
EDB Backup and Recovery User Guide
Release 2.5.7

EDB Backup and Recovery User Guide

Feb 11, 2021

Contents

1 Introduction 1
1.1 Conventions Used in this Guide . 2
1.2 Restrictions on pg_basebackup . 2

2 Overview 4
2.1 Block-Level Incremental Backup . 9

2.1.1 Incremental Backup Limitations and Requirements 9
2.1.2 Concept Overview . 10
2.1.3 WAL Scanning – Preparation for an Incremental Backup 11
2.1.4 Performing an Incremental Backup . 13
2.1.5 Restoring an Incremental Backup . 15

Restoring an Incremental Backup on a BART Host 16
Restoring an Incremental Backup on a Remote Host 16

2.2 Creating a Backup Chain . 17

3 Using BART 18
3.1 BART Management Overview . 18

3.1.1 Performing a Restore Operation . 20
3.1.2 Point-In-Time Recovery Operation . 22

3.2 Managing Backups Using a Retention Policy . 24
3.2.1 Overview - Managing Backups Using a Retention Policy 24
3.2.2 Marking the Backup Status . 25
3.2.3 Setting the Retention Policy . 27

Redundancy Retention Policy . 27
Recovery Window Retention Policy . 29

3.2.4 Managing the Backups Based on the Retention Policy 29
Deletions Permitted Under a Retention Policy 30
Marking Backups for Indefinite Keep Status 31
Evaluating, Marking, and Deleting Obsolete Backups 31

i

3.2.5 Managing Incremental Backups . 32
Using a Redundancy Retention Policy with Incremental Backups 33
Using a Recovery Window Retention Policy with Incremental Backups . . 33

3.3 Basic BART Subcommand Usage . 35
3.3.1 CHECK-CONFIG . 37
3.3.2 INIT . 38
3.3.3 BACKUP . 40
3.3.4 SHOW-SERVERS . 47
3.3.5 SHOW-BACKUPS . 48
3.3.6 VERIFY-CHKSUM . 49
3.3.7 MANAGE . 50
3.3.8 RESTORE . 53
3.3.9 DELETE . 57

3.4 Running the BART WAL Scanner . 59

4 Using Tablespaces 62

5 Conclusion 64

Index 66

ii

CHAPTER 1

Introduction

The EDB Backup and Recovery Tool (BART) is an administrative utility that provides simplified
backup and recovery management for multiple local or remote EDB Advanced Server and Post-
greSQL® database servers.

BART provides the following features:

• Support for complete, hot, physical backups of multiple Advanced Servers and PostgreSQL
database servers

• Support for two types of backups – full base backups and block-level incremental backups

• Backup and recovery management of database servers on local or remote hosts

• A single, centralized catalog for backup data

• Retention policy support for defining and managing how long backups should be kept

• The capability to store the backup data in compressed format

• Verified backup data with checksums

• Backup information displayed in an easy-to-read format

• A simplified point-in-time recovery process

This guide provides the following information about using BART:

• an overview of the BART components and concepts.

• information about the backup and recovery management process.

• information about using tablespaces.

1

EDB Backup and Recovery User Guide, Release 2.5.7

To view information about BART installation and upgrade, see the EDB Backup and Recovery
Installation and Upgrade Guide and to view examples of BART operations and subcommands, see
the EDB Backup and Recovery Reference Guide. These guides are available at the EDB website..

1.1 Conventions Used in this Guide

The following is a list of conventions used throughout this document.

• Much of the information in this document applies interchangeably to the PostgreSQL and
EDB Advanced Server database systems. The term Advanced Server is used to refer to
EDB Advanced Server. The term Postgres is used to generically refer to both PostgreSQL
and Advanced Server. When a distinction needs to be made between these two database
systems, the specific names, PostgreSQL or Advanced Server are used.

• The installation directory of the PostgreSQL or Advanced Server products is referred to as
POSTGRES_INSTALL_HOME:

– For PostgreSQL Linux installations, this defaults to /opt/PostgreSQL/<x.x>
for version 10 and earlier. For later versions, the installation directory is /var/lib/
pgsql/<x>.

– For Advanced Server Linux installations performed using the interactive installer for
version 10 and earlier, this defaults to /opt/PostgresPlus/<x.x>AS or /opt/
edb/as<x.x>. For Advanced Server Linux installations performed with an RPM
package, this defaults to /usr/ppas-<x.x> or /usr/edb/as<x.x>. For Ad-
vanced Server Linux installations performed with an RPM package for version 11 or
later, this defaults to /usr/edb/as<xx>.

1.2 Restrictions on pg_basebackup

BART takes full backups using the pg_basebackup utility program under the following condi-
tions:

• The backup is taken on a standby server.

• The --with-pg_basebackup option is specified with the BACKUP subcommand (see
Backup).

• The number of thread count in effect is 1, and the with-pg_basebackup option is not
specified with the BACKUP subcommand.

• Database servers can only be backed up using pg_basebackup utility program of the
same or later version than the database server version.

In the global section of the BART configuration file, the pg_basebackup_path parameter
specifies the complete directory path to the pg_basebackup program. For information about

1.1. Conventions Used in this Guide 2

https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

the pg_basebackup_path parameter and the thread_count, see the EDB Backup and Re-
covery Installation and Upgrade Guide available at the EDB website.

For information about pg_basebackup, see the PostgreSQL Core Documentation.

1.2. Restrictions on pg_basebackup 3

https://www.enterprisedb.com/edb-docs/
https://postgresql.org/docs/current/static/app-pgbasebackup.html

CHAPTER 2

Overview

BART provides a simplified interface for the continuous archiving and point-in-time recovery
method provided with Postgres database servers. This consists of the following processes:

• Capturing a complete image of a database cluster as a full base backup or referred to simply
as a full backup.

• Capturing a modified image of a database cluster called a block-level incremental backup or
referred as incremental backup, which is similar to a full backup, but contains the modified
blocks of the relation files that have been changed since a previous backup.

• Archiving the Write-Ahead Log segments (WAL files), which continuously record
changes to be made to the database files.

• Performing Point-In-Time Recovery (PITR) to a specified transaction ID or timestamp with
respect to a timeline using a full backup along with successive, block-level incremental back-
ups that reside in the same backup chain, and the WAL files.

Detailed information regarding WAL files and point-in-time recovery is documented in the Post-
greSQL Core Documentation.

The general term backup refers to both full backups and incremental backups.

When taking a full backup of a standby server, BART uses the PostgreSQL pg_basebackup
utility program. However, it must be noted that for standby servers, you can only take a full
backup, but cannot take incremental and parallel backups. For information about standby servers,
see the PostgreSQL Documentation.

BART simplifies the management process by use of a centralized backup catalog, a single configu-
ration file, and a command line interface controlling the necessary operations. Reasonable defaults

4

https://www.postgresql.org/docs/current/static/continuous-archiving.html
https://www.postgresql.org/docs/current/static/continuous-archiving.html
https://www.postgresql.org/docs/current/static/high-availability.html

EDB Backup and Recovery User Guide, Release 2.5.7

are automatically used for various backup and restore options. BART also performs the necessary
recovery file configuration required for point-in-time recovery using its command line interface.

5

EDB Backup and Recovery User Guide, Release 2.5.7

BART also provides the following features to enhance backup management:

• Automation of the WAL archiving command configuration.

• Usage of retention policies to evaluate, categorize, and delete obsolete backups.

• Compression of WAL files to conserve disk space.

• Customizable naming of backups to ease their usage.

• Easy access to comprehensive information about each backup.

The key components of a BART installation are:

• BART Host. The host system on which BART is installed. BART operations are invoked
from this host system. The database server backups and archived WAL files are stored on
this host as well.

• BART User Account. Linux operating system user account you choose to run BART. The
BART user account owns the BART backup catalog directory.

• BART Configuration File. File in editable text format containing the configuration infor-
mation used by BART.

• BART Backup Catalog. File system directory structure containing all of the backups for the
database servers managed by BART. It is also the default archive_path to store archived
WAL files.

• BART Backupinfo File. File in text format containing information for a BART backup. A
backupinfo file resides in each backup subdirectory within the BART backup catalog.

• BART Command Line Utility Program. Single, executable file named bart, which is
used to manage all BART operations.

• BART WAL Scanner Program. Single, executable file named bart-scanner, which is
used to scan WAL files to locate and record the modified blocks for incremental backups.

Other concepts and terms referred to in this document include the following:

• Postgres Database Cluster. Also commonly called the data directory, this is the file system
directory where all of the data files related to a particular Postgres database server instance
are stored. (Each specific running instance is identified by its host and port number when
connecting to a database.) The database cluster is identified by the -D option when it is
created, started, stopped, etc. by the Postgres initdb and pg_ctl commands. A full
backup is a copy of a database cluster.

The terms database cluster and database server are used somewhat interchangeably through-
out this document, though a single database server can run multiple database clusters.

• Postgres User Account. Linux operating system user account that runs the Advanced Server
or PostgreSQL database server and owns the database cluster directory.

– By default, the database user account is enterprisedb when Advanced Server is
installed to support compatibility with Oracle databases.

6

EDB Backup and Recovery User Guide, Release 2.5.7

– By default, the database user account is postgres when Advanced Server is in-
stalled in PostgreSQL compatible mode. For a PostgreSQL database server, the default
database user account is also postgres.

The BART configuration parameter cluster_ownermust be set to the database user
account for each database server.

• Replication Database User. For each database server managed by BART, a database su-
peruser must be selected to act as the replication database user. This database user is used
to connect to the database server when backups are taken. The database superusers created
with an initial Postgres database server installation (enterprisedb or postgres) may
be used for this purpose.

The BART configuration parameter user must be set to this replication database user for
each database server.

• Secure Shell (SSH)/Secure Copy (SCP). Linux utility programs used to log into hosts
(SSH) and copy files (SCP) between hosts. A valid user account must be specified that exists
on the target host and in fact is the user account under which the SSH or SCP operations
occur.

For information on how all of these components are configured and used with BART, see the EDB
Postgres Backup and Recovery Installation and Upgrade Guide available at the EDB website.

