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Fig. 1. This paper is centered around the generation of offset surfaces. The figure demonstrates how offset surfaces vary as the distance increases. A key
advantage of our algorithm is its precise preservation of sharp features, eliminating the need for supplementary iso-surface extraction methods, which
frequently struggle to accurately maintain these sharp features. See the highlighted windows.

Surface offsetting is a crucial operation in digital geometry processing and

computer-aided design, where an offset is defined as an iso-value surface of

the distance field. A challenge emerges as even smooth surfaces can exhibit

sharp features in their offsets due to the non-differentiable characteristics of

the underlying distance field. Prevailing approaches to the offsetting problem

involve approximating the distance field and then extracting the iso-surface.

However, even with dual contouring (DC), there is a risk of degrading sharp

feature points/lines due to the inaccurate discretization of the distance field.

This issue is exacerbated when the input is a piecewise-linear triangle mesh.

This study is inspired by the observation that a triangle-based distance

field, unlike the complex distance field rooted at the entire surface, remains
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smooth across the entire 3D space except at the triangle itself. With a polygo-

nal surface comprising𝑛 triangles, the final distance field for accommodating

the offset surface is determined by minimizing these 𝑛 triangle-based dis-

tance fields. In implementation, our approach starts by tetrahedralizing the

space around the offset surface, enabling a tetrahedron-wise linear approxi-

mation for each triangle-based distance field. The final offset surface within

a tetrahedral range can be traced by slicing the tetrahedron with planes. As

illustrated in the teaser figure, a key advantage of our algorithm is its ability

to precisely preserve sharp features. Furthermore, this paper addresses the

problem of simplifying the offset surface’s complexity while preserving

sharp features, formulating it as a maximal-clique problem.

CCS Concepts: • Computing methodologies→ Shape modeling.

Additional Key Words and Phrases: digital geometry processing, polygonal

surface, offset, sharp feature, maximal clique
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1 INTRODUCTION
The creation of offset surfaces is a fundamental operation in geom-

etry processing and computer-aided design, encompassing a wide

range of applications such as shelling, collision detection, and path

planning [Pham 1992; Teschner et al. 2005; Williams and Rossignac

2005]. In this paper, we concentrate on computing an accurate offset

surface from a polygonal surface, with a specific focus on preserving

sharp features.
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Input Dilation Erosion
Fig. 2. The offsetting operation either expands or contracts the input shape
by a specified distance. Even smooth surfaces can develop sharp features in
their offsets due to the non-differentiable characteristics of the underlying
distance field.

The offset at a distance 𝛿 can be considered a specific case of the

Minkowski operation, widely explored in mathematical morphology.

This process computes the offset surface by allowing a sphere to

traverse with its center lying on the surface, as depicted in Fig. 2.

It can be observed that even smooth surfaces may exhibit sharp

features in their offsets due to the non-differential characteristics of

the underlying distance field.

Methods for generating offset surfaces are primarily classified

into two categories: explicit and implicit. Explicit methods [Farouki

1985] involve offsetting each geometric primitive separately and

then amalgamating them to form a cohesive surface. These ap-

proaches require a complex post-processing phase to identify inter-

sections and eliminate extraneous components. In contrast, implicit

methods [Shen et al. 2004] focus on the accurate computation of a

distance field, followed by the extraction of an iso-surface as the

offset. The challenges associated with these methods are twofold.

First, even if the distance field is represented by high-resolution

volumetric grids, the discontinuities within the distance field may

still be degraded to some extent. Second, even with dual contour-

ing (DC) [Ju et al. 2002], the sharp feature points/lines may not be

fully recovered due to the inaccurate discretization of the distance

field.

The research presented in this paper is driven by an insightful

observation: a distance field derived from individual triangles, as

opposed to one given by the entire surface, remains smooth through-

out the 3D space, with irregularities appearing only at the triangles

themselves. This inherent smoothness of a triangle-based distance

field enables us to divide the space into small units and apply a linear

approximation within each unit. It is important to highlight that this

piecewise linear approximation method is effective provided that

the units are sufficiently small. Based on the fact that the actual dis-

tance field of the entire surface, necessary for creating the offset, can

be constructed by minimizing across all the triangle-based distance

fields, our approach begins with creating a piecewise approximation

for the distance field of each triangle, followed by merging these

approximations precisely to form the complete offset.

Our method, referred to as PCO, initiates by tetrahedralizing the

space surrounding the offset surface, thus facilitating a tetrahedron-

wise linear approximation for each triangle-based distance field.

Suppose 𝑛 represents the number of triangles. The actual distance

field for approximating the offset surface is given by minimizing the

𝑛 triangle-based distance fields. Within every tetrahedron, achieving

Input Dual Contouring Ours

Fig. 3. Prevailing approaches to the offsetting problem involve approximat-
ing the distance field and then extracting the iso-surface. However, even
with dual contouring (at a grid resolution of 1024), there is a risk of degrad-
ing sharp feature points and lines due to the inaccurate discretization of
the distance field. In contrast, our method (with a grid resolution of 512)
demonstrates advantages in both accuracy and feature preservation. Note
that the offset distance is set to 2%, and the normals of the offset surfaces
are visualized in a color-coded style.

the offset involves a series of half-plane cutting operations. This

approach offers at least two significant benefits. Firstly, its precision

is adjustable based on the size of the tetrahedron. Secondly, it ef-

fectively preserves sharp features because the only approximation

present is within the linear approximation of each triangle-based

distance field. In implementation, we utilize specific rules to filter

out irrelevant triangle-tetrahedron pairs, enhancing computation

speed. Moreover, we recommend merging the 𝑛 fields, tetrahedron

by tetrahedron, to simplify the complexity of the offset surface

while maintaining the integrity of sharp features. This process can

be formulated as a maximal-clique problem. Our extensive exper-

imental findings demonstrate notable superiority in maintaining

sharp features, as highlighted in the teaser figure and Fig. 3.

Our contributions are four-fold:

• We propose an accurate computation of the offset surface

while preserving sharp features. Our approach, named PCO,
leverages the smoothness of triangle-based distance fields

except at the triangles themselves.

• We present a discrete implementation that begins with tetra-

hedralizing the space and slicing each tetrahedron with a set

of planes. The size of the tetrahedra can be adjusted to control

the precision of the approximation.

• We suggest combining distance fields, tetrahedron by tetra-

hedron, to simplify the complexity of the offset surface while

retaining sharp features. Our method demonstrates advan-

tages over state-of-the-art (SOTA) techniques in terms of

accuracy and feature-preserving ability.
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• Our approach can be naturally extended to support other

morphological operations, such as opening and closing.

2 RELATED WORK
We begin with a concise overview of morphological operations (Sec-

tion 2.1), before delving into the two principal approaches pertinent

to our study: the Minkowski sum (Section 2.2) and volumetric meth-

ods (Section 2.3). Finally, we explore additional offsetting techniques

in Section 2.4.

2.1 Morphological Operations
Morphology characterizes how a shape expands or contracts based

on a specific operation and structuring element (or kernel). Offset-

ting, encompassing both dilation and erosion, serves as a fundamen-

tal component of morphological operations. These basic processes

form the foundation for more advanced techniques like opening

and closing operations [Sellán et al. 2020].

Mathematical morphology, originally traceable to the field of

image processing [Haralick et al. 1987], primarily aims to stream-

line image data while preserving essential shape characteristics

and eliminating irrelevancies. In recent years, this technique has

garnered extensive attention within the realm of geometry pro-

cessing [Calderon and Boubekeur 2014; Nooruddin and Turk 2003;

Suriyababu et al. 2023].

