they would any other frontend dependency. This 

would provide an easy developer experience and ABI versioning. This sort of approach 

might be useful in larger teams internally, too. But I haven’t seen many teams do this, 

and there currently isn’t an open source repository of the sort that I am envisaging. The 

EIP-2678 standard, which provides a standard packaging format for smart contracts, has 

promise, but is not widely implemented, despite being over two years old.16

As of this writing, then, the “easiest” thing to do is to literally copy the files across  

into your repository. Many repos will have a src/contracts directory with various  

TypeScript and JSON files for each dependent contract, allowing the frontend to import 

the contract’s address and ABI. But this can get messy quickly, especially when dealing 

with deployments with different addresses and/or ABIs over several chains. (Nor is this 

some five-sigma edge case; if developing against a forked local node with a new version 

of a contract, it’s very likely that you’ll have separate addresses for your updated local 

version and the current version on the mainnet.)

While the ABI gives you some guarantees, then, it has some limits. It only gives you 

guarantees about aspects of the contract’s interface, not its runtime behavior. It also only 

gives you those guarantees if you are using the correct ABI. So it is important to get as 

much context from the protocol team, either by reading the contract yourself or by  

asking them directly or better still both. It’s also important to ensure that you are building 

against an up-to-date ABI. If you lack context, ask for it. If a contract looks difficult to build 

against, message your teammates and ask them to change it. Provide feedback and  

suggestions. Make sure that product engineers are a part of the pull request review  

process and get good at reading and reasoning about Solidity. Be a fly on the wall of their 

meetings, and speak up if something is confusing or might make your life more difficult. 

Also, consider ways of making your ongoing development easier. How can you get  

updated ABIs and addresses of contracts into your repo with minimal fuss? Many protocol 

teams will host contract addresses and prebuilt ABIs in their GitHub repositories; could 

they publish it as an npm package?

15 The ctc tool that we used earlier has an abi command, allowing you to 
pull the ABI from Etherscan from your terminal. Try running $ ctc abi 
0x1f9840a85d5aF5bf1D1762F925BDADdC4201F984 DOUBLEHYPHENjson and see what you get.
16 https://eips.ethereum.org/EIPS/eip-2678
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That being said, there are times when the protocol team will be constrained in  

other ways. The audit cycle and the demand for correctness in smart contract code is 

much higher – it’s a lot more expensive to push a fix to a smart contract than it is to a 

frontend – so there needs to be give and take. But in my experience, the voice of the 

product engineer, and therefore the voice of the user, is often drowned out by more  

immediate technical challenges. So, product engineers: be loud.

�Contract State
There are several different places where Ethereum can store state. Some sources of state 

cost gas to read from and write to. Other sources of state are restricted to read-only or can 

only hold a limited amount of data. State is usually revealed through the contract’s getter 

methods. In some cases, you may need to inspect the contract’s storage directly. Contracts 

are severely memory and cost constrained. In many cases, then, you should handle 

filtering, sorting, and other operations at the product level rather than expect the contract 

to do it for you.

Ethereum is a state machine: it enables us to move the system from one state to  

another in an atomic way. We do this at the level of accounts: either smart contracts, with 

their own set of attributes and values, or EOAs, with their ether amount. Transactions, as 

we’ve discovered, then provide the mechanism for changing this state atomically. Given 

how central the notion of state is to Ethereum, it’s worth spending a little bit of time on how 

smart contracts store state. In this section, we’ll take a look at the different sorts of state 

available to contracts and consider the gas costs attached and the opcodes that do so.

�Several Types of State
The majority of discussions of contract state draw attention to three main places where 

state can be stored. The first of these places is the stack. The EVM is a stack-based virtual 

machine: each contract gets a dedicated space of working memory called a stack, the 

parameters to its opcodes are stored in this working memory, and generally the results of 

its operations are written back there. The stack can hold 1024 items, where each item is 

32 bytes long. The stack is last-in, first-out: so the last value pushed in will be read first.
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Augmenting the stack, each contract is given an ephemeral block of contract  
memory. This block of memory is addressable: you can choose where you want to write 

and read from by specifying an address within the memory. Contract memory is a simple 

array of bytes, and reading and writing to contract memory is like reading and writing to 

a normal array. You specify an index and the value you wish to write; that value is written 

to memory at that index.

Ethereum’s memory isn’t limited per se; rather, it’s limited by the total amount of 

gas you can fit into a given block. The MSTORE bytecode consumes three gas and, like the 

stack, stores 32-byte words. In theory, the total amount of gas you can use in a single 

transaction is the total amount of gas you can fit in a block (since, in theory, a block 

could contain one transaction only).

There is a hard gas limit on blocks (currently 30 million), so you could provide up to 

30 million gas worth of memory, which is ~32MB.17 But this would be rather a waste of 

money: the memory is ephemeral, so will be lost at the end of the transaction, and if you 

fill the transaction with millions of MSTORE codes, you won’t have any other room to do 

anything with that data.

Finally, the third type of state is contract storage. This is permanent, addressable 

storage for your contract. It’s where values go when you set them as contract-level  

variables in Solidity. Like everywhere else, storage is divided in 32-byte slots.

Storage is written using the SSTORE opcode, which takes the storage address as its 

first parameter and the value to write there as its second parameter. Storage is read using 

SLOAD, which takes the storage address as a parameter and puts the value on the stack.

Because it’s permanent, it’s also a lot more expensive. At the time of writing, an  

SSTORE opcode costs 100 gas at a minimum. If the value is new – that is, if the value  

before this transaction is 0 – the base cost is 20,000 gas. The gas cost is then increased  

by 2100 when the storage slot is cold: when it hasn’t already been written to within the 

current transaction. Similar logic applies to SLOAD: a cold storage load costs 2100 gas, and 

a warm storage load costs 100.

17 The cost of memory scales quadratically according to the formula 3a * (a^2 / 512), where 
a is the number of words allocated. So setting this equation to 30 million gets us a = 123170, or 
3941440 bytes, or ~32MB.
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This means that writing a value to a storage slot for the first time costs 22,100 gas, and 

reading from a storage slot for the first time this transaction costs 2100. On Ethereum, 

there are no ongoing fees for storage: once it’s in storage, it’s there for good. But it does 

mean that storing and reading lots of values can be expensive, and these are fees that 

your users are likely to have to pay.

Compilers can do some of the work in optimizing the gas requirements of the  

protocol code, but that optimization is imperfect. As a result, protocol engineers are wary 

of relying too much on storage. You can’t just reach for more memory as you might in 

JavaScript.

There are four other forms of state on the EVM, lesser understood as such, but often 

just as useful.

The first is the transaction logs. As far as contracts are concerned, these logs are 

epiphenomenal: contracts cannot read from log storage, so logs (and the events that 

emit them) are simply side effects. We’ll discuss logging in much greater detail later in 

this chapter.

But logging is reasonably cheap (up to 1875 gas), and logs can be queried off-chain. 

As such, they are a useful form of storage, especially for values the contract itself won’t 

need to query later.

It’s easy to forget, but the calldata in a transaction also encodes state. Indeed, that’s 

the whole point of calldata; it’s a way of getting state out of the user’s system and into 

the smart contract’s. Calldata can be loaded into the stack using CALLDATALOAD and into 

memory using CALLDATACOPY. Calldata is usually wrapped up in ABI semantics, but that 

doesn’t mean it needs to be considered as separate from the contract’s state.

If a piece of information is likely to stick around in the user’s system, it might be 

worth considering passing it in as a part of the calldata (usually as a parameter to a  

function call), essentially outsourcing the storage requirement from the contract to the 

user. You might, for instance, not need to store a signature on the contract if the user’s 

system can regenerate it; you can simply validate and discard it.

Finally, you can store state in the contract runtime bytecode. Contracts are created 

via a transaction. The transaction’s bytecode is executed by the EVM, and the bytecode 

that that code returns is hosted as the contract; in Solidity, the contract’s constructor is 

executed only when the contract is deployed. This means there are two types of contract 

bytecode: the creation bytecode and, the value it returns, the runtime bytecode.
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Solidity contracts will embed the compiled runtime bytecode within the creation 

bytecode appropriately. But Solidity will also be smart about putting constants in the 

runtime bytecode, saving storage and memory space, as well as any arguments to the 

contract’s constructor. Once the contract is deployed, you can’t write to the runtime  

bytecode anymore – contracts are immutable – but it is worth poking around the  

bytecode of unfamiliar contracts to see what is stored there. This storage is limited: there 

is a 24KB limit on contract size, so the contract’s runtime bytecode, plus any values, need 

to fit into this space.

�Accessing State
Once we know where the state is going to go, we need to know how we can access it, 

especially from our products. So much of product engineering is about understanding 

the relationship between the state, the product that wishes to consume or alter it, and 

the limitations that need to be understood.

By far, the easiest way to access a piece of state through a node is to call a smart 

contract function that returns it. The smart contract can implement a getter function: a 

function that returns the value you’re interested in. These functions can be inspected on 

Etherscan and invoked through the sort of tooling we’ve already discussed. Libraries like 

ethers.js can wrap a known contract, with a known ABI, giving you a simple function 

to call in your JavaScript. Sometimes, you might run into some weirdness with the types 

of inputs and outputs, but these confusions are usually cleared up by a careful reading of 

the smart contract code (or a productive conversation with its authors!).

If, however, the contract doesn’t provide a getter, or the return value is hard to parse, 

consider why:

•	 It might be a piece of state that is meaningless or incomplete 

without some other computation; it might represent multiple values 

packed together or some other natty gas optimization.

•	 The contract can and may delete, change, update, transform, or 

otherwise alter the value. If the contract doesn’t expect somebody 

to read it, the contract has no obligation to not change everything 

from out underneath you. No interface, no promise.
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If using a contract’s public API is an option, then you should always, always take it. 

And if you can be a part of designing this public API, you always, always should be. There 

are, however, a few conditions when you can’t avoid reading from storage directly:

•	 You don’t know the contract’s ABI, and you’re poking around the 

storage trying to ascertain what the contract does.

•	 The contract doesn’t expose a reader method for the value you want.

•	 The contract does expose a method, but it is guarded – by some 

authentication mechanism – or otherwise difficult to access.

In these cases, you can use the RPC method eth_getStorageAt (or a local forked 

alternative such as hardhat_setStorageAt).

�State and Product
The upshot of all this is that contract state is confusing, technical, and often hostile to 

building your products. Learning how and where Ethereum manages its state, even 

if you’re only ever interacting with the public interface, is useful: knowledge of the 

underlying environment can be a valuable help when debugging and building tools.

In fact, this entire section came from notes that I took while building a tool to help 

seed testnet accounts with tokens and deposits. Our problem was that testing our  

frontend end to end was challenging, because various user flows required complicated 

test setup. An account might need certain tokens, deposits into various lending pools, or 

a specific NFT in order to test a certain scenario. Testing on the mainnet had all the  

problems you’d expect: it was expensive, slow, and cumbersome. Testing on a testnet 

wasn’t possible either, since not every contract we needed had been deployed on our 

chosen testnet (and it was also slow and cumbersome). So we wanted to test locally,  

using a forked version of the mainnet, with pregenerated accounts that could be  

configured programmatically.

We wrote a tool so that we could specify, declaratively, an account and its relevant 

claims and deposits. This tool needed to work across many different contracts, some of 

which had permissions or other constraints that made doing it through a higher-level 

interface difficult. We used eth_getStorageAt and hardhat_setStorageAt to update the 

storage for our addresses directly, by “reaching in” to the state and adjusting it.
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These sorts of skills are crucial for the product and platform engineer, as well as the 

protocol engineer, since the tooling in Ethereum is still so young and the set of technical 

problems that you’ll face are still so varied.

There is another important consequence of these storage decisions and trade-offs: 

gas becomes a relevant constraint for both protocol and product.

Good protocol engineers are mindful of using storage, because using it too much 

pushes up the costs for anybody interacting with the protocol. This means that values are 

typically stored in a simple and often product-unfriendly way. Duplicating data costs gas, 

so values are stored on the contract in their canonical form. This can make querying the 

contract state directly inelegant. There is no Object.keys method available for Solidity 

mappings!

A lot of the computation typically associated with APIs, then – querying, filtering, 

sorting, transforming the raw data into something closer to what the frontend needs – is 

generally not conducted at the smart contract level. Unless you’re doing indexing  

(see the “Indexing” section in this chapter for more), you’ll need to do a lot of this work 

yourself in the frontend. Understanding where and how this state is stored is crucial to 

much of this work.

A final thought: Given these gas constraints and how they shape the smart contracts’ 

public APIs, consider whether you can perform the more costly write work yourself. 

Google doesn’t scrape the Web every time a user makes a search. That’s because it needs 

to scrape the Web a lot less frequently than it is queried; so they do the costly work ahead 

of time and thereby speed up the queries. Similarly, by doing much of the writing ahead 

of time (either when needed or on some predefined cadence), you can save your users 

gas fees and reduce the friction in using your protocol. These decisions are product and 

business decisions as much as protocol decisions and give another reason why it’s  

important for product engineers to be a part of the protocol’s design phase. You might 

also make your protocol engineers happier in the process!

�Ethereum’s Event Model
Events are side effects of transactions. Events are an abstraction on top of a lower-level 

primitive, EVM logs. Logs can be filtered in various ways. Tools such as ethers.js make 

handling events much easier. Events can be subscribed to as well as pulled on demand. 

The ease of subscribing to events needs to be balanced against the necessity for correct 

data, or else you may violate the Principle of Trust.
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Events are smart contract epiphenomena; they are side effects of smart contract  

execution. They cannot be read by smart contracts, either during the transaction in 

which they are emitted or later. As far as the contract is concerned, its event log is like an 

apartment block rubbish chute: you throw things down it and forget it ever existed.18

External observers to the blockchain, however, can read events. And this asymmetry 

of access is a superpower: it gives contracts a lightweight and cheap way to record data 

without worrying about the contract’s history, and frontends a lightweight and cheap 

way to pull historical data from the blockchain.

In this section, we’ll look into how events are implemented in contracts and, more 

importantly, how they power products built on top of those contracts.

�Contract Logs
Logs are a cheap and general-purpose way for contracts to record information – cheap 

because the logging EVM opcodes are priced with in a reasonable range of values 

(approx. 375 to 1875 gas), and general purpose because logs are simple bytestrings; logs 

themselves contain little assumed structure.

The data field encodes whatever data the contract wishes to log: this is pulled from 

the contract’s memory (see the section “Contract State” in this chapter for more on 

memory) and, like much else, is hex-encoded. The topics field is an array of up to four 

32-byte words. Topics can be used for filtering – but we’ll get on to that later.

Not all transactions will have logs. If you don’t invoke a smart contract, there is 

nothing to log; the EVM doesn’t create logs for ether transfers between accounts, for 

instance.19 If you invoke a smart contract, that contract isn’t required to call any of 

the logging opcodes. So it’s up to the protocol team to decide whether the contracts 

will log events. As a result, you generally can’t replace contract read calls with events 

entirely. But they can supplement direct reads, and many contracts will expose useful 

information in their logs. With these caveats in mind, let’s see some examples of where 

we might find logs and what they look like.

18 In fact, they’re not even part of the blockchain proper: they aren’t used for consensus, so 
participating nodes don’t strictly need to know anything about them.
19 Although it nearly did! See Vitalik’s blog post “The roads not taken” for more (https://
vitalik.ca/general/2022/03/29/road.html).
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The first place where you’ll notice these log outputs are in the transaction receipt. If 

we add to a call, we can see a transaction’s receipt. We won’t analyze the entire receipt in 

detail – we discussed receipts in the last chapter – instead, our focus will be on the key:

$ ctc tx 0xe981fe5c78d11d935a1dc35c579969e65e2dd6bb05ad321ea9670f8b1e203e 

af --json --receipt

{

    ...

    "logs": [

        {

            "address": "0xfd3300a9a74b3250f1b2abc12b47611171910b07",

            �"blockHash": "0x31ca8a95a453f99f903e1bce5f0cc2619a790e6c802d94e

6495e30b35b44e8d3",

            "blockNumber": "0xdff643",

            �"data": "0x000000000000000000000000000000000000000000a696 

06d83098d8eea7e6080000000000000000000000000000000 

0000000000000000000093f16d65b5b8a0000000000000000 

000000000000000000000000000000000ecaae6d5916c2350 

00000000000000000000000000000000000000000005c6663 

dd81bf07a1f2d9",

            "logIndex": "0xe1",

            "removed": false,

            "topics": [

                �"0x4dec04e750ca11537cabcd8a9eab06494de08d-

a3735bc8871cd41250e190bc04"

            ],

            �"transactionHash": "0xe981fe5c78d11d935a1dc35c579969e65e2 

dd6bb05ad321ea9670f8b1e203eaf",

            "transactionIndex": "0xef"

        },

        ...

    ],

    ...

}
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Each log object gives us a full description of the log message, including the address 

that emitted it and the transaction in which it was emitted. Since a log is just some data, 

the key is generally the most important feature. And, as we’ve already said, it is general 

purpose. If a smart contract wishes to log a random string of bytes, it can.

We’ll get the transaction receipt when we send a transaction to our provider, and, 

importantly, once that transaction has been validated:

const tx = {

  to: "0x8ba1f109551bD432803012645Ac136ddd64DBA72",

  value: utils.parseEther("1.0")

};

const transactionResponse = await signer.sendTransaction(tx);

const transactionReceipt = await provider.waitForTransaction(

  transactionResponse.hash

);

console.log(transactionReceipt.logs); // => []

(Our log output of the preceding function will be an empty array, since, as shown 

earlier, nonsmart contract calls don’t output logs.) Managing the signer and provider can 

be fiddly, especially under the constraints of the React render cycle, so we can use the 

wagmi package to get the transaction receipt too:

const { config } = usePrepareSendTransaction({

  �request: { to: '0x8ba1f109551bD432803012645Ac136ddd64DBA72', value: 

utils.parseEther("1.0") },

})

const { data: transactionResponse, sendTransaction } =

  useSendTransaction(config);

const { data: transactionReceipt } = useWaitForTransaction({

    hash: transactionResponse.hash,

});

useEffect(() => {

  console.log(transactionReceipt)
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}, [transactionReceipt]);

return sendTransaction()}>Send;

We can also query the logs of an account directly:

const logs = await provider.getLogs({

  address: "0xdAC17F958D2ee523a2206206994597C13D831ec7",

});

Under the hood, the provider sends the node an RPC call, which the node then 

executes. But logs can add up quickly, and querying all possible logs from a busy address 

can overload the node and/or make the response value too large to send reliably over 

the network and parse. On a busy node, or when querying a busy contract, therefore, you 

will almost certainly run into problems getting the entire log output through getLogs.

To stop their nodes grinding to a halt, Alchemy puts some restrictions on read calls to 

logs. See what happens when we try to query a busy contract from block 0:

const logs = await provider.getLogs({

  address: "0xdAC17F958D2ee523a2206206994597C13D831ec7",

  fromBlock: 0,

})

// => Error: processing response error (body="{\"jsonrpc\":\"2.0\",\"id\"

:42,\"error\":{\"code\":-32602,\"message\":\"Log response size exceeded. 

You can make eth_getLogs requests with up to a 2K block range and no limit 

on the response size, or you can request any block range with a cap of 10K 

logs in the response. Based on your parameters and the response size limit, 

this block range should work: [0x0, 0x599bff]\"}}", error={"code":-32602}, 

requestBody="{\"method\":\"eth_getLogs\",\"params\":[{\"fromBlock\":\"0x0\

",\"address\":\"0xdac17f958d2ee523a2206206994597c13d831ec7\"}],\"id\":42,\

"jsonrpc\":\"2.0\"}", requestMethod="POST", url="...", code=SERVER_ERROR, 

version=web/5.7.1)

Other nodes may drop the request entirely or only return a partial response. It’s 

therefore advisable to query the most minimal possible subset of logs for a contract 

(or group of contracts). If, for some reason, you need everything, you can paginate the 

blocks into 2000 block chunks. But there are usually smarter strategies. We’ll discuss how 

to filter in the section “Log Filters,” a few pages later, and the implications of all this for 
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frontends in the subsequent “Events and Product” section. For now, however, we’ll take 

a look at the event abstraction, which sits on top of basic contract logs.

�Events
In the section “Contracts Are APIs,” we discussed how functions are a useful fiction on 

top of the smart contract primitive: an abstraction given to us from the Solidity compiler, 

rather than from the EVM itself. Events are much the same. As we’ve just seen, the EVM 

exposes logs. The EVM doesn’t have the notion of an event; that’s given to us by the ABI 

spec (and by whatever higher-level compiler and tooling that implements it).

So what does the ABI spec say about events? It’s an elegant abstraction on top of the 

existing building blocks we already have:

•	 Event selectors, which encode through a keccak256 hash the name 

of a function and the types of its parameters

•	 Contract logs, which allow a contract to output data and up to four 

32-byte words called topics

Events use these two features to encode and record events in a retrievable way. How 

does this work? Very similarly to functions. Events allow us to make sense of a  

transaction’s logs, in the same way that functions allow us to make sense of a contract’s 

bytecode. They give structure and names and semantics to transaction logs.

Firstly, let’s look at how an event is declared in Solidity:

event Transfer(address indexed from, address indexed to, uint256 amount);

When compiled, the ABI spec will include this event in the following form:

{

    "anonymous": false,

    "inputs": [

        {

            "indexed": true,

            "internalType": "address",

            "name": "from",

            "type": "address"

        },
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        {

            "indexed": true,

            "internalType": "address",

            "name": "to",

            "type": "address"

        },

        {

            "indexed": false,

            "internalType": "uint256",

            "name": "amount",

            "type": "uint256"

        }

    ],

    "name": "Transfer",

    "type": "event"

},

A quick glance at our Solidity code, and its corresponding ABI fragment, reveals a 

few interesting properties:

•	 Events can be anonymous or not.

•	 Events have names.

•	 Events have typed inputs.

•	 Those inputs can be indexed or not.

So events are named and typed, just like our functions. Some of the parameters are 

indexed – we’ll talk about that more in a moment – and some of the events are marked 

anonymous. Our events can be emitted by the contract code:

emit Transfer(address(0), address(1), 2);

Note T he emit statement isn’t quite state-modifying, since the contract’s state 
itself won’t change – events are epiphenomena! – but the total blockchain state 
will change, since the log needs to be tied to a validated transaction. So you can’t 
emit events in read-only functions.
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Since events are just an abstraction over logs, we can find our event in the output of 

the transaction receipt:

"logs": [

    {

        ...

        �"data": "0x0000000000000000000000000000000000000000000000000000000 

000000002",

        "topics": [

            �"0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4d 

f523b3ef",

            �"0x00000000000000000000000000000000000000000000000000000000000 

00000",

            �"0x00000000000000000000000000000000000000000000000000000000000 

00001",

        ],

    },

],

The first entry in the array is our event selector. We calculate it in exactly the same 

way as we calculate our function selectors. Take the canonical form of the event name, in 

our case:

Transfer(address,address,uint256)

And run it through keccak256:

$ ctc keccak "Transfer(address,address,uint256)"

0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef

which matches our topics[0]!

The subsequent entries in the topics array are the indexed parameters. We can see 

two 32-byte words, representing from and to (the values we’ve emitted in our contract). 

We can only use four topics in total, so we can only provide three parameters. Finally, the 

string contains the remaining nonindexed parameters. In our case, there’s just one: the  

integer 1, corresponding to the parameter amount.
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And what about the anonymous marker? Events can be marked anonymous in the 

event declaration:

event Transfer(address indexed from, address indexed to, address amount) 

anonymous;

This affects the output in one noticeable way:

"logs": [

    {

        ...

        �"topics": ["0x0000000000000000000000000000000000000000000000000 

000000000000000", "0x0000000000000000000000000000000000000000000 

000000000000000000001",

The event signature is gone – anonymous simply removes the event signature from 

the topics output, freeing up an extra topic entry. Anonymous events can therefore have 

four parameters, rather than three – but lose the ability to filter by event name in the 

process.

So, to sum up, events are an abstraction over the log functionality in the same sort 

of way that functions are an abstraction over the contract bytecode functionality. It’s an 

elegant abstraction, because it combines existing features and slots into the ABI spec 

without introducing too much extra complexity. But it’s also a clever abstraction,  

because it allows products to use another piece of functionality that we’ll talk about  

next: filtering over log topics.

�Log Filters
We have discussed earlier how getLogs can return an overwhelming amount of data and 

how node software will generally limit the number of logs you can retrieve in one call. 

The best strategy is to request only a subset of the logs you need. Now we know how logs 

work and how they are wrapped up into events by Solidity and the ABI, we can discuss 

how we might filter our events and restrict the return data to a more manageable size.

It is, in fact, possible to query every event emitted by every block; each of the  

arguments to getLogs is optional – but your node provider might have something to say 

if you were to try. It is best to avoid such conversations with an angry DevOps engineer, 
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and “I’m sorry I crashed your server” cards are hard to find in a Hallmark store. With 

these concerns in mind, no doubt, the Ethereum spec helpfully provides filtering  

mechanisms by contract, block, and topic.

We’ve actually already seen one example of filtering, filtering by contract address:

const logs = await provider.getLogs({

  address: "0xdAC17F958D2ee523a2206206994597C13D831ec7",

});

This call will return some subset of the most recent events from the USDT contract. 

What subset? It’s kind of hard to tell. USDT is a popular token, with many events  

emitted. Let’s scope down the events we’re interested in and get a better idea of what’s 

happening.

One way to scope our events down is by block. If we know the block hash – the  

32-byte hash that represents the current block – we can query directly for a specific block:

const logs = await provider.getLogs({

  blockHash:

    "0xf2712eff4e94fee78b52dfb46b797c08394f69be1bea45e40245b12544003b59",

  address: "0xdAC17F958D2ee523a2206206994597C13D831ec7",

});

This returns 12 log events for this contract, at this block.20 If we don’t know the block 

hash, or we want to query several blocks at once, we can use a range of block numbers:

const logs = await provider.getLogs({

  fromBlock: 15725066,

  toBlock: 15725067,

  address: "0xdAC17F958D2ee523a2206206994597C13D831ec7",

});

20 If you check the topic[0] value of any of these, you’ll see 0xddf252ad – the very same event 
selector that we used earlier. So each of these 12 events is Transfer(address,address,uint256) 
events! It does, however, also mean that we can’t filter for anonymous events.
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Finally, we can filter by topic. Since our value encodes the event selector, we can  

filter by event directly. For instance, let’s find the token approvals for USDT. First, we 

need the canonical event name, which we can find by inspecting the contract ABI:

{

  "anonymous": false,

  "inputs": [

    {

      "indexed": true,

      "name": "owner",

      "type": "address"

    },

    {

      "indexed": true,

      "name": "spender",

      "type": "address"

    },

    {

      "indexed": false,

      "name": "value",

      "type": "uint256"

    }

  ],

  "name": "Approval",

  "type": "event"

}

This gives us the event name Approval(address owner, address spender, 

uint256 value), which simplifies to the canonical name Approval(address,address,s

pender), which hashes to 0x8c5...925. We can then provide this hash to the array:

const logs = await provider.getLogs({

  address: "0xdAC17F958D2ee523a2206206994597C13D831ec7",

  topics: [

    "0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925",

  ],

});
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This may or may not return results. If you run it every 12 seconds or so, you will  

eventually see one or several matching events. If you check the block number, you’ll 

notice that it is the most recent block. So, by default, the getLogs function returns the 

matching events from the current block.

We can add multiple topic filters too. Let’s get all the Approval events, from the 

USDT token, since block 0, by vitalik.eth’s address:

const logs = await provider.getLogs({

  fromBlock: 0,

  address: "0xdAC17F958D2ee523a2206206994597C13D831ec7",

  topics: [

"0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925",     

"0x000000000000000000000000d8da6bf26964af9d7eed9e03e53415d37aa96045",

  ],

});

An empty array – at the time of writing, Vitalik hasn’t approved any USDT tokens on 

his address. How about DAI?

const logs = await provider.getLogs({

  fromBlock: 0,

  address: "0x6B175474E89094C44Da98b954EedeAC495271d0F",

  topics: [

    "0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925",

    "0x000000000000000000000000d8da6bf26964af9d7eed9e03e53415d37aa96045",

  ],

});
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Two logs: So vitalik.eth has approved some of his DAI, to two contracts.  