Supported BART Operations

The following tables are not a conclusive list of the scenarios supported by BART, but instead
provides an overview of some of the most common scenarios in both pg_basebackup (thread
count=1) as well as parallel backup mode (thread count greater than 1).

Table 1: Backup
-Fp-xlog-
method=fetch

-Fp-xlog-
method=stream

-Ft-xlog-
method=fetch

-Ft-xlog-
method=stream

Master Database
Server/Full
backup

Supported Supported Supported Supported

Master Database
Server/Incremental
backup

Supported Supported Not Supported Not Supported

Standby
Database
Server/Full
backup

Supported Supported Supported Supported

continues on next page

7

https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

Table 1 – continued from previous page
-Fp-xlog-
method=fetch

-Fp-xlog-
method=stream

-Ft-xlog-
method=fetch

-Ft-xlog-
method=stream

Standby
Database
Server/Incremental
backup

Not Supported Not Supported Not Supported Not Supported

Table 2: Wal Archiving
Wal compression by BART WAL scanner

Master Database
Server/Full backup

Supported Not required

Master Database
Server/Incremental
backup

Not Supported required

Standby Database
Server/Full backup

Supported Not required

Standby Database
Server/Incremental
backup

Not Supported Not supported

Table 3: Restore
Wal compression = enabled Wal compression = disabled

Restore Supported Supported
Parallel restore Supported Supported

8

EDB Backup and Recovery User Guide, Release 2.5.7

2.1 Block-Level Incremental Backup

This section describes the basic concepts of a block-level incremental backup (referred to as an
incremental backup). An incremental backup is a unique functionality of BART.

An incremental backup provides a number of advantages when compared to using a full backup:

• The amount of time required to produce an incremental backup is generally less than a full
backup, as modified relation blocks are saved instead of all full relation files of the database
cluster.

• An incremental backup uses less disk space than a full backup.

Generally, all BART features (such as retention policy management) apply to incremental backups
and full backups. See Managing Incremental Backups for information.

2.1.1 Incremental Backup Limitations and Requirements

The following limitations apply to incremental backup:

• If you have restored a full or incremental backup, you must take a full backup before enabling
incremental backup.

• If a standby node has been promoted to the role of a primary node, you must take a full
backup before enabling incremental backup on the cluster.

• On a standby database server, you cannot take an incremental backup.

You must meet the following requirements before implementing incremental backup:

• You must create or select an operating system account to be used as the BART user account.

• You must create or select the replication database user, which must be a superuser.

• In the BART configuration file:

– You must set the cluster_owner parameter to the Linux operating system user
account that owns the database cluster directory from which incremental backups are
to be taken.

– You must enable the allow_incremental_backups parameter.

• A passwordless SSH/SCP connection must be established between the BART user account
on the BART host and the cluster_owner user account on the database server.

It must be noted that a passwordless SSH/SCP connection must be established even if BART
and the database server are running on the same host and the BART user account and the
cluster_owner user account are the same account.

• In addition to the BART host (where the BART backup catalog resides), the BART package
must also be installed on every remote database server on which incremental backups are

2.1. Block-Level Incremental Backup 9

EDB Backup and Recovery User Guide, Release 2.5.7

to be restored. To restore an incremental backup, the bart program must be executable
on the remote host by the remote user (the remote user is specified by the remote_host
parameter in the BART configuration file or by the -r option when using the RESTORE
subcommand to restore the incremental backup).

• When restoring incremental backups on a remote database server, a passwordless SSH/SCP
connection must be established from the BART user account on the BART host to the remote
user on the remote host (the remote user is specified by the remote_host parameter in
the BART configuration file or by the -r option when using the RESTORE subcommand to
restore the incremental backup).

• Compression of archived WAL files in the BART backup catalog is not permitted for
database servers on which incremental backups are to be taken. The wal_compression
setting in the BART configuration file must be disabled for those database servers.

• The incremental backup must be on the same timeline as the parent backup. The timeline
changes after each recovery operation so an incremental backup cannot use a parent backup
from an earlier timeline.

For information about configuring these requirements, see the EDB Backup and Recovery Instal-
lation and Upgrade Guide available at the EDB website.

The following section provides an overview of the basic incremental backup concepts.

2.1.2 Concept Overview

Using incremental backups involves the following sequence of steps:

1. Configure BART, and enable and initiate archiving of WAL files to the archive_path in
the same manner as done for full backups.

The default archive_path is the BART backup catalog (<backup_path>/
<server_name>/archived_wals). Using the <archive_path> parameter in the
server section of the BART configuration file, you can specify the location where WAL files
will be archived.

For more information about the archive_path parameter and configuring BART, see the
EDB Backup and Recovery Installation and Upgrade Guide available at the EDB website.

3. Take an initial full backup with the BACKUP subcommand. This full backup establishes the
parent of the first incremental backup.

4. Scan all WAL files produced by database servers on which incremental backups are to be
taken. These WAL files are scanned once they have been archived to the archive_path.

Each scanned WAL file results in a modified block map (MBM) file that records the location
of modified blocks obtained from the corresponding WAL file. The BART WAL scanner
program bart-scanner performs this process.

2.1. Block-Level Incremental Backup 10

https://www.enterprisedb.com/edb-docs/
https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

5. Take incremental backups using the BACKUP subcommand with the --parent option to
specify the backup identifier or name of a previous, full backup or an incremental backup.
Any previous backup may be chosen as the parent as long as all backups belong to the same
timeline.

6. The incremental backup process identifies which WAL files may contain changes from when
the parent backup was taken to the starting point of the incremental backup. The correspond-
ing MBM files are used to locate and copy the modified blocks to the incremental backup
directory along with other database cluster directories and files. Instead of backing up all,
full relation files, only the modified blocks are copied and saved. In addition, the relevant
MBM files are condensed into one consolidated block map (CBM) file that is stored with the
incremental backup.

Multiple block copier threads can be used to copy the modified blocks to the incremental
backup directory. See the EDB Backup and Recovery Installation and Upgrade Guide avail-
able at the EDB website for information about setting the thread_count parameter in the
BART configuration file. See Backup for information about using the --thread-count
option with the BACKUP subcommand.

7. Invoke the restore process for an incremental backup using the RESTORE subcommand in
the same manner as restoring a full backup. The -i option specifies the backup identifier
or name of the incremental backup to restore. The restore process begins by going back
through the chain of past, parent incremental backups until the initial full backup starting
the chain is identified. This full backup provides the initial set of directories and files to be
restored to the location specified with the -p option. Each subsequent incremental backup in
the chain is then restored. Restoration of an incremental backup uses its CBM file to restore
the modified blocks from the incremental backup.

The following sections provide some additional information on these procedures.

2.1.3 WAL Scanning – Preparation for an Incremental Backup

The WAL scanner program (bart-scanner) scans the WAL files created from the time of the
parent backup up to the start of the incremental backup to determine which blocks have modified
since the parent backup, and records the information in a file called the modified block map (MBM)
file. One MBM file is created for each WAL file.

The MBM file is stored in the directory where archived_wals will be stored, as specified in the
archive_path parameter in the bart.cfg file. If the archive_path is not specified, the
default archived_wals directory is:

<backup_path>/<server_name>/<archived_wals>

Where:

<backup_path> is the BART backup catalog parent directory specified in the
global section of the BART configuration file.

2.1. Block-Level Incremental Backup 11

https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

<server_name> is the lowercase conversion of the database server name specified
in the server section of the BART configuration file.

The following code snippet is the content of the archive path showing the MBM files created for
the WAL files. (The user name and group name of the files have been removed from the example
to list the WAL files and MBM files in a more comparable manner):

[root@localhost archived_wals]# pwd
/opt/backup/acctg/archived_wals
[root@localhost archived_wals]# ls -l
total 131104
-rw------- 1 16777216 Oct 12 09:38 000000010000000100000078
-rw------- 1 16777216 Oct 12 09:38 000000010000000100000079
-rw------- 1 16777216 Oct 12 09:38 00000001000000010000007A
-rw------- 1 16777216 Oct 12 09:35 00000001000000010000007B
-rw------- 1 16777216 Oct 12 09:38 00000001000000010000007C
-rw------- 1 16777216 Oct 12 09:39 00000001000000010000007D
-rw------- 1 16777216 Oct 12 09:42 00000001000000010000007E
-rw------- 1 16777216 Oct 12 09:47 00000001000000010000007F
-rw-rw-r-- 1 161 Oct 12 09:49
→˓0000000100000001780000280000000179000000.mbm
-rw-rw-r-- 1 684 Oct 12 09:49
→˓000000010000000179000028000000017A000000.mbm
-rw-rw-r-- 1 161 Oct 12 09:49
→˓00000001000000017A000028000000017B000000.mbm
-rw-rw-r-- 1 161 Oct 12 09:49
→˓00000001000000017B000028000000017C000000.mbm
-rw-rw-r-- 11524 Oct 12 09:49
→˓00000001000000017C000028000000017D000000.mbm
-rw-rw-r-- 1 161 Oct 12 09:49
→˓00000001000000017D000028000000017E000000.mbm
-rw-rw-r-- 1 161 Oct 12 09:49
→˓00000001000000017E000028000000017F000000.mbm
-rw-rw-r-- 1 161 Oct 12 09:49
→˓00000001000000017F0000280000000180000000.mbm

MBM files have the suffix, .mbm.

In preparation for any incremental backup, the WAL files should be scanned as soon as they are
copied to the archive_path. Thus, the WAL scanner should be running as soon as the WAL
files from the database cluster are archived to the archive_path.

If the archive_path contains WAL files that have not yet been scanned, starting the WAL
scanner begins scanning these files. If WAL file fails to be scanned (resulting in a missing MBM
file), you can use the WAL scanner to specify an individual WAL file.

Under certain conditions (such as when the rsync utility is used to copy WAL files to the
archive_path), the WAL files may have been missed by the WAL scanner program for scan-
ning and creation of MBM files. Use the scan_interval parameter in the BART configuration

2.1. Block-Level Incremental Backup 12

EDB Backup and Recovery User Guide, Release 2.5.7

file to initiate force scanning of WAL files in the archive_path to ensure MBM files are gen-
erated. See the EDB Backup and Recovery Installation and Upgrade Guide available at the EDB
website for more information about the scan_interval parameter.