2.2 Minkowski Sum
The Minkowski sum is a fundamental operation in computer graph-

ics and is well-defined in mathematical morphology. Utilizing the

Minkowski sum represents a direct approach for computing an off-

set, where the Minkowski sum of a surface and a sphere results in

the two-sided offset of the surface. Computing Minkowski sums for

convex polytopes is relatively straightforward compared to general

polyhedral models. The complexity of computing the Minkowski

sum for two convex polyhedra is 𝑂 (𝑛2). However, for non-convex
polyhedra in 3D, the complexity can escalate to 𝑂 (𝑛6) in the worst

case [Dobkin et al. 1993].

Given the ease of computing the Minkowski sum for convex poly-

hedra, most methods that address non-convex polyhedra [Chazelle

et al. 1995; Ehmann and Lin 2001; Hachenberger 2009] start with a

convex decomposition, followed by the computation and union of

the Minkowski sums of the convex components. The Minkowski

sum can also be conceptualized as calculating the volume by sweep-

ing one solid with another [Campen and Kobbelt 2010b; Li and

McMains 2014], dependent on precise and robust intersection calcu-

lations [Campen and Kobbelt 2010a]. However, these approaches

are limited by numerical errors from various degenerate cases, re-

quiring robust geometric predicates for accuracy [Milenkovic et al.

2013; Sacks et al. 2011]. Rather than directly computing the exact

union of pairwise Minkowski sums, Varadhan and Manocha [2004]

derive a signed distance field and extract its zero iso-surface. Peter-

nell and Steiner [2007] demonstrate how to extract the Minkowski

sum boundary from the convolution of two objects with piecewise

smooth boundaries. Lien [2008] introduce a point-based method

to approximate the result by generating a point set covering the

boundary of a polyhedron. To mitigate high computational com-

plexity, Leung et al. [2013] propose decomposing the polyhedra into

convex pieces and merging the pairwise convex sums in groups on a

GPU. Kyung et al. [2015] present a convex convolution algorithm for

Minkowski sums with a GPU implementation, employing strategies

to eliminate degeneracy and enhance robustness. Some algorithms

leverage GPU-based approaches [Li and McMains 2010, 2011, 2014]

to compute a voxelized representation, offering an alternative to

traditional boundary representation (B-rep) based Minkowski sums.

To summarize, achieving high accuracy in the offset result, espe-

cially within concave regions, necessitates discretizing the sphere

with a dense mesh. This significantly increases computational time

and presents challenges in addressing self-intersection issues, mak-

ing theMinkowski sum an impractical method for computing offsets.

2.3 Volumetric Approaches
The offset surface can be extracted from the distance field discretized

on grid points, which is the basis of volumetric approaches. They

concentrate on inferring the distance field [Park et al. 2019; Sharp

and Jacobson 2022], followed by some contour extraction meth-

ods [Ju et al. 2002; Lorensen and Cline 1987; Sellán et al. 2023] to

produce a polygonal representation of the offset surface.

In the context of computing offsets, a primary challenge for these

methods is the extraction and preservation of sharp features. Liu

and Wang [2009] attempt to simultaneously reconstruct the zero-

level surface and an offset surface from an offset point set. However,

this direct shifting along the normal direction leads to significant

artifacts on the offset surface, particularly failing to reconstruct

sharp features for larger offset distances. Various isosurfacing meth-

ods aimed at extracting sharp features [Ju et al. 2002; Kobbelt et al.

2001; Qu et al. 2004; Schaefer and Warren 2004] have been exten-

sively employed. Notably, Dual Contouring is often chosen for its

ability to incorporate surface normals and recover sharp features.

Yet, it is important to acknowledge that the surfaces extracted of-

ten suffer from numerous self-intersections, posing problems for

further applications. Pavić and Kobbelt [2008] introduced a hybrid

method based on the union of primitives, reducing self-intersections

through min/max operations on distance functions, though it does

not automatically ensure sharp feature reconstruction. A modified

Dual Contouring method [Liu and Wang 2010] aims to produce

intersection-free offset surfaces while preserving sharp features

from triangular mesh surfaces, albeit with potential topological dis-

crepancies from the actual offset surface. Zint et al. [2023] utilized

a topology-adapted octree [Varadhan et al. 2004] to maintain disk

topology and reduce computational costs, yet cannot completely

prevent self-intersections.

A common limitation of these methods is their dependency on

high resolution to maintain accuracy. Even with dual contouring

(DC), there is a risk of degrading sharp feature points and lines due

to the inaccurate discretization of the distance field. Note that in our

method, even at a low resolution of tetrahedra, the sharp feature

points and lines can still be retained.
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2.4 Other Approaches
Ray-based Methods. Ray-based data structures serve as an inter-

mediate representation between traditional boundary representa-

tion and volumetric representations. A ray-based representation of

a shape is achieved by calculating the intersections of a set of rays

with the shape [Menon and Voelcker 1995].

Just a few offsetting methods leverage ray representations. Mar-

tinez et al. [2015] utilize a dexel structure [Van Hook 1986] for

the solid, approximating morphological operations with a spher-

ical kernel by a zonotope, effectively computing the Minkowski

sum of the original shape with a sequence of segments in various

directions. Chen et al. [2019] apply morphological operations on

ray representations using a dexel structure, particularly for gener-

ating surface offsets, but face limitations due to uneven sampling

in a single direction, which hampers output mesh reconstruction.

Chen and Wang [2011] propose an offsetting method that creates

a superset of primitives from an input polyhedron, constructs an

LDNI, and filters the LDNI points belonging to the offset surface

to remove self-intersections. However, the LDNI model’s accuracy

is constrained by pixel width, potentially omitting sharp features.

Wang and Manocha [2013] approximate an object’s boundary with

point samples organized by LDI into structured points, computing

the offset by merging balls centered at these points on the GPU. This

method has limitations, including increased sphere intersections

with larger offset distances and varying geometric error bounds,

leading to potential topological discrepancies.

Shell Generation Methods. Shell generation relates to offsetting,

but they are different. A shell, often seen as a proxy for the original

surface, may not necessarily emphasize detail preservation. Wang

et al. [2020] introduced a novel approach for constructing a convex

polyhedral envelope containing the input model, starting with a

prism containing a triangle and cutting it with additional planes to

maintain proximity to the triangle. Jiang et al. [2020] built a shell by

decomposing a prism into tetrahedra from a triangle mesh, deter-

mining extrusion directions to construct the shell, and optimizing to

simplify it. Portaneri et al. [2022] developed an algorithm to create

a shell enclosing a mesh within a specified offset distance and alpha

value, beginning with a coarse mesh and employing carving and

refinement steps to generate a watertight and orientable triangle

mesh that encloses the input.

Optimization-based Methods. Meng et al. [2018] proposed an algo-

rithm for generating a feature-aligned offset surface using a particle

system, though its performance is deemed insufficient for interac-

tive applications. The primary concept involves distributing a set

of movable sites uniformly while maintaining a specified distance

from the base surface throughout the optimization process, ulti-

mately producing a triangle mesh through a restricted Delaunay

triangulation of the sites.

3 OVERVIEW

3.1 Insight
Extracting the 𝛿-offset surface can be understood as computing the

Minkowski sum of the input polygonal surface and a sphere with

radius 𝛿 ; see Fig. 4 (a).

