
BART Reference Guide
Release 2.5.7

BART Reference Guide

Feb 11, 2021

Contents

1 BART Subcommand Syntax and Examples 2
1.1 BACKUP . 6
1.2 CHECK-CONFIG . 14
1.3 DELETE . 15
1.4 INIT . 20
1.5 MANAGE . 28
1.6 RESTORE . 35
1.7 SHOW-SERVERS . 40
1.8 SHOW-BACKUPS . 42
1.9 VERIFY-CHKSUM . 45
1.10 Running the BART WAL Scanner . 47

2 Additional Examples 52
2.1 Restoring a Database Cluster with Tablespaces 52
2.2 Restoring an Incremental Backup . 58
2.3 Managing Backups . 63

2.3.1 Using a Redundancy Retention Policy 63
2.3.2 Using a Recovery Window Retention Policy 68

2.3.2.1 Viewing the Recovery Window 68
2.3.2.2 Evaluating, Marking, and Deleting Backup Using a Recovery

Window Retention Policy . 73
2.4 Managing Incremental Backups . 79

2.4.1 Using a Redundancy Retention Policy 80
2.4.2 Using a Recovery Window Retention Policy 84

3 Sample BART System with Local and Remote Database Servers 91
3.1 The BART Configuration File . 92
3.2 Establishing SSH/SCP Passwordless Connections 94

3.2.1 Generating a Public Key File for the BART User Account 94

i

3.2.2 Configuring Access between Local Advanced Server and the BART Host 95
3.2.3 Configuring Access from Remote Advanced Server to BART Host 96
3.2.4 Configuring Access from the BART Host to a Remote Advanced Server . 98
3.2.5 Configuring Access from a Remote PostgreSQL Server to a BART Host . 100
3.2.6 Configuring Access from the BART Host to Remote PostgreSQL 102

3.3 Configuring a Replication Database User . 104
3.4 WAL Archiving Configuration Parameters . 107
3.5 Creating the BART Backup Catalog (backup_path) 111

3.5.1 Starting the Database Servers with WAL Archiving 113
3.6 Taking a Full Backup . 114
3.7 Using Point-In-Time Recovery . 117

4 Conclusion 124

Index 126

ii

BART Reference Guide, Release 2.5.7

This guide acts as a quick reference for BART subcommands and provides comprehensive exam-
ples of the following BART operations:

• Performing a full backup of database servers

• Performing a point-in-time recovery (PITR) on a remote PostgreSQL database server

• Restoring an incremental backup

• Restoring a database cluster with tablespaces

• Evaluating, marking, and deleting backups and incremental backups

• Configuring and operating local and remote database servers

For detailed information about BART subcommands and operations, see the EDB Backup and
Recovery User Guide available at the EDB website.

The document is organized as follows:

• See Subcommands to view information related to BART subcommands with examples.

• See Examples to view BART operations examples.

• See Sample BART System to view examples of both local and remote database server config-
uration and operation.

Contents 1

https://www.enterprisedb.com/edb-docs/

CHAPTER 1

BART Subcommand Syntax and Examples

This section briefly describes each BART subcommand and provides an example.

Invoking BART

BART subcommands are invoked at the Linux command line. You can invoke the bart program
(located in the <BART_HOME>/bin directory) with the desired options to manage your BART
installation.

The following examples demonstrate ways of invoking BART. In these examples, the BART user
account is named bartuser.

$ su bartuser
Password:
$ export
LD_LIBRARY_PATH=/opt/PostgresPlus/9.6AS/lib/:$LD_LIBRARY_PATH
$./bart SHOW-SERVERS

To run BART from any current working directory:

$ su bartuser
Password:
$ export
LD_LIBRARY_PATH=/opt/PostgresPlus/9.6AS/lib/:$LD_LIBRARY_PATH
$ bart SHOW-SERVERS

2

BART Reference Guide, Release 2.5.7

Syntax for invoking BART

bart [<general_option>]... [<subcommand>] [<subcommand_option>]...

You can use either abbreviated or long option forms on the command line (for example -h or
--help).

General Options

You can specify the following general options with bart.

-h or (--help)

• Displays general syntax and information about BART usage.

• All subcommands support a help option (-h, --help). If the help option is specified,
information is displayed regarding that particular subcommand. The subcommand, itself, is
not executed.

The following code sample displays information about the result of invoking the --help option
for the BACKUP subcommand:

-bash-4.2$ bart BACKUP --help
bart: backup and recovery tool

Usage:
bart BACKUP [OPTION]...

Options:
-h, --help Show this help message and exit
-s, --server Name of the server or 'all' (full backups only) to
→˓specify all servers
-F, --format=p|t Backup output format (tar (default) or plain)
-z, --gzip Enables gzip compression of tar files
-c, --compress-level Specifies the compression level (1 through 9, 9
→˓being

best compression)
--backup-name Specify a friendly name for the current backup
--parent Specify parent backup for incremental backup
--check Verify checksum of required mbm files

-v (or --version)

The following code sample displays information about version while executing the bart
--version subcommand.

[edb@localhost bin]$ bart --version
bart (EnterpriseDB) 2.5.2
[edb@localhost bin]$

3

BART Reference Guide, Release 2.5.7

-d (or --debug)

The following code sample displays information about debugging output while executing the bart
manage subcommand.

-bash-4.1$ bart -d MANAGE -n
DEBUG: Server: acctg, Now: 2015-04-17 16:34:03 EDT, RetentionWindow:
259200 (secs) ==> 72 hour(s)
DEBUG: Server: dev, Now: 2015-04-17 16:34:03 EDT, RetentionWindow:
1814400 (secs) ==> 504 hour(s)
DEBUG: Server: hr, Now: 2015-04-17 16:34:03 EDT, RetentionWindow:
7776000 (secs) ==> 2160 hour(s)

4

BART Reference Guide, Release 2.5.7

-c (or --config-path) <config_file_path>

The following code sample displays information about including the -c option with the configu-
ration file name and path. This option is used if you do not want to use the default BART configu-
ration file BART_HOME/etc/bart.cfg.

$ su bartuser
Password:
$ export
LD_LIBRARY_PATH=/opt/PostgresPlus/9.6AS/lib/:$LD_LIBRARY_PATH
$ bart -c /home/bartuser/bart.cfg SHOW-SERVERS

The following section describes the BART subcommands. The option help is omitted from the
syntax diagrams in the following sections for the purpose of providing clarity for the subcommand
options.

5

BART Reference Guide, Release 2.5.7

1.1 BACKUP

Use the BACKUP subcommand to create a full or incremental backup.

Syntax for a Full Backup:

bart BACKUP -s { <server_name> | all } [-F { p | t }]

[-z] [-c <compression_level>]

[--backup-name <backup_name>]

[--thread-count <number_of_threads>]

[{ --with-pg_basebackup | --no-pg_basebackup }]

Syntax for an Incremental Backup:

bart BACKUP -s <server_name> [-Fp]

[--parent { <backup_id> | <backup_name> }]

[--backup-name <backup_name>]

[--thread-count <number_of_threads>]

Please note that before performing an incremental backup, you must take a full backup. For more
details about incremental backup, refer to Block-Level Incremental Backup in the EDB Backup and
Recovery User Guide available at the EDB website.

1.1. BACKUP 6

https://www.enterprisedb.com/edb-docs/

BART Reference Guide, Release 2.5.7

The following table describes the BACKUP options:

Options Description
-s or --server {
<server_name> | all } Use this option to specify the database server to be

backed up.
Specify all to take a backup of all servers.
Specify <server_name> to take a backup of the
database server (as specified in the BART
configuration file).

-F or --format { p | t }
Use this option to specify the backup file format.
Specify p option to take a backup in plain text
format and specify t option to take a backup in tar
format. If the p or t option is omitted, the default
is tar format.
Use p option with the BACKUP subcommand
when streaming is used as a backup method.
An incremental backup can only be taken in plain
text format (p).

-z or --gzip (applicable only for full
backup and tar format)

Use this option to enable gzip compression of tar
files using the default compression level (typically
6).

-c or --compress-level
<compression_level> (appli-
cable only for full backup and tar
format)

Use this option to specify the gzip com-
pression level on the tar file output.
<compression_level> is a digit from 1
through 9, with 9 being the best compression.

continues on next page

1.1. BACKUP 7

BART Reference Guide, Release 2.5.7

Table 1 – continued from previous page
Options Description
--backup-name <backup_name>

Use this option to assign a user-defined,
alphanumeric friendly name to the backup. The
maximum permitted length of backup name is 49
characters.
For detailed information about this parameter, see
the EDB Backup and Recovery User Guide
available at the EDB website.
If the option --backup-name is not specified
and the backup_name parameter is not set for
this database server in the BART configuration file,
then the backup can only be referenced in other
BART subcommands by the BART assigned
backup identifier.

--thread-count
<number_of_threads> Use this option to specify the number of worker

threads to run in parallel to copy blocks for a
backup.
For detailed information about the
--thread-count parameter, see the EDB
Backup and Recovery Installation and Upgrade
Guide available at the EDB website.

--with-pg_basebackup (applica-
ble only for full backup) Use this option to specify the use of

pg_basebackup to take a full backup. The
number of thread counts in effect is ignored as
given by the thread_count parameter in the
BART configuration file.
When taking a full backup, if the thread count in
effect is greater than 1, then the
pg_basebackup utility is not used to take the
full backup (parallel worker threads are used)
unless the --with-pg_basebackup option is
specified with the BACKUP subcommand.

continues on next page

1.1. BACKUP 8

https://www.enterprisedb.com/edb-docs/
https://www.enterprisedb.com/edb-docs/

BART Reference Guide, Release 2.5.7

Table 1 – continued from previous page
Options Description
--no-pg_basebackup (applicable
only for full backup) Use this option to specify that pg_basebackup

is not to be used to take a full backup.
When taking a full backup, if the thread count in
effect is only 1, then the pg_basebackup utility
is used to take the full backup unless the
--no-pg_basebackup option is specified with
the BACKUP subcommand.

--parent { <backup_id> |
<backup_name> }

Use this option to take an incremental backup.
The parent backup is a backup taken prior to
the incremental backup; it can be either a full
backup or an incremental backup. <backup_id>
is the backup identifier of a parent backup and
<backup_name> is the user-defined alphanu-
meric name of a parent backup.

--check (applicable only for incremen-
tal backup) Use this option to verify if the required MBM files

are present in the BART backup catalog before
taking an incremental backup. However, an actual
incremental backup is not taken when the
--check option is specified.
The --parent option must be used along with
the --check option.

Examples

The following code sample demonstrates using variables with the BACKUP subcommand:

./bart backup -s ppas12 -Ft --backup-name "YEAR = %year MONTH = %month
→˓DAY = %day"

./bart backup -s ppas12 -Ft --backup-name "YEAR = %year MONTH =
%month DAY = %day %%"

./bart show-backups -s ppas12 -i "test backup"

1.1. BACKUP 9

BART Reference Guide, Release 2.5.7

The following code sample displays the result of creating a full backup in the default tar format
with gzip compression when the BACKUP subcommand was invoked. Note that checksums are
generated for the full backup and user-defined tablespaces for the tar format backup:

[edb@localhost bin]$./bart BACKUP -s hr -z
INFO: DebugTarget - getVar(checkDiskSpace.bytesAvailable)
INFO: new backup identifier generated 1567591909098
INFO: creating 5 harvester threads
NOTICE: all required WAL segments have been archived
INFO: backup completed successfully
INFO:
BART VERSION: 2.5
BACKUP DETAILS:
BACKUP STATUS: active
BACKUP IDENTIFIER: 1567591909098
BACKUP NAME: none
BACKUP PARENT: none
BACKUP LOCATION: /home/edb/bkup_new/hr/1567591909098
BACKUP SIZE: 13.91 MB
BACKUP FORMAT: tar.gz
BACKUP TIMEZONE: America/New_York
XLOG METHOD: fetch
BACKUP CHECKSUM(s): 0
TABLESPACE(s): 3
Oid Name Location
16387 test1 /home/edb/tbl1
16388 test2 /home/edb/tbl2
16389 test3 /home/edb/tbl3

START WAL LOCATION: 000000010000000000000025
STOP WAL LOCATION: 000000010000000000000026
BACKUP METHOD: streamed
BACKUP FROM: master
START TIME: 2019-09-04 06:11:49 EDT
STOP TIME: 2019-09-04 06:11:53 EDT
TOTAL DURATION: 4 sec(s)

The following code sample displays information about the directory containing the full backup:

[edb@localhost bin]$number_of_threads>
[edb@localhost bin]$ ls -l /home/edb/bkup_new/hr/
total 8
drwxrwxr-x. 3 edb edb 34 Aug 27 05:57 1566899819709
drwxrwxr-x. 3 edb edb 58 Aug 27 05:57 1566899827751
drwxrwxr-x. 3 edb edb 4096 Sep 4 06:11 1567591909098
drwxrwxr-x. 2 edb edb 4096 Sep 4 06:11 archived_wals
[edb@localhost bin]$

1.1. BACKUP 10

BART Reference Guide, Release 2.5.7

The following code sample displays information about the creation of a full backup while stream-
ing the transaction log. Note that the -Fp option must be specified with the BACKUP subcommand
when streaming is used as a backup method.

[edb@localhost bin]$./bart BACKUP -s ACCTG -Fp
INFO: DebugTarget - getVar(checkDiskSpace.bytesAvailable)
INFO: new backup identifier generated 1566898964200
INFO: creating 5 harvester threads
NOTICE: pg_stop_backup complete, all required WAL segments have been
→˓archived
INFO: backup completed successfully
INFO:
BART VERSION: 2.5
BACKUP DETAILS:
BACKUP STATUS: active
BACKUP IDENTIFIER: 1566898964200
BACKUP NAME: none
BACKUP PARENT: none
BACKUP LOCATION: /home/edb/bkup_new/acctg/1566898964200
BACKUP SIZE: 46.03 MB
BACKUP FORMAT: plain
BACKUP TIMEZONE: US/Eastern
XLOG METHOD: fetch
BACKUP CHECKSUM(s): 0
TABLESPACE(s): 0
START WAL LOCATION: 000000010000000000000017
BACKUP METHOD: streamed
BACKUP FROM: master
START TIME: 2019-08-27 05:42:44 EDT
STOP TIME: 2019-08-27 05:42:46 EDT
TOTAL DURATION: 2 sec(s)

The following code sample displays the assignment of a user-defined backup name with the
--backup-name option:

[edb@localhost bin]$./bart BACKUP -s acctg --backup-name acctg_%year-
→˓%month-%day
INFO: DebugTarget - getVar(checkDiskSpace.bytesAvailable)
INFO: new backup identifier generated 1566899004804
INFO: creating 5 harvester threads
NOTICE: pg_stop_backup complete, all required WAL segments have been
→˓archived
INFO: backup completed successfully
INFO:
BART VERSION: 2.5
BACKUP DETAILS:
BACKUP STATUS: active

(continues on next page)

1.1. BACKUP 11

BART Reference Guide, Release 2.5.7

(continued from previous page)

BACKUP IDENTIFIER: 1566899004804
BACKUP NAME: acctg_2019-08-27
BACKUP PARENT: none
BACKUP LOCATION: /home/edb/bkup_new/acctg/1566899004804
BACKUP SIZE: 46.86 MB
BACKUP FORMAT: tar
BACKUP TIMEZONE: US/Eastern
XLOG METHOD: fetch
BACKUP CHECKSUM(s): 0
TABLESPACE(s): 0
START WAL LOCATION: 00000001000000000000001A
BACKUP METHOD: streamed
BACKUP FROM: master
START TIME: 2019-08-27 05:43:24 EDT
STOP TIME: 2019-08-27 05:43:24 EDT
TOTAL DURATION: 0 sec(s)

1.1. BACKUP 12

BART Reference Guide, Release 2.5.7

The following code sample displays an incremental backup taken by specifying the --parent
option. The option -Fp must be specified while taking an incremental backup as incremental
backup can be taken only in plain text format.

[edb@localhost bin]$./bart BACKUP -s hr -Fp --parent hr_full_1 --
→˓backup-name
hr_incr_1
INFO: DebugTarget - getVar(checkDiskSpace.bytesAvailable)
INFO: checking /home/edb/bkup_new/hr/archived_wals for MBM files from
→˓0/20000028 to
0/22000000
INFO: new backup identifier generated 1566899827751
INFO: creating 5 harvester threads
NOTICE: all required WAL segments have been archived
INFO: backup completed successfully
INFO:
BART VERSION: 2.5
BACKUP DETAILS:
BACKUP STATUS: active
BACKUP IDENTIFIER: 1566899827751
BACKUP NAME: hr_incr_1
BACKUP PARENT: 1566899819709
BACKUP LOCATION: /home/edb/bkup_new/hr/1566899827751
BACKUP SIZE: 7.19 MB
BACKUP FORMAT: plain
BACKUP TIMEZONE: America/New_York
XLOG METHOD: fetch
BACKUP CHECKSUM(s): 0
TABLESPACE(s): 0
START WAL LOCATION: 000000010000000000000022
STOP WAL LOCATION: 000000010000000000000023
BACKUP METHOD: streamed
BACKUP FROM: master
START TIME: 2019-08-27 05:57:07 EDT
STOP TIME: 2019-08-27 05:57:08 EDT
TOTAL DURATION: 1 sec(s)

1.1. BACKUP 13

BART Reference Guide, Release 2.5.7

1.2 CHECK-CONFIG

The CHECK-CONFIG subcommand checks the global parameter settings in the BART configura-
tion file as well as the database server configuration for which the -s option is specified.

Syntax:

The following syntax is used to check the BART configuration file global section settings.

bart CHECK-CONFIG

The following syntax is used to check the database server configuration settings.

bart CHECK-CONFIG [-s <server_name>]

The following table describes the CHECK-CONFIG option:

Option Description
-s (or --server) <server_name> <server_name> is the name of the database

server whose configuration parameter settings are
to be checked.

Example

The following code sample demonstrates successfully checking the BART configuration file global
parameters with the bart CHECK-CONFIG command:

bash-4.1$ bart CHECK-CONFIG
INFO: Verifying that pg_basebackup is executable
INFO: success -
INFO: success - pg_basebackup(/usr/edb/as11/bin/pg_basebackup) returns
version 11.400000

The following code sample demonstrates successfully checking the BART configuration file
database server parameters with the bart CHECK-CONFIG command with the -s option:

[edb@localhost bin]$./bart check-config -s hr
INFO: Checking server hr
INFO: Verifying cluster_owner and ssh/scp connectivity
INFO: success
INFO: Verifying user, host, and replication connectivity
INFO: success
INFO: Verifying that user is a database superuser
INFO: success
INFO: Verifying that cluster_owner can read cluster data files
INFO: success

(continues on next page)

1.2. CHECK-CONFIG 14

BART Reference Guide, Release 2.5.7

(continued from previous page)

INFO: Verifying that you have permission to write to vault
INFO: success
INFO: /home/edb/bkup_new/hr
INFO: Verifying database server configuration
INFO: success
INFO: Verifying that WAL archiving is working
INFO: waiting 30 seconds for
/home/edb/bkup_new/hr/archived_wals/00000001000000000000001E
INFO: success
INFO: Verifying that bart-scanner is configured and running
INFO: success

1.3 DELETE

The DELETE subcommand removes the subdirectory and data files from the BART backup catalog
for the specified backups along with archived WAL files.

Syntax:

bart DELETE -s <server_name>
-i { all | [']{ <backup_id> | <backup_name> },... }['] }
[-n]

Note that when invoking the DELETE subcommand, you must specify a database server.

For database servers under a retention policy, there are conditions where certain backups may not
be deleted. For more information, see the EDB Backup and Recovery User Guide available at the
EDB website.

The following table describes the DELETE options:

Options Description
-s (or --server)
<server_name>

<server_name> is the name of the database server
whose backups are to be deleted.

continues on next page

1.3. DELETE 15

https://www.enterprisedb.com/edb-docs/

BART Reference Guide, Release 2.5.7

Table 3 – continued from previous page
Options Description
-i (or --backupid) { all
| [']{ <backup_id> |
<backup_name> }',...
}[`] }

<backup_id> is the backup identifier of the backup
to be deleted. <backup_name> is the user-defined
alphanumeric name for the backup.
Multiple backup identifiers and backup names may be
specified in a comma-separated list. The list must be
enclosed within single quotes if there is any white space
appearing before or after each comma (see Example).
If all is specified, all backups and their archived WAL
files for the specified database server are deleted.

-n or --dry-run Performs the test run and displays the results prior to
physically removing files; no files are actually deleted.

Example

The following code sample demonstrates deleting a backup from the specified database server:

[edb@localhost bin]$./bart DELETE -s acctg -i acctg_2019-08-27
INFO: deleting backup 'acctg_2019-08-27' of server 'acctg'
INFO: deleting backup '1566900093665'
INFO: WALs of deleted backup(s) will belong to prior backup(if any),
→˓or will
be marked unused
WARNING: not marking any WALs as unused WALs, the WAL file
'/home/edb/bkup_new/acctg/archived_wals/000000010000000000000025'
is required, yet not available in archived_wals directory
INFO: backup(s) deleted
[edb@localhost bin]$

1.3. DELETE 16

BART Reference Guide, Release 2.5.7

After the deletion, the BART backup catalog for the database server no longer contains the corre-
sponding directory for the deleted backup ID. The following code sample displays information
about archived_wals subdirectory that no longer contains the backup WAL files:

[edb@localhost acctg]$ ls -l
total 16
drwxrwxr-x. 3 edb edb 4096 Aug 27 06:03 1566900199604
drwxrwxr-x. 3 edb edb 4096 Aug 27 06:03 1566900204377
drwxrwxr-x. 3 edb edb 4096 Aug 27 06:03 1566900209087
drwxrwxr-x. 3 edb edb 4096 Aug 27 06:05 1566900321228
drwxrwxr-x. 2 edb edb 6 Aug 27 06:01 archived_wals

The following code sample demonstrates deleting multiple backups from the database server.

[edb@localhost bin]$./bart DELETE -s acctg -i `1566988095633,
→˓1566988100760,
acctg_2019-08-28`
INFO: deleting backup `1566988095633` of server `acctg`
INFO: deleting backup `1566988095633`
INFO: WALs of deleted backup(s) will belong to prior backup(if any),
→˓or will
be marked unused
WARNING: not marking any WALs as unused WALs, the WAL file
`/home/edb/bkup_new/acctg/archived_wals/000000010000000000000037` is
→˓required,
yet not available in archived_wals directory
INFO: backup(s) deleted
INFO: deleting backup `1566988100760` of server `acctg`
INFO: deleting backup `1566988100760`
INFO: WALs of deleted backup(s) will belong to prior backup(if any),
→˓or will
be marked unused
WARNING: not marking any WALs as unused WALs, the WAL file
`/home/edb/bkup_new/acctg/archived_wals/000000010000000000000039` is
required, yet not available in archived_wals directory
INFO: backup(s) deleted
INFO: deleting backup `acctg_2019-08-28` of server `acctg`
INFO: deleting backup `1566988115512`
INFO: WALs of deleted backup(s) will belong to prior backup(if any),
→˓or will
be marked unused
WARNING: not marking any WALs as unused WALs, the WAL file
`/home/edb/bkup_new/acctg/archived_wals/00000001000000000000003C` is
→˓required,
yet not available in archived_wals directory
INFO: backup(s) deleted
[edb@localhost bin]$

(continues on next page)

1.3. DELETE 17

BART Reference Guide, Release 2.5.7

(continued from previous page)

[edb@localhost bin]$
[edb@localhost bin]$
[edb@localhost acctg]$
[edb@localhost acctg]$ ls -l
total 8
drwxrwxr-x. 3 edb edb 4096 Aug 28 06:28 1566988105086
drwxrwxr-x. 3 edb edb 4096 Aug 28 06:28 1566988109477
drwxrwxr-x. 2 edb edb 6 Aug 28 06:09 archived_wals
[edb@localhost acctg]$

1.3. DELETE 18

BART Reference Guide, Release 2.5.7

Deleting Multiple Backups with Space Characters

The following code sample demonstrates deleting multiple backups; since there are space charac-
ters in the comma-separated list, the entire list must be enclosed within single quotes:

[edb@localhost bin]$./bart DELETE -s acctg -i
`1566900199604,1566900204377,1566900209087`;
INFO: deleting backup `1566900199604` of server `acctg`
INFO: deleting backup `1566900199604`
INFO: WALs of deleted backup(s) will belong to prior backup(if any),
→˓or will
be marked unused
WARNING: not marking any WALs as unused WALs, the WAL file
`/home/edb/bkup_new/acctg/archived_wals/000000010000000000000028` is
→˓required,
yet not available in archived_wals directory
INFO: backup(s) deleted
INFO: deleting backup `1566900204377` of server `acctg`
INFO: deleting backup `1566900204377`
INFO: WALs of deleted backup(s) will belong to prior backup(if any),
→˓or will
be marked unused
WARNING: not marking any WALs as unused WALs, the WAL file
`/home/edb/bkup_new/acctg/archived_wals/00000001000000000000002A` is
→˓required,
yet not available in archived_wals directory
INFO: backup(s) deleted
INFO: deleting backup `1566900209087` of server `acctg`
INFO: deleting backup `1566900209087`
INFO: WALs of deleted backup(s) will belong to prior backup(if any),
→˓or will
be marked unused
WARNING: not marking any WALs as unused WALs, the WAL file
`/home/edb/bkup_new/acctg/archived_wals/00000001000000000000002C` is
→˓required,
yet not available in archived_wals directory
INFO: backup(s) deleted
[edb@localhost bin]$
[edb@localhost bin]$
[edb@localhost acctg]$ ls -l
total 4
drwxrwxr-x. 3 edb edb 4096 Aug 27 06:05 1566900321228
drwxrwxr-x. 2 edb edb 6 Aug 27 06:01 archived_wals
[edb@localhost acctg]$

1.3. DELETE 19

BART Reference Guide, Release 2.5.7

1.4 INIT

The INIT subcommand is used to create the BART backup catalog directory, rebuild the
BART backupinfo file, and set the archive_command in the server based on the
archive_command setting in the bart.cfg file.

