
PCO: Precision-Controllable Offset Surfaces with Sharp Features -
Supplementary Material
LEI WANG, Shandong University, China
XUDONG WANG, Shandong University, China
PENGFEI WANG, Shandong University, China
SHUANGMIN CHEN∗, Qingdao University of Science and Technology, China
SHIQING XIN, Shandong University, China
JIONG GUO, Shandong University, China
WENPING WANG, Texas A&M University, USA
CHANGHE TU, Shandong University, China
ACM Reference Format:
Lei Wang, Xudong Wang, Pengfei Wang, Shuangmin Chen, Shiqing Xin,

JiongGuo,WenpingWang, andChanghe Tu. 2024. PCO: Precision-Controllable

Offset Surfaces with Sharp Features - Supplementary Material . ACM Trans.
Graph. 1, 1 (November 2024), 8 pages. https://doi.org/10.1145/3687920

A PROOF OF THEOREM 4.1
For any pair of points {𝑝1, 𝑝2} within the circumsphere of a tetra-

hedron 𝑇 , their straight-line distance 𝑑 (𝑝1, 𝑝2) must satisfy

𝑑 (𝑝1, 𝑝2) ≤ 2𝑅, (1)

where 𝑅 is the radius of the circumsphere. Therefore, if

4

max

𝑘=1
{𝑑 (𝑘 ) (M;𝑇 )} > 𝛿 + 2𝑅 (2)

or

4

min

𝑘=1
{𝑑 (𝑘 ) (M;𝑇 )} < 𝛿 − 2𝑅, (3)

then𝑇 cannot contribute to the offset at 𝛿 . Fig. 1 (a) and (b) illustrate

two 2D examples for these scenarios respectively.
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Fig. 1. In this 2D example, the triangle represents a 3D tetrahedron, while
the base surface M and the offset surface M𝛿 are depicted as green and
purple curves, respectively. We abbreviate𝑑 (𝑘 ) (M;𝑇 ) as𝑑 (𝑘 ) for simplicity.
In (a), the maximum vertex distance, 𝑑 (3) , exceeds 𝛿 + 2𝑅, indicating that
the triangle does not contribute to the offset at 𝛿 . In (b), the minimum vertex
distance, 𝑑 (3) , is less than 𝛿 − 2𝑅, showing that the triangle also does not
contribute to the offset at 𝛿 .

B ANALYSIS OF THE MERGED FIELD FORM
Considering the scenario where 𝛿 > 0 (with an analogous case

for 𝛿 < 0). Let the merged field of D1 and D2 be denoted as D12.

Define 𝑃 and 𝐸 as the sets of intersection points and edges of the

tetrahedron 𝑇 in {𝑇 ∩ 𝜋+
1
∩ 𝜋+

2
}, where 𝜋𝑢 defined by D𝑢 = 𝛿 .

If 𝐸 = ∅, any 𝑝 ∈ 𝑃 must coincide with a vertex 𝑣𝑘 of 𝑇 (𝑘 =

1, 2, 3, 4), implying D1 (𝑘) = D2 (𝑘) = 𝛿 . Therefore, 𝑝 ∈ 𝜋=
12
.

If 𝐸 ≠ ∅, let 𝑝 ∈ 𝑃 be the intersection of an edge 𝑒 = (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸

with 1 ≤ 𝑖, 𝑗 ≤ 4. Then 𝜋12 must intersect with 𝑒 , and we can deduce

that 𝑓 = 𝑓𝑖 · 𝑓𝑗 = (D12 (𝑖) − 𝛿) · (D12 ( 𝑗) − 𝛿) ≤ 0.

(1) If 𝑓 = 0:

• 𝑓𝑖 = 0 and 𝑓𝑗 = 0: D12 (𝑖) = D12 ( 𝑗) = 𝛿 , any 𝑝 on 𝑒 satisfies

𝑝 ∈ 𝜋=
12
,

• 𝑓𝑖 = 0 and 𝑓𝑗 ≠ 0: 𝑝 coincides with 𝑣𝑖 , hence 𝑝 ∈ 𝜋=
12
,

• 𝑓𝑗 = 0 and 𝑓𝑖 ≠ 0: 𝑝 coincides with 𝑣 𝑗 , hence 𝑝 ∈ 𝜋=
12
.

