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BART, Release 2.5.1

The EDB Backup and Recovery Tool (BART) is an administrative utility that provides simplified backup and recovery
management for multiple local or remote EDB Postgres™ Advanced Server and PostgreSQL® database servers.

BART features:

• Support for complete, hot, physical backups of multiple Advanced Servers and PostgreSQL database servers

• Support for two types of backups – full base backups and block-level incremental backups

• Backup and recovery management of database servers on local or remote hosts

• A single, centralized catalog for backup data

• Retention policy support for defining and managing how long backups should be kept

• The capability to store the backup data in compressed format

• Verified backup data with checksums

• Backup information displayed in an easy-to-read format

• A simplified point-in-time recovery process

This guide provides the following information about using BART:

• an overview of the BART components and concepts.

• information about the backup and recovery management process with BART.

• information about using tablespaces.
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CHAPTER 1

What’s New

The following enhancements have been added in BART 2.5.1:

• BART supports EDB Postgres Advanced Server version 12.

• From this release forward, recovery settings will be saved in the postgresql.auto.conf file instead of
the recovery.conf file.

BART 2.5.1 Documentation Improvement

BART 2.5.1 now has a Reference guide that enables you to access information about subcommands quickly. The guide
also lists comprehensive examples of BART operations.

For details, please see the EDB Postgres Backup and Recovery Reference Guide available at:

https://www.enterprisedb.com/edb-docs/
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CHAPTER 2

Conventions Used in this Guide

The following is a list of conventions used throughout this document.

• Much of the information in this document applies interchangeably to the PostgreSQL and EDB Postgres Ad-
vanced Server database systems. The term Advanced Server is used to refer to EDB Postgres Advanced Server.
The term Postgres is used to generically refer to both PostgreSQL and Advanced Server. When a distinction
needs to be made between these two database systems, the specific names, PostgreSQL or Advanced Server are
used.

• The installation directory of the PostgreSQL or Advanced Server products is referred to as
POSTGRES_INSTALL_HOME:

– For PostgreSQL Linux installations, this defaults to /opt/PostgreSQL/x.x for version 10 and earlier.
For later versions, the installation directory is /var/lib/pgsql/x.

– For Advanced Server Linux installations performed using the interactive installer for version 10 and earlier,
this defaults to /opt/PostgresPlus/x.xAS or /opt/edb/asx.x. For Advanced Server Linux
installations performed with an RPM package, this defaults to /usr/ppas-x.x or /usr/edb/asx.
x. For Advanced Server Linux installations performed with an RPM package for version 11, this defaults
to /usr/edb/as11.
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2.1 Restrictions on pg_basebackup

BART takes full backups using the pg_basebackup utility program under the following conditions:

• The backup is taken on a standby server.

• The --with-pg_basebackup option is specified with the BACKUP subcommand for forcing the usage of
pg_basebackup (see Section - Backup).

• The number of thread counts in effect is 1, and the -pg_basebackup option is not specified with the BACKUP
subcommand.

• Database servers can only be backed up by using pg_basebackup of the same or later version than the
database server version. For example, pg_basebackup version 9.5 can back up database server version 9.5,
but it cannot be used to back up database server version 9.6.

In the global section of the BART configuration file, the pg_basebackup_path parameter specifies the complete
directory path to the pg_basebackup program.

For information about this parameter and also for setting the thread_count, see the configuration section of the
EDB Postgres Backup and Recovery Installation and Upgrade Guide available at:

https://www.enterprisedb.com/edb-docs/

For information about pg_basebackup, see the PostgreSQL Core Documentation.

2.1. Restrictions on pg_basebackup 4
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CHAPTER 3

Overview

BART provides a simplified interface for the continuous archiving and point-in-time recovery method provided with
Postgres database servers. This consists of the following processes:

• Capturing a complete image of a database cluster as a full base backup or referred to simply as a full backup

• Capturing a modified image of a database cluster called a block-level incremental backup, which is similar to a
full backup, but contains the modified blocks of the relation files that have been changed since a previous backup
instead of all, full relation files

• Archiving the Write-Ahead Log segments (WAL files), which continuously record changes to be made
to the database files

• Performing Point-In-Time Recovery (PITR) to a specified transaction ID or timestamp with respect to a timeline
using a full backup along with successive, block-level incremental backups that reside in the same backup chain,
and the WAL files

Detailed information regarding WAL files and point-in-time recovery is documented in the PostgreSQL Core Docu-
mentation.

Block-level incremental backups are referred as incremental backups.

The general term backup refers to both full backups and incremental backups. When a distinction must be made
between the two, the complete term full backup or incremental backup is used.

For information about standby servers, see the PostgreSQL Core Documentation.

When taking a full backup of a standby server, BART uses the PostgreSQL pg_basebackup utility program.

Note: For standby servers, only a full backup can be taken. Incremental backups and parallel backups cannot be
taken from standby servers.

For information about pg_basebackup, see the PostgreSQL Core Documentation.

These features provide a complete backup and recovery methodology for Postgres database servers, however, the man-
agement of this process can be quite complex, especially when dealing with multiple database servers in a distributed
environment.
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BART simplifies this management process by use of a centralized backup catalog, a single configuration file, and a
command line interface controlling the necessary operations. Reasonable defaults are automatically used for various
backup and restore options. BART also performs the necessary recovery file configuration required for point-in-time
recovery using its command line interface.

BART also provides the following features to enhance backup management:

• Automation of the WAL archiving command configuration

• Usage of retention policies to evaluate, categorize, and delete obsolete backups

• Compression of WAL files to conserve disk space

• Customizable naming of backups to ease their usage

• Easy access to comprehensive information about each backup

The key components of a BART installation are:

• BART Host. The host system on which BART is installed. BART operations are invoked from this host system.
The database server backups and archived WAL files are stored on this host as well.

• BART User Account. Linux operating system user account you choose to run BART. The BART user account
owns the BART backup catalog directory.

• BART Configuration File. File in editable text format containing the configuration information used by BART.

• BART Backup Catalog. File system directory structure containing all of the backups and archived WAL files
for the database servers managed by BART.

• BART Backupinfo File. File in text format containing information for a BART backup. A backupinfo file
resides in each backup subdirectory within the BART backup catalog.

• BART Command Line Utility Program. Single, executable file named bart, which is used to manage all
BART operations.

• BART WAL Scanner Program. Single, executable file named bart-scanner, which is used to scan WAL
files to locate and record the modified blocks for incremental backups.

Other concepts and terms referred to in this document include the following:

• Postgres Database Cluster. Also commonly called the data directory, this is the file system directory where all
of the data files related to a particular Postgres database server instance are stored. (Each specific running in-
stance is identified by its host and port number when connecting to a database.) The database cluster is identified
by the -D option when it is created, started, stopped, etc. by the Postgres initdb and pg_ctl commands.
Typically by default, the initial database cluster is located in directory POSTGRES_INSTALL_HOME/data.
A full backup is a copy of a database cluster.

Note: The terms database cluster and database server are used somewhat interchangeably throughout
this document, though a single database server can run multiple database clusters.

• Postgres User Account. Linux operating system user account that runs the Advanced Server or PostgreSQL
database server and owns the database cluster directory.

– By default, the database user account is enterprisedb when Advanced Server is installed to support
compatibility with Oracle databases.

– By default, the database user account is postgres when Advanced Server is installed in PostgreSQL
compatible mode. For a PostgreSQL database server, the default database user account is also postgres.
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Note: The BART configuration parameter cluster_owner must be set to the database user
account for each database server.

• Replication Database User. For each database server managed by BART, a database superuser must be se-
lected to act as the replication database user. This database user is used to connect to the database server
when backups are taken. The database superusers created with an initial Postgres database server installation
(enterprisedb or postgres) may be used for this purpose.

Note: The BART configuration parameter user must be set to this replication database user for each
database server.

• Secure Shell (SSH)/Secure Copy (SCP). Linux utility programs used to log into hosts (SSH) and copy files
(SCP) between hosts. A valid user account must be specified that exists on the target host and in effect, is the
user account under which the SSH or SCP operations occur.

For information on how all of these components are configured and used with BART, see the Configuration section of
the EDB Postgres Backup and Recovery Installation and Upgrade Guide available at:

https://www.enterprisedb.com/edb-docs/

7

https://www.enterprisedb.com/edb-docs/


BART, Release 2.5.1

3.1 Block-Level Incremental Backup

This section describes the basic concepts of a block-level incremental backup (referred to as an incremental backup).
An incremental backup is functionality unique to BART.

An incremental backup provides a number of advantages when compared to using a full backup:

• The amount of time required to produce an incremental backup is generally less than a full backup, as modified
relation blocks are saved instead of all full relation files of the database cluster.

• An incremental backup uses less disk space than a full backup taken in plain text format.

Note: Taking the full backup in tar format saves disk space as well.

Generally, all BART features (such as retention policy management) apply to incremental backups as well as full
backups. See Section Managing Incremental Backups for information about retention policy management as applied
to incremental backups.

3.1.1 Incremental Backup Limitations and Requirements

The following limitations apply to incremental backup:

• If you have restored a full or incremental backup, you must take a full backup before enabling incremental
backup.

• If a standby node has been promoted to the role of primary node, you must take a full backup before enabling
incremental backup on the cluster.

• An incremental backup cannot be taken on a standby database server.

The following requirements must be met before implementing incremental backup:

• You must create or select an operating system account to be used as the BART user account.

• You must create or select the replication database user, which must be a superuser.

• In the BART configuration file:

– You must set the cluster_owner parameter to the Linux operating system user account that owns the
database cluster directory from which incremental backups are to be taken.

– You must enable the allow_incremental_backups parameter.

• A password-less SSH/SCP connection must be established between the BART user account on the BART host
and the cluster_owner user account on the database server.

Note: A password-less SSH/SCP connection must be established even if BART and the database server
are running on the same host and the BART user account and the cluster_owner user account are the
same account.

• In addition to the BART host where the BART backup catalog resides, the BART package must also be installed
on every remote database server on which incremental backups are to be restored. In order to restore an in-
cremental backup, the bart program must be executable on the remote host by the remote user specified by
the remote_host parameter in the BART configuration file or by the -r option when using the RESTORE
subcommand to restore the incremental backup.

3.1. Block-Level Incremental Backup 8
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• When restoring incremental backups on a remote database server, a password-less SSH/SCP connection must
be established from the BART user account on the BART host to the remote user on the remote host that is
specified by the remote_host parameter in the BART configuration file or by the -r option when using the
RESTORE subcommand to restore the incremental backup.

• Compression of archived WAL files in the BART backup catalog is not permitted for database servers on which
incremental backups are to be taken. The wal_compression setting in the BART configuration file must be
disabled for those database servers.

• The incremental backup must be on the same timeline as the parent backup. The timeline changes after each
recovery operation so an incremental backup cannot use a parent backup from an earlier timeline.

For information about setting or configuring all these requirements, see the Configuration section of the EDB Postgres
Backup and Recovery Installation and Upgrade Guide available at:

https://www.enterprisedb.com/edb-docs/

The following section provides an overview of the basic incremental backup concepts.