Syntax:

bart INIT [-s { <server_name> | all }] [-o]

[-r [-i { <backup_id> | <backup_name> | all }]]

[-- no-configure]

The following table describes the INIT options:

Options Description
-s or --server {
<server_name> | all }

<server_name> is the name of the database server
to which the INIT actions are to be applied. If all is
specified or if the option is omitted, actions are applied
to all servers.

-o or -override Overrides the existing Postgres archive_command
configuration parameter setting in the postgresql.
conf file or the postgresql.auto.conf file
using the BART archive_command parameter in
the BART configuration file. The INIT gener-
ated archive command string is written to the
postgresql.auto.conf file.

-r or -rebuild
Rebuilds the backupinfo file located in each backup
subdirectory. If all is specified or if the option is
omitted, the backupinfo files of all backups for the
database servers specified by the -s option are
recreated. This option is only intended for recovering
from a situation where the backupinfo file has become
corrupt.
If the backup was initially created with a user-defined
backup name, and then the INIT -r option is invoked
to rebuild that backupinfo file, the user-defined
backup name is no longer available. Thus, future
references to the backup must use the backup identifier.

continues on next page

1.4. INIT 20

BART Reference Guide, Release 2.5.7

Table 4 – continued from previous page
Options Description
-i or --backupid
{ <backup_id> |
<backup_name> | all }

<backup_id> is an integer, backup identifier and
<backup_name> is the user-defined alphanumeric
name for the backup. The -i option can only be used
with the -r option.

--no-configure Prevents the archive_command from being set in the
PostgreSQL server.

1.4. INIT 21

BART Reference Guide, Release 2.5.7

Examples

In the following code sample, you can see that archive_mode = off and
archive_command are not set. After invoking the BART INIT subcommand,
archive_mode is set to on and archive_command is set:

archive_mode = off # enables archiving; off, on, or always
(change requires restart)
archive_command = ''
command to use to archive a logfile segment

[edb@localhost bin]$./bart init -s ppas11
INFO: setting archive_mode/archive_command for server 'ppas11'
WARNING: archive_mode/archive_command is set. Restart the PostgreSQL
server using 'pg_ctl restart'
[edb@localhost bin]$
Do not edit this file manually!
It will be overwritten by the ALTER SYSTEM command.
archive_mode = 'on'
archive_command = 'scp %p
edb@127.0.0.1:/home/edb/bkup/ppas11/archived_wals/%f'

In the following code sample, you can see that archive_mode = on, and
archive_command is not set. After invoking the INIT subcommand, archive_command
is set:

archive_mode = on # enables archiving; off, on, or always
(change requires restart)
archive_command = '' # command to use to archive a logfile segment

[edb@localhost bin]$./bart init -s ppas11
INFO: setting archive_mode/archive_command for server 'ppas11'
WARNING: archive_command is set. Reload the configuration in the
PostgreSQL server using pg_reload_conf() or 'pg_ctl reload'
[edb@localhost bin]$
Do not edit this file manually!
It will be overwritten by the ALTER SYSTEM command.
archive_command = 'scp %p
edb@127.0.0.1:/home/edb/bkup/ppas11/archived_wals/%f'

In the following code sample, you can see that archive_mode = on and
archive_command are already set. After invoking the INIT subcommand, there is no
change in their settings. Note that to override the existing archive_command, you must
include the -o option.

archive_mode = on # enables archiving; off, on, or always
(change requires restart)

(continues on next page)

1.4. INIT 22

BART Reference Guide, Release 2.5.7

(continued from previous page)

archive_command = 'scp %p
edb@127.0.0.1:/home/edb/bkup/ppas11/archived_wals/%f' # command to use
to archive a logfile segment
placeholders: %p = path of file to archive

[edb@localhost bin]$./bart init -s ppas11
INFO: setting archive_mode/archive_command for server 'ppas11'
WARNING: archive_command is not set for server 'ppas11'
[edb@localhost bin]$
Do not edit this file manually!
It will be overwritten by the ALTER SYSTEM command.

In the following code sample, you can see that archive_mode = off and
archive_command is already set. After invoking the INIT subcommand archive_mode is
set to on:

archive_mode = off # enables archiving; off, on, or always
(change requires restart)
archive_command = 'scp %p
edb@127.0.0.1:/home/edb/bkup/ppas11/archived_wals/%f' # command to use
to archive a log file segment

[edb@localhost bin]$./bart init -s ppas11
INFO: setting archive_mode/archive_command for server 'ppas11'
WARNING: archive_mode/archive_command is set. Restart the PostgreSQL
server using 'pg_ctl restart'
Do not edit this file manually!
It will be overwritten by the ALTER SYSTEM command.
archive_mode = 'on'
archive_command = 'scp %p
edb@127.0.0.1:/home/edb/bkup/ppas11/archived_wals/%f'

In the following code sample an existing archive command setting is overridden by resetting
the archive_command in the PostgreSQL server with the archive_command = 'cp %p
%a/%f' parameter from the bart.cfg file:

[BART]

bart_host= enterprisedb@192.168.2.22
backup_path = /opt/backup_edb
pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup
logfile = /tmp/bart.log
scanner_logfile = /tmp/bart_scanner.log

[ACCTG]
(continues on next page)

1.4. INIT 23

BART Reference Guide, Release 2.5.7

(continued from previous page)

host = 127.0.0.1
port = 5444
user = repuser
cluster_owner = enterprisedb
archive_command = 'cp %p %a/%f'
description = "Accounting"

The archive_mode and archive_command parameters in the database server are set as fol-
lows:

edb=# SHOW archive_mode;
archive_mode

on
(1 row)
edb=# SHOW archive_command;
archive_command
--
scp %p bartuser@192.168.2.22:/opt/backup/acctg/archived_wals/%f

(1 row)

1.4. INIT 24

BART Reference Guide, Release 2.5.7

Invoke the INIT subcommand with the -o option to override the current archive_command
setting in the PostgreSQL server:

-bash-4.1$ bart INIT -s acctg -o
INFO: setting archive_mode/archive_command for server 'acctg'
WARNING: archive_command is set. Reload the configuration in the
PostgreSQL server using pg_reload_conf() or 'pg_ctl reload'

Reload the database server configuration; a restart of the database server is not necessary to reset
only the archive_command parameter.

[root@localhost tmp]# service ppas11 reload

The archive_command in the PostgreSQL server is now set as follows:

edb=# SHOW archive_command;
archive_command

cp %p /opt/backup_edb/acctg/archived_wals/%f
(1 row)

The new command string is written to the postgresql.auto.conf file:

Do not edit this file manually!
It will be overwritten by ALTER SYSTEM command.
archive_command = 'cp %p /opt/backup_edb/acctg/archived_wals/%f'

When you invoke the BART INIT command with the -r option, BART rebuilds the
backupinfo file using the content of the backup directory for the server specified, or for all
servers. The BART backupinfo file is initially created by the BACKUP subcommand and con-
tains the backup information used by BART.

Note: If the backup was initially created with a user-defined backup name, and then the INIT
-r option is invoked to rebuild that backupinfo file, the user-defined backup name is no longer
available. Thus, future references to the backup must use the backup identifier.

The following code sample shows the backupinfo file location in a backup subdirectory:

[root@localhost acctg]# pwd
/opt/backup/acctg
[root@localhost acctg]# ls -l
total 4
drwx------ 2 enterprisedb enterprisedb 38 Oct 26 10:21 1477491569966
drwxrwxr-x 2 enterprisedb enterprisedb 4096 Oct 26 10:19 archived_wals
[root@localhost acctg]# ls -l 1477491569966

(continues on next page)

1.4. INIT 25

BART Reference Guide, Release 2.5.7

(continued from previous page)

total 61144
-rw-rw-r-- 1 enterprisedb enterprisedb 703 Oct 26 10:19 backupinfo
-rw-rw-r-- 1 enterprisedb enterprisedb 62603776 Oct 26 10:19 base.tar

The following code sample displays the backupinfo file content:

BACKUP DETAILS:
BACKUP STATUS: active
BACKUP IDENTIFIER: 1477491569966
BACKUP NAME: none
BACKUP PARENT: none
BACKUP LOCATION: /opt/backup/acctg/1477491569966
BACKUP SIZE: 59.70 MB
BACKUP FORMAT: tar
BACKUP TIMEZONE:
XLOG METHOD: fetch
BACKUP CHECKSUM(s): 1
ChkSum File
84b3eeb1e3f7b3e75c2f689570d04f10 base.tar
TABLESPACE(s): 0
START WAL LOCATION: 2/A5000028 (file 0000000100000002000000A5)
STOP WAL LOCATION: 2/A50000C0 (file 0000000100000002000000A5)
CHECKPOINT LOCATION: 2/A5000028
BACKUP METHOD: streamed
BACKUP FROM: master
START TIME: 2016-10-26 10:19:30 EDT
LABEL: pg_basebackup base backup
STOP TIME: 2016-10-26 10:19:30 EDT
TOTAL DURATION: 0 sec(s)

The following code sample displays an error message if the backupinfo file is missing when
invoking a BART subcommand:

-bash-4.2$ bart SHOW-BACKUPS
ERROR: 'backupinfo' file does not exist for backup '1477491569966'
please use 'INIT -r' to generate the file

The backupinfo file may be missing if the BACKUP subcommand did not complete successfully.

The following code sample displays information about rebuilding the backupinfo file of the
specified backup for database server acctg:

-bash-4.1$ bart INIT -s acctg -r -i 1428346620427
INFO: rebuilding BACKUPINFO for backup '1428346620427' of server 'acctg
→˓'
INFO: backup checksum: ced59b72a7846ff8fb8afb6922c70649 of base.tar

1.4. INIT 26

BART Reference Guide, Release 2.5.7

The following code sample displays information about how the backupinfo files of all backups
are rebuilt for all database servers:

-bash-4.1$ bart INIT -r

INFO: rebuilding BACKUPINFO for backup '1428347191544' of server 'acctg
→˓'
INFO: backup checksum: 1ac5c61f055c910db314783212f2544f of base.tar
INFO: rebuilding BACKUPINFO for backup '1428346620427' of server 'acctg
→˓'
INFO: backup checksum: ced59b72a7846ff8fb8afb6922c70649 of base.tar
INFO: rebuilding BACKUPINFO for backup '1428347198335' of server 'dev'
INFO: backup checksum: a8890dd8ab7e6be5d5bc0f38028a237b of base.tar
INFO: rebuilding BACKUPINFO for backup '1428346957515' of server 'dev'
INFO: backup checksum: ea62549cf090573625d4adeb7d919700 of base.tar

The following code sample displays information about invoking BART INIT with the -r - i
option:

edb@localhost bin]$./bart init -s ppas11 -i 1551778898392 -r
INFO: rebuilding BACKUPINFO for backup '1551778898392' of server
'ppas11'
[edb@localhost bin]$ ls /home/edb/bkup/ppas11/1551778898392/
backupinfo backup_label base base-1.tar base-2.tar base-3.tar
base-4.tar base-5.tar base.tar

The following code sample displays information about invoking the BART INIT command with
the --no-configure option. You can use the --no-configure option with the INIT sub-
command to prevent the archive_command option from being set in the PostgreSQL server.

[edb@localhost bin]$./bart init -s ppas11 -o --no-configure
[edb@localhost bin]$
Do not edit this file manually!
It will be overwritten by the ALTER SYSTEM command.

1.4. INIT 27

BART Reference Guide, Release 2.5.7

1.5 MANAGE

The MANAGE subcommand can be invoked to:

• Evaluate backups, mark their status, and delete obsolete backups based on the
retention_policy parameter in the BART configuration file.

• Compress the archived WAL files based on the wal_compression parameter in the
BART configuration file.

Syntax:

bart MANAGE [-s { <server_name> | all}]
[-l] [-d]
[-c { keep | nokeep }
-i { <backup_id> | <backup_name> | all }]
[-n]

To view detailed information about the MANAGE subcommand and retention policy manage-
ment, see the EDB Backup and Recovery User Guide. For information about setting the
wal_compression parameter, see the EDB Backup and Recovery Installation and Upgrade
Guide. These guides are available at the EDB website.

The following table describes the MANAGE options:

Options Description
-s or --server [
<server_name> | all] <server_name> is the name of the database server

to which the MANAGE actions are to be applied.
If all is specified or if the -s option is omitted,
actions are applied to all database servers.

-l or --list-obsolete Lists the backups marked as obsolete.
-d or --delete-obsolete Deletes the backups marked as obsolete. This action

physically deletes the backup along with its archived
WAL files and any MBM files for incremental backups.

-c or --change-status {
keep | nokeep } Specify keep to change the backup status to keep to

retain the backup indefinitely.
Specify nokeep to change the backup status back to
active. You can then re-evaluate and possibly mark
the backup as obsolete (according to the retention
policy) using the MANAGE subcommand.
The -c option can only be used with the -i option.

continues on next page

1.5. MANAGE 28

https://www.enterprisedb.com/edb-docs/

BART Reference Guide, Release 2.5.7

Table 5 – continued from previous page
Options Description
-i or --backupid
{<backup_id> |
<backup_name> | all }

<backup_id> is a backup identifier and
<backup_name> is the user-defined alphanumeric
name for the backup.
If all is specified, actions are applied to all backups.
The -i option can only be used with the -c option.

-n or --dry-run
Performs the test run and displays the results prior to
actually implementing the actions as if the operation
was performed, however, no changes are actually made.
If you specify -n with the -d option, it displays which
backups would be deleted, but does not actually delete
the backups.
If you specify -n with the -c option, it displays the
keep or nokeep action, but does not actually change the
backup status.
If you specify -n alone with no other options or if you
specify -n with only the -s option, it displays which
active backups would be marked as obsolete, but does
not actually change the backup status. In addition, no
compression is performed on uncompressed, archived
WAL files even if WAL compression is enabled for the
database server.

Example

The following code sample performs a dry run for the specified database server displaying which
active backups are evaluated as obsolete according to the retention policy, but does not actually
change the backup status:

-bash-4.2$ bart MANAGE -s acctg -n
INFO: processing server 'acctg', backup '1482770807519'
INFO: processing server 'acctg', backup '1482770803000'
INFO: marking backup '1482770803000' as obsolete
INFO: 1 WAL file(s) marked obsolete
INFO: processing server 'acctg', backup '1482770735155'
INFO: marking backup '1482770735155' as obsolete
INFO: 2 incremental(s) of backup '1482770735155' will be marked
→˓obsolete
INFO: marking incremental backup '1482770780423' as obsolete

(continues on next page)

1.5. MANAGE 29

BART Reference Guide, Release 2.5.7

(continued from previous page)

INFO: marking incremental backup '1482770763227' as obsolete
INFO: 3 WAL file(s) marked obsolete
INFO: 1 Unused WAL file(s) present
INFO: 2 Unused file(s) (WALs included) present, use 'MANAGE -l' for the
list

The following code sample marks active backups as obsolete according to the retention policy for
the specified database server:

-bash-4.2$ bart MANAGE -s acctg
INFO: processing server 'acctg', backup '1482770807519'
INFO: processing server 'acctg', backup '1482770803000'
INFO: marking backup '1482770803000' as obsolete
INFO: 1 WAL file(s) marked obsolete
INFO: processing server 'acctg', backup '1482770735155'
INFO: marking backup '1482770735155' as obsolete
INFO: 2 incremental(s) of backup '1482770735155' will be marked
→˓obsolete
INFO: marking incremental backup '1482770780423' as obsolete
INFO: marking incremental backup '1482770763227' as obsolete
INFO: 3 WAL file(s) marked obsolete
INFO: 1 Unused WAL file(s) present
INFO: 2 Unused file(s) (WALs included) present, use 'MANAGE -l' for the
list

The following code sample lists backups marked as obsolete for the specified database server:

-bash-4.2$ bart MANAGE -s acctg -l
SERVER NAME: acctg
BACKUP ID: 1482770803000
BACKUP STATUS: obsolete
BACKUP TIME: 2016-12-26 11:46:43 EST
BACKUP SIZE: 59.52 MB
WAL FILE(s): 1
WAL FILE: 000000010000000100000055
SERVER NAME: acctg
BACKUP ID: 1482770735155
BACKUP STATUS: obsolete
BACKUP TIME: 2016-12-26 11:45:35 EST
BACKUP SIZE: 59.52 MB
INCREMENTAL BACKUP(s): 2
BACKUP ID: 1482770780423
BACKUP PARENT: 1482770735155
BACKUP STATUS: obsolete
BACKUP TIME: 2016-12-26 11:45:35 EST

(continues on next page)

1.5. MANAGE 30

BART Reference Guide, Release 2.5.7

(continued from previous page)

BACKUP SIZE: 59.52 MB
BACKUP ID: 1482770763227
BACKUP PARENT: 1482770735155
BACKUP STATUS: obsolete
BACKUP TIME: 2016-12-26 11:45:35 EST
BACKUP SIZE: 59.52 MB
WAL FILE(s): 3
WAL FILE: 000000010000000100000054
WAL FILE: 000000010000000100000053
WAL FILE: 000000010000000100000052
UNUSED FILE(s): 2
UNUSED FILE: 000000010000000100000051
UNUSED FILE: 0000000100000001510000280000000152000000.mbm

The following code sample deletes the obsolete backups for the specified database server:

-bash-4.2$ bart MANAGE -s acctg -d
INFO: removing all obsolete backups of server 'acctg'
INFO: removing obsolete backup '1482770803000'
INFO: 1 WAL file(s) will be removed
INFO: removing WAL file '000000010000000100000055'
INFO: removing obsolete backup '1482770735155'
INFO: 3 WAL file(s) will be removed
INFO: 2 incremental(s) of backup '1482770735155' will be removed
INFO: removing obsolete incremental backup '1482770780423'
INFO: removing obsolete incremental backup '1482770763227'
INFO: removing WAL file '000000010000000100000054'
INFO: removing WAL file '000000010000000100000053'
INFO: removing WAL file '000000010000000100000052'
INFO: 8 Unused file(s) will be removed
INFO: removing (unused) file '000000010000000100000056.00000028.backup'
INFO: removing (unused) file '000000010000000100000056'
INFO: removing (unused) file '000000010000000100000055.00000028.backup'
INFO: removing (unused) file '000000010000000100000054.00000028.backup'
INFO: removing (unused) file '000000010000000100000053.00000028.backup'
INFO: removing (unused) file '000000010000000100000052.00000028.backup'
INFO: removing (unused) file '000000010000000100000051'
INFO: removing (unused) file
'0000000100000001510000280000000152000000.mbm'

The following code sample changes the specified backup to keep status to retain it indefinitely:

-bash-4.2$ bart MANAGE -s acctg -c keep -i 1482770807519
INFO: changing status of backup '1482770807519' of server 'acctg' from
'active' to 'keep'
INFO: 1 WAL file(s) changed

(continues on next page)

1.5. MANAGE 31

BART Reference Guide, Release 2.5.7

(continued from previous page)

-bash-4.2$ bart SHOW-BACKUPS -s acctg -i 1482770807519 -t
SERVER NAME : acctg
BACKUP ID : 1482770807519
BACKUP NAME : none
BACKUP PARENT : none
BACKUP STATUS : keep
BACKUP TIME : 2016-12-26 11:46:47 EST
BACKUP SIZE : 59.52 MB
WAL(S) SIZE : 16.00 MB
NO. OF WALS : 1
FIRST WAL FILE : 000000010000000100000057
CREATION TIME : 2016-12-26 11:52:47 EST
LAST WAL FILE : 000000010000000100000057
CREATION TIME : 2016-12-26 11:52:47 EST

The following code sample resets the specified backup to active status:

-bash-4.2$ bart MANAGE -s acctg -c nokeep -i 1482770807519
INFO: changing status of backup '1482770807519' of server 'acctg' from
'keep' to 'active'
INFO: 1 WAL file(s) changed
-bash-4.2$ bart SHOW-BACKUPS -s acctg -i 1482770807519 -t
SERVER NAME : acctg
BACKUP ID : 1482770807519
BACKUP NAME : none
BACKUP PARENT : none
BACKUP STATUS : active
BACKUP TIME : 2016-12-26 11:46:47 EST
BACKUP SIZE : 59.52 MB
WAL(S) SIZE : 16.00 MB
NO. OF WALS : 1
FIRST WAL FILE : 000000010000000100000057
CREATION TIME : 2016-12-26 11:52:47 EST
LAST WAL FILE : 000000010000000100000057
CREATION TIME : 2016-12-26 11:52:47 EST

The following code sample uses the enabled wal_compression parameter in the BART con-
figuration file as shown by the following:

[ACCTG]

host = 127.0.0.1
port = 5445
user = enterprisedb
cluster_owner = enterprisedb

(continues on next page)

1.5. MANAGE 32

BART Reference Guide, Release 2.5.7

(continued from previous page)

allow_incremental_backups = disabled
wal_compression = enabled
description = "Accounting"

1.5. MANAGE 33

BART Reference Guide, Release 2.5.7

When the MANAGE subcommand is invoked, the following message is displayed indicating that
WAL file compression is performed:

-bash-4.2$ bart MANAGE -s acctg
INFO: 4 WAL file(s) compressed
WARNING: 'retention_policy' is not set for server 'acctg'

The following code sample shows the archived WAL files in compressed format:

-bash-4.2$ pwd
/opt/backup/acctg
-bash-4.2$ ls -l archived_wals
total 160
-rw------- 1 enterprisedb enterprisedb 27089 Dec 26 12:16
00000001000000010000005B.gz
-rw------- 1 enterprisedb enterprisedb 305 Dec 26 12:17
00000001000000010000005C.00000028.backup
-rw------- 1 enterprisedb enterprisedb 27112 Dec 26 12:17
00000001000000010000005C.gz
-rw------- 1 enterprisedb enterprisedb 65995 Dec 26 12:18
00000001000000010000005D.gz
-rw------- 1 enterprisedb enterprisedb 305 Dec 26 12:18
00000001000000010000005E.00000028.backup
-rw------- 1 enterprisedb enterprisedb 27117 Dec 26 12:18
00000001000000010000005E.gz

1.5. MANAGE 34

BART Reference Guide, Release 2.5.7

1.6 RESTORE

The RESTORE subcommand restores a backup and its archived WAL files for the designated
database server to the specified directory location.

Syntax for Restore:

bart RESTORE -s <server_name> -p <restore_path>
[-i { <backup_id> | <backup_name> }]
[-r <remote_user>@<remote_host_address>]
[-w <number_of_workers>]
[-t <timeline_id>]
[{ -x <target_xid> | -g <target_timestamp> }]
[-c]

To view detailed information about the RESTORE subcommand, see the EDB Backup and Recov-
ery User Guide available at the EDB website.

If the backup is restored to a different database cluster directory than where the original database
cluster resided, then some operations dependent upon the database cluster location may fail. This
happens if the supporting service scripts are not updated to reflect the new directory location of
restored backup.

For information about the use and modification of service scripts, see the EDB Advanced Server
Installation Guide available at the EDB website.

The following table describes the RESTORE options:

Options Description
-s or --server <server_name>

<server_name> is the name of the database
server to be restored.

-p or --restore-path
<restore_path>

<restore_path> is the directory path where the
backup of the database server is to be restored. The
directory must be empty and have the proper own-
ership and privileges assigned to it.

-i or --backupid
{ <backup_id> |
<backup_name>}

backup_id is the backup identifier of the backup
to be used for the restoration and
<backup_name> is the user-defined
alphanumeric name for the backup.
If the option is omitted, the latest backup is
restored by default.

continues on next page

1.6. RESTORE 35

https://www.enterprisedb.com/edb-docs/
https://www.enterprisedb.com/edb-docs/

BART Reference Guide, Release 2.5.7

Table 6 – continued from previous page
Options Description
-r or --remote-host
<remote_user@remote_host_address><remote_user> is the user account on the

remote database server host that accepts a
passwordless SSH/SCP login connection and is the
owner of the directory where the backup is to be
restored.
<remote_host_address> is the IP address of
the remote host to which the backup is to be
restored. This option must be specified if the
remote_host parameter for this database server
is not set in the BART configuration file.
For information about the remote_host
parameter, see the EDB Backup and Recovery
Installation and Upgrade Guide available at the
EDB website.

-w or --workers
<number_of_workers> <number_of_workers> is the number of

worker processes to run in parallel to stream the
modified blocks of an incremental backup to the
restore location. If the -w option is omitted, the
default is 1 worker process.
For example, if four worker processes are
specified, four receiver processes on the restore
host and four streamer processes on the BART host
are used. The output of each streamer process is
connected to the input of a receiver process.
When the receiver gets to the point where it needs
a modified block file, it obtains those modified
blocks from its input. With this method, the
modified block files are never written to the restore
host disk.

-t or --target-tli
<timeline_id>

<timeline_id> is the integer identifier of the
timeline to be used for replaying the archived WAL
files for point-in-time recovery.

-x or --target-xid
<target_xid>

<target_xid> is the integer identifier of the
transaction ID that determines the transaction up
to and including, which point-in-time recovery en-
compasses.

continues on next page

1.6. RESTORE 36

https://www.enterprisedb.com/edb-docs/

BART Reference Guide, Release 2.5.7

Table 6 – continued from previous page
Options Description
-g or --target-timestamp
<target_timestamp>

<target_timestamp> is the timestamp that
determines the point in time up to and including,
which point-in-time recovery encompasses.