The second contract address is 0x68b...c45, which we can see in the topics[2] place 

(which is the spender indexed parameter, padded to 32 bytes). We can inspect the full 

transaction receipt for more:

{

  blockNumber: 14955435,

  �blockHash: '0x483b7a34a508161cbd18aa3eccc2899d295042e3b08060fbb68ba

2c025746089',

  transactionIndex: 144,

  removed: false,

  address: '0x6B175474E89094C44Da98b954EedeAC495271d0F',

  �data: '0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff',

  topics: [

    '0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925',

    '0x000000000000000000000000d8da6bf26964af9d7eed9e03e53415d37aa96045',

    '0x00000000000000000000000068b3465833fb72a70ecdf485e0e4c7bd8665fc45'

  ],

  �transactionHash: '0x6e1a6db2dfb8f96cbcc5520f3c06aaa9aeaa1ba4457aa305985aa

d2557ff82d2',

  logIndex: 218

}

Putting the 0x68b...c45 address into Etherscan, we discover that it is the Uniswap 

v3 router, a contract responsible for managing swaps.

What if we wanted to find out who had approved DAI to this contract, regardless of 

their address? We can pass null to the topic in our filter:

const logs = await provider.getLogs({

  �blockHash: "0x483b7a34a508161cbd18aa3eccc2899d295042e3b08060fbb68ba

2c025746089",

  address: "0x6B175474E89094C44Da98b954EedeAC495271d0F",

  topics: [

    "0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925",

    null,

    "0x00000000000000000000000068b3465833fb72a70ecdf485e0e4c7bd8665fc45",

  ],

});
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At this block, then, only one account approved DAI to Uniswap: vitalik.eth.

Filters are powerful, because they allow us to strip away what we don’t need from a 

large stream of logs and select only what we do need.21 But we can only filter by the event 

parameters that are indexed. So, if you’re going to be filtering against the Ethereum logs 

directly, you’ll need to make sure that the smart contracts index the params you need.

�Events and Product
Events now look much clearer. Logs provide a cheap way for transactions to record 

ephemeral data. Events give us a simple abstraction over these logs, allowing us to add 

semantics around a list of four 32-byte topics. And event filters let us use this abstraction 

to pick only those events that our use case needs.

But this is quite a low-level description of the event model. Ideally, we don’t want to 

have to think about topic hashes or filtering at all. When writing our product code,  

it would be nice to rely on the ABI to give us the data that we need. It’s also worth  

dwelling, for a short while, on some of the more fiddly issues that are likely to face a 

product engineer building a real-world application against the logstream.

�ABIs Contain Events, Too

If you’ve made it this far, you can likely guess how we’ll solve the first problem. We can 

rely on our tools! ethers.js, especially, gives us a solid implementation of the ABI spec 

that generates contract filters from a provided ABI. Pull the ABI for the DAI contract 

(0x6B175474E89094C44Da98b954EedeAC495271d0F) using ctc:

$ ctc abi 0x6B175474E89094C44Da98b954EedeAC495271d0F --json

[

...

  },

  {

    anonymous: false,

    inputs: [

21 There’s also a nice side effect of how filtering is implemented – the probability of false positives in 
the Bloom filter data structure – that makes queries with more filters faster than queries with fewer. 
The logsBloom property of a transaction receipt allows us to check very quickly whether a specific 
piece of indexed data is not included in the data (although it can’t always tell us whether it is included; 
in other words, Bloom filters may return false positives but will never return false negatives).
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      {

        indexed: true,

        internalType: "address",

        name: "src",

        type: "address",

      },

      {

        indexed: true,

        internalType: "address",

        name: "guy",

        type: "address",

      },

      {

        indexed: false,

        internalType: "uint256",

        name: "wad",

        type: "uint256",

      },

    ],

    name: "Approval",

    type: "event",

  },

  {

...

(I’ve truncated the output except for the Approval event ABI.) We can store it in an 

abi variable for testing and pass it into our Contract instance.22 We can rewrite the last 

filter thus:

const contract = new ethers.Contract(

    "0x6B175474E89094C44Da98b954EedeAC495271d0F",

    abi,

    provider

  );

22 In fact, if you only know you are going to integrate against this one event, you only need to pass 
the relevant part of the ABI.
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const logs = await contract.queryFilter(

  contract.filters.Approval(

    null,

    "0x68b3465833fb72a70ecdf485e0e4c7bd8665fc45"

  ),

  "0x483b7a34a508161cbd18aa3eccc2899d295042e3b08060fbb68ba2c025746089"

);

If you check the output, you’ll also see something a little more richer than when we 

were filtering manually:

[

  {

    blockNumber: 14955435,

    �blockHash: '0x483b7a34a508161cbd18aa3eccc2899d295042e3b08060fbb68ba

2c025746089',

    transactionIndex: 144,

    removed: false,

    address: '0x6B175474E89094C44Da98b954EedeAC495271d0F',

    �data: '0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

ffffff',

    topics: [

      '0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925',

      '0x000000000000000000000000d8da6bf26964af9d7eed9e03e53415d37aa96045',

      '0x00000000000000000000000068b3465833fb72a70ecdf485e0e4c7bd8665fc45'

    ],

    �transactionHash: '0x6e1a6db2dfb8f96cbcc5520f3c06aaa9aeaa1ba4457aa30598

5aad2557ff82d2',

    logIndex: 218,

    removeListener: [Function (anonymous)],

    getBlock: [Function (anonymous)],

    getTransaction: [Function (anonymous)],

    getTransactionReceipt: [Function (anonymous)],

    event: 'Approval',

    eventSignature: 'Approval(address,address,uint256)',

    decode: [Function (anonymous)],
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    args: [

      '0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045',

      '0x68b3465833fb72A70ecDF485E0e4C7bD8665Fc45',

      [BigNumber],

      src: '0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045',

      guy: '0x68b3465833fb72A70ecDF485E0e4C7bD8665Fc45',

      wad: [BigNumber]

    ]

  }

]

Now we’re querying via our Contract instance and its ABI, we can add some more 

structure to the event data. Importantly, we know the names and types of the parameters, 

which allow ethers.js to cast the numbers into BigNumber instances and add an args 

object with named properties.

This is much neater:

•	 We don’t need to manually figure out the event’s canonical name or 

calculate its hash.

•	 We don’t need to zero-pad addresses in our filters.

•	 We don’t need to remember the order of the parameters when 

reading the output.

•	 We don’t need to parse the data field separately: it’s added to the 

args array, and the distinction between indexed and nonindexed 

parameters collapses.

•	 We don’t need to manually convert the parameters to JS-

appropriate types.

Where possible, then, rely on your tools! It’s much better to let somebody else do 

your work for you. This is one of many examples where tools like ethers.js can remove 

a bunch of headaches, and many other tools understand the ABI spec and are only too 

eager to lean on it to make your life easier.
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�Listening to Events

So far, we’ve only been looking at examples where events are very much in the past: we 

are, in other words, querying for historical event data. But nothing stops the blockchain, 

and new events are always being produced by new blocks. If we’re using the event log to 

update our application’s state dynamically, we will need to be able to listen out for new 

events and respond to them with some immediacy.

This is what the eth_subscribe JSON-RPC method is for and its corresponding im-

plementation in ethers.js: Contract.prototype.on. These functions give us a mechanism 

to wait for events rather than polling for them. Node providers typically use websockets 

to implement this “push” behavior:

contract.on("Approval", (owner, spender, value) => {

  console.log("Approval", owner, spender, value.toString());

});

Since you can’t use filters here, you’ll need to manually filter events based on the 

arguments:

contract.on("Approval", (owner, spender, value) => {

  if (owner !== "0xd8da6bf26964af9d7eed9e03e53415d37aa96045") return;

  �console.log("vitalik.eth DAI Approval", owner, spender,  

value.toString());

});

If we’re querying within a React component, we’ll need to remember to wrap the 

whole thing in a useEffect to persist the listener between rerenders. Or we could use 

wagmi’s useContractEvent, which does much the same thing.

This is all fine, as far as it goes. But there are lots of little idiosyncrasies that can make 

things challenging when you start using it in real-world contexts. Consider, for instance, 

how can we calculate the total amount of DAI that account A has transferred to others?

We know we’ll need some basics:

•	 The DAI contract address and ABI

•	 The contract’s Transfer event selector

•	 The account’s address (let’s use vitalik.eth again)
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Okay. Let’s construct a filter and query the contract’s event log, then sum the 

wad amount:

const logs = await contract.queryFilter(

  contract.filters.Transfer("0xd8da6bf26964af9d7eed9e03e53415d37aa96045")

);

const sum = logs.reduce(

  (acc, log) => acc.add(log.args.wad),

  ethers.BigNumber.from(0)

);

Our sum is now a BigNumber object with the total amount of DAI that vitalik.eth 

has transferred out. But if Vitalik is feeling especially generous today, he might start 

transferring shortly after you’ve run queryFilter, and your app will be out of date. 

You could poll for the changes, but this is exactly what eth_subscribe is supposed to be 

used for.

(This might seem like a toy example, but what if, instead of an EOA, we want to  

calculate the total DAI received for a busy DEX contract? We’ll need to paginate the  

historical queries to not hit our per-query limit as well as be subscribed to new events.)

Now we need some notion of local state, and some mechanism to update it. Let’s  

assume we’re writing a React component, so we can rely on React’s useState function. 

We can then trigger an effect on initial render to calculate the historical sum and another 

to listen out for new events.

We’ll wrap it in a custom hook too, giving us some reusability and a cleaner component:

function useDAITransfersSum(fromAddress) {

  const [sum, setSum] = useState(ethers.BigNumber.from(0));

  useEffect(() => {

    (async () => {

      const logs = await contract.queryFilter(

        contract.filters.Transfer(fromAddress)

      );

      const historicalSum = logs.reduce(

        (acc, log) => acc.add(log.args.wad),

        sum

      );
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      setSum(historicalSum);

    })();

  }, [fromAddress]);

  useEffect(() => {

    contract.on("Transfer", (owner, _dest, value) => {

      if (owner !== fromAddress) return;

      setSum((sum) => sum.add(value));

    });

    return () => {

      contract.removeAllListeners("Transfer");

    };

  }, [fromAddress]);

  return sum;

}

We can then use it in our component:

const vitalikSum = useDAITransfersSum(

  "0xd8da6bf26964af9d7eed9e03e53415d37aa96045"

);

return <p>vitalik.eth has sent {vitalikSum.toString()} DAI^18</p>;

Okay, not exactly straightforward, but that works reasonably well: our component 

will rerender any time we get a new event. If we aren’t using React, we can use another 

state management library, or even a simple let variable, which we can overwrite when a 

new event comes in. Events can change when blocks are reorganized, and if you’re  

caching some state locally, you’ll need to invalidate that cache when reorders occur  

(we talk more about block reorganizations in Chapter 2).

React’s rerendering logic can be extremely fiddly when doing this sort of thing. 

Always check that your dependencies array is set correctly and that your effects aren’t 

run more than they need to be. Some versions of React trigger two initial renders when 

strict mode is enabled too, so you might need to track or disable it to avoid unnecessary 

rerenders messing with your sums.

Whether the problem is React rerendering when you don’t expect it, a dropped  

connection between you and your node provider, a logs query behaving unreliably  

(or becoming too big for a given node to handle), a block reorg, a shark biting the  
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transatlantic cable, or anything else, I have found it extremely challenging to keep local 

state and blockchain state in sync using queryFilter and live updates, especially over a 

nonnegligible period of time. One of the worst things you can do to the UX of your app 

is show subtly incorrect information: it’s hard for you to debug, it’s unlikely the user will 

notice, and your janky frontend very well may lead to a loss of user funds. In short,  

dynamic event handling can lead you, in a pernicious and difficult-to-detect manner, 

into a violation of the Principle of Trust. You should do a hard refresh of your entire local 

state on a semiregular basis and, where possible, show live information at the point that 

the user confirms a write interaction.

In general, this sort of code – combining live and historical events, handling block 

reorgs, refreshing state – is quite boring to write, can be repetitive, and is necessary 

surprisingly often, so I highly recommend pulling it out into a reusable set of functions/

hooks for your application. Nor is it always easy to write it at a maximum level of generality,  

so it’s quite hard to find third-party versions ready to plug and play. As you build more 

frontends, you’ll develop a sense of what level of abstraction is the right one for you and 

what sort of code you need to reuse. As with much else, it’s mostly about developing a taste 

for it over time.

�Indexing
Indexing puts a layer of abstraction between your application and the protocol and allows 

you to front-load work that you would otherwise have to do at runtime. There are several 

approaches to indexing, which need to be considered and evaluated. DIY approaches 

give you flexibility and improved developer experience, but are bottlenecked by hosting, 

operational costs, and worries over data freshness. The Graph trades off lots to achieve 

its decentralization. Centralized Indexing Services are a goldilocks solution, if you don’t 

prioritize decentralization. Decentralized indexing is rarely worth the trade-offs.

Each section of this chapter has shown that getting information out of a smart con-

tract can sometimes be straightforward, but can also be difficult.

Contracts are severely memory constrained, so writing to memory costs gas,  

so there are hard limits on the memory a transaction can use. There are also soft limits: 

your users will have to pay for writes, and there’s some level of gas fees at which they will 

simply refuse to pay.
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There are also security considerations. The smaller the surface area of a contract, the 

more secure it is: the more write and read calls you use, the more code there is to debug, 

test, and verify. It almost always isn’t worth the protocol team’s time, energy, or audit 

budget to write filtering and search functions in the contract itself.

As a result, frontends have to pick up the slack. We’ve already seen some ways 

they can do so: calling read functions directly and filtering locally, pulling information  

from the event log, and inspecting the contract state directly. But these methods are 

complicated and low level. These methods place processing and memory require-

ments on the frontend – which, in our examples, and very commonly in live applica-

tions – means the user’s browser.

There are also issues associated with the decentralized nature of the network. Other 

users may be using the smart contract at the same time; the data may change between an 

initial load of the page and the user’s actions. Even if the contract state is sandboxed per 

user, the contract may rely on other smart contracts or other network-wide properties to 

do its work. Every 12 seconds, a new block will be mined, and each block presents an  

opportunity for your frontend’s data to go stale. Blocks get reorganized, websocket  

connections get dropped, and small errors in the data can compound.

So querying the blockchain directly and relying only on your local state is often  

problematic. It can lead to failed transactions and frustrated users – or, indeed,  

something much worse: a violation of the Principle of Trust.

One approach that addresses these problems is to add a layer between you and the 

node: an index. An index can simplify your frontend logic by moving the read  

functions into a single place. This allows the index to be responsible for reading the 

live data and transforming it in various ways: filtering it down into subsets of the data, 

sorting it according to your application’s needs, and appending it with other pieces of 

information from other smart contracts (or even other off-chain data sources). It  

also allows your frontend to rely on a single source of truth, avoiding some of the  

complications of a decentralized network. In short, it allows you to concentrate much 

of the complexity inherent to Ethereum’s data layer in one place away from your  

application code, as in Figure 4-9.
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Figure 4-9.  Nodes feed data into an indexer, which sits between the node and 
your app

Indexing is a powerful tool for product engineers, and it can take many forms, each 

with their own trade-offs. This sort of decision is also not one to take lightly: it can be 

very difficult to strip out something that your frontend relies on as much as the index. 

However, it’s also not the most important decision you need to make. Like all technical 

decisions, the ultimate consideration is whether this piece of technology will make a  

better product that solves your users’ problems, as opposed to its alternatives. This  

section will therefore describe and evaluate some of these different options.

How are we evaluating these approaches? We’ll evaluate each against a rubric of 

trade-offs. It’s important to view these explicitly as trade-offs, as optimizing for one is 

likely to come at the cost of another:

•	 Speed and data freshness: How long does it take to index the data 

your system needs? Does the solution update frequently enough? Is 

the data fresh? How fresh does the data need to be? And how quick 

do your frontend queries run?

•	 Developer experience: Is it easy to use your indexed data in your 

frontend? Is it easy to update the indexing parameters? How quickly 

can you add a new data source? Is there good tooling? Is your 

indexing code version controlled? Can you debug problems with the 

indexer with minimal extra tooling surface area?

Chapter 4  Contracts



151

•	 Operational complexity: What are the operational costs of running 

the indexer? Do you have to set up extra processes to develop, verify, 

and fund the indexing operations?

•	 Cost: How much does it cost to run your solution? How does the cost 

change when usage increases or decreases? Does the solution require 

sitting within certain usage bounds to be worth it? Does cost even 

matter to you? (Hint: On various margins, it might not.)

•	 Decentralization: How decentralized is your indexing solution? Is 

there a single point of failure? Is it possible to censor or otherwise 

restrict the data? Is it possible to switch between different hosts?

With this rubric in hand, we’ll take a look at three approaches to indexing.

�A Simple DIY Index
Technical decisions start at home: it’s important when designing a system that you 

understand the problem space properly, and this means your local problem space. What 

are your specific constraints? What are you trying to achieve within those constraints? 

We’ve already identified the core problem of crypto data: getting information quickly, 

reliably, and in the format we need it for display. How does this core problem 

apply to you?

Because the problem is going to be described within your own specific constraints, 

the solution is likely to be too. This makes exploring a homemade solution a useful  

exercise, even if it isn’t what you will in fact end up doing. I have benefited too many 

times to count from opening a blank editor screen and typing out, in near-pseudocode, 

how I’d like to integrate with a system before building it (or deciding to use a prebuilt 

solution).

So what would building your own index look like? And what can we learn from the 

process?

The simplest place to start is using the tools we already have to pull the data we want. 

We don’t need to consider how we’ll get this data to our frontend yet: we first need to 

consider what data we want and how we get it. We do, however, need to think about what 

we want our frontend to do, so we can compile the correct data.
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For our purposes, the actual use case doesn’t matter much, but we’ll narrow one 

down so we can develop a better sense of what we’ll need. Let’s build a pool explorer  

for Curve pools: a simple, read-only interface to show recent transactions and some  

aggregate data. This suggests a few constraints:

•	 We will want to support multiple pools (even if we only test 

against one).

•	 For each pool, we need to pull its recent swaps. (How recent? Let’s 

stipulate swaps within the last hour.)

•	 We’re showing aggregates, so we’ll also need to pull historical 

data per pool. What aggregates will we want to calculate? Lifetime 

transaction volume and 24-hour transaction volume seem useful. So 

we’ll need to pull all swap events to calculate these aggregates.

•	 We might also want to think about how fresh we need our data to 
be. Given our use case, we can maybe put up with a ~2-minute time 

delay. That gives us an upper bound on our processing time.

Of course, this is an entirely contrived example. But these sorts of questions are  

useful to ask, since the answers within a noncontrived example are going to require 

introspection about what your users need and want and what is useful to meeting that 

need. Notice that none of the preceding points are really technical questions! They’re all 

about how the use case bounds the technical.

We’ll draw the data from the smart contracts exclusively, although some indexers 

might pull from multiple data sources (such as a third-party pricing API or some  

internal data source). We’ll choose the 3pool (DAI/USDC/USDT) pool, because it has 

lots of transaction volume and so will give us a rich dataset to work with. It will also give 

us a sense whether we can meet our ~2-minute time delay.

Let’s start by taking a look at the pool on Etherscan.23 If you open the “Code” tab, 

you’ll notice that it’s written in Vyper, not Solidity. No problem: we have ABIs to solve 

that problem for us. Remember, functions are just a useful fiction.

23 https://etherscan.io/address/0xbebc44782c7db0a1a60cb6fe97d0b483032ff1c7
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I’m going to import the ethers package into an empty repository by running  

npm install ethers. I’ll also create an index.js file where we’ll write the indexer 

code.24 We’ll also use Alchemy, so let’s set up a provider:

const provider = new ethers.providers.AlchemyProvider(

  "mainnet",

  "[[ALCHEMY KEY]]"

);

We’ll set up an array of pools that our indexer can support. We’ll only support one 

for the time being, so let’s add it in directly. We’ll get the ABI using the usual methods: 

although, for this specific contract, we’ll need to remove the gas keys from each ABI 

fragment.25 We’ll also pull the block number of the block from when the pool was deployed, 

so we don’t have to make some unnecessary requests. (We can get this block number by 

finding the last transaction on the contract’s Etherscan page or by running $ ctc  

address 0xbebc44782c7db0a1a60cb6fe97d0b483032ff1c7 -v. In our case, it’s 10809473.)

const pools = [

  {

    title: '3pool (DAI/USDC/USDT)',

    address: '0xbebc44782c7db0a1a60cb6fe97d0b483032ff1c7',

    deployedAtBlock: 10809473,

    abi: [...],

  }

];

We can now loop through our pools, mapping the current pools array to an array of 

promises. This allows us to build the index for each pool in parallel (something we can 

do, since pools are independent). We’ll get the current block and an instance of ethers.

Contract for this pool:

const promises = pools.map(async (pool) => {

24 In practice, I highly recommend you use TypeScript for everything: static typing, while not a 
panacea, provides in-editor help, and a static type system helps eliminate certain classes of bugs. 
This is especially important when the runtime language is fickle and finickerty, like JavaScript. 
But let’s not relitigate that question any further!
25 Older versions of the Vyper compiler produced these values; ethers.js interprets them as 
amounts of gas to send, and it usually results in request errors.
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  const currentBlock = await provider.getBlockNumber();

  const contract = new ethers.Contract(

    pool.address,

    pool.abi,

    provider

  );

It might be useful to know which tokens each pool supports, so we can fetch them 

from the contract’s coins property. coins, according to the ABI, takes a single integer 

argument, which looks like an array index. If the index doesn’t exist, the read call will 

revert. So we’ll keep looping through the integers until we get an error. (Incidentally, this 

is exactly the sort of reason that indexing is useful. We want to get the entire contents of 

an array, but the contract doesn’t have a direct getter for it; a perfect indexing use case.)

// Get the pool's tokens

console.log(`Fetching tokens for ${pool.name}`);

const tokenAddresses = [];

while (true) {

  try {

    const tokenAddress = await contract.coins(tokenAddresses.length);

    tokenAddresses.push(tokenAddress);

  } catch (e) {

    break;

  }

}

Now we’ll want to get our events. Let’s look at the ABI again. If we search for type: 

"event", we should find a fragment like the following:

{

  anonymous: false,

  inputs: [

    {

      indexed: true,

      name: "buyer",
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      type: "address",

    },

    {

      indexed: false,

      name: "sold_id",

      type: "int128",

    },

    {

      indexed: false,

      name: "tokens_sold",

      type: "uint256",

    },

    {

      indexed: false,

      name: "bought_id",

      type: "int128",

    },

    {

      indexed: false,

      name: "tokens_bought",

      type: "uint256",

    },

  ],

  name: "TokenExchange",

  type: "event",

}

Exactly what we need! We have a buyer, which is the buyer’s address. We have a 

bought_id and a sold_id, which seem to be the index to the array, giving us the tokens 

bought and sold. And we have the respective quantities. If you check Etherscan, you’ll 

notice there’s a lot of these events. They come in very frequently; it’s a popular pool. 
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We’ll therefore need to paginate the events. Let’s loop through and collect every event in 

100,000 block chunks:26

// Get every TokenExchange event, paginated into 100000 block chunks

const chunkSize = 100000;

const rawEvents = [];

let fromBlock = pool.deployedAtBlock;

while (true) {

  const toBlock = fromBlock + chunkSize;

  console.log(

    `Fetching events for ${pool.title} from block ${fromBlock} to ${toBlock}`

  );

  const eventsChunk = await contract.queryFilter(

    contract.filters.TokenExchange(),

    fromBlock,

    toBlock

  );

  rawEvents.push(...eventsChunk);

  if (currentBlock <= toBlock) {

    break;

  }

  fromBlock = toBlock + 1;

}

26 Why 100,000? We have a ~200,000 event limit before Alchemy complains. There are ~7200 
blocks per day. So this gives us the events for approximately two weeks. This feels like a 
reasonable amount of time: large enough to minimize the number of requests made, small 
enough to give us headroom and allow for particularly busy days/blocks; feel free to play around 
with different values and see when it breaks. At the time of writing, there are roughly 5m blocks 
to process – the number of blocks between the current block and the block of the contract’s 
deployment – so it will take roughly 50 chunks to get our events. Assuming ~1 second per chunk, 
it’ll take ~50 seconds to pull the events. Remember, also, that this number will keep going up as 
time passes: each fortnight it will increase by a second. At some point soon, we’ll need to add 
some caching!
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We’ll then loop through the events, extracting their args and matching up the token  

IDs to the list we compiled before. We’ll also grab the transaction hash and the 

block number:

const events = rawEvents.map(({ blockNumber, transactionHash, args }) => ({

  blockNumber,

  transactionHash,

  buyer: args.buyer,

  boughtToken: tokenAddresses[args.bought_id.toNumber()],

  boughtAmount: args.tokens_bought,

  soldToken: tokenAddresses[args.sold_id.toNumber()],

  soldAmount: args.tokens_sold,

}));

Then we can return a simple object, combining together our per-pool info and  

closing out our async function:

  �console.log(`Found ${events.length} events and ${tokenAddresses.length} 

tokens for ${pool.title}`);

  return {

    pool,

    tokenAddresses,

    events,

  };

});

Our promises object then needs to be resolved:

const index = await Promise.all(promises);
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And that’s essentially it! A rough and ready and horribly unoptimized indexer that 

will consolidate our pool and its TokenExchange events into a single object. There are 

some obvious optimizations we could make:

•	 Could we hard-code the token addresses? Yes, the coins array is set 

in the contract’s initializer, so the array won’t ever change. We could 

pull it manually and hard-code it, removing that query entirely.  

(A good example of why being able to read these contracts’ source 

code is useful.)

•	 Performing delta updates: Caching values locally, so we don’t 

have to fetch them anew every time. We could store a latestBlock 

variable and only get events that occur after it. This might work, 

except we’ll then have to worry about block reorgs. So it’s generally a 

good idea to do a “hard refresh” once every few hours regardless.

•	 Try parallelizing the event fetcher: Moving it into a callback and 

running it through Promise.all (though we might run into problems 

here by hammering our Alchemy node).

But I’ll leave these as an exercise for the more enthusiastic reader. Even after  

introducing these optimizations, however, it’s still likely to be quite slow. And here’s the 

rub: you will never be able to index extremely quickly unless you’re running your own 

node. You will always have to pay the roundtrip latency to the node provider. You will 

also lose out on any potential node-level optimizations you might be able to do for your 

use case. But for simple, nontime-sensitive tasks, perhaps that’s not a problem.

Once we have our indexer, we then need to decide how to get it to our frontend. The 

simplest way is to write it to a file somewhere on our web server or maybe a file host 

such as Amazon S3 (or, if you are so inclined, IPFS; although the next chapter will argue 

against all that malarkey). Pulling it into our frontend is then just a matter of issuing an 

HTTP request.

A more advanced approach could write the indexed data, in either a processed or 

rawer form, to a database. Querying then looks like writing some SQL on a backend  

service, wrapped round an API for the frontend to access. To do this with minimal  

overhead, you could even use a hosted Postgres API service, such as Supabase.27

27 http://supabase.com
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The indexer then needs to be run at some interval, either by a cronjob on a server 

somewhere or by some sort of serverless platform such as AWS Lambda or Google Cloud 

Functions.

Given all this, then, how does the roll-your-own approach fare on our trade-

off rubric?

•	 Speed and data freshness: As we’ve seen, the bottleneck here is 

likely to be the node provider. You will also need to ensure that any 

processing you do takes into account block reorgs, network latency, 

etc. – so it’s important to not overly cache the data. It is unlikely that 

without superlative in-house resources you will pay a performance 

hit when rolling your own. For many use cases, this is totally 

acceptable.

•	 Developer experience: DX is where the roll-your-own approach 

shines, since you can decide how you want to integrate and precisely 

how you structure the task. You will have to write more code, but the 

code you write will be yours and tailored to your use case. It can also 

be integrated directly into the mental model you have of your system, 

using the same domain concepts, hosting infrastructure, etc., which 

is not a benefit to be discounted! But, again, you’ll have to write a lot 

more code.

•	 Operational complexity: The largest trade-off here is operational 

complexity. You are responsible for running, monitoring, and scaling 

each part of the indexer. If an indexer fails, you need to know about it 

quickly, and your indexing code needs to be resilient to failure. This 

will be made more straightforward if you have an existing monitoring 

infrastructure to plug into, but it will require thoughtful coding and 

regular reassessment.

•	 Cost: If you run your own node, your server costs are likely to stack 

up quite significantly. Running an Ethereum mainnet archive node 

requires a lot of SSD space and RAM – the total blockchain size is 

~1TB right now – and this doesn’t include equivalent nodes for other 

chains, if required. On the plus side, you won’t have to pay query fees.
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•	 Decentralization: There are ways of adding some decentralization 

to this approach, notably, and as discussed earlier, hosting the data 

on a decentralized platform. But this brings with it more operational 

complexity. And you will still need to run your indexer somewhere. 

If decentralization is your priority, then you’ll be better off letting a 

decentralized indexing service handle it for you.