(a) (b)

(c) (d)

Fig. 4. A 2D example to demonstrate our insight. (a) The offsetting problem
can be conceptualized as calculating the Minkowski sum, where a ball rolls
along each point on the boundary. (b) The offset of an edge can be straight-
forwardly computed; by treating each edge as an individual primitive, the
offset surface can be created by union operations. (c) Isosurface extraction
techniques, which consider the boundary curve as a whole, often fail to
capture sharp features effectively. (d) By treating each edge as a primitive
and calculating the distance field for each edge separately (visualized in
different colors), the offset surface can be obtained by minimizing across
these edge-based distance fields.

This process has an alternative implementation. By considering

each geometric primitive (e.g., lines in 2D, triangles in 3D) as a unit,

one can individually determine the dilation region. The offset surface

can then be obtained by computing the union of these individual

dilation regions; see Fig. 4 (b).

Prevailing approaches to the offsetting problem typically involve

approximating the distance field and then extracting the iso-surface

at the distance 𝛿 . However, sharp feature points and lines are easily

degraded due to the inaccurate discretization of the distance field,

diminishing the feature-preserving capability of these methods; see

Fig. 4 (c).

We observe that the overall distance field of the entire surface is

determined by minimizing over the distance fields of each individual

geometric primitive. It is important to note that the distance field

of a geometric primitive is smooth throughout the 3D space except

at the primitive itself, and the non-differential points of the overall

distance field are a result of the minimization operation. Therefore,

although our approach involves discretizing individual distance

fields, it can still retain sharp feature points and lines on the offset

surface even at low resolutions; see Fig. 4 (d).

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: November 2024.
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(a) (b) (c) (d)
Fig. 5. The pipeline of our algorithm is demonstrated using an example on the fertility model (a), shrunk by 0.5%. The initial step involves applying
tetrahedralization to the ambient offset space (b). Following that, each tetrahedron identifies triangles from the original surface that contribute offset within it.
Each triangle contributes a piecewise linear distance field for the tetrahedron, leading to the extraction of the initial offset surface shown in (c). To reduce
mesh complexity and freely control the precision of offsetting results, we designed a framework that involves merging similar distance fields. This approach
significantly reduces mesh complexity while improving accuracy, as demonstrated in (d).

3.2 Pipeline
Given a triangle meshM and an offset distance 𝛿 , the goal of this

paper is to generate an accurate offset surface meshM𝛿 . This offset

surfacemust be awatertight, orientable, manifold surface and devoid

of any self-intersections.

As illustrated in Fig. 5, our algorithm begins with tetrahedraliza-

tion to discretize the ambient space surrounding the offset surface;

see Section 4.1. The next step involves computing the linear distance

field for each triangle-tetrahedron pair, with further details on fil-

tering out unhelpful pairs provided later. Subsequently, we perform

half-plane cutting operations on a tetrahedron-by-tetrahedron basis

to approximate the offset surface, as detailed in Section 4.2 and Sec-

tion 4.4. We then explore a method for combining tetrahedron-wide

distance fields to simplify the complexity of the offset surface, which

is formulated as a maximal clique problem; see Section 5.

4 OFFSET SURFACE EXTRACTION

4.1 Tetrahedralization of the Ambient Offset Space
We denote the offset distance by 𝛿 . In this subsection, we begin

by identifying a set of cubic units within the ambient space of the

𝛿-offset surface, and we conclude by dividing each candidate cubic

unit into a set of tetrahedra.

Suppose the entire space is discretized into regular cubic units,

each with a side length of 𝜏 . Let 𝑑𝑐 denote the distance from the

center of the cube to the base surface. Note that we utilize the P2M

method [Zong et al. 2023] to rapidly report the distances from grid

points to the base surface. If

𝑑𝑐 −
√
3

2

𝜏 > 𝛿 or 𝑑𝑐 +
√
3

2

𝜏 < 𝛿,

then it can be concluded that the cubic unit does not intersect the

offset surface. In this case, the corresponding cubic unit will be

prevented from further refinement.

In our implementation, we used a sufficiently large cube to enclose

the target offset surface. The cube is then recursively subdivided

into eight smaller cubes until the size of the cubes reaches a predeter-

mined minimal threshold. The default maximum subdivision depth

is set to eight. If a cubic unit is deemed to potentially contribute to

the offset computation, it is further subdivided into five tetrahedra.

This is achieved by cutting off every other vertex, ensuring the

central tetrahedron remains regular.

4.2 Linear Field Approximation
Let𝑇𝑖 be a small tetrahedron and 𝑡 𝑗 be a triangle of the base surface

M. We use

D(𝑡 𝑗 ;𝑇𝑖 ) = {𝑑 (1) (𝑡 𝑗 ;𝑇𝑖 ), 𝑑 (2) (𝑡 𝑗 ;𝑇𝑖 ), 𝑑 (3) (𝑡 𝑗 ;𝑇𝑖 ), 𝑑 (4) (𝑡 𝑗 ;𝑇𝑖 )}
to denote the linear field within 𝑇𝑖 , contributed by 𝑡 𝑗 . It must be

noted that a linear field within 𝑇𝑖 can be uniquely determined by

the distances at 𝑇𝑖 ’s four vertices: (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 ), 𝑘 = 1, 2, 3, 4. Let the

algebraic equation of the linear field be formed as

𝑑 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 +𝑤.

Assume

𝐴 =

©­­­«
𝑥1 𝑦1 𝑧1 1

𝑥2 𝑦2 𝑧2 1

𝑥3 𝑦3 𝑧3 1

𝑥4 𝑦4 𝑧4 1

ª®®®¬ . (1)

𝐴 is invertible if and only if the tetrahedron is non-degenerate (with

a non-zero volume). Therefore, as long as the four distances are

known, the four variables can be solved immediately:

©­­­«
𝑎

𝑏

𝑐

𝑤

ª®®®¬ = 𝐴−1
©­­­­«
𝑑 (1) (𝑡 𝑗 ;𝑇𝑖 )
𝑑 (2) (𝑡 𝑗 ;𝑇𝑖 )
𝑑 (3) (𝑡 𝑗 ;𝑇𝑖 )
𝑑 (4) (𝑡 𝑗 ;𝑇𝑖 )

ª®®®®¬
. (2)

In this manner, the distance field of a single triangle can be readily

approximated in a piecewise linear fashion. This approximation can

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: November 2024.
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closely approximate the actual distance field, provided that the linear

approximation is confined within a sufficiently small tetrahedron.

4.3 Selection of Contributing Triangle-Tetrahedron Pairs
It is necessary to determine whether a triangle contributes to the

tetrahedron 𝑇𝑖 . The four vertices of 𝑇𝑖 are denoted by 𝑣1, 𝑣2, 𝑣3, and

𝑣4, and 𝑑
(𝑘 ) (M;𝑇𝑖 ) represents the distance from the 𝑘-th vertex of

𝑇𝑖 to the base surfaceM, 𝑘 = 1, 2, 3, 4. Suppose the circumscribed

sphere of 𝑇𝑖 has a radius 𝑅𝑖 . We immediately have the following

theorem:

Theorem 4.1. The tetrahedron may contribute to the offset at 𝛿
only if

4

max

𝑘=1
{𝑑 (𝑘 ) (M;𝑇𝑖 )} ≤ 𝛿 + 2𝑅𝑖 ,

4

min

𝑘=1
{𝑑 (𝑘 ) (M;𝑇𝑖 )} ≥ 𝛿 − 2𝑅𝑖 .