-c or --copy-wals
Specify this option to copy archived WAL files
from the BART backup catalog to
<restore_path>/archived_wals
directory.
The restore_command retrieves the WAL files
from <restore_path>/archived_wals for
the database server archive recovery.
If the -c option is omitted and the
copy_wals_during_restore parameter in
the BART configuration file is not enabled in a
manner applicable to this database server, then the
restore_command in the
postgresql.conf retrieves the archived WAL
files directly from the BART backup catalog.
For information about the
copy_wals_during_restore parameter, see
the EDB Backup and Recovery Installation and
Upgrade Guide available at the EDB website.

Examples

The following code sample restores a database server (named mktg) to the /opt/restore
directory up to timestamp 2015-12-15 10:47:00:

-bash-4.1$ bart RESTORE -s mktg -i 1450194208824 -p /opt/restore -t 1 -
→˓g
'2015-12-15 10:47:00'
INFO: restoring backup '1450194208824' of server 'mktg'
INFO: restoring backup to enterprisedb@192.168.2.24:/opt/restore
INFO: base backup restored
INFO: WAL file(s) will be streamed from the BART host
INFO: writing recovery settings to postgresql.auto.conf file
INFO: archiving is disabled
INFO: tablespace(s) restored

The following parameters are set in the postgresql.auto.conf file:

1.6. RESTORE 37

https://www.enterprisedb.com/edb-docs/

BART Reference Guide, Release 2.5.7

restore_command = 'scp -o BatchMode=yes -o PasswordAuthentication=no
enterprisedb@192.168.2.22:/opt/backup/mktg/archived_wals/%f %p'
recovery_target_time = '2015-12-15 10:47:00'
recovery_target_timeline = 1

The following is a list of the restored files and subdirectories:

[root@localhost restore]# pwd
/opt/restore
[root@localhost restore]# ls -l
total 108
-rw------- 1 enterprisedb enterprisedb 208 Dec 15 10:43 backup_label
drwx------ 6 enterprisedb enterprisedb 4096 Dec 2 10:38 base
drwx------ 2 enterprisedb enterprisedb 4096 Dec 15 10:42 dbms_pipe
drwx------ 2 enterprisedb enterprisedb 4096 Dec 15 11:00 global
drwx------ 2 enterprisedb enterprisedb 4096 Nov 10 15:38 pg_clog\
-rw------- 1 enterprisedb enterprisedb 4438 Dec 2 10:38 pg_hba.conf
-rw------- 1 enterprisedb enterprisedb 1636 Nov 10 15:38 pg_ident.conf
drwxr-xr-x 2 enterprisedb enterprisedb 4096 Dec 15 10:42 pg_log
drwx------ 4 enterprisedb enterprisedb 4096 Nov 10 15:38 pg_multixact
drwx------ 2 enterprisedb enterprisedb 4096 Dec 15 10:42 pg_notify
drwx------ 2 enterprisedb enterprisedb 4096 Nov 10 15:38 pg_serial
drwx------ 2 enterprisedb enterprisedb 4096 Nov 10 15:38 pg_snapshots
drwx------ 2 enterprisedb enterprisedb 4096 Dec 15 10:42 pg_stat
drwx------ 2 enterprisedb enterprisedb 4096 Dec 15 10:43 pg_stat_tmp
drwx------ 2 enterprisedb enterprisedb 4096 Nov 10 15:38 pg_subtrans
drwx------ 2 enterprisedb enterprisedb 4096 Dec 15 11:00 pg_tblspc
drwx------ 2 enterprisedb enterprisedb 4096 Nov 10 15:38 pg_twophase
-rw------- 1 enterprisedb enterprisedb 4 Nov 10 15:38 PG_VERSION
drwx------ 2 enterprisedb enterprisedb 4096 Dec 15 11:00 pg_xlog
-rw------- 1 enterprisedb enterprisedb 23906 Dec 15 11:00
postgresql.conf
-rw-r--r-- 1 enterprisedb enterprisedb 217 Dec 15 11:00
postgresql.auto.conf

Example

The following code sample performs a RESTORE operation with the
copy_wals_during_restore parameter enabled to copy the archived WAL files to
the local <restore_path>/archived_wals directory:

-bash-4.1$ bart RESTORE -s hr -i hr_2017-03-29T13:50 -p
/opt/restore_pg96 -t 1 -g '2017-03-29 14:01:00'
INFO: restoring backup 'hr_2017-03-29T13:50' of server 'hr'
INFO: base backup restored
INFO: copying WAL file(s) to
postgres@192.168.2.24:/opt/restore_pg96/archived_wals

(continues on next page)

1.6. RESTORE 38

BART Reference Guide, Release 2.5.7

(continued from previous page)

INFO: writing recovery settings to postgresql.auto.conf file
INFO: archiving is disabled
INFO: permissions set on $PGDATA
INFO: restore completed successfully

The following parameters are set in the postgresql.auto.conf file:

restore_command = 'cp archived_wals/%f %p'
recovery_target_time = '2017-03-29 14:01:00'
recovery_target_timeline = 1

The following is a list of the restored files and subdirectories:

-bash-4.1$ pwd
/opt/restore_pg96
-bash-4.1$ ls -l
total 128
drwxr-xr-x 2 postgres postgres 4096 Mar 29 14:27 archived_wals
-rw------- 1 postgres postgres 206 Mar 29 13:50 backup_label
drwx------ 5 postgres postgres 4096 Mar 29 12:25 base
drwx------ 2 postgres postgres 4096 Mar 29 14:27 global
drwx------ 2 postgres postgres 4096 Mar 29 12:25 pg_clog
drwx------ 2 postgres postgres 4096 Mar 29 12:25 pg_commit_ts
drwx------ 2 postgres postgres 4096 Mar 29 12:25 pg_dynshmem
-rw------- 1 postgres postgres 4212 Mar 29 13:18 pg_hba.conf
-rw------- 1 postgres postgres 1636 Mar 29 12:25 pg_ident.conf
drwxr-xr-x 2 postgres postgres 4096 Mar 29 13:45 pg_log
drwx------ 4 postgres postgres 4096 Mar 29 12:25 pg_logical
drwx------ 4 postgres postgres 4096 Mar 29 12:25 pg_multixact
drwx------ 2 postgres postgres 4096 Mar 29 13:43 pg_notify
drwx------ 2 postgres postgres 4096 Mar 29 12:25 pg_replslot
drwx------ 2 postgres postgres 4096 Mar 29 12:25 pg_serial
drwx------ 2 postgres postgres 4096 Mar 29 12:25 pg_snapshots
drwx------ 2 postgres postgres 4096 Mar 29 13:43 pg_stat
drwx------ 2 postgres postgres 4096 Mar 29 13:50 pg_stat_tmp
drwx------ 2 postgres postgres 4096 Mar 29 12:25 pg_subtrans
drwx------ 2 postgres postgres 4096 Mar 29 12:25 pg_tblspc
drwx------ 2 postgres postgres 4096 Mar 29 12:25 pg_twophase
-rw------- 1 postgres postgres 4 Mar 29 12:25 PG_VERSION
drwx------ 3 postgres postgres 4096 Mar 29 14:27 pg_xlog
-rw------- 1 postgres postgres 169 Mar 29 13:24 postgresql.auto.conf
-rw-r--r-- 1 postgres postgres 21458 Mar 29 14:27 postgresql.conf
-rw-r--r-- 1 postgres postgres 118 Mar 29 14:27 postgresql.auto.conf

1.6. RESTORE 39

BART Reference Guide, Release 2.5.7

1.7 SHOW-SERVERS

The SHOW-SERVERS subcommand displays information for the managed database servers listed
in the BART configuration file.

Syntax:

bart SHOW-SERVERS [-s { <server_name> | all }]

The following table describes the SHOW-SERVERS option:

Option Description
-s or --server {
<server_name> | all } <server_name> is the name of the database

server to which the SHOW-SERVERS actions are
to be applied.
If all is specified or if the -s option is omitted,
the actions are applied to all database servers.

Example

The following code sample shows all the database servers managed by BART as returned by the
SHOW-SERVERS subcommand:

-bash-4.2$ bart SHOW-SERVERS
SERVER NAME : acctg
BACKUP FRIENDLY NAME: acctg_%year-%month-%dayT%hour:%minute
HOST NAME : 127.0.0.1
USER NAME : enterprisedb
PORT : 5444
REMOTE HOST :
RETENTION POLICY : 6 Backups
DISK UTILIZATION : 0.00 bytes
NUMBER OF ARCHIVES : 0
ARCHIVE PATH : /opt/backup/acctg/archived_wals
ARCHIVE COMMAND : (disabled)
XLOG METHOD : fetch
WAL COMPRESSION : disabled
TABLESPACE PATH(s) :
INCREMENTAL BACKUP : DISABLED
DESCRIPTION : "Accounting"
SERVER NAME : hr
BACKUP FRIENDLY NAME: hr_%year-%month-%dayT%hour:%minute
HOST NAME : 192.168.2.24

(continues on next page)

1.7. SHOW-SERVERS 40

BART Reference Guide, Release 2.5.7

(continued from previous page)

USER NAME : postgres
PORT : 5432
REMOTE HOST : postgres@192.168.2.24
RETENTION POLICY : 6 Backups
DISK UTILIZATION : 0.00 bytes
NUMBER OF ARCHIVES : 0
ARCHIVE PATH : /opt/backup/hr/archived_wals
ARCHIVE COMMAND : (disabled)
XLOG METHOD : fetch
WAL COMPRESSION : disabled
TABLESPACE PATH(s) :
INCREMENTAL BACKUP : DISABLED
DESCRIPTION : "Human Resources"
SERVER NAME : mktg
BACKUP FRIENDLY NAME: mktg_%year-%month-%dayT%hour:%minute
HOST NAME : 192.168.2.24
USER NAME : repuser
PORT : 5444
REMOTE HOST : enterprisedb@192.168.2.24
RETENTION POLICY : 6 Backups
DISK UTILIZATION : 0.00 bytes
NUMBER OF ARCHIVES : 0
ARCHIVE PATH : /opt/backup/mktg/archived_wals
ARCHIVE COMMAND : (disabled)
XLOG METHOD : fetch
WAL COMPRESSION : disabled
TABLESPACE PATH(s) :
INCREMENTAL BACKUP : DISABLED\
DESCRIPTION : "Marketing"

1.7. SHOW-SERVERS 41

BART Reference Guide, Release 2.5.7

1.8 SHOW-BACKUPS

The SHOW-BACKUPS subcommand displays the backup information for the managed database
servers.

Syntax:

bart SHOW-BACKUPS [-s { <server_name> | all }]
[-i { <backup_id> | <backup_name> | all }]
[-t]

The following table describes the SHOW-BACKUPS options:

Options Description
-s or --server {
<server_name> | all } <server_name> is the name of the database

server whose backup information is to be
displayed.
If all is specified or if the option is omitted, the
backup information for all database servers is
displayed.

-i or --backupid {
<backup_id> | <backup_name>
| all }

<backup_id> is a backup identifier and
<backup_name> is the user-defined
alphanumeric name for the backup.
If all is specified or if the option is omitted, all
backup information for the relevant database server
is displayed.

-t or --toggle Displays detailed backup information in list format.
If the option is omitted, the default is a tabular for-
mat.

Example

The following code sample shows the backup from database server dev:

-bash-4.2$ bart SHOW-BACKUPS -s dev
SERVER NAME BACKUP ID BACKUP NAME
→˓BACKUP PARENT
BACKUP TIME BACKUP SIZE WAL(s) SIZE WAL
→˓FILES STATUS
dev 1477579596637 dev_2016-10-27T10:46:36 none

(continues on next page)

1.8. SHOW-BACKUPS 42

BART Reference Guide, Release 2.5.7

(continued from previous page)

2016-10-27 10:46:37 EDT 54.50 MB 96.00 MB 6
→˓ active

The following code sample shows detailed information using the -t option:

-bash-4.2$ bart SHOW-BACKUPS -s dev -i 1477579596637 -t
SERVER NAME : dev
BACKUP ID : 1477579596637
BACKUP NAME : dev_2016-10-27T10:46:36
BACKUP PARENT : none
BACKUP STATUS : active
BACKUP TIME : 2016-10-27 10:46:37 EDT
BACKUP SIZE : 54.50 MB
WAL(S) SIZE : 80.00 MB
NO. OF WALS : 5
FIRST WAL FILE : 0000000100000001000000EC
CREATION TIME : 2016-10-27 10:46:37 EDT
LAST WAL FILE : 0000000100000001000000F0
CREATION TIME : 2016-10-27 11:22:01 EDT

The following code sample shows a listing of an incremental backup along with its parent backup:

-bash-4.2$ bart SHOW-BACKUPS
SERVER NAME BACKUP ID BACKUP NAME BACKUP
→˓PARENT
BACKUP TIME BACKUP SIZE WAL(s) SIZE WAL FILES
→˓ STATUS
acctg 1477580293193 acctg_2016-10-27 none
2016-10-27 10:58:13 EDT 16.45 MB 16.00 MB 1
→˓ active
acctg 1477580111358 acctg_2016-10-27 none 2016-10-27 10:55:11 EDT 59.71
MB 16.00 MB 1 active

The following code sample shows the complete, detailed information of the incremental backup
and the parent backup:

-bash-4.2$ bart SHOW-BACKUPS -t
SERVER NAME : acctg
BACKUP ID : 1477580293193
BACKUP NAME : none
BACKUP PARENT : acctg_2016-10-27
BACKUP STATUS : active
BACKUP TIME : 2016-10-27 10:58:13 EDT
BACKUP SIZE : 16.45 MB
WAL(S) SIZE : 16.00 MB
NO. OF WALS : 1

(continues on next page)

1.8. SHOW-BACKUPS 43

BART Reference Guide, Release 2.5.7

(continued from previous page)

FIRST WAL FILE : 0000000100000002000000D9
CREATION TIME : 2016-10-27 10:58:13 EDT
LAST WAL FILE : 0000000100000002000000D9
CREATION TIME : 2016-10-27 10:58:13 EDT
SERVER NAME : acctg
BACKUP ID : 1477580111358
BACKUP NAME : acctg_2016-10-27
BACKUP PARENT : none
BACKUP STATUS : active
BACKUP TIME : 2016-10-27 10:55:11 EDT
BACKUP SIZE : 59.71 MB
WAL(S) SIZE : 16.00 MB
NO. OF WALS : 1
FIRST WAL FILE : 0000000100000002000000D8
CREATION TIME : 2016-10-27 10:55:12 EDT
LAST WAL FILE : 0000000100000002000000D8
CREATION TIME : 2016-10-27 10:55:12 EDT

1.8. SHOW-BACKUPS 44

BART Reference Guide, Release 2.5.7

1.9 VERIFY-CHKSUM

The VERIFY-CHKSUM subcommand verifies the MD5 checksums of the full backups and any
user-defined tablespaces for the specified database server or for all database servers. The check-
sum is verified by comparing the current checksum of the backup against the checksum when the
backup was taken.

Note: The VERIFY-CHKSUM subcommand is only used for tar format backups.

Syntax:

bart VERIFY-CHKSUM
[-s { <server_name> | all }]
[-i { <backup_id> | <backup_name> | all }]

The following table describes the VERIFY-CHKSUM options:

Options Description
-s or --server {
<server_name> | all } <server_name> is the name of the database

server whose tar backup checksums are to be
verified.
If all is specified or if the -s option is omitted,
the checksums of all tar backups are verified for all
database servers.

-i or --backupid {<backup_id>
| <backup_name> | all } <backup_id> is the backup identifier of a tar

format full backup whose checksum is to be
verified along with any user-defined tablespaces.
<backup_name> is the user-defined
alphanumeric name for the full backup.
If all is specified or if the -i option is omitted,
the checksums of all tar backups for the relevant
database server are verified.

Example

The following code sample verifies the checksum of all tar format backups of the specified database
server:

1.9. VERIFY-CHKSUM 45

BART Reference Guide, Release 2.5.7

-bash-4.1$ bart VERIFY-CHKSUM -s acctg -i all
SERVER NAME BACKUP ID VERIFY
acctg 1430239348243 OK
acctg 1430232284202 OK
acctg 1430232016284 OK
acctg 1430231949065 OK
acctg 1429821844271 OK

1.9. VERIFY-CHKSUM 46

BART Reference Guide, Release 2.5.7

1.10 Running the BART WAL Scanner

The BART WAL scanner is used to process each WAL file to find and record modified blocks in
a corresponding MBM file. As a BART account user, use the BART WAL scanner to invoke the
bart-scanner program located in the <BART_HOME>/bin directory.

For detailed information about the WAL scanner and its usage, see the EDB Backup and Recovery
User Guide available at the EDB website.

Syntax:

bart-scanner
[-d]
[-c <config_file_path>]
{ -h |
-v |
--daemon |
-p <mbm_file> |
<wal_file> |
RELOAD |
STOP
}

When the bart-scanner program is invoked, it forks a separate process for each database
server enabled with the allow_incremental_backups parameter.

The WAL scanner processes can run in either the foreground or background depending upon usage
of the --daemon option:

• If the --daemon option is specified, the WAL scanner process runs in the background. All
output messages can be viewed in the BART log file.

• If the --daemon option is omitted, the WAL scanner process runs in the foreground. All
output messages can be viewed from the terminal running the program as well as in the
BART log file.

The following table describes the VERIFY-CHKSUM options.

Options Description
-h or --help Displays general syntax and information on WAL

scanner usage.
-v or --version Displays the WAL scanner version information.
-d or --debug Displays debugging output while executing the

WAL scanner with any of its options.
continues on next page

1.10. Running the BART WAL Scanner 47

https://www.enterprisedb.com/edb-docs/

BART Reference Guide, Release 2.5.7

Table 10 – continued from previous page
Options Description
-c <config_file_path>
or --config-path
<config_file_path>

Specifies <config_file_path> as the full di-
rectory path to a BART configuration file. Use
this option if you do not want to use the default
BART configuration file <BART_HOME>/etc/
bart.cfg

--daemon Runs the WAL scanner as a background process.
-p <mbm_file> or --print
<mbm_file>

Specifies the full directory path to an MBM
file whose content is to be printed. The
archived_wals directory as specified in the the
archive_path parameter in the bart.cfg file
contains the MBM files.

wal_file
Specifies the full directory path to a WAL file to be
scanned. The archive path directory contains the
WAL files. Use it if a WAL file in the archive path
is missing its MBM file.
This option is to be used for assisting the
EnterpriseDB support team for debugging
problems that may have been encountered.

RELOAD
Reloads the BART configuration file. The keyword
RELOAD is case-insensitive. The RELOAD option
is useful if you make changes to the configuration
file after the WAL scanner has been started. It will
reload the configuration file and adjust the WAL
scanners accordingly.
For example, if a server section allowing
incremental backups is removed from the BART
configuration file, then the process attached to that
server will stop. Similarly, if a server allowing
incremental backups is added, a new WAL scanner
process will be launched to scan the WAL files of
that server.

STOP Stops the WAL scanner. The keyword STOP is not
case-sensitive.

Example

The following code sample demonstrates starting the WAL scanner to run interactively. The WAL
scanner begins scanning existing WAL files in the archive path that have not yet been scanned (that
is, there is no corresponding MBM file for the WAL file):

1.10. Running the BART WAL Scanner 48

BART Reference Guide, Release 2.5.7

-bash-4.2$ bart-scanner
INFO: process created for server 'acctg', pid = 5287
INFO: going to parse backlog of WALs, if any.
INFO: WAL file to be processed: 0000000100000000000000ED
INFO: WAL file to be processed: 0000000100000000000000EE
INFO: WAL file to be processed: 0000000100000000000000EF
INFO: WAL file to be processed: 0000000100000000000000F0
INFO: WAL file to be processed: 0000000100000000000000F1

The following code sample is the content of the archive path showing the MBM files created for
the WAL files. (The user name and group name of the files have been removed from the example
to list the WAL files and MBM files in a more readable manner):

[root@localhost archived_wals]# pwd
/opt/backup/acctg/archived_wals
[root@localhost archived_wals]# ls -l
total 81944
-rw------- 1 16777216 Dec 20 09:10 0000000100000000000000ED
-rw------- 1 16777216 Dec 20 09:06 0000000100000000000000EE
-rw------- 1 16777216 Dec 20 09:11 0000000100000000000000EF
-rw------- 1 16777216 Dec 20 09:15 0000000100000000000000F0
-rw------- 1 16777216 Dec 20 09:16 0000000100000000000000F1
-rw------- 1 305 Dec 20 09:16 0000000100000000000000F1.
→˓00000028.backup
-rw-rw-r-- 1 161 Dec 20 09:18
0000000100000000ED00002800000000EE000000.mbm
-rw-rw-r-- 1 161 Dec 20 09:18
0000000100000000EE00002800000000EF000000.mbm
-rw-rw-r-- 1 161 Dec 20 09:18
0000000100000000EF00002800000000F0000000.mbm
-rw-rw-r-- 1 161 Dec 20 09:18
0000000100000000F000002800000000F1000000.mbm
-rw-rw-r-- 1 161 Dec 20 09:18
0000000100000000F100002800000000F2000000.mbm

To stop the interactively running WAL scanner, either enter ctrl-C at the terminal running the
WAL scanner or invoke the bart-scanner program from another terminal with the STOP op-
tion:

-bash-4.2$ bart-scanner STOP
-bash-4.2$

The terminal on which the WAL scanner was running interactively appears as follows after it has
been stopped:

-bash-4.2$ bart-scanner
(continues on next page)

1.10. Running the BART WAL Scanner 49

BART Reference Guide, Release 2.5.7

(continued from previous page)

INFO: process created for server 'acctg', pid = 5287
INFO: going to parse backlog of WALs, if any.
INFO: WAL file to be processed: 0000000100000000000000ED
INFO: WAL file to be processed: 0000000100000000000000EE
INFO: WAL file to be processed: 0000000100000000000000EF
INFO: WAL file to be processed: 0000000100000000000000F0
INFO: WAL file to be processed: 0000000100000000000000F1
INFO: bart-scanner stopped
-bash-4.2$

The following code sample demonstrates invoking the WAL scanner to run as a background process
with the --daemon option:

-bash-4.2$ bart-scanner --daemon
-bash-4.2$

The WAL scanner runs as a background process. There is also a separate background
process for each database server that has been enabled for WAL scanning with the
allow_incremental_backups parameter in the BART configuration file:

-bash-4.2$ ps -ef | grep bart
enterpr+ 4340 1 0 09:48 ? 00:00:00 bart-scanner --daemon
enterpr+ 4341 4340 0 09:48 ? 00:00:00 bart-scanner --daemon
enterpr+ 4415 3673 0 09:50 pts/0 00:00:00 grep --color=auto
→˓bart

To stop the WAL scanner processes, invoke the WAL scanner with the stop option:

-bash-4.2$ bart-scanner STOP
-bash-4.2$

The following command demonstrates scanning an individual WAL file:

-bash-4.2$ bart-scanner /opt/backup/acctg/archived_wals/
→˓0000000100000000000000FF
-bash-4.2$

1.10. Running the BART WAL Scanner 50

BART Reference Guide, Release 2.5.7

Should it be necessary to print the content of an MBM file for assisting the EnterpriseDB support
team for debugging problems that may have been encountered, use the -p option to specify the
file as shown in the following code sample:

-bash-4.2$ bart-scanner -p
/opt/backup/acctg/archived_wals/
→˓0000000100000000FF0000280000000100000000.mbm

Header:
Version: 1.0:90500:1.2.0
Scan Start: 2016-12-20 10:02:11 EST, Scan End: 2016-12-20 10:02:11 EST,
→˓ Diff: 0 sec(s)
Start LSN: ff000028, End LSN: 100000000, TLI: 1
flags: 0, Check Sum: f9cfe66ae2569894d6746b61503a767d

Path: base/14845/16384
NodeTag: BLOCK_CHANGE
Relation: relPath base/14845/16384, isTSNode 0, Blocks

*..
→˓.......
First modified block: 0
Total modified blocks: 1

Path: base/14845/16391
NodeTag: BLOCK_CHANGE
Relation: relPath base/14845/16391, isTSNode 0, Blocks

*..
→˓........
First modified block: 0
Total modified blocks: 1

1.10. Running the BART WAL Scanner 51

CHAPTER 2

Additional Examples

This section lists examples of the following BART operations.

• Restoring a database cluster with tablespaces.

• Restoring an incremental backup.

• Managing backups.

• Managing incremental backups.

2.1 Restoring a Database Cluster with Tablespaces

The following code sample illustrates taking a backup and restoring a database cluster on a remote
host containing tablespaces. For detailed information regarding using tablespaces, see the EDB
Backup and Recovery User Guide available at the EDB website.

On an Advanced Server database running on a remote host, the following tablespaces are created
for use by two tables:

edb=# CREATE TABLESPACE tblspc_1 LOCATION '/mnt/tablespace_1';
CREATE TABLESPACE
edb=# CREATE TABLESPACE tblspc_2 LOCATION '/mnt/tablespace_2';
CREATE TABLESPACE
edb=# \db

List of tablespaces
Name | Owner | Location

(continues on next page)

52

https://www.enterprisedb.com/edb-docs/

BART Reference Guide, Release 2.5.7

(continued from previous page)

------------+-----------------+-------------------
pg_default | enterprisedb |
pg_global | enterprisedb |
tblspc_1 | enterprisedb | /mnt/tablespace_1
tblspc_2 | enterprisedb | /mnt/tablespace_2
(4 rows)

edb=# CREATE TABLE tbl_tblspc_1 (c1 TEXT) TABLESPACE tblspc_1;
CREATE TABLE
edb=# CREATE TABLE tbl_tblspc_2 (c1 TEXT) TABLESPACE tblspc_2;
CREATE TABLE
edb=# \d tbl_tblspc_1
Table "enterprisedb.tbl_tblspc_1"
Column | Type | Modifiers
-------+------+-----------
c1 | text |
Tablespace: "tblspc_1"

edb=# \d tbl_tblspc_2
Table "enterprisedb.tbl_tblspc_2"
Column | Type | Modifiers
-------+------+-----------
c1 | text |
Tablespace: "tblspc_2"

The following code sample shows the OIDs assigned to the tablespaces and the symbolic links to
the tablespace directories:

-bash-4.1$ pwd
/opt/PostgresPlus/9.6AS/data/pg_tblspc
-bash-4.1$ ls -l
total 0
lrwxrwxrwx 1 enterprisedb enterprisedb 17 Nov 16 16:17 16587 ->/mnt/
→˓tablespace_1
lrwxrwxrwx 1 enterprisedb enterprisedb 17 Nov 16 16:17 16588 ->/mnt/
→˓tablespace_2

The BART configuration file contains the following settings. Note that the tablespace_path
parameter does not have to be set at this point.