3.1. Block-Level Incremental Backup 9
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3.1.2 Concept Overview

Using incremental backups involves the following sequence of steps:

1. Configure BART (see the EDB Postgres Backup and Recovery Installation and Upgrade Guide for details about
configuring BART).

2. Enable and initiate archiving of WAL files to the BART backup catalog in the same manner as done for full
backups.

3. Take an initial full backup with the BACKUP subcommand. This full backup establishes the parent of the first
incremental backup.

4. Scan all WAL files produced by database servers on which incremental backups are to be taken. These WAL
files are scanned once they have been archived to the BART backup catalog. Each scanned WAL file results in
a modified block map (MBM) file that records the location of modified blocks obtained from the corresponding
WAL file. The BART WAL scanner program bart-scanner performs this process.

5. Take incremental backups using the BACKUP subcommand with the --parent option to specify the backup
identifier or name of a previous, full backup or an incremental backup. Any previous backup may be chosen as
the parent as long as all backups belong to the same timeline.

6. The incremental backup process identifies which WAL files may contain changes from when the parent backup
was taken to the starting point of the incremental backup. The corresponding MBM files are used to locate
and copy the modified blocks to the incremental backup directory along with other database cluster directories
and files. Instead of backing up all, full relation files, only the modified blocks are copied and saved. In
addition, the relevant MBM files are condensed into one consolidated block map (CBM) file that is stored with
the incremental backup.

Note: Multiple block copier threads can be used to copy the modified blocks to the incremental backup
directory. See the Configuration section of the EDB Postgres Backup and Recovery Installation and
Upgrade Guide for information about setting the thread_count parameter in the BART configuration
file. See Section - Backup for using the --thread-count option with the BACKUP subcommand.

7. Invoke the restore process for an incremental backup using the RESTORE subcommand in the same manner
as restoring a full backup. The -i option specifies the backup identifier or name of the incremental backup to
restore. The restore process begins by going back through the chain of past, parent incremental backups until the
initial full backup starting the chain is identified. This full backup provides the initial set of directories and files
to be restored to the location specified with the -p option. Each subsequent incremental backup in the chain is
then restored. Restoration of an incremental backup uses its CBM file to restore the modified blocks from the
incremental backup.

The following sections provide some additional information on these procedures.

3.1. Block-Level Incremental Backup 10
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3.1.3 WAL Scanning – Preparation for an Incremental Backup

The WAL scanner program (bart-scanner) scans the WAL files created from the time of the parent backup up to
the start of the incremental backup to determine which blocks have modified since the parent backup, and records the
information in a file called the modified block map (MBM) file. One MBM file is created for each WAL file.

The MBM file is stored in the archive path directory:

backup_path/server_name/archived_wals

Where:

backup_path is the BART backup catalog parent directory specified in the global section of the BART
configuration file.

server_name is the lowercase conversion of the database server name specified for this database server
in the server section of the BART configuration file.

This is the same directory where the archived WAL files are stored in the BART backup catalog.

The following code snippet is the content of the archive path showing the MBM files created for the WAL files. (The
user name and group name of the files have been removed from the example to list the WAL files and MBM files in a
more comparable manner.)

[root@localhost archived_wals]# pwd
/opt/backup/acctg/archived_wals
[root@localhost archived_wals]# ls -l
total 131104
-rw------- 1 ... ... 16777216 Oct 12 09:38 000000010000000100000078
-rw------- 1 ... ... 16777216 Oct 12 09:38 000000010000000100000079
-rw------- 1 ... ... 16777216 Oct 12 09:38 00000001000000010000007A
-rw------- 1 ... ... 16777216 Oct 12 09:35 00000001000000010000007B
-rw------- 1 ... ... 16777216 Oct 12 09:38 00000001000000010000007C
-rw------- 1 ... ... 16777216 Oct 12 09:39 00000001000000010000007D
-rw------- 1 ... ... 16777216 Oct 12 09:42 00000001000000010000007E
-rw------- 1 ... ... 16777216 Oct 12 09:47 00000001000000010000007F
-rw-rw-r-- 1 ... ... 161 Oct 12 09:49 0000000100000001780000280000000179000000.mbm
-rw-rw-r-- 1 ... ... 684 Oct 12 09:49 000000010000000179000028000000017A000000.mbm
-rw-rw-r-- 1 ... ... 161 Oct 12 09:49 00000001000000017A000028000000017B000000.mbm
-rw-rw-r-- 1 ... ... 161 Oct 12 09:49 00000001000000017B000028000000017C000000.mbm
-rw-rw-r-- 1 ... ...1524 Oct 12 09:49 00000001000000017C000028000000017D000000.mbm
-rw-rw-r-- 1 ... ... 161 Oct 12 09:49 00000001000000017D000028000000017E000000.mbm
-rw-rw-r-- 1 ... ... 161 Oct 12 09:49 00000001000000017E000028000000017F000000.mbm
-rw-rw-r-- 1 ... ... 161 Oct 12 09:49 00000001000000017F0000280000000180000000.mbm

MBM files have the suffix, .mbm.

In preparation for any incremental backup, the WAL files should be scanned as soon as they are copied to the BART
backup catalog. Thus, the WAL scanner should be running as soon as the WAL files from the database cluster are
archived to the BART backup catalog.

If the BART backup catalog contains WAL files that have not yet been scanned, starting the WAL scanner begins
scanning these files. If WAL file fails to be scanned (resulting in a missing MBM file), you can use the WAL scanner
to specify an individual WAL file.

Note: Under certain conditions (such as when the rsync utility is used to copy WAL files to the BART backup
catalog), the WAL files may have been missed by the WAL scanner program for scanning and creation of MBM files.
Use the scan_interval parameter in the BART configuration file to force scanning of WAL files in the archive

3.1. Block-Level Incremental Backup 11
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directory of the BART backup catalog to ensure MBM files are generated. See the Configuration section of the EDB
Postgres Backup and Recovery Installation and Upgrade Guide for more information.

See Running the BART WAL Scanner for information about using the WAL scanner.

3.1. Block-Level Incremental Backup 12
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3.1.4 Performing an Incremental Backup

The WAL files produced at the time of the parent backup up to the start of the incremental backup contain information
about which blocks were modified during that time interval. That information is consolidated into an MBM file for
each WAL file by the WAL scanner.

The MBM files for the relevant WAL files are read, and the information is used to copy the modified blocks from the
database cluster to the BART backup catalog. When compared to a full backup, the number and sizes of relation files
can be significantly less for an incremental backup.

For comparison, the following is an abbreviated list of the files copied to the archived base subdirectory of a full
backup for one database:

[root@localhost 14845]# pwd
/opt/backup/acctg/1476301238969/base/base/14845
[root@localhost 14845]# ls
112 13182_vm 14740 16467 16615 2608_vm 2655 2699 2995 ...
113 13184 14742 16471 174 2609 2656 2701 2995_vm ...
1247 13186 14745 16473 175 2609_fsm 2657 2702 2996 ...
1247_fsm 13187 14747 16474 2187 2609_vm 2658 2703 2998 ...
1247_vm 13187_fsm 14748 16476 2328 2610 2659 2704 2998_vm ...
1249 13187_vm 14749 16477 2328_fsm 2610_fsm 2660 2753 2999 ...
1249_fsm 13189 14752 16479 2328_vm 2610_vm 2661 2753_fsm 2999_vm ...
1249_vm 13191 14754 16488 2336 2611 2662 2753_vm 3079 ...
1255 13192 14755 16490 2336_vm 2611_vm 2663 2754 3079_fsm ...

.

.

.
13182_fsm 14739 16465 16603 2608_fsm 2654 2696 2893_vm 3501_vm ...

In contrast, the following is the content of the archived base subdirectory of the same database from a subsequent
incremental backup:

[root@localhost 14845]# pwd
/opt/backup/acctg/1476301835391/base/base/14845
[root@localhost 14845]# ls
1247 1249 1259 16384 17006 2608 2610 2658 2663 2678 ...
1247_fsm 1249_fsm 1259_fsm 16387 17009 2608_fsm 2610_fsm 2659 2673 2679 ...
1247_vm 1249_vm 1259_vm 16389 17011 2608_vm 2610_vm 2662 2674 2703 ...

The information from the MBM files are consolidated into one file called a consolidated block map (CBM) file. During
the restore operation for the incremental backup, the CBM file is used to identify the modified blocks to be restored
for that backup.

In addition, the incremental backup also stores other required subdirectories and files from the database cluster as is
done for full backups.

Before taking an incremental backup, an initial full backup must be taken with the BACKUP subcommand. This full
backup establishes the parent of the first incremental backup.

The syntax for taking a full backup is:

bart BACKUP -s { server_name | all } [ -F { p | t } ]
[ -z ] [ -c compression_level ]
[ --backup-name backup_name ]
[ --thread-count number_of_threads ]
[ { --with-pg_basebackup | --no-pg_basebackup } ]

3.1. Block-Level Incremental Backup 13
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Note: While a BACKUP subcommand is in progress, no other processes must run in parallel. For more details about
BACKUP subcommand, see the Section - BACKUP.

The syntax for taking an incremental backup is:

bart BACKUP -s { server_name | all } [ -F p]
[ --parent { backup_id | backup_name } ]
[ --backup-name backup_name ]
[ --thread-count number_of_threads ]
[ --check ]

Specify the -F p option for plain text format as incremental backup can only be taken in the plain text format.

Specify the option --check before taking an incremental backup to verify if the required MBM files are present in
the BART backup catalog. The --parent option must be specified when the --check option is used.

See the BACKUP section for more information about using the BACKUP subcommand to take an incremental backup.

3.1. Block-Level Incremental Backup 14
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3.1.5 Restoring an Incremental Backup

Restoring an incremental backup may require additional setup steps depending upon the host on which the incremental
backup is to be restored:

• Restoring an Incremental Backup on a BART Host - This section outlines restoring an incremental backup onto
the same host where BART has been installed.

• Restoring an Incremental Backup on a Remote Host - This section outlines restoring an incremental backup onto
a remote host where BART has not been installed.

Ensure the bart program is available on the remote host when restoring an incremental backup on a remote host; the
invocation of the RESTORE subcommand for an incremental backup results in the execution of the bart program on
the remote host to restore the modified blocks to their proper location.

Restoring an Incremental Backup on a BART Host

Specify a backup identifier or name, and include the -i option when invoking the RESTORE subcommand to restore
an incremental backup. All RESTORE options may be used in the same manner as when restoring a full backup.

First, all files from the full backup from the beginning of the backup chain are restored. For each incremental backup,
the CBM file is used to identify and restore blocks from the incremental backup. If there are new relations or databases
identified in the CBM file, then relevant relation files are copied. If consolidated block map information is found
indicating the drop of a relation or a database, then the relevant files are removed from the restore directory. Similarly,
if there is any indication of a table truncation, then the related files are truncated.

Also note that you can use the -w option of the RESTORE subcommand to specify a multiple number of parallel
worker processes to stream the modified blocks to the restore host.