Rolling your own can be a smart move, if your use case is simple or esoteric  

and you are comfortable taking on the operational overhead. But most of these issues are 

issues that have been solved by others already, and so there will be a lot of reinventing 

the wheel. Writing your own indexer is a good learning exercise, but eschewing  

Not-Invented-Here syndrome is the first step toward a happy life.

�Decentralized Indexing: The Graph
The Graph is perhaps the most popular and well-known indexing platform. The Graph 

is an indexing protocol that serves subgraphs – isolated APIs for specific pieces of 

blockchain data. Product/platform engineers list the smart contracts they’d like to index 

and the logic by which they’d like to index those contracts. This behavior is bundled into 

a subgraph, the result of which is then served via a GraphQL endpoint to a frontend. 

Frontends then use standard GraphQL libraries, such as Apollo, to pull the data into 

their frontends.

This basic model is extremely sensible. We can break it down into three key 

components:

•	 Source: Where does the data come from? Subgraphs specify the 

relevant smart contracts in a manifest file, and the subgraph also 

provides mapping code to process incoming data and store it inside 

the index.

•	 Indexer: Who actually performs the indexing work? Network 

participants run an instance of the Graph Node, which connects to 

the network and provides indexing services.

•	 Interface: How is the indexed data made available to the frontend? 

Subgraphs provide a GraphQL schema, and the Indexer then hosts 

this schema as a GraphQL endpoint. The Graph’s gateway then routes 

requests to an appropriate indexer.
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It is also, by design, highly decentralized. And this commitment to decentralization 

adds much more complexity into the Indexer and Interface components.

The actual indexing is processed by an indexing node, which is incentivized to do 

so correctly through a complicated system of GRT (the protocol’s native token) staking 

rewards and querying fees:

•	 GRT holders attest to the quality and usefulness of a specific indexer 

by staking GRT against that indexer. These participants are called 

Delegators, as these GRT holders delegate to specific indexers to 

signal confidence in their behavior as an indexer. Does the indexing 

process run quickly? Is the data fresh? Are the fees reasonable? 

Delegators let the network know the answers to these questions.

•	 Other GRT holders provide a similar signal to subgraphs: Curators. 

These holders provide a mechanism for indexers to decide which 

subgraphs to index and which subgraphs to ignore: Which subgraphs 

are popular, provide sufficient information to build against, are 

optimized at the subgraph mapping level, and are up to date with 

the relevant contracts? Curators let the network know the answers to 

these questions.

Once the network is incentivized to index the most useful subgraphs on the most 

reliable indexing nodes, the mechanism then attends to the querying layer:

•	 Queries are billed in GRT, with the query fee set by the indexer.28 This 

fee is paid to the indexer, delegators, curators, and the network at large.

•	 Queries are routed to the appropriate Indexer through the graph’s 

Gateway, which is an HTTP endpoint hosted by The Graph’s core 

team that matches requests to indexers willing to serve the query. 

There is also some operational logic here: the Gateway will route 

based on data availability and query budget, so there’s no guarantee 

that your particular combination of budget and subgraph will be met 

by an available indexer. This introduces a market mechanism into 

querying as well as indexing.

28 The actual fees per query vary depending on dynamic logic decided by the indexer, expressed 
in a custom query-pricing language called Agora (https://github.com/graphprotocol/agora/
tree/master/docs).
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In order to fend off early-stage challengers, and to allow the protocol to grow and 

iterate into something useful, The Graph have provided a Hosted Service, which  

strips out much of the operational complexity associated with staking, curating, and  

indexing. However, staying true to their decentralized vision, The Graph are in the 

process of deprecating the Hosted Service, and it is likely that by the time this book is 

published the Hosted Service will be either deprecated fully or closed to new subgraphs.

Once the Hosted Service is fully deprecated, the indexing, delegation,  

and curation operations will be fully decentralized. It will be impossible to prevent a  

subgraph from being indexed without shutting down the entire network. But querying 

will still be routed through the Gateway. The Graph will need to decentralize the  

Gateway in order to achieve its vision of a fully decentralized indexing platform. They 

have yet to provide plans for doing so.

Let’s apply our rubric:

•	 Speed and data freshness: Generally, The Graph’s indexers  

manage to index within a block, so you can expect your data to be ~10 

seconds old. Regarding querying latency, the most  

up-to-date numbers I could find reported a ~300ms query time 

for the decentralized network.29 Checking this against their query 

playground gave similar results. For many use cases, this is fine; for 

use cases where speed is important, the decentralized nature of the 

network may cause problems.

•	 Developer experience: If you don’t need to write your own 

subgraph – that is, if you’re integrating with contracts that already 

have subgraphs – then the developer experience can be quite 

straightforward. There are lots of existing frontend tools for querying 

GraphQL endpoints. If you need to write a subgraph, however, it can 

get quite awkward quite quickly. Subgraphs are written in a variant 

of TypeScript which is compiled down to WebAssembly, which can 

limit the dependencies you can use. The Graph’s subgraph API is in 

some places incomplete. They provide a CLI tool for building and 

deploying these subgraphs.

29 https://twitter.com/RezBrandon/status/1578034869363695619
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•	 Operational complexity: The Graph introduces a huge amount 

of operational complexity, some of which will be simplified with 

progress in their tooling, some of which is inherent. You will need 

to purchase from or bridge GRT onto Polygon, the layer 2 network 

which hosts their billing mechanism.

•	 Cost: The Graph’s costs are somewhat difficult to calculate ahead of 

time. Different indexers have different query pricing, and you may 

need to spend some GRT ahead of time incentivizing indexers to 

index your subgraph. You will also have to factor in any forex risk; the 

GRT token is a tradable token with some speculative trading activity. 

The Graph’s documentation offers an approximate cost of $15 per 

month for 30,000 queries, though it’s unlikely this includes any of the 

hidden costs just mentioned.30

•	 Decentralization: If this is your priority, then this is where 

The Graph will shine. The network is remarkably decentralized 

already, and they are progressing further with each release. The 

Gateway is still centralized, but they have plans to move to a 

decentralized model.

As you’ll see from the preceding description, the decision to pursue full  

decentralization introduces a staggering amount of complexity to the network and 

the process by which you query it. The Graph is a remarkable piece of software  

and protocol engineering, carefully balancing incentives against one another and 

providing a genuinely useful service within challenging social and technical  

constraints. But this all comes at a cost. The Graph’s core team – and wider  

community – has worked hard to simplify certain aspects, building tooling and 

dashboards. And it’s clear that the team cares about developer experience and  

reducing the operational complexities.31 But a lot of the complexity is inherent in 

the system design.

So, after all this, the question you need to answer: Is decentralization worth it?

30 https://thegraph.com/docs/en/network/benefits/#lower-and-more-flexible-cost-structure
31 https://twitter.com/RezBrandon/status/1578035416376430592
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�Centralized Indexing Services
If we take the basic model of Source, Indexer, and Interface and strip out the requirement 

for decentralization, we end up with a Centralized Indexing Service, the third approach 

that we’ll discuss here. Centralized Indexing Services trade off decentralization for every 

other criteria in our rubric. They optimize for speed, developer experience, minimizing 

operational complexity, and reducing cost. This makes them substantially simpler to 

integrate initially and run over time.

There are plenty of such services already on the market. In fact, while I was writing 

this chapter, no fewer than three new venture-funded projects were announced.

Each of these platforms provides similar sorts of services: direct indexing services, 

webhooks, REST APIs, GraphQL endpoints, and SQL querying over indexed data. They 

support a range of layer 2 networks and have varying commitments to indexing speed 

and data availability:

•	 Moralis (https://moralis.io): A mature provider with a rich 

set of APIs

•	 Goldsky (https://goldsky.com): Well funded with a very compelling 

website and full The Graph subgraph compatibility; still in private 

beta (at the time of writing)

•	 NXYZ (https://n.xyz): Equally well funded, earlier stage, still in 

private beta (at the time of writing)

•	 0xfast (www.0xfast.com): A very early-stage project aimed at 

streaming lower-level data to consumers as quickly as possible

Even the node hosting services are getting in on the action: Alchemy, for instance, 

provides an NFT API that indexes and returns NFT metadata and a Notify service that 

sends webhooks based on certain on-chain triggers.

I think it’s fair to assume that the feature sets of most of these services will converge 

quite quickly. It is a hot market, and competition will be fierce. So choosing a centralized 

indexing service will come down to, mostly, cost and developer experience and broader 

considerations such as longevity (Is it well funded? Does the team look competent? Does 

the team look like they care?), customer support, and brand.
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One last time, then, our rubric is as follows:

•	 Speed and data freshness: Different providers will have different 

guarantees. But the ability to index data quickly, and serve queries 

to users quickly, is their core competency. Since they do not have 

to manage a decentralized network, these providers will be able to 

implement optimizations quickly, structure their indexing servers 

appropriately, scale effectively, and maybe distribute indexes across 

multiple geographies to minimize query latency.

•	 Developer experience: This is the trade-off to consider the most. 

How sensible is the API? How readable is its documentation? Does 

it integrate with existing tools you might be using – SQL queries, 

GraphQL – or does it require more frontend code to query? Do they 

provide a CLI tool for creating indexes, and can the indexing code be 

checked into your version control system? Do they provide libraries 

for React and any backend technologies you might be building with, 

and how frequently are those libraries updated? How much cognitive 

overhead will using this tool add to a developer on your team?

•	 Operational complexity: Centralized services minimize operational 

complexity as a matter of design; it’s their job to run the nodes, serve 

the queries, manage billing through traditional SaaS subscription 

plans, etc. You can expect a centralized service to present very few 

operational complexities.

•	 Cost: I also expect prices to converge as the product offerings 

converge. All of the services listed earlier offer – or suggest they will 

offer – a monthly payment plan that caps usage, similar to most other 

paid-for developer services. Each has – or will have – a generous free 

plan and reasonably priced monthly plans for products that exceed 

the usage parameters.

•	 Decentralization: These services are not, by design, decentralized. 

If the service goes down, your application will break. If the service 

is blacklisted, or censored, or banned, your application may lose 

its access.

Chapter 4  Contracts



166

Centralized Indexing Services sit at the sweet spot for most web3 indexing use cases. 

They provide fast and reliable access to data, a rich set of APIs, one or several interfaces 

to this data, and simple payment plans. Unless you have strong ideological objections to 

using a centralized service, or your indexing requirements are so esoteric that  

integrating with them will be as difficult as rolling your own, your life is going to be  

considerably simpler if you use one of these services over a decentralized or  

roll-your-own alternative.

�Final Considerations
The discussions earlier in this chapter illustrate, I think, how important it is to do some 

sort of indexing when building a product of any significant complexity. Some use cases 

won’t require it: a very simple frontend wrapper around a very simple smart contract can 

make do with querying a node directly. But the moment your frontend logic becomes 

more complicated – in particular, the moment you need to do any sort of aggregation 

or filtering and searching over the raw data exposed by the SC – the complexities begin 

to pile up. Abstracting this complexity away into an indexing layer is very often the best 

thing you can do for your code and your sanity.

It also seems quite obvious to me that outsourcing your indexing requirements to a 

third party is generally the best approach. Rolling your own is sometimes important: if 

you need the data in its raw format, if you need to process it in an idiosyncratic way, you 

may run up against their limits quickly. Decentralization is sometimes important: it is 

a matter of principle for some developers, and it is a matter of legal necessity for others. 

But my hunch, and my experience, has taught me that these sorts of use cases are few 

and far between.

Evaluate the trade-off rubric earlier against your own use cases, and consider what 

matters most to you. It is also worth inspecting the network requests of frontends that 

seem to do a good job at the things you care about. Is there a dapp you admire, with fresh 

data, fast loading times, helpful contextual information? Open up the Network tab in 

your web inspector. See what it’s sending and where. Count how often it polls the  

backend for changes. Get a sense of what sources it draws on and how it might combine 

them in application code.

On the margin, however, you should weight decentralization lower than other  

requirements. Different approaches will have varying levels of decentralization and,  

with it, varying levels of censorship resistance and trustlessness. I will make the case 
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elsewhere in this book (especially in Chapters 6 and 7) that decentralization is less im-

portant than the community typically thinks. This seems especially true when  

considering indexing. There is an aspect of vendor lock-in, but a lot of the centralized 

services provide standard interfaces such as GraphQL, which will make switching over 

relatively straightforward. If you need to trade away decentralization for speed,  

operational complexity, developer experience, and cost, my advice is that you should 

generally do so.

�Summary
In this chapter, we’ve described smart contracts in detail, modeling them as APIs and 

exploring how, with a bit of ingenuity and some good tooling, we can make sense of 

their interface without knowing much about the code. We’ve talked about ABIs, and 

they are the description of the API. We’ve talked about the limitations of smart contracts 

and how this pushes more responsibility onto the product. We’ve looked at the different 

types of state available to smart contracts and how they might affect our products. We’ve 

looked at EVM logs and the event abstraction. And we’ve looked at indexing, evaluating 

three approaches against a rubric of trade-offs. Finally, we’ve raised the question: Is 

decentralization worth it?

We’ll come back to this question in more detail in Chapter 6. In the next chapter, 

however, we’ll build upon the intuitions we’ve been developing over the previous few 

chapters and explore the testing, hosting, and deployment parameters for Ethereum 

products. In particular, we’ll get a sense of ways in which decentralization makes the 

product infrastructure layer more difficult. We’ll also see some creative ways around 

these difficulties.
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CHAPTER 5

Infrastructure
In previous chapters, we’ve focused mainly on the content of your application: the 

smart contracts that serve as your API, the sorts of UX considerations you should think 

about, and the decentralized network that sits underneath it all. As we turn to the final 

few chapters of this book, we’ll start to think more holistically about the relationship 

between crypto and products.

In this chapter, our last truly technical chapter, we’ll look at some important 

parts of the infrastructure – meant in a broad sense – that your product will rely on. 

Infrastructure, to me, means more than the servers hosting your website. It means the 

processes that underpin your product quality, which allow your product to live, grow, 

and thrive.

To that end, we’ll first look at testing, both automated and manual, and how this 

might be done. Second, we’ll look at hosting itself and sketch out some ideas around 

the trade-offs between decentralization and ease of development and maintenance 

inherent in hosting your application. And finally we’ll think a bit about fragility, sources 

of disorder, and how these concepts might affect the way you think about your products.

�Testing
Unit tests provide focused testing for your application’s business logic. The majority of 

your tests should be unit tests. Unit testing is easy in JavaScript, and mocking out the 

boundaries between your on-chain API and your frontend code makes it easier. You 

should also perform lots of manual end-to-end tests, because these tests provide robustness 

guarantees and expose you to the UX. You can use tools such as anvil to run a local fork of 

the mainnet. These manual tests need test setup. Creating files for test scenarios allows you 

to produce replicable, deterministic initial conditions for your manual testing.

© Jamie Rumbelow 2023 
J. Rumbelow, Building With Ethereum, https://doi.org/10.1007/978-1-4842-9045-3_5
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If there’s one thing that separates excellent products from the merely good, it is a 

rigorous approach to testing. Testing gives us reliability and empathy: reliability, because 

we can use automated testing techniques to reach code paths that are forgettable, 

infrequently triggered, or otherwise awkward to do manually; empathy, because testing 

forces you to consider the application from the outside view. Unit tests force you to 

specify and validate the requirements of individual blocks of code. Integration tests force 

you to specify and validate the requirements of the local system. And end-to-end tests 

force you to specify and validate the requirements of the user.

�Unit and Integration Testing
I’m a firm believer of the view that the vast majority of your tests should be unit tests. 

There are many, many benefits to writing unit tests as a core part of your development 

flow. It forces your code to be built up from small, composable units. It gives you strong 

guarantees about the essential logic of your product. It helps guide design: if testing a 

small unit is difficult, then it’s likely that your unit of code is too tightly coupled to other 

bits of your code, or that you’ve not done enough conceptual work figuring out what it is 

actually supposed to do. Most importantly, thinking about your code in terms of small, 

isolated units allows you to make bounded progress toward a product goal.

It’s also very easy to write good, small, composable units of code in Type/JavaScript, 

even when you’re working within a React application. JavaScript is an excellent language 

for this sort of testing, because it gives us lightweight functions and simple data 

representation structures such as maps/objects and arrays. Testing in JavaScript is cheap.

What, then, should we write unit tests for? There’s a simple version of the answer: 

our business logic. But “business logic” is one of those terms that people use to mean 

whatever they want it to mean. More practically, there are two key areas that we should 

focus our unit tests on:

•	 Logic that transforms data, such as parsing the result of a smart 

contract call and formatting it, preparing input values for inclusion in 

a transaction

•	 Logic that changes the program’s behavior, including user input 

validation, complicated UI state calculations (e.g., “if the user is on 

this page and is connected but hasn’t submitted, display X”)
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This is especially true if we’re writing a backend service or some sort of tooling. But 

it’s also true for our frontend code! Much frontend logic gets hidden within components 

and is only tested incidentally. In fact, the vast majority of the actual code that you write 

on the frontend falls into one of these two camps. But so much of the time, it rarely gets 

tested; we can do better than that.

In JavaScript, functions are cheap, so extract out the logic that would otherwise sit 

in useMemo calls into separate functions. These functions are pure – they don’t need to 

trigger side effects – so they’re the perfect candidates for extraction and unit testing. If all 

your components do is set up state and pass off responsibility to a set of small, discrete 

functions, you’ll have a lot more confidence in the logic implicit within them, because 

you’ll be making that logic explicit and tested.1

This gives us a program: move our logic for data transformation and program control 

flow out of the context of React components and into pure functions. For instance, 

consider a function that validates user input against some requirements within a 

component:

const [amount, setAmount] = useState("0");

const validation = useMemo(() => {

  const amountBn = ethers.utils.parseEther(amount);

  const checks = [

    {

      condition: amountBn.gt(0),

      error: "Amount must be greater than 0",

    },

    {

      condition: amountBn.lte(currentEtherBalance),

      error: "Amount must be less than your current balance",

    },

  ];

1 A previous version of this chapter had an example of how to turn a gnarly React component 
into a series of small, tested functions. I’ve cut it for space reasons, and because much of what I 
was writing about ended up being more about React than Ethereum, but feel free to email me at 
jamie@jamierumbelow.net if you want to see how this can happen in practice. Instead, I’ll show a 
small, isolated example.
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  const errors = checks.map((check) => !check.condition && check.error)

    .filter(Boolean);

  return {

    isValid: !errors.length,

    errors,

  };

}, [amount, currentEtherBalance]);

This is the sort of code that a million frontend engineers write every day. Set up some 

React state and check it against a set of criteria, returning both the computer-readable 

status – to, for example, disable submit on the form and change the border coloring to 

indicate an error – and the human-readable error message. What’s important to note 

about the validation logic here is that it is independent of the source of the data. It can 

therefore be extracted out into a separate function outside the component:

const validate = (values, context) => {

  const amountBn = ethers.utils.parseEther(values.amount);

  const checks = [

    {

      condition: amountBn.gt(0),

      error: "Amount must be greater than 0",

    },

    {

      condition: amountBn.lte(currentEtherBalance),

      error: "Amount must be less than your current balance",

    },

  ];

  const errors = checks.map((check) => !check.condition && check.error)

    .filter(Boolean);

  return {

    isValid: !errors.length,

    errors,

  };

};
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...and then tested using standard jest tests:

describe("validate", () => {

  describe("failures", () => {

    it("should return an error if amount is 0", () => {

      �const { isValid, error } = validate({ amount: 0 }, { 

currentEtherBalance: 1 });

      expect(isValid).toBe(false);

      expect(error).toEqual("Amount must be greater than 0");

    });

    �it("should return an error if amount is greater than current 

balance", () => {

      �const { isValid, error } = validate({ amount: 2 }, { 

currentEtherBalance: 1 });

      expect(isValid).toEqual(false);

      �expect(error).toEqual("Amount must be less than your current 

balance");

    });

  });

  describe("success", () => {

    it("should be valid if amount is less than current balance", () => {

      �const { isValid, error } = validate({ amount: 1 }, { 

currentEtherBalance: 2 });

      expect(isValid).toEqual(true);

      expect(error).toEqual(null);

    });

  });

})

...and then integrated back into the component:

const validation = useMemo(

  () => validate({ amount }, { currentEtherBalance }),

  [amount, currentEtherBalance]

);
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This approach also gives us a clearer sense of where there exists overlap between 

similar functionality in different components, allowing us to generalize our validator:

const validate = (checks) => (values, context) => {

  const errors = checks(values, context)

    .map((check) => !check.condition && check.error)

    .filter(Boolean);

  return {

    isValid: !errors.length,

    errors,

  };

};

...and then specify our checks for whatever component we want:

const validateComponentName = validate(({ amount }, { 

currentEtherBalance }) => {

  const amountBn = ethers.utils.parseEther(amount);

  return [

    {

      condition: amountBn.gt(0),

      error: "Amount must be greater than 0",

    },

    {

      condition: amountBn.lte(currentEtherBalance),

      error: "Amount must be less than your current balance",

    },

  ];

});

Our tests should still be valid when run against our new validateComponentName 

function.

Notice that none of the preceding examples needs to know about React state or 

about any live values from the blockchain. The useMemo call in our component will 

refresh whenever those values change. Our logic gets broken apart into small, discrete 
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functions that can be tested independently and recomposed in our component. We 

get robust, tested business logic and a component layout that is extremely easy to 

reason about.

Once we’ve separated our business logic into units and tested them with unit tests, 

we’re left with what Tony Kay calls “a loose bag of working parts.”2 This is already a good 

position to be in; we can do a lot with a loose bag of working parts! But we’ll want to 

ensure that these parts gel together nicely. We will therefore build upon our unit testing 

to also test the boundaries between the different components of our application. This is 

called integration testing and allows us to get closer to testing the entire system without 

having to test against a real backend.

Integration testing over Ethereum products is perfectly doable. If we can abstract 

the representation of transactions and on-chain data away from our UI – taking the sort 

of approach I suggested in Chapter 3 – then we have a well-defined boundary between 

the blockchain and our product. This enables us to mock out the node and test not only 

that the rest of the application works as intended but that it calls out to our data layer 

appropriately.

Mocking out our Ethereum requests can be reasonably straightforward: again, on the 

assumption that we have an abstraction layer between our blockchain calls and our UI 

code. We can do this for read requests by moving these requests into individual functions:

export const getBalance = (token, account) =>

  new ethers.contracts.Contract(

    token,

    ERC20ABI

  ).balanceOf(account);

export const getTotalAcrossPools = async () => {

  const poolOne = new ethers.contract.Contract(

    POOL_1_ADDR, PoolABI

  );

  const poolTwo = new ethers.contract.Contract(

    POOL_2_ADDR, PoolABI

  );

2 From his 2017 Clojure/West talk, “Testing Made Simple” (www.youtube.com/
watch?v=Odp0M39g-LM).
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  const [poolOneTotal, poolTwoTotal] = await Promise.all([

    poolOne.total(),

    poolTwo.total(),

  ]);

  return poolOneTotal.add(poolTwoTotal);

}

These functions then form the boundary between the on-chain stuff and product 

stuff within our application. They can then be mocked using the standard jest 

mocking tools:

import { getBalance } from './data';

import { utils } from "ethers";

jest.mock('getBalance');

describe('some business logic', () => {

  �it('should call getBalance and return the balance minus 1 eth', 

async () => {

    const account = '0x123...xyz';

    const value = utils.parseEther('2');

    getBalance.mockResolvedValue(value);

    const result = await callSomeBusinessLogic(account);

    expect(getBalance).toHaveBeenCalledWith(account);

    expect(result.toString()).toBe(

      value.sub(utils.parseEther('1')).toString();

    );

  });

});
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We will probably want to use our provider, and we may wish to use some user-

provided values. In this case, we can wrap our data requests in a lightweight dependency 

container:

export const data = (provider, currentAccountAddress) => ({

  getBalance: (token) =>

    new ethers.contracts.Contract(token, ERC20ABI)

      .connect(provider)

      .balanceOf(currentAccountAddress),

})

which can then be given to a React context in our application:

const DataProvider = ({ children }) => {

  const [data, setData] = useState({});

  const provider = useProvider();

  const account = useAccount();

  useEffect(() => {

    setData(data(provider, account.address))

  }, [provider, account.address]);

  return (

    <DataContext.Provider value={data}>

      {children}

    </DataContext.Provider>

  );

}

The broad strategy, then, is to apply the same techniques to integration testing as we 

do to unit testing, by making the testable unit something that spans multiple levels of the 

stack trace. This sort of approach can be extended further to support transaction objects, 

as in Chapter 3. It allows us to isolate the on-chain calls somewhere outside of the React 

environment, injecting in state-dependent runtime values where necessary. And the 

React context can be called within custom hooks to simplify the call sites. It’s a simple 

solution that scales reasonably well and avoids overengineering.
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There are more sophisticated approaches to mocking the data layer that involve 

mocking out the window.ethereum object or providing a mocked provider object to give 

to ethers.js. Tools such as web3-mock and mockthereum make this easier.3 But these 

approaches give us few benefits over this simple abstractive approach and increase the 

number of dependencies and moving parts in a way that I find inelegant.

�End-to-End Testing
Once we are happy that our business logic is behaving properly and that it integrates 

well with the other units of code in our frontend, we still need to ensure that the full user 

journey behaves properly. Why? Three reasons:

	 1.	 Unit and integration testing doesn’t ever verify that the smart 
contract does what our frontend expects it to do: These tests, 

by definition, isolate our code from the smart contract layer. 

The contract could return values of a different type from what 

we expect, or the implementation could have some strange side 

effects that aren’t captured by our integration tests.

	 2.	 There are lots of background facts that might matter: The 

contract could emit events or could rely on third-party contracts 

being in such and such a state. We need to be able to test how our 

product handles network failures and how our product handles 

transactions that take time to complete.

	 3.	 We want a good sense that the user’s experience is appropriate: 

Remember that testing is not just about correctness, it’s also 

about UX, and the only way we can check some of these fuzzier 

requirements is to get more shots on goal, to actually use our 

application as a user would.

So we’ll want to do plenty of end-to-end testing, too: testing that gets us as close to 

running the real-world application as possible. Some crypto teams are happy testing 

on the mainnet during development. This is a strange kind of masochism. It is slow, 

expensive, can be insecure, and most importantly won’t always be possible. A mainnet test 

3 https://github.com/DePayFi/web3-mock and https://github.com/httptoolkit/
mockthereum
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right before deploy, where appropriate, can provide you with the final jolt of confidence 

necessary to launch. But during development and QA, testing on the mainnet is likely to 

frustrate you – and therefore disincentivize you to test as much as you should.

If we are going to test our product end to end, then we need to test that the frontend 

integrates well with the backend and that the backend behaves as we expect. Because 

our backend is powered by Ethereum, it is an unstable target: the blockchain is an ever-

changing set of state transitions.

To perform these tests, we need a version of the Ethereum blockchain that we can 

test against reliably.

�Test Networks

One of the most powerful Ethereum testing tools you will ever learn is how to run a local 

fork of the mainnet. Running a local fork allows you to run contracts, submit transactions 

and view their receipts, control how blocks get validated (i.e., at what pace), call every 

function that exists on the mainnet, and modify the current state of the blockchain 

according to your whims. In short, it gives you the ability to simulate and alter the 

blockchain locally for essentially zero cost.

There are two important tools that allow for local forking which I will discuss here: 

the grand old stalwart of smart contract testing, hardhat, and the impressive new up-

and-comer, anvil.4 I use anvil almost exclusively, so the commands here will be anvil’s, 

although the underlying approaches are extremely similar.

We can run anvil by running the anvil command directly, no command-line flags 

required. This gives us an empty state and some test accounts with some ether:

$ anvil

                             _   _

                            (_) | |

      __ _   _ __   __   __  _  | |

     / _` | | '_ \  \ \ / / | | | |

    | (_| | | | | |  \ V /  | | | |

     \__,_| |_| |_|   \_/   |_| |_|

4 http://hardhat.org/ and https://book.getfoundry.sh/reference/anvil/; the latter is part 
of the foundry package, which we’ve discussed already. There are others too, such as Ganache 
(https://trufflesuite.com/ganache/).
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    0.1.0 (6d94a10 2022-11-04T00:17:06.152829Z)

    https://github.com/foundry-rs/foundry

Available Accounts

==================

(0) 0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266 (10000 ETH)

(1) 0x70997970c51812dc3a010c7d01b50e0d17dc79c8 (10000 ETH)

...

Private Keys

==================

(0) 0xac0974bec39a17e36ba4a6b4d238ff944bacb478cbed5efcae784d7bf4f2ff80

(1) 0x59c6995e998f97a5a0044966f0945389dc9e86dae88c7a8412f4603b6b78690d

...

Listening on 127.0.0.1:8545

We now have an instance of the Ethereum blockchain running locally. We can point 

our MetaMask at the 127.0.0.1:8545, import one of the private keys, and check the 

account’s balance – you’ll see it has 10,000 ETH (if forking made it so…). We can also 

point our frontend at this same URL and run queries and submit transactions.