[BART]
bart_host= enterprisedb@192.168.2.22
backup_path = /opt/backup
pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup
logfile = /tmp/bart.log

(continues on next page)

2.1. Restoring a Database Cluster with Tablespaces 53

BART Reference Guide, Release 2.5.7

(continued from previous page)

scanner_logfile = /tmp/bart_scanner.log

[ACCTG]
host = 192.168.2.24
port = 5444
user = repuser
cluster_owner = enterprisedb
remote_host = enterprisedb@192.168.2.24
tablespace_path =
description = "Accounting"

After the necessary configuration steps are performed to ensure BART manages the remote
database server, a full backup is taken as shown in the following code sample:

-bash-4.1$ bart BACKUP -s acctg

INFO: creating backup for server 'acctg'
INFO: backup identifier: '1447709811516'
54521/54521 kB (100%), 3/3 tablespaces

INFO: backup completed successfully
INFO: backup checksum: 594f69fe7d26af991d4173d3823e174f of 16587.tar
INFO: backup checksum: 7a5507567729a21c98a15c948ff6c015 of base.tar
INFO: backup checksum: ae8c62604c409635c9d9e82b29cc0399 of 16588.tar
INFO:
BACKUP DETAILS:
BACKUP STATUS: active
BACKUP IDENTIFIER: 1447709811516
BACKUP NAME: none
BACKUP LOCATION: /opt/backup/acctg/1447709811516
BACKUP SIZE: 53.25 MB
BACKUP FORMAT: tar
XLOG METHOD: fetch
BACKUP CHECKSUM(s): 3
ChkSum File
594f69fe7d26af991d4173d3823e174f 16587.tar
7a5507567729a21c98a15c948ff6c015 base.tar
ae8c62604c409635c9d9e82b29cc0399 16588.tar

TABLESPACE(s): 2
Oid Name Location
16587 tblspc_1 /mnt/tablespace_1
16588 tblspc_2 /mnt/tablespace_2
START WAL LOCATION: 00000001000000000000000F
BACKUP METHOD: streamed

(continues on next page)

2.1. Restoring a Database Cluster with Tablespaces 54

BART Reference Guide, Release 2.5.7

(continued from previous page)

BACKUP FROM: master
START TIME: 2015-11-16 16:36:51 EST
STOP TIME: 2015-11-16 16:36:52 EST
TOTAL DURATION: 1 sec(s)

Note that in the output from the preceding example, checksums are generated for the tablespaces
as well as the full backup.

Within the backup subdirectory 1447709811516 of the BART backup catalog, the tablespace
data is stored with file names 16587.tar.gz and 16588.tar.gz as shown below:

-bash-4.1$ pwd
/opt/backup/acctg
-bash-4.1$ ls -l
total 8
drwx------ 2 enterprisedb enterprisedb 4096 Nov 16 16:36 1447709811516
drwx------ 2 enterprisedb enterprisedb 4096 Nov 16 16:43 archived_wals
-bash-4.1$ ls -l 1447709811516
total 54536
-rw-rw-r-- 1 enterprisedb enterprisedb 19968 Nov 16 16:36 16587.tar
-rw-rw-r-- 1 enterprisedb enterprisedb 19968 Nov 16 16:36 16588.tar
-rw-rw-r-- 1 enterprisedb enterprisedb 949 Nov 16 17:05 backupinfo
-rw-rw-r-- 1 enterprisedb enterprisedb 55792640 Nov 16 16:36 base.tar

When you are ready to restore the backup, in addition to creating the directory to which the main
database cluster is to be restored, you must prepare the directories to which the tablespaces are to
be restored.

On the remote host, directories /opt/restore_tblspc_1 and /opt/
restore_tblspc_2 are created and assigned the proper ownership and permissions as
shown by the following example. The main database cluster is to be restored to /opt/restore.

[root@localhost opt]# mkdir restore_tblspc_1
[root@localhost opt]# chown enterprisedb restore_tblspc_1
[root@localhost opt]# chgrp enterprisedb restore_tblspc_1
[root@localhost opt]# chmod 700 restore_tblspc_1
[root@localhost opt]# mkdir restore_tblspc_2
[root@localhost opt]# chown enterprisedb restore_tblspc_2
[root@localhost opt]# chgrp enterprisedb restore_tblspc_2
[root@localhost opt]# chmod 700 restore_tblspc_2
[root@localhost opt]# ls -l
total 20
drwxr-xr-x 3 root daemon 4096 Nov 10 15:38 PostgresPlus
drwx------ 2 enterprisedb enterprisedb 4096 Nov 16 17:40 restore
drwx------ 2 enterprisedb enterprisedb 4096 Nov 16 17:40
restore_tblspc_1

(continues on next page)

2.1. Restoring a Database Cluster with Tablespaces 55

BART Reference Guide, Release 2.5.7

(continued from previous page)

drwx------ 2 enterprisedb enterprisedb 4096 Nov 16 17:41
restore_tblspc_2
drwxr-xr-x. 2 root root 4096 Nov 22 2013 rh

Set the tablespace_path parameter in the BART configuration file to specify the tablespace
directories. The remote host user and IP address are specified by the remote_host configuration
parameter.

[ACCTG]

host = 192.168.2.24
port = 5444
user = repuser
cluster_owner = enterprisedb
remote_host = enterprisedb@192.168.2.24
tablespace_path =
16587=/opt/restore_tblspc_1;16588=/opt/restore_tblspc_2

description = "Accounting"

The following code sample demonstrates invoking the RESTORE subcommand:

-bash-4.1$ bart RESTORE -s acctg -i 1447709811516 -p /opt/restore
INFO: restoring backup '1447709811516' of server 'acctg'
INFO: restoring backup to enterprisedb@192.168.2.24:/opt/restore
INFO: base backup restored
INFO: archiving is disabled
INFO: tablespace(s) restored

The following code sample shows the restored full backup (including the restored tablespaces):

bash-4.1$ pwd
/opt
-bash-4.1$ ls -l restore
total 104
-rw------- 1 enterprisedb enterprisedb 206 Nov 16 16:36 backup_label.
→˓old
drwx------ 6 enterprisedb enterprisedb 4096 Nov 10 15:38 base
drwx------ 2 enterprisedb enterprisedb 4096 Nov 16 17:46 global
drwx------ 2 enterprisedb enterprisedb 4096 Nov 10 15:38 pg_clog
-rw------- 1 enterprisedb enterprisedb 4438 Nov 10 16:23 pg_hba.conf
-rw------- 1 enterprisedb enterprisedb 1636 Nov 10 15:38 pg_ident.conf
drwxr-xr-x 2 enterprisedb enterprisedb 4096 Nov 16 17:45 pg_log
drwx------ 4 enterprisedb enterprisedb 4096 Nov 10 15:38 pg_multixact
drwx------ 2 enterprisedb enterprisedb 4096 Nov 16 17:45 pg_notify
drwx------ 2 enterprisedb enterprisedb 4096 Nov 10 15:38 pg_serial

(continues on next page)

2.1. Restoring a Database Cluster with Tablespaces 56

BART Reference Guide, Release 2.5.7

(continued from previous page)

drwx------ 2 enterprisedb enterprisedb 4096 Nov 10 15:38 pg_snapshots
drwx------ 2 enterprisedb enterprisedb 4096 Nov 16 17:47 pg_stat
drwx------ 2 enterprisedb enterprisedb 4096 Nov 16 17:47 pg_stat_tmp
drwx------ 2 enterprisedb enterprisedb 4096 Nov 10 15:38 pg_subtrans
drwx------ 2 enterprisedb enterprisedb 4096 Nov 16 17:42 pg_tblspc
drwx------ 2 enterprisedb enterprisedb 4096 Nov 10 15:38 pg_twophase
-rw------- 1 enterprisedb enterprisedb 4 Nov 10 15:38 PG_VERSION
drwx------ 3 enterprisedb enterprisedb 4096 Nov 16 17:47 pg_xlog
-rw------- 1 enterprisedb enterprisedb 23906 Nov 16 17:42 postgresql.
→˓conf
-rw------- 1 enterprisedb enterprisedb 61 Nov 16 17:45 postmaster.opts
-bash-4.1$
-bash-4.1$ ls -l restore_tblspc_1
total 4
drwx------ 3 enterprisedb enterprisedb 4096 Nov 16 16:18
PG_9.6_201306121
-bash-4.1$ ls -l restore_tblspc_2
total 4
drwx------ 3 enterprisedb enterprisedb 4096 Nov 16 16:18
PG_9.6_201306121

The symbolic links in the pg_tblspc subdirectory point to the restored directory location:

bash-4.1$ pwd
/opt/restore/pg_tblspc
-bash-4.1$ ls -l
total 0
lrwxrwxrwx 1 enterprisedb enterprisedb 21 Nov 16 17:42 16587 ->
/opt/restore_tblspc_1
lrwxrwxrwx 1 enterprisedb enterprisedb 21 Nov 16 17:42 16588 ->
/opt/restore_tblspc_2

psql queries also show the restored tablespaces:

edb=# \db

List of tablespaces
Name | Owner | Location
------------+--------------+-----------------------
pg_default | enterprisedb |
pg_global | enterprisedb |
tblspc_1 | enterprisedb | /opt/restore_tblspc_1
tblspc_2 | enterprisedb | /opt/restore_tblspc_2

2.1. Restoring a Database Cluster with Tablespaces 57

BART Reference Guide, Release 2.5.7

2.2 Restoring an Incremental Backup

Restoring an incremental backup may require additional setup steps depending upon the host on
which the incremental backup is to be restored. For more information, see the EDB Backup and
Recovery User Guide available at the EDB website.

This section provides an example of creating backup chains and then restoring an incremental
backup.

Creating a Backup Chain

A backup chain is the set of backups consisting of a full backup and all of its successive incremental
backups. Tracing back on the parent backups of all incremental backups in the chain eventually
leads back to that single, full backup.

In the following example, the allow_incremental_backups parameter is set to enabled
in the BART configuration file to permit incremental backups on the listed database server:

[BART]

bart_host= enterprisedb@192.168.2.27
backup_path = /opt/backup
pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup
logfile = /tmp/bart.log
scanner_logfile = /tmp/bart_scanner.log

[ACCTG]

host = 127.0.0.1
port = 5445
user = enterprisedb
cluster_owner = enterprisedb
allow_incremental_backups = enabled
description = "Accounting"

After the database server has been started with WAL archiving enabled to the BART backup cata-
log, the WAL scanner is started:

-bash-4.2$ bart-scanner --daemon

First, a full backup is taken:

-bash-4.2$ bart BACKUP -s acctg --backup-name full_1
INFO: creating backup for server 'acctg'
INFO: backup identifier: '1490649204327'\
63364/63364 kB (100%), 1/1 tablespace
INFO: backup completed successfully

(continues on next page)

2.2. Restoring an Incremental Backup 58

https://www.enterprisedb.com/edb-docs/

BART Reference Guide, Release 2.5.7

(continued from previous page)

INFO: backup checksum: aae27d4a7c09dffc82f423221154db7e of base.tar
INFO:
BACKUP DETAILS:
BACKUP STATUS: active
BACKUP IDENTIFIER: 1490649204327
BACKUP NAME: full_1
BACKUP PARENT: none
BACKUP LOCATION: /opt/backup/acctg/1490649204327
BACKUP SIZE: 61.88 MB
BACKUP FORMAT: tar
BACKUP TIMEZONE: US/Eastern
XLOG METHOD: fetch
BACKUP CHECKSUM(s): 1
ChkSum File
aae27d4a7c09dffc82f423221154db7e base.tar
TABLESPACE(s): 0
START WAL LOCATION: 00000001000000000000000E
BACKUP METHOD: streamed
BACKUP FROM: master
START TIME: 2017-03-27 17:13:24 EDT
STOP TIME: 2017-03-27 17:13:25 EDT
TOTAL DURATION: 1 sec(s)

A series of incremental backups are taken. The first incremental backup specifies the full backup
as the parent. Each successive incremental backup then uses the preceding incremental backup as
its parent.

-bash-4.2$ bart BACKUP -s acctg -F p --parent full_1 --backup-name
incr_1-a
INFO: creating incremental backup for server 'acctg'
INFO: checking mbm files /opt/backup/acctg/archived_wals
INFO: new backup identifier generated 1490649255649
INFO: reading directory /opt/backup/acctg/archived_wals
INFO: all files processed
NOTICE: pg_stop_backup complete, all required WAL segments have been
archived
INFO: incremental backup completed successfully
INFO:
BACKUP DETAILS:
BACKUP STATUS: active
BACKUP IDENTIFIER: 1490649255649
BACKUP NAME: incr_1-a
BACKUP PARENT: 1490649204327
BACKUP LOCATION: /opt/backup/acctg/1490649255649
BACKUP SIZE: 16.56 MB

(continues on next page)

2.2. Restoring an Incremental Backup 59

BART Reference Guide, Release 2.5.7

(continued from previous page)

BACKUP FORMAT: plain
BACKUP TIMEZONE: US/Eastern
XLOG METHOD: fetch
BACKUP CHECKSUM(s): 0
TABLESPACE(s): 0
START WAL LOCATION: 000000010000000000000010
STOP WAL LOCATION: 000000010000000000000010
BACKUP METHOD: pg_start_backup
BACKUP FROM: master
START TIME: 2017-03-27 17:14:15 EDT
STOP TIME: 2017-03-27 17:14:16 EDT
TOTAL DURATION: 1 sec(s)
-bash-4.2$ bart BACKUP -s acctg -F p --parent incr_1-a --backup-name
incr_1-b
INFO: creating incremental backup for server 'acctg'
INFO: checking mbm files /opt/backup/acctg/archived_wals
INFO: new backup identifier generated 1490649336845
INFO: reading directory /opt/backup/acctg/archived_wals
INFO: all files processed
NOTICE: pg_stop_backup complete, all required WAL segments have been
archived
INFO: incremental backup completed successfully
.
.
.
-bash-4.2$ bart BACKUP -s acctg -F p --parent incr_1-b --backup-name
incr_1-c
INFO: creating incremental backup for server 'acctg'
INFO: checking mbm files /opt/backup/acctg/archived_wals
INFO: new backup identifier generated 1490649414316
INFO: reading directory /opt/backup/acctg/archived_wals
INFO: all files processed
NOTICE: pg_stop_backup complete, all required WAL segments have been
archived
INFO: incremental backup completed successfully
.
.
.

The following output of the SHOW-BACKUPS subcommand lists the backup chain, which are
backups full_1, incr_1-a, incr_1-b, and incr_1-c:

-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID BACKUP NAME BACKUP PARENT BACKUP TIME ...
acctg 1490649414316 incr_1-c incr_1-b 2017-03-27
→˓17:16:55 ...

(continues on next page)

2.2. Restoring an Incremental Backup 60

BART Reference Guide, Release 2.5.7

(continued from previous page)

acctg 1490649336845 incr_1-b incr_1-a 2017-03-27
→˓17:15:37 ...
acctg 1490649255649 incr_1-a full_1 2017-03-27
→˓17:14:16 ...
acctg 1490649204327 full_1 none 2017-03-27
→˓17:13:25 ...

For the full backup full_1, the BACKUP PARENT field contains none. For each incre-
mental backup, the BACKUP PARENT field contains the backup identifier or name of its parent
backup.

A second backup chain is created in the same manner with the BACKUP subcommand. The fol-
lowing example shows the addition of the resulting, second backup chain consisting of full backup
full_2 and incremental backups incr_2-a and incr_2-b:

-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID BACKUP NAME BACKUP PARENT BACKUP TIME ...
acctg 1490649605607 incr_2-b incr_2-a 2017-03-27
→˓17:20:06 ...
acctg 1490649587702 incr_2-a full_2 2017-03-27
→˓17:19:48 ...
acctg 1490649528633 full_2 none 2017-03-27
→˓17:18:49 ...
acctg 1490649414316 incr_1-c incr_1-b 2017-03-27
→˓17:16:55 ...
acctg 1490649336845 incr_1-b incr_1-a 2017-03-27
→˓17:15:37 ...
acctg 1490649255649 incr_1-a full_1 2017-03-27
→˓17:14:16 ...
acctg 1490649204327 full_1 none 2017-03-27
→˓17:13:25 ...

The following additional incremental backups starting with incr_1-b-1, which designates
incr_1-b as the parent, results in the forking from that backup into a second line of
backups in the chain consisting of full_1, incr_1-a, incr_1-b, incr_1-b-1,
incr_1-b-2, and incr_1-b-3 as shown in the following list:

-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID BACKUP NAME BACKUP PARENT BACKUP TIME
→˓ ...
acctg 1490649791430 incr_1-b-3 incr_1-b-2 2017-03-27
→˓17:23:12 ...
acctg 1490649763929 incr_1-b-2 incr_1-b-1 2017-03-27
→˓17:22:44 ...
acctg 1490649731672 incr_1-b-1 incr_1-b 2017-03-27
→˓17:22:12 ...

(continues on next page)

2.2. Restoring an Incremental Backup 61

BART Reference Guide, Release 2.5.7

(continued from previous page)

acctg 1490649605607 incr_2-b incr_2-a 2017-03-27
→˓17:20:06 ...
acctg 1490649587702 incr_2-a full_2 2017-03-27
→˓17:19:48 ...
acctg 1490649528633 full_2 none 2017-03-27
→˓17:18:49 ...
acctg 1490649414316 incr_1-c incr_1-b 2017-03-27
→˓17:16:55 ...
acctg 1490649336845 incr_1-b incr_1-a 2017-03-27
→˓17:15:37 ...
acctg 1490649255649 incr_1-a full_1 2017-03-27
→˓17:14:16 ...
acctg 1490649204327 full_1 none 2017-03-27
→˓17:13:25 ...

Restoring an Incremental Backup

Restoring an incremental backup is done with the RESTORE subcommand in the same manner
as for restoring a full backup. Specify the backup identifier or backup name of the incremental
backup to be restored as shown in the following example.

-bash-4.2$ bart RESTORE -s acctg -p /opt/restore -i incr_1-b
INFO: restoring incremental backup 'incr_1-b' of server 'acctg'
INFO: base backup restored
INFO: archiving is disabled
INFO: permissions set on $PGDATA
INFO: incremental restore completed successfully

Restoring incremental backup incr_1-b as shown by the preceding example results in the
restoration of full backup full_1, then incremental backups incr_1-a and finally, incr_1-b.

2.2. Restoring an Incremental Backup 62

BART Reference Guide, Release 2.5.7

2.3 Managing Backups

This section illustrates evaluating, marking, and deleting backups using the MANAGE subcommand
using a redundancy retention policy and a recovery window retention policy. For detailed informa-
tion about the MANAGE subcommand, see the EDB Backup and Recovery User Guide available at
the EDB website.

2.3.1 Using a Redundancy Retention Policy

The following code sample uses a redundancy retention policy to evaluate, mark, and delete back-
ups as shown by the following server configuration:

[ACCTG]
host = 127.0.0.1
port = 5444
user = enterprisedb
archive_command = 'cp %p %a/%f'
retention_policy = 3 BACKUPS
description = "Accounting"

The following list is the set of backups. Note that the last backup in the list has been marked as
keep:

-bash-4.1$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID BACKUP TIME BACKUP SIZE
→˓WAL(s) SIZE
WAL FILES STATUS
acctg 1428768344061 2015-04-11 12:05:46 EDT 5.72 MB
→˓48.00 MB
3 active
acctg 1428684537299 2015-04-10 12:49:00 EDT 5.72 MB
→˓272.00 MB
17 active
acctg 1428589759899 2015-04-09 10:29:27 EDT 5.65 MB
→˓96.00 MB
6 active
acctg 1428502049836 2015-04-08 10:07:30 EDT 55.25 MB
→˓96.00 MB
6 active
acctg 1428422324880 2015-04-07 11:58:45 EDT 54.53 MB
→˓32.00 MB
2 active
acctg 1428355371389 2015-04-06 17:22:53 EDT 5.71 MB
→˓16.00 MB
1 keep

2.3. Managing Backups 63

https://www.enterprisedb.com/edb-docs/

BART Reference Guide, Release 2.5.7

Invoke the MANAGE subcommand with the -n option to perform a dry run to observe which active
backups would be changed to obsolete according to the retention policy as shown in the following
code sample:

-bash-4.1$ bart MANAGE -s acctg -n
INFO: processing server 'acctg', backup '1428768344061'
INFO: processing server 'acctg', backup '1428684537299'
INFO: processing server 'acctg', backup '1428589759899'
INFO: processing server 'acctg', backup '1428502049836'
INFO: marking backup '1428502049836' as obsolete
INFO: 6 WAL file(s) marked obsolete
INFO: processing server 'acctg', backup '1428422324880'
INFO: marking backup '1428422324880' as obsolete
INFO: 2 WAL file(s) marked obsolete
INFO: processing server 'acctg', backup '1428355371389'

The dry run shows that backups 1428502049836 and 1428422324880 would be marked as
obsolete.

Note: A dry run does not change the backup status. The two backups that would be considered
obsolete are still marked as active:

-bash-4.1$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID BACKUP TIME BACKUP SIZE
→˓WAL(s) SIZE
WAL FILES STATUS
acctg 1428768344061 2015-04-11 12:05:46 EDT 5.72 MB
→˓48.00 MB
3 active
acctg 1428684537299 2015-04-10 12:49:00 EDT 5.72 MB
→˓272.00 MB
17 active
acctg 1428589759899 2015-04-09 10:29:27 EDT 5.65 MB
→˓96.00 MB
6 active
acctg 1428502049836 2015-04-08 10:07:30 EDT 55.25 MB
→˓96.00 MB
6 active
acctg 1428422324880 2015-04-07 11:58:45 EDT 54.53 MB
→˓32.00 MB
2 active
acctg 1428355371389 2015-04-06 17:22:53 EDT 5.71 MB
→˓16.00 MB
1 keep

Invoke the MANAGE subcommand omitting the -n option to change and mark the status of the

2.3. Managing Backups 64

BART Reference Guide, Release 2.5.7

backups as obsolete:

-bash-4.1$ bart MANAGE -s acctg
INFO: processing server 'acctg', backup '1428768344061'
INFO: processing server 'acctg', backup '1428684537299'
INFO: processing server 'acctg', backup '1428589759899'
INFO: processing server 'acctg', backup '1428502049836'
INFO: marking backup '1428502049836' as obsolete
INFO: 6 WAL file(s) marked obsolete
INFO: processing server 'acctg', backup '1428422324880'
INFO: marking backup '1428422324880' as obsolete
INFO: 2 WAL file(s) marked obsolete
INFO: processing server 'acctg', backup '1428355371389'

The obsolete backups can be observed in a number of ways. Use the MANAGE subcommand with
the -l option to list the obsolete backups:

-bash-4.1$ bart MANAGE -s acctg -l
INFO: 6 WAL file(s) will be removed
SERVER NAME: acctg
BACKUP ID: 1428502049836
BACKUP STATUS: obsolete
BACKUP TIME: 2015-04-08 10:07:30 EDT
BACKUP SIZE: 55.25 MB
WAL FILE(s): 6
WAL FILE: 000000010000000100000003
WAL FILE: 000000010000000100000002
WAL FILE: 000000010000000100000001
WAL FILE: 000000010000000100000000
WAL FILE: 0000000100000000000000E3
WAL FILE: 0000000100000000000000E2
INFO: 2 WAL file(s) will be removed
SERVER NAME: acctg
BACKUP ID: 1428422324880
BACKUP STATUS: obsolete
BACKUP TIME: 2015-04-07 11:58:45 EDT
BACKUP SIZE: 54.53 MB
WAL FILE(s): 2
WAL FILE: 0000000100000000000000E1
WAL FILE: 0000000100000000000000E0

The STATUS field of the SHOW-BACKUPS subcommand displays the current status:

-bash-4.1$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID BACKUP TIME BACKUP SIZE
→˓WAL(s) SIZE
WAL FILES STATUS

(continues on next page)

2.3. Managing Backups 65

BART Reference Guide, Release 2.5.7

(continued from previous page)

acctg 1428768344061 2015-04-11 12:05:46 EDT 5.72 MB 48.
→˓00 MB
3 active
acctg 1428684537299 2015-04-10 12:49:00 EDT 5.72 MB 272.
→˓00 MB
17 active
acctg 1428589759899 2015-04-09 10:29:27 EDT 5.65 MB 96.
→˓00 MB
6 active
acctg 1428502049836 2015-04-08 10:07:30 EDT 55.25 MB 96.
→˓00 MB
6 obsolete
acctg 1428422324880 2015-04-07 11:58:45 EDT 54.53 MB 32.
→˓00 MB
2 obsolete
acctg 1428355371389 2015-04-06 17:22:53 EDT 5.71 MB 16.
→˓00 MB
1 keep

The details of an individual backup can be displayed using the SHOW-BACKUPS subcommand
with the -t option. Note the status in the BACKUP STATUS field:

-bash-4.1$ bart SHOW-BACKUPS -s acctg -i 1428502049836 -t
SERVER NAME : acctg
BACKUP ID : 1428502049836
BACKUP NAME : none
BACKUP STATUS : obsolete
BACKUP TIME : 2015-04-08 10:07:30 EDT
BACKUP SIZE : 55.25 MB
WAL(S) SIZE : 96.00 MB
NO. OF WALS : 6
FIRST WAL FILE : 0000000100000000000000E2
CREATION TIME : 2015-04-08 10:07:30 EDT
LAST WAL FILE : 000000010000000100000003
CREATION TIME : 2015-04-09 10:25:46 EDT

Use the MANAGE subcommand with the -d option to physically delete the obsolete backups
including the unneeded WAL files:

-bash-4.1$ bart MANAGE -s acctg -d
INFO: removing all obsolete backups of server 'acctg'
INFO: removing obsolete backup '1428502049836'
INFO: 6 WAL file(s) will be removed
INFO: removing WAL file '000000010000000100000003'
INFO: removing WAL file '000000010000000100000002'

(continues on next page)

2.3. Managing Backups 66

BART Reference Guide, Release 2.5.7

(continued from previous page)

INFO: removing WAL file '000000010000000100000001'
INFO: removing WAL file '000000010000000100000000'
INFO: removing WAL file '0000000100000000000000E3'
INFO: removing WAL file '0000000100000000000000E2'
INFO: removing obsolete backup '1428422324880'
INFO: 2 WAL file(s) will be removed
INFO: removing WAL file '0000000100000000000000E1'
INFO: removing WAL file '0000000100000000000000E0'

The SHOW-BACKUPS subcommand now displays the remaining backups marked as active or
keep:

-bash-4.1$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID BACKUP TIME BACKUP SIZE
→˓ WAL(s) SIZE
WAL FILES STATUS
acctg 1428768344061 2015-04-11 12:05:46 EDT 5.72 MB
→˓ 48.00 MB
3 active
acctg 1428684537299 2015-04-10 12:49:00 EDT 5.72 MB
→˓ 272.00 MB
17 active
acctg 1428589759899 2015-04-09 10:29:27 EDT 5.65 MB
→˓ 96.00 MB
6 active
acctg 1428355371389 2015-04-06 17:22:53 EDT 5.71 MB
→˓ 16.00 MB
1 keep

2.3. Managing Backups 67

BART Reference Guide, Release 2.5.7

2.3.2 Using a Recovery Window Retention Policy

This section illustrates the evaluation, marking, and deletion of backup using a recovery window
retention policy. To use the recovery window retention policy, set the retention_policy
parameter to the desired length of time for the recovery window.