See Running the BART WAL Scanner for information about using the WAL scanner.

2.1.4 Performing an Incremental Backup

The WAL files produced at the time of the parent backup up to the start of the incremental backup
contain information about which blocks were modified during that time interval. That information
is consolidated into an MBM file for each WAL file by the WAL scanner.

The MBM files for the relevant WAL files are read, and the information is used to copy the
modified blocks from the database cluster to the archived_wals directory as specified in the
archive_path parameter in the bart.cfg file. When compared to a full backup, the number
and sizes of relation files can be significantly less for an incremental backup.

For comparison, the following is an abbreviated list of the files copied to the archived base sub-
directory of a full backup for one database:

[root@localhost 14845]# pwd
/opt/backup/acctg/1476301238969/base/base/14845
[root@localhost 14845]# ls
112 13182_vm 14740 16467 16615 2608_vm 2655 2699
→˓ 2995 ...
113 13184 14742 16471 174 2609 2656 2701
→˓ 2995_vm ...
1247 13186 14745 16473 175 2609_fsm 2657 2702
→˓ 2996 ...
1247_fsm 13187 14747 16474 2187 2609_vm 2658 2703
→˓ 2998 ...
1247_vm 13187_fsm 14748 16476 2328 2610 2659 2704
→˓ 2998_vm ...
1249 13187_vm 14749 16477 2328_fsm 2610_fsm 2660 2753
→˓ 2999 ...
1249_fsm 13189 14752 16479 2328_vm 2610_vm 2661 2753_fsm
→˓ 2999_vm ...
1249_vm 13191 14754 16488 2336 2611 2662 2753_vm
→˓ 3079 ...
1255 13192 14755 16490 2336_vm 2611_vm 2663 2754
→˓ 3079_fsm ...

.

.

.
13182_fsm 14739 16465 16603 2608_fsm 2654 2696 2893_vm
→˓ 3501_vm ...

2.1. Block-Level Incremental Backup 13

https://www.enterprisedb.com/edb-docs/
https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

In contrast, the following is the content of the archived base subdirectory of the same database
from a subsequent incremental backup:

[root@localhost 14845]# pwd
/opt/backup/acctg/1476301835391/base/base/14845
[root@localhost 14845]# ls
1247 1249 1259 16384 17006 2608 2610 2658
→˓2663 2678 ...
1247_fsm 1249_fsm 1259_fsm 16387 17009 2608_fsm 2610_fsm 2659
→˓2673 2679 ...
1247_vm 1249_vm 1259_vm 16389 17011 2608_vm 2610_vm 2662
→˓2674 2703 ...

The information from the MBM files are consolidated into one file called a consolidated block
map (CBM) file. During the restore operation for the incremental backup, the CBM file is used to
identify the modified blocks to be restored for that backup.

In addition, the incremental backup also stores other required subdirectories and files from the
database cluster as is done for full backups.

Before taking an incremental backup, an initial full backup must be taken with the BACKUP sub-
command. This full backup establishes the parent of the first incremental backup.

2.1. Block-Level Incremental Backup 14

EDB Backup and Recovery User Guide, Release 2.5.7

The syntax for taking a full backup is:

bart BACKUP -s { <server_name> | all } [-F { p | t }]
[-z] [-c <compression_level>]
[--backup-name <backup_name>]
[--thread-count <number_of_threads>]
[{ --with-pg_basebackup | --no-pg_basebackup }]

Note: While a BACKUP subcommand is in progress, no other processes must run in parallel.

The syntax for taking an incremental backup is:

bart BACKUP -s { <server_name> | all } [-F p]
[--parent { <backup_id> | <backup_name> }]
[--backup-name <backup_name>]
[--thread-count <number_of_threads>]
[--check]

You must specify the following before taking an incremental backup:

• -Fp option for plain text format as incremental backup can only be taken in the plain text
format.

• --check option to verify if the required MBM files are present in the archived_wals
directory. The --parent option must be specified when the --check option is used.

See BACKUP for more information about using the BACKUP subcommand.

2.1.5 Restoring an Incremental Backup

Restoring an incremental backup may require additional steps depending upon the host on which
the incremental backup is to be restored:

• Restoring an Incremental Backup on a BART Host - This section outlines restoring an incre-
mental backup onto the same host where BART has been installed.

• Restoring an Incremental Backup on a Remote Host - This section outlines restoring an
incremental backup onto a remote host where BART has not been installed.

Ensure the bart program is available on the remote host when restoring an incremental backup
on a remote host; the invocation of the RESTORE subcommand for an incremental backup results
in the execution of the bart program on the remote host to restore the modified blocks to their
proper location.

2.1. Block-Level Incremental Backup 15

EDB Backup and Recovery User Guide, Release 2.5.7

Restoring an Incremental Backup on a BART Host

Specify a backup identifier or name, and include the -i option when invoking the RESTORE
subcommand to restore an incremental backup. All RESTORE options may be used in the same
manner as when restoring a full backup.

First, all files from the full backup from the beginning of the backup chain are restored. For
each incremental backup, the CBM file is used to identify and restore blocks from the incremental
backup. If there are new relations or databases identified in the CBM file, then relevant relation
files are copied. If consolidated block map information is found indicating the drop of a relation or
a database, then the relevant files are removed from the restore directory. Similarly, if there is any
indication of a table truncation, then the related files are truncated.

Also note that you can use the -w option of the RESTORE subcommand to specify a multiple
number of parallel worker processes to stream the modified blocks to the restore host.

Restoring an Incremental Backup on a Remote Host

To restore an incremental backup onto a remote host where BART has not been installed, perform
the following steps:

Step 1: Install BART on the remote host to which an incremental backup is to be restored.

No editing is needed in the bart.cfg file installed on the remote host.

Step 2: Determine the Linux operating system user account on the remote host to be used as the
remote user. This user is specified by the remote_host parameter in the BART configuration
file or by the -r option when using the RESTORE subcommand to restore the incremental backup.
The remote user must be the owner of the directory where the incremental backup is to be restored
on the remote host. By default, the user account is enterprisedb for Advanced Server or
postgres for PostgreSQL.

Step 3: Ensure a passwordless SSH/SCP connection is established from the BART user on the
BART host to the remote user on the remote host. For information about creating a passwordless
SSH/SCP connection, see the EDB Backup and Recovery Installation and Upgrade Guide available
at the EDB website.

When restoring an incremental backup, specify the RESTORE subcommand and the backup iden-
tifier or name of the incremental backup that will be restored. To view an example of restoring
an incremental backup, see the EDB Backup and Recovery Reference Guide available at the EDB
website.

2.1. Block-Level Incremental Backup 16

https://www.enterprisedb.com/edb-docs/
https://www.enterprisedb.com/edb-docs/
https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

2.2 Creating a Backup Chain

A backup chain is the set of backups consisting of a full backup and all of its successive incremental
backups. Tracing back on the parent backups of all incremental backups in the chain eventually
leads back to that single, full backup.

It is possible to have a multi-forked backup chain, which is two or more successive lines of incre-
mental backups, all of which begin with the same, full backup. Thus, within the chain there is a
backup that serves as the parent of more than one incremental backup.

Since restoration of an incremental backup is dependent upon first restoring the full backup, then
all successive incremental backups up to, and including the incremental backup specified by the
RESTORE subcommand, it is crucial to note the following:

• Deletion or corruption of the full backup destroys the entire backup chain. It is not possible
to restore any of the incremental backups that were part of that chain.

• Deletion or corruption of an incremental backup within the chain results in the inability to
restore any incremental backup that was added to that successive line of backups follow-
ing the deleted or corrupted backup. The full backup and incremental backups prior to the
deleted or corrupted backup can still be restored.

The actions of retention policy management are applied to the full backup and all of its successive
incremental backups within the chain in an identical manner as if they were one backup. Thus, use
of retention policy management does not result in the breakup of a backup chain.

See the EDB Backup and Recovery Reference Guide available at the EDB website for examples
of creating a backup chain and restoring an incremental backup.

2.2. Creating a Backup Chain 17

https://www.enterprisedb.com/edb-docs/

CHAPTER 3

Using BART

After installing and configuring the BART host and the database servers, you can start using BART.
For detailed information about installation and configuration, see the EDB Backup and Recovery
Installation and Upgrade Guide available at the EDB website.

This section describes how to perform backup and recovery management operations using BART.
Review the sections that follow before proceeding with any BART operation.

3.1 BART Management Overview

After configuring BART, you can begin the backup and recovery management process. The fol-
lowing steps will help you get started:

1. Run the CHECK-CONFIG subcommand without the -s option. When the CHECK-CONFIG
subcommand is used without specifying the -s option, it checks the parameters in the global
section of the BART configuration file.

2. Run the INIT subcommand (if you have not already done so) to finish creation of the BART
backup catalog, which results in the complete directory structure to which backups and
WAL files are saved. This step must be done before restarting the database servers with
enabled WAL archiving, otherwise the copy operation in the archive_command param-
eter of the postgresql.conf file or the postgresql.auto.conf file fails due to
the absence of the target archive directory. When the directory structure is complete, the
archived_wals subdirectory should exist for each database server.

3. Start the Postgres database servers with archiving enabled. Verify that the WAL files
are appearing in the archive_path. The archiving frequency is dependent upon other

18

https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

postgresql.conf configuration parameters. Check the Postgres database server log
files to ensure there are no archiving errors. Archiving should be operational before taking a
backup in order to ensure that the WAL files that may be created during the backup process
are archived.

4. Start the WAL scanner if you intend to take incremental backups. Since the WAL scanner
processes the WAL files copied to the archive path, it is advantageous to commence the
WAL scanning as soon as the WAL files begin to appear in the archive_path in order to
keep the scanning in pace with the WAL archiving.

5. Run the BART CHECK-CONFIG subcommand for each database server with the -s option
specifying the server name. This ensures the database server is properly configured for taking
backups.

