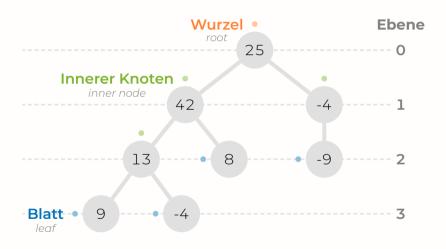
TRAVERSIERUNGSVARIANTEN

Verwandte Besuchen: Wie, wann und wo ein gutes Kind zu den geliebten Eltern rennt.

Florian Sihler

13. Juli 2022 SP. Universität Ulm

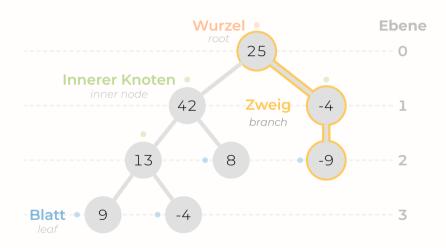
TRAVERSIERUNGSVARIANTEN


Verwandte Besuchen: Wie, wann und wo ein gutes Kind zu den geliebten Eltern rennt. Florian Sihler

Officially supported by the Ping-to-the-u-Foundation for Emotional Support. Look out for others so they may waddle with you!

13. Juli 2022 P. Universität Ulm.

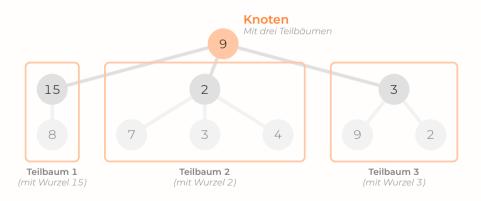
2.1 Der binäre Baum



[4]: ETeX-Package, tikzpingus Sihler, 202

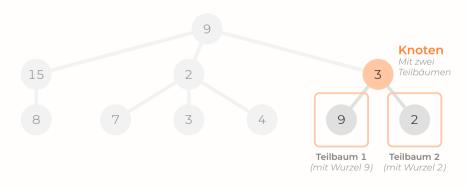
[5]: Enisode-Heans

2.2 Der binäre Baum

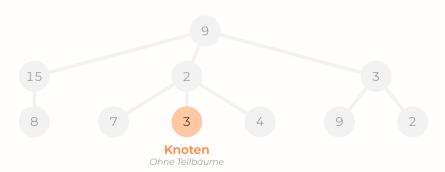


[4]: ETeX-Package, tikzpingus Sihler, 202

[5]: Enisode-Heans


Der rekursive Baum

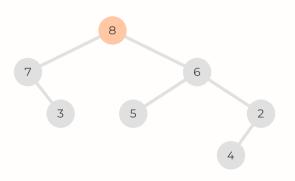
3.1


3.2 Der rekursive Baum

Der rekursive Baum

Beispielsweise:
Left < Root ≤ Right
Root = Left + Right

3.4 Der rekursive Baum



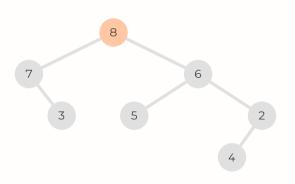
- Binärbäume: linker und rechter Teilbaum
- Fehlende Teilbäume heißen auch leer
- Die Betrachtung wird in Java benutzt:

```
class Node {
   int value;
   Node leftSubtree, rightSubtree;
}
```

Level-Order (Breadth-First)

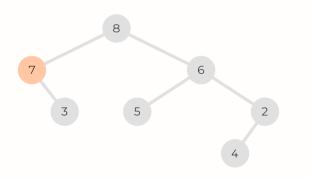
Ebene für Ebene, von links nach rechts.

8, 7, 6, 3, 5, 2, 4


[2]: Depth-first and breadth-first search

Pre-Order (Depth-First)

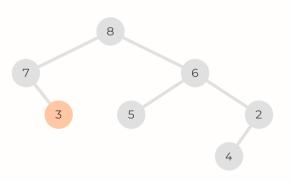
Erst Wurzel, dann Links, dann Rechts


8, 7, 3, 6, 5, 2, 4

[2]: Depth-first and breadth-first search Kozen, 1992

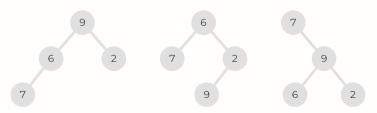
In-Order (Depth-First)

Erst Links, dann Wurzel, dann Rechts


7, 3, 8, 5, 6, 4, 2

[2]: Depth-first and breadth-first search Kozen, 199

Erst Links, dann Rechts, dann Wurzel


3, 7, 5, 4, 2, 6, 8

[2]: Depth-first and breadth-first search Kozen, 199:

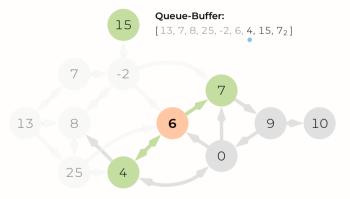
8 Kommentare

• Die Reihenfolge ist *keine* eindeutige Beschreibung!