Restoring an Incremental Backup on a Remote Host

To restore an incremental backup onto a remote host where BART has not been installed, follow the restore process
steps outlined in Restoring an Incremental Backup on a BART Host and then, perform the following steps:

Step 1: Install BART on the remote host to which an incremental backup is to be restored.

Note: No editing is needed in the bart.cfg file installed on the remote host.

Step 2: Determine the Linux operating system user account on the remote host to be used as the remote user. This
user is specified by the remote_host parameter in the BART configuration file or by the -r option when using
the RESTORE subcommand to restore the incremental backup. The remote user must be the owner of the directory
where the incremental backup is to be restored on the remote host. By default, the user account is enterprisedb
for Advanced Server or postgres for PostgreSQL.

Step 3: Ensure a password-less SSH/SCP connection is established from the BART user on the BART host to the
remote user on the remote host.

See the configuration section of the EDB Postgres Backup and Recovery Installation and Upgrade Guide for BART
installation and configuration.

Example

When restoring an incremental backup, specify the RESTORE subcommand and the backup identifier or name of the
incremental backup that will be restored. For example:

-bash-4.2$ bart RESTORE -s acctg -p /opt/restore -i incr_1-b
INFO: restoring incremental backup 'incr_1-b' of server 'acctg'
INFO: base backup restored
INFO: archiving is disabled
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INFO: permissions set on $PGDATA
INFO: incremental restore completed successfully

Restoring incremental backup incr_1-b as shown in the preceding example results in the restoration of full backup
full_1, then incremental backups incr_1-a and finally, incr_1-b.
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3.2 Creating a Backup Chain

A backup chain is the set of backups consisting of a full backup and all of its successive incremental backups. Tracing
back on the parent backups of all incremental backups in the chain eventually leads back to that single, full backup.

It is possible to have a multi-forked backup chain, which is two or more successive lines of incremental backups, all
of which begin with the same, full backup. Thus, within the chain there is a backup that serves as the parent of more
than one incremental backup.

Since restoration of an incremental backup is dependent upon first restoring the full backup, then all successive incre-
mental backups up to, and including the incremental backup specified by the RESTORE subcommand, it is crucial to
note the following:

• Deletion or corruption of the full backup destroys the entire backup chain. It is not possible to restore any of the
incremental backups that were part of that chain.

• Deletion or corruption of an incremental backup within the chain results in the inability to restore any incremen-
tal backup that was added to that successive line of backups following the deleted or corrupted backup. The full
backup and incremental backups prior to the deleted or corrupted backup can still be restored.

The actions of retention policy management are applied to the full backup and all of its successive incremental backups
within the chain in an identical manner as if they were one backup. Thus, use of retention policy management does
not result in the breakup of a backup chain.

See the EDB Postgres Backup and Recovery Reference Guide for examples of creating a backup chain and restoring
an incremental backup.
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CHAPTER 4

Using BART

After installing and configuring the BART host and the database servers, you can start using BART. For detailed
information about installation and configuration, see the EDB Postgres Backup and Recovery Installation and Upgrade
Guide available at:

https://www.enterprisedb.com/edb-docs

This section describes how to perform backup and recovery management operations using BART. Review the sections
that follow before proceeding with any BART operation.

4.1 BART Management Overview

After configuring BART, you can begin the BART backup and recovery management process. The following steps
will help you get started:

1. Run the CHECK-CONFIG subcommand without the -s option. When the CHECK-CONFIG subcommand is
used without specifying the -s option, it checks the parameters in the global section of the BART configuration
file.

2. Run the INIT subcommand (if you have not already done so) to finish creation of the BART backup catalog,
which results in the complete directory structure to which backups and WAL files are saved. This step must
be done before restarting the database servers with enabled WAL archiving, otherwise the copy operation in
the archive_command parameter of the postgresql.conf file or the postgresql.auto.conf file
fails due to the absence of the target archive directory. When the directory structure is complete, the lowest level
subdirectory named server_name/archived_wals, referred to as the archive path, should exist for each
database server.

3. Start the Postgres database servers with archiving enabled. Verify that the WAL files are appearing in the
server_name/archived_wals archive paths for each database server. (The archiving frequency is de-
pendent upon other postgresql.conf configuration parameters.) Check the Postgres database server log
files to ensure there are no archiving errors. Archiving should be operational before taking a backup in order to
ensure that the WAL files that may be created during the backup process are archived.

18
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4. Start the WAL scanner if you intend to take incremental backups. Since the WAL scanner processes the WAL
files copied to the archive paths in the BART backup catalog, it is advantageous to commence the WAL scanning
as soon as the WAL files begin to appear in the BART backup catalog in order to keep the scanning in pace with
the WAL archiving.

5. Run the BART CHECK-CONFIG subcommand for each database server with the -s option specifying the server
name. This ensures the database server is properly configured for taking backups.

6. Create a full backup for each database server. The full backup establishes the starting point of when point-
in-time recovery can begin and also establishes the initial parent backup for any incremental backups to be
taken.

There are now a number of other BART management processes you may perform:

• Execute the BACKUP subcommand to create additional full backups or incremental backups.

• Use the VERIFY-CHKSUM subcommand to verify the checksum of the full backups .

• Display database server information with the SHOW-SERVERS subcommand.

• Display backup information with the SHOW-BACKUPS subcommand.

• Compress the archived WAL files in the BART backup catalog by enabling WAL compression in the BART
configuration file and then invoking the MANAGE subcommand.

• Determine and set the retention policy for backups in the BART configuration file.

• Establish the procedure for using the MANAGE subcommand to enforce the retention policy for backups. This
may include using cron jobs to schedule the MANAGE subcommand.
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4.1.1 Performing a Restore Operation

Perform the following steps for restore operation:

Step 1: Stop the Postgres database server on which you will be performing the restore operation.

Step 2: Inspect the pg_xlog subdirectory of the data directory and save any WAL files that have not yet been
archived to the BART backup catalog (backup_path/server_name/archived_wals). If there are files that
have not been archived, save them to a temporary location.

Step 3: If you are restoring to:

• the current data directory, delete all files and subdirectories under the data directory.

• a new directory, create the directory on which you want to restore the backed up database cluster. Ensure the data
directory can be written to by the BART user account or by the user account specified by the remote_host
configuration parameter, or by the --remote-host option of the RESTORE subcommand (if these are to be
used).

Step 4: Perform the same process for tablespaces as described in Step 3. The tablespace_path parameter in
the BART configuration file must contain the tablespace directory paths to which the tablespace data files are to be
restored. See the Configuration section of the EDB Postgres Backup and Recovery Installation and Upgrade Guide
for more information.

Step 5: Identify the timeline ID you wish to use to perform the restore operation.

The available timeline IDs can be identified by the first non-zero digit of the WAL file names reading from left to right.

Step 6: Identify the backup to use for the restore operation and obtain the backup ID or backup name.

To use the latest backup, omit the -i option; the RESTORE subcommand uses that backup by default. The backups
can be listed with the SHOW-BACKUPS subcommand.

Step 7: Run the BART RESTORE subcommand.

• If you have specified the -t timeline_id, -x target_xid, or -g target_timestamp option,
then recovery settings will be saved in the postgresql.auto.conf file and point-in-time recovery will be
performed when you restart the database server.

• If you do not specify -t timeline_id, -x target_xid, or -g target_timestamp, then minimal
recovery settings will be saved in the postgresql.auto.conf file and archive recovery will proceed only
until consistency is reached, with no restoration of files from the archive. See the Restore section for detailed
information about Restore subcommand.

• If the -c option is specified or if the enabled setting of the copy_wals_during_restore BART configu-
ration parameter is in effect for this database server, then the following actions occur:

– In addition to restoring the database cluster to the directory specified by the -p restore_path op-
tion, the archived WAL files of the backup are copied from the BART backup catalog to the subdirectory
restore_path/archived_wals.

– If recovery settings are saved in the postgresql.auto.conf file, the command string set in the
restore_command parameter retrieves the WAL files from this archived_wals subdirectory rela-
tive to the restore_path parent directory as: restore_command = cp archived_wals/%f
%p

Note: You must ensure that valid options are specified when using the RESTORE subcommand. BART will not
generate an error message if invalid option values or invalid option combinations are provided. BART will accept the
invalid options and pass them to the postgresql.auto.conf file, which will then be processed by the database
server when it is restarted.
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Step 8: Copy any saved WAL files from Step 2 to the restore_path/pg_xlog subdirectory.

Step 9: Inspect the restored directories and data files of the restored database cluster in directory restore_path.

All files and directories must be owned by the user account that you intend to use to start the database server. Re-
cursively change the user and group ownership of the restore_path directory, its files, and its subdirectories if
necessary. There must only be directory access privileges for the user account that will start the database server. No
other groups or users can have access to the directory.

Step 10: Inspect the postgresql.auto.conf file (if you are performing a point-in-time recovery) located in
the restore_path directory to verify if it contains the appropriate parameter settings to recover to the indicated
point. Otherwise, the postgresql.auto.conf file should be configured to recover only until the cluster reaches
consistency. In either case, the settings may be modified as desired.

Step 11: Disable WAL archiving at this point. The BART RESTORE subcommand adds archive_mode = off
to the end of the postgresql.conf file.

• If you want to restart the database server with WAL archiving activated, ensure that this additional parameter is
deleted.

• The original archive_mode parameter still resides in the postgresql.conf file in its initial location with
its last setting.

Step 12: Start the database server to initiate recovery. After completion, check the database server log file to ensure
the recovery was successful.

Note: If the backup is restored to a different location than where the original database cluster resided, operations
dependent upon the database cluster location may fail if supporting service scripts are not updated to reflect the
location where the backup has been restored. For information about the use and modification of service scripts, see
the EDB Postgres Advanced Server Installation Guide.
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4.1.2 Point-In-Time Recovery Operations

The following steps outline how to perform a point-in-time recovery operation for a database cluster:

1. Use your system-specific command to shut down the database server.

2. If you want to restore the database cluster and tablespace files to new directories, create the new directories with
the appropriate directory ownership and permissions.

If you plan to reuse existing database cluster directories, delete all the files and subdirectories in the existing
directories. We strongly recommended that you make a copy of this data before deleting it. Be sure to save
any recent WAL files in the pg_xlog subdirectory that have not been archived to the BART backup catalog
server_name/archived_wals subdirectory.

3. Run the BART SHOW-BACKUPS -s <server_name> subcommand to list the backup IDs and backup
names of the backups for the database server. You will need to provide the appropriate backup ID or backup
name with the BART RESTORE subcommand, unless you intend to restore the latest backup in which case the
-i option of the RESTORE subcommand for specifying the backup ID or backup name may be omitted.

4. Run the BART RESTORE subcommand with the appropriate options.

• The backup is restored to the directory specified by the -p restore_path option.

• In addition, if the RESTORE subcommand -c option is specified or if the enabled setting of the
copy_wals_during_restore BART configuration parameter is applicable to the database server, then
the required, archived WAL files from the BART backup catalog are copied to the restore_path/
archived_wals subdirectory.

Note: Ensure the restore_path directory and all subdirectories and files in the restore_path are
owned by the proper Postgres user account (for example, enterprisedb or postgres). Also ensure
that only the Postgres user account has access permission to the restore_path directory.