Where this becomes especially useful, however, is when we add the --fork-

url option:

$ anvil --fork-url [[NODE_URL]]

This option instructs anvil to query our node for the current state and set our 

fork’s current state to whatever the most recent block is on the mainnet. It then proxies 

through to this URL whenever we request data that isn’t available on the local chain. 

If you fork the mainnet and switch your MetaMask to the local network, then check 

one of your actual accounts, you’ll see it has the same balances as you see when you’re 

checking Etherscan on the mainnet.

When forking the mainnet, anvil will still generate the test accounts, which allows 

you to interact with already deployed contracts using fake ether, locally. If you break 

something, or trigger an error, or make a bad trade, it won’t matter; you can just reset 

your fork and try again.
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If you are building a frontend against an existing set of contracts, this is very 

powerful. You can test your frontend in an end-to-end fashion to your heart’s content. 

It’s a little more awkward to test against contracts that aren’t already deployed; to do 

this, you’ll need to run a setup script to deploy the contract first. We’ll see an example of 

this later.

Some protocol teams deploy their contracts to a public testnet, either for internal 

testing or for public beta testing. In Chapter 2, I mentioned in passing that there aren’t 

many benefits to using a public testnet. The network’s performance can be slow, and 

your degree of control over contract state is small. There are also some security worries: 

anything deployed to a public testnet is, by definition, public, and your protocol 

team might not be eager to show off their work-in-progress bytecode to the hostile 

environment of a public testnet. I’d like to reiterate that here: public testnets will offer 

you nothing that a local fork cannot and in many cases will hold you back. You won’t be 

able to change the running smart contract state as you can with a local fork – and we’ll 

see an example of how powerful this capability can be shortly.

One potential benefit to using a public testnet is its public accessibility: people who 

can’t access your local computer can query the blockchain anyway. But you needn’t 

lose this public accessibility if running a local fork. Tools such as the excellent ngrok 

allow you to publish a local instance to a public URL, to which your frontends can 

then connect. If you run anvil with its defaults, it’ll spin up a local node on port 8545. 

Leaving that instance running, you can open another terminal window and run ngrok on 

that port:

$ ngrok http 8545

Session Status                online

Account                       Jamie Rumbelow (Plan: Pro)

Version                       3.1.0

Region                        Europe (eu)

Latency                       66.806375ms

Web Interface                 http://127.0.0.1:4040

Forwarding                    �https://22cc02fcedc6.eu.ngrok.io -> http://

localhost:8545

ngrok opens a tunnel between their public servers and your local server, running, 

in this case, on port 8545. The forwarding URL seen in the preceding output – 

https://4735935aeab6.eu.ngrok.io – will route any requests to your local fork.  
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You can then add this URL as a custom network in MetaMask and point your frontend 

to the same place. Similarly, other testers can add the same URL as a custom network in 

their wallet software, which allows all of you to test on the same fork, sharing the same 

state. As long as your terminal remains open and your computer remains connected to 

the Internet, you should be able to continue to test over a period of time.

There are, however, some gotchas to this approach:

•	 Your ngrok session and your local fork are both ephemeral. It’s 

very easy to close your laptop accidentally and kick everybody off the 

network, or close the terminal, or for some other reason lose your 

connection.

•	 Configuring both the frontend’s URL and adding new custom 
networks can be complicated, and the latter requires reasonable 

familiarity with wallet software. Each time you restart the ngrok 

instance, you’ll get a new URL.5

•	 Your local node will diverge from the mainnet quickly; if you’re 

developing with other contracts that you don’t control, you’ll either 

need to reset the fork regularly (which has its downsides; more later) 

or spoof the data using the anvil helper methods (which has its 

downsides; more later).

Fortunately, these gotchas can be worked around, more or less. You might, for 

instance, run an instance of anvil on a web server, giving it a permanent process 

and a permanent URL. (You’ll want to secure that server, of course, which might get 

challenging.)

Note T here are times when using a local fork can trip you up. If you’re testing 
against contracts that rely on oracles to read off-chain data, and the current values 
of those oracles need to update when you make state changes, then you’ll need to 
make sure that you run off-chain versions of those oracles. This can be extremely 
complicated. Do what you can to minimize the necessity: write tight, focused unit 
tests of the relevant frontend functionality and make sure the protocol is similarly 

5 ngrok’s pro plans support reserved forwarding URLs, so you can specify a permanent URL ahead 
of time, which can help reduce this complexity.
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tested; deploy an isomorphic contract to the same address locally, allowing you to 
override the values directly; factor in the expected difference between the current, 
invalid oracle value and the expected one. Defer to your protocol team on the best 
approach here. Unfortunately, this is much too complex a topic to cover in a book 
like this one.

So, using a local fork for the bulk of your end-to-end testing comes with many 

benefits, foremost of which is that you can control the state in a very fine-grained 

way. Let’s look into what “updating the state” means. Tools such as hardhat and anvil 

support a range of helper RPC methods that allow you to modify the network state 

and behavior at runtime. You trigger these in the same way that you’d call eth_call, 

eth_sendRawTransaction, eth_getBalance, or any other RPC method. The forking tools 

supplement these RPC methods with custom helper functions.

The full list can be found on the tools’ websites.6 There are three helpers, in 

particular, that we’ll focus on here: anvil_impersonateAccount, anvil_setStorageAt, 

and anvil_reset.

Account Impersonation

Account impersonation is a formidable tool. It lets you pretend to be another account, 

allowing you to bypass the normal signature checks that public blockchains require. This 

means you can submit transactions as this other user: move funds, gain admin access to 

contracts, make trades on their behalf.

We can impersonate an account in JavaScript with ethers.js using the provider 

request:

const addressToImpersonate = "0xd8da6bf26964af9d7eed9e03e53415d37aa96045";

await provider.send("anvil_impersonateAccount", [

  addressToImpersonate

]);

6 https://hardhat.org/hardhat-network/docs/reference#json-rpc-methods-support and 
https://book.getfoundry.sh/reference/anvil/#custom-methods; although anvil aliases the 
hardhat_ methods so they should be interchangeable.
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We can then fetch an ethers.js signer that allows us to sign on our impersonated 

account:

const signer = provider.getSigner(addressToImpersonate);

The transactions we sign won’t actually be valid – they’ll fail the normal 

cryptographic checks – but, since we’ve instructed our local fork to ignore these checks 

for this account, we’ll be able to issue transactions using it. We can, for instance, send the 

total amount of eth from our impersonated address to one of our test addresses:

const addressToSendTo = "0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266";

const vitaliksEth = await provider.getBalance(addressToImpersonate);

const tx = await signer.sendTransaction({

  to: addressToSendTo,

  value: vitaliksEth,

});

At the time of writing, vitalik.eth (0xd8d...045) has ~900 ether on the mainnet, 

so we should expect the ether balance of our test account (0xf39...266) to go up 

correspondingly. This might not seem especially useful, especially considering anvil 

already grants our test account 10,000 ether. But the same approach works for ERC-20 

tokens too:

const daiContract = new ethers.Contract(

  "0x6B175474E89094C44Da98b954EedeAC495271d0F",

  ["function transfer(address recipient, uint256 amount) returns (bool)"],

  signer

);

const vitaliksDai = await daiContract.balanceOf(addressToImpersonate);

await daiContract.transfer(

  addressToSendTo,

  vitaliksDai

);
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So we can fill our account with whatever tokens we want, without having to meddle 

around in the internal state of the contract.7 It’s a fast and elegant way to help set up 

some of your test environment locally.

While this is cool, it’s important to remember that account impersonation happens 

at the level of the node, not at the level of your frontend or your wallet. You can’t call 

anvil_impersonateAccount and then expect your frontend to use the account you’re 

impersonating (at least not without some messy runtime code contortions). This makes 

it suitable for setup scripts and for experimenting locally, but not for running automated 

tests with tools like Selenium.

Once we’re done messing around, we can tell anvil to stop impersonating the 

account:

await provider.send("anvil_stopImpersonatingAccount", [

  addressToImpersonate,

]);

Once run, calling methods with our impersonated signer should fail. We can create a 

helper method allowing us to wrap a callback with address impersonation:

const impersonate = async (address, callback) => {

  await provider.send("anvil_impersonateAccount", [address]);

  const signer = provider.getSigner(address);

  await callback(signer);

  await provider.send("anvil_stopImpersonatingAccount", [address]);

};

This helper method will make impersonating accounts less repetitive and ensure 

that our signer is reset after use.

7 You should, of course, find an account with enough tokens to meet your need at the block you’ve 
forked from, and impersonate that, rather than just hoping that Vitalik has enough. Etherscan’s 
token pages have a list of the largest holders, sorted in descending order.
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Setting State Directly

In some cases, impersonating an account will give us too coarse-grained access over a 

contract’s state. The underlying assumption is that some user somewhere can change 

some state, which relies on the contract actually giving that control. In other words, the 

contract needs to expose a method that gives this control. But for reasons we’ve already 

discussed, a lot of contracts don’t: Solidity doesn’t generate setters for variables by 

default, and values are therefore treated as private/protected until a protocol engineer 

explicitly adds a setter.

In these cases, if we want to modify the state of a contract, we’ll need to do so 

directly. This is possible because the state of a contract is public, and high-level 

languages organize this state in a predictable way.

Let’s jump into the bowels of the EVM for a moment and see what we can pull out.

We’ll look at the DAI contract (0x6b175474e89094c44da98b954eedeac495271d0f) 

because it’s simple, and we’ll play with the balanceOf mapping, because it gives us 

a chance to look at how mappings work. Make sure we have a fresh anvil instance 

running and ctc installed to follow along.8

In order to read from a mapping, we need two pieces of information: the mapping’s 

storage slot and the key that we’d like to read.

A quick glance at the contract shows that the balanceOf mapping takes up the third 

storage slot. Why? The first storage slot is taken by

mapping (address => uint) public wards;

There is then a list of constants:

string  public constant name     = "Dai Stablecoin";

string  public constant symbol   = "DAI";

string  public constant version  = "1";

uint8   public constant decimals = 18;

Solidity pulls out constants and stores them in the contract bytecode directly, not in 

the contract’s permanent storage. So we can discard them when calculating the storage 

slot. Next is a totalSupply variable:

8 The following code examples intermix ctc and cast calls. You can do all of this with one or 
the other, but I like to mix them: cast will automatically query the local chain if it detects it is 
running, and I find the ctc interface a little awkward. So we’ll get the best of both worlds and pass 
the results of one into the other.
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uint256 public totalSupply;

We can check that we’re on track by using cast to read the value of totalSupply, by 

passing the slot index (it’s the second slot, so the index is 1):

$ cast storage 0x6b1...d0f 1

0x00000000000000000000000000000000000000001271db3db4ea25616291855a

We get the 32-byte hex value of the storage slot at index 1. We can push this into ctc 

to read it as an integer:

$ ctc int $(cast storage 0x6b1...d0f 1)

5708374130948074453945386330

If we compare this with the totalSupply value in the “Read Contract” section of 

Etherscan, we see they are the same. Cool!

So we know that slot 1 is the slot for totalSupply. The next line of code in the 

contract is our balanceOf mapping:

mapping (address => uint) public balanceOf;

This allows us to conclude that the balanceOf mapping is stored at slot 2. Finding 

the correct slot index can be a little tricky. Since Solidity contracts can inherit from other 

contracts, you sometimes need to trace the contracts back through the inheritance 

chain, counting as you go. I haven’t been able to find a tool to make this easier, although 

you can get quite far from just reading the contract carefully, iterating through the 

various slot numbers, and seeing what looks to be plausible values.

We also need to decide on the key of the mapping that we want to query. 

The key is typed address, so we’ll use an Ethereum address we think is 

likely to have some DAI. Lots of accounts have DAI; let’s use Vitalik’s again 

(0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045).

In order to turn this key into a pointer to our value in the mapping, we need to 

perform a few steps. First, we need to pad our address and our mapping’s storage slot 

index to 32-byte hex strings:

$ ctc encode address 0xd8d...045

0x000000000000000000000000d8da6bf26964af9d7eed9e03e53415d37aa96045

$ ctc encode int 2

0x0000000000000000000000000000000000000000000000000000000000000002
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We can then concatenate them into a hex string, giving us

0x000000000000000000000000d8dA6BF26964aF9D7eEd9e0 

3E53415D37aA96045000000000000000000000000000000000000000000000 

0000000000000000002

We then need to run this through the keccak256 hashing function:

$ ctc keccak 0x000...002

0x85efa08969febcb72bd7c79e3795763c6a77762d27bd830f8777227bf55e86a3

If the hash contains leading zeroes, we’ll strip them out. This hashed 32-byte hex 

string is the key where our value will reside! We can then query this value on the contract 

using cast:

$ cast storage 0x6b1...d0f 0x85e...6a3

0x0000000000000000000000000000000000000000000075a22d004033dca95036

And convert it back to an integer:

$ ctc int 0x000...036

555508493698012633714742

If we then divide this by 1e18 (the number of decimals used by the DAI contract), 

we get 555508.49369801 – the amount of DAI that vitalik.eth holds! We can check the 

account’s Etherscan page to verify.

This process is a little arduous, but we can do it relatively simply in JavaScript using 

ethers.js:

const getStorageMappingKey = (

  storageLocation,

  key,

  types = ["address", "uint"]

) =>

  "0x" +

  ethers.utils

    .keccak256(

      ethers.utils.defaultAbiCoder.encode(

        types, [key, storageLocation]

      )
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    )

    .replace(/^0x0*/, "");

With this function, we can then query the chain directly using the eth_getStorageAt 

RPC method:

const key = getStorageMappingKey(

  2,

  ACCOUNT_ADDR

);

const accountBalance = await provider.send(

  "eth_getStorageAt",

  [

    TOKEN_ADDR,

    key

  ]

);

The same logic applies to setting these values. We can simply replace the eth_

getStorageAt call with anvil_setStorageAt and provide a 32-byte padded value. Let’s 

set Vitalik’s DAI balance on our local fork to zero:

await provider.send("anvil_setStorageAt", [

  token.address,

  key,

  utils.hexZeroPad("0x0", 32),

]);

If we now run our cast storage call again:

$ cast storage 0x6b175474e89094c44da98b954eedeac495271d0f 

0x85efa08969febcb72bd7c79e3795763c6a77762d27bd830f8777227bf55e86a3

0x0000000000000000000000000000000000000000000000000000000000000000

We get a zero! We’ve vanished vitalik.eth’s DAI balance by removing it from the 

contract entirely.

So, using anvil_setStorageAt, we are able to write the values of contract storage 

running on our local chain directly. It’s rare that you’ll need to do this during test setup, 

and it’s complicated enough that you’ll want to avoid it where possible. It’s also a bit of 
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a code smell, since it is messing with the inner data representation of the contract. Your 

job is not to test the contract, and you should always be wary of making changes behind 

the public interface, since this makes your tests vulnerable to code changes that you 

can’t control. But contracts are generally immutable, and the risk of running into such 

troubles is much less than if you were, for instance, writing directly into the database 

behind a web2 API. In some cases, you have no other option than to reach directly into 

the contract and modify its state; in those cases, this can be an incredibly powerful tool.

�Test Scenarios

When building complicated frontends with several user journeys and several branches 

within those user journeys, fiddling with the state in an unsystematic way won’t cut 

it. Many of these journeys will require several commands to set up the state correctly 

before each test run. You might need a token, deploy a new contract, fill your account 

with some of those tokens, and make a deposit: whatever is required to get your account 

in the beginning state to test a specific user flow. Some of these things may be on the 

mainnet already (e.g., the token), so will be inherited by our fork. But if the protocol 

is new, or if the changes we’re testing are yet to be deployed, or if we’re testing some 

edge-case regression, we might not have a contract, or a pool with the right amount of 

liquidity, or a user with the right amount of liquidity, already deployed and ready to use 

from the mainnet.

And even if we can rely on existing on-chain data, we still want a clean slate before 

each test run. On-chain data is likely to change, and we want to be able to test the 

scenario in the closest state possible to what it will look like when our product goes 

live. In other words, we want our tests to be as replicable and deterministic as possible. 

We’re unlikely to get our tests to be fully replicable and deterministic; there are just too 

many moving pieces when dealing with live contracts on the mainnet. This is one of the 

reasons why fully automated end-to-end testing is very difficult.

But we can get some of the way. What we need is a method to represent different test 

scenarios based on a well-known set of initial conditions. We can then use this account 

within this basic environment to test multiple user journeys several times over, giving us 

more confidence and exposing us to the user’s experience. What we want, in short, are 

fixtures.

The notion of a fixture will be a familiar one: fixtures are used in lots of testing 

platforms in web2 technologies. We use fixtures to specify our test setup and ensure that 

any preconditions our system might have are met. We can extend the notion of a fixture 
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into web3 end-to-end testing, using the tools we’ve already discussed such as ethers.js 

and the anvil_ helper RPC methods.

I like to put my fixtures in a test/scenarios folder within my application’s repository. 

This keeps the test code close to the application code, part of the same Git commit 

history. I then write my test scenarios as individual files, each representing a user story to 

be tested. Because we’re writing most of our application code in JavaScript, we can write 

our test scenarios in JavaScript too.

Each test needs to set up the on-chain state to reflect the state that the user will 

be in when they begin the user journey you are going to test. Let’s come up with a test 

example. We’re going to test a user story for a simple escrow contract:

contract Escrow {

    address public admin;

    address payable public receiver;

    uint public amount;

    constructor(address _admin,

                address payable _receiver) {

        admin = _admin;

        receiver = _receiver;

    }

    function deposit() external payable {

        amount = msg.value;

    }

    function withdraw() external {

        require(msg.sender == admin, "only admin");

        require(amount != 0, "amount is 0");

        uint _amount = amount;

        amount = 0;

        receiver.transfer(_amount);

    }

}
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We’ve not seen much Solidity, but this contract is relatively straightforward. 

Our depositor deploys the contract, giving it an admin (who is allowed to issue the 

withdrawal) and a receiver (who will receive the funds). Anybody can then move funds 

into the contract by sending it ether. At some point in the future, the admin can call 

withdraw() and the funds will be sent to the receiver account.

There are a few different user journeys here that we might want to test:

	 1.	 A failure case, when a non-admin tries to withdraw

	 2.	 Another failure case, when an admin tries to withdraw before 
anything has been deposited

	 3.	 A success case, when an admin withdraws a positive amount

In every one of these cases, we’ll need to deploy the contract and set the admin and 

receiver. In cases 2 and 3, we’ll want to test the admin’s behavior. In case 3, we’ll want to 

deposit some funds into the contract.

This describes the setup in technical detail, though often these user stories will be 

based on actual user goals and worded in nontechnical terms:

	 (1)	 As a non-admin, I want to try to withdraw funds from the contract, 

so that I can see that I’m not allowed to do so.

	 (2)	 As an admin, I want to try to withdraw funds from the contract 

before any have been deposited, so that I can see that I’m not 

allowed to do so.

	 (3)	 As an admin, I want to withdraw funds from the contract after they 

have been deposited, so that I can see that I’m allowed to do so.

The task of our testing scenario infrastructure is to convert those user stories into 

initial conditions from within which we can follow these stories. Since it’s the most 

complex, we’ll go for (3), the success case. What do we need to set up? Well, we need 

the contract. We’ll need to be an admin, so we’ll need to set the admin to one of our test 

accounts. And we’ll need to deposit some funds. Only then can the user actually go into 

our frontend and use the application to achieve the goal laid out in scenario (3).

Let’s create a test scenario file: test/scenarios/003-admin-can-withdraw.js. We can 

store our addresses, etc., in some constants at the top of the file; in more sophisticated 

setups, these could be imported from the process.env.

const ADMIN_ADDR = "0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266";
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const RECEIVER_ADDR = "0x70997970c51812dc3a010c7d01b50e0d17dc79c8";

Since our admin account is one of our test accounts with plenty of ether, we’ll just 

use that to do the deploys:

const SETUP_ADDR = ADMIN_ADDR;

Firstly, we’ll want an ethers.js provider pointing toward our local fork. We’ll also fetch 

a signer for our test account:

const provider = new ethers.providers.JsonRpcProvider("http://

localhost:8545");

const signer = provider.getSigner(SETUP_ADDR);

We can tell anvil to reset to the current mainnet block:9

await provider.send("anvil_reset");

In some cases, this can make our test setup more brittle: if we’re relying on other 

contracts to be in a certain state, then updating the current block could well break it. But 

this seems to me to be a bad antipattern: we should make our background assumptions 

explicit and, wherever possible, use our test scenario to set them up correctly.

Note E very time you reset your fork, you’ll need to reset your account in 
MetaMask too, to ensure that your nonce is reset. Subsequent transactions will 
increase the nonce, but resetting the fork won’t trigger a reset in MetaMask 
automatically. If you don’t reset MetaMask, your test transactions will be posted 
with a higher nonce than the network expects, and any transactions will get stuck 
in your local mempool until the nonce reaches the pending transaction’s nonce. 
This is an awkward and somewhat unavoidable complication of resetting your local 
state in this way.

9 At the time of writing, anvil_reset wasn’t implemented (though hardhat_reset is in the more 
mature hardhat tool). I expect it to be so in time for this book’s publication. If it isn’t, you’ll need 
to manually restart the anvil process before each test run.
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We can now deploy our contract. Let’s assume that we’ve compiled the contract 

using the forge tool and stored it in src/contracts/Escrow.json:

const Escrow = require("../src/contracts/Escrow.json");

const escrowContractFactory = new ethers.ContractFactory(

  Escrow.abi,

  Escrow.bytecode,

  signer

);

const escrowContract = await escrowContractFactory.deploy(

  ADMIN_ADDR,

  RECEIVER_ADDR

);

In the call to deploy(), we passed through the two constructor parameters: 

our admin address and our receiver address. Our escrowContract object is now an 

instance of ethers.contract.Contract, set to the newly deployed address and with the 

correct ABI.

Let’s send some ether to the contract:

await signer.sendTransaction({

    to: escrowContract.address,

    value: ethers.utils.parseEther("1.0"),

});

Finally, let's output the various addresses we used in JSON format:

console.log(

  JSON.stringify({

    success: true,

    admin: ADMIN_ADDR,

    receiver: RECEIVER_ADDR,

    contract: escrowContract.address,

  }, null, 2)

);
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Make sure we have an anvil instance running on localhost:8545. If we now run our 

script, we should see the output:

{

  "success": true,

  "admin": "0xf39...266",

  "receiver": "0x709...9c8",

  "contract": "0x2c7...ad2"

}

(You may see a different contract address, since contract deployment calculates 

addresses based on the deployer address and current nonce.)

I’ve added a success boolean, included the various addresses, and chosen to output 

in JSON so that, if we ever need to, we can parse it programmatically. We might, for 

instance, want to run this script via an npm script, pull the contract address, and update 

our frontend’s environment variables with the newly deployed address automatically.

For today, though, we’ll run it manually, grabbing the contract address from the 

output and putting it into our frontend. Since we’re using anvil, we can also check the 

contract’s balance using cast (cast will notice that we’re running an anvil instance locally 

and default to it):

$ cast balance 0x2c7...ad2

1000000000000000000

Perfect – it worked! We can also check to see whether our contract address has 

bytecode:

$ cast code 0x2c7...ad2

0x60806040523480...

Splendid. If we update our frontend, we can load it in our browser, import our test 

account into MetaMask – 0xf39...266; you can find the private key in anvil’s initial 

output – connect to this account in the frontend, and run through our test scenario.

Each time we want to run our scenario again, all we need to do is restart anvil, rerun 

the test scenario script, and reset our MetaMask account from the advanced settings 

panel. We’ll have a reliable, deterministic setup that allows us to test various user 

journeys of whatever complexity we need.
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If we find ourselves being repetitive, we can move some of the test setup into some 

helper functions and reuse it across scenarios. As you build your test infrastructure, 

you’ll spot all kinds of opportunities to improve the flow. Take them – the beauty of this 

setup is that it is extremely flexible and compellingly simple. If we need to impersonate 

accounts, fill them with tokens, set contract state, call functions, or even perform 

calculations, we can do so. The aim is always to get our local fork into such a state as to 

make it easy for us to test and retest in the browser.

So, we have a basic infrastructure for testing our contracts end to end. If the contract 

interactions are particularly gruesome, you can ask for help from the protocol team; 

they’re likely to use similar sorts of scripts for their own purposes.

End-to-end testing can be fiddly, but it is often rewarding. As I said at the beginning 

of this section, I think most of your testing should be unit tests. Some people wrap 

this up in a rule – the 70/20/10 rule: 70% of your tests should be unit tests, 20% should 

be integration tests, and 10% should be end-to-end tests – but given the increasing 

demands of these types of tests, it’s likely this rule will emerge seminaturally out of your 

behavior anyway. It’s a bit like Moore’s Law in that regard: a normative goal that falls out 

of the natural behavior of participants.

Regardless of how the numbers actually shake up, the most important thing is that 

you do write tests, and you do perform manual tests. I would like to be able to advocate 

for fully automated end-to-end testing, and the test scenario approach I’ve presented 

here gets us incrementally toward that goal. But today’s wallet software simply isn’t 

designed for this use case, and it will take some serious effort from wallet developers 

to make it so. So, for the meantime, we can automate the test setup, handle the test 

execution manually, and institute a deep cultural commitment to testing rigorously. And 

start lobbying wallet developers to give their wallets a programmable interface.

�Hosting
Once you’ve built your product, you need to host it somewhere. There are several 

approaches to decentralized hosting. IPFS gives you an important degree of 

decentralization, but actually achieving that decentralization can come with costs. The 

Malkovich deployment allows you to pass over hosting responsibilities to multiple people, 

giving some of the benefits of decentralization, at the cost of some security concerns and 

a natural limit to your application. Competitive frontends do something similar, but 

improve upon the Malkovich deployment with a smart system of incentives. All three 
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decentralized approaches make it challenging to run server-side code. Finally, remember 

that there’s nothing special about hosting web3 frontends: you can just do it as you 

normally would. Decentralized hosting is rarely worth the trade-offs.

You’ve built your product. It’s gorgeous, follows sensible UX patterns, and is powered 

by an underlying smart contract API. Taken all together, it adds meaningful value to the 

user by solving some important problems. It’s been tested, with rigor, lots of small unit 

tests, and a large suite of manual testing scenarios. You’re happy, nervous, and ready 

to deploy.

Doing so is another important infrastructure decision that you’ll need to make. 

It can be as easy as hosting anything else – running a server, using a cloud platform, 

or via a hosted platform such as Heroku, Vercel, or GitHub pages. Or, if you require 

a decentralized frontend, you’ll need to think a little more deeply about how to do it 

properly.

In the last chapter, we used a rubric of trade-offs to evaluate different indexing 

approaches. Let’s do the same thing with hosting. Our rubric is as follows:

•	 User experience: How easy is it to find your frontend? Can the 

user load your app by clicking through from a Google search? Is 

any special browser extension required? And is there an obvious 

way to integrate help, support, and monitoring to create a tight UX 

feedback loop?

•	 Developer experience: Can you deploy easily? Can you easily 

monitor various metrics of application performance? Is deploying 

automatable? Can you implement continuous deployment 

methodologies with this hosting strategy? How configurable is your 

hosting platform?

•	 Operational complexity: How difficult is it to keep the application 

running over time? What are the ongoing costs? And how easy is it to 

expand the remit of what your hosting platform needs to do?

•	 Decentralization: How decentralized is your hosting solution? Are 

there single sources of failure? Can the application be shut down?

We’ll sketch out three decentralized options and compare them against the 

centralized alternative. As with our discussion on indexing in Chapter 4, these are just 

sketches: this isn’t a book about decentralized hosting. But I hope that this section gives 

you a sense for the sort of technical choices you will need to make.
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�Decentralized Hosting on IPFS
IPFS is a peer-to-peer network that stores files in a decentralized way: files are addressed 

by hashing their content, and the network distributes parts of files across participating 

nodes. A user then requests the file, either by running a node directly or via an HTTP-

hosted gateway, which then fetches the various parts of the file, assembles them, and 

serves them to the user. This is, of course, a very high-level description of how it works.10

IPFS gets your frontend as decentralized as it is likely to ever be: the file is distributed 

in many parts across many nodes, it is immutable by design – due to its content-

addressing mechanism – and your files can be accessible from whichever node hosts it.

There are, however, three great problems with the current IPFS system as it pertains 

to those of us building real products for real users.

First, your users are unlikely to be running an IPFS-enabled browser or their own node. 