6. Create a full backup for each database server. The full backup establishes the starting point
of when point-in-time recovery can begin and also establishes the initial parent backup for
any incremental backups to be taken.

There are now a number of other BART management processes you may perform:

• Execute the BACKUP subcommand to create additional full backups or incremental backups.

• Use the VERIFY-CHKSUM subcommand to verify the checksum of the full backups.

• Display database server information with the SHOW-SERVERS subcommand.

• Display backup information with the SHOW-BACKUPS subcommand.

• Compress the archived WAL files in the archive_path by enabling WAL compression
in the BART configuration file and then invoking the MANAGE subcommand.

• Determine and set the retention policy for backups in the BART configuration file.

• Establish the procedure for using the MANAGE subcommand to enforce the retention policy
for backups. This may include using cron jobs to schedule the MANAGE subcommand.

3.1. BART Management Overview 19

EDB Backup and Recovery User Guide, Release 2.5.7

3.1.1 Performing a Restore Operation

The following steps describe the process of restoring a backup:

Step 1: Use your system-specific command to shut down the database server.

Step 2: Inspect the pg_wal subdirectory (inspect the pg_xlog subdirectory if you are using
server version 9.6) of the data directory and save any WAL files that have not yet been archived
to the archive_path. If there are files that have not been archived, save them to a temporary
location.

Step 3: If you want to restore to current data directory, it is recommended to make a copy of the
current data directory and then delete all files and subdirectories under the data directory if you
have enough extra space. If there is not enough space, then make a copy of pg_wal directory (or
pg_xlog if you are using server version 9.6) until the server is successfully restored.

If you want to restore to a new, empty directory, create the directory on which you want to restore
the backed up database cluster. Ensure the data directory can be written to by the BART user
account or by the user account specified by the remote_host configuration parameter, or by the
--remote-host option of the RESTORE subcommand (if these are to be used).

Step 4: Perform the same process for tablespaces as described in Step 3. The
tablespace_path parameter in the BART configuration file must contain the tablespace di-
rectory paths to which the tablespace data files are to be restored. See the EDB Backup and Recov-
ery Installation and Upgrade Guide available at the EDB website for more information about this
parameter.

Step 5: Identify the backup to use for the restore operation and obtain the backup ID or backup
name.

To use the latest backup, omit the -i option; the RESTORE subcommand uses that backup by
default. The backups can be listed with the SHOW-BACKUPS subcommand.

Step 6: Run the BART RESTORE subcommand.

• Minimal recovery settings will be saved in the postgresql.auto.conf file and archive
recovery will proceed only until consistency is reached, with no restoration of files from the
archive. See Restore for detailed information about Restore subcommand.

• If the -c option is specified or if the copy_wals_during_restore BART configura-
tion parameter is enabled for this database server, then the following actions occur:

– In addition to restoring the database cluster to the directory specified by the -p
restore_path option, the archived WAL files of the backup are copied from the
BART backup catalog to the subdirectory restore_path/archived_wals.

– If recovery settings are saved in the postgresql.auto.conf file, the command
string set in the restore_command parameter retrieves the WAL files from this
archived_wals subdirectory relative to the restore_path parent directory as:
restore_command = cp archived_wals/%f %p

3.1. BART Management Overview 20

https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

You must ensure that valid options are specified when using the RESTORE subcommand. BART
will not generate an error message if invalid option values or invalid option combinations are
provided. BART will accept the invalid options and pass them to the postgresql.auto.conf
file, which will then be processed by the database server when it is restarted.

Step 7: Copy any saved WAL files from Step 2 to the restore_path/pg_xlog subdirectory.

Step 8: Inspect the restored directories and data files of the restored database cluster in directory
restore_path.

All files and directories must be owned by the user account that you intend to use to start the
database server. Recursively change the user and group ownership of the restore_path direc-
tory, its files, and its subdirectories if necessary. There must only be directory access privileges for
the user account that will start the database server. No other groups or users can have access to the
directory.

Step 9: The postgresql.auto.conf file should be configured to recover only until the clus-
ter reaches consistency. In either case, the settings may be modified as desired.

Step 10: Disable WAL archiving at this point. The BART RESTORE subcommand adds
archive_mode = off to the end of the postgresql.conf file.

• If you want to restart the database server with WAL archiving enabled, ensure that this
additional parameter is deleted.

• The original archive_mode parameter still resides in the postgresql.conf file in its
initial location with its last setting.

Step 11: Start the database server to initiate recovery. After completion, check the database server
log file to ensure the recovery was successful.

If the backup is restored to a different location than where the original database cluster resided,
operations dependent upon the database cluster location may fail if supporting service scripts are
not updated to reflect the location where the backup has been restored. For information about the
use and modification of service scripts, see the EDB Advanced Server Installation Guide available
at the EDB website.

See Restore for more information about using the BART Restore subcommand.

An example of a restore operation is documented in the EDB Backup and Recovery Reference
Guide available at the EDB website.

3.1. BART Management Overview 21

https://www.enterprisedb.com/edb-docs/
https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

3.1.2 Point-In-Time Recovery Operation

The following steps outline how to perform a point-in-time recovery operation for a database clus-
ter:

1. Use your system-specific command to shut down the database server.

2. If you want to:

a. restore the database cluster and tablespace files to new, empty directories, create the
new directories with the appropriate directory ownership and permissions.

b. reuse the existing database cluster directories, delete all the files and subdirectories in
the existing directories. We strongly recommend that you make a copy of this data
before deleting it. Be sure to save any recent WAL files in the pg_wal subdirectory (
pg_xlog subdirectory if you are using server version 9.6) that have not been archived
to archive_path.

3. Run the BART SHOW-BACKUPS -s <server_name> subcommand to list the backup
IDs and backup names of the backups for the database server. You will need to provide the
appropriate backup ID or backup name with the BART RESTORE subcommand, unless you
intend to restore the latest backup in which case the -i option of the RESTORE subcommand
for specifying the backup ID or backup name may be omitted.

4. Run the BART RESTORE subcommand with the appropriate options.

• The backup is restored to the directory specified by the -p restore_path option.

• In addition, if the RESTORE subcommand -c option is specified or if the enabled setting of
the copy_wals_during_restore BART configuration parameter is applicable to the
database server, then the required archived WAL files from the archive_path are copied
to the restore_path/archived_wals subdirectory.

Ensure the restore_path directory and all subdirectories and files in the
restore_path are owned by the proper Postgres user account (for example,
enterprisedb or postgres). Also ensure that only the Postgres user account has ac-
cess permission to the restore_path directory.

Use the chown command to make the appropriate adjustments to file permissions;
for example, the following command changes the ownership of restore_path to
enterprisedb:

chown -R enterprisedb:enterprisedb restore_path

The following command restricts access to restore_path:

chmod 700 restore_path

5. Copy any saved WAL files from Step 2 that were not archived to the BART backup catalog
to the restore_path/pg_wal subdirectory (pg_xlog subdirectory if you are using
server version 9.6).

3.1. BART Management Overview 22

EDB Backup and Recovery User Guide, Release 2.5.7

6. Identify the timeline ID you wish to use to perform the restore operation.

The available timeline IDs can be identified by the first non-zero digit of the WAL file names
reading from left to right.

7. Verify that the postgresql.auto.conf file created in the directory specified with the
RESTORE subcommand’s -p <restore_path> option was generated with the correct
recovery parameter settings.

If the RESTORE subcommand -c option is specified or if the enabled setting of the
copy_wals_during_restore BART configuration parameter is applicable to the
database server, then the restore_command parameter retrieves the archived WAL files
from the <restore_path>/archived_wals subdirectory that was created by the
RESTORE subcommand, otherwise the restore_command retrieves the archived WAL
files from the BART backup catalog.

8. The BART RESTORE subcommand disables WAL archiving in the restored database cluster.
If you want to immediately enable WAL archiving, modify the postgresql.conf file by
deleting the archive_mode = off parameter that BART appends to the end of the file.

9. Start the database server, which will then perform the point-in-time recovery operation if
recovery settings are saved in the postgresql.auto.conf file.

For a detailed description of the RESTORE subcommand, see Basic Bart Subcommand Usage. An
example of a Point-in-Time recovery operation is documented in the EDB Backup and Recovery
Reference Guide available at the EDB website. See Restore for more information about using the
Restore subcommand.

3.1. BART Management Overview 23

https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

3.2 Managing Backups Using a Retention Policy

Over the course of time when using BART, the number of backups can grow significantly. This
ultimately leads to a large consumption of disk space unless an administrator periodically performs
the process of deleting the oldest backups that are no longer needed. This process of determining
when a backup is old enough to be deleted and then actually deleting such backups can be done
and automated with the following basic steps:

1. Determine and set a retention policy in the BART configuration file. A retention policy is
a rule that determines when a backup is considered obsolete. The retention policy can be
applied globally to all servers, but each server can override the global retention policy with
its own.

2. Use the MANAGE subcommand to categorize and manage backups according to the retention
policy.

3. Create a cron job to periodically run the MANAGE subcommand to evaluate the backups and
then list and/or delete the obsolete backups.

Retention policy management applies differently to incremental backups than to full back-
ups. See Managing Incremental Backups for information about how retention policy man-
agement is applied to each backup type.

The following sections describe how retention policy management generally applies to back-
ups, and its specific usage and effect on full backups.

3.2.1 Overview - Managing Backups Using a Retention Policy

The BART retention policy results in the categorization of each backup in one of three statuses
–active, obsolete, and keep.

• Active. The backup satisfies the retention policy applicable to its server. Such backups
would be considered necessary to ensure the recovery safety for the server and thus should
be retained.

• Obsolete. The backup does not satisfy the retention policy applicable to its server. The
backup is no longer considered necessary for the recovery safety of the server and thus can
be deleted.

• Keep. The backup is to be retained regardless of the retention policy applicable to its server.
The backup is considered vital to the recovery safety for the server and thus should not be
deleted for an indefinite period of time.

There are two types of retention policies - redundancy retention policy and recovery window re-
tention policy.