Use the chown command to make the appropriate adjustments to file permissions; for example, the
following command changes the ownership of restore_path to enterprisedb:

chown -R enterprisedb:enterprisedb restore_path

The following command restricts access to restore_path:

chmod 700 restore_path

5. Copy any saved WAL files from Step 2 that were not archived to the BART backup catalog to the
restore_path/pg_xlog subdirectory.

6. For point-in-time recovery, verify that the postgresql.auto.conf file created in the directory specified
with the RESTORE subcommand’s -p <restore_path> option generated the correct recovery parameter
settings.

Note: If the RESTORE subcommand -c option is specified or if the enabled setting of
the copy_wals_during_restore BART configuration parameter is applicable to the database
server, then the restore_command parameter retrieves the archived WAL files from the
<restore_path>/archived_wals subdirectory that was created by the RESTORE subcommand,
otherwise the restore_command retrieves the archived WAL files from the BART backup catalog.

7. The BART RESTORE subcommand disables WAL archiving in the restored database cluster. If you want to
immediately enable WAL archiving, modify the postgresql.conf file by deleting the archive_mode =
off parameter that BART appends to the end of the file.
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8. Start the database server, which will then perform the point-in-time recovery operation if recovery settings are
saved in the postgresql.auto.conf file.

A detailed description of the RESTORE subcommand is available in Basic Bart Subcommand Usage; see the EDB
Postgres Backup and Recovery Reference Guide for a Point-in-Time recovery example.

4.2 Using a Retention Policy to Manage Backups

Over the course of time when using BART, the number of backups can grow significantly. This ultimately leads to
a large consumption of disk space unless an administrator periodically performs the process of deleting the oldest
backups that are no longer needed. This process of determining when a backup is old enough to be deleted and then
actually deleting such backups can be done and automated with the following basic steps:

1. Determine and set a retention policy in the BART configuration file. A retention policy is a rule that determines
when a backup is considered obsolete. The retention policy can be applied globally to all servers, but each server
can override the global retention policy with its own (see the configuration section of the EDB Postgres Backup
and Recovery Installation and Upgrade Guide for details).

2. Use the MANAGE subcommand to categorize and manage backups according to the retention policy.

3. Create a cron job to periodically run the MANAGE subcommand to evaluate the backups and then list and/or
delete the obsolete backups.

Note: There is a difference on how retention policy management applies to incremental backups as compared to
full backups. See Section - Managing Incremental Backups for information about how retention policy management
applied to full backups affects incremental backups.

The following sections describe how retention policy management generally applies to backups, and its specific usage
and effect on full backups:

• Section - Overview - Managing Backups Using a Retention Policy provides an overview of the terminology and
types of retention policies.

• Section - Marking the Backup Status describes the concept of marking the status of backups according to the
retention policy.

• Section - Setting the Retention Policy describes setting the different types of retention policies.

• Section - Managing the Backups Based on the Retention Policy describes the process of managing the backups
such as marking the backup status, keeping selected backups indefinitely, listing obsolete backups, and deleting
obsolete backups.

Note: The examples shown in the previously listed sections were generated with BART version 1.1. The reten-
tion policy management process is the same for the current BART version, however the displayed output of the
SHOW-BACKUPS and SHOW-SERVERS subcommands now include a few additional fields that do not influence the
retention policy.
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4.2.1 Overview - Managing Backups Using a Retention Policy

The BART retention policy results in the categorization of each backup in one of three statuses –active, obsolete, and
keep:

• Active. The backup satisfies the retention policy applicable to its server. Such backups would be considered
necessary to ensure the recovery safety for the server and thus should be retained.

• Obsolete. The backup does not satisfy the retention policy applicable to its server. The backup is no longer
considered necessary for the recovery safety of the server and thus can be deleted.

• Keep. The backup is to be retained regardless of the retention policy applicable to its server. The backup is
considered vital to the recovery safety for the server and thus should not be deleted for an indefinite period of
time.

There are two types of retention policies - redundancy retention policy and recovery window retention policy.

• Redundancy Retention Policy - The redundancy retention policy relies on a specified, maximum number of
most recent backups to retain for a given server. When the number of backups exceeds that maximum number,
the oldest backups are considered obsolete (except for backups marked as keep).

• Recovery Window Retention Policy - The recovery window retention policy relies on a time frame (the recov-
ery window) for when a backup should be considered active. The boundaries defining the recovery window are
the current date/time (the ending boundary of the recovery window) and the date/time going back in the past for
a specified length of time (the starting boundary of the recovery window).

– If the date/time the backup was taken is within the recovery window (that is, the backup date/time is on or
after the starting date/time of the recovery window), then the backup is considered active, otherwise it is
considered obsolete (except for backups marked as keep).

– Thus, for the recovery window retention policy, the recovery window time frame dynamically shifts, so
the end of the recovery window is always the current date/time when the MANAGE subcommand is run. As
you run the MANAGE subcommand at future points in time, the starting boundary of the recovery window
moves forward in time. At some future point, the date/time of when a backup was taken will be earlier
than the starting boundary of the recovery window. This is when an active backup’s status will then be
considered obsolete.

– You can see the starting boundary of the recovery window at any point in time by running the
SHOW-SERVERS subcommand. The RETENTION POLICY field of the SHOW-SERVERS subcommand
displays the starting boundary of the recovery window.
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4.2.2 Marking the Backup Status

When a backup is initially created with the BACKUP subcommand, it is always recorded with active status. Use the
MANAGE subcommand to evaluate if the backup status should be changed to obsolete in accordance with the retention
policy. See MANAGE for usage and option information for the MANAGE subcommand.

Active backups are evaluated and also marked (that is, internally recorded by BART) as obsolete only when the
MANAGE subcommand is invoked either with no options or with only the -s option.

Once a backup has been marked as obsolete, you cannot change it back to active unless you perform the following
steps:

• Use the MANAGE subcommand with the -c option along with the backup identifier or name with the -i option.
To keep this particular backup indefinitely, use -c keep, otherwise use -c nokeep.

• If you use the -c nokeep option, the backup status is changed back to active. When the MANAGE subcommand
is used the next time, the backup is re-evaluated to determine if its status needs to be changed back to obsolete
based on the current retention policy in the BART configuration file.

After setting the retention_policy parameter and running the MANAGE subcommand to mark the backups
according to that retention_policy setting if you change the retention_policy parameter, the current,
marked status of the backups are probably inconsistent with the new retention_policy setting.

To modify the backup status to be consistent with the new retention_policy setting, you need to run the MANAGE
subcommand with:

• the -c nokeep option to change the obsolete status to active status if there are backups currently marked as
obsolete that would no longer be considered obsolete under a new retention policy. You can also specify the -i
all option to change all backups back to active status, including those currently marked as keep.

• no options or with only the -s option to reset the marked status based on the new retention_policy
setting in the BART configuration file.

Note: You can review the current marking (the status) of your backups with the SHOW-BACKUPS subcommand.
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4.2.3 Setting the Retention Policy

The retention policy is determined by the retention_policy parameter in the BART configuration file. It can be
applied globally to all servers, but each server can override the global retention policy with its own. For information
about creating a global retention policy and an individual database server retention policy, see the Configuration section
of the EDB Postgres Backup and Recovery Installation and Upgrade Guide.

There are two types of retention policies - redundancy retention policy and the recovery window retention policy as
described in the following sections.

Redundancy Retention Policy

To use the redundancy retention policy, set retention_policy = max_number BACKUPS where
max_number is a positive integer designating the maximum number of most recent backups.

Additional Restrictions:

• The keyword BACKUPS must always be specified in plural form (for example, 1 BACKUPS).

• BART will accept a maximum integer value of 2,147,483,647 for max_number; however, you should use a
realistic, practical value based on your system environment.

Note: The redundancy retention policy is the default type of retention policy if all keywords BACKUPS, DAYS, WEEKS,
and MONTHS following the max_number integer are omitted as shown by the following example:

retention_policy = 3

In the following example the redundancy retention policy setting considers the three most recent backups as the active
backups. Any older backups, except those marked as keep, are considered obsolete.

[ACCTG]
host = 127.0.0.1
port = 5444
user = enterprisedb
archive_command = 'cp %p %a/%f'
retention_policy = 3 BACKUPS
description = "Accounting"

The SHOW-SERVERS subcommand displays the 3 Backups redundancy retention policy in the RETENTION
POLICY field:

-bash-4.1$ bart SHOW-SERVERS -s acctg
SERVER NAME : acctg
HOST NAME : 127.0.0.1
USER NAME : enterprisedb
PORT : 5444
REMOTE HOST :
RETENTION POLICY : 3 Backups
DISK UTILIZATION : 627.04 MB
NUMBER OF ARCHIVES : 25
ARCHIVE PATH : /opt/backup/acctg/archived_wals
ARCHIVE COMMAND : cp %p /opt/backup/acctg/archived_wals/%f
XLOG METHOD : fetch
WAL COMPRESSION : disabled
TABLESPACE PATH(s) :
DESCRIPTION : "Accounting"
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Recovery Window Retention Policy

To use the recovery window retention policy, set the retention_policy parameter to the desired length of time
for the recovery window in one of the following ways:

• Set to max_number DAYS to define the start date/time recovery window boundary as the number of days
specified by max_number going back in time from the current date/time.

• Set to max_number WEEKS to define the start date/time recovery window boundary as the number of weeks
specified by max_number going back in time from the current date/time.

• Set to max_number MONTHS to define the start date/time recovery window boundary as the number of
months specified by max_number going back in time from the current date/time.

Additional Restrictions:

• The keywords DAYS, WEEKS, and MONTHS must always be specified in plural form (for example, 1 DAYS, 1
WEEKS, or 1 MONTHS).

• BART will accept a maximum integer value of 2,147,483,647 for max_number, however, a realistic,
practical value based on your system environment must always be used.

A backup is considered active if the date/time of the backup is equal to or greater than the start of the recovery window
date/time.

You can view the actual, calculated recovery window by:

• Invoking the MANAGE subcommand in debug mode, along with the -n option.

• Using the SHOW-SERVERS subcommand.

See the EDB Postgres Backup and Recovery Reference Guide for examples of how to view the actual, calculated
recovery window.
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4.2.4 Managing the Backups Based on the Retention Policy

The MANAGE subcommand is used to evaluate and categorize backups according to the retention policy set in the
BART configuration file. When a backup is first created with the BACKUP subcommand, it is always marked as active.
By using the MANAGE subcommand, an active backup may be marked as obsolete. Obsolete backups can then be
deleted.

This section covers following aspects of backup management:

• The rules for deleting backups dependent upon the backup status and the subcommand used.

• The process to retain a backup indefinitely by marking it as keep. This section also provides information about
resetting backups marked as obsolete and keep back to active status.

• The general process for evaluating, marking, and then deleting obsolete backups.

Deletions Permitted Under a Retention Policy

This section describes how and under what conditions backups may be deleted under a retention policy.

You must use the MANAGE subcommand to delete obsolete backups. Use the DELETE subcommand only for special
administrative purposes.