(2) If 𝑓 < 0:

Consider the function ℎ(𝑥,𝑦;𝛿):{
𝛿−𝑥
𝑦−𝑥 (−∞, 𝛿] × [𝛿, +∞) \ (𝛿, 𝛿)
0 (𝑥,𝑦) = (𝛿, 𝛿)

(4)
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The partial derivatives of ℎ with respect to 𝑥 and 𝑦 are ℎ𝑥 <

0 and ℎ𝑦 < 0 respectively for 𝑥 ∈ (−∞, 𝛿), 𝑦 ∈ (𝛿, +∞).
Suppose 𝑝∗ is the intersection of 𝜋12 on 𝑒 , its position can be

calculated as

𝑝∗ = 𝑣𝑖 + ℎ(D12 ( 𝑗),D12 (𝑖);𝛿) (𝑣 𝑗 − 𝑣𝑖 ). (5)

Given that D12 = S ⊙ min( |D1 |, |D2 |), if S > 0, point 𝑝 must

lie below the intersection 𝑝∗.

In conclusion, the half-plane 𝜋12 defined by D12 = 𝛿 satisfies

{𝑇 ∩ 𝜋+
12
} ⊂ {𝑇𝑖 ∩ 𝜋+=

1
∩ 𝜋+=

2
} if 𝛿 > 0 and S > 0,

{𝑇 ∩ 𝜋−
12
} ⊂ {𝑇𝑖 ∩ 𝜋−=

1
∩ 𝜋−=

2
} if 𝛿 < 0 and S < 0.

(6)

C IMPLEMENTATION DETAILS
Distance Calculator. Our algorithm supports both signed and un-

signed distance computations.

For the direct computation of signed distances, the main chal-

lenge lies in determining the sign of a point 𝑝 (e.g., a vertex of a

tetrahedron). In our implementation, we employed several methods

for this purpose, including pseudo-normals [Bærentzen and Aanaes

2005], ray intersection [Cherchi et al. 2022], and winding num-

ber [Barill et al. 2018; Jacobson et al. 2013]. Each method presents

a trade-off between robustness and efficiency. However, these ap-

proaches struggle with imperfect meshes, such as non-manifold,

or non-watertight meshes, due to undefined orientations. In such

cases, we recommend using unsigned distance computations, which

yield two offset results meanwhile—inward and outward. Since our

results retain excellent properties of being watertight, manifold, and

free of self-intersections, we can accurately extract the internal and

external results using straightforward sign determination methods.

Analysis of Half-plane Cutting Process. Our incremental half-plane

cutting process can become time-consuming if all contributing tri-

angles are included in the distance field computation within a tetra-

hedron. To mitigate this, we implement an effective triangle filtering

process.

Before delving into details, we first define the "competitive re-

lationship" between two linear distance fields D1 and D2 within a

tetrahedron 𝑇 .

Definition C.1. The distance field D1 is defeated by D2 only when

{𝜋+
1
∩𝑇 } ∩ {𝜋+

2
∩𝑇 } = {𝜋+

2
∩𝑇 }, where 𝜋+

𝑖
is the positive side of

half-plane 𝜋𝑖 defined by 𝜋𝑖 = 𝛿 , 𝑖 = 1, 2.

If one distance field is defeated by another, it is not considered

valid for participation in the half-plane cutting process. Based on

this definition, we propose the following theorem:

Theorem C.2. If the distance field D1 is defeated by D2, it must
satisfies min |D1 | > max |D2 |.
Further, let 𝐶𝑇𝑡 denote the contributing triangles of 𝑇 :

𝐶𝑇𝑡 = {𝑡 |𝑡 has the contribution to 𝑇 }.
According to the above theorem C.2, we can deduce the following

lemma:

Lemma C.3. Let Prj𝑡𝑖 be the projected triangle on the original mesh
of vertex 𝑣𝑖 (𝑖 = 1, 2, 3, 4) in 𝑇 , where Prj𝑡𝑖

∈ 𝐶𝑇𝑡 . The triangle is
impossible defeated by other triangles in 𝐶𝑇𝑡 .

The proof is straightforward: the field |DPrj𝑡𝑖
| at least has one

minimum value compared with other distance fields whose source

triangles are belong to 𝐶𝑇𝑡 .