• Redundancy Retention Policy - The redundancy retention policy relies on a specified, max-
imum number of most recent backups to retain for a given server. When the number of back-

3.2. Managing Backups Using a Retention Policy 24

EDB Backup and Recovery User Guide, Release 2.5.7

ups exceeds that maximum number, the oldest backups are considered obsolete (except for
backups marked as keep).

• Recovery Window Retention Policy - The recovery window retention policy relies on a
time frame (the recovery window) for when a backup should be considered active. The
boundaries defining the recovery window are the current date/time (the ending boundary of
the recovery window) and the date/time going back in the past for a specified length of time
(the starting boundary of the recovery window).

– If the date/time the backup was taken is within the recovery window (that is, the backup
date/time is on or after the starting date/time of the recovery window), then the backup
is considered active, otherwise it is considered obsolete (except for backups marked as
keep).

– Thus, for the recovery window retention policy, the recovery window time frame dy-
namically shifts, so the end of the recovery window is always the current date/time
when the MANAGE subcommand is run. As you run the MANAGE subcommand at fu-
ture points in time, the starting boundary of the recovery window moves forward in
time. At some future point, the date/time of when a backup was taken will be earlier
than the starting boundary of the recovery window. This is when an active backup’s
status will be considered obsolete.

– You can see the starting boundary of the recovery window at any point in time by
running the SHOW-SERVERS subcommand. The RETENTION POLICY field of the
SHOW-SERVERS subcommand displays the starting boundary of the recovery window.

3.2.2 Marking the Backup Status

When a backup is initially created with the BACKUP subcommand, it is always recorded with
active status. Use the MANAGE subcommand to evaluate if the backup status should be changed to
obsolete in accordance with the retention policy. You can review the current status of your backups
with the SHOW-BACKUPS subcommand.

Active backups are evaluated and also marked (that is, internally recorded by BART) as obsolete
only when the MANAGE subcommand is invoked either with no options or with only the -s option.

Once a backup has been marked as obsolete, you cannot change it back to active unless you perform
the following steps:

• Use the MANAGE subcommand with the -c option along with the backup identifier or name
with the -i option. To keep this particular backup indefinitely, use -c keep, otherwise
use -c nokeep.

• If you use the -c nokeep option, the backup status is changed back to active. When the
MANAGE subcommand is used the next time, the backup is re-evaluated to determine if its
status needs to be changed back to obsolete based on the current retention policy in the
BART configuration file.

3.2. Managing Backups Using a Retention Policy 25

EDB Backup and Recovery User Guide, Release 2.5.7

After setting the retention_policy parameter and running the MANAGE subcommand if you
change the retention_policy parameter, the current, marked status of the backups are prob-
ably inconsistent with the new retention_policy setting. To modify the backup status to be
consistent with the new retention_policy setting, you need to run the MANAGE subcommand
with:

• the -c nokeep option to change the obsolete status to active status if there are backups
currently marked as obsolete that would no longer be considered obsolete under a new re-
tention policy. You can also specify the -i all option to change all backups back to active
status, including those currently marked as keep.

• no options or with only the -s option to reset the marked status based on the new
retention_policy setting in the BART configuration file.

See MANAGE for usage information for the MANAGE subcommand.

3.2. Managing Backups Using a Retention Policy 26

EDB Backup and Recovery User Guide, Release 2.5.7

3.2.3 Setting the Retention Policy

The retention policy is determined by the retention_policy parameter in the BART con-
figuration file. It can be applied globally to all servers, but each server can override the global
retention policy with its own. For information about creating a global retention policy and an
individual database server retention policy, see the EDB Backup and Recovery Installation and
Upgrade Guide available at the EDB website.

There are two types of retention policies - redundancy retention policy and the recovery window
retention policy as described in the following sections.

Redundancy Retention Policy

To use the redundancy retention policy, set retention_policy = max_number BACKUPS
where max_number is a positive integer designating the maximum number of most recent back-
ups.

Additional Restrictions:

• The keyword BACKUPS must always be specified in plural form (for example, 1
BACKUPS).

• BART will accept a maximum integer value of 2,147,483,647 for max_number; however,
you should use a realistic, practical value based on your system environment.

The redundancy retention policy is the default type of retention policy if all keywords BACKUPS,
DAYS, WEEKS, and MONTHS following the max_number integer are omitted as shown by the
following example:

retention_policy = 3

In the following example, the redundancy retention policy setting considers the three most recent
backups as the active backups. Any older backups, except those marked as keep, are considered
obsolete:

[ACCTG]
host = 127.0.0.1
port = 5444
user = enterprisedb
archive_command = 'cp %p %a/%f'
retention_policy = 3 BACKUPS
description = "Accounting"

The SHOW-SERVERS subcommand displays the 3 Backups redundancy retention policy in the
RETENTION POLICY field:

-bash-4.1$ bart SHOW-SERVERS -s acctg
SERVER NAME : acctg

(continues on next page)

3.2. Managing Backups Using a Retention Policy 27

https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

(continued from previous page)

HOST NAME : 127.0.0.1
USER NAME : enterprisedb
PORT : 5444
REMOTE HOST :
RETENTION POLICY : 3 Backups
DISK UTILIZATION : 627.04 MB
NUMBER OF ARCHIVES : 25
ARCHIVE PATH : /opt/backup/acctg/archived_wals
ARCHIVE COMMAND : cp %p /opt/backup/acctg/archived_wals/%f
XLOG METHOD : fetch
WAL COMPRESSION : disabled
TABLESPACE PATH(s) :
DESCRIPTION : "Accounting"

3.2. Managing Backups Using a Retention Policy 28

EDB Backup and Recovery User Guide, Release 2.5.7

Recovery Window Retention Policy

To use the recovery window retention policy, set the retention_policy parameter to the
desired length of time for the recovery window in one of the following ways:

• Set to max_number DAYS to define the start date/time recovery window boundary as the
number of days specified by max_number going back in time from the current date/time.

• Set to max_number WEEKS to define the start date/time recovery window boundary as the
number of weeks specified by max_number going back in time from the current date/time.

• Set to max_number MONTHS to define the start date/time recovery window boundary
as the number of months specified by max_number going back in time from the current
date/time.

Additional Restrictions:

• The keywords DAYS, WEEKS, and MONTHS must always be specified in plural form (for
example, 1 DAYS, 1 WEEKS, or 1 MONTHS).

• BART will accept a maximum integer value of 2,147,483,647 for max_number, how-
ever, a realistic, practical value based on your system environment must always be used.

A backup is considered active if the date/time of the backup is equal to or greater than the start of
the recovery window date/time.

You can view the actual, calculated recovery window by:

• Invoking the MANAGE subcommand in debug mode, along with the -n option.

• Using the SHOW-SERVERS subcommand.

3.2.4 Managing the Backups Based on the Retention Policy

The MANAGE subcommand is used to evaluate and categorize backups according to the retention
policy set in the BART configuration file. When a backup is first created with the BACKUP sub-
command, it is active. You can use the MANAGE subcommand to change the status of an active
backup to obsolete. Obsolete backups can then be deleted.

This section covers following aspects of backup management:

• The rules for deleting backups depending upon the backup status and the subcommand used.

• The process to retain a backup indefinitely by marking it as keep. This section also provides
information about resetting backups status (that are marked as obsolete and keep) back
to active status.

• The general process for evaluating, marking, and then deleting obsolete backups.

3.2. Managing Backups Using a Retention Policy 29

EDB Backup and Recovery User Guide, Release 2.5.7

Deletions Permitted Under a Retention Policy

This section describes how and under what conditions backups may be deleted under a retention
policy.

You must use the MANAGE subcommand to delete obsolete backups. Use the DELETE subcom-
mand only for special administrative purposes.

The deletion behavior of the MANAGE subcommand and the DELETE subcommand are based on
different aspects of the retention policy.

• The MANAGE subcommand deletion relies solely upon how a backup status is cur-
rently marked (that is, internally recorded by BART). The current setting of the
retention_policy parameter in the BART configuration file is ignored.

• The DELETE subcommand relies solely upon the current setting of the
retention_policy parameter in the BART configuration file. The current active,
obsolete, or keep status of a backup is ignored.

The specific deletion rules for the MANAGE and DELETE subcommands are as follows:

• MANAGE subcommand: The MANAGE subcommand with the -d option can only
delete backups marked as obsolete. This deletion occurs regardless of the current
retention_policy setting in the BART configuration file. The deletion of backups
relies on the last occasion when the backups have been marked.

• DELETE subcommand:

– Under a redundancy retention policy currently set with the retention_policy
parameter in the BART configuration file, any backup regardless of its marked status,
can be deleted with the DELETE subcommand when the backup identifier or name is
specified with the -i option and if the current total number of backups for the specified
database server is greater than the maximum number of redundancy backups currently
specified with the retention_policy parameter.

If the total number of backups is less than or equal to the specified, maximum number
of redundancy backups, then no additional backups can be deleted using DELETE with
the -i backup option.

– Under a recovery window retention policy currently set with the
retention_policy parameter in the BART configuration file, any backup
regardless of its marked status, can be deleted with the DELETE subcommand
when the backup identifier or name is specified with the -i option, and if the
backup date/time is not within the recovery window currently specified with the
retention_policy parameter. If the backup date/time is within the recovery
window, then it cannot be deleted using DELETE with the -i backup option.

– Invoking the DELETE subcommand with the -i all option results in the deletion of
all backups regardless of the retention policy and regardless of whether the status is
marked as active, obsolete, or keep.

3.2. Managing Backups Using a Retention Policy 30

EDB Backup and Recovery User Guide, Release 2.5.7

The following table summarizes the deletion rules of backups according to their marked status. An
entry of Yes indicates the backup may be deleted under the specified circumstances. An entry of
No indicates that the backup may not be deleted.

Operation Redundancy Retention Policy Recovery Window Retention Policy
Active Obsolete Keep Active Obsolete Keep

MANAGE
–d

No Yes No No Yes No

DELETE
–i backup

Yes
(see Note1)

Yes
(see Note1)

Yes

(see
Note1)

Yes
(see Note2)

Yes
(see Note2)

Yes
(see Note2)

DELETE
–i all

Yes Yes Yes Yes Yes Yes

Note: Redundancy Retention Policy (Note1) : Deletion occurs only if the total number of backups
for the specified database server is greater than the specified, maximum number of redundancy
backups currently set with the redundancy_policy parameter in the BART configuration file.