In order to serve files to them, you’ll need to use an IPFS gateway. These gateways are 

centralized providers that route requests through to the network and serve the underlying file 

content.11 Not the end of the world, but bad if you’re longing for maximum decentralization 

and can come with some UX complications. (Among other things, if you use a public 

gateway, your users will be routed through an unfamiliar and hash-laden URL.)

Second, IPFS runs no application server: it can only host static files. This means that you 

are not able to run any server-side code. This can severely limit the amount of off-chain work 

that you can do for your users and may limit the user experience you wish to provide.

Third, and most importantly, IPFS is not really a storage protocol. The great 

misconception of IPFS is that it is a big, immutable, global hard drive: once you store 

a file there, it is always accessible. This isn’t true in any meaningful way. IPFS is better 

thought of as a content routing and distribution protocol, one that understands how to 

get files across the network but not which files to store. It’s a peer-to-peer CDN (content 

delivery network). Which files to store is a matter for each node to decide. Moreover, the 

IPFS system has a pretty aggressive garbage collection system which removes unused 

files. So you need to incentivize nodes to “pin” your content to the network, keeping it 

both available and hosted in multiple places across the system.

10 How it actually works is fascinating and is another great example of the crypto space solving 
meaningful technological problems by assembling smart cryptography and networking 
primitives in a clever way. See https://docs.ipfs.tech/concepts/how-ipfs-works/ for more.
11 Protocol Labs, the core team of IPFS, offers a gateway at https://ipfs.io; Cloudflare has their 
own; Google Cloud allows you to provision a private gateway; there’s a full list of public gateways 
at https://ipfs.github.io/public-gateway-checker/.
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Pinning can be done by relying on a protocol such as Filecoin,12 which uses crypto-

incentives to keep files pinned, or through a centralized pinning service such as Fleek or 

Pinata.13 These providers pin files by running their own nodes and serve them from their 

own file servers (often hosting the files on Amazon S3). In order to pin easily, you’ll want 

to use a centralized service such as Fleek, which offers a familiar UI and CLI tooling, as 

well as an integration with GitHub that makes deployment straightforward.14 Otherwise, 

deployment means using incentive systems such as Filecoin or hosting your own IPFS 

nodes and running deployment scripts to keep the file pinned and served.

In light of all this, then, let’s evaluate this approach against our rubric:

•	 User experience: Most users don’t have a browser with IPFS 

support; IPFS gateway URLs are messy and unbranded (although 

services like Pinata or Cloudflare’s IPFS gateway service allow you to 

serve files from a custom domain over regular HTTP). The static file 

restriction means that your UX is limited to what you can build in the 

frontend and compute on-chain.

•	 Developer experience: Services like Fleek make the experience 

feel like normal; otherwise, the developer experience can be quite 

troublesome. You’ll need to manage a gateway, and nodes, and find/

manage/write deployment flows that build your application, host it 

somewhere, and pin it to an IPFS node that you’ll also need to find or 

run yourself.

•	 Operational complexity: The ongoing maintenance complexities are 

significant, unless, again, you’re using a centralized pinning service 

to handle it for you. It’s equivalent to running your own file server – 

or managing a system to incentivize others to do so on your behalf, 

which has its own operational complexities – and then distributing 

the file via IPFS.

12 https://filecoin.io/
13 https://fleek.co/hosting/ and www.pinata.cloud/dedicated-gateways
14 Uniswap’s frontend, for instance, is released via a GitHub Actions workflow and then pinned via 
Pinata. The app.uniswap.org domain itself routes via the Cloudflare IPFS gateway. See https://
github.com/Uniswap/interface/blob/e0767b1cb7a9ff7e93b58c63bc705432142f2fb4/.
github/workflows/release.yaml for an example of how deploys work at the time of writing.
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•	 Decentralization: IPFS is strongly decentralized, in the sense 

that the protocol’s rules allow file access from any node that hosts 

it, and nodes can be hosted globally. Gateways provide points of 

centralization, as does the pinning mechanism. You can use systems 

like Filecoin to work around some, but not all, of these constraints. Or 

you can use hosted services like Fleek, which make your system less 

decentralized.

So it looks as though IPFS is going to introduce a lot of complexity for any serious 

level of decentralization.

It’s tempting to think, as with our discussion of decentralized indexing in the 

previous chapter, that an improvement in tools will fix these problems. But some of them 

are inherent to the structure of IPFS: in order to keep a file pinned, there needs to be a 

pinning mechanism. Services like Fleek show us what these tools, when well designed, 

can look like – but this comes at the cost of relying on Fleek to continue to run their 

service and to do so honestly. We are also restricted in what we can host, and we end 

up relying on a centralized server to perform any server-side code execution that our 

product needs. Perhaps these are appropriate trade-offs. You will need to decide for your 

own case whether you think they are.

�The Malkovich Deployment
In the 1999 cult comedy film Being John Malkovich, the fictionalized John Malkovich 

goes through a portal into his own head. He steps into a room full of clones of himself, 

each of whom walks around and only says the word “Malkovich.” It’s a preposterous 

concept, but I think captures quite nicely an approach to deploying that gives some of 

the protections of a decentralized host, without some of the preceding trade-offs.

We’ll call this approach “the Malkovich deployment,” and it consists of two 

important steps:

	 1.	 Open source your frontend, or otherwise package it up in such a 

way as to make it easy for others to run.

	 2.	 Encourage others to run it on their own host, behind their own 

domain names.
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Step 1 is reasonably straightforward. You’ll need to parameterize your frontend 

properly: remove any secret API keys; move the node URLs into environment variables/a 

.env file; make sure that any links are generated using a configurable base URL; etc. 

You’ll need to write plenty of documentation and devise a path to provide updates (such 

as making it updatable and restartable via a git pull). And you should simplify the 

setup process as much as you can: write a script to install dependencies; enumerate any 

underlying software (such as node or nginx) and the appropriate versions; perhaps even 

include a Docker container so that the execution environment can remain stable and 

predictable.

Step 2 is a matter of marketing. You could pay individuals some money to run 

instances of your frontend on their own servers. You could encourage a strong 

community norm of participation and incentivize hosts with status. You could 

encourage some tasteful advertising to pay for hosting costs. Or you could run several 

different hosts, on several different hosting platforms, yourself – or all of the above. The 

goal is to get as many instances as you can deployed in as many different places by as 

many different people.

There are, of course, plenty of problems with the Malkovich deployment, the biggest 

of which is that you’re trusting others to not maliciously modify your frontend. This 

includes obvious attacks such as embedding malware, as well as more subtle changes 

that might be harder to detect, such as changing the contract address or a transaction’s 

properties. This can be a surmountable problem, though, by including various user-

facing integrity mechanisms, as well as some kind of community policing/moderation.

Another problem is that it only works if you’re able to execute step 2 effectively: in 

order to get the decentralization benefits, you need a critical mass of users to participate. 

A third problem is that deploys become extremely difficult: you need to coordinate 

between many different individual hosts and deployments, some of which will be more 

difficult to contact, or more reluctant to update, than others.

How does the Malkovich deployment fare on our rubric?

•	 User experience: The Malkovich deployment will only cause UX 

problems if none of the frontends are easy to locate. This can be 

averted by publishing a list of community-approved frontends, 

posting about frontends regularly in various fora, linking to them 

from other sources (such as community blogs and Twitter), and/

or hosting a server picker that redirects a user to a random frontend 

when visiting a URL. Otherwise, it’s just a website that users visit.
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•	 Developer experience: Deployment, monitoring, and configurability 

are necessarily curtailed by the structure of the Malkovich 

deployment. If you need to do anything complicated to host your 

application or anticipate frequent updates, it’s a nonstarter.

•	 Operational complexity: Most of the operational complexities are 

pushed onto the hosts, who, by definition, are not you, so in this 

respect it is not especially complex. But there may be ongoing work 

needed to source willing hosts, finagle them for updates, verify 

integrity and protect against malicious behavior, and publicize the 

existence of hosts. These are operational costs that can be kept down 

but may flare up, depending on your use case.

•	 Decentralization: Malkovich deployments give you quite a few of 

the benefits of a decentralized host: there will be multiple instances 

of the application running, on multiple hosting platforms, behind 

multiple domains. It will require a serious coordinated effort – or a 

huge stroke of bad luck – to take it down, so you can be confident that 

there will be some version of your site running as long as you (or your 

community) are there to incentivize it.

Not bad, if decentralization is what we’re going for, and our site is simple. If our 

product becomes more complex – if, for instance, we need to run some server-side 

code – we’ll need to start thinking very carefully about the developer experience and 

security considerations. We may be able to use integrity checks for our frontend, but 

once the application code is hiding, opaquely, behind an HTTP request, we’re going to 

struggle executing the Malkovich deployment safely except from within a strong trusted 

circle of known hosts.

I don’t know of any Ethereum products that use the Malkovich deployment. It was 

an idea that we devised, evaluated, and rejected at my last company. But, within certain 

parameters, it might be a smart and straightforward way to get some decentralization 

benefits without having to contort yourself around the nightmarish development 

processes of hosting on IPFS.
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�Competitive Frontends
We can extend the Malkovich deployment a little further and explore what might happen 

if we were to build a market dynamic into frontend hosting. We’ll call this approach 

“competitive frontends,” and it has some very desirable properties.

How does the competitive frontend approach work? You build some parameters into 

your protocol code that allows the contracts to track which frontend has routed a specific 

transaction to the protocol. You then incentivize the creation and hosting of those 

frontends by paying an account associated to that frontend based on their usage. This 

can be done on- or off-chain, with a token native to your protocol or something else such 

as ether or DAI.

You can combine it with the Malkovich deployment, packaging up the frontend as 

in Step 1 and encouraging other users to host it. You can abandon the idea of building a 

frontend entirely and allow others to do the work for you (although, if you do, you might 

have wasted some time reading large parts of this book!). Or you can meet somewhere in 

the middle, offering an SDK and some standard UI patterns that frontends can, but need 

not, use to speed up their development time and create some consistency.

The central benefit of the competitive frontend approach, as opposed to the 

Malkovich deployment, is that it gives a direct and simple incentive to play fairly, keep 

the frontend running well, and market the frontend to a user base. Competitive frontend 

hosts make more money when they increase the volume of transactions that go through 

their platform. You might, however, still want to do regular checks and only promote 

specific frontends that meet your stringent safety criteria.

There’s another important benefit too: the frontends are competing with one another 

for eyeballs and mouse clicks, which can encourage them to experiment and iterate 

with different user experiences and target different user bases. This allows there to be 

innovation at the frontend level driven by supply and demand, unconstrained by the 

specific vision of the core team.

Let’s see how it stacks against our rubric:

•	 User experience: Competitive frontends have the same basic UX 

constraint as the Malkovich deployment. Users will need to figure 

out what frontends are available, and which to use, although the 

incentives here are better aligned: it’s in frontends’ hosts’ interest to 

get more people using their sites, so they are likely to do a lot of the 

promotional work for you.

Chapter 5  Infrastructure



204

•	 Developer experience: Deployment, monitoring, and configurability 

are similarly curtailed by the structure of the competitive frontend 

approach as it is by the Malkovich deployment. If you’re providing 

a frontend to host, that is, if you allow hosts to build their own 

frontends, then your development requirements drop close to zero. 

You will need to integrate some tracking into your on-chain code, 

and this may or may not be aligned with the protocol team’s plans: 

have this conversation early.

•	 Operational complexity: Similarly, most of the operational 

complexities are pushed onto the hosts. You may want to do some 

ongoing work and provide a first-party approval/trusted list of 

frontends, which may take up some hours every month. But, as 

with the developer experience point, it is much simpler when it is 

somebody else’s responsibility.

•	 Decentralization: Competitive frontends give you all the same 

decentralization benefits of the Malkovich deployment, with one 

additional benefit: your frontend hosts are incentivized to better and 

improve their frontends, so you gain some of the idea-generative and 

quality-pursuing benefits of competitive decentralization, as well as 

the censorship resistance and network-wide reliability. A big win.

The Liquity protocol uses the competitive frontend approach with great success. 

Their website hosts a list of known frontends,15 and their contracts include a frontend tag 

that can identify the source of the requests. The frontend is then paid a pro-rata share of 

their LQTY incentive token, multiplied by a kickback rate that the frontend can choose. 

This seems to work rather well: their approved frontend list, at the time of writing, offers 

19 different options for using the platform, so the incentives seem to be encouraging 

individuals to host their own frontends and encouraging product teams such as DeFi 

Saver and Instadapp to integrate Liquity support in their apps. Liquity’s core team, in 

fact, don’t even run a frontend of their own.

So, of the decentralized hosting approaches, competitive frontends seem to be 

the strongest way to get your application hosted by a wide range of people. And, since 

they’re incentivized directly to make the system better, stronger, faster, and more 

15 www.liquity.org/frontend#frontends
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reliable, then you can expect your frontend ecosystem to remain strong. In exchange, 

you knowingly and deliberately give up your ability to dictate the UX. If you have visions 

for a beautiful, tasteful product, and you want to control the journeys that your users 

go through when using your protocol, this isn’t the approach for you. If the bulk of 

your conceptual work is in your protocol, and the frontend is merely being used as an 

interface, then maybe you could consider adding an incentive structure for hosting it.

�Centralized Hosting
Finally, then, we should evaluate a centralized approach. This is, essentially, no different 

from hosting any other website. You are responsible for the hosting technology choices, 

its uptime, or whether you’d like to hand over this responsibility to some hosting 

platform. Services like Vercel and Heroku make this easy, since you’re just hosting an 

application like any other. Cloud hosting platforms such as AWS, Azure, and Google 

Cloud Platform give you more flexibility, configurability, programmability, and choice. 

Or, in simple cases, you can throw it up on a static host such as GitHub pages.

There are obvious benefits to centralized hosting. Firstly, it’s a well-known problem. 

We’ve been hosting websites on centralized servers for as long as the Web has been 

around. Almost all the categories of tooling – servers, infrastructure as code, and CI/CD 

pipelines, to name a few – assume a centralized hosting approach. It’s a straightforward 

and legible set of problems with lots of talent and documentation aimed at getting 

it right.

Secondly, and crucially, centralized hosts support dynamic code. If hosting on a 

centralized server, it’s straightforward to add a server-side component. You can run a 

server-side language, such as Ruby, Python, PHP, or whatever else; you can serve your 

frontend via a mixed framework such as Next.js; you can even run an AWS Lambda 

function or use another “serverless” technology to power your backend. If you need to 

run a small indexing node, or a database, or provide integrations with some third-party 

web2 service, or even perform server-side rendering, this can be done with minimal fuss.

The disadvantages to centralized hosting are, essentially, the disadvantages of 

centralization. Your site won’t be censorship resistant. There will be single points of 

failure, unless you architect your system carefully. You’ll need to keep paying for your 

hosting bills and keep your domain names renewed. And it’s also, in an important sense, 

contrary to the stated longer-term goals of the crypto movement: if your company goes 
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under, then the interface to your protocol – which is likely to continue running – will 

become unavailable. Hosting on a centralized platform means that the buck stops 

squarely with you, for as long as people can expect to use your platform.

Another important thing to consider: A centralized hosting platform that you control 

does mean that you are responsible for your security posture. This is a blessing and a 

curse. A curse: Your responsibilities are higher, and you need to secure your own site 

security deployment processes. You may wish to have your frontend and hosting setup 

audited and will want to monitor deploys and changes closely. A blessing: You have 

one place to concentrate your security efforts. You don’t have to worry about verifying 

the frontend code that other people are running. The security parameters you need are 

within your control: you, your company, and your brand are responsible for maintaining 

the Principle of Trust, not other, unknown, people.

Of course, your security posture is always something you are responsible for, 

and the decentralized approaches we’ve sketched out earlier are no different in that 

respect. There will still be security vulnerabilities when using them, and these will 

still be attached to your brand, well within the purview of your commercial and moral 

responsibility.

For one final time, our rubric is as follows:

•	 User experience: There are no trade-offs here, other than the 

possibility that your servers go offline. You host and serve your site as 

you would any other.

•	 Developer experience: You can use robust infrastructure-as-code 

practices to consolidate your hosting environment into something 

replicable and well structured, or you can throw the files into a 

GitHub repository and host via GitHub pages. Different hosting 

platforms will have different developer experience constraints. 

Centralized hosting gives you all the same choices that you have with 

web2 applications.

•	 Operational complexity: Similarly, this is mostly a question of how 

sophisticated your setup needs to be. But, again, it is a well-known 

set of problems, and not something unique or idiosyncratic that the 

constraints of web3 place upon us.
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•	 Decentralization: There is, of course, no decentralization in this 

approach. You can get some of the benefits by serving your site via 

a CDN such as AWS CloudFront or Cloudflare or hosting it on a 

platform that provides high reliability via separated availability zones.

So the centralized approach is what it says on the tin: the exact same way you host 

anything else. There’s nothing distinctively crypto about this, because there doesn’t 

need to be. If you’re not looking for censorship resistance at the level of your frontend, 

and you are willing to take responsibility – for the availability and security posture – 

through hosting as you would normally, then there are no good reasons to not do what 

already works.

�Final Considerations
We’ve evaluated four different approaches here, three decentralized and one centralized. 

Judging by the performance on our rubric, the most viable decentralized approach is to 

integrate a competitive frontend mechanism into your protocol or host on IPFS using a 

centralized pinning system like Fleek. In both cases, your ability to run custom backend 

code that you control is severely compromised. You could merge the approaches by 

hosting a centralized API that the static, decentralized frontends can interact with, but 

this neuters the decentralization benefits: at that point, you might as well run the entire 

thing. If you want to control your user’s experience, build a beautiful, tasteful product, 

and be able to run any sort of off-chain code, it looks as your best approach is usually to 

host it yourself and forego decentralization at the frontend.

I’ll argue in more general terms, in the next chapter, that decentralization of 

frontends often isn’t worth it. But I hope this section has illustrated that there are options 

available, and if it is a priority, it is possible to do so. There are significant trade-offs to 

doing so, and this becomes clear when you consider that many of the best responses to 

“how do I host my site easily on IPFS?” are of the form “use some centralized service X.” 

The existing Internet has inherently centralized points: DNS servers, hosting providers, 

and browser vendors all have some greater or lesser degree of centralized control over 

the infrastructure that makes the Internet work.

The important question to ask, again, is “is decentralization worth it?” As I’ll argue 

in Chapter 6, there are times when the answer to that question is a resounding yes, but 

there are also many, many times when the answer is hell no. Does a decentralized host 

Chapter 5  Infrastructure



208

make your user’s experience better? Does it help them solve their problems better, 

easier, more efficiently, with less friction? In my opinion, if the answer to those questions 

is “no,” the benefits have a very high bar to clear.

�Fragility and Antifragility
Fragile systems suffer due to disorder, robust systems do not, and antifragile systems 

benefit from it. Crypto is full of disorder. Disorder emerges because of the properties of 

decentralized networks, constant innovation, the composability of protocols, the hostile 

environment, uncertain regulation, and cultural shifts. Products can be made more robust 

by considering robustness during development cycles. Centralized systems are typically 

more robust than decentralized systems, although that isn’t always the case. Products can 

be made antifragile by analyzing customer behavior and by constantly changing and 

adapting the product as the environment shifts. You are a part of the system.

In his 2012 book Antifragile: Things That Gain from Disorder, the heterodox 

economist and philosopher Nassim Nicholas Taleb asks what the opposite of “fragile” is:

Almost all people answer that the opposite of ‘fragile’ is ‘robust,’ ‘resilient,’ 
‘solid,’ or something of the sort. But the resilient, robust (and company) are 
items that neither break nor improve … Logically, the exact opposite of a 
‘fragile’ parcel would be a package on which one has written ‘please mis-
handle’ or ‘please handle carelessly’. Its contents would not just be unbreak-
able, but would benefit from shocks and a wide array of trauma. The fragile 
is the package that would be at best unharmed, the robust would be at best 
and at worst unharmed. And the opposite of fragile is therefore what is at 
worst unharmed.

This paragraph – and the rest of this excellent book – offers three different levels of 

fragility that a system might exhibit:

•	 Fragility: The system suffers due to disorder.

•	 Robustness: The system does not suffer due to disorder.

•	 Antifragility: The system improves due to disorder.

This chapter has been discussing various infrastructure questions about Ethereum 

products: How do we test our products? How can they be hosted? What sorts of 

constraints does decentralization place on potential answers to these questions? But 

infrastructure is about the set of services and facilities needed to allow a system to 
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endure. This includes your development processes, and so this seems like a good place 

to consider the notion of fragility in crypto. Since this is a book about products, we’ll be 

thinking about fragility, robustness, and antifragility in terms of the products you build 

on top of Ethereum, but we’ll also gesture toward how this might affect the protocol 

layer too and the other technical and socioeconomic layers that turn the product from a 

bunch of code to a constellation of services and value-creating behaviors.

�Sources of Disorder and Fragility
Before we can consider how to make our systems robust and, ideally, antifragile, we 

must first understand what makes them fragile. Fragility, in my gloss of Taleb, refers to 

the property of a system such that it suffers within environments of disorder. Crypto is 

an environment of disorder, from the lowest technical level to the culture that permeates 

its development and marketing cycles. In what ways does this disorder emerge; what are 

the sources of a crypto product’s potential fragility?

Let’s look first at some sources of disorder that we’ve already discussed:

•	 A user’s interface – their wallet software as well as their browser – 
is not something that the product can control. Wallet software is a 

highly competitive and changing space, and different vendors take 

different approaches to solving for different user flows. Disorder 

emerges at the interface between the app and the wallet and at 

the moment the user is taken away from your environment to sign 

transactions. Furthermore, this interface is changing over time, as 

wallets become more advanced.

•	 Ethereum smart contracts are run on a decentralized network, where 

requests to compute are evaluated against competing requests 

in a dynamic market and where the results of these requests can 
be challenged and take time to be confirmed. These network 

dynamics exhibit disorder because it is close to impossible to 

predict how long a given request will take to emerge into a state of 

consensus.

•	 Contracts are often built by composing on top of one another. This 

means that the contracts that underlie your product could change, 

or their state could be modified in some way that your product 
doesn’t expect.
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•	 Gas prices are dynamic in a way that makes pricing transaction 

costs ahead of time rather difficult. If your product is relying on 

high volumes of transactions, then small changes in gas prices 

might present severe disincentives, changing your user’s behaviors. 

Can your business model sustain a prolonged period of network 

congestion and high transaction costs?

•	 Indexing layers present another level of abstraction to worry 
about: Does your data arrive in time to meet your frontend’s render 

cycle? Is it fresh enough to make your system useful/not a violator of 

the Principle of Trust?

•	 Decentralized hosting services complicate and compound the 
uncertainty in your deployment processes and the user’s connection 

to your application, but also reduce a single point of failure.

In the previous four chapters, we’ve seen how some of these sorts of constraints can 

enmesh your application in webs of uncertainty, and we’ve explored the trade-offs that 

you can make to reduce it. But there are many other technical sources of disorder that 

Ethereum products must reckon with. Some examples are as follows:

•	 Hacks and smart contract vulnerabilities can force protocols to 
be paused or their state – for example, values such as TVL, expected 

interest rates – to move out of predictable ranges.16

•	 There are infrequent hard forks of blockchains such as Ethereum, 

and sometimes – for example, after the recent Proof of Stake 

upgrade – it means that your product may have to handle new 

networks or tokens that you hadn’t expected.

•	 Some transactions can be subject to race conditions, where the 

ordering of how those transactions are included within blocks – 

something you can’t control – can matter hugely.

As well as some other, nontechnical sources of disorder

16 This specific problem bit an old colleague of mine recently. When the Audius Project 
halted the contracts in response to a vulnerability (https://twitter.com/AudiusProject/
status/1551026771838914560), they turned off all functions, including balanceOf. My 
colleague’s internal script had assumed that this function was always available, which, when it 
wasn’t, broke his system.

Chapter 5  Infrastructure

https://twitter.com/AudiusProject/status/1551026771838914560
https://twitter.com/AudiusProject/status/1551026771838914560


211

•	 Market movements: The composability of crypto means every token 

will eventually become a market. And introducing market dynamics 

to a system that doesn’t expect them will change how that token is 

bought, sold, and therefore used. We’ll see how this corrupts the 

governance aspects of product building in crypto in the next chapter. 

But this affects products directly, too: if the price of ETH goes up 

quickly or crashes by 80%, your product may need to handle sudden 

spikes in load or a different set of usage patterns.

•	 Regulatory changes: New laws – or new interpretations of old laws – 

could affect how your users onboard, the range of actions they are 

able to perform, or the sorts of compliance requirements that you 

need to implement in order to run your product legally or increase 

the costs of building or using it in some other way.

•	 Cultural changes or meme shifts can change how your users use 

and conceive of your product in sudden and often violent ways. In 

the summer of 2020, Uniswap faced a “vampire attack” from a newly 

competing protocol, SushiSwap, which dragged huge amounts of 

liquidity away from the former and forced Uniswap to change their 

product road map and launch the UNI token to stem the tide.17

In a world of composable, trustless protocols, a set of norms that encourage 

innovation, and a hostile environment, every new change can present a form of disorder. 

Much of this is impossible to predict or build around; at least some of it is inevitable. But 

there are things you can do to build robustness, and perhaps even antifragility, into your 

product.

�Robust Systems
There are some general approaches to buttressing the robustness of your products, 

giving them greater facility in dealing with these many and varied sources of disorder. 

Some of these will be familiar from both our discussions in this book and from your 

experiences in web2:

17 See https://phemex.com/blogs/what-are-vampire-attacks-in-crypto for more on vampire 
attacks.
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•	 Write lots of tests! Structure your code in a way to make it easily 

testable, from automated unit tests of core functionality through to 

a wide range of manual testing scenarios. Run your tests at different 

times and upon different states of the blockchain.

•	 Expect unanticipated user input and therefore validate and 

handle this input. Understand the values that your smart contract 

API requires, supports, and disallows; and understand what is an 

appropriate range of values. Use warnings and errors to guide the 

user toward input that you can handle. Be paranoid.

•	 Build for flexibility, so that it’s possible (and ideally easy) to change 

how your product works as the underlying context changes. Use 

feature flags to allow you to switch parts of your product on and off 

and roll features out to users incrementally.

•	 Use best practices around techniques like caching. Ensure you 

can readily expire caches and that you keep an eye out for data drift. 

Always be ready to rebuild your caches (including your indexes) from 

scratch.

•	 Don’t trust code you didn’t write, including the API – the protocol – 

that you’re integrating with. Parse its error messages, read its code, 

format its inputs, and put layers between the contract’s surface area 

(the smart contract calls you make) and the user’s surface area (your 

UI). Third-party APIs could rate-limit or even switch off access from 

your application. You’ll need to decide whether that is an acceptable 

trade-off to make in exchange for reduced code complexity. To help 

with this decision, consider how the incentives are aligned: Are you 

paying somebody for a continued service?

These approaches, taken together and applied broadly, will get you fairly close to a 

robust system. But there are crypto-specific problems you’ll need to address, too, with 

their own concomitant approaches to robustness:

•	 Rely on community standards when dealing with crypto 

infrastructure (but don’t trust wallet software, nodes, or any other 

participants to follow them). We’ll discuss standards more in the next 
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chapter, but the takeaway here is to use them, follow them, promote 

them, and suggest improvements. Standards making is a community 

activity.

•	 Implement UI and rely on UX patterns to stabilize the user’s 
experience across the various forms of network uncertainty, guiding 

them through it while minimizing assumptions about processing 

time, finality, and similar concepts. Where possible, reduce the 

number of decisions the user needs to make, and build UI that is able 

to abstract away that uncertainty and render it certain.

•	 Spend time with the protocol team and ask questions about what 

sorts of black swan events your protocol code – and the economic 

system it models – will be vulnerable to. If you can build around these 

vulnerabilities in your product, even better; but just understanding 

them will give you a leg up when the problems begin.

•	 Cultivate a sense of purpose, both within your team and your 

broader community. Focus on building a product that solves a user’s 

problem, rather than just getting a notoriously fickle and self-serving 

hostile environment excited for a hot second. If you are adding value 

to your user’s lives in a sustained and legible way, you can weather 

many changes in fashion and shifts in norms.

Finally, consider how decentralization can affect your robustness, especially 

with respect to regulatory changes. If you centralize some of your business processes 

and have some centralized control over your product, you’re more likely to be able 

to move quickly, be flexible, and have a clearer regulatory starting point. (There are 

reasons to disagree with this take, but it’s ultimately a question of how much risk you’d 
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like to expose yourself to, and centralizing your basic legal entity and basic product 

development and deployment procedures does seem to give you more optionality to 

adjust to a changing regulatory regime.)18

Robustness, then, is something that you work toward through good development 

practices. It’s something you need to think about before and during your product build; 

it deserves time spent in the hammock, not just time spent at the terminal. It’s something 

that you can engineer through paranoid programming and rigorous testing. It’s a 

property of your processes as well as your product. And it’s something that you will have 

to cultivate. Crypto will force robustness upon you, or you will die.