Following the above theories, we first compute the distance fields

DPrj𝑡𝑖
from the triangles Prj𝑡𝑖

. Subsequently, we maintain the maxi-

mum distance values of four vertexes in 𝑇 using a quadruple M𝑇 ,

initialized as

M𝑇 ( 𝑗) = max

𝑖=1,2,3,4
{DPrj𝑡𝑖

( 𝑗)}, 𝑗 = 1, 2, 3, 4. (7)

Only the newly distance field |D| satisfies
max |𝐷 | < min |M𝑇 |, (8)

it can be considered as a valid one to involve in the subsequent

half-plane cutting process.

D EXPERIMENTAL DETAILS AND RESULTS

D.1 Evaluation metrics
We use relative one-sided Chamfer distance (𝑑C), relative one-sided

Hausdorff distance (𝑑H), Mean Absolute Normal deviation (NMAE),

and Normal Score (N-Score) to evaluate the accuracy of offsetting

results. We denote 𝑟 = |𝛿 |, M𝛿 and M as the offsetting mesh at 𝛿

and the input mesh, respectively. Let 𝑃1 and 𝑃2 be the randomly

sampled points fromM𝛿 andM.

Distance error metrics. The relative one-sided (𝑃1 → 𝑃2) Chamfer

distance and Hausdorff distance between two point clouds 𝑃1 and

𝑃2 are defined as follows:

𝑑C =
1

𝑟 ∗ |𝑃1 |
∑︁

𝑝1∈𝑃1
| min

𝑝2∈𝑃2
𝑑 (𝑝1, 𝑝2) − 𝛿 |

𝑑H =
1

𝑟
max

𝑝1∈𝑃1
min

𝑝2∈𝑃2
|𝑑 (𝑝1, 𝑝2) − 𝛿 |,

(9)

where 𝑑 (𝑝1, 𝑝2) is the straight-line distance between points 𝑝1, 𝑝2.

We use the 𝐿 − 1 norm following [Wang and Manocha 2013; Zint

et al. 2023].

Normal consistency metrics. The metrics of Mean Absolute Error

of normal deviation andNormal Score at a given threshold𝛾 between

two point clouds 𝑃1 and 𝑃2 are defined as follows:

NMAE =
1

|𝑃1 |
∑︁

𝑝1∈𝑃1
angle(n𝑝1 , nclosest(𝑝1,𝑃2 ) )

N-Score =
|{angle(n𝑝 , nclosest(𝑝1,𝑃2 ) ) < 𝛾}|

|𝑃1 |
,

(10)

where

closest(𝑝, 𝑃) = argmin

𝑝′∈𝑃
(𝑝, 𝑝′), (11)

and

angel(n𝑝 , n′𝑝 ) = arccos(n𝑝 · n′𝑝 ) . (12)

In our experiments, 𝛾 = 5
°
.

D.2 Validation on Triangle Soup
Our algorithm exhibits impressive stability with respect to noisy

triangle mesh - triangle soups, consistently ensuring valid output,

as shown in Fig. 2.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: November 2024.
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(a) Kitten (106 K) (b) Noisy soup (c) 2% offset

Fig. 2. Our method effectively processes triangle soups and ensures that
the output is topology correct.

D.3 Integrated with Alpha Shape
When the complexity of and the input the offset distance are all

very large, our algorithm may become time-consuming due to the

large number of contributing triangles involved in distance field

computation in each tetrahedron. However, leveraging our algo-

rithm’s effective sharp feature preservation, we offer an alternative

approach to achieve efficiency without significantly sacrificing accu-

racy: initially employing alpha shape algorithm [Edelsbrunner and

Mücke 1994] to compute a coarse result at a smaller offset distance,

followed by applying our method.

As illustrated in Fig. 3, this decreases processing time by nearly

90%while still effectively maintaining the clarity of the feature lines.

Table 1. Quantitative comparison results on twisted and thin-plate models.
The best scores are highlighted in bold with underlining, while the second
best scores are highlighted in bold.