Note: Recovery Window Retention Policy (Note2): Deletion occurs only if the backup is not
within the recovery window currently set with the redundancy_policy parameter in the
BART configuration file.

Marking Backups for Indefinite Keep Status

There may be certain backups that you wish to keep for an indefinite period of time and do not
wish to delete based upon the retention policy applied to the database server. Such backups can be
marked as keep to exclude them from being marked as obsolete. Use the MANAGE subcommand
with the -c keep option to retain such backups indefinitely.

Evaluating, Marking, and Deleting Obsolete Backups

When the MANAGE subcommand is invoked, BART evaluates active backups:

• If you include the -s option when invoking the MANAGE subcommand, BART evaluates
backups for the database server.

• If you include the -s all option when invoking the MANAGE subcommand, BART evalu-
ates backups for all database servers.

3.2. Managing Backups Using a Retention Policy 31

EDB Backup and Recovery User Guide, Release 2.5.7

• If the -s option is omitted, the command evaluates the current number of backups for the
database server based on the redundancy retention policy or the current date/time for a re-
covery window retention policy.

Note: The status of backups currently marked as obsolete or keep is not changed. To re-
evaluate such backups and then classify them, their status must first be reset to active with the
MANAGE -c nokeep option. See Marking the Backup Status for more information.

See the EDB Backup and Recovery Reference Guide available at the EDB website to review exam-
ples of how to evaluate, mark, and delete backups using a redundancy retention policy and recovery
window retention policy, as well as examples of MANAGE subcommand.

3.2.5 Managing Incremental Backups

The following section summarizes how retention policy management affects incremental backups.

• The retention policy rules are applied to full backups.

– A redundancy retention policy uses the number of full backups to determine if a backup
is obsolete. Incremental backups are excluded from the comparison count against the
retention_policy setting for the maximum number of backups.

– A recovery window retention policy uses the backup date/time of any full backups to
determine if a backup is obsolete. The backup date/time of any successive incremental
backups in the chain are ignored when comparing with the recovery window.

• The retention status of all incremental backups in a chain is set to the same status applied to
the full backup of the chain.

• The actions applied by the MANAGE and DELETE subcommands on a full backup are applied
to all incremental backups in the chain in the same manner.

• Thus, a backup chain (that is, the full backup and all its successive incremental backups) are
treated by retention policy management as if they are all one, single backup.

– The status setting applied to the full backup is also applied to all incremental backups
in its chain.

– If a full backup is marked as obsolete and then deleted according to the retention policy,
all incremental backups in the chain are also marked obsolete and then deleted as well.

The following are some specific points regarding the MANAGE and DELETE subcommands on
incremental backups.

• MANAGE subcommand:

– When the MANAGE subcommand is invoked, the status applied to the full backup is
also applied to all successive incremental backups in the chain.

3.2. Managing Backups Using a Retention Policy 32

https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

– The MANAGE subcommand with the -c { keep | nokeep} option cannot specify
the backup identifier or backup name of an incremental backup with -i backup option.
The -i backup option can only specify the backup identifier or backup name of a full
backup.

– You can also use the -i all option to take a backup of all backups. When the MANAGE
subcommand with the -c { keep | nokeep } option is applied to a full backup,
the same status change is made to all incremental backups in the chain.

• DELETE subcommand:

– The DELETE subcommand with the -s server -i backup option specifies the
backup identifier or backup name of an incremental backup in which case that in-
cremental backup along with all its successive incremental backups are deleted, thus
shortening that backup chain.

Using a Redundancy Retention Policy with Incremental Backups

When a redundancy retention policy is used and the MANAGE subcommand is invoked, the status of
the oldest active full backup is changed to obsolete if the number of full backups exceeds the
maximum number specified by the retention_policy parameter in the BART configuration
file.

Note: When a full backup is changed from active to obsolete, all successive incremental
backups in the chain of the full backup are also changed from active to obsolete.

When determining the number of backups that exceeds the number specified by the
retention_policy parameter, only full backups are counted for the comparison. Incremen-
tal backups are not included in the count for the comparison against the retention_policy
parameter setting.

See the EDB Backup and Recovery Reference Guide available at the EDB website for examples
demonstrating use of the MANAGE and DELETE subcommands when a redundancy retention policy
is in effect.

Using a Recovery Window Retention Policy with Incremental Backups

If the MANAGE command is invoked when BART is configured to use a recovery window retention
policy, the status of active full backups are changed to obsolete if the date/time of the full
backup is outside of the recovery window.

Note: If a full backup is changed from active to obsolete, all successive incremental back-
ups in the chain of the full backup are also changed from active to obsolete.

3.2. Managing Backups Using a Retention Policy 33

https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

The status of an incremental backup is changed to obsolete regardless of whether or not the
date/time of when the incremental backup was taken still lies within the recovery window.

See the EDB Backup and Recovery Reference Guide available at the EDB website for examples
demonstrating use of the MANAGE and DELETE subcommands when a recovery window retention
policy is in effect.

3.2. Managing Backups Using a Retention Policy 34

https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

3.3 Basic BART Subcommand Usage

This section briefly describes the BART subcommands and options. You can invoke the bart pro-
gram (located in the <BART_HOME>/bin directory) with the desired options and subcommands
to manage your BART installation.

To view examples of BART subcommands, see the EDB Backup and Recovery Reference Guide
available at the EDB website.

Syntax for invoking BART:

bart [general_option]... [subcommand]
[subcommand_option]...

• When invoking a subcommand, the subcommand name is not case-sensitive (that is, the
subcommand can be specified in uppercase, lowercase, or mixed case).

• Each subcommand has a number of its own applicable options that are specified follow-
ing the subcommand. All options are available in both single-character and multi-character
forms.

• Keywords are case-sensitive; options are generally specified in lowercase unless specified
otherwise in this section.

• When invoking BART, the current user must be the BART user account (operating system
user account used to run the BART command line program). For example, enterprisedb or
postgres can be selected as the BART user account when the managed database servers are
Advanced Server or PostgreSQL respectively.

• The chosen operating system user account must own the BART backup catalog directory, be
able to run the bart program and the bart scanner program, and have a passwordless
SSH/SCP connection established between database servers managed by BART.

You can specify one or more of the following general options:

Options Description
-h or --help

Displays general syntax and information on BART usage.
All subcommands support a help option (-h, --help). If the
help option is specified, information is displayed regarding that
particular subcommand. The subcommand, itself, is not executed.

-v or --version Displays the BART version information.
-d or --debug Displays debugging output while executing BART subcommands.

continues on next page

3.3. Basic BART Subcommand Usage 35

https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

Table 1 – continued from previous page
Options Description
-c or --config-path
config_file_path

Specifies config_file_path as the full directory path to a
BART configuration file. Use this option if you do not want to
use the default BART configuration file <BART_HOME>/etc/
bart.cfg.

Troubleshooting: Setting Path Environment Variable

If execution of BART subcommands fails with the following error message, then you need to set
the LD_LIBRARY_PATH to include the libpq library directory:

./bart: symbol lookup error: ./bart: undefined symbol:
PQping

Workaround: Set the LD_LIBRARY_PATH environment variable for the BART user
account to include the directory containing the libpq library. This directory is
POSTGRES_INSTALL_HOME/lib. It is suggested that the PATH and the LD_LIBRARY_PATH
environment variable settings be placed in the BART user account’s profile. See the EDB Backup
and Recovery Installation and Upgrade Guide available at the EDB website for details.

In the following sections, the help option is omitted from the syntax diagrams for the purpose of
providing readability for the subcommand options.

3.3. Basic BART Subcommand Usage 36

https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

3.3.1 CHECK-CONFIG

The CHECK-CONFIG subcommand checks the parameter settings in the BART configuration file
as well as the database server configuration for which the -s option is specified.

Syntax:

bart CHECK-CONFIG [-s server_name]

The following table describes the option.

Options Description
-s or --server
<server_name> server_name is the name of the database server to be checked

for proper configuration. If the option is omitted, the settings of
the global section of the BART configuration file are checked.

• When the -s option is omitted, the global section [BART] parameters including
bart_host, backup_path, and pg_basebackup_path are checked.

• When the -s option is specified, the server section parameters are checked. In addition,
certain database server postgresql.conf parameters are also checked, which include
the following:

– The cluster_owner parameter must be set to the user account owning the database
cluster directory.

– A passwordless SSH/SCP connection must be set between the BART user and the user
account specified by the cluster_owner parameter.

– A database superuser must be specified by the BART user parameter.

– The pg_hba.conf file must contain a replication entry for the database superuser
specified by the BART user parameter.

– The archive_mode parameter in the postgresql.conf file must be enabled.

– The archive_command parameter in the postgresql.auto.conf or the
postgresql.conf file must be set.

– The allow_incremental_backups parameter in the BART configuration file
must be enabled for database servers for which incremental backups are to be taken.

– Archiving of WAL files to the archive_path must be in process.

– The WAL scanner program must be running.

The CHECK-CONFIG subcommand displays an error message if the required configuration is not
properly set.

3.3. Basic BART Subcommand Usage 37

EDB Backup and Recovery User Guide, Release 2.5.7

3.3.2 INIT

The INIT subcommand is used to create the BART backup catalog directory, rebuild the BART
backupinfo file, and set the archive_command in the PostgreSQL server based on the
archive_command setting in the bart.cfg file.

Note: If the archive_mode configuration parameter is set to off, then the -o option must
be used to set the Postgres archive_command using the BART archive_command pa-
rameter in the BART configuration file even if the archive_command is not currently set in
postgresql.conf nor in postgresql.auto.conf file.

Syntax:

bart INIT [-s { <server_name> | all }] [-o]
[-r [-i { <backup_id> | <backup_name> | all }]]
[--no-configure]

All subcommand options are generally specified in lowercase. The following table describes the
command options:

Options Description
-s or --server
{<server_name> |
all }

server_name is the name of the database server to which the
INIT actions are to be applied. If all is specified or if the
option is omitted, the actions are applied to all servers.