The proof is given in the supplementary material A. Similar ob-

servation applies to a triangle-tetrahedron pair, as articulated in the

following lemma:

Lemma 4.2. The triangle-tetrahedron (𝑡 𝑗 ,𝑇𝑖 ) may contribute to the
offset at 𝛿 only if

max

𝑘
{𝑑 (𝑘 ) (𝑡 𝑗 ;𝑇𝑖 )} ≤ 𝛿 + 2𝑅𝑖 , min

𝑘
{𝑑 (𝑘 ) (𝑡 𝑗 ;𝑇𝑖 )} ≥ 𝛿 − 2𝑅𝑖 .

In fact, we can understand the filter-

ing rule from a different perspective. As

shown in the inset figure, we imagine

that the tetrahedron 𝑇𝑖 (considered as

a 3D volume) is enlarged by 𝑟 (𝑟 =

|𝛿 |), resulting in a larger enclosing sur-

face 𝑇𝑖 (visualized in cyan). The triangle-

tetrahedron pair (𝑡 𝑗 ,𝑇𝑖 ) may contribute

to the offset at 𝛿 if 𝑇𝑖 encloses or collides with 𝑡 𝑗 .

4.4 Tetrahedron-range Half-plane Cutting
Consider two triangles, 𝑡1 and 𝑡2, that contribute to the tetrahedron

𝑇𝑖 . The corresponding distance fields are denoted as D(𝑡1;𝑇𝑖 ) and
D(𝑡2;𝑇𝑖 ) respectively. Consequently, the condition D(𝑡1;𝑇𝑖 ) = 𝛿

defines a plane 𝜋1, and similarly, D(𝑡2;𝑇𝑖 ) = 𝛿 defines a plane 𝜋2. It

is assumed that D(𝑡1;𝑇𝑖 ) > 𝛿 (resp. D(𝑡2;𝑇𝑖 ) > 𝛿) determines the

positive side of each plane. Typically, 𝜋1 and 𝜋2 divide the entire

space into four subspaces. A point 𝑝 ∈ 𝑇𝑖 may have the following

five situations:

(1) 𝑝 ∈ 𝜋+
1
and 𝑝 ∈ 𝜋+

2
;

(2) 𝑝 ∈ 𝜋−
1
and 𝑝 ∈ 𝜋+

2
;

(3) 𝑝 ∈ 𝜋+
1
and 𝑝 ∈ 𝜋−

2
;

(4) 𝑝 ∈ 𝜋−
1
and 𝑝 ∈ 𝜋−

2
;

(5) 𝑝 ∈ 𝜋=
1
or 𝑝 ∈ 𝜋=

2
,

where +,−,= respectively represent the positive side, the negative

side and the plane itself.

Suppose that we are considering the outward offset surface. Ob-

viously, 𝑝 is in the exterior of the offset surface only if 𝑝 ∈ 𝜋+
1
and

𝑝 ∈ 𝜋+
2
hold at the same time. To align with the direction of gradient,

we cut the tetrahedron 𝑇𝑖 and retain the positive side of 𝜋1 and 𝜋2:

𝑇𝑖 −→ 𝑇𝑖 ∩ 𝜋+1 −→ 𝑇𝑖 ∩ 𝜋+1 ∩ 𝜋
+
2
,

which induces an incremental cutting process [Du et al. 2022; Xin

et al. 2022] as Fig. 6 shows. During the cutting process,𝑘-dimensional

intersection< >

(a) (b) (c) (d)

Fig. 6. An example of incremental half-plane cutting. From (a) to (c), the
process of incremental cutting by half-planes is depicted, and (d) illustrates
the extracted offset surface within the tetrahedron.

primitives (𝑘 = 0, 1, 2, corresponding to points, edges, and faces) are

determined by 3−𝑘 planes, where the planes are defined based on ei-

ther the tetrahedron’s side faces or linear fields. However, when the

number of intersecting planes exceeds 3 − 𝑘 , leading to coincident

planes, the offsetting result may become non-manifold due to the

overlap of multiple primitives at the same location. To address this

issue, we retain only one of the overlapping primitives to ensure

uniqueness and maintain manifoldness.

When cut by planes, the tetrahedron𝑇𝑖 is transformed into either

a convex polytope or becomes empty. This ensures that the final ex-

tracted offset result is free of self-intersections. It is noted that when

a tetrahedron is completely eliminated by these cuts, it indicates

that the tetrahedron does not contribute to the offset surface.

Remark. The cutting process may encounter numerical issues

when determining on which side of a plane a point lies. To address

this, we utilize barycentric predicates proposed by Du et al. [2022] to

ensure robustness. Consider a point 𝑝 as a vertex of the up-to-date

offset surface within the tetrahedron𝑇𝑖 . Since 𝑝 can be considered as

the intersection of three planes, each being the 𝛿-offset level set of

D𝑗 , 𝑗 = 1, 2, 3. When a new linear distance field Dnew is introduced,

its iso-surface at 𝛿 also defines a plane 𝜋 . The side of 𝑝 with regard

to 𝜋 can be determined by the following sign:

sign(det(𝐴′)) × sign(det(𝐴)), (3)

where𝐴 = [D1 −𝛿,D2 −𝛿,D3 −𝛿, 1] and𝐴′ = [D1 −𝛿,D2 −𝛿,D3 −
𝛿,Dnew−𝛿]. This is implemented using an extension of the Predicate

Construction Kit (PCK) provided by Attene [2020].

5 SIMPLIFICATION FRAMEWORK
To this end, we obtain a polygonal offset surface by half-plane

cutting operations. However, this surface may have a high level

of complexity, with numerous unwanted details (weak features),

as shown in Fig. 7. This is particularly evident when the input

surface contains a large number of triangles compared to the octree

resolution. To be detailed, in Fig. 7(a), the high complexity of the

offset surface is due to the base surface while in Fig. 7(b), the bumpy

features are introduced since linear approximations may produce

direction-dependent errors. For both situations, the complexity of

the offset surface needs to be reduced.
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5.1 Merging Operator
Given a user-specified parameter 𝛼 (< 1), two distance fields D1 =

D(𝑡1;𝑇𝑖 ) and D2 = D(𝑡2;𝑇𝑖 ), are considered as 𝛼-similar within a

tetrahedron 𝑇𝑖 if

∇D1 · ∇D2 ≥ 𝛼.

Bymerging these𝛼-similar fields across all tetrahedra, weak features

can be eliminated, resulting in a simplified mesh meanwhile.

(a) (b)

Fig. 7. In (a), the resulting offset surface is geometrically accurate but the
complexity is notably high due to the high resolution of the octree. In (b),
when the octree depth is low, the unwanted bumpy features occur since
linear approximations may produce direction-dependent errors. Therefore,
we need to reduce the the complexity of the offset surface for both situations.

Considermerging the signed distance fields (SDFs) of two sources (the

sources can be points, lines, triangles or any other geometric primi-

tives). Merging these fields involves computing a unified SDF that

encompasses both sources. In the context of tetrahedron-wise lin-

ear distance fields, the merging operator can be defined similarly.

Let two linear distance fields, D1 = D(𝑡1;𝑇𝑖 ) and D2 = D(𝑡2;𝑇𝑖 ),
contribute to tetrahedron𝑇𝑖 via 𝑡1 and 𝑡2. The merged distance field

D12 = S ⊙ min( |D1 |, |D2 |),
where S = [sign(𝑣1), sign(𝑣2), sign(𝑣3), sign(𝑣4)] represents the in-
out flags of the four vertices, and ⊙ represents the element-wise

product. The purpose of merging two similar distance fields is to

eliminate weak features (see Fig. 8). The merged form is analyzed

further in the supplementary material B.