94884 104559 213887

-0.5 1 -0.5 2 -0.5 0.5

Time/s

AW - 365.96 - 204.38 - 203.45

DC 257.84 268.63 142.77 146.02 207.07 211.78

FPO - 151.99 - 372.81 - 151.99

HSP 23.64 64.85 7.30 40.84 9.37 15.25
Ours 5.08 8.64 1.86 11.67 2.22 4.25

𝑑C (×10−3) ↓

AW - 0.780 - 0.553 - 2.152
DC 1.214 1.645 5.845 2.045 1.188 4.180
FPO - 9.040 - 8.448 - 19.851

HSP 10.833 5.441 28.595 17.734 18.501 24.247

Ours 20.299 0.138 2.593 0.523 13.508 31.296

𝑑H (×10−3) ↓

AW - 38.080 - 38.756 - 153.300
DC 61.040 46.821 127.980 30.758 45.040 133.030
FPO - 353.290 - 85.453 - 418.840

HSP 399.820 170.280 795.140 1953.400 733.940 163.360

Ours 149.560 38.112 8.293 38.200 162.700 206.760

NMAE ↓

AW - 12.341 - 28.424 - 16.982

DC 2.958 12.565 9.561 30.731 2.287 15.892

FPO - 32.765 - 30.451 - 35.235

HSP 8.464 12.499 24.663 30.620 7.712 15.343
Ours 4.978 2.358 7.172 1.732 3.314 4.159

N-Score/% ↑

AW - 74.00 - 32.30 - 65.39

DC 93.28 74.80 73.13 34.30 92.34 68.12
FPO - 54.91 - 30.40 - 59.76

HSP 81.77 73.00 2.80 28.70 62.55 64.20

Ours 64.67 82.15 44.82 97.05 76.61 71.48

75496 (111 K) Ours: 20%

Time: 150.46s

Alpha Shape 10% + Ours 10%

Time: 18.38s
Fig. 3. To effectively manage time and ensure accurate results when dealing
with complex models and significant offset distances, our method can be
integrated with Alpha Shape [Edelsbrunner and Mücke 1994]. In this sce-
nario, features are still accurately recovered with minimal time expenditure.

D.4 Comparison on CAD Models
We give the comparison statistics in Table 2. The corresponding

visual comparison is given in Fig. 4, Fig. 5, and Fig. 6. It can be

seen that our method achieves effectively balances accuracy and

robustness, outperforming alternative methods in preserving fine

features while maintaining overall structural integrity.

D.5 Comparison on Twisted and Thin-plate Models
The quantitative comparison statistics are reported in Table 1, while

the visual comparison is available in Fig. 7. The comparison shows

that our method is better at recovering thin geometry features

and can achieve a good trade-off between smoothness and feature

preservation.

D.6 Comparison on Models Reconstructed from Large
Raw Scan Data

We show the visual comparison of different approaches with varying

offset distance in Fig. 8, and the qualitative results are shown in

Table 3. Both qualitative and quantitative comparisons show that

our method can faithfully recover fine geometric details and thin

structures, outperforming the other methods.
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AW HSP DC FPO Ours
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Fig. 4. Visual comparison results on cad models (part one).
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AW HSP DC FPO Ours
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𝛿 = −0.8%
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𝛿 = 1.0%

𝛿 = −1.0%

𝛿 = −2.0%

cad#3
33K

cad#4
169K

Fig. 5. Visual comparison results on cad models (part two).
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AW HSP DC FPO Ours

𝛿 = 1.0%

𝛿 = −1.5%
cad#5
50K

Fig. 6. Visual comparison results on cad models (part three).

AW HSP DC FPO Ours

𝛿 = 0.5%

𝛿 = −0.5%

𝛿 = 1.0%

𝛿 = −0.5%

213887
75K

94884
47K

Fig. 7. Visual comparison results on twisted and thin-plate models.
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AW HSP DC FPO Ours

𝛿 = 1.5%

𝛿 = −1.5%

𝛿 = 0.8%

𝛿 = −0.8%

𝛿 = 1.5%

𝛿 = −1.5%

Dragon
2.38M

Angel
0.69M

Puck
2.05M

Fig. 8. Visual comparison results on models reconstructed from large raw scans.
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Table 2. Quantitative comparison results on cad models. The best scores are highlighted in bold with underlining, while the second best scores are highlighted
in bold.

