
Greg Klar, Ken Museth

Building NanoVDBs on the GPU

2

Use case: Particle Rasterization

Top: NanoVDB rasterizer; Bottom: OpenVDB rasterizer
by Andre Pradhana

3

Building a NanoVDB from points

Snapshot of the source under QR code

Supports building of regular grids, point grids, index grids

Related use cases:

Point rasterization

Point-to-grid transfers

4

NanoVDB Principles

Pointerless: uses relative offsets in memory

Very versatile across architectures

Not well suited for incremental building

Consequence: Need to know the memory footprint of the grid first!

5

NanoVDB Building Steps

Allocate memory

Build tree and populate values

6

*nodes not to scale
Default configuration: 8^3 voxels per leaf,

16^3 leaves per lower node,
32^3 lower nodes per upper node.

Root tiles and upper node

Seed points

Lower node

Leaf node

8

NanoVDB Nodes

Upper

node

Lower

node

Leaf

node

Root tiles

*nodes not to scale

Voxels, your data lives here!

1-to-1 mapping between root tiles and upper nodes

9

How Much Memory to Allocate?

total_bytes =
 sizeof(Grid) +
 sizeof(Tree) +
 sizeof(Tree::RootType) +
 sizeof(Tree::RootType::Tile) * upper_node_count +
 sizeof(Tree::Node2) * upper_node_count +
 sizeof(Tree::Node1) * lower_node_count +
 sizeof(Tree::Node0) * leaf_node_count +
 blind_data;

NanoVDB footprint

Same in this use case

This is what we need to know!

10

NanoVDB Building Steps

Count nodes

Allocate memory

Build tree and populate values

Corrected

11

COUNTING NODES

12

- INTERMISSION -

Sort + RLE + PrefixSum = binning

RadixSort:

Sort based on a key the defines the binning
→ elements in the same bin will be consecutive

Run Length Encode

→ number of elements per bin and the number of bins

Exclusive Sum (aka PrefixSum aka Scan)

→ indices to the start of each bin in the sorted array

All these are available in CUB!

Binning points on the GPU

13

COUNTING ROOT TILES

Binning the particle IDs by their Root Key

Root keys are available from nanovdb::RootData::CoordToKey

Steps:

Generate (root key, point ID) pairs for each point based on their index-space location

Radix Sort pairs base on root key

Run Length Encode, outputs:

d_tile_keys points_per_tile
upper node

count

14

Upper

node

Lower

node

Leaf

node

Root tiles

*nodes not to scale

1-to-1 mapping between root tiles and upper nodes

15

INDEXING WITHIN A TILE

New 64 bits voxel key for each point:

9 bits for voxel offset

12 bits for leaf offset

15 bits for lower offset

28 bits for tile ID
Not the same as tile key!
This is the running index from 0..tile_count-1

Upper

node

Lower

node

Leaf

node

“lower offset”
index of the lower node within its parent

“leaf offset”
index of the leaf node within its parent

9b12b15b28b

16

COUNTING ACTIVE VOXELS

Plan: bin points to voxels → number of unique bins == number of active voxels

For each root tile i

Compute voxel key for each point in the tile

Sort voxel keys within the tile to get

Run Length Encode , outputs:

Exclusive Sum: offset to look up points based on voxel

d_indx

pointsPerVoxel

pointsPerLeafPrefix

d_keys

9b12b15b28b

== i

d_keys

voxelCount

17

Upper

node

Lower

node

Leaf

node

Root tiles

*nodes not to scale

18

COUNTING LEAF NODES

Note

Voxel keys are already sorted in

Recall voxel keys are tile ID, lower offset, leaf offset, voxel offset

Shift them right by 9 bits → leaf keys

Run Length Encode with a Right Shift 9 Bits Iterator, outputs:

Exclusive Sum on : offset to look up points based on leaf node,

d_leaf_keys

d_keys

12b15b28b 9b12b15b28b

d_keys

pointsPerLeaf
leaf node

count

pointsPerLeaf

pointsPerLeafPrefix

19

Upper

node

Lower

node

Leaf

node

Root tiles

*nodes not to scale

20

COUNTING LOWER NODES

Note

Leaf keys are already sorted in

Recall leaf keys are tile ID, lower offset, leaf offset

Shift them right by 12 bits → lower node keys

We don’t need binning at this point, just the number and values of each lower node!

Unique on with a Right Shift 12 Bits Iterator, outputs:

d_leaf_keys

15b28b 12b15b28b

d_leaf_keys

d_lower_keys
lower node

count

21

Done counting the nodes!