(a) Ground truth (b) Ours (before) (c) Ours (after)

Fig. 8. In (a), we visualize the distance field originating from two sources: one
is a point and the other is a triangle. (b) and (c) visualize the distance fields
before and after the merging operation, respectively. By merging similar
distance fields, weak features are eliminated while prominent features are
retained.

5.2 Merging Fields Across Tetrahedra
Although the merging operation within a single tetrahedron appears

straightforward, merging fields across multiple tetrahedra is non-

trivial. A merging operation that is not carefully designed may lead

to inconsistencies, such as gaps and outliers, across tetrahedra.

Identify 𝛼-similar fields. Before delving into the details of merging

conditions, we first introduce two undirected graphs:𝐺1 (Contribu-
tion Graph) and𝐺2 (Relationship Graph).𝐺1 retains the contributing

triangle-tetrahedron pairs and is constructed as follows: If a triangle

𝑡 𝑗 contributes to a tetrahedron 𝑇𝑖 , an edge is established between 𝑡 𝑗
and𝑇𝑖 in𝐺1.𝐺2, a subgraph of𝐺1, includes the triangle-tetrahedron

pairs whose distance fields actually contribute to the final extracted

offset surface.𝐺1 and𝐺2 can be constructed directly after the offset

surface has been computed, as shown in Fig. 9. To this end, 𝐺1 and

𝐺2 can be written as

𝐺1 = (𝑉1, 𝐸1), 𝐺2 = (𝑉2, 𝐸2).

(a) (b)

Fig. 9. A diagram illustrates how the graph of fields is constructed. In (a),
planes enclosed by solid lines in different colors represent the extracted offset
within each tetrahedron, while the dotted lines represent the contributing
tetrahedron-wise fields that do not pertain to the extracted offset. Two
graphs shown in (b) are established from (a). It is noteworthy to highlight
that 𝑡4 does not appear in𝐺2 because it is entirely eliminated by two half-
planes formed by 𝑡1 and 𝑡3 in𝑇1, and also dose not contribute to𝑇2.

Merging conditions and compatible graph. In 𝐺2, each triangle is

associated with a set of tetrahedra. Let 𝑉2 (𝑡𝑖 ) denote the tetrahedra
related to the triangle 𝑡𝑖 in 𝐺2. Two triangles 𝑡𝑖 ∈ 𝐺2 and 𝑡 𝑗 ∈ 𝐺2

can be merged only if specific conditions are met:

(1) 𝑉2 (𝑡𝑖 ) ∩ 𝑉2 (𝑡 𝑗 ) ≠ ∅, and D𝑖 and D𝑗 are 𝛼-similar in each

tetrahedron of 𝑉2 (𝑡𝑖 ) ∩𝑉2 (𝑡 𝑗 ),
(2) The merged tetrahedron-wise distance fields D𝑖 𝑗 still con-

tributes to the offset, by referring to 𝐺1.

The first condition is to enforce consistency, and the other is to

address outlier issues (see Fig. 10).

(a) (b)

Fig. 10. In (a), merging the two distance fieldsD1 andD2 within only a single
tetrahedron creates a gap between two adjacent tetrahedra (as shown in
highlighted windows). In (b), the merged distance field D(𝑘 )

12
(𝑘 = 1, 2, 3, 4)

within the same tetrahedron are less than 𝛿 , they no longer contribute to
offset, leading to its elimination and resulting in a non-watertight output.
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ALGORITHM 1: Incremental Fields Merging

Input: Initial distance fields D(𝑡 ;𝑇 ) , contribution graph

𝐺1 = (𝑉1, 𝐸1 ) and relationship graph𝐺2 = (𝑉2, 𝐸2 ) ,
Output: Merged distance fields D𝑢 (𝑡 ;𝑇 )
D𝑢 (𝑡 ;𝑇 ) ← D(𝑡 𝑗 ;𝑇 ) ;
Construct compatibility graph𝐺3 = (𝑉3, 𝐸3 ) from𝐺2;

while |𝐸2 | ≠ 0 do
Compute all maximal cliques {𝑀𝐶𝑖 }𝑚𝑖=1 of𝐺2;

𝐶out ← Algorithm 2 ({𝑀𝐶𝑖 }𝑚𝑖=1);
Calculate the merged distance field with regard to𝐶out and

update𝐺1, D𝑢 .

Reconstruct𝐺2 from𝐺1; // Here the half-plane cutting process

will be employed.

Reconstruct𝐺3 from𝐺2;

end
return D𝑢 .

ALGORITHM 2: Greedy Clique Selection

Input: A set of maximal cliques {𝑀𝐶𝑖 }𝑚𝑖=1 of compatibility graph𝐺2

Output: The selected cliques𝐶out

𝐶out = ∅ // stores result
Initialize an empty priority queue Q; // The priority depends on the

size and the sum of edge weight of a clique

Initialize an empty set𝑉 𝐼𝑆 to store old data in Q;
for each maximal clique𝑚𝑐 ∈ {𝑀𝐶𝑖 }𝑚𝑖=1 do

Push𝑚𝑐 to Q;
end
while Q is not empty do

Take out the top-priority clique 𝑐 ;

if 𝑐 ∈ 𝑉 𝐼𝑆 or |𝑐 | < 2 then
continue;

end
Append 𝑐 to the result𝐶out;

for each triangle 𝑡 in 𝑐 do
if an other clique 𝑐𝑟 ∈ {𝑀𝐶𝑖 }𝑚𝑖=1 contains 𝑣 then

Append 𝑐𝑟 to the set𝑉 𝐼𝑆 ;

Remove 𝑡 in other cliques 𝑐𝑟 and update the sum of

edge weight;

Remove edges connected to 𝑡 ; // Update graph𝐺2

Push the newly clique 𝑐𝑟 to Q; // Update priority queue

end
end

end
return𝐶out.

Based on the above discussion, we construct another undirected

weighted Compatibility Graph

𝐺3 = (𝑉3, 𝐸3)

to represent the compatibility between triangles, where 𝑉3 ⊂ 𝑉2.

Two triangles 𝑡𝑖 , 𝑡 𝑗 ∈ 𝑉3 can be merged only if they are connected.

The cost for merging 𝑡𝑖 and 𝑡 𝑗 is thus defined by

𝑊𝑡𝑖 ,𝑡 𝑗 =
∑︁

𝑇 ∈𝑉2 (𝑡𝑖 )∪𝑉2 (𝑡 𝑗 )
[1 − ∇D(𝑡𝑖 ;𝑇 ) · ∇D(𝑡 𝑗 ;𝑇 )] . (4)

Therefore, the larger𝑊𝑡𝑖 ,𝑡 𝑗 is, the higher the priority with which

we merge 𝑡𝑖 and 𝑡 𝑗 .

(a) (b)

(c) (d)

Fig. 11. An example of our greedy clique selection. In the original graph
(a), we begin by selecting a maximal clique {𝑑, 𝑓 , 𝑔}, chosen for having
the maximum sum of edge weights, as shown in (b). Subsequently, the
edges { (𝑎, 𝑓 ), (𝑒, 𝑓 ), (𝑑, 𝑐 ), (𝑔, 𝑐 ) } associated with the clique are removed,
as depicted in (c). Finally, within the resulting sub-graph, the clique 𝑎,𝑏, 𝑒
is selected, as shown in (d).