cad#1 cad#2 cad#3 cad#4 cad#5

-1.5 -1 1 1.5 -2 -1 1 2 -1 -0.8 0.8 1 -2 -1 1 2 -1.5 -1 1 1.5

Time/s

AW - - 224.57 228.49 - - 128.24 131.17 - - 68.627 100.17 - - 170.18 101.60 - - 157.53 185.2

DC 252.46 269.65 275.78 258.20 110.37 106.81 112.87 109.23 99.62 95.07 101.89 97.23 166.25 205.66 210.34 170.02 109.04 182.96 187.11 111.52

FPO 457.82 542.72 180.26 200.44 747.77 758.11 40.39 40.10 423.72 446.47 112.67 118.48 1020.00 1989.50 608.85 380.51 503.00 3067.40 72.39 76.29

HSP 20.40 16.12 23.51 30.83 5.16 4.47 8.73 11.15 3.19 2.76 8.15 8.49 44.35 25.66 30.15 45.41 11.90 10.59 19.37 23.91
Ours 9.97 6.32 7.98 10.6 9.54 6.47 6.51 9.24 4.80 4.59 5.69 6.08 25.06 26.79 17.07 21.72 5.17 8.37 9.49 12.25

𝑑C (×10−3) ↓

AW - - 0.431 0.312 - - 0.595 0.296 - - 1.007 0.801 - - 1.639 0.187 - - 0.539 0.313
DC 0.678 0.887 1.621 1.509 0.683 0.732 1.248 1.314 0.570 0.613 1.972 2.246 1.062 0.336 1.057 1.139 0.729 4.959 1.270 0.824
FPO 1.594 2.878 3.659 3.891 0.951 3.420 3.994 5.168 4.125 4.704 4.547 6.201 1.476 2.553 3.398 3.558 1.874 4.373 5.272 5.170

HSP 22.299 26.896 94.822 58.516 16.078 48.624 39.345 17.101 80.463 115.02 47.044 45.349 19.832 9.9452 40.625 37.470 2.904 5.330 18.051 10.861

Ours 2.940 0.798 0.990 0.768 0.161 2.261 4.308 1.156 9.131 3.079 10.253 1.220 0.343 0.628 2.664 0.315 3.610 6.551 2.251 1.145

𝑑H (×10−3) ↓

AW - - 31.744 26.164 - - 33.560 17.670 - - 41.88 27.072 - - 70.888 9.994 - - 12.837 9.139
DC 34.482 62.565 88.972 56.223 20.487 26.700 45.367 44.463 25.262 28.27 51.296 37.618 26.174 9.978 28.822 17.644 28.688 58.766 38.301 27.256

FPO 282.020 257.918 106.221 128.380 28.392 209.376 102.918 234.157 222.069 285.950 111.776 109.244 43.971 45.908 74.847 60.612 82.414 186.455 104.821 115.673

HSP 963.813 1181.667 3963.144 2559.523 325.106 951.220 917.804 478.320 1778.204 3551.278 1909.256 1761.066 576.751 119.336 456.150 293.358 112.661 89.375 121.893 57.095

Ours 24.092 80.294 20.289 20.215 20.424 59.827 38.832 10.420 19.720 37.309 48.731 10.58 0.645 1.287 31.256 6.644 23.100 48.833 20.681 10.436

NMAE ↓

AW - - 2.385 3.254 - - 3.388 5.234 - - 5.383 5.444 - - 5.863 7.585 - - 2.397 3.917
DC 1.621 1.216 2.347 3.418 2.778 1.869 2.615 5.113 4.705 4.451 6.736 7.451 5.009 1.257 4.552 7.537 2.600 10.248 2.883 4.367

FPO 3.524 3.709 2.830 4.297 5.450 4.694 4.018 6.395 9.612 8.048 7.894 7.476 7.966 5.553 5.442 8.975 6.827 22.711 3.950 6.045

HSP 74.015 66.633 58.282 43.466 105.75 86.414 30.973 28.216 95.559 38.914 8.440 11.420 48.301 58.266 55.195 65.005 169.910 99.670 3.430 5.432

Ours 1.468 3.061 3.086 2.182 1.446 3.391 3.378 1.737 3.625 4.738 4.540 3.582 2.464 4.931 5.075 2.514 2.206 3.398 3.348 2.257