The deletion behavior of the MANAGE subcommand and the DELETE subcommand are based on different aspects of
the retention policy.

• The MANAGE subcommand deletion relies solely upon how a backup status is currently marked (that is, internally
recorded by BART). The current setting of the retention_policy parameter in the BART configuration
file is ignored.

• The DELETE subcommand relies solely upon the current setting of the retention_policy parameter in the
BART configuration file. The current active, obsolete, or keep status of a backup is ignored.

The specific deletion rules for the MANAGE and DELETE subcommands are as follows:

• MANAGE subcommand: The MANAGE subcommand with the -d option can only delete backups marked as ob-
solete. This deletion occurs regardless of the current retention_policy setting in the BART configuration
file. The deletion of backups relies on the last occasion when the backups have been marked.

• DELETE subcommand:

– Under a redundancy retention policy currently set with the retention_policy parameter in the BART
configuration file, any backup regardless of its marked status, can be deleted with the DELETE subcom-
mand when the backup identifier or name is specified with the -i option and if the current total number
of backups for the specified database server is greater than the maximum number of redundancy backups
currently specified with the retention_policy parameter.

If the total number of backups is less than or equal to the specified, maximum number of redundancy
backups, then no additional backups can be deleted using DELETE with the -i backup option.

– Under a recovery window retention policy currently set with the retention_policy parameter in the
BART configuration file, any backup regardless of its marked status, can be deleted with the DELETE sub-
command when the backup identifier or name is specified with the -i option, and if the backup date/time
is not within the recovery window currently specified with the retention_policy parameter. If the
backup date/time is within the recovery window, then it cannot be deleted using DELETE with the -i
backup option.

– Invoking the DELETE subcommand with the -i all option results in the deletion of all backups regard-
less of the retention policy and regardless of whether the status is marked as active, obsolete, or keep.
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The following table summarizes the deletion rules of backups according to their marked status. An entry of Yes
indicates the backup may be deleted under the specified circumstances. An entry of No indicates that the backup may
not be deleted.

Table 3-1 Allowable Backup Deletion by Status

Operation Redundancy Retention Policy Recovery Window Retention Policy
Active Obsolete Keep Active Obsolete Keep

MANAGE –d No Yes No No Yes No
DELETE –i
backup

Yes
(see Note 1)

Yes
(see Note 1)

Yes
(see Note 1)

Yes
(see Note 2)

Yes
(see Note 2)

Yes
(see Note 2)

DELETE –i all Yes Yes Yes Yes Yes Yes

Note: Deletion occurs only if the total number of backups for the specified database server is greater than the
specified, maximum number of redundancy backups currently set with the redundancy_policy parameter in the
BART configuration file.

Deletion occurs only if the backup is not within the recovery window currently set with the redundancy_policy
parameter in the BART configuration file.

Marking Backups for Indefinite Keep Status

There may be certain backups that you wish to keep for an indefinite period of time and do not wish to delete based
upon the retention policy applied to the database server. Such backups can be marked as keep to exclude them from
being marked as obsolete.

Use the MANAGE subcommand with the -c keep option to retain such backups indefinitely. See the EDB Postgres
Backup and Recovery Reference Guide to view examples of MANAGE subcommand.

Evaluating, Marking, and Deleting Obsolete Backups

When the MANAGE subcommand is invoked, BART evaluates active backups:

• If you include the -s option when invoking MANAGE, BART evaluates backups for the database server.

• If you include the -s all option when invoking MANAGE, BART evaluates backups for all database servers.

• If the -s option is omitted, the command evaluates the current number of backups for the database server based
on the redundancy retention policy or the current date/time for a recovery window retention policy.

Note: The status of backups currently marked as obsolete or keep is not changed. To re-evaluate such backups
and then classify them, their status must first be reset to activewith the MANAGE -c nokeep option. See Marking
the Backup Status for more information.

See the EDB Postgres Backup and Recovery Reference Guide to view an example of how to evaluate, mark, and delete
backups using redundancy retention policy and recovery window retention policy.
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4.2.5 Managing Incremental Backups

The following section summarizes how retention policy management affects incremental backups.

• The retention policy rules are applied to full backups.

– A redundancy retention policy uses the number of full backups to determine if a backup is obsolete.
Incremental backups are excluded from the comparison count against the retention_policy setting
for the maximum number of backups.

– A recovery window retention policy uses the backup date/time of any full backups to determine if a backup
is obsolete. The backup date/time of any successive incremental backups in the chain are ignored when
comparing with the recovery window.

• The retention status of all incremental backups in a chain is set to the same status applied to the full backup of
the chain.

• The actions applied by the MANAGE and DELETE subcommands on a full backup are applied to all incremental
backups in the chain in the same manner.

• Thus, a backup chain (that is, the full backup and all its successive incremental backups) are treated by retention
policy management as if they are all one, single backup.

– The status setting applied to the full backup is also applied to all incremental backups in its chain.

– If a full backup is marked as obsolete and then deleted according to the retention policy, all incremental
backups in the chain are also marked obsolete and then deleted as well.

The following are some specific points regarding the MANAGE and DELETE subcommands on incremental backups:

• MANAGE subcommand:

– When the MANAGE subcommand is invoked, the status applied to the full backup is also applied to all
successive incremental backups in the chain.

– The MANAGE subcommand with the -c { keep | nokeep} option cannot specify the backup iden-
tifier or backup name of an incremental backup with -i backup option. The -i backup option can only
specify the backup identifier or backup name of a full backup.

– You can also use the -i all option to take a backup of all backups. When the MANAGE subcommand with
the -c { keep | nokeep } option is applied to a full backup, the same status change is made to all
incremental backups in the chain.

• DELETE subcommand:

– The DELETE subcommand with the -s server -i backup option specifies the backup identifier or
backup name of an incremental backup in which case that incremental backup along with all its successive
incremental backups are deleted, thus shortening that backup chain.

Using a Redundancy Retention Policy with Incremental Backups

When a redundancy retention policy is used and the MANAGE subcommand is invoked, the status of the oldest active
full backup is changed to obsolete if the number of full backups exceeds the maximum number specified by the
retention_policy parameter in the BART configuration file.

Note: When a full backup is changed from active to obsolete, all successive incremental backups in the chain
of the full backup are also changed from active to obsolete.
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When determining the number of backups that exceeds the number specified by the retention_policy parameter,
only full backups are counted for the comparison. Incremental backups are not included in the count for the comparison
against the retention_policy parameter setting.

See the EDB Postgres Backup and Recovery Reference Guide for examples demonstrating use of the MANAGE and
DELETE subcommands when a redundancy retention policy is in effect.

Using a Recovery Window Retention Policy with Incremental Backups

If the MANAGE command is invoked when BART is configured to use a recovery window retention policy, the status of
active full backups are changed to obsolete if the date/time of the full backup is outside of the recovery window.

Note: If a full backup is changed from active to obsolete, all successive incremental backups in the chain of
the full backup are also changed from active to obsolete.

The status of an incremental backup is changed to obsolete regardless of whether or not the date/time of when the
incremental backup was taken still lies within the recovery window.

See the EDB Postgres Backup and Recovery Reference Guide for examples demonstrating use of the MANAGE and
DELETE subcommands when a recovery window retention policy is in effect.
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4.3 Basic BART Subcommand Usage

This section briefly describes the BART subcommands and options. You can invoke the bart program (located in the
<BART_HOME>/bin directory) with the desired options and subcommands to manage your BART installation.

Syntax for invoking BART:

bart [ general_option ]... [ subcommand ] [subcommand_option ]...

Please note:

• When invoking a subcommand, the subcommand name is case-insensitive (that is, the subcommand can be
specified in uppercase, lowercase, or mixed case).

• Each subcommand has a number of its own applicable options that are specified following the subcommand.
All options are available in both single-character and multi-character forms.

• Keywords are case-sensitive; options are generally specified in lowercase unless specified otherwise in this
section.

• When invoking BART, the current user must be the BART user account (operating system user account used to
run the BART command line program). For example, enterprisedb or postgres can be selected as the BART user
account when the managed database servers are Advanced Server or PostgreSQL respectively.

• The chosen operating system user account must have the following capabilities:

– Own the BART backup catalog directory.

– Be able to run the bart program and the bart scanner program.

– Have a password-less SSH/SCP connection established between database servers managed by BART.

You can specify one or more of the following general options:

Options

• -h or -help

Displays general syntax and information on BART usage.

All subcommands support a help option (-h, --help). If the help option is specified, information is
displayed regarding that particular subcommand. The subcommand, itself, is not executed.

• -v or -version

Displays the BART version information.

• -d or -debug

Displays debugging output while executing BART subcommands.

• -c or --config-path config_file_path

Specifies config_file_path as the full directory path to a BART configuration file. Use this option
if you do not want to use the default BART configuration file <BART_HOME>/etc/bart.cfg.

Troubleshooting: Setting Path Environment Variable

If execution of BART subcommands fails with the following error message, then you need to set the
LD_LIBRARY_PATH to include the libpq library directory:

./bart: symbol lookup error: ./bart: undefined symbol: PQping

Workaround: Set the LD_LIBRARY_PATH environment variable for the BART user account to include the directory
containing the libpq library. This directory is POSTGRES_INSTALL_HOME/lib as shown by the following
example:
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export LD_LIBRARY_PATH=/opt/PostgresPlus/9.5AS/lib/:$LD_LIBRARY_PATH

It is suggested that the PATH and the LD_LIBRARY_PATH environment variable settings be placed in the BART user
account’s profile. See the configuration section of the EDB Postgres Backup and Recovery Installation and Upgrade
Guide for details.

Note: In the following sections, the help option is omitted from the syntax diagrams for the purpose of providing
readability for the subcommand options.
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4.3.1 CHECK-CONFIG

The CHECK-CONFIG subcommand checks the parameter settings in the BART configuration file as well as the
database server configuration for which the -s option is specified. To view examples of CHECK-CONFIG sub-
command, refer to the EDB Postgres Backup and Recovery Reference Guide.

Syntax:

bart CHECK-CONFIG [ -s server_name ]

Options

-s or --server <server_name>

server_name is the name of the database server to be checked for proper configuration. If the option is omitted, the
settings of the global section of the BART configuration file are checked.

Please note:

• When the -s option is omitted, the global section [BART], which contains parameters including bart_host,
backup_path, and pg_basebackup_path is checked.

• When the -s option is specified, the parameters in the specified server section are checked. In addition, certain
postgresql.conf parameters for the database server must be properly set and the database server must be
activated for certain processes. These requirements include the following:

– The cluster_owner parameter must be set to the user account owning the database cluster directory.

– A password-less SSH/SCP connection must be set between the BART user and the user account specified
by the cluster_owner parameter.

– A database superuser must be specified by the BART user parameter.

– The pg_hba.conf file must contain a replication entry for the database superuser specified by the BART
user parameter.

– The archive_mode parameter in the postgresql.conf file must be enabled.

– The archive_command parameter in the postgresql.auto.conf or the postgresql.conf
file must be set.