Incremental merging. The set of compatible triangle nodes corre-

sponds to the cliques in 𝐺3, due to the non-transitivity of compati-

bility. It is likely that a merged distance field can be further merged

with another one. Therefore, we have developed an incremental

merging algorithm, as outlined in Algorithm 1.

In each iteration, we employ a greedymerging scheme that selects

the clique with the largest number of nodes, aimed at reducing the

number of iterations. When two cliques are of the same size, the

one with the higher overall cost is prioritized.

Finding all maximal cliques is proven to be anNP-complete prob-
lem without any polynomial-time algorithm. In our implementation,

we use the method proposed by Eppstein et al. [2013] to calculate

all maximal cliques. The time complexity is 𝑂 ((𝑛 − 𝑑𝑔)3
𝑑𝑔

3 ), where
𝑛 = |𝑉3 | and 𝑑𝑔 is the graph’s degeneracy. It is evident that as 𝛼

decreases,𝐺3 becomes sparser (i.e., with very low values of 𝑑𝑔), mak-

ing the algorithm more efficient. Subsequently, the desired cliques

are chosen from among the maximal cliques, as depicted in Fig. 11.

The corresponding pseudocode is shown in Algorithm 2.

6 EXPERIMENTS
We implemented our algorithm in C++ using Eigen [Guennebaud

et al. 2010] for linear algebra routines and CGAL [The CGAL Project

2024] and libigl [Jacobson et al. 2018] for basic geometry processing

routines. All experiments were performed on a PC with a 32-core

Intel CoreTM i9-13900K CPU clocked at 3.0 GHz and 64 GB of mem-

ory. The implementation details are provided in the supplemental

material.

We use consistent parameter settings in our experiments. For

consistency, the offset value 𝛿 is formulated as a ratio with respect

to the diagonal length 𝐿𝑏 of the model’s bounding box, meaning that
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Fig. 12. A gallery of our feature-preserving offsetting results from inputs of freeform and CAD models.

(a) CAD (b) Self-intersection & thin-plate (c) Non-manifold & thin-plate

Fig. 13. Our method efficiently recovers sharp features, as indicated by the red solid lines in (a). Additionally, our method can handle non-manifold, self-
intersecting models and ensures valid output. It can preserve fine details even in models with thin plates, as shown in highlighted windows in (b) and (c).

𝛿 = ±1% corresponds to a threshold of 𝛿 = ±𝐿𝑏/100. Additionally,
the octree’s depth is set to eight by default.

Evaluation metrics. We employ four metrics to assess the accu-

racy of the offsetting results. The first set of metrics includes the

relative one-sided (M𝛿 →M) Chamfer Distance (𝑑C) and Hausdorff
Distance (𝑑H) [Wang and Manocha 2013; Zint et al. 2023]. To fur-

ther access the consistency of the normals with the original surface,

we compute the Mean Absolute Error of the normal angles (NMAE)

betweenM𝛿 andM. Additionally, we introduce a new metric, the

N-Score, which measures the percentage of normal deviations using

a threshold of 5
◦
. More details can be found in our supplementary

material D.1.

6.1 Extensive Validation
A primary feature of our algorithm is its robustness to defects. We

validate the effectiveness on extensive datasets with complex, often

defect-laden meshes: Thingi10K [Zhou and Jacobson 2016] and ABC

[Koch et al. 2019]. When the input model is closed and watertight,

we generate a single-layer offset by computing signed distances.

Instead, when the input model has non-manifold or self-intersecting

artifacts, we generate a double-layer offset by computing unsigned

distances. A gallery of offsetting results is shown in Fig. 12. Error

statistics for Thingi10K (10K models) and a subset of ABC (7,482

models) are presented in Fig. 14.

Fig.13 (a) illustrates inward and outward offsetting results of a

CAD model, highlighting our algorithm’s ability to preserve sharp

features. Fig.13 (b) and (c) present more challenging inputs, includ-

ing non-manifold elements, self-intersections, and models with thin

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: November 2024.
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Fig. 14. Statistical results of our method on Thingi10K and a subset of
ABC are presented. The offset distances are set at −2% and 2%. The scatter
plot shows the metric values for different models, with the blue and red
dashed lines representing the mean values of the dataset for the x-axis and
y-axis metrics, respectively. The edge histograms provide the frequency
distribution corresponding to the scatter plot. The average values of 𝑑C
and 𝑑H are generally below 10−1, NMAE values are predominantly within
[0◦, 5◦ ], and most N-Scores approach 100%, with all exceeding 60%. In fact,
for Thingi10K, the proportion of N-Score exceeding 90.0% is 93.67% for
𝛿 = −2% and 92.48% for 𝛿 = 2%. For ABC, the proportions are 89.70% and
84.95% for 𝛿 = −2% and 𝛿 = 2% respectively. These results demonstrate the
high accuracy of our algorithm. The runtime performance depends on the
complexity of the input mesh, but the total time remains under 103 seconds
even for meshes with millions of triangles.

plates. Despite these complexities, our algorithm consistently pro-

duces desired outputs while maintaining its effectiveness and preci-

sion.

6.2 Ablation Studies
There are two primary parameters influencing our extracted offset

result: the octree depth, 𝑑 , and the offset distance, 𝛿 .

Octree depth vs. offset distance. We now investigate the influence

of the tetrahedron resolution and the offset distance. With a small 𝛿 ,

if the octree depth𝑑 is too low, the errors in the linear approximation

will increase, potentially resulting in bumpy features. However, with

a larger 𝛿 , the output mesh becomes smoother and more accurate,

as illustrated in Fig. 15 and Fig. 16.

𝑑𝑑 C 𝑑𝑑 H N
M
A
E

N
-S

co
re

𝑑𝑑C 𝑑𝑑H N-ScoreNMAE

Offset Factor 𝛿𝛿

Offset Factor 𝛿𝛿 Offset Factor 𝛿𝛿

Offset Factor 𝛿𝛿

Fig. 15. Quantitative comparison of different offset distances and octree
depths.

It is important to note that while the accuracy of the offset surface

with a small 𝛿 depends on the tetrahedral resolution, the ability to

preserve sharp features remains consistent regardless of resolution,

which is a significant advantage of our algorithm.

Varying offset distance. Regardless of the offset distance (𝛿), our
algorithm consistently produces the desired results while preserving

sharp features, even when 𝛿 increases significantly, as depicted in

Fig. 17. Table 1 shows that as 𝛿 increases, the results become more

precise. This is attributed to our linear approximation being highly

accurate in regions far from the source triangle.

Fig. 16. Visual comparison of different offset distances and octree depths.
The feature lines are highlighted in red.

6.3 Comparisons
To comprehensively evaluate our algorithm, we selected several

state-of-the-art approaches capable of generating offset surfaces

with available implementations. We conducted comparison experi-

ments on three types of models:
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Table 1. Quantitative comparison results for different models under varying distances. The octree depth is set to 8. As the offset distance increases, our
method achieves more accurate results.