This section provides examples of the following:

• How to view the calculated recovery window.

• How to evaluate, mark, and delete backup using a recovery window retention policy.

2.3.2.1 Viewing the Recovery Window

You can view the actual, calculated recovery window by invoking any of the following subcom-
mands:

• MANAGE subcommand in debug mode (along with the -n option).

• SHOW-SERVERS subcommand.

2.3.2.1.1 Viewing the Recovery Window Using the Manage Subcommand

When invoking BART in debug mode with the MANAGE subcommand and the -n option, the
length of the recovery window is calculated based on the retention_policy setting and the
current date/time.

For example, using the following retention_policy settings:

[ACCTG]

host = 127.0.0.1
port = 5444
user = enterprisedb
archive_command = 'cp %p %a/%f'
retention_policy = 3 DAYS
backup-name = acctg_%year-%month-%dayT%hour:%minute:%second
description = "Accounting"

[DEV]

host = 127.0.0.1
port = 5445
user = enterprisedb
archive_command = 'cp %p %a/%f'
retention_policy = 3 WEEKS

(continues on next page)

2.3. Managing Backups 68

BART Reference Guide, Release 2.5.7

(continued from previous page)

description = "Development"

[HR]

host = 127.0.0.1
port = 5432
user = postgres
retention_policy = 3 MONTHS
description = "Human Resources"

2.3. Managing Backups 69

BART Reference Guide, Release 2.5.7

If the MANAGE subcommand is invoked in debug mode along with the -n option on 2015-04-17,
the following results are displayed:

-bash-4.1$ bart -d MANAGE -n
DEBUG: Server: acctg, Now: 2015-04-17 16:34:03 EDT, RetentionWindow:
259200 (secs) ==> 72 hour(s)
DEBUG: Server: dev, Now: 2015-04-17 16:34:03 EDT, RetentionWindow:
1814400 (secs) ==> 504 hour(s)
DEBUG: Server: hr, Now: 2015-04-17 16:34:03 EDT, RetentionWindow:
7776000 (secs) ==> 2160 hour(s)

For server acctg, 72 hours translates to a recovery window of 3 days.

For server dev, 504 hours translates to a recovery window of 21 days (3 weeks).

For server hr, 2160 hours translates to a recovery window of 90 days (3 months).

For a setting of <max_number> MONTHS, the calculated total number of days for the recovery
window is dependent upon the actual number of days in the preceding months from the current
date/time. Thus, <max_number> MONTHS is not always exactly equivalent to <max_number>
x 30 DAYS. For example, if the current date/time is in the month of March, a 1-month recovery
window would be equivalent to only 28 days because the preceding month is February. Thus, for
a current date of March 31, a 1-month recovery window would start on March 3. However, the
typical result is that the day of the month of the starting recovery window boundary will be the
same day of the month of when the MANAGE subcommand is invoked.

2.3.2.1.2 Viewing the Recovery Window Using the Show-Servers Subcommand

This section provides an example of viewing the recovery window using the SHOW-SERVERS
subcommand; the RETENTION POLICY field displays the start of the recovery window.

In the following code sample, the recovery window retention policy setting considers the backups
taken within a 3-day recovery window as the active backups.

[ACCTG]
host = 127.0.0.1
port = 5444
user = enterprisedb
archive_command = 'cp %p %a/%f'
retention_policy = 3 DAYS
description = "Accounting"

The start of the 3-day recovery window displayed in the RETENTION POLICY field is
2015-04-07 14:57:36 EDT when the SHOW-SERVERS subcommand is invoked on
2015-04-10.

At this current point in time, backups taken on or after 2015-04-07 14:57:36 EDTwould be
considered active. Backups taken prior to 2015-04-07 14:57:36 EDT would be considered

2.3. Managing Backups 70

BART Reference Guide, Release 2.5.7

obsolete except for backups marked as keep.

-bash-4.1$ date
Fri Apr 10 14:57:33 EDT 2015
-bash-4.1$
-bash-4.1$ bart SHOW-SERVERS -s acctg
SERVER NAME : acctg
HOST NAME : 127.0.0.1
USER NAME : enterprisedb
PORT : 5444
REMOTE HOST :
RETENTION POLICY : 2015-04-07 14:57:36 EDT
DISK UTILIZATION : 824.77 MB
NUMBER OF ARCHIVES : 37
ARCHIVE PATH : /opt/backup/acctg/archived_wals
ARCHIVE COMMAND : cp %p /opt/backup/acctg/archived_wals/%f
XLOG METHOD : fetch
WAL COMPRESSION : disabled
TABLESPACE PATH(s) :
DESCRIPTION : "Accounting"

In the following code sample, the recovery window retention policy setting considers the backups
taken within a 3-week recovery window as the active backups.

[DEV]
host = 127.0.0.1
port = 5445
user = enterprisedb
archive_command = 'cp %p %a/%f'
retention_policy = 3 WEEKS
description = "Development"

The start of the 3-week recovery window displayed in the RETENTION POLICY field
is 2015-03-20 14:59:42 EDT when the SHOW-SERVERS subcommand is invoked on
2015-04-10.

At this current point in time, backups taken on or after 2015-03-20 14:59:42 EDT would
be considered active. Backups taken prior to 2015-03-20 14:59:42 EDT would be con-
sidered obsolete except for backups marked as keep.

-bash-4.1$ date
Fri Apr 10 14:59:39 EDT 2015
-bash-4.1$
-bash-4.1$ bart SHOW-SERVERS -s dev
SERVER NAME : dev
HOST NAME : 127.0.0.1
USER NAME : enterprisedb

(continues on next page)

2.3. Managing Backups 71

BART Reference Guide, Release 2.5.7

(continued from previous page)

PORT : 5445
REMOTE HOST :
RETENTION POLICY : 2015-03-20 14:59:42 EDT
DISK UTILIZATION : 434.53 MB
NUMBER OF ARCHIVES : 22
ARCHIVE PATH : /opt/backup/dev/archived_wals
ARCHIVE COMMAND : cp %p /opt/backup/dev/archived_wals/%f
XLOG METHOD : fetch
WAL COMPRESSION : disabled
TABLESPACE PATH(s) :
DESCRIPTION : "Development"

In the following code sample, the recovery window retention policy setting considers the backups
taken within a 3-month recovery window as the active backups.

[HR]
host = 127.0.0.1
port = 5432
user = postgres
retention_policy = 3 MONTHS
description = "Human Resources"

The start of the 3-month recovery window displayed in the RETENTION POLICY field
is 2015-01-10 14:04:23 EST when the SHOW-SERVERS subcommand is invoked on
2015-04-10.

At this current point in time, backups taken on or after 2015-01-10 14:04:23 EST would
be considered active. Backups taken prior to 2015-01-10 14:04:23 EST would be con-
sidered obsolete, except for backups marked as keep.

-bash-4.1$ date
Fri Apr 10 15:04:19 EDT 2015
-bash-4.1$
-bash-4.1$ bart SHOW-SERVERS -s hr
SERVER NAME : hr
HOST NAME : 127.0.0.1
USER NAME : postgres
PORT : 5432
REMOTE HOST :
RETENTION POLICY : 2015-01-10 14:04:23 EST
DISK UTILIZATION : 480.76 MB
NUMBER OF ARCHIVES : 26
ARCHIVE PATH : /opt/backup/hr/archived_wals
ARCHIVE COMMAND : scp %p
enterprisedb@192.168.2.22:/opt/backup/hr/archived_wals/%f
XLOG METHOD : fetch

(continues on next page)

2.3. Managing Backups 72

BART Reference Guide, Release 2.5.7

(continued from previous page)

WAL COMPRESSION : disabled
TABLESPACE PATH(s) :
DESCRIPTION : "Human Resources"

2.3.2.2 Evaluating, Marking, and Deleting Backup Using a Recovery Window Re-
tention Policy

The following code sample uses a recovery window retention policy to evaluate, mark, and delete
backups as shown by the following server configuration:

[DEV]
host = 127.0.0.1
port = 5445
user = enterprisedb
archive_command = 'cp %p %a/%f'
retention_policy = 3 DAYS
description = "Development"

The following is the current set of backups. Note that the last backup in the list has been marked
as keep:

-bash-4.1$ bart SHOW-BACKUPS -s dev
SERVER NAME BACKUP ID BACKUP TIME BACKUP SIZE
→˓WAL(s) SIZE
WAL FILES STATUS
dev 1428933278236 2015-04-13 09:54:40 EDT 5.65 MB
→˓16.00 MB
1 active
dev 1428862187757 2015-04-12 14:09:50 EDT 5.65 MB
→˓32.00 MB
2 active
dev 1428768351638 2015-04-11 12:05:54 EDT 5.65 MB
→˓32.00 MB
2 active
dev 1428684544008 2015-04-10 12:49:06 EDT 5.65 MB
→˓224.00 MB
14 active
dev 1428590536488 2015-04-09 10:42:18 EDT 5.65 MB
→˓48.00 MB
3 active
dev 1428502171990 2015-04-08 10:09:34 EDT 5.65 MB
→˓80.00 MB
5 keep

The current date and time is 2015-04-13 16:46:35 EDT as shown below:

2.3. Managing Backups 73

BART Reference Guide, Release 2.5.7

-bash-4.1$ date
Mon Apr 13 16:46:35 EDT 2015

Thus, a 3-day recovery window would evaluate backups prior to 2015-04-10 16:46:35 EDT
as obsolete except for those marked as keep.

Invoke the MANAGE subcommand with the -n option to perform a dry run to observe which active
backups would be changed to obsolete according to the retention policy.

-bash-4.1$ bart MANAGE -s dev -n
INFO: processing server 'dev', backup '1428933278236'
INFO: processing server 'dev', backup '1428862187757'
INFO: processing server 'dev', backup '1428768351638'
INFO: processing server 'dev', backup '1428684544008'
INFO: marking backup '1428684544008' as obsolete
INFO: 14 WAL file(s) marked obsolete
INFO: 1 Unused WAL file(s) present
INFO: processing server 'dev', backup '1428590536488'
INFO: marking backup '1428590536488' as obsolete
INFO: 3 WAL file(s) marked obsolete
INFO: 1 Unused WAL file(s) present
INFO: processing server 'dev', backup '1428502171990'

The dry run shows that backups 1428684544008 and 1428590536488 would be marked as
obsolete.

Also note that a dry run does not change the backup status. The two backups that would be
considered obsolete are still marked as active:

-bash-4.1$ bart SHOW-BACKUPS -s dev\
SERVER NAME BACKUP ID BACKUP TIME BACKUP SIZE

→˓WAL(s) SIZE
WAL FILES STATUS
dev 1428933278236 2015-04-13 09:54:40 EDT 5.65 MB

→˓16.00 MB
1 active
dev 1428862187757 2015-04-12 14:09:50 EDT 5.65 MB

→˓32.00 MB
2 active
dev 1428768351638 2015-04-11 12:05:54 EDT 5.65 MB

→˓32.00 MB
2 active
dev 1428684544008 2015-04-10 12:49:06 EDT 5.65 MB

→˓224.00 MB
14 active
dev 1428590536488 2015-04-09 10:42:18 EDT 5.65 MB

→˓48.00 MB
(continues on next page)

2.3. Managing Backups 74

BART Reference Guide, Release 2.5.7

(continued from previous page)

3 active
dev 1428502171990 2015-04-08 10:09:34 EDT 5.65 MB

→˓80.00 MB
5 keep

Invoke the MANAGE subcommand omitting the -n option to change and mark the status of the
backups as obsolete:

-bash-4.1$ bart MANAGE -s dev
INFO: processing server 'dev', backup '1428933278236'
INFO: processing server 'dev', backup '1428862187757'
INFO: processing server 'dev', backup '1428768351638'
INFO: processing server 'dev', backup '1428684544008'
INFO: marking backup '1428684544008' as obsolete
INFO: 14 WAL file(s) marked obsolete
INFO: 1 Unused WAL file(s) present
INFO: processing server 'dev', backup '1428590536488'
INFO: marking backup '1428590536488' as obsolete
INFO: 3 WAL file(s) marked obsolete
INFO: 1 Unused WAL file(s) present
INFO: processing server 'dev', backup '1428502171990'

The obsolete backups can be observed in a number of ways. Use the MANAGE subcommand with
the -l option to list the obsolete backups:

-bash-4.1$ bart MANAGE -s dev -l
INFO: 14 WAL file(s) will be removed
INFO: 1 Unused WAL file(s) will be removed
SERVER NAME: dev
BACKUP ID: 1428684544008
BACKUP STATUS: obsolete
BACKUP TIME: 2015-04-10 12:49:06 EDT
BACKUP SIZE: 5.65 MB
WAL FILE(s): 14
UNUSED WAL FILE(s): 1
WAL FILE: 00000001000000000000002E
WAL FILE: 00000001000000000000002D
WAL FILE: 00000001000000000000002C
WAL FILE: 00000001000000000000002B
WAL FILE: 00000001000000000000002A
WAL FILE: 000000010000000000000029
WAL FILE: 000000010000000000000028
WAL FILE: 000000010000000000000027
WAL FILE: 000000010000000000000026
WAL FILE: 000000010000000000000025

(continues on next page)

2.3. Managing Backups 75

BART Reference Guide, Release 2.5.7

(continued from previous page)

WAL FILE: 000000010000000000000024
WAL FILE: 000000010000000000000023
WAL FILE: 000000010000000000000022
WAL FILE: 000000010000000000000021
UNUSED WAL FILE: 00000001000000000000000F.00000028
INFO: 3 WAL file(s) will be removed
INFO: 1 Unused WAL file(s) will be removed
SERVER NAME: dev
BACKUP ID: 1428590536488
BACKUP STATUS: obsolete
BACKUP TIME: 2015-04-09 10:42:18 EDT\
BACKUP SIZE: 5.65 MB
WAL FILE(s): 3
UNUSED WAL FILE(s): 1
WAL FILE: 000000010000000000000020
WAL FILE: 00000001000000000000001F
WAL FILE: 00000001000000000000001E
UNUSED WAL FILE: 00000001000000000000000F.00000028

The STATUS field of the SHOW-BACKUPS subcommand displays the current status:

-bash-4.1$ bart SHOW-BACKUPS -s dev
SERVER NAME BACKUP ID BACKUP TIME BACKUP SIZE
→˓WAL(s) SIZE
WAL FILES STATUS
dev 1428933278236 2015-04-13 09:54:40 EDT 5.65 MB 16.
→˓00 MB
1 active
dev 1428862187757 2015-04-12 14:09:50 EDT 5.65 MB 32.
→˓00 MB
2 active
dev 1428768351638 2015-04-11 12:05:54 EDT 5.65 MB 32.
→˓00 MB
2 active
dev 1428684544008 2015-04-10 12:49:06 EDT 5.65 MB 224.
→˓00 MB
14 obsolete
dev 1428590536488 2015-04-09 10:42:18 EDT 5.65 MB 48.
→˓00 MB
3 obsolete
dev 1428502171990 2015-04-08 10:09:34 EDT 5.65 MB 80.
→˓00 MB
5 keep

The details of an individual backup can be displayed using the SHOW-BACKUPS subcommand
with the -t option. Note the status in the BACKUP STATUS field:

2.3. Managing Backups 76

BART Reference Guide, Release 2.5.7

-bash-4.1$ bart SHOW-BACKUPS -s dev -i 1428684544008 -t
SERVER NAME : dev
BACKUP ID : 1428684544008
BACKUP NAME : none
BACKUP STATUS : obsolete
BACKUP TIME : 2015-04-10 12:49:06 EDT
BACKUP SIZE : 5.65 MB
WAL(S) SIZE : 224.00 MB
NO. OF WALS : 14
FIRST WAL FILE : 000000010000000000000021
CREATION TIME : 2015-04-10 12:49:06 EDT
LAST WAL FILE : 00000001000000000000002E
CREATION TIME : 2015-04-11 12:02:15 EDT

Use the MANAGE subcommand with the -d option to physically delete the obsolete backups in-
cluding the unneeded WAL files.

-bash-4.1$ bart MANAGE -s dev -d
INFO: removing all obsolete backups of server 'dev'
INFO: removing obsolete backup '1428684544008'
INFO: 14 WAL file(s) will be removed
INFO: 1 Unused WAL file(s) will be removed
INFO: removing WAL file '00000001000000000000002E'
INFO: removing WAL file '00000001000000000000002D'
INFO: removing WAL file '00000001000000000000002C'
INFO: removing WAL file '00000001000000000000002B'
INFO: removing WAL file '00000001000000000000002A'
INFO: removing WAL file '000000010000000000000029'
INFO: removing WAL file '000000010000000000000028'
INFO: removing WAL file '000000010000000000000027'
INFO: removing WAL file '000000010000000000000026'
INFO: removing WAL file '000000010000000000000025'
INFO: removing WAL file '000000010000000000000024'
INFO: removing WAL file '000000010000000000000023'
INFO: removing WAL file '000000010000000000000022'
INFO: removing WAL file '000000010000000000000021'
INFO: removing (unused) WAL file '00000001000000000000000F.00000028'
INFO: removing obsolete backup '1428590536488'
INFO: 3 WAL file(s) will be removed
INFO: removing WAL file '000000010000000000000020'
INFO: removing WAL file '00000001000000000000001F'
INFO: removing WAL file '00000001000000000000001E'

The SHOW-BACKUPS subcommand now displays the remaining backups marked as active or
keep:

2.3. Managing Backups 77

BART Reference Guide, Release 2.5.7

-bash-4.1$ bart SHOW-BACKUPS -s dev
SERVER NAME BACKUP ID BACKUP TIME BACKUP SIZE
→˓WAL(s) SIZE
WAL FILES STATUS
dev 1428933278236 2015-04-13 09:54:40 EDT 5.65 MB
→˓16.00 MB
1 active
dev 1428862187757 2015-04-12 14:09:50 EDT 5.65 MB
→˓32.00 MB
2 active
dev 1428768351638 2015-04-11 12:05:54 EDT 5.65 MB
→˓32.00 MB
2 active
dev 1428502171990 2015-04-08 10:09:34 EDT 5.65 MB
→˓80.00 MB
5 keep

2.3. Managing Backups 78

BART Reference Guide, Release 2.5.7

2.4 Managing Incremental Backups

This section illustrates evaluating, marking, and deleting incremental backups using the MANAGE
and DELETE subcommands using a redundancy retention policy and a recovery window retention
policy. For detailed information about the MANAGE and DELETE subcommands, as well as the
redundancy retention and recovery window retention policy, see the EDB Backup and Recovery
User Guide available at the EDB website.

• Using a Redundancy Retention Policy provides an example of using the MANAGE and
DELETE subcommands when a 3 backup redundancy retention policy is in effect.

• Using a Recovery Window Retention Policy provides an example of using the MANAGE and
DELETE subcommands when a 1-day recovery window retention policy is in effect.

2.4. Managing Incremental Backups 79

https://www.enterprisedb.com/edb-docs/

BART Reference Guide, Release 2.5.7

2.4.1 Using a Redundancy Retention Policy

The following code samples uses the MANAGE and DELETE subcommands to evaluate, mark, and
delete incremental backups when a 3 backup redundancy retention policy is in effect. The example
uses the following server configuration:

[ACCTG]

host = 192.168.2.24
port = 5445
user = enterprisedb
cluster_owner = enterprisedb
remote_host = enterprisedb@192.168.2.24
allow_incremental_backups = enabled
retention_policy = 3 BACKUPS
description = "Accounting"

The example uses the following set of backups. In these code samples, some columns have been
omitted from the SHOW-BACKUPS output to display the relevant information in a more observable
manner.

-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID ... BACKUP PARENT BACKUP TIME
→˓ ... STATUS
acctg 1481749696905 ... 1481749673603 2016-12-14 16:08:17
→˓EST ... active
acctg 1481749673603 ... 1481749651927 2016-12-14 16:07:53
→˓EST ... active
acctg 1481749651927 ... 1481749619582 2016-12-14 16:07:32
→˓EST ... active
acctg 1481749619582 ... none 2016-12-14 16:07:00
→˓EST ... active

There is one backup chain. The first backup is the initial full backup.

Backup chain: 1481749619582 => 1481749651927 => 1481749673603 =>
1481749696905

The MANAGE subcommand is invoked as shown by the following:

-bash-4.2$ bart MANAGE -s acctg
INFO: processing server 'acctg', backup '1481749619582'
INFO: 2 Unused WAL file(s) present
INFO: 4 Unused file(s) (WALs included) present, use 'MANAGE -l' for the
list

The following code sample shows the resulting status of the backups:

2.4. Managing Incremental Backups 80

BART Reference Guide, Release 2.5.7

-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID ... BACKUP PARENT BACKUP TIME
→˓ ... STATUS
acctg 1481749696905 ... 1481749673603 2016-12-14 16:08:17
→˓EST ... active
acctg 1481749673603 ... 1481749651927 2016-12-14 16:07:53
→˓EST ... active
acctg 1481749651927 ... 1481749619582 2016-12-14 16:07:32
→˓EST ... active
acctg 1481749619582 ... none 2016-12-14 16:07:00
→˓EST ... active

The status remains active for all backups. Even though the total number of backups exceeds the
3 backup redundancy retention policy, it is only the total number of full backups that is used to
determine if the redundancy retention policy has been exceeded. Additional full backups are added
including a second backup chain. The following example shows the resulting list of backups:

-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID ... BACKUP PARENT BACKUP TIME
→˓ ... STATUS
acctg 1481750365397 ... none 2016-12-14 16:19:26
→˓EST ... active
acctg 1481750098924 ... 1481749997807 2016-12-14 16:14:59
→˓EST ... active
acctg 1481749997807 ... none 2016-12-14 16:13:18
→˓EST ... active
acctg 1481749992003 ... none 2016-12-14 16:13:12
→˓EST ... active
acctg 1481749696905 ... 1481749673603 2016-12-14 16:08:17
→˓EST ... active
acctg 1481749673603 ... 1481749651927 2016-12-14 16:07:53
→˓EST ... active
acctg 1481749651927 ... 1481749619582 2016-12-14 16:07:32
→˓EST ... active
acctg 1481749619582 ... none 2016-12-14 16:07:00
→˓EST ... active

Second backup chain: 1481749997807 => 1481750098924

The MANAGE subcommand is invoked, but now with a total of four active full backups.

-bash-4.2$ bart MANAGE -s acctg
INFO: processing server 'acctg', backup '1481750365397'
INFO: processing server 'acctg', backup '1481749997807'
INFO: processing server 'acctg', backup '1481749992003'
INFO: processing server 'acctg', backup '1481749619582'

(continues on next page)

2.4. Managing Incremental Backups 81

BART Reference Guide, Release 2.5.7

(continued from previous page)

INFO: marking backup '1481749619582' as obsolete
INFO: 3 incremental(s) of backup '1481749619582' will be marked
→˓obsolete
INFO: marking incremental backup '1481749696905' as obsolete
INFO: marking incremental backup '1481749673603' as obsolete
INFO: marking incremental backup '1481749651927' as obsolete
INFO: 4 WAL file(s) marked obsolete
INFO: 2 Unused WAL file(s) present
INFO: 4 Unused file(s) (WALs included) present, use 'MANAGE -l' for the
list

The oldest full backup and its chain of incremental backups are now marked as obsolete.