N-Score/% ↑

AW - - 91.41 88.20 - - 86.72 76.08 - - 76.53 75.66 - - 83.24 76.42 - - 89.50 83.08

DC 94.61 95.81 92.26 87.79 87.21 91.83 87.82 78.68 88.93 91.69 78.37 75.21 79.17 95.29 85.89 77.34 86.18 67.13 89.52 84.42
FPO 85.95 87.33 90.95 86.06 73.36 80.00 84.80 73.50 71.22 72.65 72.45 70.63 55.46 66.42 82.23 73.76 71.52 62.16 84.18 78.37

HSP 48.24 57.55 60.70 67.38 23.22 40.79 65.65 57.14 28.54 54.13 66.15 64.26 55.32 57.83 39.07 23.60 2.41 36.71 84.52 77.81

Ours 94.67 78.62 78.76 90.93 97.46 74.43 85.23 94.21 83.70 62.45 63.57 82.17 89.06 61.41 59.60 90.22 88.93 74.79 75.86 89.25

Table 3. Quantitative comparison results on models reconstructed from large raw scan data. The best scores are highlighted in bold with underlining, while
the second best scores are highlighted in bold.

Angel Dragon Puck

-1.5 -0.8 0.8 1.5 -2 -1.5 1.5 2 -2 -1.5 1.5 2

Time/s

AW - - 244.59 222.89 - - 146.89 159.88 - - 259.17 187.23
DC 360.98 331.08 338.61 369.19 1203.00 1160.91 1187.33 1230.44 1064.32 1077.46 1101.97 1118.53

FPO 8231.20 8160.30 1820.03 1678.08 7573.34 9054.40 5206.51 5350.55 - - 8243.60 4422.47

HSP 26.88 16.25 21.96 36.65 9.35 8.50 15.41 17.54 27.03 22.62 28.93 35.63
Ours 58.51 30.63 32.68 67.73 462.73 257.45 391.37 620.47 315.06 220.17 237.87 327.32

𝑑C (×10−3) ↓

AW - - 1.786 3.008 - - 1.423 1.098 - - 1.006 0.599

DC 3.168 3.853 3.293 2.641 2.228 2.467 2.594 2.150 0.837 1.195 0.676 0.593
FPO 1.635 3.304 5.439 6.954 1.107 1.621 12.754 12.742 - - 6.787 8.290

HSP 5.776 9.365 10.304 5.385 4.048 6.260 9.379 6.206 4.171 6.791 6.371 4.149

Ours 2.358 7.414 6.665 8.815 2.883 4.990 3.590 1.114 0.132 2.118 3.956 0.420

𝑑H (×10−3) ↓

AW - - 54.409 77.075 - - 27.258 22.782 - - 34.884 18.534

DC 55.081 111.49 79.617 66.593 26.193 29.415 26.082 24.576 22.468 33.091 19.44 13.772
FPO 28.884 33.810 60.953 321.060 17.287 25.186 651.770 350.560 - - 138.239 284.792

HSP 264.311 383.820 149.6 86.129 82.456 105.96 246.86 66.947 99.041 100.816 108.522 190.982

Ours 23.370 43.771 44.020 63.401 20.828 32.739 29.981 13.688 12.216 35.249 22.312 8.367

NMAE ↓

AW - - 3.589 4.393 - - 4.322 4.381 - - 4.153 4.048

DC 7.767 5.237 4.674 6.239 22.977 19.020 7.219 7.431 6.112 6.544 2.594 3.486
FPO 8.982 8.092 5.316 7.095 18.799 18.322 8.018 8.581 - - 64.623 58.696

HSP 5.670 4.119 4.225 3.997 18.871 16.708 4.953 4.541 8.296 6.764 3.485 3.509
Ours 3.495 6.729 6.309 3.304 4.153 5.541 6.014 3.902 3.465 4.705 4.639 3.703

N-Score/% ↑

AW - - 80.70 73.50 - - 76.80 77.63 - - 80.50 78.66

DC 65.10 74.83 79.07 71.33 5.55 56.53 62.64 62.00 67.71 71.28 86.80 83.93
FPO 51.46 55.80 70.22 57.91 62.20 61.50 46.23 43.31 - - 43.51 38.93

HSP 71.10 77.68 75.40 74.62 65.73 67.00 69.63 72.46 59.26 67.05 82.51 80.13

Ours 75.84 60.55 62.76 80.00 69.16 61.67 65.54 70.65 80.07 78.67 80.70 84.91
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