– The allow_incremental_backups parameter in the BART configuration file must be enabled for
database servers for which incremental backups are to be taken.

– Archiving of WAL files to the BART backup catalog must be in process.

– The WAL scanner program must be running.

The CHECK-CONFIG subcommand displays an error message if the required configuration is not properly set.
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4.3.2 INIT

The INIT subcommand is used to perform the following actions:

• Create the BART backup catalog directory.

• Rebuild the BART backupinfo file.

• Set the archive_command in the PostgreSQL server based on the archive_command setting in the
bart.cfg file.

Note: If the archive_mode configuration parameter is set to off, then the -o option must be used to set the
Postgres archive_command using the BART archive_command parameter in the BART configuration file even
if the archive_command is not currently set in postgresql.conf nor in postgresql.auto.conf.

To view examples of INIT subcommand, see the EDB Postgres Backup and Recovery Reference Guide.

Syntax:

bart INIT [ -s { <server_name> | all } ] [ -o ]
[ -r [ -i { <backup_id> | <backup_name> | all } ] ]
[--no-configure]

In the above syntax diagram, INIT is the BART subcommand and -s server_name, all, -o, -r, -i,
no-configure are the subcommand options.

Note: The subcommand option keywords must generally be in lowercase, except when specified differently in this
section.

Options

• -s or --server {<server_name> | all }

server_name is the name of the database server to which the INIT actions are to be applied. If all
is specified or if the option is omitted, the actions are applied to all servers.

• -o or -override

Overrides the existing, active Postgres archive_command configuration parameter setting
in the postgresql.conf file or the postgresql.auto.conf file using the BART
archive_command parameter in the BART configuration file. The INIT generated archive command
string is written to the postgresql.auto.conf file.

• -r or -rebuild

Rebuilds the backupinfo file (a text file named backupinfo) located in each backup subdirectory.

• -i or --backupid { <backup_id> | <backup_name> | all }

<backup_id> is an integer, backup identifier and <backup_name> is the user-defined alphanumeric
name for the backup. If all is specified or if the option is omitted, the backupinfo files of all backups for
the database servers specified by the -s option are recreated. The -i option can only be used with the
-r option.

Archive Command Setting

After the archive_command is set, you need to either restart the PostgreSQL server or reload the configuration file
in the PostgreSQL server based on the following conditions. See the EDB Postgres Backup and Recovery Reference
Guide for examples of each of this condition.
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• If the archive_mode is set to off and archive_command is not set in the PostgreSQL server, the
archive_command is set based on the archive_command setting in the bart.cfg and also sets the
archive_mode to on. In this case, you need to restart the PostgreSQL server using pg_ctl restart

• If the archive_mode is set to on and archive_command is not set in the PostgreSQL server, the
archive_command is set based on the archive_command setting in the bart.cfg. In this case, you
need to reload the configuration in the PostgreSQL server using pg_reload_conf() or pg_ctl reload.

• If the archive_mode is set to off and archive_command is already set in the PostgreSQL server, the
archive_mode is set to on. In this case, you need to restart the PostgreSQL server using pg_ctl restart

• If the archive_mode is set to on and archive_command is already set in the PostgreSQL server, then the
archive_command is not set unless -o option is specified.
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4.3.3 BACKUP

The BACKUP subcommand is used to create a full backup or an incremental backup. To view examples of a full
backup and an incremental backup, see the EDB Postgres Backup and Recovery Reference Guide.

Syntax for full backup:

bart BACKUP -s { server_name | all } [ -F { p | t } ]
[ -z ] [ -c compression_level ]
[ --backup-name backup_name ]
[ --thread-count number_of_threads ]
[ { --with-pg_basebackup | --no-pg_basebackup } ]

Note: While taking a backup, if there is a file exceeding 1GB size in the $PGDATA directory, the backup will fail.
To avoid such backup failure, you need to store large files outside the $PGDATA directory.

For example, if the database server log file exceeds 1 GB size in the $PGDATA directory, you need to store them
outside the $PGDATA directory to avoid backup failure.

Syntax for incremental Backup:

bart BACKUP -s { server_name | all } [ -F p]
[ --parent { backup_id | backup_name } ]
[ --backup-name backup_name ]
[ --thread-count number_of_threads ]
[ --check ]

Note: To take an incremental backup, you must take a full backup first followed by incremental backup.

For more details about incremental backup, see Block-Level Incremental Backup.

Please Note:

• While a BACKUP subcommand is in progress, no other subcommands (INIT, DELETE, MANAGE, SHOW
BACKUPS, VERIFY-CHKSUM) must be issued. Any subcommands issued while a backup is in progress will
skip and ignore the backups.

For full backup, the target default format is a tar file. For incremental backup, only plain format must be
specified.

• The backup is saved in the following backup_path/server_name/backup_id directory.

where

– backup_path is the value assigned to the backup_path parameter in the BART configuration file.

– server_name is the lowercase name of the database server as listed in the configuration file.

– <backup_id> is a backup identifier assigned by BART to the particular backup.

• MD5 checksums of the full backup and any user-defined tablespaces are saved as well for tar backups.

• When you use BART to take a backup of PostgreSQL server versions:

– 9.5 or prior, only one backup per server may be in progress at any given time and if a backup is interrupted,
you must manually run the pg_stop_backup() command to terminate the backup mode.
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– 9.6 or higher, multiple backups can be taken simultaneously and if a backup is interrupted, the backup
mode is terminated automatically without the need to run pg_stop_backup() command manually to
terminate the backup.

• Before performing the backup, BART checks to ensure if there is enough disk space to completely store the
backup in the BART backup catalog.

See the error message table in the BACKUP section of the EDB Postgres Backup and Recovery Reference
Guide for the error message that will be displayed if BART detects insufficient disk space.

• In the postgresql.conf file, ensure the wal_keep_segments configuration parameter is set to a suf-
ficiently large value. See the error message table in the BACKUP section of the EDB Postgres Backup and
Recovery Reference Guide for the error message that will be displayed if wal_keep_segments configura-
tion parameter is not set to a sufficiently large value.

A low setting of the wal_keep_segments configuration parameter may result in the deletion of some
WAL files before the BART BACKUP subcommand saves them to the BART backup catalog. For infor-
mation about the wal_keep_segments parameter, see the PostgreSQL Core Documentation.

• If in the BART configuration file, parameter setting xlog_method=stream applies to a given database
server, streaming of the transaction log in parallel with creation of the backup is performed for that database
server, otherwise the transaction log files are collected upon completion of the backup. See the EDB Postgres
Backup and Recovery Installation and Upgrade Guide for details about database server setting.

Note: If the transaction log streaming method is used, the -F p option for a plain text backup format
must be specified with the BACKUP subcommand.

Options

Along with the BACKUP subcommand, you can specify the following options:

• -s { server_name | all } or --server { server_name | all } server_name is the
database server name to be backed up as specified in the BART configuration file. If all is specified, all
servers are backed up. This option is mandatory.

Note: If all is specified, and a connection to a database server listed in the BART configuration file
cannot be opened, the backup for that database server is skipped, but the backup operation continues
for the other database servers. See the error message table in the BACKUP section of the EDB Postgres
Backup and Recovery Reference Guide for the error message that will be displayed when a database server
connection fails.‘

Specify the following options only if required. If you do not specify any of the following options, backup is created
with the default setting.

• -F { p | t } or --format { p | t }

Specifies the backup file format. Use p for plain text or t for tar. If the option is omitted, the default is tar
format.

Note: For taking incremental backups, the option -F p must be specified.

• -z or --gzip ( applicable only for full backup)

Specifies usage of gzip compression on the tar file output using the default compression level. This option
is applicable only for the tar format.
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• -c compression_level or --compress-level compression_level (applicable only for full
backup)

Specifies the gzip compression level on the tar file output. compression_level is a digit from 1
through 9, with 9 being the best compression. This option is applicable only for the tar format.

• --parent { backup_id | backup_name }

– Specify this option if you want to take an incremental backup. <backup_id> is the backup
identifier of a parent backup. <backup_name> is the user-defined alphanumeric name of a
parent backup.

– The parent is a backup taken prior to the incremental backup. The parent backup can be either a
full backup or an incremental backup.

– The option -F p must be specified since an incremental backup can only be taken in plain text
format.

Note: An incremental backup cannot be taken on a standby database server. See Section - Block-
Level Incremental Backup for additional information on incremental backups.

• --backup-name <backup_name>

User-defined, alphanumeric friendly name to be assigned to the backup. The maximum permitted
length of backup name is 49 characters.

– The backup name may include the following variables to be substituted by the timestamp values
when the backup is taken: 1) %year – 4-digit year, 2) %month – 2-digit month, 3) %day –
2-digit day, 4) %hour – 2-digit hour, 5) %minute – 2-digit minute, and 6) %second – 2-digit
second.

For example,

./bart backup -s ppas12 -Ft --backup-name "YEAR = %year
MONTH = %month DAY = %day"

– To include the percent sign (%) as a character in the backup name, specify %% in the alphanumeric
string.

For example,

./bart backup -s ppas12 -Ft --backup-name "YEAR = %year
MONTH = %month DAY = %day %%"

– If the backup name contains space characters (i.e. more than one word) or when referenced
with the option -i ``by other subcommands (such as ``restore), enclose the
string in single quotes (‘) or double quotes (“).

For example,

./bart show-backups -s ppas12 -i "test backup"

– If the option --backup-name is not specified, and the backup_name parameter is not set
for this database server in the BART configuration file, then the backup can only be referenced
in other BART subcommands by the BART assigned backup identifier.

• --thread-count number_of_threads

If the option --thread-count is:
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– specified, number_of_threads is the number of worker threads to run in parallel to copy
blocks for a backup.

– omitted, then the thread_count parameter in the BART configuration file applicable to this
database server is used.

– not enabled for this database server, then the thread_count setting in the global section of
the BART configuration file is used.

– not set in the global section as well, the default number of threads is 1.

Note:

– If parallel backup is run with N number of worker threads, then it will initiate N+ 1 concurrent
connections with the server.

– Thread count will not be effective if backup is taken on a standby server.

See the configuration section of the EDB Postgres Backup and Recovery Installation and Upgrade Guide for informa-
tion about the --thread-count parameter.

• --with-pg_basebackup (applicable only for full backup)

Specifies that pg_basebackup is to be used to take a full backup. The number of thread counts in
effect is ignored as given by the thread_count parameter in the BART configuration file.

Note: When taking a full backup, if the thread count in effect is greater than 1, then the
pg_basebackup utility is not used to take the full backup (parallel worker threads are used)
unless the option --with-pg_basebackup is specified with the BACKUP subcommand.

• --no-pg_basebackup ( applicable only for full backup)

Specifies that pg_basebackup is not to be used to take a full backup.

Note: When taking a full backup, if the thread count in effect is only 1,
then the pg_basebackup utility is used to take the full backup unless the option
--no-pg_basebackup is specified with the BACKUP subcommand.