-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID ... BACKUP PARENT BACKUP TIME
→˓ ... STATUS
acctg 1481750365397 ... none 2016-12-14 16:19:26
→˓EST ... active
acctg 1481750098924 ... 1481749997807 2016-12-14 16:14:59
→˓EST ... active
acctg 1481749997807 ... none 2016-12-14 16:13:18
→˓EST ... active
acctg 1481749992003 ... none 2016-12-14 16:13:12
→˓EST ... active
acctg 1481749696905 ... 1481749673603 2016-12-14 16:08:17
→˓EST ... obsolete
acctg 1481749673603 ... 1481749651927 2016-12-14 16:07:53
→˓EST ... obsolete
acctg 1481749651927 ... 1481749619582 2016-12-14 16:07:32
→˓EST ... obsolete
acctg 1481749619582 ... none 2016-12-14 16:07:00
→˓EST ... obsolete

Invoking the MANAGE subcommand with the -d option deletes the entire obsolete backup chain.

-bash-4.2$ bart MANAGE -s acctg -d
INFO: removing all obsolete backups of server 'acctg'
INFO: removing obsolete backup '1481749619582'
INFO: 4 WAL file(s) will be removed
INFO: 3 incremental(s) of backup '1481749619582' will be removed
INFO: removing obsolete incremental backup '1481749696905'
INFO: removing obsolete incremental backup '1481749673603'
INFO: removing obsolete incremental backup '1481749651927'
INFO: removing WAL file '000000010000000100000000'
INFO: removing WAL file '0000000100000000000000FF'
INFO: removing WAL file '0000000100000000000000FE'

(continues on next page)

2.4. Managing Incremental Backups 82

BART Reference Guide, Release 2.5.7

(continued from previous page)

INFO: removing WAL file '0000000100000000000000FD'
INFO: 16 Unused file(s) will be removed
INFO: removing (unused) file '000000010000000100000004.00000028.backup'
.
.
.
INFO: removing (unused) file
'0000000100000000FB00002800000000FC000000.mbm'

The following code sample shows the remaining full backups and the second backup chain:

-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID ... BACKUP PARENT BACKUP TIME
→˓ ... STATUS
acctg 1481750365397 ... none 2016-12-14 16:19:26
→˓EST ... active
acctg 1481750098924 ... 1481749997807 2016-12-14 16:14:59
→˓EST ... active
acctg 1481749997807 ... none 2016-12-14 16:13:18
→˓EST ... active
acctg 1481749992003 ... none 2016-12-14 16:13:12
→˓EST ... active

2.4. Managing Incremental Backups 83

BART Reference Guide, Release 2.5.7

2.4.2 Using a Recovery Window Retention Policy

The following example demonstrates using the MANAGE and DELETE subcommands to evaluate,
mark, and delete incremental backups when a 1-day recovery window retention policy is in effect.
The example uses the following server configuration:

[ACCTG]

host = 192.168.2.24
port = 5445
user = enterprisedb
cluster_owner = enterprisedb
remote_host = enterprisedb@192.168.2.24
allow_incremental_backups = enabled
retention_policy = 1 DAYS
description = "Accounting"

The example uses the following set of backups. In the samples, some columns have been omitted
from the SHOW-BACKUPS output to display the relevant information in a more observable manner.

-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID ... BACKUP PARENT BACKUP TIME ... STATUS
acctg 1481559303348 ... 1481554203288 2016-12-12 11:15:03 EST ...
→˓active
acctg 1481559014359 ... 1481554802918 2016-12-12 11:10:14 EST ...
→˓active
acctg 1481554802918 ... 1481553914533 2016-12-12 10:00:03 EST ...
→˓active
acctg 1481554203288 ... 1481553651165 2016-12-12 09:50:03 EST ...
→˓active
acctg 1481553914533 ... 1481553088053 2016-12-12 09:45:14 EST ...
→˓active
acctg 1481553651165 ... none 2016-12-12 09:40:51 EST ... active
acctg 1481553088053 ... 1481552078404 2016-12-12 09:31:28 EST ...
→˓active
acctg 1481552078404 ... none 2016-12-12 09:14:39 EST ... active

There are two backup chains. In each of the following chains, the first backup is the initial full
backup.

First backup chain: 1481552078404 => 1481553088053 => 1481553914533 =>
1481554802918 => 1481559014359

Second backup chain: 1481553651165 => 1481554203288 => 1481559303348

The MANAGE subcommand is invoked when the first full backup 1481552078404 falls out of the
recovery window. When the MANAGE subcommand is invoked, it is 2016-12-13 09:20:03
EST, thus making the start of the 1-day recovery window at 2016-12-12 09:20:03 EST

2.4. Managing Incremental Backups 84

BART Reference Guide, Release 2.5.7

exactly one day earlier. This backup was taken at 2016-12-12 09:14:39 EST, which is
about 5 ½ minutes before the start of the recovery window, thus making the backup obsolete.

-bash-4.2$ date
Tue Dec 13 09:20:03 EST 2016
-bash-4.2$ bart MANAGE -s acctg
INFO: processing server 'acctg', backup '1481553651165'
INFO: processing server 'acctg', backup '1481552078404'
INFO: marking backup '1481552078404' as obsolete
INFO: 4 incremental(s) of backup '1481552078404' will be marked
→˓obsolete
INFO: marking incremental backup '1481559014359' as obsolete
INFO: marking incremental backup '1481554802918' as obsolete
INFO: marking incremental backup '1481553914533' as obsolete
INFO: marking incremental backup '1481553088053' as obsolete
INFO: 7 WAL file(s) marked obsolete
INFO: 1 Unused WAL file(s) present
INFO: 2 Unused file(s) (WALs included) present, use 'MANAGE -l' for
→˓the list

The incremental backup date and time are within the recovery window since they were taken after
the start of the recovery window of 2016-12-12 09:20:03 EST, but all backups in the chain
are marked as obsolete.

-bash-4.2$ bart SHOW-BACKUPS -s acctg\
SERVER NAME BACKUP ID ... BACKUP PARENT BACKUP TIME
... STATUS
acctg 1481559303348 ... 1481554203288 2016-12-12
→˓11:15:03 EST
... active
acctg 1481559014359 ... 1481554802918 2016-12-12
→˓11:10:14 EST
... obsolete
acctg 1481554802918 ... 1481553914533 2016-12-12
→˓10:00:03 EST
... obsolete
acctg 1481554203288 ... 1481553651165 2016-12-12
→˓09:50:03 EST
... active
acctg 1481553914533 ... 1481553088053 2016-12-12
→˓09:45:14 EST
... obsolete
acctg 1481553651165 ... none 2016-12-12
→˓09:40:51 EST
... active
acctg 1481553088053 ... 1481552078404 2016-12-12
→˓09:31:28 EST

(continues on next page)

2.4. Managing Incremental Backups 85

BART Reference Guide, Release 2.5.7

(continued from previous page)

... obsolete
acctg 1481552078404 ... none 2016-12-12
→˓09:14:39 EST
... obsolete

The following code sample shows how the entire backup chain is changed back to active status by
invoking the MANAGE subcommand with the -c nokeep option on the full backup of the chain.

-bash-4.2$ bart MANAGE -s acctg -c nokeep -i 1481552078404
INFO: changing status of backup '1481552078404' of server 'acctg' from
'obsolete' to 'active'
INFO: status of 4 incremental(s) of backup '1481552078404' will be
changed
INFO: changing status of incremental backup '1481559014359' of server
'acctg' from 'obsolete' to 'active'
INFO: changing status of incremental backup '1481554802918' of server
'acctg' from 'obsolete' to 'active'
INFO: changing status of incremental backup '1481553914533' of server
'acctg' from 'obsolete' to 'active'
INFO: changing status of incremental backup '1481553088053' of server
'acctg' from 'obsolete' to 'active'
INFO: 7 WAL file(s) changed

The backup chain has now been reset to active status.

-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID ... BACKUP PARENT BACKUP TIME
→˓ ... STATUS
acctg 1481559303348 ... 1481554203288 2016-12-12
→˓11:15:03 EST ... active
acctg 1481559014359 ... 1481554802918 2016-12-12
→˓11:10:14 EST ... active
acctg 1481554802918 ... 1481553914533 2016-12-12
→˓10:00:03 EST ... active
acctg 1481554203288 ... 1481553651165 2016-12-12
→˓09:50:03 EST ... active
acctg 1481553914533 ... 1481553088053 2016-12-12
→˓09:45:14 EST ... active
acctg 1481553651165 ... none 2016-12-12
→˓09:40:51 EST ... active
acctg 1481553088053 ... 1481552078404 2016-12-12
→˓09:31:28 EST ... active
acctg 1481552078404 ... none 2016-12-12
→˓09:14:39 EST ... active

The following code sample shows usage of the DELETE subcommand on an incremental backup.

2.4. Managing Incremental Backups 86

BART Reference Guide, Release 2.5.7

The specified incremental backup (1481554802918) in the first backup chain as well as its
successive incremental backup (1481559014359) are deleted.

-bash-4.2$ bart DELETE -s acctg -i 1481554802918
INFO: deleting backup '1481554802918' of server 'acctg'
INFO: deleting backup '1481554802918'
INFO: 1 incremental backup(s) will be deleted
INFO: deleting incremental backup '1481559014359'
INFO: WALs of deleted backup(s) will belong to prior backup(if any), or
will be marked unused
INFO: 2 Unused file(s) will be removed
INFO: removing (unused) file '0000000100000000000000BA'
INFO: removing (unused) file
'0000000100000000BA00002800000000BB000000.mbm'
INFO: backup(s) deleted

The results show that backups 1481554802918 and 1481559014359 are no longer listed by
the SHOW-BACKUPS subcommand:

-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID ... BACKUP PARENT BACKUP TIME
→˓ ... STATUS
acctg 1481559303348 ... 1481554203288 2016-12-12 11:15:03
→˓EST ... active
acctg 1481554203288 ... 1481553651165 2016-12-12 09:50:03
→˓EST ... active
acctg 1481553914533 ... 1481553088053 2016-12-12 09:45:14
→˓EST ... active
acctg 1481553651165 ... none 2016-12-12 09:40:51
→˓EST ... active
acctg 1481553088053 ... 1481552078404 2016-12-12 09:31:28
→˓EST ... active
acctg 1481552078404 ... none 2016-12-12 09:14:39
→˓EST ... active

The MANAGE subcommand is invoked again. This time both backup chains are marked obsolete
since the full backups of both chains fall out of the start of the recovery window, which is now
2016-12-12 09:55:03 EST:

-bash-4.2$ date
Tue Dec 13 09:55:03 EST 2016
-bash-4.2$ bart MANAGE -s acctg
INFO: processing server 'acctg', backup '1481553651165'
INFO: marking backup '1481553651165' as obsolete
INFO: 2 incremental(s) of backup '1481553651165' will be marked
→˓obsolete
INFO: marking incremental backup '1481559303348' as obsolete

(continues on next page)

2.4. Managing Incremental Backups 87

BART Reference Guide, Release 2.5.7

(continued from previous page)

INFO: marking incremental backup '1481554203288' as obsolete
INFO: 38 WAL file(s) marked obsolete
INFO: processing server 'acctg', backup '1481552078404'
INFO: marking backup '1481552078404' as obsolete
INFO: 2 incremental(s) of backup '1481552078404' will be marked
→˓obsolete
INFO: marking incremental backup '1481553914533' as obsolete
INFO: marking incremental backup '1481553088053' as obsolete
INFO: 7 WAL file(s) marked obsolete

The following code sample shows both backup chains marked as obsolete:

-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID ... BACKUP PARENT BACKUP TIME
... STATUS
acctg 1481559303348 ... 1481554203288 2016-12-12 11:15:03
→˓EST
... obsolete
acctg 1481554203288 ... 1481553651165 2016-12-12 09:50:03
→˓EST
... obsolete
acctg 1481553914533 ... 1481553088053 2016-12-12 09:45:14
→˓EST
... obsolete
acctg 1481553651165 ... none 2016-12-12 09:40:51
→˓EST
... obsolete
acctg 1481553088053 ... 1481552078404 2016-12-12 09:31:28
→˓EST
... obsolete
acctg 1481552078404 ... none 2016-12-12 09:14:39
→˓EST
... obsolete

The following code sample demonstrates using the MANAGE subcommand with the -c keep
option to keep a backup chain indefinitely. The MANAGE subcommand with the -c keep option
must specify the backup identifier or backup name of the full backup of the chain, and not any
incremental backup.

-bash-4.2$ bart MANAGE -s acctg -c keep -i 1481553651165
INFO: changing status of backup '1481553651165' of server 'acctg' from
'obsolete' to 'keep'
INFO: status of 2 incremental(s) of backup '1481553651165' will be
changed
INFO: changing status of incremental backup '1481559303348' of server

(continues on next page)

2.4. Managing Incremental Backups 88

BART Reference Guide, Release 2.5.7

(continued from previous page)

'acctg' from 'obsolete' to 'keep'
INFO: changing status of incremental backup '1481554203288' of server
'acctg' from 'obsolete' to 'keep'
INFO: 38 WAL file(s) changed

The full backup 1481553651165 and its successive incremental backups 1481554203288
and 1481559303348 have been changed to keep status:

-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID ... BACKUP PARENT BACKUP TIME
... STATUS
acctg 1481559303348 ... 1481554203288 2016-12-12 11:15:03
→˓EST
... keep
acctg 1481554203288 ... 1481553651165 2016-12-12 09:50:03
→˓EST
... keep
acctg 1481553914533 ... 1481553088053 2016-12-12 09:45:14
→˓EST
... obsolete
acctg 1481553651165 ... none 2016-12-12 09:40:51
→˓EST
... keep
acctg 1481553088053 ... 1481552078404 2016-12-12 09:31:28
→˓EST
... obsolete
acctg 1481552078404 ... none 2016-12-12 09:14:39
→˓EST
... obsolete

Finally, the MANAGE subcommand with the -d option is used to delete the obsolete backup
chain:

-bash-4.2$ bart MANAGE -s acctg -d
INFO: removing all obsolete backups of server 'acctg'
INFO: removing obsolete backup '1481552078404'
INFO: 7 WAL file(s) will be removed
INFO: 2 incremental(s) of backup '1481552078404' will be removed
INFO: removing obsolete incremental backup '1481553914533'
INFO: removing obsolete incremental backup '1481553088053'
INFO: removing WAL file '0000000100000000000000C1'
INFO: removing WAL file '0000000100000000000000C0'
INFO: removing WAL file '0000000100000000000000BF'
INFO: removing WAL file '0000000100000000000000BE'
INFO: removing WAL file '0000000100000000000000BD'

(continues on next page)

2.4. Managing Incremental Backups 89

BART Reference Guide, Release 2.5.7

(continued from previous page)

INFO: removing WAL file '0000000100000000000000BC'
INFO: removing WAL file '0000000100000000000000BB'
INFO: 48 Unused file(s) will be removed
INFO: removing (unused) file '0000000100000000000000FA'
.
.
.
INFO: removing (unused) file '0000000100000000000000BB.00000028.backup'

Only the backup chain with the keep status remains as shown below:

-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID ... BACKUP PARENT BACKUP TIME
... STATUS
acctg 1481559303348 ... 1481554203288 2016-12-12 11:15:03
→˓EST
... keep
acctg 1481554203288 ... 1481553651165 2016-12-12 09:50:03
→˓EST
... keep
acctg 1481553651165 ... none 2016-12-12 09:40:51
→˓EST
... keep

2.4. Managing Incremental Backups 90

CHAPTER 3

Sample BART System with Local and Remote Database
Servers

This section describes a sample BART managed backup and recovery system consisting of both
local and remote database servers. The complete steps to configure and operate the system are
provided.

For detailed information about configuring a BART system, see the EDB Backup and Recovery
Installation and Upgrade Guide. For detailed information about the operational procedures and
BART subcommands, see the EDB Backup and Recovery User Guide. These guides are available
at the EDB website.

The environment for this sample system is as follows:

• BART on host 192.168.2.22 running with BART user account enterprisedb

• Local Advanced Server on host 192.168.2.22 running with user account
enterprisedb

• Remote Advanced Server on host 192.168.2.24 running with user account
enterprisedb

• Remote PostgreSQL server on host 192.168.2.24 running with user account postgres

Passwordless SSH/SCP connections are required between the following:

• BART on host 192.168.2.22 and the local Advanced Server on the same host 192.
168.2.22

• BART on host 192.168.2.22 and the remote Advanced Server on host 192.168.2.24

91

https://www.enterprisedb.com/edb-docs/

BART Reference Guide, Release 2.5.7

• BART on host 192.168.2.22 and the remote PostgreSQL server on host 192.168.2.
24

The following sections demonstrate configuring and taking full backups only. To support incre-
mental backups as well, enable the allow_incremental_backups parameter for the desired
database servers and use the WAL scanner program.

• The BART Configuration File shows the settings used in the BART configuration file.

• Establishing SSH/SCP Passwordless Connections provides an example of how to establish
an SSH/SCP passwordless connection.

• Configuring a Replication Database User provides an example of how to configure the repli-
cation database user.

• WAL Archiving Configuration Parameters provides an example of how to configure WAL
archiving.

• Creating the BART Backup Catalog provides information about creating a BART Backup
Catalog.

• Starting the Database Servers with WAL Archiving provides example of starting the database
servers with WAL archiving.

• Taking a Full Backup illustrates taking the first full backup of the database servers.

• Using Point-In-Time Recovery demonstrates the point-in-time recovery operation on the re-
mote PostgreSQL database server.

3.1 The BART Configuration File

The following code snippet shows the settings used in the BART configuration file for the examples
that follow:

[BART]
bart_host= enterprisedb@192.168.2.22
backup_path = /opt/backup
pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup
retention_policy = 6 BACKUPS
logfile = /tmp/bart.log
scanner_logfile = /tmp/bart_scanner.log

[ACCTG]
host = 127.0.0.1
port = 5444
user = enterprisedb
cluster_owner = enterprisedb
backup_name = acctg_%year-%month-%dayT%hour:%minute

(continues on next page)

3.1. The BART Configuration File 92

BART Reference Guide, Release 2.5.7

(continued from previous page)

archive_command = 'cp %p %a/%f'
description = "Accounting"

[MKTG]

host = 192.168.2.24
port = 5444
user = repuser
cluster_owner = enterprisedb
backup_name = mktg_%year-%month-%dayT%hour:%minute
remote_host = enterprisedb@192.168.2.24
description = "Marketing"

[HR]

host = 192.168.2.24
port = 5432
user = postgres
cluster_owner = postgres
backup_name = hr_%year-%month-%dayT%hour:%minute
remote_host = postgres@192.168.2.24
copy_wals_during_restore = enabled
description = "Human Resources"

3.1. The BART Configuration File 93

BART Reference Guide, Release 2.5.7

3.2 Establishing SSH/SCP Passwordless Connections

This section demonstrates how passwordless SSH/SCP connections are established with the autho-
rized public keys files.

3.2.1 Generating a Public Key File for the BART User Account

The BART user account is enterprisedb with a home directory of /opt/PostgresPlus/
9.6AS.

To generate the public key file, as a root user, first create the .ssh subdirectory in the BART user’s
home directory and assign ownership of this directory to the enterprisedb user, ensuring there
are no groups or other users that can access the .ssh directory.

[root@localhost 9.6AS]# pwd
/opt/PostgresPlus/9.6AS
[root@localhost 9.6AS]# mkdir .ssh
[root@localhost 9.6AS]# chown enterprisedb .ssh
[root@localhost 9.6AS]# chgrp enterprisedb .ssh
[root@localhost 9.6AS]# chmod 700 .ssh
[root@localhost 9.6AS]# ls -la | grep ssh
drwx------ 2 enterprisedb enterprisedb 4096 Apr 23 13:02 .ssh

Then, generate the public key file:

[user@localhost ~]$ su - enterprisedb
Password:
-bash-4.1$ pwd
/opt/PostgresPlus/9.6AS
-bash-4.1$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key
(/opt/PostgresPlus/9.6AS/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in
/opt/PostgresPlus/9.6AS/.ssh/id_rsa.
Your public key has been saved in
/opt/PostgresPlus/9.6AS/.ssh/id_rsa.pub.
The key fingerprint is:
de:65:34:d6:b1:d2:32:3c:b0:43:c6:a3:c0:9f:f4:64
enterprisedb@localhost.localdomain
The key's randomart image is:
+----[RSA 2048]----+
| . .+ . |

(continues on next page)

3.2. Establishing SSH/SCP Passwordless Connections 94

BART Reference Guide, Release 2.5.7

(continued from previous page)

| o .oE+ o o |
| + * o.X + |
| + .+ * |
| S o |
| . . o |
| . . |
|

|
| |
+-------------------+

The following are the resulting files. id_rsa.pub is the public key file of BART user account
enterprisedb.

-bash-4.1$ ls -l .ssh
total 8
-rw------- 1 enterprisedb enterprisedb 1675 Apr 23 13:04 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Apr 23 13:04 id_rsa.pub

3.2.2 Configuring Access between Local Advanced Server and the
BART Host

Even when the Advanced Server database is on the same host as the BART user account, and the
Advanced Server database cluster owner is also the BART user account (enterprisedb is this
case), a passwordless SSH/SCP connection must be established from the same user account to
itself.

On the BART host where the public key file was just generated (as shown in Generating a Public
Key File for the BART User Account), create the authorized keys file by appending the public key
file to any existing authorized keys file.

Log into the BART host as the BART user account and append the public key file, id_rsa.pub
onto the authorized_keys file in the same .ssh directory:

[user@localhost ~]$ su - enterprisedb
Password:
Last login: Thu Mar 23 10:27:35 EDT 2017 on pts/0
-bash-4.2$ pwd
/opt/PostgresPlus/9.6AS
-bash-4.2$ ls -l .ssh
total 12
-rw------- 1 enterprisedb enterprisedb 1675 Mar 23 09:54 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Mar 23 09:54 id_rsa.pub
-rw-r--r-- 1 enterprisedb enterprisedb 345 Mar 23 10:05 known_hosts

(continues on next page)

3.2. Establishing SSH/SCP Passwordless Connections 95

BART Reference Guide, Release 2.5.7

(continued from previous page)

-bash-4.2$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
-bash-4.2$ ls -l .ssh
total 16
-rw-rw-r-- 1 enterprisedb enterprisedb 416 Mar 23 10:33 authorized_keys
-rw------- 1 enterprisedb enterprisedb 1675 Mar 23 09:54 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Mar 23 09:54 id_rsa.pub
-rw-r--r-- 1 enterprisedb enterprisedb 345 Mar 23 10:05 known_hosts

The authorized_keys file must have file permission 600 as set by the following chmod 600
command, or the passwordless connection will fail:

-bash-4.2$ chmod 600 ~/.ssh/authorized_keys
-bash-4.2$ ls -l .ssh
total 16
-rw------- 1 enterprisedb enterprisedb 416 Mar 23 10:33 authorized_keys
-rw------- 1 enterprisedb enterprisedb 1675 Mar 23 09:54 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Mar 23 09:54 id_rsa.pub
-rw-r--r-- 1 enterprisedb enterprisedb 345 Mar 23 10:05 known_hosts

Test the passwordless connection. Use the ssh command to verify that you can access the same
user account as you are currently logged in as (enterprisedb) without being prompted for a
password:

-bash-4.2$ ssh enterprisedb@127.0.0.1
Last login: Thu Mar 23 10:27:50 2017
-bash-4.2$ exit
logout
Connection to 127.0.0.1 closed.

3.2.3 Configuring Access from Remote Advanced Server to BART
Host

On the remote host 192.168.2.24, create the public key file for the remote database server user
account, enterprisedb, for access to the BART user account, enterprisedb, on the BART
host 192.168.2.22.

Create the .ssh directory for user account enterprisedb on the remote host:

[root@localhost 9.6AS]# pwd
/opt/PostgresPlus/9.6AS
[root@localhost 9.6AS]# mkdir .ssh
[root@localhost 9.6AS]# chown enterprisedb .ssh
[root@localhost 9.6AS]# chgrp enterprisedb .ssh
[root@localhost 9.6AS]# chmod 700 .ssh

(continues on next page)

3.2. Establishing SSH/SCP Passwordless Connections 96

BART Reference Guide, Release 2.5.7

(continued from previous page)

[root@localhost 9.6AS]# ls -la | grep ssh
drwx------ 2 enterprisedb enterprisedb 4096 Apr 23 13:08 .ssh

Generate the public key file on the remote host for user account enterprisedb:

[user@localhost ~]$ su - enterprisedb
Password:
-bash-4.1$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key
(/opt/PostgresPlus/9.6AS/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in
/opt/PostgresPlus/9.6AS/.ssh/id_rsa.
Your public key has been saved in
/opt/PostgresPlus/9.6AS/.ssh/id_rsa.pub.
The key fingerprint is:
15:27:1e:1e:61:4b:48:66:67:0b:b2:be:fc:ea:ea:e6
enterprisedb@localhost.localdomain
The key's randomart image is:
+--[RSA 2048]---+
| ..=.@.. |
| =.O O |
| . * |
| . . |
| . S |
| . . |
| o |
| . . |
| +Eoo.. |
+----------------+

Copy the generated public key file, id_rsa.pub, to the BART user account, enterprisedb,
on the BART host, 192.168.2.22:

-bash-4.1$ scp ~/.ssh/id_rsa.pub enterprisedb@192.168.2.22:/tmp/tmp.pub
The authenticity of host '192.168.2.22 (192.168.2.22)' can't be
established.
RSA key fingerprint is b8:a9:97:31:79:16:b8:2b:b0:60:5a:91:38:d7:68:22.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.2.22' (RSA) to the list of known
→˓hosts.
enterprisedb@192.168.2.22's password:
id_rsa.pub

3.2. Establishing SSH/SCP Passwordless Connections 97

BART Reference Guide, Release 2.5.7

Log into the BART host as the BART user account and append the temporary public key file,
/tmp/tmp.pub onto the authorized_keys file owned by the BART user account:

-bash-4.1$ ssh enterprisedb@192.168.2.22
enterprisedb@192.168.2.22's password:
Last login: Tue Apr 21 17:03:24 2015 from 192.168.2.22
-bash-4.1$ pwd
/opt/PostgresPlus/9.6AS
-bash-4.1$ cat /tmp/tmp.pub >> ~/.ssh/authorized_keys
-bash-4.1$ ls -l .ssh
total 12
-rw-rw-r-- 1 enterprisedb enterprisedb 416 Apr 23 13:15 authorized_keys
-rw------- 1 enterprisedb enterprisedb 1675 Apr 23 13:04 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Apr 23 13:04 id_rsa.pub

The authorized_keys file must have file permission 600 as set by the following chmod 600
command, otherwise the passwordless connection fails:

-bash-4.1$ chmod 600 ~/.ssh/authorized_keys
-bash-4.1$ ls -l .ssh
total 12
-rw------- 1 enterprisedb enterprisedb 416 Apr 23 13:15 authorized_keys
-rw------- 1 enterprisedb enterprisedb 1675 Apr 23 13:04 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Apr 23 13:04 id_rsa.pub
-bash-4.1$ rm /tmp/tmp.pub
-bash-4.1$ exit
logout
Connection to 192.168.2.22 closed.