�Antifragile Systems
We have done a quick survey of the sources of the disorder your product might have 

to endure and some ways to make your product robust to this disorder. But Taleb’s 

trichotomy goes one step further: antifragile systems are more than robust. They benefit 

from variability. When disorder occurs, they get better.

We can apply similar thinking to product engineering on Ethereum. What sort of 

characteristics does an antifragile Ethereum product have?

•	 A robust and improving interface that gets better when it’s used 

in unconventional ways. You can achieve this via an explicit goal 

of multiple frontends that we incentivize for, as in the case of this 

chapter’s “Competitive Frontends” section – and then let the market 

develop frontends for your ever-growing use cases. Or it can be 

something that we can encourage more gently: publishing our  

ABIs and core data model as an npm package, as we discussed in 

Chapter 4; standardizing the basic transaction flow; coding basic user 

18 You could, of course, follow the crypto-libertarian meme of “become ungovernable”: 
decentralize your product maximally and remove the ability of a regulatory body to censor your 
product. But this approach is unlikely to be sustainable forever. As Matt Clifford says, the physical 
is stubbornly persistent; you, the nodes you rely on, the servers that validate your blocks and 
serve your frontends, the fiat on-ramps that provide the ecosystem with liquidity, and the pipes 
that connect them altogether need to be located somewhere. Until the nation state looks very 
different, you’d be wise to remember that. You can also exploit the differences in competing 
regulatory regimes: if a particular polity has a more stable or flexible relationship to crypto, you 
could consider basing your operations there; regulatory arbitrage! Regardless, none of this is 
legal advice.
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flows around our core functionality and then exposing, perhaps via an 

“expert mode” toggle (as, e.g., we discussed in Chapter 2), whatever 

configuration options are required.

•	 Feedback loops that nudge demand around relative to supply. 
Consider the problem of network congestion. An antifragile system 

could alert the user that the network is congested and, where 

appropriate, advise them to submit their transaction later (turning 

the disorder of network congestion into a trust-preserving property of 

your product).

•	 Independence: An antifragile Ethereum application is characterized 

by its independence from other parts of the ecosystem; it protects 

users against changes to the protocol layer, to the lower transaction 

layer interfaces, to the hosting environment, and to the wallets 

they use. It is composed of a set of loosely coupled components 

that can be upgraded, replaced, or reused as needed, with minimal 

disruption. It uses simple abstractions built upon minimal 

assumptions.

•	 Transparency: An antifragile Ethereum product benefits from the 

public nature of the blockchain by allowing the user’s data to be 

readable and exportable in a transparent way. If a use case emerges, 

or some disorder creates access problems, the basic mechanisms 

of accounting and the data required to recreate them are available 

outside of the product.

What is common about these characteristics is that in order for the system to 

improve, its developers need to be monitoring its usage, adjusting and revising the 

interface. There should always be a human in the loop. It’s much too easy to treat an 

interface as a wrapper around a set of known behaviors of a protocol: the protocol lays 

out how it can be used, and you build an interface around those behaviors.

But this is not the way to build an antifragile product. Instead, you should be 

observing how your users interact with the protocol. Use analytics to track in-app user 

behavior, keep an eye on the pieces of dependent on-chain state, and wrap them up into 

a feedback loop that helps drive your product road map.

The hashtag is a helpful example of this sort of feedback loop in action. The hashtag 

emerged organically out of user behavior: originally, Twitter did not support hashtags 
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in any meaningful way. Users began to include them as a way of categorizing content 

(and, subsequently, as a mechanism for comedy and meme creation). As they became 

more popular, third-party developers began to implement tools that could read and track 

these tags’ usage. Over time, first-class support for hashtags was introduced into the 

Twitter UI. This helped drive more usage of hashtags, which brought more power to the 

third-party tooling, which incentivized Twitter to increase its native support. A virtuous 

cycle formed until the variability of usage started to stabilize. Ahead of time, it would 

have been hard to predict that users would add strings of characters to the pound symbol 

(“#”) and that this would become a way to add structure to tweets. But it happened, and 

the Twitter team was then nimble enough to understand and respond to this emergent 

use case.

Because crypto protocols are much easier to access and can be built upon by third-

party developers – that is, they are permissionless and composable – you can expect to 

see such emergent behavior from your own users. If your protocol provides value, and if 

it is being used by any serious number of people, you will see patterns of behavior and 

custom integrations that you would never have expected, often in a very short time from 

launch. Adapt and change your frontend as such behaviors emerge. Even if your product 

doesn’t give rise to hashtag-like pieces of emergent user behavior, the system in which 

your product sits – the Ethereum ecosystem – is sufficiently chaotic that you will benefit 

from being on top of all this, and being ready to adjust, even if that means killing your 

more sacred cows.

Your product, in short, should be a living, breathing thing, something that not only 

permits users to interact with the protocol but informs, shapes, and sometimes limits 

how the protocol can change. Your system can only be antifragile if you are a part of it. 

You will need to be there to change, sometimes radically, course-correct, or otherwise 

adapt. But even if you aim for antifragility, miss, and hit robustness, it was still a 

successful process. You’ve built something to weather the storm. And, if you’re building 

in crypto, you can be sure that a storm is coming.

�Summary
At the beginning of this chapter, we looked at testing. I gave a description of how I like to 

design and test my Ethereum code, by building up lots of small, discrete, pure functions 

to encode business logic (which can then be tested via standard unit tests) and then a set 

of end-to-end test scenarios supported by setup scripts.
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We then talked a little bit about hosting. We explored some approaches to 

decentralized hosting, including IPFS, and saw how decentralized hosting forces us to 

incur various costs and restrictions. We compared this against a centralized hosting 

approach, which comes across rather favorably (if we don’t feel the need to decentralize 

our frontend, that is).

We concluded in the last section by looking at how our products might exhibit 

fragility and where the sources of that fragility might come from. We looked at Nassim 

Nicholas Taleb’s notions of robustness and antifragility and considered how our products 

might exhibit these properties.

In the next chapter, our final chapter before the conclusion, we’ll start to bring 

all these threads together. We’ll evaluate decentralization properly, exploring it as a 

spectrum. And we’ll think about standards and how they affect Ethereum development 

over time. Once that’s done, we’re nearly home.
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CHAPTER 6

Decentralization
By now, we’ve seen how Ethereum’s idiosyncratic execution model presents challenges 

for people trying to build products. A lot of these idiosyncrasies come from the 

decentralized nature of the Ethereum blockchain. And a lot of these idiosyncrasies do 

not serve the best interests of our companies, our products, and most importantly our 

customers. We need to rethink what decentralization means in practice, face some harsh 

truths, and be more flexible and open to centralization where it is suitable and useful 

and aligned with our goals. In this chapter, we’ll step away from the technical focus 

of previous chapters and instead consider how decentralization affects building with 

Ethereum.

�Decentralization Is a Fetish
Crypto-skeptics and crypto-fanatics tend to use an implicit assumption of maximal 

decentralization. Most people don’t actually want decentralization; their goals are 

prior to decentralization. Decentralization is therefore a helpful meme, but ultimately 

a fetish, born from confusing the ends with the means. Decentralization is a spectrum, 

not a binary, and a multidimensional spectrum at that. The network, computation, 

data, indexing, and the rest of the application layer can all be more or less decentralized. 

Decentralization at the network level is good. The fact of potential decentralization can be 

powerful too; counterfactual decentralization is an important property. Decentralization 

can therefore be a backstop against some of the larger problems with centralized systems, 

without forcing us to be centralized where it is unnecessary.

When you ask a crypto-skeptic what decentralization means, they offer these sorts of 

properties:

	 1.	� Many nodes are run across many jurisdictions; products run in 

a way that can’t ever be shut down or censored.
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	 2.	� Individuals can access the system for whatever nefarious 
purposes1 they wish, without the need for AML/KYC checks.

	 3.	� Power is completely diffused rather than concentrated in any 

one party; therefore, no individual party is responsible, legally 

speaking.

These sorts of conditions refer to what I’ll call maximal decentralization. 

Maximal decentralization is a description of a system such that that system is 

maximally decentralized in every way possible (up to whatever point of diminishing 

marginal returns seems appropriate). It is a point on the decentralization spectrum. 

Decentralization itself is a property of a system such that the system can have more or 

less participation, more or less accessibility, and more or less diffused power.

This might seem like a meaningless semantic distinction, but of course not all 

semantic distinctions are meaningless, and some are indeed important. How we define 

our terms matters, because it determines the shape of what we build and gives us criteria 

against which we evaluate our success. Moreover, if we disagree over what we mean by a 

term like “decentralization,” we end up arguing fruitlessly. We exchange claims and both 

sides miss the point. So we should define our terms!

A lot of crypto-fanatics also believe, somewhat reflexively, that we should be aiming 

for maximal decentralization. The worst crypto-fanatics are just as ideological as the 

worst crypto-skeptics. This is a problem. People shouldn’t be fanatical.

For almost every category, maximalism is bad. It ties you into a priori commitments, 

which reduce your optionality and cripple your ability to adjust to new facts. Strong 

beliefs are important, but they should generally be held weakly. It also makes you much 

more likely to act tribally. Humans are tribal, and “decentralize everything” can become 

a rallying cry, a standard around which troops array for battle. It makes technical 

questions political, and politics is the mind-killer.2

Crypto people shouldn’t be fanatical, because computing is the art of the science of 

trade-offs, and “decentralization” gives us a lot more room for maneuver than either its 

critics or fanatics seem to allow. Trade-offs are useful, and understanding the trade-off 

space is most of the work.

I suspect that crypto people don’t actually want decentralization per se, because 

when you ask why decentralization matters, you get answers like

1 https://twitter.com/SGBarbour/status/1528432799941808130
2 www.lesswrong.com/posts/9weLK2AJ9JEt2Tt8f/politics-is-the-mind-killer
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It makes the technology more accessible and more censor-resistant. It gives 
broader access to more people, especially those less well-served by existing 
financial infrastructure.

This means that their motivations are prior to decentralization. They want 

accessibility, not decentralization. They want censorship resistance and greater equality 

of opportunity, not decentralization. Decentralization is the means to achieve these 

goals, not the goal itself.

We also want other things. Decentralization means more competition, and 

more competition means more innovation: diversity is good – let a thousand flowers 

bloom! The ideas being generated and built upon by the crypto community are 

not commodities: they are meaningfully new contributions to a meaningfully new 

technology stack; we get more ideas when we have a more competitive space, and we 

get more competition when people are able to use the technology and gain access to the 

liquidity needed to prove the new ideas out within a real market.

So what we want is better, more accessible technology. Technology that is able to 

iterate faster and benefit from the combinatorial effects of an open and often open 

source development model. Technology that is not gate-kept and can be used and built 

upon by anybody who wants to do so.

This reveals a kind of fetish held by many in the crypto community, an error 

of thought caused by confusing the ends with the means. This is the fetish of 

decentralization: the belief that we want decentralization for its own sake, not because it 

gives us an environment in which we can achieve the goals we actually care about, but 

because it matters simpliciter.

In the Ethereum community, decentralization is as much a cultural phenomenon as 

it is a technological decision. But this cultural commitment to maximal decentralization 

is restrictive. It forces us to make significant trade-offs in product quality and encourages 

us to reason about our products in technical terms, rather than in terms of our users and 

their goals. It precludes many sensible design decisions, increases the operational costs, 

and, in many cases, makes the broader experience worse. And because it’s deeply rooted 

in the cultural substrate of the technology, it is a hard thing to change.
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In order to break away from this fetish, we need to think about decentralization in a 

more flexible, yielding way. We need to reconceive of decentralization as a set of trade-

offs that are made in support of our actual goals – accessibility, censorship resistance, 

competition, composability; most of all solving problems for users – without holding 

ourselves hostage to its demands. We need to give ourselves more flexibility, on the one 

hand; and, on the other, stop giving our opponents a stick with which they can beat us.

�Decentralization Is Multidimensional
Decentralization isn’t a binary state. Systems can be more or less decentralized. When 

we have arguments about whether a system is decentralized, what we’re actually arguing 

over is whether a system is decentralized enough.

But this raises a really important question: Decentralized enough for what?

There isn’t a single answer to this question. It depends entirely on what kind of an 

application we’re trying to build and what sorts of problems we’re trying to solve for 

our users. We are building products, not technology, and these products have different 

audiences and aims. The technological decisions we make, the properties we’re going 

to optimize for, are a function of our product goals, not the other way around. In order 

to understand the decentralization spectrum, then, we first need to think about what we 

actually want. What are we building? What sorts of properties do we want our product 

to have?

Once we have a clear idea of our product priorities, we can then decide where on the 

decentralization spectrum we wish to sit. But in order to do that, we need a better idea 

of what sorts of decentralization we can choose between. What are the dimensions of 

decentralization?

�Dimensions of Decentralization

There are different dimensions of decentralization, different layers of the product 

and technical stack that can be more or less decentralized. As this book, I hope, has 

made clear, there are lots of ways to decentralize your product, some valuable, some 

unimportant, and all conditional on your product and commercial priorities.

The first, and an obvious dimension of decentralization, is a decentralization of 

computation. Much of this we get “for free” by choosing to base our application on 

Ethereum. We may, in some instances, wish to move some computation off-chain. If we 

are building a complicated trading strategy, for instance, we might perform quite a lot of 
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the computation off-chain and only flush the results of that computation on-chain when 

we actually wish to trade. What are the trade-offs here? Speed, since the EVM is not a 

fast execution platform, and gas costs, since the more computation we put on-chain, the 

more we’ll have to pay for it and, depending on market conditions, the less assurance 

we’ll have that there will be space in the current block. Perhaps also some developer 

concerns: Writing complicated mathematics in good quality Solidity, for instance, is 

a fundamentally more challenging task than writing it in an off-chain language, since 

every line of on-chain code needs to be audited and optimized and the library ecosystem 

is less mature.

There are also considerations that affect the product more directly: there are 

certain values and APIs that we’ll need to pull from an off-chain source. We could 

place an oracle on-chain, run some off-chain code to keep it updated, and put as much 

computation in our contracts as possible, but someone would still need to manage the 

oracle. If our API was private, or we wanted to filter some values before, that someone 

would have to be us. We also might want to push values out to off-chain APIs (such as 

push notifications).

All in all, then, we should think sensibly about how our product goals and our 

technical capabilities relate to what gets computed on-chain and what gets computed 

off-chain. There are for sure benefits to computing things on-chain where possible, 

the biggest of which is reliable composability over time. If you need to run off-chain 

processes to make your product work, then this increases the risk for others using your 

protocol. There are also significant transparency benefits: on-chain computation can 

be verified through the standard Ethereum consensus mechanism, and it very well may 

increase the trust that your (more technical) users have in your product.

The second dimension of decentralization is network decentralization. I won’t labor 

this point very much, since this is a book about product, rather than about Ethereum 

itself. There are strong community norms to keep the network decentralized, and this 

is where some of the most impressive innovations keep happening: the Proof of Stake 

merge, upcoming sharding improvements, and even the EVM itself are a testament 

to the time and energy spent ensuring the decentralization of the network. And this is 

unequivocally a good thing: if the network isn’t decentralized, then nothing else above it 

is, and what we are building ceases to inherit its benefits.

There’s another dimension of decentralization that matters: the decentralization of 

data. This is different from computation, and the underlying network, since it’s about 

where the state lies, rather than what is processing it. If you are performing computation 
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off-chain, then you should generally try to move the results of these computations on-

chain. You get some of the composability and transparency benefits of decentralized 

computation, but you also get a lot more flexibility around your product, since you can 

always reconstruct the current state of your system from what is on-chain; you can build 

a new frontend without having to worry about rewriting the data storage layer. Moreover, 

others can build frontends for your system – or tooling, or analysis, or extensions to 

functionality – without any work on your part. And the decentralization of data has other 

public benefits that we’ll discuss shortly.

But notice that all these different sorts of decentralization don’t in any serious way 

preclude you from being more centralized at the product level. You can index your 

product data in a centralized way without compromising the underlying decentralization 

of data. You can host your product in a centralized way without compromising the 

underlying decentralization of the network. And you can centralize your product 

development process – how you build and manage your product – without compromising 

the underlying layers of decentralization: network, data, and computation. 

Decentralization is multidimensional, and being decentralized on one dimension does 

not usually necessitate being decentralized on the others.

�Decentralization As a Backstop
A moment ago, I said that there are public benefits to certain forms of decentralization 

that are important parts of the evaluation space. We must realize that often just the ability 

to decentralize means that the goals of decentralization can be achieved. Centralized parts 

of a decentralized system don’t make the system totally centralized; it’s not a binary!

Consider RPC node hosts. We’ve mentioned a few in this book already, and while, 

for example, companies like Alchemy do enjoy some dominance in the market, it is 

reasonably easy to run a node and would not be especially capital intensive to start 

a competitor. And there are clear incentives to do so: you can build a good business 

building pickaxes for an inchoate industry. We know this is true, since there actually are 

lots of competitors. This gives the larger teams such as Alchemy a very good reason to 

not abuse their power. If they did, it would be extremely easy for their customers to leave. 

The fact that the computation layer and its implementation – for example, the geth 

codebase – is permissionlessly accessible means that there are downstream pressures on 

people who use those implementations to not abuse their power.
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Being “counterfactually decentralized” is a real thing, even if the actual distribution 

of control is skewed to one or a few parties. The fact that there could be competition and 

that the costs to launch new competitors are low creates a natural pressure away from 

the inevitable monopolistic tendencies of having that control.

Given my evaluation of various trade-offs in previous chapters, it might seem 

as though I’m strictly antidecentralization. That is not at all the case, as I hope I’ve 

shown here. There are many benefits to decentralizing parts of your technology stack. 

Acknowledging trade-offs goes in both directions.

In the interests of intellectual honesty, then, let’s make them more explicit.

What are some of the problems with centralization? It can, and does, impose various 

sorts of risks and externalities that decentralizing parts of the stack can help mitigate:

•	 Centralized systems can curtail innovation, by enforcing 

permissioned access to the platform at the expense of unforeseen 

and potentially valuable new ideas. The incentives of the platform 

owner can conflict with the shared benefits; innovation, in this sense, 

is a public good that might impose private costs.

•	 Centralized systems amplify weaknesses. If a certain piece of code 

has a bug or a particular needed feature hasn’t been implemented, 

centralization can increase the impact that these shortcomings have 

on the community. More decentralization of implementation means 

more diversity and fewer systemic weaknesses and more variation in 

the meme pool.

•	 Centralized systems tend toward more centralization. Having 

control over resources and data creates a flywheel of growth and 

increased power, which makes competition more difficult.

Decentralized systems help undercut the ability of centralizing parties to gain full 

control, by encouraging competition, which drives innovation and widens access. 

The composability of smart contracts, like the composability of open source software, 

accelerates innovation even further.

The key point here is that the problems centralization causes are global problems: 

they apply at the system level. For any individual, responding to predictable incentives, 

more centralization is usually a benefit: it’s better to get more power, customers, money, 

etc., than less, and centralizing can make this easier and more attractive. But for the 

system as a whole, more centralization can lead us into suboptimal equilibria.
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So if we care about avoiding these suboptimal equilibria, decentralization needs to 

be embedded at the system level. The underlying technology needs to provide a backstop, 

a mechanism for preventing too much centralization from creeping in.

But this doesn’t change the incentives for individual teams. Centralization is often 

the right choice for your team, product, and users. The trade-off space for you is different 

from the trade-off space for the community at large. We’ve seen plenty of examples in 

this book how this decentralization fetish can have direct consequences on the quality of 

your products.

What we need is a backstop: a way of ensuring decentralization on the dimensions 

it matters. Fortunately, the system design of Ethereum provides this backstop. It acts 

as a form of regulation, limiting the ability of a single party to have so much power that 

competition is impossible and monopoly rents can be extracted.

This means that you may, and indeed will, make centralizing choices. And this is 

okay. It should be considered to be okay. It should be expected. And the community can 

be safe knowing that your gaudier excesses are limited by the decentralization in the 

underlying platform.

Practically, what does this look like?

•	 We can be free to make centralizing choices with our frontends. 

Indexers don’t need to be decentralized nor do our web hosts. We 

can use centralized infrastructure providers. We can make use of 

centralized data stores. We can run our products on centralized web 

hosts. We can avoid the complexities and costs of decentralization by 

simply not indulging the fetish.

•	 We can move some computation off-chain if that makes our 

products better. Putting all computation on-chain is a recipe for 

slow, expensive, and cumbersome protocols with inelegant user 

experiences. In many cases, for instance, data processing, computing 

the results off-chain and then committing its results on-chain is 

a much more sensible approach that benefits the user without 

losing many of the benefits of a public and auditable blockchain. 

However, we need to weigh this against the future composability of 

our protocols: Is this something that matters to you? Will it matter to 

your users?
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•	 We can ask for, and rely on, user-identifiable information. Some 

use cases won’t need this, but we shouldn’t be afraid to do so if 

ours does. Being able to provide email or push notifications is 

valuable. And charging users via Stripe or other standard payment 

mechanisms also will require some kind of off-chain user info. If your 

business model is better off cast in the SaaS mold, that’s fine!

•	 We can be free to use analytics to track and monitor our users, 

feeding this information back into our commercial models and 

product design processes. We can be free to use cookies and other 

browser-side tracking technologies to make our products more 

functional and user-friendly. Pseudonymity is not the same thing 

as anonymity, and there is no reasonable expectation of complete 

privacy when using products built by centralized companies.

In short, we don’t need to play to the gallery, “performing” decentralization, in order 

to curry favor along a unidimensional community norm. Use decentralized technologies 

where appropriate; use centralized technologies when appropriate. And, crucially, 

always with an eye on whether what we’re building is actually usable and will actually be 

used. We’ll pick up this theme again in the conclusion.

�Standards
Standards are a form of implicit coordination. Who sets the standards matter, since 

standards have path-dependent effects on the sorts of products we can build in the 

future. If we increase standardization at the application layer, then we can improve 

product quality, improve product interoperability, and save us all a lot of time. Three 

examples where this seems pertinent are error messages, security and verification, and 

authorization. Standards enable composability. Product engineers can, and should, be 

more involved in the protocol and standards design process. Finally, if we don’t codify 

standards, that doesn’t mean we don’t have them: it just means that our standards, like 

our histories, are written by the victors.

We’ve mentioned various standards in passing throughout this book. Standards and 

decentralization are very deeply linked in some important ways. Better understanding 

these links is essential for the future success and robustness of the Ethereum 
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community, and studying them can provide responses to some of the worries we might 

have about the current state of Ethereum product engineering.

To that end, in this section, I’m going to make two major points:

	 1.	� Standards matter, a lot, and they matter in ways that are not 

initially obvious.

	 2.	 We should make greater use of them.

I’ll start by arguing for the first claim, expanding on the notion of a standard and 

justifying why and how standards can be important. With this developed notion of a 

standard in hand, I’ll move to the second claim, defending it by exploring some ways 

in which standards could be applied to meaningfully improve, in particular, the user 

experience of Ethereum applications. I’ll then draw some practical lessons for those of us 

building with Ethereum.

�What Are Standards?
We’ll begin by exploring what “standards” means.

�Some Etymology

I obliquely referenced the dictionary definition of “standard” earlier. Let’s make it 

explicit. The word standard flows into English from the Old French estandart, meaning a 

battle flag or a rallying place.

This is etymologically interesting, because it suggests two senses. The first is an 

active sense: troops on the battlefield, rallying around a battle flag, which gives us the 

sense of active coordination, pride, and centralized focus. The second has the tone of 

something slightly more passive: a gathering place. Why do I say more passive? Because 

people gather naturally. One of Schelling’s great insights was that there exist points 

at which agents will converge naturally in the absence of coordination. If it is a warm, 

sunny day, people gather on the beach, naturally, passively, no flag needed.

This reading, this more passive sense, also suggests an interesting definition of 

standard, one that I think captures something important about the essence of the term 

and one that I will be taking with us as a base for the rest of this section:

A standard is a form of implicit coordination.
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For crypto, the word “implicit” is important. Why? Because its semantics imply 

decentralization. Coordinating explicitly means coordinating in a centralized manner, 

with all of the responsibilities and gate-keeping privileges that that can entail.

In a slightly weaker sense, implicit forms of coordination seem much less likely to 

be coercive. There are certainly forms of implicit coercion, but built into the notion of 

implicit coordination is the idea that individual agents are choosing to follow a specific 

path, and that path converges naturally with others’.

This doesn’t mean the standard itself needs to be implicit: many standards are 

codified, written down explicitly and shared as a standard. But on this definition, 

standards give us a mechanism for coordinating implicitly, without needing to rely on a 

central authority to organize us. The fact that the standard exists is enough.

Slightly more practically, this means that standards are

•	 Opt-in, in the sense they’re not forced upon you by the underlying 

technology.

•	 Generally popular, or at least followed reliably (more than 50% of 

the time).

•	 Often codified, but subject to revision, in the sense that the 

codification is a lagging indicator. If the community moves, so does 

the standard. (More on this point later.)

This serves as a good starting point for our discussion.

�Who Sets the Standards?

If we think about standards in these terms – opt-in, popularly followed, and often 

codified – then we’re left with a notion that seems central to how we build software on 

decentralized platforms. This centrality means that standards can be powerful, which 

raises the question: Who gets to set the standards? How are standards decided upon?

One obvious place to start is the mechanisms of community governance.

In Ethereum, this means most prominently the EIP/ERC infrastructure. ERCs, in 

particular, are good examples of this form of standards as implicit coordination, since 

nobody is compelled to follow them – they are opt-in – some of them are generally 

popular, and they are codified in documents and interfaces (with available mechanisms 

for amendment). They allow smart contract engineers to coordinate implicitly around 

shared behavior and expectations.
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ERC-20 is perhaps the most famous example. It provides a basic interface that 

defines the notion of a “token” and therefore is foundational to most of crypto and all 

of DeFi. We looked at the ERC-20 standard in some detail in Chapter 2’s “Accounts and 

Wallets” section.

It provides a primitive, but only insofar as it is standardized. This is an excellent 

illustration of why standards like these can be so powerful: if nobody followed ERC-20, 

it’s unlikely we would have a common, composable notion of a token. Representations 

of on-chain value – what the standard provides for – would be semantically fragmented 

between applications. Its status as a primitive is due to the fact that people use it to 

coordinate. Standards yield primitives.

A more recent case is ERC-4626, a tokenized vault standard spearheaded by Joey 

Santoro, then at Fei Labs.3 It provides a standard for wrapping an ERC-20 token in some 

form of vault or yield-bearing instrument. By standardizing, the designers hope to 

provide compatibility and fungibility between different encapsulations of the same token 

or even different encapsulations of different tokens, allowing you to swap between them 

in a generic way. The details of how it works are interesting,4 but not relevant here. Why 

it is a useful example is because it illustrates how standards, as we have defined them, 

can themselves be composed into new primitives. You can take standards and combine 

them with other ideas to create new primitives.

A third and final example of a standard formed by community governance is 

ERC-2612, which allows for signed rather than transacted ERC-20 approvals. This is 

a case of taking a primitive and improving it, adjusting future behavior after learning 

lessons from the past. The fact that the standard is codified means that there is some 

canonical representation, and thus it can be upgraded.

So the mechanisms of community governance clearly give us plenty of examples of 

standards.

But there are others who get to set standards. One important group are those who 

build developer tooling. The JavaScript ecosystem provides an illustrative example. 

Before npm was released, package management in node (and across JavaScript more 

broadly) was this big fragmented messy thing, with the notion of a JavaScript package ill-

defined and the mechanism to distribute it left up to the developer. npm set the standard 

for more than just the distribution mechanism: its popularity led developers to use 

3 https://eips.ethereum.org/EIPS/eip-4626
4 See, for instance, Joey’s discussion on the Solidity Fridays YouTube channel: www.youtube.com/
watch?v=L8dijE5qhTg
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package.json files to describe and define codebases in JavaScript. Usage of the tool for 

its specific use case – defining and reading dependencies – has led to a form of implicit 

coordination around an approach to describing a much broader structure of metadata. 

Now, npm is used as a script runner and setting for configuration of third-party tools, as 

well as a way to identify a package and its dependencies.

Tooling is, in fact, a specific instance of a much more general source of standards. 

Standards are written by whoever builds the interfaces that the majority of people use.

Another JavaScript example: If you study the 1990s browser wars and how their 

impact ricocheted into the early 2000s, you realize very quickly that the entire shape of 

frontend development, and with it much of the Web, was determined by a handful of 

businesses: namely, whoever was building the browsers at the time.5 There is a nearby 

timeline in which we’re all still using Flash!