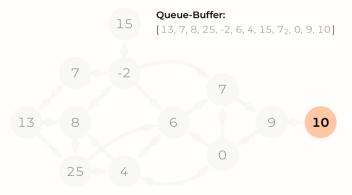
In-Order: 7, 6, 9, 2

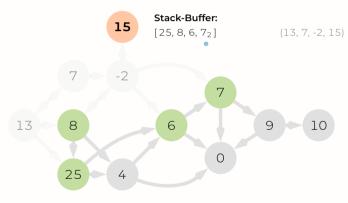


9 Kommentare

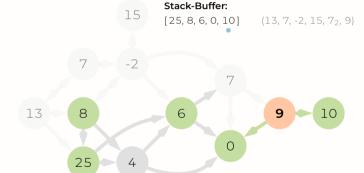


- Es gibt auch "reverse"-Varianten.
 Diese bearbeiten den rechten vor dem linken Teilbaum
- Es werden Breiten- und Tiefendurchläufe unterschieden:
 - depth-first: Bearbeitet Pfad komplett und dann Abzweigungen
 - breadth-first:
 Breitet sich über alle Abzweigungen gleichmäßig aus


10.1 Graphen in der Breite


10.2 Graphen in der Breite

10.3 Graphen in der Breite


11.1 Graphen in der Tiefe

11.2 Graphen in der Tiefe

■ Breiten- und **Tiefendurchläufe** gehen auch auf Graphen!

Die Reihenfolge, mit der die Kinder auf den Stack kommen, hängt natürlich von der Implementation ab!

Graphen in der Tiefe

■ Breiten- und **Tiefendurchläufe** gehen auch auf Graphen!

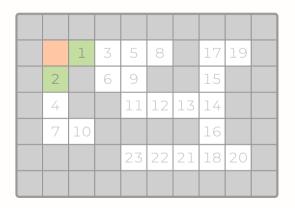
Die Reihenfolge, mit der die Kinder auf den Stack kommen, hängt natürlich von der Implementation ab!

11.3

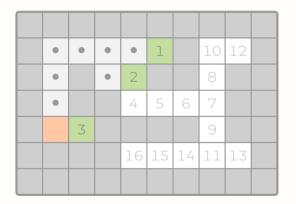
11.4

Graphen in der Tiefe

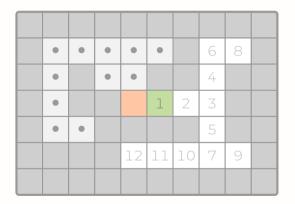
■ Breiten- und **Tiefendurchläufe** gehen auch auf Graphen!


Die Reihenfolge, mit der die Kinder auf den Stack kommen, hängt natürlich von der Implementation ab!

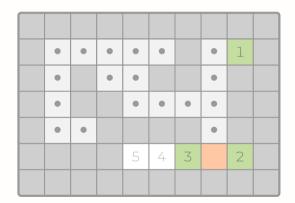
12.1 Irrgärten


• Ein Labyrinth ist auch nur ein cooler Graph

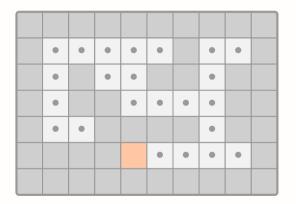
12.2 Irrgärten


■ Ein Labyrinth ist auch nur ein cooler Graph

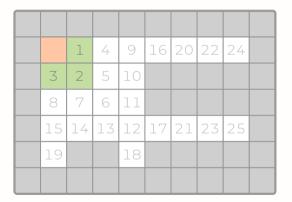
12.3 Irrgärten


■ Ein Labyrinth ist auch nur ein cooler Graph

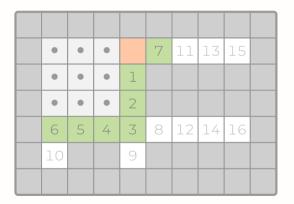
12.4 Irrgärten


• Ein Labyrinth ist auch nur ein cooler Graph

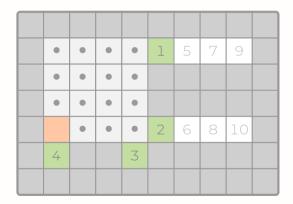
12.5 Irrgärten


• Ein Labyrinth ist auch nur ein cooler Graph

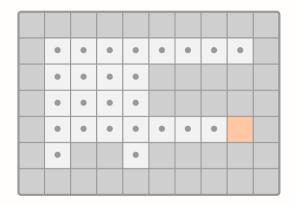
13. Ein Breitendurchlauf


■ Ein einfaches "Labyrinth" und viel AHA:

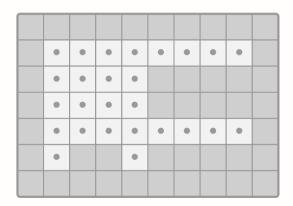
13.2 Ein Breitendurchlauf


■ Ein einfaches "Labyrinth" und viel AHA:

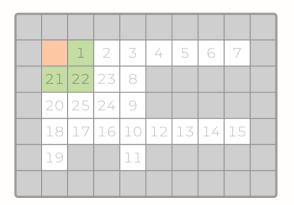
13.3 Ein Breitendurchlauf


■ Ein einfaches "Labyrinth" und viel AHA:

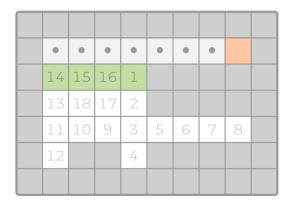
134 Ein Breitendurchlauf


■ Ein einfaches "Labyrinth" und viel AHA:

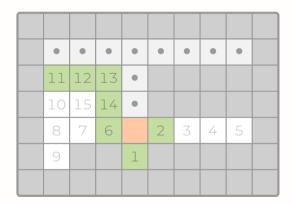
13.5 Ein Breitendurchlauf


■ Ein einfaches "Labyrinth" und viel AHA:

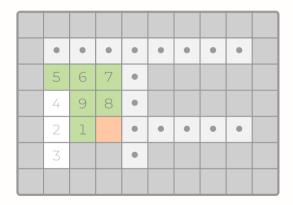
14.1 Ein Tiefendurchlauf


■ Ein einfaches "Labyrinth" und viel AHA:

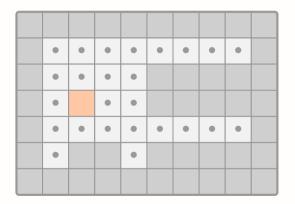
14.² Ein Tiefendurchlauf


■ Ein einfaches "Labyrinth" und viel AHA:

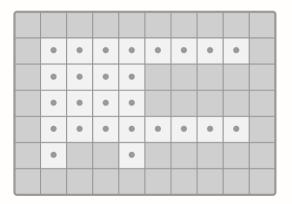
14.³ Ein Tiefendurchlauf


■ Ein einfaches "Labyrinth" und viel AHA:

14. Ein Tiefendurchlauf


■ Ein einfaches "Labyrinth" und viel AHA:

14.⁵ Ein Tiefendurchlauf


■ Ein einfaches "Labyrinth" und viel AHA:

14.6 Ein Tiefendurchlauf

■ Ein einfaches "Labyrinth" und viel AHA:

Abschließendes 15

- Dies war ein primär visueller Blick auf Traversierungen
- Es gibt vieeel mehr (z.B. die "Wirbeltraversierung")
- Die Kenntnis über die iterative und rekursive Implementation ist nützlich!
- Breiten- & Tiefensuche helfen auch bei der Wegfindung
- stacks or tag bits Lindstrom, 1973 [6]: Software solution for optimal planning of sales persons work Breadth-First Search algorithms

[3]: Scanning list structures without

- [1]: Pathfinding of 2D & 3D game real-time strategy with depth direction A* algorithm for multi-laver Khantananoka 2009

- [1] Khammapun Khantanapoka und Krisana Chinnasarn. "Pathfinding of 2D & 3D game real-time strategy with depth direction A* algorithm for multi-layer". 2009
- [2] Dexter C Kozen. "Depth-first and breadth-first search". 1992
- [3] Gary Lindstrom. "Scanning list structures without stacks or tag bits". 1973
- [4] Florian Sihler. LTFX-Package, tikzpingus. 2021
- [5] Florian Sihler. Episode-Heaps. 2021
- [6] E. Žunić, A. Djedović und B. Žunić. "Software solution for optimal planning of sales persons work based on Depth-First Search and Breadth-First Search algorithms". 2016

Ulm, 13. Juli 2022