Test the passwordless connection. From the remote host, verify that you can log into the BART
host with the BART user account without being prompted for a password:

-bash-4.1$ ssh enterprisedb@192.168.2.22
Last login: Thu Apr 23 13:14:48 2015 from 192.168.2.24
-bash-4.1$ exit
logout
Connection to 192.168.2.22 closed.

3.2.4 Configuring Access from the BART Host to a Remote Advanced
Server

On the BART host 192.168.2.22, copy the public key file for the BART user account,
enterprisedb, for access to the remote database server user account, enterprisedb, on
the remote host 192.168.2.24.

3.2. Establishing SSH/SCP Passwordless Connections 98

BART Reference Guide, Release 2.5.7

The following lists the current SSH keys files in the BART user’s .ssh directory on the BART
host:

[user@localhost ~]$ su - enterprisedb
Password:
-bash-4.1$ pwd
/opt/PostgresPlus/9.6AS
-bash-4.1$ ls -l .ssh
total 12
-rw------- 1 enterprisedb enterprisedb 416 Apr 23 13:15 authorized_keys
-rw------- 1 enterprisedb enterprisedb 1675 Apr 23 13:04 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Apr 23 13:04 id_rsa.pub

The public key file, id_rsa.pub, for BART user account enterprisedb on the BART host
that was earlier generated in Generating a Public Key File for the BART User Account, is now
copied to the remote Advanced Server host on 192.168.2.24:

-bash-4.1$ scp ~/.ssh/id_rsa.pub enterprisedb@192.168.2.24:/tmp/tmp.pub
The authenticity of host '192.168.2.24 (192.168.2.24)' can't be
established.
RSA key fingerprint is 59:41:fb:0c:ae:64:3d:3f:a2:d9:90:95:cf:2c:99:f2.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.2.24' (RSA) to the list of known
hosts.
enterprisedb@192.168.2.24's password:
id_rsa.pub

Log into the enterprisedb user account on the remote host and copy the public key file onto the
authorized_keys file of the remote enterprisedb user account under its .ssh directory:

-bash-4.1$ ssh enterprisedb@192.168.2.24
enterprisedb@192.168.2.24's password:
Last login: Tue Apr 21 09:53:18 2015 from 192.168.2.22
-bash-4.1$ pwd
/opt/PostgresPlus/9.6AS
-bash-4.1$ ls -l .ssh
total 12
-rw------- 1 enterprisedb enterprisedb 1675 Apr 23 13:11 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Apr 23 13:11 id_rsa.pub
-rw-r--r-- 1 enterprisedb enterprisedb 394 Apr 23 13:12 known_hosts
-bash-4.1$ cat /tmp/tmp.pub >> ~/.ssh/authorized_keys

Adjust the file permission on authorized_keys:

-bash-4.1$ chmod 600 ~/.ssh/authorized_keys
-bash-4.1$ ls -l .ssh
total 16

(continues on next page)

3.2. Establishing SSH/SCP Passwordless Connections 99

BART Reference Guide, Release 2.5.7

(continued from previous page)

-rw------- 1 enterprisedb enterprisedb 416 Apr 23 13:26 authorized_keys
-rw------- 1 enterprisedb enterprisedb 1675 Apr 23 13:11 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Apr 23 13:11 id_rsa.pub
-rw-r--r-- 1 enterprisedb enterprisedb 394 Apr 23 13:12 known_hosts
-bash-4.1$ rm /tmp/tmp.pub
-bash-4.1$ exit
logout
Connection to 192.168.2.24 closed.

While logged into the BART host, test the passwordless connection from the BART host to the
remote Advanced Server host:

-bash-4.1$ ssh enterprisedb@192.168.2.24
Last login: Thu Apr 23 13:25:53 2015 from 192.168.2.22
-bash-4.1$ exit
logout
Connection to 192.168.2.24 closed.

3.2.5 Configuring Access from a Remote PostgreSQL Server to a
BART Host

On the remote host (192.168.2.24), create a public key file owned by the database server user ac-
count (postgres), allowing access to the BART user account (enterprisedb) on the BART
host (192.168.2.22).

Create the .ssh directory for the postgres user account on the remote host:

[root@localhost 9.6]# cd /opt/PostgreSQL/9.6
[root@localhost 9.6]# mkdir .ssh
[root@localhost 9.6]# chown postgres .ssh
[root@localhost 9.6]# chgrp postgres .ssh
[root@localhost 9.6]# chmod 700 .ssh
[root@localhost 9.6]# ls -la | grep ssh
drwx------ 2 postgres postgres 4096 Apr 23 13:32 .ssh

Create and copy the generated public key file, id_rsa.pub, to the BART user account
(enterprisedb), on the BART host (192.168.2.22):

[user@localhost ~]$ su - postgres
Password:
-bash-4.1$ pwd
/opt/PostgreSQL/9.6
-bash-4.1$ ssh-keygen -t rsa
Generating public/private rsa key pair.

(continues on next page)

3.2. Establishing SSH/SCP Passwordless Connections 100

BART Reference Guide, Release 2.5.7

(continued from previous page)

Enter file in which to save the key (/opt/PostgreSQL/9.6/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /opt/PostgreSQL/9.6/.ssh/id_rsa.
Your public key has been saved in /opt/PostgreSQL/9.6/.ssh/id_rsa.pub.
The key fingerprint is:
1f:f8:76:d6:fc:a5:1a:c5:5a:66:66:01:d0:a0:ca:ba
postgres@localhost.localdomain
The key's randomart image is:
+--[RSA 2048]----+
| o+. |
| . .. |
| . . |
| |
| o S . O |
| . o . @ |
| . + = o .|
| . . o . o.|
| E|
+-----------------+
-bash-4.1$ ls -l .ssh
total 8
-rw------- 1 postgres postgres 1671 Apr 23 13:36 id_rsa
-rw-r--r-- 1 postgres postgres 412 Apr 23 13:36 id_rsa.pub
-bash-4.1$ scp ~/.ssh/id_rsa.pub enterprisedb@192.168.2.22:/tmp/tmp.pub
The authenticity of host '192.168.2.22 (192.168.2.22)' can't be
established.
RSA key fingerprint is b8:a9:97:31:79:16:b8:2b:b0:60:5a:91:38:d7:68:22.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.2.22' (RSA) to the list of known
hosts.
enterprisedb@192.168.2.22's password:
id_rsa.pub

Log into the BART host as the BART user account and append the temporary public key file,
/tmp/tmp.pub, onto the authorized_keys file owned by the BART user account.

-bash-4.1$ ssh enterprisedb@192.168.2.22
enterprisedb@192.168.2.22's password:
Last login: Thu Apr 23 13:19:25 2015 from 192.168.2.24
-bash-4.1$ pwd
/opt/PostgresPlus/9.6AS
-bash-4.1$ cat /tmp/tmp.pub >> ~/.ssh/authorized_keys
-bash-4.1$ ls -l .ssh
total 16

(continues on next page)

3.2. Establishing SSH/SCP Passwordless Connections 101

BART Reference Guide, Release 2.5.7

(continued from previous page)

-rw------- 1 enterprisedb enterprisedb 828 Apr 23 13:40 authorized_keys
-rw------- 1 enterprisedb enterprisedb 1675 Apr 23 13:04 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Apr 23 13:04 id_rsa.pub
-rw-r--r-- 1 enterprisedb enterprisedb 394 Apr 23 13:24 known_hosts
-bash-4.1$ rm /tmp/tmp.pub
-bash-4.1$ exit
logout
Connection to 192.168.2.22 closed.

Make sure the authorized_keys file has file permission 600 as shown, or the passwordless
connection will fail. Test the passwordless connection; from the remote host, while logged in as
user account postgres, verify that you can log into the BART host with the BART user account
without being prompted for a password:

-bash-4.1$ pwd
/opt/PostgreSQL/9.6
-bash-4.1$ ssh enterprisedb@192.168.2.22
Last login: Thu Apr 23 13:40:10 2015 from 192.168.2.24
-bash-4.1$ exit
logout
Connection to 192.168.2.22 closed.

3.2.6 Configuring Access from the BART Host to Remote PostgreSQL

Copy the public key file on the BART host that is owned by the BART user account
(enterprisedb) to the remote database server user account (postgres), on the remote host
(192.168.2.24).

The following lists the current SSH keys files in the BART user’s .ssh directory on the BART
host:

[user@localhost ~]$ su - enterprisedb
Password:
-bash-4.1$ ls -l .ssh
total 16
-rw------- 1 enterprisedb enterprisedb 828 Apr 23 13:40 authorized_keys
-rw------- 1 enterprisedb enterprisedb 1675 Apr 23 13:04 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Apr 23 13:04 id_rsa.pub
-rw-r--r-- 1 enterprisedb enterprisedb 394 Apr 23 13:24 known_hosts

The public key file, id_rsa.pub, for BART user account enterprisedb on the BART host
that was earlier generated in Generating a Public Key File for the BART User Account, now resides
on the remote PostgreSQL host:

3.2. Establishing SSH/SCP Passwordless Connections 102

BART Reference Guide, Release 2.5.7

-bash-4.1$ scp ~/.ssh/id_rsa.pub postgres@192.168.2.24:/tmp/tmp.pub
postgres@192.168.2.24's password:
id_rsa.pub

Log into the postgres user account on the remote host and copy the public key file onto the
authorized_keys file of postgres under its .ssh directory:

-bash-4.1$ ssh postgres@192.168.2.24
postgres@192.168.2.24's password:
Last login: Mon Jan 26 18:08:36 2015 from 192.168.2.19
-bash-4.1$ pwd
/opt/PostgreSQL/9.6
-bash-4.1$ cat /tmp/tmp.pub >> ~/.ssh/authorized_keys

Adjust the file permissions on authorized_keys:

-bash-4.1$ ls -l .ssh
total 16
-rw-rw-r-- 1 postgres postgres 416 Apr 23 13:52 authorized_keys
-rw------- 1 postgres postgres 1671 Apr 23 13:36 id_rsa
-rw-r--r-- 1 postgres postgres 412 Apr 23 13:36 id_rsa.pub
-rw-r--r-- 1 postgres postgres 394 Apr 23 13:36 known_hosts
-bash-4.1$ chmod 600 ~/.ssh/authorized_keys
-bash-4.1$ ls -l .ssh
total 16
-rw------- 1 postgres postgres 416 Apr 23 13:52 authorized_keys
-rw------- 1 postgres postgres 1671 Apr 23 13:36 id_rsa
-rw-r--r-- 1 postgres postgres 412 Apr 23 13:36 id_rsa.pub
-rw-r--r-- 1 postgres postgres 394 Apr 23 13:36 known_hosts
-bash-4.1$ rm /tmp/tmp.pub
-bash-4.1$ exit
logout
Connection to 192.168.2.24 closed.

Test the passwordless connection from the BART host to the remote PostgreSQL host:

[user@localhost ~]$ su - enterprisedb
Password:
-bash-4.1$ ssh postgres@192.168.2.24
Last login: Thu Apr 23 13:52:25 2015 from 192.168.2.22
-bash-4.1$ exit
logout
Connection to 192.168.2.24 closed.

3.2. Establishing SSH/SCP Passwordless Connections 103

BART Reference Guide, Release 2.5.7

3.3 Configuring a Replication Database User

This section demonstrates how a replication database user is established.

All database servers must use a superuser as the replication database user.

The replication database user for each database server is specified by the user parameter in the
BART configuration file as shown by the following:

[ACCTG]

host = 127.0.0.1
port = 5444
user = enterprisedb <=== Replication Database User
cluster_owner = enterprisedb
backup_name = acctg_%year-%month-%dayT%hour:%minute
archive_command = 'cp %p %a/%f'
description = "Accounting"

[MKTG]
host = 192.168.2.24
port = 5444
user = repuser <=== Replication Database User
cluster_owner = enterprisedb
backup_name = mktg_%year-%month-%dayT%hour:%minute
remote_host = enterprisedb@192.168.2.24
description = "Marketing"

[HR]

host = 192.168.2.24
port = 5432
user = postgres <=== Replication Database User
cluster_owner = enterprisedb
backup_name = hr_%year-%month-%dayT%hour:%minute
remote_host = postgres@192.168.2.24
copy_wals_during_restore = enabled
description = "Human Resources"

Add entries to the .pgpass file on each server to allow the BART user account to initiate
a backup without being prompted for credentials. The .pgpass file is located in /opt/
PostgresPlus/9.6AS/.pgpass:

127.0.0.1:5444:*:enterprisedb:password
192.168.2.24:5444:*:repuser:password
192.168.2.24:5432:*:postgres:password

3.3. Configuring a Replication Database User 104

BART Reference Guide, Release 2.5.7

For more information about using a .pgpass file, please see the PostgreSQL documentation.

While connected to MKTG on 192.168.2.24, execute the following CREATE ROLE command to
create the replication database superuser:

CREATE ROLE repuser WITH LOGIN SUPERUSER PASSWORD 'password';

Access is granted in the pg_hba.conf file for the local Advanced Server:

TYPE DATABASE USER ADDRESS METHOD
"local" is for Unix domain socket connections only
local all all md5
IPv4 local connections:
host template1 enterprisedb 127.0.0.1/32 md5
host edb enterprisedb 127.0.0.1/32 md5
#host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5
Allow replication connections from localhost, by a user with the
replication privilege.
#local replication enterprisedb md5
host replication enterprisedb 127.0.0.1/32 md5

Similarly, access is granted in the pg_hba.conf file for the remote Advanced Server installation:

TYPE DATABASE USER ADDRESS METHOD
"local" is for Unix domain socket connections only
local all all md5
IPv4 local connections:
host template1 repuser 192.168.2.22/32 md5
host all enterprisedb 127.0.0.1/32 md5
#host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5
Allow replication connections from localhost, by a user with the
replication privilege.
#local replication enterprisedb md5
host replication repuser 192.168.2.22/32 md5

Access is also granted in the pg_hba.conf file for the remote PostgreSQL server:

TYPE DATABASE USER ADDRESS METHOD
"local" is for Unix domain socket connections only
local all all md5
IPv4 local connections:
host template1 postgres 192.168.2.22/32 md5
host all all 127.0.0.1/32 md5

(continues on next page)

3.3. Configuring a Replication Database User 105

https://www.postgresql.org/docs/current/libpq-pgpass.html

BART Reference Guide, Release 2.5.7

(continued from previous page)

IPv6 local connections:
host all all ::1/128 md5
Allow replication connections from localhost, by a user with the
q# replication privilege.
#local replication postgres md5
host replication postgres 192.168.2.22/32 md5

3.3. Configuring a Replication Database User 106

BART Reference Guide, Release 2.5.7

3.4 WAL Archiving Configuration Parameters

Use the following parameters in the postgresql.conf file to enable WAL archiving. The
postgresql.conf file for the local Advanced Server database (ACCTG) is set as follows:

wal_level = archive
archive_mode = on # allows archiving to
→˓be done

(change requires
→˓restart)
#archive_command = '' # command to use to
→˓archive

a logfile segment
placeholders: %p =

→˓path of
file to archive
%f = file name only

max_wal_senders = 3

When the INIT subcommand is invoked, the Postgres archive_command configuration param-
eter in the postgresql.auto.conf file will be set based on the BART archive_command
parameter located in the BART configuration file.

Note: If the Postgres archive_command is already set, invoke the INIT subcommand with the
-- no-configure option to prevent the archive_command from being reset. For details,
see INIT .

[BART]
bart_host= enterprisedb@192.168.2.22
backup_path = /opt/backup
pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup
retention_policy = 6 BACKUPS
logfile = /tmp/bart.log
scanner_logfile = /tmp/bart_scanner.log

[ACCTG]
host = 127.0.0.1
port = 5444
user = enterprisedb
cluster_owner = enterprisedb
backup_name = acctg_%year-%month-%dayT%hour:%minute
archive_command = 'cp %p %a/%f'
description = "Accounting"

When the INIT subcommand is invoked, the postgresql.auto.conf file contains the fol-

3.4. WAL Archiving Configuration Parameters 107

BART Reference Guide, Release 2.5.7

lowing:

Do not edit this file manually!
It will be overwritten by ALTER SYSTEM command.
archive_command = 'cp %p /opt/backup/acctg/archived_wals/%f'

The archive_command uses the cp command instead of scp since the BART backup catalog
is local to this database cluster and the BART user account (the account that owns the backup
catalog, enterprisedb), is the same user account running Advanced Server. The result is that
there is no directory permission conflict during the archive operation.

The postgresql.conf file for the remote Advanced Server, MKTG is set as follows:

wal_level = archive
archive_mode = on # allows archiving to
→˓be done

(change requires
→˓restart)
archive_command = '' # command to use to
→˓archive a

logfile segment
placeholders: %p =

→˓path of
file to archive
%f = file name only

max_wal_senders = 3

When the INIT subcommand is invoked, the Postgres archive_command configuration pa-
rameter in the postgresql.auto.conf file will be set by the default BART format of the
BART archive_command parameter (since it is not explicitly set for this database server in the
BART configuration file).

[BART]
bart_host= enterprisedb@192.168.2.22
backup_path = /opt/backup
pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup
retention_policy = 6 BACKUPS
logfile = /tmp/bart.log
scanner_logfile = /tmp/bart_scanner.log
.
.
.
[MKTG]

host = 192.168.2.24
port = 5444
user = repuser

(continues on next page)

3.4. WAL Archiving Configuration Parameters 108

BART Reference Guide, Release 2.5.7

(continued from previous page)

cluster_owner = enterprisedb
backup_name = mktg_%year-%month-%dayT%hour:%minute
remote_host = enterprisedb@192.168.2.24
description = "Marketing"

The default, BART archive_command format is the following:

archive_command = 'scp %p %h:%a/%f'

The postgresql.auto.conf file contains the following after the INIT subcommand is in-
voked:

Do not edit this file manually!
It will be overwritten by ALTER SYSTEM command.
archive_command = 'scp %p
enterprisedb@192.168.2.22:/opt/backup/hr/archived_wals/%f'

The archive_command uses the scp command since the BART backup catalog is remote rel-
ative to this database cluster. The BART user account, enterprisedb, is specified on the scp
command since this is the user account owning the BART backup catalog where the archived WAL
files are to be copied. The result is that there is no directory permission conflict during the archive
operation.

The postgresql.conf file for the remote PostgreSQL server (HR) is set as follows:

wal_level = archive
archive_mode = on # allows archiving to
→˓be done

(change requires
→˓restart)
#archive_command = '' # command to use to
→˓archive a

logfile segment
placeholders: %p =

→˓path of
file to archive

%f = file name only
max_wal_senders = 3

When the INIT subcommand is invoked, the Postgres archive_command configuration pa-
rameter in the postgresql.auto.conf file will be set by the default BART format of the
BART archive_command parameter (since it is not explicitly set for this database server in the
BART configuration file):

[BART]

(continues on next page)

3.4. WAL Archiving Configuration Parameters 109

BART Reference Guide, Release 2.5.7

(continued from previous page)

bart_host= enterprisedb@192.168.2.22
backup_path = /opt/backup
pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup
retention_policy = 6 BACKUPS
logfile = /tmp/bart.log
scanner_logfile = /tmp/bart_scanner.log
.
.
.
[HR]

host = 192.168.2.24
port = 5432
user = postgres
cluster_owner = postgres
backup_name = hr_%year-%month-%dayT%hour:%minute
remote_host = postgres@192.168.2.24
copy_wals_during_restore = enabled
description = "Human Resources"

The default, the BART archive_command format is:

archive_command = 'scp %p %h:%a/%f'

The postgresql.auto.conf file contains the following after the INIT subcommand is in-
voked:

Do not edit this file manually!
It will be overwritten by ALTER SYSTEM command.
archive_command = 'scp %p
enterprisedb@192.168.2.22:/opt/backup/hr/archived_wals/%f'

The archive_command uses the scp command since the BART backup catalog is remote rel-
ative to this database cluster. The BART user account, enterprisedb, is specified on the scp
command since this is the user account owning the BART backup catalog where the archived WAL
files are to be copied. The result is that there is no directory permission conflict during the archive
operation.

3.4. WAL Archiving Configuration Parameters 110

BART Reference Guide, Release 2.5.7

3.5 Creating the BART Backup Catalog (backup_path)

Create the directory specified by the backup_path configuration parameter.

[BART]

bart_host= enterprisedb@192.168.2.22
backup_path = /opt/backup
pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup
retention_policy = 6 BACKUPS
logfile = /tmp/bart.log
scanner_logfile = /tmp/bart_scanner.log

Ensure that the directory is owned by the BART user account:

[root@localhost opt]# pwd
/opt
[root@localhost opt]# mkdir backup
[root@localhost opt]# chown enterprisedb backup
[root@localhost opt]# chgrp enterprisedb backup
[root@localhost opt]# chmod 700 backup
[root@localhost opt]# ls -l | grep backup
drwx------ 2 enterprisedb enterprisedb 4096 Apr 23 15:36 backup

Use the BART INIT subcommand to complete the directory structure and set the Postgres
archive_command configuration parameter.

Before invoking any BART subcommands, set up a profile under the BART user account’s home
directory to set the LD_LIBRARY_PATH and PATH environment variables. For more information
regarding setting this variable, see the EDB Backup and Recovery Installation and Upgrade Guide
available at the EDB website.

The -o option is specified with the INIT subcommand to force the setting of the Postgres
archive_command configuration parameter when archive_mode is off or if the Postgres
archive_command parameter is already set and needs to be overridden.

[user@localhost ~]$ su - enterprisedb
Password:
-bash-4.1$ bart INIT -o
INFO: setting archive_command for server 'acctg'
WARNING: archive_command is set. server restart is required
INFO: setting archive_command for server 'hr'
WARNING: archive_command is set. server restart is required
INFO: setting archive_command for server 'mktg'
WARNING: archive_command is set. server restart is required

The BART SHOW-SERVERS subcommand displays the following:

3.5. Creating the BART Backup Catalog (backup_path) 111

https://www.enterprisedb.com/edb-docs/

BART Reference Guide, Release 2.5.7

-bash-4.1$ bart SHOW-SERVERS
SERVER NAME : acctg
BACKUP FRIENDLY NAME: acctg_%year-%month-%dayT%hour:%minute
HOST NAME : 127.0.0.1
USER NAME : enterprisedb
PORT : 5444
REMOTE HOST :
RETENTION POLICY : 6 Backups
DISK UTILIZATION : 0.00 bytes
NUMBER OF ARCHIVES : 0
ARCHIVE PATH : /opt/backup/acctg/archived_wals
ARCHIVE COMMAND : (disabled)
XLOG METHOD : fetch
WAL COMPRESSION : disabled
TABLESPACE PATH(s) :
INCREMENTAL BACKUP : DISABLED
DESCRIPTION : "Accounting"
SERVER NAME : hr
BACKUP FRIENDLY NAME: hr_%year-%month-%dayT%hour:%minute
HOST NAME : 192.168.2.24
USER NAME : postgres
PORT : 5432
REMOTE HOST : postgres@192.168.2.24
RETENTION POLICY : 6 Backups
DISK UTILIZATION : 0.00 bytes
NUMBER OF ARCHIVES : 0
ARCHIVE PATH : /opt/backup/hr/archived_wals
ARCHIVE COMMAND : (disabled)
XLOG METHOD : fetch
WAL COMPRESSION : disabled
TABLESPACE PATH(s) :
INCREMENTAL BACKUP : DISABLED
DESCRIPTION : "Human Resources"
SERVER NAME : mktg
BACKUP FRIENDLY NAME: mktg_%year-%month-%dayT%hour:%minute
HOST NAME : 192.168.2.24
USER NAME : repuser
PORT : 5444
REMOTE HOST : enterprisedb@192.168.2.24
RETENTION POLICY : 6 Backups
DISK UTILIZATION : 0.00 bytes
NUMBER OF ARCHIVES : 0
ARCHIVE PATH : /opt/backup/mktg/archived_wals
ARCHIVE COMMAND : (disabled)
XLOG METHOD : fetch
WAL COMPRESSION : disabled

(continues on next page)

3.5. Creating the BART Backup Catalog (backup_path) 112

BART Reference Guide, Release 2.5.7

(continued from previous page)

TABLESPACE PATH(s) :
INCREMENTAL BACKUP : DISABLED
DESCRIPTION : "Marketing"
-bash-4.1$ cd /opt/backup
-bash-4.1$ pwd
/opt/backup
-bash-4.1$ ls -l
total 12
drwxrwxr-x 3 enterprisedb enterprisedb 4096 Mar 29 13:16 acctg
drwxrwxr-x 3 enterprisedb enterprisedb 4096 Mar 29 13:16 hr
drwxrwxr-x 3 enterprisedb enterprisedb 4096 Mar 29 13:16 mktg
-bash-4.1$ ls -l acctg
total 4
drwxrwxr-x 2 enterprisedb enterprisedb 4096 Mar 29 13:16 archived_wals
-bash-4.1$ ls -l hr
total 4
drwxrwxr-x 2 enterprisedb enterprisedb 4096 Mar 29 13:16 archived_wals
-bash-4.1$ ls -l mktg
total 4
drwxrwxr-x 2 enterprisedb enterprisedb 4096 Mar 29 13:16 archived_wals

The ARCHIVE PATH field displays the full directory path to where the WAL files are copied. This
directory path must match the directory path specified in the Postgres archive_command pa-
rameter of the postgresql.conf file or the postgresql.auto.conf file of each database
server.