• --check ( applicable only for incremental backup)

Verifies that the required MBM files are present in the BART backup catalog before taking an incremen-
tal backup,. The option --parent must be specified when the option --check is used. An actual
incremental backup is not taken when the option --check is specified.
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4.3.4 SHOW-SERVERS

The SHOW-SERVERS subcommand displays the information for the managed database servers listed in the BART
configuration file. To view examples of SHOW-SERVERS subcommand, see the EDB Postgres Backup and Recovery
Reference Guide.

Syntax:

bart SHOW-SERVERS [ -s { <server_name> | all } ]

In the above syntax diagram, SHOW-SERVERS is the BART subcommand and -s <server_name> and all are
the subcommand options.

Options

-s { <server_name> | all } or --server { <server_name> | all } <server_name> is the
name of the database server whose BART configuration information is to be displayed. If all is specified or if the
option is omitted, information for all database servers is displayed.
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4.3.5 SHOW-BACKUPS

The SHOW-BACKUPS subcommand displays the backup information for the managed database servers. To view
examples of SHOW-BACKUPS subcommand, see the EDB Postgres Backup and Recovery Reference Guide.

Syntax:

bart SHOW-BACKUPS [ -s { <server_name> | all } ]
[ -i { <backup_id> | <backup_name> | all } ]
[ -t ]

In the above syntax diagram, SHOW-BACKUPS is the BART subcommand and -s <server_name>, all,
<backup_id>, <backup_name>, -i, -t are the subcommand options.

Options

• -s { <server_name> | all } or --server { <server_name> | all }

– <server_name> is the name of the database server whose backup information is to be displayed.

– If all is specified or if the option is omitted, the backup information for all database servers is displayed
with the exception as described by the following note:

Note: If SHOW-BACKUPS is invoked while the BART BACKUP subcommand is in progress, back-
ups affected by the backup process are shown in progress status in the displayed backup information.

• -i { <backup_id> | <backup_name> | all } or --backupid { <backup_id> |
<backup_name> | all }

<backup_id> is a backup identifier. <backup_name> is the user-defined alphanumeric name for the
backup. If all is specified or if the option is omitted, all backup information for the relevant database
server is displayed.

• -t or -toggle

Displays more backup information in list format. If the option is omitted, the default is a tabular format.
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4.3.6 VERIFY-CHKSUM

The VERIFY-CHKSUM subcommand verifies the MD5 checksums of the full backups and any user-defined ta-
blespaces for the specified database server or for all database servers. The checksum is verified by comparing the
current checksum of the backup against the checksum when the backup was taken.

Note: The VERIFY-CHKSUM subcommand is only used for tar format backups. It is not applicable to plain format
backups.

Syntax:

bart VERIFY-CHKSUM
[ -s { <server_name> | all } ]
[ -i { <backup_id> | <backup_name> | all } ]

Options

• -s { <server_name> | all } or --server { <server_name> | all }

<server_name> is the name of the database server whose tar backup checksums are to be verified. If
all is specified or if the -s option is omitted, the checksums are verified for all database servers.

• -i { <backup_id> | <backup_name> | all } or --backupid { <backup_id> |
<backup_name> | all }

<backup_id> is the backup identifier of a tar format full backup whose checksum is to be verified
along with any user-defined tablespaces. <backup_name> is the user-defined alphanumeric name for
the full backup. If all is specified or if the -i option is omitted, the checksums of all tar backups for the
relevant database server are verified.

Example

The following example verifies the checksum of all tar format backups of the specified database server.

-bash-4.1$ bart VERIFY-CHKSUM -s acctg -i all
SERVER NAME BACKUP ID VERIFY

acctg 1430239348243 OK
acctg 1430232284202 OK
acctg 1430232016284 OK
acctg 1430231949065 OK
acctg 1429821844271 OK
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4.3.7 MANAGE

The MANAGE subcommand can be invoked to:

• Evaluate backups, mark their status, and delete obsolete backups based on the retention_policy parameter
in the BART configuration file (See Section - Managing Backups Using a Retention Policy for information about
retention policy management).

• Compress the archived WAL files based on the wal_compression parameter in the BART configuration file
(See the configuration section of the EDB Postgres Backup and Recovery Installation and Upgrade Guide for
information about setting this parameter).

Syntax:

bart MANAGE [ -s { <server_name> | all} ]
[ -l ] [ -d ]
[ -c { keep | nokeep }
-i { <backup_id> | <backup_name> | all } ]

[ -n ]

The following summarizes the actions performed under certain conditions and options when the MANAGE subcommand
is invoked.

• When the MANAGE subcommand is invoked with no options or with only the -s <server_name> or -s
all option, the following actions are performed:

– For the server specified by the -s option, or for all servers (if -s all is specified or the -s option is
omitted), active backups are marked as obsolete in accordance with the retention policy.

– All backups that were marked obsolete or keep prior to invoking the MANAGE subcommand remain
marked with the same prior status.

– If WAL compression is enabled for the database server, then any uncompressed, archived WAL files in the
BART backup catalog of the database server are compressed with gzip.

• When the MANAGE subcommand is invoked with any other option besides the -s option, the following actions
are performed:

– For the server specified by the -s option, or for all servers, the action performed is determined by the
other specified options (that is, -l to list obsolete backups, -d to delete obsolete backups, -c to keep or
to return backups to active status, or -n to perform a dry run of any action).

– No marking of active backups to obsolete status is performed regardless of the retention policy.

– All backups that were marked obsolete or keep prior to invoking the MANAGE subcommand remain
marked with the same prior status unless the -c option (without the -n option) is specified to change the
backup status of the particular backup or all backups referenced with the -i option.

– No compression is applied to any uncompressed, archived WAL file in the BART backup catalog regardless
of whether or not WAL compression is enabled.

The following are additional considerations when using WAL compression:

• Compression of archived WAL files is not permitted for database servers on which incremental backups are to
be taken.

• The gzip compression program must be installed on the BART host and be accessible in the PATH of the BART
user account.

• When the RESTORE subcommand is invoked, if the -c option is specified or if the
copy_wals_during_restore BART configuration parameter is enabled for the database server,
then the following actions occur:
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– If compressed, archived WAL files are stored in the BART backup catalog and the location to which the
WAL files are to be restored is on a remote host relative to the BART host:

* the archived WAL files are transmitted across the network to the remote host in compressed format
only if the gzip compression program is accessible in the PATH of the remote user account that is used
to log into the remote host when performing the RESTORE operation.

* This remote user is specified with either the remote_host parameter in the BART configuration
file or the RESTORE -r option (see the Section - RESTORE).

* Transmission of compressed WAL files results in less network traffic. After the compressed WAL
files are transmitted across the network, the RESTORE subcommand uncompresses the files for the
point-in-time recovery operation.

* If the gzip program is not accessible on the remote host in the manner described in the previous bullet
point, then the compressed, archived WAL files are first uncompressed while on the BART host, then
transmitted across the network to the remote host in uncompressed format.

• When the RESTORE subcommand is invoked without the -c option and the copy_wals_during_restore
BART configuration parameter is disabled for the database server, then any compressed, archived WAL files
needed for the RESTORE operation are uncompressed in the BART backup catalog. The uncompressed WAL
files can then be saved to the remote host by the restore_command in the postgresql.auto.conf file
when the database server archive recovery begins.

Options

• -s { <server_name> | all } or --server { <server_name> | all }

<server_name> is the name of the database server to which the actions are to be applied. If all is
specified or if the -s option is omitted, the actions are applied to all database servers.

• -l or --list-obsolete

List the backups marked as obsolete.

• -d or --delete-obsolete

Delete the backups marked as obsolete. This action physically deletes the backup along with its
archived WAL files and any MBM files for incremental backups.

• -c { keep | nokeep } or --change-status { keep | nokeep }

– Change the status of a backup to keep to retain it indefinitely.

– Specify nokeep to change the status of any backup back to active status. The backup can then be re-
evaluated and possibly be marked to obsolete according to the retention policy by subsequent usage of
the MANAGE subcommand.

Note: The -i option must be included when using the -c option.

• -i { <backup_id> | <backup_name> | all } or --backupid { <backup_id> |
<backup_name> | all }

<backup_id> is a backup identifier. <backup_name> is the user-defined alphanumeric name for the
backup. If all is specified, the actions are applied to all backups.

Note: The -i option must only be used with the -c option.

• -n, --dry-run
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Performs the test run and displays the results prior to actually implementing the actions as if the operation
was performed, however, no changes are actually made.

If -n is specified:

• with the -d option, it displays which backups would be deleted, but does not actually delete the
backups.

• with the -c option, it displays the keep or nokeep action, but does not actually change the backup
from its current status.

• alone with no other options, or with only the -s option, it displays which active backups would be
marked as obsolete, but does not actually change the backup status. In addition, no compression
is performed on uncompressed, archived WAL files even if WAL compression is enabled for the
database server.
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4.3.8 RESTORE

The RESTORE subcommand restores the backup and its archived WAL files for the designated database server to the
specified directory location. If the appropriate RESTORE options are specified, all recovery settings will be saved in
the postgresql.auto.conf file. To view examples of how to restore the database server, see the EDB Postgres
Backup and Recovery Reference Guide.

Syntax:

bart RESTORE -s <server_name> -p <restore_path>
[ -i { <backup_id> | <backup_name> } ]
[ -r <remote_user@remote_host_address> ]
[ -w <number_of_workers> ]
[ -t <timeline_id> ]
[ { -x <target_xid> | -g <target_timestamp> } ]
[ -c ]

Review the information about using a continuous archive backup for recovery in the PostgreSQL Core Documentation.

This reference material provides detailed information about the underlying point-in-time recovery process and the
meaning and usage of the restore options that are generated into the postgresql.auto.conf file by BART.

Please note:

• For special requirements when restoring an incremental backup to a remote database server, see the Section -
Restoring an Incremental Backup on a Remote Host

• Check to ensure that the host where the backup is to be restored contains enough disk space for the backup and
its archived WAL files. The RESTORE subcommand may result in an error while copying files if there is not
enough disk space available.

• See the Section - Performing a Restore Operation to view steps on how to perform a restore operation and see the
Section - Point-In-Time Recovery Operation to view steps on how to perform a point-in-time recovery operation.

• If the backup is restored to a different database cluster directory than where the original database cluster resided,
certain operations dependent upon the database cluster location may fail. This happens if their supporting service
scripts are not updated to reflect the new directory location of restored backup. For information about the usage
and modification of service scripts, see the EDB Postgres Advanced Server Installation Guide.

See the EDB Postgres Backup and Recovery Reference Guide to view the table listing the service scripts for
RHEL 6/CentOS 6 and RHEL 7/CentOS 7.

Options

• -s <server_name> or --server <server_name>

<server_name> is the name of the database server to be restored.

• -p <restore_path> or --restore-path <restore_path>

<restore_path> is the directory path where the backup of the database server is to be restored. The
directory must be empty and have the proper ownership and privileges assigned to it.

• -i { <backup_id> | <backup_name> } or --backupid { <backup_id> |
<backup_name> }

<backup_id> is the backup identifier of the backup to be used for the restoration. <backup_name>
is the user-defined alphanumeric name for the backup. If the option is omitted, the default is to use the
latest backup.