𝛿1 𝛿2 𝛿3 𝛿4 𝛿5 𝛿6 𝛿7 𝛿8 𝛿9

Time/s

Fandisk 6.87 3.60 3.00 3.23 4.30 7.72 15.98 45.90 113.31

34784 29.72 15.92 8.42 7.60 8.79 8.80 15.17 40.04 98.81

54725 6.43 6.29 6.75 12.80 25.31 67.52 112.16 267.71 414.36

Dancing Children 12.67 6.88 9.72 21.73 29.60 51.33 75.38 113.24 153.64

𝑑C (×10−3 ) ↓
Fandisk 0.737 1.939 7.683 6.413 2.596 1.027 0.459 0.243 0.147

34784 0.410 0.982 3.015 10.093 10.701 3.854 1.303 0.512 0.245

54725 11.701 66.866 78.887 16.981 5.229 1.652 0.672 0.293 0.235

Dancing Children 17.213 65.962 69.515 18.830 6.190 3.425 2.291 1.681 1.311

𝑑H (×10−3 ) ↓
Fandisk 51.618 42.655 76.682 65.625 75.832 7.540 21.714 37.146 2.761

34784 26.170 16.966 58.679 101.173 183.779 192.103 85.695 33.719 6.366

54725 41.865 241.676 320.430 57.696 21.348 4.607 1.549 0.623 0.489

Dancing Children 331.589 331.348 71.749 73.517 19.842 9.397 28.266 34.537 8.668

NMAE ↓
Fandisk 0.670 1.215 2.165 2.322 1.181 0.689 0.421 0.309 0.261

34784 0.417 0.677 1.370 2.528 2.482 1.219 0.620 0.356 0.247

54725 3.192 10.810 11.017 4.277 2.220 1.233 0.762 0.524 0.479

Dancing Children 12.671 10.276 10.312 4.712 2.354 1.526 1.083 0.831 0.656

N-Score (%) ↑
Fandisk 99.98 98.21 86.70 85.35 98.10 99.96 99.98 100.00 100.00

34784 99.98 99.99 97.84 81.76 82.07 97.85 99.99 100.00 100.00

54725 82.07 25.62 24.51 66.30 95.24 99.94 100.00 100.00 100.00

Dancing Children 27.27 27.52 26.53 58.83 91.23 98.69 99.69 99.86 99.94

Fandisk
13K

34784
50K

54725
138K

Dancing
Children
200K

𝛿1 𝛿2 𝛿3 𝛿4 𝛿5 𝛿6 𝛿7 𝛿8 𝛿9 𝛿/%

Fig. 17. Our method can produce accurate offsets with varying distance, where the octree depth is set to 8.

• CAD models from the ABC dataset [Koch et al. 2019]. CAD

models often exhibit prominent feature lines, thus used to

test the capability of preserving sharp features. The results

are visualized in the first row of Fig. 18.
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Table 2. Quantitative comparison results with state-of-the-art works on three models under two offset distances are presented (corresponding to Fig. 19). Full
statistical data is provided in the supplementary material D. The best scores are highlighted in bold with underlining, while the second best scores are
highlighted in bold.

Time/s 𝑑C (×10−3) ↓ 𝑑H (×10−3) ↓ NMAE ↓ N-Score/% ↑
Dragon Angel Puck Dragon Angel Puck Dragon Angel Puck Dragon Angel Puck Dragon Angel Puck

𝛿1

DC 1203.00 360.98 1064.32 2.228 3.168 0.837 26.193 55.081 22.468 22.977 7.767 6.112 5.55 65.10 67.73
FPO 7573.34 8231.20 - 1.107 1.635 - 17.287 28.884 - 18.799 8.982 - 62.20 51.46 -

HSP 9.35 26.88 27.03 4.048 5.7762 4.171 82.456 264.311 99.041 18.871 5.670 8.296 65.73 71.10 59.26

Ours 462.73 58.51 315.06 2.883 2.358 0.132 20.828 23.370 12.216 4.153 3.495 3.465 69.16 75.84 80.07

𝛿2

AW 159.88 222.89 187.23 1.098 3.008 0.599 22.782 77.075 18.534 4.381 4.393 4.048 77.63 73.50 78.66

DC 1230.44 369.19 1118.53 2.150 2.641 0.593 24.576 66.593 13.772 7.431 6.239 3.486 62.00 71.33 83.93
FPO 5350.55 1678.08 4422.47 12.742 6.954 8.290 350.560 321.060 284.792 8.581 7.095 58.696 43.31 57.91 38.93

HSP 17.54 36.65 35.63 6.206 5.385 4.149 66.947 86.129 190.982 4.541 3.997 3.509 72.46 74.62 80.13

Ours 620.47 67.71 327.32 1.114 8.815 0.420 13.688 63.401 8.367 3.902 3.304 3.703 70.65 80.00 84.91

AW HSP DC FPO Ours

cad#5
50K

𝛿1 = 1.5%

𝛿2 = −1.0%

104559
47K

𝛿1 = 2.0%

𝛿2 = −0.5%

Fig. 18. A visual comparison on CAD and thin-plate models demonstrates that our approach ensures correct topology while effectively recovering sharp
features and preserving thin-plate details. Additional results are included in the supplementary material D.4 and D.5.

• Twisted or thin-platemodels from the Thingi10K dataset [Zhou

and Jacobson 2016]. It presents challenges in preserving sharp

features and correctly handling intersections when perform

the offsetting process on these models. The results are visual-

ized in the second row of Fig. 18.

• Models reconstructed from real raw large scan data [Huang

et al. 2022; Levoy et al. 2000; Zhang et al. 2021]. These mod-

els always exhibit rich geometric details and have millions

of faces, which presents challenges in preserving sharp fea-

tures while maintaining high performance. The results are

visualized in Fig. 19.

The complete visual and quantitative results are provided in the

supplementary material.

Comparison with DC [Ju et al. 2002]. Dual contouring is a well-

known algorithm designed to extract isosurfaces that maintain sharp

features. It is necessary to compare DCwith ours in preserving sharp

features. Note that we utilize an implementation from libigl and set

the uniform grid resolution to 1024. Despite the high resolution, it
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is hard for DC to capture fine details. Its results tends to include

degraded features, as illustrated in Fig. 19.

Comparison with FPO [Zint et al. 2023]. This volumetric method

employs dual contouring [Ju et al. 2002] to extract the offset surface

using an adaptive octree that refines in areas with complex offset

topologies. To maintain consistency with its default configurations,

the maximum subdivision depth of the octree is set to 10, with two

additional levels added to resolve non-manifold elements.

Although dual contouring is utilized, recovering sharp features

remains challenging, especially in regions with dense features. More-

over, the method occasionally fails to compute inward offsets for

some models, as shown in Fig. 18 and Fig. 19.

Comparison with HSP [Chen et al. 2019]. This approach computes

offsets from a ray-rep representation. It utilizes a dexel structure to

discretize the input shape, followed by the construction of an offset

surface through the computation of a half-space power diagram. In

our experiments, the resolution was set to 1024. Since the output

retains the dexel structure, we first convert it into a point cloud

and then reconstruct it into a mesh [Boltcheva and Lévy 2017] for a

clearer and more meaningful comparison.

A significant drawback of this method is its poor precision, as ev-

idenced in Table 2. Additionally, it is clear that the method struggles

to recover sharp features.

Comparison with AW [Portaneri et al. 2022]. The method, named

Alpha Wrapping, is designed for approximately computing outward

but not inward offset surfaces. It controls the quality and precision of

the generated mesh through a parameter 𝛼𝑚 . A smaller value of 𝛼𝑚
results in improved accuracy of the generated offset surface. In our

experiments, we set 𝛼𝑚 to
𝐿𝑏
1024

%. However, even with a minimized

𝛼𝑚 , the method struggles to preserve sharp features.

Overall, compared to these methods, our algorithm consistently

demonstrates better accuracy and superior feature-preserving abil-

ity. However, our method does not outperform HSP in terms of

runtime performance.