3.5.1 Starting the Database Servers with WAL Archiving

After the BART backup catalog directory structure has been configured, start the archiving of WAL
files from the database servers by restarting each database server. On BART host 192.168.2.22:

[root@localhost data]# service ppas-9.6 restart

On remote host 192.168.2.24:

[root@localhost data]# service ppas-9.6 restart

[root@localhost data]# service postgresql-9.6 restart

In the BART backup catalog, verify that the WAL files are archiving.

Archived WAL files may not appear very frequently depending upon how often WAL archiving
is set to switch to a new segment file with the archive_timeout parameter in your database
server configuration settings.

Verify that there are no archiving-related errors in the database server log files.

3.5. Creating the BART Backup Catalog (backup_path) 113

BART Reference Guide, Release 2.5.7

3.6 Taking a Full Backup

The following code snippet shows the first full backup of the database servers.

-bash-4.1$ bart BACKUP -s acctg -z
INFO: creating backup for server 'acctg'
INFO: backup identifier: '1490809695281'
60776/60776 kB (100%), 1/1 tablespace

INFO: backup completed successfully
INFO: backup checksum: 37f3defb98ca88dcf05079815555dfc2 of base.tar.gz
INFO:
BACKUP DETAILS:
BACKUP STATUS: active
BACKUP IDENTIFIER: 1490809695281
BACKUP NAME: acctg_2017-03-29T13:48
BACKUP PARENT: none
BACKUP LOCATION: /opt/backup/acctg/1490809695281
BACKUP SIZE: 6.10 MB
BACKUP FORMAT: tar.gz
BACKUP TIMEZONE: US/Eastern
XLOG METHOD: fetch
BACKUP CHECKSUM(s): 1
ChkSum File
37f3defb98ca88dcf05079815555dfc2 base.tar.gz

TABLESPACE(s): 0
START WAL LOCATION: 000000010000000000000004
STOP WAL LOCATION: 000000010000000000000004
BACKUP METHOD: streamed
BACKUP FROM: master
START TIME: 2017-03-29 13:48:15 EDT
STOP TIME: 2017-03-29 13:48:17 EDT
TOTAL DURATION: 2 sec(s)

-bash-4.1$ bart BACKUP -s mktg -z
INFO: creating backup for server 'mktg'
INFO: backup identifier: '1490809751193'
61016/61016 kB (100%), 1/1 tablespace

INFO: backup completed successfully
INFO: backup checksum: 8b010e130a105e76d01346bb56dfcf14 of base.tar.gz
INFO:
BACKUP DETAILS:
BACKUP STATUS: active
BACKUP IDENTIFIER: 1490809751193

(continues on next page)

3.6. Taking a Full Backup 114

BART Reference Guide, Release 2.5.7

(continued from previous page)

BACKUP NAME: mktg_2017-03-29T13:49
BACKUP PARENT: none
BACKUP LOCATION: /opt/backup/mktg/1490809751193
BACKUP SIZE: 6.13 MB
BACKUP FORMAT: tar.gz
BACKUP TIMEZONE: US/Eastern
XLOG METHOD: fetch
BACKUP CHECKSUM(s): 1
ChkSum File
8b010e130a105e76d01346bb56dfcf14 base.tar.gz

TABLESPACE(s): 0
START WAL LOCATION: 000000010000000100000085
BACKUP METHOD: streamed
BACKUP FROM: master
START TIME: 2017-03-29 13:49:11 EDT
STOP TIME: 2017-03-29 13:49:14 EDT
TOTAL DURATION: 3 sec(s)

-bash-4.1$ bart BACKUP -s hr -z
INFO: creating backup for server 'hr'
INFO: backup identifier: '1490809824946'
38991/38991 kB (100%), 1/1 tablespace
INFO: backup completed successfully
INFO: backup checksum: 277e8a1a80ba3474f541eb316a417c9a of base.tar.gz
INFO:
BACKUP DETAILS:
BACKUP STATUS: active
BACKUP IDENTIFIER: 1490809824946
BACKUP NAME: hr_2017-03-29T13:50
BACKUP PARENT: none
BACKUP LOCATION: /opt/backup/hr/1490809824946
BACKUP SIZE: 2.59 MB
BACKUP FORMAT: tar.gz
BACKUP TIMEZONE: US/Eastern
XLOG METHOD: fetch
BACKUP CHECKSUM(s): 1
ChkSum File
277e8a1a80ba3474f541eb316a417c9a base.tar.gz

TABLESPACE(s): 0
START WAL LOCATION: 000000010000000000000002
BACKUP METHOD: streamed
BACKUP FROM: master
START TIME: 2017-03-29 13:50:25 EDT

(continues on next page)

3.6. Taking a Full Backup 115

BART Reference Guide, Release 2.5.7

(continued from previous page)

STOP TIME: 2017-03-29 13:50:26 EDT
TOTAL DURATION: 1 sec(s)

The following code snippet shows the backup directories created for each backup of each database
server. The backup ID is used as the backup directory name.

-bash-4.1$ cd /opt/backup
-bash-4.1$ ls -l
total 12
drwxrwxr-x 4 enterprisedb enterprisedb 4096 Mar 29 13:48 acctg
drwxrwxr-x 4 enterprisedb enterprisedb 4096 Mar 29 13:50 hr
drwxrwxr-x 4 enterprisedb enterprisedb 4096 Mar 29 13:49 mktg
-bash-4.1$ ls -l acctg
total 8
drwx------ 2 enterprisedb enterprisedb 4096 Mar 29 13:48 1490809695281
drwxrwxr-x 2 enterprisedb enterprisedb 4096 Mar 29 13:48 archived_wals
-bash-4.1$ ls -l hr
total 8
drwx------ 2 enterprisedb enterprisedb 4096 Mar 29 13:50 1490809824946
drwxrwxr-x 2 enterprisedb enterprisedb 4096 Mar 29 13:50 archived_wals
-bash-4.1$ ls -l mktg
total 8
drwx------ 2 enterprisedb enterprisedb 4096 Mar 29 13:49 1490809751193
drwxrwxr-x 2 enterprisedb enterprisedb 4096 Mar 29 13:49 archived_wals

3.6. Taking a Full Backup 116

BART Reference Guide, Release 2.5.7

3.7 Using Point-In-Time Recovery

This section demonstrates using the point-in-time recovery operation on the remote PostgreSQL
database server. The following tables were created about two minutes apart with WAL archiving
enabled:

postgres=# \dt

List of relations
Schema | Name | Type | Owner

--------+----------------+---------+---------
public | hr_rmt_t1_1356 | table | postgres
public | hr_rmt_t1_1358 | table | postgres
public | hr_rmt_t1_1400 | table | postgres
public | hr_rmt_t1_1402 | table | postgres
public | hr_rmt_t1_1404 | table | postgres
public | hr_rmt_t1_1406 | table | postgres
(6 rows)

In the table name hr_rmt_t<n>_<hhmi>, n represents the active timeline. <hhmi> is the
approximate time the table was created. For example, hr_rmt_t1_1356 was created at approx-
imately 1:56 PM while timeline #1 is active.

The PostgreSQL database server was then stopped. WAL files that have been created, but not yet
archived must be identified, and then saved. The following archived WAL files are in the BART
backup catalog:

-bash-4.1$ ls -l hr/archived_wals
total 49156
-rw------- 1 enterprisedb enterprisedb 16777216 Mar 29 13:50
000000010000000000000001
-rw------- 1 enterprisedb enterprisedb 16777216 Mar 29 13:50
000000010000000000000002
-rw------- 1 enterprisedb enterprisedb 302 Mar 29 13:50
000000010000000000000002.00000028.backup
-rw------- 1 enterprisedb enterprisedb 16777216 Mar 29 14:07
000000010000000000000003

The following snippet lists the current PostgreSQL server WAL files. The unarchived WAL files
are marked with two stars (**):

-bash-4.1$ cd /opt/PostgreSQL/9.6/data/pg_xlog
-bash-4.1$ pwd
/opt/PostgreSQL/9.6/data/pg_xlog
-bash-4.1$ ls -l

(continues on next page)

3.7. Using Point-In-Time Recovery 117

BART Reference Guide, Release 2.5.7

(continued from previous page)

total 49160
-rw------- 1 postgres postgres 302 Mar 29 13:50
000000010000000000000002.00000028.backup
-rw------- 1 postgres postgres 16777216 Mar 29 14:07
000000010000000000000003
-rw------- 1 postgres postgres 16777216 Mar 29 14:07

000000010000000000000004
-rw------- 1 postgres postgres 16777216 Mar 29 13:50

000000010000000000000005
drwx------ 2 postgres postgres 4096 Mar 29 14:07 archive_status

Copies of the unarchived WAL files are saved to a temporary location:

-bash-4.1$ mkdir /tmp/unarchived_pg96_wals
-bash-4.1$ pwd
/opt/PostgreSQL/9.6/data/pg_xlog
bash-4.1$ cp -p 000000010000000000000004 /tmp/unarchived_pg96_wals
bash-4.1$ cp -p 000000010000000000000005 /tmp/unarchived_pg96_wals
bash-4.1$ ls -l /tmp/unarchived_pg96_wals
total 32768
-rw------- 1 postgres postgres 16777216 Mar 29 14:07
→˓000000010000000000000004
-rw------- 1 postgres postgres 16777216 Mar 29 13:50
→˓000000010000000000000005

On the remote host, a directory is created to which the PostgreSQL database cluster is to be
restored. This restore path is named /opt/restore_pg96 and is owned by user account
postgres.

[user@localhost ~]$ su root
Password:
[root@localhost user]# cd /opt
[root@localhost opt]# mkdir restore_pg96
[root@localhost opt]# chown postgres restore_pg96
[root@localhost opt]# chgrp postgres restore_pg96
[root@localhost opt]# chmod 700 restore_pg96
[root@localhost opt]# ls -l
total 16
drwxr-xr-x 4 root daemon 4096 Mar 29 12:10 PostgresPlus
drwxr-xr-x 3 root daemon 4096 Mar 29 12:25 PostgreSQL
drwx------ 2 postgres postgres 4096 Mar 29 14:15 restore_pg96
drwxr-xr-x. 2 root root 4096 Nov 22 2013 rh

In the BART configuration file, the remote user and remote host IP address, postgres@192.
168.2.24, have been set with the remote_host parameter. If not given in the BART
configuration file, this information must then be specified by the --remote-host option

3.7. Using Point-In-Time Recovery 118

BART Reference Guide, Release 2.5.7

when giving the RESTORE subcommand (for example, bart RESTORE --remote-host
postgres@192.168.2.24 ...).

[HR]

host = 192.168.2.24
port = 5432
user = postgres
cluster_owner = postgres
backup_name = hr_%year-%month-%dayT%hour:%minute
remote_host = postgres@192.168.2.24
copy_wals_during_restore = enabled
description = "Human Resources"

Use the SHOW-BACKUPS subcommand to identify the backup to use with the RESTORE subcom-
mand:

SERVER NAME BACKUP ID BACKUP NAME BACKUP
→˓PARENT
BACKUP TIME
BACKUP SIZE WAL(s) SIZE WAL FILES STATUS
acctg 1490809695281 acctg_2017-03-29T13:48 none
2017-03-29 13:48:17 EDT
6.10 MB 32.00 MB 2 active
hr 1490809824946 hr_2017-03-29T13:50 none
2017-03-29 13:50:26 EDT
2.59 MB 32.00 MB 2 active
mktg 1490809751193 mktg_2017-03-29T13:49 none
2017-03-29 13:49:14 EDT
6.13 MB 64.00 MB 4 active

The -t option with the SHOW-BACKUPS subcommand displays additional backup information:

-bash-4.1$ bart SHOW-BACKUPS -s hr -i 1490809824946 -t
SERVER NAME : hr
BACKUP ID : 1490809824946
BACKUP NAME : hr_2017-03-29T13:50
BACKUP PARENT : none
BACKUP STATUS : active
BACKUP TIME : 2017-03-29 13:50:26 EDT
BACKUP SIZE : 2.59 MB
WAL(S) SIZE : 32.00 MB
NO. OF WALS : 2
FIRST WAL FILE : 000000010000000000000002
CREATION TIME : 2017-03-29 13:50:31 EDT
LAST WAL FILE : 000000010000000000000003
CREATION TIME : 2017-03-29 14:07:35 EDT

3.7. Using Point-In-Time Recovery 119

BART Reference Guide, Release 2.5.7

A recovery is made using timeline 1 to 2017-03-29 14:01:00:

-bash-4.1$ bart RESTORE -s hr -i hr_2017-03-29T13:50 -p
/opt/restore_pg96 -t 1 -g '2017-03-29 14:01:00'
INFO: restoring backup 'hr_2017-03-29T13:50' of server 'hr'
INFO: base backup restored
INFO: copying WAL file(s) to
postgres@192.168.2.24:/opt/restore_pg96/archived_wals
INFO: writing recovery settings to postgresql.auto.conf file
INFO: archiving is disabled
INFO: permissions set on $PGDATA
INFO: restore completed successfully

The following example shows the restored backup files in the restore path directory, /opt/
restore_pg96:

-bash-4.1$ pwd
/opt/restore_pg96
-bash-4.1$ ls -l
total 128
drwxr-xr-x 2 postgres postgres 4096 Mar 29 14:27 archived_wals
-rw------- 1 postgres postgres 206 Mar 29 13:50 backup_label
drwx------ 5 postgres postgres 4096 Mar 29 12:25 base
drwx------ 2 postgres postgres 4096 Mar 29 14:27 global
drwx------ 2 postgres postgres 4096 Mar 29 12:25 pg_clog
drwx------ 2 postgres postgres 4096 Mar 29 12:25 pg_commit_ts
drwx------ 2 postgres postgres 4096 Mar 29 12:25 pg_dynshmem
-rw------- 1 postgres postgres 4212 Mar 29 13:18 pg_hba.conf
-rw------- 1 postgres postgres 1636 Mar 29 12:25 pg_ident.conf
drwxr-xr-x 2 postgres postgres 4096 Mar 29 13:45 pg_log
drwx------ 4 postgres postgres 4096 Mar 29 12:25 pg_logical
drwx------ 4 postgres postgres 4096 Mar 29 12:25 pg_multixact
drwx------ 2 postgres postgres 4096 Mar 29 13:43 pg_notify
drwx------ 2 postgres postgres 4096 Mar 29 12:25 pg_replslot
drwx------ 2 postgres postgres 4096 Mar 29 12:25 pg_serial
drwx------ 2 postgres postgres 4096 Mar 29 12:25 pg_snapshots
drwx------ 2 postgres postgres 4096 Mar 29 13:43 pg_stat
drwx------ 2 postgres postgres 4096 Mar 29 13:50 pg_stat_tmp
drwx------ 2 postgres postgres 4096 Mar 29 12:25 pg_subtrans
drwx------ 2 postgres postgres 4096 Mar 29 12:25 pg_tblspc
drwx------ 2 postgres postgres 4096 Mar 29 12:25 pg_twophase
-rw------- 1 postgres postgres 4 Mar 29 12:25 PG_VERSION
drwx------ 3 postgres postgres 4096 Mar 29 14:27 pg_xlog
-rw------- 1 postgres postgres 169 Mar 29 13:24 postgresql.auto.conf
-rw-r--r-- 1 postgres postgres 21458 Mar 29 14:27 postgresql.conf
-rw-r--r-- 1 postgres postgres 118 Mar 29 14:27 postgresql.auto.conf

Copy the saved, unarchived WAL files to the restore path pg_xlog subdirectory (/opt/

3.7. Using Point-In-Time Recovery 120

BART Reference Guide, Release 2.5.7

restore_pg96/pg_xlog):

-bash-4.1$ pwd
/opt/restore_pg96/pg_xlog
-bash-4.1$ ls -l
total 16388
-rw------- 1 postgres postgres 16777216 Mar 29 13:50
000000010000000000000002
drwx------ 2 postgres postgres 4096 Mar 29 14:27 archive_status
-bash-4.1$ ls -l /tmp/unarchived_pg96_wals
total 32768
-rw------- 1 postgres postgres 16777216 Mar 29 14:07
000000010000000000000004
-rw------- 1 postgres postgres 16777216 Mar 29 13:50
000000010000000000000005
-bash-4.1$ cp -p /tmp/unarchived_pg96_wals/* .
-bash-4.1$ ls -l
total 49156
-rw------- 1 postgres postgres 16777216 Mar 29 13:50
000000010000000000000002
-rw------- 1 postgres postgres 16777216 Mar 29 14:07
000000010000000000000004
-rw------- 1 postgres postgres 16777216 Mar 29 13:50
000000010000000000000005
drwx------ 2 postgres postgres 4096 Mar 29 14:27 archive_status

Inspect the /opt/restore_pg96/postgresql.auto.conf file to verify that it contains
the correct recovery settings:

restore_command = 'cp archived_wals/%f %p'
recovery_target_time = '2017-03-29 14:01:00'
recovery_target_timeline = 1

Note that the command restores from the archived_wals subdirectory of /opt/
restore_pg96 since the copy_wals_during_restore parameter in the BART config-
uration file is set to enabled for database server hr.

Start the database server to initiate the point-in-time recovery operation:

[user@localhost ~]$ su postgres
Password:
bash-4.1$ cd /opt/restore_pg96
bash-4.1$ /opt/PostgreSQL/9.6/bin/pg_ctl start -D /opt/restore_pg96 -l
/opt/restore_pg96/pg_log/logfile
server starting

Inspect the database server log file to ensure the operation did not result in any errors:

3.7. Using Point-In-Time Recovery 121

BART Reference Guide, Release 2.5.7

2017-03-29 14:33:23 EDT LOG: database system was interrupted; last
→˓known
up at 2017-03-29 13:50:25 EDT
2017-03-29 14:33:23 EDT LOG: starting point-in-time recovery to
2017-03-29 14:01:00-04
2017-03-29 14:33:23 EDT LOG: restored log file
"000000010000000000000002" from archive
2017-03-29 14:33:23 EDT LOG: redo starts at 0/2000098
2017-03-29 14:33:23 EDT LOG: consistent recovery state reached at
0/20000C0
2017-03-29 14:33:23 EDT LOG: restored log file
"000000010000000000000003" from archive
2017-03-29 14:33:23 EDT LOG: recovery stopping before commit of
transaction 1762, time 2017-03-29 14:02:28.100072-04
2017-03-29 14:33:23 EDT LOG: redo done at 0/303F390
2017-03-29 14:33:23 EDT LOG: last completed transaction was at log time
2017-03-29 14:00:43.351333-04
cp: cannot stat `archived_wals/00000002.history': No such file or
directory
2017-03-29 14:33:23 EDT LOG: selected new timeline ID: 2
cp: cannot stat `archived_wals/00000001.history': No such file or
directory
2017-03-29 14:33:23 EDT LOG: archive recovery complete
2017-03-29 14:33:23 EDT LOG: MultiXact member wraparound protections
→˓are
now enabled
2017-03-29 14:33:23 EDT LOG: database system is ready to accept
connections
2017-03-29 14:33:23 EDT LOG: autovacuum launcher started

The tables that exist in the recovered database cluster are:

postgres=# \dt
List of relations

Schema | Name | Type | Owner
--------+----------------+-------+----------
public | hr_rmt_t1_1356 | table | postgres
public | hr_rmt_t1_1358 | table | postgres
public | hr_rmt_t1_1400 | table | postgres
(3 rows)

Since recovery was up to and including 2017-03-29 14:01:00, the following tables created after
14:01 are not present:

public | hr_rmt_t1_1402 | table | postgres
public | hr_rmt_t1_1404 | table | postgres
public | hr_rmt_t1_1406 | table | postgres

3.7. Using Point-In-Time Recovery 122

BART Reference Guide, Release 2.5.7

The BART RESTORE operation stops WAL archiving by adding an archive_mode = off
parameter at the very end of the postgresql.conf file. This last parameter in the file overrides
any other previous setting of the same parameter in the file. Delete the last setting and restart the
database server to start WAL archiving.

Add settings for extensions here
archive_mode = off

3.7. Using Point-In-Time Recovery 123

CHAPTER 4

Conclusion

EDB Backup and Recovery Reference Guide

Copyright © 2014 - 2020 EnterpriseDB Corporation.

All rights reserved.

EnterpriseDB® Corporation

34 Crosby Drive, Suite 201, Bedford, MA 01730, USA

T +1 781 357 3390 F +1 978 467 1307 E

info@enterprisedb.com

www.enterprisedb.com

• EnterpriseDB and Postgres Enterprise Manager are registered trademarks of EnterpriseDB
Corporation. EDB and EDB Postgres are trademarks of EnterpriseDB Corporation. Ora-
cle is a registered trademark of Oracle, Inc. Other trademarks may be trademarks of their
respective owners.

• EDB designs, establishes coding best practices, reviews, and verifies input validation for
the logon UI for EDB Postgres product where present. EDB follows the same approach for
additional input components, however the nature of the product may require that it accepts
freeform SQL, WMI or other strings to be entered and submitted by trusted users for which
limited validation is possible. In such cases it is not possible to prevent users from entering
incorrect or otherwise dangerous inputs.

• EDB reserves the right to add features to products that accept freeform SQL, WMI or other
potentially dangerous inputs from authenticated, trusted users in the future, but will ensure

124

mailto:info@enterprisedb.com

BART Reference Guide, Release 2.5.7

all such features are designed and tested to ensure they provide the minimum possible risk,
and where possible, require superuser or equivalent privileges.

• EDB does not that warrant that we can or will anticipate all potential threats and therefore
our process cannot fully guarantee that all potential vulnerabilities have been addressed or
considered.

125

Index

A
A Sample BART System, 90

B
BACKUP Subcommand, 6
BACKUP Subcommand Examples, 9
BART Subcommand Syntax and

Examples, 2

C
CHECK-CONFIG Subcommand, 14
CHECK-CONFIG Subcommand

Examples, 14
Configuring access to a

PostgreSQL host, 102
Configuring BART host access to

Advanced Server, 98
Configuring local host access, 95
Configuring remote host, 96
Configuring remote PostgreSQL

access, 100
Creating a Key File, 94

D
DELETE Subcommand, 15
DELETE Subcommand Examples, 16

E
EDB Postgres Backup and

Recovery Reference Guide, 1
Example of Using Recovery

Window Retention Policy

for Managing Incremental
Backup, 84

Example of Using Redundancy
Retention Policy for
Managing Incremental
Backup, 80

I
INIT Subcommand, 20
INIT Subcommand Example, 21

M
MANAGE Subcommand, 28
MANAGE Subcommand Examples, 29
Managing Backups, 63
Managing Backups - Example, 63
Managing Incremental Backups

Example, 79

R
Replication database user, 103
RESTORE Subcommand, 35
RESTORE Subcommand Examples, 37
Restoring a Database Cluster

with Tablespaces, 52
Restoring an Incremental Backup,

58
Running the BART WAL Scanner, 47
Running the BART WAL Scanner

Examples, 48

S
SHOW-BACKUPS Subcommand, 42

126

BART Reference Guide, Release 2.5.7

SHOW-SERVERS Subcommand, 40
SSH/SCP Connection, 93
Starting WAL archiving, 113

T
Taking a Full Backup, 114
The BART Configuration File, 92

U
Using Point-In-Time Recovery, 117

V
VERIFY-CHKSUM Subcommand, 45

W
WAL archiving parameters, 106

Index 127

	BART Subcommand Syntax and Examples
	BACKUP
	CHECK-CONFIG
	DELETE
	INIT
	MANAGE
	RESTORE
	SHOW-SERVERS
	SHOW-BACKUPS
	VERIFY-CHKSUM
	Running the BART WAL Scanner

	Additional Examples
	Restoring a Database Cluster with Tablespaces
	Restoring an Incremental Backup
	Managing Backups
	Using a Redundancy Retention Policy
	Using a Recovery Window Retention Policy
	Viewing the Recovery Window
	Evaluating, Marking, and Deleting Backup Using a Recovery Window Retention Policy

	Managing Incremental Backups
	Using a Redundancy Retention Policy
	Using a Recovery Window Retention Policy

	Sample BART System with Local and Remote Database Servers
	The BART Configuration File
	Establishing SSH/SCP Passwordless Connections
	Generating a Public Key File for the BART User Account
	Configuring Access between Local Advanced Server and the BART Host
	Configuring Access from Remote Advanced Server to BART Host
	Configuring Access from the BART Host to a Remote Advanced Server
	Configuring Access from a Remote PostgreSQL Server to a BART Host
	Configuring Access from the BART Host to Remote PostgreSQL

	Configuring a Replication Database User
	WAL Archiving Configuration Parameters
	Creating the BART Backup Catalog (backup_path)
	Starting the Database Servers with WAL Archiving

	Taking a Full Backup
	Using Point-In-Time Recovery

	Conclusion
	Index