What’s the parallel here for crypto? One springs to mind: MetaMask. While it’s true 

that the majority of crypto holders use centralized exchanges, the majority of crypto users 

use MetaMask: at the time of writing, it’s still overwhelmingly the most popular self-

custody active crypto wallet, which means that MetaMask gets to set the standards for 

how dapp frontends interact with wallets. You see this already: the ubiquitous window.

ethereum object with which all dapps integrate – via second-order tooling, such as ethers.

js – and with which all competitor wallets have to remain compatible is something that 

MetaMask gets to control. If you want your dapp to be usable by a majority of users, 

then it has to work with MetaMask. MetaMask’s dominance means they get to decide, 

broadly, how the dapp/wallet interface behaves.6

Thus, those with priorly existing resources find themselves at the apex of power, able 

to dictate the terms of coordination for all other parties. This puts us at risk of a form of 

“standard capture.”

5 It was only when Mozilla launched Firefox and started to gain market share that JavaScript took 
off seriously. Even then, it nearly ended up being scrapped in favor of ActionScript, but because 
Microsoft didn’t want to collaborate with Macromedia, the attempts to standardize around 
ActionScript fell through. It was really only the period between the AJAX whitepaper in 2005 
and the release of Chrome and codification of ECMAScript 5 in 2009 that JavaScript became 
indispensable, for better or worse, to the web experience.
6 EIP-1193 (https://eips.ethereum.org/EIPS/eip-1193) aims to codify this interface, and the 
wallets are more or less good at following it. But the point still stands: if they wanted to, MetaMask 
could deviate from it, and most dapps would have to deviate in turn.
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�Standard Capture and Path Dependence

In a broadly market-based system, a community will converge upon some solution 

or another based on the competition between multiple options in conceptual and 

implementation space. Firms compete to solve a problem by offering different versions 

of solutions. The better solutions, we hope, rise to the top.

However, it’s rarely this clean in practice. The solution the market chooses is often 

not the optimal solution. A lot of technological choices we make are path dependent: 

the fact that a solution has already been chosen “locks in” that solution’s eventual 

success, since an individual consumer’s preferences are often irrational or inelastic or 

underspecified relative to their longer-term needs or wants.

“Lock in” is an especially severe problem when developing smart contracts. Major 

contract changes are very difficult, especially when large amounts of liquidity are 

involved and need to be moved from one contract to another. The risks go up, and the 

velocity of changes goes down, locking in prior behavior.

When your priority is shipping – which, by the way, it usually should be! – “good 

enough for now” is often the best heuristic to use. But central to this heuristic is the fact 

that we’re often explicitly and implicitly making trade-offs!

So technological choices we make today implicate those trade-offs. My decisions 

today might

•	 Render impossible future features

•	 Make it much more difficult to compose my functionality with other 

participants

•	 Set psychological and cultural expectations of how things ought to 

work in the future

•	 Shape what problems and behaviors are most salient

Any one of which can have important downstream effects on what gets built, 

what gets funded, and what gets used. The effects can also be commercial: if we allow 

“standard capture,” then we may be handing monopoly power to early ecosystem 
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participants simply because they’re early, not because it’s necessarily the right or desired 

thing.7 Technological choices are path dependent, and this path dependence matters to 

our products.

We can once more look outside of crypto to see a great example of how the path 

dependence of standards affects our products.

Let’s consider the use of the RSS standard for distributing podcasts. Using RSS 

saves the developers of podcast players lots of time: they don’t need to worry about the 

distribution mechanism of the podcasts themselves and can focus on other parts of their 

application, such as the interface and branding. Their apps inherit all of the existing 

podcasts, which helps solve the cold-start problem. Standardizing on RSS has meant 

that many more podcast players were launched that would have been otherwise. But 

standardizing on RSS has also meant that a key part of the podcast experience – how 

audio content gets from the producer to the listener – is ossified and cannot easily be 

changed. So the choice of using RSS to distribute podcasts has both enabled much of the 

growth in the podcasting medium and limited its technical capabilities.

This path dependence means that we can’t rest on our laurels. We need to be 

proactive and thoughtful about the standards we set and aim to do so in an explicit, 

codified, and community-driven way, rather than allow the standards to emerge based 

on who happens to have power or what happens to be the right immediate technological 

choice to make.

�The Case for Greater Standardization
My defense of this second claim is mostly a defense by example: I’ve come up with 

three areas where I think good standardization could meaningfully improve the user 

experience of DeFi and where it could do so precisely by aligning behaviors between 

the various constituencies – protocol, product, platform engineering, as well as wallet 

designers and core developers – that we’ve been discussing throughout this book. 

But my broad point is that there is a much greater design space for application-level 

7 A good example here is Apple: their App Store system had huge benefits for developers in the 
early years of apps, giving them a common platform to develop upon and bootstrapping the 
ecosystem thanks to the success of the iPhone. But that has had the effect of giving large amounts 
of control, to a single organization, over a big part of the software economy. See, e.g., www.hey.
com/apple/iap/ for an instance of how this can (arguably) go wrong. For further reading on the 
economics of the App Store, I recommend the excellent Stratechery: https://stratechery.
com/2022/data-and-definitions/
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standardization than we typically see in Ethereum. Most EIP standards are concerned, 

understandably, with underlying network behaviors. Product engineers should rise to 

this challenge.

�Error Messages

We’ve spoken a little already about how error messages are a fundamentally broken 

part of the product engineering experience in Ethereum. Many smart contracts return 

unstructured strings; some smart contracts return objects, which are machine readable 

but not standardized in any meaningful way; some smart contracts don’t even revert 

with any error message. This makes parsing, formatting, and suggesting remedies inside 

products much more difficult.

By standardizing error messages at the smart contract level, we can give a both more 

consistent and more localizable experience – for, at least, the 80% use case, which would 

give us at least some coverage over the sorts of applications that we care about – and 

allow more general tooling to be built that could reduce product engineering time. It 

could also reduce protocol engineering time, because fewer decisions would need to be 

made, and testing libraries could be written around asserting against a well-known set 

of errors.

There has been an attempt at standardizing error messages before. The EIP-1066 

standard is a solid, and pretty extensible, attempt to standardize error messages, built on 

the HTTP status code model. Unfortunately, for reasons I’m unable to figure out, it has 

gone stagnant.8

There are even farther-reaching benefits of a popular and codified error message 

standard. Beyond just informing the user something has gone wrong, a standard would 

allow us to make suggestions about how to fix it. We can embed predictable and familiar 

retry logic into our applications and wallet software.

A good analog here, which might help illustrate what I’m suggesting, can be found in 

much web2 developer tooling. Lots of IDEs pick up on syntactic or semantic errors and 

make suggestions inline, as in Figure 6-1.

8 https://eips.ethereum.org/EIPS/eip-1066; my suspicion, which might be uncharitable, is 
that it has gone stagnant because not enough of the people working on Ethereum standards care 
very much about the application layer or, at least, don’t spend much of their time working there. 
Yet another reason why raising the status of the product engineer is important: Standards affect 
products, and so product engineers should be helping to shape and inform those standards.
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Figure 6-1.  Xcode provides a “fix” button when it detects a fixable syntax or 
semantic error in the user’s code

Clicking “Fix” causes the IDE to change the code and fix the syntax error. It makes 

writing code easier, allows developers to use more esoteric syntax arrangements, and 

adds to the learning value of time spent in the IDE.

We can imagine similar “fix” logic built into wallet software or the frontend apps 

that they interact with. If a user makes a trade on a decentralized exchange that reverts 

because of slippage concerns, the contract could report this error in a standardized way 

and suggest a new price. Or, if the contract reverts due to insufficient gas allocation, 

the wallet could resubmit the transaction with a higher limit. An error standard gives 

us the chance to provide rich, helpful user experiences that would smoothen over the 

rougher edges of our applications and delight our users – something that, without such a 

standard, would not be possible.

More generally, in at least some cases, a contract can revert with enough information 

to inform the wallet how to correct the error without the user having to reason about it 

too closely. Just like in the IDE example (Figure 6-1), we can give users a faster, easier, 

and more robust experience, but only with a standard to power it.

�Security and Verification

As we’ve said time and again in these pages, the Principle of Trust is extremely 

important. Our applications and our wallet software can better adhere to it when there 

are standards that allow it to do so. We should strive to increase the safety of what we’re 

building, and a set of standards around application-level contract verification would be a 

good first step toward doing so.
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How might this work? Our wallets, which are developed independently from our 

applications, could provide a community-sourced set of answers to a series of important 

security questions:

•	 Are contracts audited?

•	 Are contracts audited by reputable auditors?

•	 Are contracts audited by several different auditors?

•	 Have the most recent changes to a contract been audited?

•	 Is there a bug bounty program?

•	 Has the frontend been audited?

•	 Are there contingency plans and processes in place for handling 

hacks and other malicious events?

•	 Are deposits to the protocol insured or guaranteed in some 

other way?

Providing answers to these sorts of questions could allow wallets to increase safety 

and nudge users away from bad actors, enhancing trust. It would also be an important 

symbol for the products themselves to advertise: as with meeting various industry 

standards in web2 – PCI DSS compliance comes to mind – or with publishing the 

artifacts of contract audits, having a standardized way of signaling secure practices could 

allow us to increase trust and automate some verification.

This alone would be a good feature for a wallet developer to build unilaterally. 

Argent, for instance, provides a whitelist of trusted contracts that increases the rigor 

of the transaction flow. But whitelists are limited, and a community-driven standards 

approach could benefit all honest actors in the ecosystem: if the mechanisms to indicate 

contract trustworthiness are standardized, we can rely on broader community norms 

rather than gatekeepers to signal trust.

�Authorization

In order to build richer user experiences around contracts, we need to know who can 

access or transact with what in what ways at what time. If we have a standard way for 

protocols to report permissioning levels, then we can build systems that provide an 

interface to several contracts at once.
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There have been some steps toward this with ERC-1739 – a standard for contract 

ownership – but this hasn’t, in my opinion, gone nearly far enough. A smart contract 

authorization standard – perhaps based on the OpenZeppelin role model10 – could 

meaningfully enhance the authorization flows we can build in our products.

Authorization is an area where there is a lot of plumbing that needs to be rebuilt for 

each contract: if we standardized some authorization behaviors at the contract level, 

we’d be able to write tooling, component libraries, and interface checks that could be 

used, reused, secured, and tested, but only with a standard.

There is also some precedent for this general approach: teams such as Tally and 

Sybil have built frontends over the popular Compound Governance Bravo interfaces, 

which represent DAO governance contracts. But these interfaces are standardized via the 

“standard capture” approach: they happened to be used a fair amount over the past few 

years, so many protocol teams have continued to use them. A codified, popular standard 

could improve the average quality bar higher.

�Some Lessons
So we’ve discussed what standards are and why they matter and explored some 

possibilities as to how we might rely on them more in the future. These examples, I 

hope, have shown how powerful standards can be when designed in a community- and 

application-first spirit. We’ll now tie these two points together and consider some of the 

lessons that they suggest.

Firstly, it tells us something about composability. Composability is a property 

of smart contract to smart contract interfaces, but it’s also a property of interfaces 

between smart contracts and wallets, wallets and applications, and smart contracts and 

applications. In fact, it’s a property of every component of the application layer. And 

this composability, which has many great virtues, is only possible because of implicit 

coordination: the very essence of a standard.

Secondly, another important lesson that we’ve driven home throughout this book 

is for product engineers to be more involved in the protocol design process. Protocol 

engineers should think deeply about the layer of applications that sit above your 

contracts: wallets, other contracts, frontends, and tooling. But many protocol engineers 

9 https://eips.ethereum.org/EIPS/eip-173
10 https://docs.openzeppelin.com/contracts/3.x/access-control
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are busy, or deeply technical, or otherwise unfamiliar with the UX consequences of their 

decisions. You, the product engineer, should be in the room, asking questions like “How 

can we design this contract to make rich user experiences easier?”

Thirdly, and building on the second point, product engineers should be more 

involved in the standards design process. Sensible and standardized events, sensible and 

standardized return values, and sensible and standardized errors each make protocols 

easier to integrate with and permit higher-order user experiences that simply wouldn’t 

be possible otherwise. (They also save the protocol engineers some time and mean 

fewer conversations between the protocol and the product are necessary.) Lots of great 

ideas and opportunities to standardize, such as EIP-1066, end up stagnant. We should 

all be excited about any opportunity to standardize what we build from scratch right 

now, if only because it frees us up to work on the parts of our applications that drive 

actual value: solving user problems. There should be product engineer standard working 

groups, all-hands sessions for product engineers to discuss these issues with protocol 

engineers, and a wholesale increase in the status of products in the culture that is the 

Ethereum application sphere. Our products will be higher quality and our users will be 

grateful.

Finally, the most important lesson of all, if we don’t standardize more in a 

community-driven way, we still end up with standards. It’s just that we end up with 

standards designed by specific people for specific use cases. And, at the limit case, we 

hand the power to standardize to for-profit teams who are responding to their own 

cluster of noncommunitarian incentives.

Standards are public goods. They are integral to how we gain the benefits of 

decentralization without overindexing on it as a moral virtue. And we shouldn’t allow 

our public goods to be angled toward wherever immediate importance – or venture 

capital money – happens to be pointing.

�Summary
We began this chapter by exploring decentralization in more detail, arguing that it is 

a substantially more subtle set of trade-offs than it might seem. Most discussion of 

decentralization is unidimensional: you’re either decentralized or you’re not. This, 

it seems, is deeply unhelpful and doesn’t help us reason in a smart way about our 

products. We then discussed standards, which help us codify and shape our relationship 
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to decentralization. We also looked at where more standards could be applied at the 

application level, improving product quality, improving our practices, and creating more 

value for our users.

As we approach the end of this book, we’ll turn next to the conclusion, where I’ll take 

the basic ideas that we’ve been discussing and present some more speculative claims 

about the future of building products with Ethereum.
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CHAPTER 7

Conclusion
In this book, I’ve argued for two main points:

	 1.	 Product engineering on Ethereum is a distinct discipline, 

with its own set of challenges and constraints that make it an 

interesting and worthwhile endeavor – and one worthy of higher 

status than it currently enjoys.

	 2.	 Decentralization involves trade-offs, and sometimes these are 

trade-offs that aren’t worth making.

As we come to a close, it’s worth stepping back and considering what crypto 

promises, what the future might hold for the industry, as well as what the world might 

look like if crypto’s promise is fulfilled.

I don’t expect everybody to agree with me on this. In fact, I don’t expect anybody to 

agree with me: the ideas I present here are controversial, speculative, and informed only 

by my own experiences. Lots of very smart people won’t believe a word I say. But, if I 

can’t convince you to agree with me, I hope I can at least convince you that this vision is 

plausible, not crazy, not unrealistic, and perhaps not even undesirable.

�Crypto Futurism (Without the Hyperbole)
One way of thinking about companies – that I find frequently useful – is to reason about 

value creation and value accrual. Value creation is the process of providing value to your 

users: What can they do now that they couldn’t before? How does your solution resolve 

their problem in a more efficient or otherwise more desirable way? Value accrual is how 

your company captures some of the value that it creates. If you capture too much of 

it, you might simply take away any value you create – in economists’ terms, you might 

erode your customer’s consumer surplus – or you might make it too easy for a competitor 

to come along and undercut you. If you capture too little of it, you might not be able to 

build a sustainable business.
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If we’re trying to understand how crypto evolves, then it’s worth asking: Where is 

value likely to be created by crypto, and where is this value likely to accrue?

�Value Creation
Understanding how value is created by crypto is partly about understanding traditional 

finance, partly about understanding the skeuomorphic links1 between traditional finance 

and decentralized finance, partly about understanding what is native to and novel in 

crypto.2

We can start with traditional finance. This won’t come as news to anybody: there 

is something deeply wrong with the traditional financial system. In many important 

respects, it is overregulated or, at least, regulated incorrectly. The regulations are 

designed to prevent fraud, or mismanagement of risk, or other socially bad things. But 

empirically a lot of these checks don’t seem to work very well, and they also add a huge 

amount of friction.

Let’s take AML (Anti-Money Laundering) regulations, for instance. If the priority 

is to prevent money laundering, reduce the funding of illicit transactions, and choke 

the funding sources of bad agents, then AML mechanisms can largely be considered 

a failure.3 In fact, roughly 2–5% of the traditional finance system is used to fund or 

1 Take two successive paradigms, A and B. The people building B are likely to first look to A to 
see what can be done. They find these older use cases from A and adapt them in various ways to 
fit into B. When implementing these use cases in B, they may need to change some things. But 
in order to make these use cases legible and natural, they want to preserve some parts of A, so 
they create skeuomorphic links between the new thing in B and the old thing in A. For instance, 
“desktop” and “trash can” and “file” provide skeuomorphic links between an old office desk 
(paradigm A) and a computer UI (paradigm B).
2 …and partly about how Ponzi schemes work. We’ll ignore the obvious Ponzi scheme economics 
of a lot of current protocols, not because it isn’t an important criticism of crypto that I think needs 
attention, but mostly because this book is already much longer than I was expecting it to be.
3 “[T]he anti-money laundering policy intervention has less than 0.1 percent impact on criminal 
finances, compliance costs exceed recovered criminal funds more than a hundred times over, 
and banks, taxpayers and ordinary citizens are penalized more than criminal enterprises”; 
www.tandfonline.com/doi/full/10.1080/25741292.2020.1725366. Even if the studies this 
paper relies on are not entirely methodologically sound, or if the data is noisy, it only has to be 
directionally correct in order for its results to be important.
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distribute the funds of crime; Bitcoin is roughly 1.26% over five years.4 And these 

ineffective checks come at a significant cost: the paper cited in footnote 3 suggests 

that some $304 billion worth of money is spent on compliance costs,5 and other 

studies suggest the numbers are higher still. These compliance costs get built into the 

transaction fees of normal transactions; we’re all paying a tax for a service that doesn’t 

seem to work very well.

So all this friction makes it more difficult for financial institutions to innovate, 

and the costs get passed on to us. And there’s also a cultural phenomenon at play 

here: financial institutions are financial institutions and typically aren’t populated 

with technologists. Their servers are written in ugly, old, grown-up languages like 

COBOL. Their data is siloed and difficult to access. Their process documents read like 

the unabridged Ulysses. It’s very likely that there are much better ways of structuring 

the finance world that we simply won’t be able to try unless smart technologists come 

along and break things and experiment. Experimentation is good, and crypto gives us 

an opportunity to do it. It’s much, much easier to write a novel financial mechanism in a 

smart contract than it is to do so in traditional finance, for path-dependent, historically 

contingent reasons, as much as for “good” reasons, like fighting crime or preventing 

systemic financial meltdowns (which, as 2008 demonstrates, the traditional financial 

system isn’t that great at either).

Secondly, there are still a lot of big opportunities for value creation in tokenizing 

real-world assets. This opens up the possibility of using these assets as leverage, in a 

flexible way.6 It also opens up the possibility of securing the provenance of these assets, 

allowing their ownership history to be tracked, at least with what’s available on-chain. 

Lots of assets like art and wine need to be tracked to ensure they’ve been looked after 

well, kept in the right conditions, sold to reputable dealers, etc. If we can find a way 

to make various real-world claims about these assets representable and verifiable 

4 Traditional finance: www.unodc.org/unodc/en/money-laundering/overview.html. Bitcoin: 
Taking the average of 2017–2021, inclusive, from data provided by https://blog.chainalysis.
com/reports/2022-crypto-crime-report-introduction/
5 ~0.38% GDP; or 15% of the higher estimate of 5% of traditional finance money laundering (fn. 2).
6 A common example here is housing: an NFT that represents your house could be used as 
collateral to borrow against without having to go through a traditional mortgage broker or, as is 
more likely, without having to go through the current mortgage system. There are obviously lots 
of ways this can go wrong. And it’ll also require a deeper relationship between the off-chain legal 
system of property rights – i.e., the system that lets you call the police and say “somebody I don’t 
want to be there is living in my house” – and the on-chain claims. But the idea is interesting and 
worth exploring properly.
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on-chain, then tokenizing the assets themselves becomes quite powerful or, less 

speculatively, tokenizing stocks, allowing you to do all the cool stuff that rich people do 

with stocks (like borrowing money against them) without having to get on your knees 

and beg somebody at J. P. Morgan to let you.

And, thirdly, there are lots of things that crypto lets us do that aren’t really possible 

in noncrypto environments. Flashloans allow arbitrage traders to pull the entire liquidity 

available in a pool out, perform their trade, and return it within the same transaction, 

without affecting any of the rest of the market. That’s a level of computerized very short-

term lending that is essentially impossible to do in normal markets and becomes even 

more difficult to do as the numbers get bigger. Alchemix has developed a protocol for 

self-repaying loans – loans that siphon off the required amount to keep the loan solvent 

without ever needing to issue a margin call on the collateral – which is something that 

can probably be structured in a traditional way, but will be difficult and will require the 

phone number of an expensive banker. And, of course, it’s all automated and accessible 

to anybody.

I’ve given examples from the finance world here, mostly because it’s the space 

I understand the best and also because it’s the area where Ethereum alternatives to 

traditional systems seem most developed. But it’s also a good example of where I think 

crypto is going, because, abstractly, it seems like an extremely good use of crypto. Most of 

modern finance is just a system of rules around processing entries in a database table, at 

a high level. At some point, these entries bottom out in real-world assets, but that’s only 

after a lot of levels of abstraction have been stripped away. And it’s also a good example 

for my current argument because these are all areas where crypto can show actual value 

creation for the very sorts of people who are most interested in value creation and are 

therefore most likely to pay for that surplus value created.

So I think it’s quite possible that crypto’s killer features will not be those aimed at 

consumers, but rather at businesses, particularly finance businesses. We’ve already 

spoken about the troubles with trying to educate users about crypto terminology and the 

intricacies of the technology; I’ve already shown my cards, suggesting that the successful 

crypto applications will be ones that abstract away these intricacies and solve object-

level problems with these abstractions. This suggests that crypto can form the basis, but 

not the vocabulary, of modern finance.

All these examples help illustrate a larger point, which is that we should treat 

financial infrastructure as a product that can and should be iterated upon, rather 

than as a presupposed foundation. The traditional finance system has emerged over 
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hundreds of years, in a contingent, path-dependent way. The constraints that held true 

in Renaissance Florence and 18th-century London may no longer constrain us – but the 

existing finance system and the financial regulation that supports it are often not flexible 

enough to remove these constraints. Composability, standards-driven integration, 

open access of data, and open access of developers allow us most of all to test and 

experiment, rather than flounder. If crypto can provide a platform for this testing and 

experimentation, then it can create a lot of value indeed.

�Value Accrual
We’ve discussed value creation: how crypto might create value for users. Now we should 

ask how – and, importantly, where – that value accrues. My suspicion is that it will 

accrue much more to services with elements of centralization, rather than decentralized 

protocols.

Decentralization involves lots of trade-offs. As we’ve seen, it is often easier to make 

higher-quality products, reduce user friction, and add value to users by opting for 

centralized technologies. In at least some cases, the product that is marginally better is 

likely to be the one that is marginally more centralized. And this means that companies 

with a touch more confidence in centralizing are likely to do better, at least on the 

margin.7

And these trade-offs go beyond the product trade-offs we’ve discussed in this 

book. There are also business model trade-offs: tokenomics is an inexact and 

incomplete science, and it’s not clear to me how protocols can ensure they are able 

to build profitable and defensible businesses around composable pieces of protocol 

infrastructure. Using tokens for utility pricing is a good start, but in many cases I suspect 

it’s much easier to build a business with a standard centralized billing structure than 

with a freely trading token subject to speculative price fluctuations.

If crypto adoption grows in the future, it will grow because of companies building at 

the intersection of web2 and web3: fintech organizations allowing financing products 

that bridge on- and off-chain; tech and social media companies adopting crypto as 

7 There are some great examples of companies that show how well this can work in practice. The 
perpetual protocol, dYdX (https://dydx.exchange), builds an excellent and popular product 
that is decentralized in spirit, but is willing to centralize parts of their stack where appropriate.
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underlying incentives mechanisms; tokenizing real-world assets, perhaps; etc. These 

companies will be working in regulated industries with traditional corporate structures 

and will inevitably have a higher level of centralization.

It’s also worth asking about the base rate here: In which previous cases has value 

accrued to protocols? I suspect it isn’t very high. SMTP didn’t capture the value of email, 

Outlook and Gmail did. HTTP didn’t capture the value of the Web, Google and Facebook 

did. Historically, the applications layer is typically where the value ends up accruing, and 

if I’m right about application trends, then these applications are likely to have aspects 

of centralization built into their structure. Of course, there are important differences 

between Ethereum protocols and the other protocols I’ve mentioned. For one thing, 

Ethereum protocols exhibit features of applications too. For another, the notion of value 

is built into them directly, via tokenization. It’s possible that Ethereum protocols are 

disanalogous from traditional networking protocols enough so that value can accrue to 

these protocols. Today’s DeFi is full of examples of protocols trying to figure out how to 

get value to accrue to them. Some of these examples have been fairly successful. But it 

remains to be seen whether they are scalably, reliably, persistently so. There are many 

more experiments to be run.

And then, of course, there’s regulation. Even those companies with a deep cultural 

commitment to decentralization will have to centralize aspects of their organizational 

structure in order to work within this new world. The details are unknown, the legal 

framework is nascent, and we’re not especially close to having a robust set of rules to 

follow. We’re all still trying to figure this out. But regulation is coming, and it will be a 

forcing function. Maximal decentralization within the boundaries of this regulation will 

not be possible. Many important companies – Uber and Stripe, to name two noncrypto 

examples – have come from entrepreneurs pushing these boundaries. And a huge 

amount of the innovation in crypto has been possible because of the lack of regulatory 

clarity and, until recently, the lack of mainstream attention. (Indeed, that was kind of the 

point!) That, however, was a moment in time that I suspect has passed. If you’re dealing 

with other people’s money, there will eventually come a time when you need to deal 

with the government, operate in a safe and auditable way (or, at least, a way that signals 

to the government that you’re safe and auditable), abide by the rules, and, hopefully, 

improve them.

You might disagree with any of the preceding points. It’s possible that decentralized 

teams develop new technologies and resolve the computer science puzzles that cause 

the major usability and performance issues we’ve discussed in this book. It’s possible 
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that crypto will discover a critical mass of crypto-native use cases that don’t rely on 

intersecting with the centralized world. It’s possible that crypto regulation will falter and 

fail, or that it will be unenforced, or that heroic lobbying efforts will carve out a greater 

space for decentralization within it, or that it will simply be ignored. And it’s possible 

that tokenization mechanics are a meaningful step forward for protocol value accrual. In 

short, it is possible that this time it’s different.

But crypto teams shouldn’t expect it to be easy. All the way along the timeline of 

technological development, the trade-offs will be used as a – very justifiable – reason 

to not choose the decentralized option this time. Until decentralized and centralized 

platforms are at a parity in terms of value creation for actual users, any growth the 

decentralized platforms experience will necessarily be curtailed.

Finally, many of the innovations that the crypto community develops won’t actually 

rely on decentralization. It is possible to imagine a remittance system that is much 

simpler and cheaper for the user than the old guard Western Union shops: companies 

like Wise are doing it already. It is possible to imagine an online payment mechanism 

that is much more enjoyable for developers to integrate and handles the flows in a 

digitally native way: companies like Stripe are doing it already. While crypto may pioneer 

new innovations at the intersection of finance, technology, and culture, there will be 

companies freed from the constraints of decentralization that can copy and rebuild 

these ideas in a centralized way. Indeed, there is already some evidence that the success 

of crypto is creating pressure in traditional finance to liberalize existing companies’ 

regulation, allowing new products that embody some of the benefits of crypto, without 

the difficulties of decentralization.8 The ideas are new and impressive, but many of them 

are possible without crypto.

�Final Thoughts
As I was writing this conclusion, the news broke that the centralized exchange FTX had 

become insolvent and was going into bankruptcy, evaporating the $32 billion company’s 

value into nothing, over some 36 hours. The short version is that FTX used customer 

8 https://ec.europa.eu/commission/presscorner/detail/en/IP_22_6272
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funds as a backstop for their trading firm, Alameda, when the latter suffered large losses.9 

It has given the crypto community a large shock, and the long-term consequences are 

still not well understood.

Some people, very reasonably, have argued that it’s a sign we need more 

decentralization, more self-custody. And they’re right: if FTX depositors had control over 

their tokens, and they weren’t being lent out in an overleveraged way, then the exchange 

might not have collapsed quite as spectacularly, and the many, many retail investors 

who have lost money would be okay. If all the transactions and trades and accounting 

were rendered publicly on a blockchain – or if all the accounting logic was automated 

and executed on Ethereum – then this never would have happened. But, of course, this 

involves trade-offs: FTX wouldn’t have been able to grow as quickly; there are many 

products it simply wouldn’t have been able to sell; and, most importantly, it would have 

severely increased the smart contract risk exposure of its depositors.