Upper

node

Lower

node

Leaf

node

Root tiles

*nodes not to scale

22

ALLOCATING BUFFER

23

READY TO ALLOCATE MEMORY

Now that we have the number of nodes, we can allocate the buffer for the grid

We are including the seed points as well in the blind data

At this point we know the place in memory of all the nodes by ordinal indexing, eg. the nth lower node, but not by
spatial coordinates

leaf nodeslower nodesupper nodesroot nodes

root

tree

grid

24

NanoUpper<BuildT>& getUpper(int i) const {return *(PtrAdd<NanoUpper<BuildT>>(d_bufferPtr, upper)+i);}
NanoLower<BuildT>& getLower(int i) const {return *(PtrAdd<NanoLower<BuildT>>(d_bufferPtr, lower)+i);}
NanoLeaf<BuildT>& getLeaf(int i) const {return *(PtrAdd<NanoLeaf<BuildT>>(d_bufferPtr, leaf)+i);}

E.g. access to getLower(i) is valid, if 0<= i < lower_node_count!

But we don’t know their spatial positions!

E.g. given ijk coordinates, we don’t know how to get to that leaf, even though it is allocated.

leaf nodeslower nodesupper nodesroot nodes

root

tree

grid

25

BUILDING THE TREE

26

BUILDING THE TREE

Top-down sweep:

Grid, Tree, and Root

Upper nodes

Lower nodes

Leaf nodes

Points

Bottom-up sweep:

Computing the Bounding Boxes

Upper

node

Lower

node

Leaf

node

Root tiles

Root

Tree

Grid

27

GRID, TREE, AND ROOT

CudaPointsToGrid::processGridTreeRoot

Single-thread kernel

Straightforward housekeeping
Upper

node

Lower

node

Leaf

node

Root tiles

Root

Tree

Grid

28

UPPER NODES

CudaPointsToGrid::processUpperNodes

Running on # of upper nodes threads:

tid is upper node id. Get the nodes with getUpper

Ijk cords of the upper node: NanoRoot<uint32_t>::KeyToCoord([tid]);

Records the upper node to the root tile

Running on (# of upper nodes * 2^15) threads:

Zeroing the tables of every upper nodes

d_tile_keys

29

LOWER NODES

CudaPointsToGrid::processLowerNodes

Very similar as before, but

const uint64_t lowerKey = [tid];

auto &upper = d_data->getUpper(lowerKey >> 15);

const uint32_t upperOffset = lowerKey & 32767u;

Needs to use atomic operations to set child mask in parent!

New kernel launch for resetting the table

d_lower_keys

15b28b

15b28b

30

LEAF NODES

CudaPointsToGrid::processLeafNodes

For each leaf node

leafKey = [tid];

tile_id = leafKey >> 27;

auto &upper = d_data->getUpper(tile_id);

const uint32_t lowerOffset = leafKey & 4095u

upperOffset = (leafKey >> 12) & 32767u;

Record offset and point count in leaf, if building a point grid

New kernel launch each active voxel: Record either point ID, or just 1 as a placeholder value

d_leaf_keys

12b15b28b

12b15b28b

12b15b28b

31

POINTS

CudaPointsToGrid<Points>::processPoints

Copy point IDs or values, based on grid type, into blind data

Uses for voxel to point ID lookup

Only for point grids!

d_indx

32

COMPUTING THE BOUNDING BOXES

Lower to upper nodes

Upper to root nodes

World space bounding box on grid

All on the GPU

Uses expandAtomic

33

ENJOY YOUR BRAND NEW
NANOVDB!

34

THANK YOU!

	Slide 1: Building NanoVDBs on the GPU
	Slide 2: Use case: Particle Rasterization
	Slide 3: Building a NanoVDB from points
	Slide 4: NanoVDB Principles
	Slide 5: NanoVDB Building Steps
	Slide 6
	Slide 8: NanoVDB Nodes
	Slide 9: How Much Memory to Allocate?
	Slide 10: NanoVDB Building Steps
	Slide 11: Counting nodes
	Slide 12: - INTERMISSION -
	Slide 13: Counting root tiles
	Slide 14
	Slide 15: Indexing within a tile
	Slide 16: Counting active voxels
	Slide 17
	Slide 18: Counting leaf nodes
	Slide 19
	Slide 20: Counting Lower nodes
	Slide 21: Done counting the nodes!
	Slide 22: Allocating buffer
	Slide 23: Ready to allocate memory
	Slide 24
	Slide 25: Building the tree
	Slide 26: Building the tree
	Slide 27: Grid, Tree, and root
	Slide 28: Upper nodes
	Slide 29: Lower nodes
	Slide 30: Leaf nodes
	Slide 31: Points
	Slide 32: Computing the Bounding Boxes
	Slide 33: Enjoy your brand new NanoVDB!
	Slide 34
	Slide 35