-o or --override Overrides the existing, active Postgres archive_command
configuration parameter setting in the postgresql.conf
file or the postgresql.auto.conf file using the BART
archive_command parameter in the BART configuration file.
The INIT generated archive command string is written to the
postgresql.auto.conf file.

continues on next page

3.3. Basic BART Subcommand Usage 38

EDB Backup and Recovery User Guide, Release 2.5.7

Table 3 – continued from previous page
Options Description
-r or --rebuild

Rebuilds the backupinfo file (a text file named backupinfo)
located in each backup subdirectory. This option is only intended
for recovering from a situation where the backupinfo file has
become corrupt.
If the backup was initially created with a user-defined backup
name, and then the INIT -r option is invoked to rebuild that
backupinfo file, the user-defined backup name is no longer
available. Thus, future references to the backup must use the
backup identifier.

-i or --backupid
{ <backup_id> |
<backup_name> |
all }

<backup_id> is an integer, backup identifier and
<backup_name> is the user-defined alphanumeric name
for the backup. If all is specified or if the option is omitted, the
backupinfo files of all backups for the database servers specified
by the -s option are recreated. The -i option can only be used
with the -r option.

Archive Command Setting

After the archive_command is set, you need to either restart the PostgreSQL server or reload
the configuration file in the PostgreSQL server based on the following conditions.

• If the archive_mode is set to off and archive_command is not set in the PostgreSQL
server, the archive_command is set based on the archive_command setting in the
bart.cfg and also sets the archive_mode to on. In this case, you need to restart the
PostgreSQL server using pg_ctl restart

• If the archive_mode is set to on and archive_command is not set in the PostgreSQL
server, the archive_command is set based on the archive_command setting in the
bart.cfg. In this case, you need to reload the configuration in the PostgreSQL server
using pg_reload_conf() or pg_ctl reload.

• If the archive_mode is set to off and archive_command is already set in the Post-
greSQL server, the archive_mode is set to on. In this case, you need to restart the Post-
greSQL server using pg_ctl restart

• If the archive_mode is set to on and archive_command is already set in the Post-
greSQL server, then the archive_command is not set unless -o option is specified.

3.3. Basic BART Subcommand Usage 39

EDB Backup and Recovery User Guide, Release 2.5.7

3.3.3 BACKUP

The BACKUP subcommand is used to create a full backup or an incremental backup.

Syntax for full backup:

bart BACKUP -s { <server_name> | all } [-F { p | t }]
[-z] [-c <compression_level>]
[--backup-name <backup_name>]
[--thread-count <number_of_threads>]
[{ --with-pg_basebackup | --no-pg_basebackup }]

Note: While taking a backup, if a file (for example, database server log file) exceeding 1 GB size
is stored in the $PGDATA directory, the backup will fail. To avoid such backup failure, you need
to store large files (exceeding 1 GB) outside the $PGDATA directory.

Syntax for incremental Backup:

bart BACKUP -s { <server_name> | all } [-F p]
[--parent { <backup_id> | <backup_name> }]
[--backup-name <backup_name>]
[--thread-count <number_of_threads>]
[--check]

Note: To take an incremental backup, you must take a full backup first followed by incremental
backup.

Please Note:

• While a BACKUP subcommand is in progress, no other subcommands must be invoked. Any
subcommands invoked while a backup is in progress will skip and ignore the backups.

• For full backup, the target default format is a tar file, whereas for incremental backup, only
plain format must be specified.

• The backup is saved in the <backup_path>/<server_name>/<backup_id> direc-
tory, where <backup_path> is the value assigned to the <backup_path> parameter
in the BART configuration file, <server_name> is the lowercase name of the database
server as listed in the configuration file, and <backup_id> is a backup identifier assigned
by BART to the particular backup.

• MD5 checksums of the full backup and any user-defined tablespaces are saved as well for
tar backups.

• Before performing the backup, BART checks to ensure if there is enough disk space to
completely store the backup in the BART backup catalog.

3.3. Basic BART Subcommand Usage 40

EDB Backup and Recovery User Guide, Release 2.5.7

• In the postgresql.conf file, ensure the wal_keep_segments configuration pa-
rameter is set to a sufficiently large value. A low setting of the wal_keep_segments
configuration parameter may result in the deletion of some WAL files before the BART
BACKUP subcommand saves them to the archive_path. For information about the
wal_keep_segments parameter, see the PostgreSQL Core Documentation.

• If in the BART configuration file, parameter setting xlog_method=stream applies to a
given database server, streaming of the transaction log in parallel with creation of the backup
is performed for that database server, otherwise the transaction log files are collected upon
completion of the backup. See the EDB Backup and Recovery Installation and Upgrade
Guide available at the EDB website for details about database server setting.

Note: If the transaction log streaming method is used, the -Fp option for a plain text
backup format must be specified with the BACKUP subcommand.

• When you use BART to take a backup of PostgreSQL server, multiple backups can be taken
simultaneously and if a backup is interrupted, the backup mode is terminated automatically
without the need to run pg_stop_backup() command manually to terminate the backup.

Options

Along with the BACKUP subcommand, specify the following option:

Options Description
-s or --server {
server_name | all
}

server_name is the database server name to be backed up as
specified in the BART configuration file. If all is specified, all
servers are backed up. This option is mandatory.
If all is specified, and a connection to a database server listed in
the BART configuration file cannot be opened, the backup for that
database server is skipped, but the backup operation continues for
the other database servers.

Specify the following options as required. If you do not specify any of the following options, the
backup is created using default settings.

3.3. Basic BART Subcommand Usage 41

https://www.postgresql.org/docs/current/static/runtime-config-replication.html
https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

Options Description
-F { p | t } or --format {
p | t } Specify this option to provide the backup file format.

Use p for plain text or t for tar. If the option is omitted,
the default is tar format.
For taking incremental backups, the option -Fp must
be specified.

-z or --gzip (applicable only for
full backup)

Specify this option to use gzip compression on the tar file
output using the default compression level. This option
is applicable only for the tar format.

-c compression_level
or --compress-level
compression_level (ap-
plicable only for full backup)

Specify this option to use the gzip compression level on
the tar file output. compression_level is a digit
from 1 through 9, with 9 being the best compression.
This option is applicable only for the tar format.

--parent { backup_id |
backup_name } Specify this option to take an incremental backup.

<backup_id> is the backup identifier of a parent
backup. <backup_name> is the user-defined
alphanumeric name of a parent backup.
The parent is a backup taken prior to the incremental
backup. The parent backup can be either a full backup
or an incremental backup.
The option -Fp must be specified since an incremental
backup can only be taken in plain text format.
An incremental backup cannot be taken on a standby
database server. See Block-Level Incremental Backup
for additional information on incremental backups.

continues on next page

3.3. Basic BART Subcommand Usage 42

EDB Backup and Recovery User Guide, Release 2.5.7

Table 5 – continued from previous page
Options Description
--backup-name
<backup_name> Specify this option to assign a user-defined,

alphanumeric friendly name to the backup. The
maximum permitted length of backup name is 49
characters.
The backup name may include the following variables
to be substituted by the timestamp values when the
backup is taken: 1) %year – 4-digit year, 2) %month –
2-digit month, 3) %day – 2-digit day, 4) %hour 2-digit
hour, 5) %minute – 2-digit minute, and 6) %second –
2-digit second.
To include the percent sign (%) as a character in the
backup name, specify %% in the alphanumeric string.
If the backup name contains space characters (i.e. more
than one word) or when referenced with the option -i
by other subcommands (such as restore), enclose
the string in single quotes or double quotes. See backup
name examples.
If the --backup-name option is not specified, and
the backup_name parameter is not set for this
database server in the BART configuration file, then the
backup can only be referenced in other BART
subcommands by the BART assigned backup identifier.

continues on next page

3.3. Basic BART Subcommand Usage 43

EDB Backup and Recovery User Guide, Release 2.5.7

Table 5 – continued from previous page
Options Description
--thread-count
<number_of_threads> Use this option to use the number of worker threads to

run in parallel to copy blocks for a backup.
If the option --thread-count is omitted, then the
thread_count parameter in the BART configuration
file applicable to this database server is used.
If the option --thread-count is not enabled for this
database server, then the thread_count setting in
the global section of the BART configuration file is
used.
If the option --thread-count is not set in the
global section as well, the default number of threads is
1.
If parallel backup is run with N number of worker
threads, then it will initiate N+ 1 concurrent
connections with the server.
Thread count will not be effective if backup is taken on
a standby server.
For more information about the --thread-count
parameter, see the EDB Backup and Recovery
Installation and Upgrade Guide available at the EDB
website

--with-pg_basebackup
(applicable only for full backup) Specify this option to use pg_basebackup to take a

full backup. The number of thread counts in effect is
ignored as given by the thread_count parameter in
the BART configuration file.
When taking a full backup, if the thread count in effect
is greater than 1, then the pg_basebackup utility is
not used to take the full backup (parallel worker threads
are used) unless the option
--with-pg_basebackup is specified with the
BACKUP subcommand.

continues on next page

3.3. Basic BART Subcommand Usage 44

https://www.enterprisedb.com/edb-docs/
https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

Table 5 – continued from previous page
Options Description
--no-pg_basebackup (appli-
cable only for full backup) Specify this option if you do not want

pg_basebackup to be used to take a full backup.
When taking a full backup, if the thread count in effect
is only 1, then the pg_basebackup utility is used to
take the full backup unless the option
--no-pg_basebackup is specified with the
BACKUP subcommand.

--check (applicable only for in-
cremental backup)

Specify this option to verify if the required MBM files
are present in the archived_wals directory as spec-
ified in the archive_path parameter in the bart.
cfg file before taking an incremental backup. The
option --parent must be specified when the option
--check is used. An actual incremental backup is not
taken when the option --check is specified.