• -r <remote_user@remote_host_address> or --remote-host
<remote_user@remote_host_address>
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<remote_user> is the user account on the remote database server host that accepts a password-less
SSH/SCP login connection and is the owner of the directory where the backup is to be restored.

<remote_host_address> is the IP address of the remote host to which the backup is to be restored.
This option must be specified if the <remote_host> parameter for this database server is not set in the
BART configuration file.

Note: If the BART user account is not the same as the operating system ac-
count owning the <restore_path> directory given with the -p option, use the
<remote_host> BART configuration parameter or the RESTORE subcommand
-r option to specify the <restore_path> directory owner even when restoring
to a directory on the same host as the BART host.

See the configuration section of the EDB Postgres Backup and Recovery Installation and Up-
grade Guide for information about the <remote_host> parameter.

• -w <number_of_workers> or --workers <number_of_workers>

<number_of_workers> is the specification of the number of worker processes to run in parallel
to stream the modified blocks of an incremental backup to the restore location.

For example, if 4 worker processes are specified, 4 receiver processes on the restore host and 4
streamer processes on the BART host are used. The output of each streamer process is connected to
the input of a receiver process. When the receiver gets to the point where it needs a modified block
file, it obtains those modified blocks from its input. With this method, the modified block files are
never written to the restore host disk. If the -w option is omitted, the default is 1 worker process.

• -t <timeline_id> or --target-tli <timeline_id>

<timeline_id> is the integer identifier of the timeline to be used for replaying the archived WAL files
for point-in-time recovery.

• -x <target_xid> or --target-xid <target_xid>

<target_xid> is the integer identifier of the transaction ID that determines the transaction up to and
including, which point-in-time recovery encompasses. Include either the -x <target_xid> or the
--target-xid <target_xid> option if point-in-time recovery is desired.

• -g <target_timestamp> or --target-timestamp <target_timestamp>

<target_timestamp> is the timestamp that determines the point in time up to and includ-
ing, which point-in-time recovery encompasses. Include either the --target-timestamp
<target_timestamp> or the -g <target_timestamp> option if point-in-time recovery is de-
sired.

• -c or --copy-wals

Specify this option to copy archived WAL files from the BART backup catalog to <restore_path>/
archived_wals directory.

• If recovery settings are saved in the postgresql.auto.conf file for point-in-time recovery,
the restore_command retrieves the WAL files from <restore_path>/archived_wals
for the database server archive recovery.

• If the -c option is omitted and the copy_wals_during_restore parameter in the BART con-
figuration file is not enabled in a manner applicable to this database server, the restore_command
in the postgresql.auto.conf file is generated by default to retrieve the archived WAL files
directly from the BART backup catalog. See the EDB Postgres Backup and Recovery Installation
and Upgrade Guide for information about the copy_wals_during_restore parameter.
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4.3.9 DELETE

The DELETE subcommand removes the subdirectory and data files from the BART backup catalog for the specified
backups along with its archived WAL files. To view examples of how to use the DELETE subcommand, see the EDB
Postgres Backup and Recovery Reference Guide.

Syntax:

bart DELETE -s <server_name>
-i { all |

[']{ <backup_id> | <backup_name> },... }[']
}

[ -n ]

Note: While invoking the DELETE subcommand, you must specify a specific database server.

For database servers under a retention policy, there are conditions where certain backups may not be deleted. See the
Section Deletions Permitted Under a Retention Policy for information regarding permitted backup deletions.

Options

• -s or --server <server_name>

<server_name> is the name of the database server whose backups are to be deleted.

• -i (or -backupid) { all | [']{ <backup_id> | <backup_name> },... }['] }

– <backup_id> is the backup identifier of the backup to be deleted. <backup_name> is the user-defined
alphanumeric name for the backup.

– Multiple backup identifiers and backup names may be specified in a comma-separated list. The list must
be enclosed within single quotes if there is any white space appearing before or after each comma.

– If all is specified, all of the backups and their archived WAL files for the specified database server are
deleted.

• -n or --dry-run

Displays the results as if the deletions were done, however, no physical removal of the files are
actually performed. In other words, a test run is performed so that you can see the potential results
prior to actually initiating the action.

After the deletion, the BART backup catalog for the database server no longer contains the corre-
sponding directory for the deleted backup ID. The archived_wals subdirectory no longer con-
tains the WAL files of the backup.
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4.4 Running the BART WAL Scanner

Use the BART WAL scanner to invoke the bart-scanner program located in the BART_HOME/bin directory.

Syntax:

bart-scanner
[ -d ]
[ -c <config_file_path> ]
{ -h |
-v |
--daemon |
-p mbm_file |
wal_file |
RELOAD |
STOP }

Note: For clarity, the syntax diagram shows only the single-character form (-d) of the option, but the multi-character
form (--debug) is supported as well.

The WAL scanner processes each WAL file to find and record modified blocks in a corresponding modified block map
(MBM) file. The default approach is that the WAL scanner gets notified whenever a new WAL file is added to the
archived_wals directory of the BART backup catalog. It then scans the WAL file and produces the MBM file.

The default approach does not work in some cases; for example when the WAL files are shipped to the BART backup
catalog using the rsync utility and also in case of some specific platforms. This results in the WAL files being
copied to the archived_wals directory, but the WAL scanner does not scan them ((as WAL scanner is not aware
of WAL file) and produce the MBM files. This results in the failure of an incremental backup. This can be avoided
by using the timer-based WAL scanning approach, which is done by using the scan_interval parameter in the
BART configuration file. The value for scan_interval is the number of seconds after which the WAL scanner
will scan the new WAL files.

When the bart-scanner program is invoked, it forks a separate process for each database server enabled with the
allow_incremental_backups parameter.

The WAL scanner processes can run in either the foreground or background depending upon usage of the --daemon
option:

• If the --daemon option is specified, the WAL scanner process runs in the background. All output messages
can be viewed in the BART log file.

• If the --daemon option is omitted, the WAL scanner process runs in the foreground. All output messages can
be viewed from the terminal running the program as well as in the BART log file.

See the configuration section of the EDB Postgres Backup and Recovery Installation and Upgrade Guide for addi-
tional information about WAL scanning, scan_interval, allow_incremental_backups, and logfile
parameters.

When invoking the WAL scanner, the current user must be the BART user account.

Note: The BART user account’s LD_LIBRARY_PATH environment variable may need to be set to include the
directory containing the libpq library if invocation of the WAL scanner program fails. See the Section - Basic BART
Subcommand Usage for information about setting LD_LIBRARY_PATH.

Options
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• -h or --help

Displays general syntax and information on WAL scanner usage.

• -v or --version

Displays the WAL scanner version information.

• -d or -debug

Displays debugging output while executing the WAL scanner with any of its options.

• -c config_file_path or --config-path config_file_path

Specifies config_file_path as the full directory path to a BART configuration file. Use this option
if you do not want to use the default BART configuration file BART_HOME/etc/bart.cfg.

• --daemon

Runs the WAL scanner as a background process.

• -p mbm_file or --print mbm_file

Specifies the full directory path to an MBM file whose content is to be printed. The archive path directory
backup_path/server_name/archived_wals contains the MBM files.

• wal_file

Specifies the full directory path to a WAL file to be scanned. The archive path directory backup_path/
server_name/archived_wals contains the WAL files. Use it if a WAL file in the archive path is
missing its MBM file.

Note: This option is to be used for assisting the EnterpriseDB support team for debugging
problems that may have been encountered.

• RELOAD

– Reloads the BART configuration file. The keyword RELOAD is case-insensitive.

– The RELOAD option is useful if you make changes to the configuration file after the WAL scanner has
been started. It will reload the configuration file and adjust the WAL scanners accordingly. For example,
if a server section allowing incremental backups is removed from the BART configuration file, then the
process attached to that server will stop. Similarly, if a server allowing incremental backups is added, a
new WAL scanner process will be launched to scan the WAL files of that server.

• STOP

Stops the WAL scanner. The keyword STOP is case-insensitive.

See the EDB Postgres Backup and Recovery Reference Guide for examples of usage of BART WAL scanner and its
options.
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Using Tablespaces

If the database cluster contains user-defined tablespaces (that is, tablespaces created with the CREATE TABLESPACE
command):

• You can take full backups with the BACKUP subcommand in either tar (-F t) or plain text (-F p) backup file
format.

• You must take incremental backups in the plain text (-F p) backup file format.

• You can take full backups using the transaction log streaming method (xlog_method = stream in the BART
configuration file) --with-pg_basebackup and the BACKUP subcommand in either tar (-F t) or plain
text (-F p) backup file format.

Note: If the particular database cluster you plan to back up contains tablespaces created by the CREATE
TABLESPACE command, then you must set the tablespace_path parameter in the BART configuration file
before you perform a BART RESTORE operation.

The tablespace_path parameter specifies the directory paths to which you want the tablespaces to be restored. It
takes the following format:

OID_1=tablespace_path_1;OID_2=tablespace_path_2 ...

Where OID_1, OID_2, . . . are the Object Identifiers of the tablespaces. You can find the OIDs of the tablespaces and
their corresponding soft links to the directories by listing the contents of the POSTGRES_INSTALL_HOME/data/
pg_tblspc subdirectory as shown in the following example:

[root@localhost pg_tblspc ]# pwd
/opt/PostgresPlus/9.5AS/data/pg_tblspc
[root@localhost pg_tblspc]# ls -l
total 0
lrwxrwxrwx 1 enterprisedb enterprisedb 17 Aug 22 16:38 16644 -> /mnt/tablespace_1
lrwxrwxrwx 1 enterprisedb enterprisedb 17 Aug 22 16:38 16645 -> /mnt/tablespace_2

The OIDs are 16644 and 16645 to directories /mnt/tablespace_1 and /mnt/tablespace_2, respectively.

52



BART, Release 2.5.1

• If you later wish to restore the tablespaces to the same locations as indicated in the preceding example, the
BART configuration file must contain the following entry:

[ACCTG]
host = 127.0.0.1
port = 5444
user = enterprisedb
cluster_owner = enterprisedb
tablespace_path = 16644=/mnt/tablespace_1;16645=/mnt/tablespace_2
description = "Accounting"

• If you later wish to restore the tablespaces to different locations, specify the new directory locations in the
tablespace_path parameter.

In either case, the directories specified in the tablespace_path parameter must exist and be empty at the time
you perform the BART RESTORE operation.

If the database server is running on a remote host (in other words you are also using the remote_host configuration
parameter or will specify the --remote-host option with the RESTORE subcommand), the specified tablespace
directories must exist on the specified remote host.

To view example of backing up and restoring a database cluster on a remote host containing tablespaces, see the EDB
Postgres Backup and Recovery Reference Guide.

The directories must be owned by the user account with which you intend to start the database server (typically the
Postgres user account) with no access by other users or groups as is required for the directory path to which the main
full backup is to be restored.

To view a sample BART managed backup and recovery system consisting of both local and remote database servers,
see the EDB Postgres Backup and Recovery Reference Guide. For detailed information about steps to configure and
operate the system, see the EDB Postgres Backup and Recovery Installation and Upgrade Guide.
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