6.4 Offset Simplification

Table 3. Quantitative results for the bunny model under various 𝜃 values
are presented. The octree depth is set to 6.

w/o

Merging

5° 10° 15° 20° 25° 30°

𝛿=-2%

Time/s - 0.97 4.03 5.67 7.04 8.05 9.00

Complexity 75986 75425 71909 66045 62170 58030 54299
𝑑C (×10−3) ↓ 47.601 47.406 46.559 42.932 39.144 36.088 33.618
𝑑H (×10−3) ↓ 189.144 172.651 169.579 179.071 151.260 164.880 162.260

NMAE ↓ 9.348 9.502 9.668 9.415 8.868 8.876 9.015

N-Score ↑ 28.15 28.36 27.62 30.19 33.23 34.70 31.34

𝛿=2% Time/s - 0.61 2.56 4.77 5.48 6.05 7.12

Complexity 92536 91552 85785 81165 76703 72737 69896
𝑑C (×10−3) ↓ 63.741 62.111 60.784 59.253 55.823 51.417 49.044
𝑑H (×10−3) ↓ 198.356 198.841 198.831 192.456 198.080 199.440 176.440
NMAE ↓ 10.685 10.568 10.537 9.507 9.592 9.476 9.868

N-Score ↑ 21.53 21.25 21.57 26.76 25.33 29.17 26.29

The parameter 𝛼 in our algorithm is used to control the target

complexity of the offset surface. For better clarity in the following

discussion, we define an angle 𝜃 depending on 𝛼 :

𝜃 = arccos(𝛼) .
To investigate the impact of 𝜃 (or 𝛼) on controlling precision

and the degree of simplification in offset generation, we conducted

experiments with different values of 𝜃 (or 𝛼).

Table 4. Quantitative results for the Sappho’s Head model under different
𝜃 values are presented. The octree depth is set to 8.

w/o

Merging

2° 5° 8° 10° 12° 15°

𝛿 = −2%

Time/s - 15.51 36.81 67.23 98.35 105.31 120.78

Complexity 540678 538266 532843 522024 514184 509809 506728
𝑑C (×10−3) ↓ 0.118 0.102 0.111 0.115 0.106 0.127 0.132

𝑑H (×10−3) ↓ 0.386 0.382 0.384 0.384 0.385 0.385 0.385

NMAE ↓ 1.430 1.321 1.351 1.269 1.495 1.572 1.416

N-Score ↑ 95.67 96.48 96.17 97.62 94.36 94.90 95.10

𝛿 = 2%

Time/s - 41.38 102.42 124.99 139.02 160.03 173.56

Complexity 712335 707375 693302 689995 684514 676882 678139
𝑑C (×10−3) ↓ 0.124 0.135 0.117 0.129 0.147 0.124 0.114
𝑑H (×10−3) ↓ 0.384 0.384 0.379 0.383 0.385 0.384 0.382

NMAE ↓ 1.575 1.680 1.548 1.539 1.652 1.628 1.641

N-Score ↑ 95.06 92.67 94.88 95.44 94.86 94.90 93.18

Fig. 20 illustrates the local details of the generated offset surface

under various values of 𝛼 . It is evident that as 𝜃 increases (corre-

sponding to a decrease in 𝛼), weaker features are removed, resulting

in a smoother surface and simultaneously enhancing precision. It is

worth noting that when 𝜃 increases, more merging operations need

to be conducted, thereby increasing the total computation time.

As shown in Fig. 21, with the increase in 𝜃 (corresponding to a de-

crease in 𝛼), weak features are eliminated (as seen in the highlighted

windows), while sharp features are retained in the offsetting results.

In other words, our offset simplification algorithm prioritizes the

removal of weak features over sharp features.

7 EXTENSION TO OPENING AND CLOSING
Offsetting (erosion and dilation) operations are foundational build-

ing blocks in morphology. They are distinct yet related to opening

and closing operations, which can be defined as combinations of

them (assuming in 𝐿2 space):

opening(M,S) =M𝑜
𝛿
= ((M ⊖ S) ⊕ S) (5)

closing(M,S) =M𝑐
𝛿
= ((M ⊕ S) ⊖ S) (6)

In other words, the opening and closing operations can be accom-

plished by utilizing a two-stage offsetting computation. Unlike the

offsetting operation, the opening and closing operations preserve

the original shape while filling overly convex or concave parts, us-

ing a user-specified parameter. This feature is particularly useful

in various applications, such as a cleanup and analysis tool for pre-

processing 3D printing shapes and computational fabrication. It is

also beneficial for mesh repairing and simplification in geometric

modeling. Refer to Fig. 22 for a visual representation.

8 CONCLUSION AND LIMITATIONS
In this paper, we propose a method for accurately computing offset

surfaces while maintaining sharp features, termed PCO. This re-
search is based on the smoothness of triangle-based distance fields,
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AW HSP DC FPO Ours

𝛿1 = 2.0%

𝛿2 = −2.0%

𝛿1 = 1.5%

𝛿2 = −1.5%

𝛿1 = 2.0%

𝛿2 = −2.0%

Dragon
2.38M

Angel
0.69M

Puck
2.05M

Fig. 19. A visual comparison of models reconstructed from actual raw scans is presented. The highlighted differences demonstrate that our algorithm can
produce surfaces with high-fidelity geometric details and ensure normal consistency. Additional results are included in supplementary material D.6.

except at the triangles themselves. After the ambient space of the

offset surface is discretized into tetrahedral units, the offset surface

is traced through plane cutting. Therefore, although our approach

involves discretizing individual distance fields, it can still retain

sharp feature points and lines on the offset surface even at low

resolutions, unlike existing approaches whose discretized distance

fields may degrade the sharp features. We further discuss the op-

eration of merging distance fields, formulated as a maximal-clique

problem, to simplify the complexity of the offset surface. Our al-

gorithm includes a pair of parameters to tune the precision: one is

the size of the tetrahedra, and the other is the angle parameter for

merging two distance fields. Additionally, it can efficiently handle

additional morphological operations such as opening and closing.

Extensive experimental results demonstrate our method’s advan-

tages over state-of-the-art (SOTA) techniques in terms of accuracy

and feature-preserving capabilities.

It is important to acknowledge that although our current method

excels in experimental comparisons, it does not yet achieve the

desired runtime performance. This shortfall is primarily due to

the extensive use of linear fields in computations when the offset

distance is significantly large or the discretization units are very

small. Given its parallel nature, we aim to develop a GPU-based

version in future work to expedite the computation process.
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𝛿 = −2%

𝛿 = 2%

10
◦

20
◦

30
◦

Fig. 20. Visual comparison of offsetting results under different alpha values.
Highlighted differences visualize the smoothing and simplifying effects.

𝛿 = −2%

𝛿 = 2%

5
◦

10
◦

15
◦

Fig. 21. Visual comparison of offset surfaces under different alpha values.
More weak features (see highlighted windows) are eliminated when 𝜃 be-
comes large.

Input Offsetting(2%) Opening Closing

Fig. 22. Unlike the offsetting operation, the opening and closing operations
preserve the original shape while filling the overly convex or concave parts
with a user-specified parameter. This is particularly useful in consolidating
mechanical structures. The example highlights their use in various geometry
processing applications.

Another drawback of our method is that the outcomes often

lack high triangulation quality. Currently, one must employ third-

party remeshing techniques, such as Hu et al. [2018], to enhance

triangulation quality, as illustrated in Fig. 23.

Ours Ours + Tetwild
Fig. 23. By using Tetwild [Hu et al. 2018] as a post-processing technique,
we can remesh our results without compromising the feature lines.
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