The FTX debacle is also a demonstration of how quickly access to large amounts 

of capital in an unregulated market can go awry; and it’s an example of hubris and, 

as it turns out, downright fraud.10 So it should also be a reason to welcome some 

more regulation. This was a failure of process and risk management, and regulation 

is designed (more or less effectively) to force good process and risk management on 

financial institutions. If crypto is ever going to handle the level of transaction volume 

that traditional finance does – global payment volume alone is measured in the tens 

of trillions – it’s going to need to integrate with the existing financial system, and that 

means regulation. You can’t build stable systems without checks and balances and 

without mechanisms for effective regulatory compliance.11

We should also think about the culture that made FTX, and the many frauds and 

mistakes that came before it, possible. Crypto, and tech in general, lionized FTX’s 

success and the young, high-IQ, maverick status of its founder. Crypto has been in a 

remarkably defensive posture, creating self-protective feedback loops that drive our 

mental models away from reality. We need to change some of the memes that drive 

this culture. Telling opponents that they’re “ngmi” (“not gonna make it”) is not just 

9 For the longer version, see the always-excellent Matt Levine’s column, “FTX Had a Death Spiral,” 
Nov 9, 2022, Bloomberg, and Levine’s later columns on the same subject.
10 www.strangeloopcanon.com/p/reality-strikes-back
11 One of the ironies is that FTX made lots of noise about their compliance processes and how they 
were welcoming of regulation, because they were one of the good ones. Compliance theater, alas, 
is not compliance.
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incendiary and funny, it’s also counterproductive: it creates tribal dynamics, and that 

hurts the in-group as well as the out-group. It makes us less resilient to mismanagement 

and fraudulent behavior and less able to spot it when it happens. Even optimizing for 

goals such as permissionlessness isn’t obviously a good thing if we want crypto to be used 

by people who, more or less, don’t mind that certain trades are illegal or certain sources 

of money should be blocked. A more productive, and softer, version of the same goal is 

something like “widespread access,” and that’s something that is both in keeping with 

the more attractive visions for crypto’s future – as a system for democratizing access to 

finance – and with the inevitable integration of crypto into the rest of the world.

So we need to grow up a bit. Crypto technologies have been wrapped up in a culture 

war, a culture war that crypto itself has birthed and sustained. Wrapping up your 

technological choices into cultures – antagonistic, aggressively self-assured cultures – 

might be helpful to help maintain a committed core of contributors, but it quickly 

becomes a burden. A shift away from the current memes of petty in-group tub-thumping 

and toward a set of memes based on solid moral and intellectual grounding and a spirit 

of sensible pragmatism won’t resolve these culture wars, or placate crypto’s fiercest 

skeptics, but it will at least refocus our energies on building technologies that ultimately 

serve customers.

All in all, there could still be an exciting future for crypto ahead. There are still lots of 

very smart people who believe in the technology; my team at Fei Labs were exceptional 

and also far from the exception. There are strong commercial and moral reasons to 

believe that the financial world needs remolding. Crypto is interesting: the problems 

are new, and the design space is still so wide open. The culture is idiosyncratic, cultish, 

self-reflexive, fast-changing, and changeable. If the value of crypto goes to zero in six 

months’ time – aside from hurting my book sales – the experience and insight into the 

relationship between technology and the current cultural moment is invaluable. And, 

finally, crypto and DeFi’s promises are so extraordinarily huge that, on an expected value 

basis, the probability of the world actually turning out to be this way can be very low, and 

it will still be worth dedicating resources to.

Right now, it seems like crypto could still be anything: a roaring success, a colossal 

failure, something in between. It could die with a bang, exploded by its own giddy 

excesses, crippled by a sudden change in regulation, floored by a crashing market. 

It could die with a whimper, the best ideas being annexed by web2, the smartest 

contributors leaving in dribs and drabs. It could flourish and grow, sustainably, 
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safely, and be the technological substrate of much of the next generation of finance 

and ownership. It could rush into dominance, supplanting failed nation states12 and 

supporting free markets.

Any outcome would be interesting, worth studying for anthropological reasons as 

well as technological and economic. Any outcome would cause damage, collateral or 

direct. Any outcome would liberate and harm, displacing some forms of privilege and 

creating others.

Our responsibilities as technologists, then, are to consider how our decisions align 

with our personal values and what we can do to increase freedom and prosperity and 

autonomy as we build the future; to take each other in terms of good faith; to see the 

best in what we can build and to reduce the harms (or, at least, think deeply about 

whether the harms are worth the benefits); to respect the user; to respect one another; 

to understand that technology is so often a force for good, the main driver of human 

progress, that it needs to be protected from enemies outside and within; to understand 

that history contains many examples of technology being used for great evil, causing 

great pain; to understand these trade-offs; to look to the future without forgetting the 

past; and to never succumb to hopelessness.

12 https://thenetworkstate.com

Chapter 7  Conclusion

https://thenetworkstate.com


251

Index

A
Accessibility, 26, 181, 220–222
Account impersonation

ERC-20 tokens, 184
internal state, 185
JavaScript with ethers.js, 183
mainnet, 184
submit transactions, 183

Accounts
_balances, 35
deterministic, 34
ERC-20 contract, 36
ERC-721 contract, 37
function, 33
fungible tokens, 37
hold ether, 34
identity, 38, 40
interfaces, 37, 40
irreversible, 34
lack of physicality, 38
NFTs, 37
private key, 33, 39
public key, 34
token contract, 36
wallet software, 38

Alchemix, 72, 77, 244
Alchemy, 61, 107, 108, 132, 153, 164, 224
Amazon S3, 158, 199
Analytics, 104, 215, 227
Antidecentralization, 225
Antifragile Ethereum application, 214, 215
Antifragile systems, 208, 214–216

Antifragile: Things That Gain from 
Disorder (Book), 208

Antifragility, 15, 208–209, 211, 216, 217
Anti-Money Laundering (AML), 220, 242
anvil_setStorageAt, 183, 189
Application Binary Interface 

(ABI), 141–144
bytecode, 111
encoding, 111
EVM executes, 110
function and argument selectors

balanceOf(address) vs. 
balanceOf(bool), 113

4-byte function selector, 114
canonical representation, 112, 113
sleuthing with calldata, 113–118
visual decoding, 117

origins, 120–124
schemas, 118–120
Solidity contracts, 111
Vyper contracts, 111

Application Programming Interface  
(API), 95

Alchemy, 107, 108
CALLDATALOAD, 105
CALLVALUE opcode, 106
contracts, 109
contracts-as-APIs model, 108, 109
eth_call, 105–107
eth_sendRawTransaction, 107
Infura, 107
smart contract, 104, 110

© Jamie Rumbelow 2023 
J. Rumbelow, Building With Ethereum, https://doi.org/10.1007/978-1-4842-9045-3

https://doi.org/10.1007/978-1-4842-9045-3


252

Approval event, 138, 139, 142
Argent, 46
Asymmetric cryptography, 

mathematics of, 55
Authorization, 237
AWS Lambda or Google Cloud 

Functions, 159
axFeePerGas, 54, 56

B
balanceOf, 112–114, 119, 186, 187
Being John Malkovich (Movie), 200
BigNumber, 146
Bitcoin, 39, 41, 95, 96, 243
Bitcoin accounts, 96, 97
Bitcoin whitepaper, 95
Block hash, 137
Blocknative assist library, 89
Block proposers, 19, 21, 22, 27–31, 56, 60
Blocks, 20, 28, 30, 59, 62, 64, 89, 100, 145
Boba Network, 42

C
Calldata, 64, 95, 105, 106, 113–118, 125
Call functions, 111, 196
Celo, 41
Censorship resistance, 166, 204, 207, 

221, 222
Centralized approach, 205, 207
Centralized hosting, 205–207, 217
Centralized Indexing Services

Alchemy, 164
cost, 165
decentralization, 165
developer experience, 165
indexing speed and data 

availability, 164

layer 2 networks, 164
node hosting services, 164
operational complexity, 165
speed and data freshness, 165
web3 indexing, 166

Centralized infrastructure, 226
Centralized systems, 60, 208,  

219, 224, 225
chainChanged event, 47, 49
Cloud hosting platforms, 205
COBOL, 243
Community-driven standards 

approach, 236
Competitive frontend hosts, 203
Competitive frontends approach, 203–205, 

207, 214
Compliance costs, 242, 243
Composability, 208, 211, 222–227, 237, 245
Compound Governance Bravo 

interfaces, 237
Computation off-chain, 57, 222, 223, 226
Computation on-chain, 223, 226
Confirmation, 23, 62, 63, 65, 71, 87, 

89, 91, 110
Constraints, 3, 37, 55, 63, 65, 73, 82, 93, 

128, 151, 152, 163, 203, 208, 210, 
245, 247

Consumer surplus, 241
Content, 22, 26, 34, 51, 52, 54, 55, 154, 169, 

198, 208, 216, 233
Content delivery network (CDN), 198, 207
Contract, 1, 2, 6–9, 17, 148, 186, 209
Contract authors, 54, 237
Contract logs, 129, 130, 133
Contract memory, 124
Contract runtime bytecode, 125
Contracts-as-APIs model, 108, 109
Contract state

INDEX



253

access state, 126, 127
calldata, 125
contract memory, 124
contract runtime bytecode, 125
contract storage, 124
Ethereum, 123
stack, 123
state and product, 127, 128
transaction logs, 125

Contract storage, 124, 189
Crypto, 92, 94, 249
Crypto adoption, 245
Crypto businesses, 1, 7–10
Crypto community, 221, 247, 248
Crypto engineering

products and users, 10
professional arbitrage, 16
trust engineering, 12–16
users psychology, 11, 12

Crypto-fanatics, 219, 220
Crypto futurism, 241, 242
Crypto infrastructure, 212
Crypto-native use cases, 37, 247
Crypto protocols, 2, 7, 216
Crypto-skeptics, 219, 220
Crypto-specific problems, 212
Crypto technologies, 249
Crypto terminology, 244
Crypto wallets, 33, 40, 231
Cultural changes/meme shifts, 211
Curators, 161

D
Data representation, 170, 190
Decentralization, 17, 160, 163, 166, 197, 

200, 202, 204, 207, 208, 213, 
217, 241

combinatorial effects, 221
competition, 221
computation, 222
crypto-skeptic, 219
data, 223, 224
dimensions, 222–224
multidimensional, 222, 224
multidimensional spectrum, 219
unidimensional, 238

Decentralized computation, 224
Decentralized frontends, 197, 207
Decentralized hosting, 17, 196–200, 204, 

210, 217
Decentralized hosting services, 210
Decentralized networks, 59, 83, 109, 149, 

162, 165, 169, 208, 209
Decentralized systems, 60, 208, 224, 225
Decentralized teams, 246
Delegators, 161
deploy(), 194
Developer experience, 6, 122, 148, 150, 159, 

162–165, 167, 197, 199, 202, 204, 206
Dictionary, 35
Digital currency, 95
Digital signature, 54, 95, 96

E
EIP-1066 standard, 234, 238
EIP-2678 standard, 122
EIP/ERC infrastructure, 229
EIP standards, 234
End-to-end testing, 196

automated, 196
business logic, 178
Ethereum, 179
mainnet test, 178
test networks, 179–190

INDEX



254

ERC-20, 35–37, 40, 66, 184, 230
ERC-721 contract, 36, 37, 40
ERC-2612 standard, 230
ERC-4626 standard, 230
Error messages, 70, 121, 172, 212, 227, 

234, 235
Error Recognition, 70, 71, 83, 92, 94
Error standard, 235
Escrow contract, 191
Ethereum, 2, 38, 51

address, 187
alternatives, 244
code, 216
community, 6, 64, 221
consensus mechanism, 223
ecosystem, 1, 13, 17, 32, 101
engineering, 17
Foundation, 42
products, 167, 175, 202, 208, 210, 214, 

215, 228
protocols, 51, 52, 93, 246
smart contracts, 95
state machine, 123
virtual machine, 100

Ethereum’s event model
contract logs, 129, 130
events, 133–136
events and product

ABI, 141–144
BigNumber object, 146
Contract.prototype.on, 145
DAI, 145
eth_subscribe JSON-RPC 

method, 145
filter events, 145
logs, 141
queryFilter, 146, 148
React, 147

useEffect, 145
useState function, 146

log filters, 136–141
logs, 128
transactions, 128

Ethereum smart contracts, 23, 209
Ethereum virtual machine (EVM), 17, 23, 

53, 55, 56, 58, 95, 100–106, 108, 110, 
123, 125, 128, 129, 133, 167, 186, 223

ethers package, 153
Etherscan, 14, 106, 115, 121, 122, 126, 140, 

152, 153, 155, 180, 187, 188
ethers.contract.Contract, 175, 194
ethers.js provider, 47, 193
eth_estimateGas, 58, 86, 107
eth_getStorageAt RPC method, 127, 189
eth_sendRawTransaction, 105, 107, 110, 183
eth_signTransaction, 83
eth_subscribe JSON-RPC method, 145
Events, 133–136
Event selector, 133, 135, 137, 138, 145
Event signature, 136
Experimentation, 243, 245
Externally owned account (EOA), 22, 38, 

53, 105, 146

F
Fei Labs, 230, 249
The fetish of decentralization, 221
Filecoin, 199, 200
Filters, 32, 90, 132, 136, 139, 141, 145, 223
Financial infrastructure, 221, 244
Financial institutions, 95, 243, 248
Fixtures, 190, 191
Fleek/Pinata, 199
forge, 194
Fragile systems, 208, 214–216

INDEX



255

Fragility, 169, 208–211, 217
Frontend development, 231
FTX, 247, 248

G
Gas, 24, 27, 55, 57
Gas fees, 24, 27, 48, 52, 55, 56, 58, 59, 64, 

66, 68, 70, 76, 82, 86, 93, 128, 148
gasLimit, 54, 56
Gas price, 24, 27, 59, 63, 74–76, 101, 210
Gateway, 108, 160–163, 198–200
getFeeData() function, 59
Global payment, 248
Graph

components
indexer, 160
interface, 160
source, 160

costs, 163
curators, 161
decentralization, 163
delegators, 161
developer experience, 162
Gateway, 161, 162
Hosted Service, 162
indexing platform, 160
indexing protocol, 160
operational complexity, 163
software and protocol  

engineering, 163
speed and data freshness, 162
subgraphs, 160

GraphQL libraries, 160
GraphQL schema, 160
Graph’s subgraph API, 162
Greeting, 102
GRT, 161, 163

H
Hashing function, 25, 112, 188
Hashtag, 215, 216
Hex string, 188
Hierarchical Deterministic (HD) 

accounts, 39
Hosted Service, 52, 162, 200
Hosting

centralized hosting, 205–207
competitive frontends, 203–205
decentralized hosting, IPFS, 198–200
degree of decentralization, 196
infrastructure decision, 197
Malkovich deployment, 196, 200–202
sensible UX patterns, 197
trade-offs rubric, 197

HTTP, 26, 108, 111, 161, 202, 234, 246
HTTP-hosted gateway, 198

I
Incentives, 12, 23, 30, 34, 163, 196, 199, 

203–205, 210, 212, 224–226, 
238, 246

Independence, 215
Indexing

centralized indexing services, 164–166
contracts, 148
cost, 151
decentralization, 151
decentralized indexing, 160–163
developer experience, 150
DIY approaches, 148
operational complexity, 151
product engineers, 150
simple DIY index, 151–160
smart contracts, 149
speed and data freshness, 150

INDEX



256

Information architecture, 4, 14
Integration testing, 6, 170–178
Internet, 17, 19, 182, 207
IPFS

application server, 198
browser, 198
CDN, 198
decentralized, 198
Fleek, 200
lot of complexity, 200
misconception, 198
nodes and running deployment, 199
peer-to-peer network, 198
pinning, 199
server-side code execution, 200

IPFS-enabled browser, 198

J
JavaScript, 125, 126, 169–171, 183, 188, 

191, 230, 231
JSON file/format, 118, 122, 194, 231

K
keccak256 hashing algorithm, 25, 26, 118, 

133, 135, 188

L
The lifecycle of an Ethereum request

App, 20
app to node, 23
attestations, 28
basic story, 21, 22
block finalization, 31, 32
block proposer, 21, 28
EOA, 22

Ethereum docs, 26
gas, 23, 24
keccak256 hashing algorithm, 25, 26
mempool, 26, 27
network, 21
node, 21
Proof of Stake, 20, 30, 31
read requests, 23
reads, 20
transaction hash, 24, 25
transactions, 19, 26, 27, 29
user, 20, 22, 23
user’s wallet, 21, 26
validator node, 27
validators, 21, 28, 30, 31
wallets abstract, 24
write request, 23
writes, 20

localhost:8545, 181, 195
“Lock in”, 13, 26, 62, 167, 232
Log filters, 132, 136–141
LQTY incentive token, 204

M
Malkovich deployment

decentralization, 201, 202
Docker container, 201
Ethereum products, 202
HTTP request, 202
marketing, 201
problems, 201
rubric, 201
secret API keys, 201
steps, 200
trade-offs, 200

Market-based system, 232
Market movements, 211

INDEX



257

Matcha, 74, 75, 84
Matching models, 68, 71, 73, 92, 94
Maximal decentralization

boundaries, 246
crypto-fanatics, 220
definition, 220
semantic distinction, 220
trade-offs, 220–222

Maximalism, 220
mempool, 21, 22, 26, 27, 31, 59, 60, 83, 193
MetaMask, 46, 47, 60, 83, 180, 182, 193, 

195, 231
mockthereum, 178
Moore’s Law, 196

N
Network and account switching

layer 1, 41
layer 2, 42, 43
state management, 48, 49
switching between networks, 49, 50

app/user’s wallets, 47
Ethereum mainnet, 44
layer 2s, 44
local forks, 44
testnets, 44
UI, 45–47
Uniswap UI, 44, 45
user’s wallet software, 46, 47
wallet software, 43

Network decentralization, 223
network event, 47
Network uncertainty, 213
NFTs, 8, 36, 37, 63, 127, 164
Node software, 31, 43, 58, 107, 136
Nonces, 52, 54, 59, 60, 93
Nontechnical sources of disorder, 210

Nontechnical terms, 192
npm script, 195

O
Off-chain code, 207, 223
On-chain code, 204, 223
On-chain data, 175, 190
Open source protocols, 121
OpenZeppelin role model, 237
Operational complexity, 151, 159, 160, 

162–165, 167, 199, 202, 204, 206
Organizational structure, 17, 246

P
package.json files, 231
Paranoid programming, 214
ParaSwap, 71, 72, 78, 79
Path dependence, 232, 233
permissible() function, 81
Permissionlessness, 249
Personal values, 250
Pinata/Cloudflare’s IPFS gateway 

service, 199
Platform engineering, 1, 5–8, 233
Pricing transaction costs, 210
Principle of Trust, 1, 13, 14, 49, 63, 72, 82, 

90, 128, 148, 149, 206, 210, 235
Product engineering, 1, 4, 5, 8–10, 17, 55, 

111, 126, 214, 228, 234, 241
Product teams, 204
Professional arbitrage, 16, 65
Progressive expansion, 63, 73–77, 82, 94
Protocol engineering, 1, 234

distinctive problems, 3
Ethereum, 2
fun and urgent, 3

INDEX



258

product development, 2
smart contracts, 3

Protocol engineers, 1–3, 6, 8, 120, 125, 128, 
186, 237, 238

Provenance, 52, 54, 55, 243
Public testnet, 41, 54, 181

Q
QuickNode, 107
QuickSwap, 42

R
Raw transaction, 54, 59
Read Contract, 187
Read requests, 23, 32, 105, 175
Regulatory changes, 211, 213
Remittance system, 247
Reversibility, 82–86
Robustness, 15, 169, 208, 209, 211–214, 

216, 217, 227
Robust systems, 211–214
RPC node hosts, 224
RSS standard, 233

S
Scalability, 41, 42, 50, 107
Second-order tooling, 231
Security posture, 4, 12, 206, 207
Selenium, 185
Self-protective feedback loops, 248
Sensible and standardized errors, 238
Sensible and standardized events, 238
Sensible and standardized return 

values, 238

Sensible pragmatism, 249
Server-side language, 205
Signatures, 25, 26, 35, 52, 54, 55, 59, 96, 

112, 113, 116, 118, 125, 136, 183
Skeuomorphic links, 32, 242
Smart contract accounts (SCAs), 38
Smart contracts, 54, 57

ABI (see Application Binary 
Interface (ABI))

APIs, 95, 104–110
Bitcoin accounts, 96, 97
Bitcoin transaction moves an  

amount, 97
bytecode, 103
computer programs, 100
digital currency, 95
digital signatures, 96
distinctive columns, 99, 100
errors, 84
Ethereum, 95
EVM, 102, 103
implementation questions, 100
invocations, 53
movement between  

columns, 98, 99
a priori, 99
programs, 101
solidity, 101, 102
transfer function, 98

Solidity, 101, 102, 186, 192
Solidity contracts, 111, 126, 187
Solidity functions, 111
Sources of disorder, 169, 209–211
Standard capture, 231, 232, 237
Standardization

authorization, 236
error messages, 234, 235
security and verification, 235, 236

Protocol engineering (cont.)

INDEX



259

Standards
community governance mechanisms, 

229, 230
composability, 227
definition, 228
design process, 238
Ethereum community, 227
implicit coordination, 229
path-dependent effects, 227
public goods, 238
senses, 228

Standards-driven integration, 245
State management, 48, 49, 147
State mutability, 119
Status visibility, 86, 90, 92, 94
Suboptimal equilibria, 225, 226
success boolean, 195
Supabase, 158

T
Technical and socioeconomic  

layers, 209
Technological change, 17
Technological choices, 2, 232, 233, 249
Technological development, 247
Testing

end-to-end testing, 178–196
integration testing, 175–178
reliability and empathy: reliability, 170
scenario infrastructure, 192
unit tests, 169–172, 174, 175

Test networks
account impersonation, 183–185
anvil command, 179
Ethereum blockchain, 180
Ethereum testing tools, 179
frontend, 181

gotchas, 182
helpers, 183
mainnet, 180
MetaMask, 180
ngrok, 181
public testnet, 181
RPC method, 183
setting state, 186–190
smart contract testing, 179
tools, 183
URL, 182

Test scenario file, 192
Token contract, 36
TokenExchange events, 158
Tokenization, 246, 247
Tokenomics, 245
totalSupply variable, 186, 187
Total Value Locked (TVL), 67, 68, 210
Trade-offs, 6, 32, 93, 95, 109, 128, 148, 150, 

159, 165–167, 169, 241, 245, 248
Traditional financial system, 242, 243
Transaction hash, 24–26, 31, 64, 157
Transaction logs, 125, 133
Transactions, 26, 27, 29, 31, 50

abstraction, 63
categories, 52
chainId key, 54
Ethereum protocol, 52
gas fees, 52, 55, 56, 58, 59
JSON structure, 52
nonces, 52, 54, 59, 60
properties, 51

compute values, 51
external, 51
public, 51
user intention, 51

raw, 53
receipts, 61, 63

INDEX



260

replay attacks, 59, 60
signing, 54, 55
smart contract invocations, 53

Transaction UX
abstraction, 63
clarification

dynamic systems, 69, 70
transaction intent, 70, 71, 73
user’s intention, 66
user’s model, 66–69

confirmation
Blocknative assist library, 89
Ramp, 88
transaction status, 87
update state, 90, 91

control
“Advanced Settings”  

panel, 74, 75
balancer’s wstETH pool, 82
Expert Mode, 75, 76
ParaSwap, 79
progressive expansion, 73–77
reversibility, 82–86
transaction sequencing, 78–82
“Undo” feature, Gmail, 83
Uniswap interface, 79, 80
validation, 82–86

crypto, 92
Ethereum user experience, 64
Principle of Trust, 63
principles, 92
problems with Ethereum UX, 64, 65
protocol-and network-level  

decisions, 64
psychological research, 64
users, 63
user’s model, 63

user’s wallet, 63
UX problems scale, crypto, 65

Transparency, 15, 72, 215, 223, 224
Tribal dynamics, 249
Trichotomy, 1, 2, 9, 214
Trust engineering, 4, 12–16
Trustless protocols, 211
TypeScript, 120, 122, 153, 162

U
UI and CLI tooling, 199
Unit testing, 169–178
unlock() function, 91
unspent gas, 56
USDT token, 137, 139
useContractEvent, 145
User experience, 6, 9–11, 14, 57, 64, 65, 70, 

197–199, 201, 203, 206, 226, 228, 
233, 235, 236, 238

User-identifiable information, 227
User journeys, 14, 78, 82, 178,  

190–192, 195
User’s model, 63, 66–70, 73, 74, 93
UX consequences, 238
UX patterns, 197, 213

V
Validation, 22, 82–86, 109, 170–173
Value accrual, 241, 245–247
Value creation, 241–245, 247
Vitalik Buterin, 11, 33, 42

W, X, Y, Z
Wagmi, 49
Wallet metaphor, 33, 34, 37, 40, 50
Wallets, 32, 40, 50

Transactions (cont.)

INDEX



261

features, 33
metaphors, 32
skeuomorphic links, 32

Wallet software, 8, 19, 24, 25, 33, 34, 38, 43, 
44, 46, 47, 49, 54, 55, 57, 63, 65, 71, 
93, 182, 196, 209, 212, 234, 235

web2–PCI DSS compliance, 236
web3-mock, 178
Widespread access, 249
window.ethereum object, 23, 46,  

178, 231
Write request, 20, 23

INDEX


	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: Introduction
	Products, Protocols, and Platforms
	Protocol Engineering
	Product Engineering
	Platform Engineering
	Crypto Businesses

	Crypto Engineering Is Trust Engineering
	Products and Users
	The Psychology of the User
	Trust Engineering
	Professional Arbitrage

	What’s Next
	Summary

	Chapter 2: Requests, Networks, and Accounts
	The Lifecycle of an Ethereum Request
	The Basic Story
	Where Requests Originate
	How Requests Are Confirmed
	Once a Block Is Finalized

	Accounts and Wallets
	Accounts Don’t Hold Things
	Accounts Aren’t Limited
	Accounts Aren’t Physical Items
	Accounts Are Identity

	Network and Account Switching
	Layers 1 and 2
	Switching Between Networks
	Provide a Mechanism to Switch Networks Inside Your UI
	Handle the Case Where Your User’s Wallet Software and Your UI Are Set to Different Networks
	Handle the Case Where Either Your App or the User’s Wallet Doesn’t Support the Other Network
	State Management

	Switching Between Accounts

	Summary

	Chapter 3: Transactions
	What Does a Transaction Look Like?
	Transaction Signing
	Gas Fees
	Nonces and Replay Attacks
	Transaction Receipts

	Transaction UX
	Clarification
	The User’s Model
	Dynamic Systems
	Transaction Intent

	Control
	Progressive Expansion
	Transaction Sequencing
	Reversibility and Validation

	Confirmation
	Transaction Status
	Updating State

	Some Final Thoughts on UX

	Summary

	Chapter 4: Contracts
	Smart Contracts
	What Does a Smart Contract Look Like?
	Contracts Are APIs
	Application Binary Interfaces
	Function and Argument Selectors
	Sleuthing with Calldata

	ABI Schemas

	The Origins of ABIs

	Contract State
	Several Types of State
	Accessing State
	State and Product

	Ethereum’s Event Model
	Contract Logs
	Events
	Log Filters
	Events and Product
	ABIs Contain Events, Too
	Listening to Events


	Indexing
	A Simple DIY Index
	Decentralized Indexing: The Graph
	Centralized Indexing Services
	Final Considerations

	Summary

	Chapter 5: Infrastructure
	Testing
	Unit and Integration Testing
	End-to-End Testing
	Test Networks
	Account Impersonation
	Setting State Directly

	Test Scenarios


	Hosting
	Decentralized Hosting on IPFS
	The Malkovich Deployment
	Competitive Frontends
	Centralized Hosting
	Final Considerations

	Fragility and Antifragility
	Sources of Disorder and Fragility
	Robust Systems
	Antifragile Systems

	Summary

	Chapter 6: Decentralization
	Decentralization Is a Fetish
	Decentralization Is Multidimensional
	Dimensions of Decentralization

	Decentralization As a Backstop

	Standards
	What Are Standards?
	Some Etymology
	Who Sets the Standards?
	Standard Capture and Path Dependence

	The Case for Greater Standardization
	Error Messages
	Security and Verification
	Authorization

	Some Lessons

	Summary

	Chapter 7: Conclusion
	Crypto Futurism (Without the Hyperbole)
	Value Creation
	Value Accrual
	Final Thoughts


	Index