–backup-name Examples

The following examples demonstrate using the –backup-name clause:

./bart backup -s ppas12 -Ft --backup-name "YEAR = %year
MONTH = %month DAY = %day"
./bart backup -s ppas12 -Ft --backup-name "YEAR = %year
MONTH = %month DAY = %day %%"
./bart show-backups -s ppas12 -i "test backup"

Error messages

The following table lists the error messages that may be encountered when using the BACKUP
subcommand:

3.3. Basic BART Subcommand Usage 45

EDB Backup and Recovery User Guide, Release 2.5.7

error message Cause
edb@localhost bin]$./bart backup -s mktg -Ft
WARNING: xlog_method is empty, defaulting to
global policy
ERROR: backup failed for server ‘mktg’
free disk space is not enough to backup the server
‘mktg’
space available 13.35 GB, approximately required
14.65 GB

Insufficient free disk space.

ERROR: backup failed for server ‘mktg’
command failed with exit code 1
pg_basebackup: could not get transaction log end
position from server: ERROR: requested WAL
segment 00000001000000D50000006B has already
been removed

The wal_keep_segments configuration
parameter is not set to a sufficiently large
value in the postgresql.conf file.

ERROR: backup failed for server ‘mktg’
connection to the server failed: could not connect to
server: Connection refused
Is the server running on host “172.16.114.132” and
accepting
TCP/IP connections on port 5444?

A connection to a database server listed
in the BART configuration file fails. As a
result the backup for that database server
is skipped, but the backup operation con-
tinues for other database servers

3.3. Basic BART Subcommand Usage 46

mailto:edb@localhost

EDB Backup and Recovery User Guide, Release 2.5.7

3.3.4 SHOW-SERVERS

The SHOW-SERVERS subcommand displays the information for the managed database servers
listed in the BART configuration file.

Syntax:

bart SHOW-SERVERS [-s { <server_name> | all }]

The following table describes the command options.

Options Description
-s or --server {
<server_name> |
all }

<server_name> is the name of the database server whose
BART configuration information is to be displayed. If all is spec-
ified or if the option is omitted, information for all database servers
is displayed.

3.3. Basic BART Subcommand Usage 47

EDB Backup and Recovery User Guide, Release 2.5.7

3.3.5 SHOW-BACKUPS

The SHOW-BACKUPS subcommand displays the backup information for the managed database
servers.

Syntax:

bart SHOW-BACKUPS [-s { <server_name> | all }]
[-i { <backup_id> | <backup_name> | all }]
[-t]

The following table describes the command options:

Options Description
-s or --server {
<server_name> |
all }

<server_name> is the name of the database server whose
backup information is to be displayed.
If all is specified or if the option is omitted, the backup
information for all database servers is displayed with the
exception as described by the following note:
If SHOW-BACKUPS is invoked while the BART BACKUP
subcommand is in progress, backups affected by the backup
process are shown in progress status in the displayed backup
information.

-i or --backupid
{ <backup_id> |
<backup_name> |
all }

<backup_id> is a backup identifier and <backup_name> is
the user-defined alphanumeric name for the backup.
If all is specified or if the option is omitted, all backup
information for the relevant database server is displayed.

-t or --toggle Displays more backup information in a list format. If the option is
omitted, the default is a tabular format.

3.3. Basic BART Subcommand Usage 48

EDB Backup and Recovery User Guide, Release 2.5.7

3.3.6 VERIFY-CHKSUM

The VERIFY-CHKSUM subcommand verifies the MD5 checksums of the full backups and any
user-defined tablespaces for the specified database server or for all database servers. The check-
sum is verified by comparing the current checksum of the backup against the checksum when the
backup was taken.

Note: The VERIFY-CHKSUM subcommand is only used for tar format backups. It is not appli-
cable to plain format backups.

Syntax:

bart VERIFY-CHKSUM
[-s { <server_name> | all }]
[-i { <backup_id> | <backup_name> | all }]

The following table describes the command options:

Options Description
-s or --server {
<server_name> |
all }

<server_name> is the name of the database server whose tar
backup checksums are to be verified. If all is specified or if the
-s option is omitted, the checksums are verified for all database
servers.

-i or --backupid
{ <backup_id> |
<backup_name> |
all }

<backup_id> is the backup identifier of a tar format full backup
whose checksum is to be verified along with any user-defined ta-
blespaces.

<backup_name> is the
user-defined alphanumeric
name for the full backup.

If all is specified or if the -i option is omitted, the checksums
of all tar backups for the relevant database server are verified.

3.3. Basic BART Subcommand Usage 49

EDB Backup and Recovery User Guide, Release 2.5.7

3.3.7 MANAGE

The MANAGE subcommand can be invoked to:

• Evaluate backups, mark their status, and delete obsolete backups based on the
retention_policy parameter in the BART configuration file (See Managing Backups
Using a Retention Policy for information about retention policy management).

• Compress the archived WAL files based on the wal_compression parameter in the
BART configuration file (See the EDB Backup and Recovery Installation and Upgrade Guide
available at the EDB website for information about setting this parameter).

Syntax:

bart MANAGE [-s { <server_name> | all}]
[-l] [-d]
[-c { keep | nokeep }

-i { <backup_id> | <backup_name> | all }]
[-n]

The following summarizes the actions performed when the MANAGE subcommand is invoked:

• When the MANAGE subcommand is invoked with no options or with only the -s
<server_name> or -s all option, the following actions are performed:

– For the server specified by the -s option, or for all servers (if -s all is specified
or the -s option is omitted), active backups are marked as obsolete in accordance
with the retention policy.

– All backups that were marked obsolete or keep prior to invoking the MANAGE
subcommand remain marked with the same prior status.

– If WAL compression is enabled for the database server, then any uncompressed,
archived WAL files in the BART backup catalog of the database server are compressed
with gzip.

• When the MANAGE subcommand is invoked with any other option besides the -s option, the
following actions are performed:

– For the server specified by the -s option, or for all servers, the action performed is
determined by the other specified options (that is, -l to list obsolete backups, -d to
delete obsolete backups, -c to keep or to return backups to active status, or -n to
perform a dry run of any action).

– No marking of active backups to obsolete status is performed regardless of the
retention policy.

– All backups that were marked obsolete or keep prior to invoking the MANAGE
subcommand remain marked with the same prior status unless the -c option (without
the -n option) is specified to change the backup status of the particular backup or all
backups referenced with the -i option.

3.3. Basic BART Subcommand Usage 50

https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

– No compression is applied to any uncompressed, archived WAL file in the BART
backup catalog regardless of whether or not WAL compression is enabled.

The following are additional considerations when using WAL compression:

• Compression of archived WAL files is not permitted for database servers on which incre-
mental backups are to be taken.

• The gzip compression program must be installed on the BART host and be accessible in the
PATH of the BART user account.

• When the RESTORE subcommand is invoked, if the -c option is specified or if the
copy_wals_during_restore BART configuration parameter is enabled for the
database server, then the following actions occur:

– If compressed, archived WAL files are stored in the BART backup catalog and the
location to which the WAL files are to be restored is on a remote host relative to the
BART host:

* the archived WAL files are transmitted across the network to the remote host in
compressed format only if the gzip compression program is accessible in the PATH
of the remote user account that is used to log into the remote host when performing
the RESTORE operation.

* This remote user is specified with either the remote_host parameter in the
BART configuration file or the RESTORE -r option (see RESTORE).

* Transmission of compressed WAL files results in less network traffic. After the
compressed WAL files are transmitted across the network, the RESTORE subcom-
mand uncompresses the files for the point-in-time recovery operation.

* If the gzip program is not accessible on the remote host in the manner described
in the previous bullet point, then the compressed, archived WAL files are first
uncompressed while on the BART host, then transmitted across the network to the
remote host in uncompressed format.

• When the RESTORE subcommand is invoked without the -c option and the
copy_wals_during_restore BART configuration parameter is disabled for the
database server, then any compressed, archived WAL files needed for the RESTORE op-
eration are uncompressed in the BART backup catalog. The uncompressed WAL files can
then be saved to the remote host by the restore_command in the postgresql.auto.
conf file when the database server archive recovery begins.

The following table describes the command options:

3.3. Basic BART Subcommand Usage 51

EDB Backup and Recovery User Guide, Release 2.5.7

Options Description
s or --server {
<server_name> |
all }

<server_name> is the name of the database server to which the
actions are to be applied. If all is specified or if the -s option is
omitted, the actions are applied to all database servers.

-l or
--list-obsolete

Lists the backups marked as obsolete.

-d or
--delete-obsolete

Delete the backups marked as obsolete. This action physi-
cally deletes the backup along with its archived WAL files and
any MBM files for incremental backups.

-c or
--change-status
{ keep | nokeep }

Specify keep to change the status of a backup to keep to retain
it indefinitely.
Specify nokeep to change the status of any backup back to
active status. The backup can then be re-evaluated and possibly
be marked to obsolete according to the retention policy by
subsequent usage of the MANAGE subcommand.
The -i option must be included when using the -c option.

-i or --backupid
{ <backup_id> |
<backup_name> |
all }

<backup_id> is a backup identifier and <backup_name> is
the user-defined alphanumeric name for the backup.
If all is specified, then actions are applied to all backups.
The -c option must be included when using the -i option.

-n, --dry-run
Performs the test run and displays the results prior to actually
implementing the actions as if the operation was performed,
however, no changes are actually made.
If -n is specified with the -d option, it displays which backups
would be deleted, but does not actually delete the backups.
If -n is specified with the -c option, it displays the keep or
nokeep action, but does not actually change the backup from its
current status.
If -n is specified alone with no other options, or with only the -s
option, it displays which active backups would be marked as
obsolete, but does not actually change the backup status. In
addition, no compression is performed on uncompressed,
archived WAL files even if WAL compression is enabled for the
database server.

3.3. Basic BART Subcommand Usage 52

EDB Backup and Recovery User Guide, Release 2.5.7

3.3.8 RESTORE

The RESTORE subcommand restores the backup and its archived WAL files for the designated
database server to the specified directory location. If the appropriate RESTORE options are speci-
fied, all recovery settings will be saved in the postgresql.auto.conf file.

Syntax:

bart RESTORE -s <server_name> -p <restore_path>
[-i { <backup_id> | <backup_name> }]
[-r <remote_user@remote_host_address>]
[-w <number_of_workers>]
[-t <timeline_id>]
[{ -x <target_xid> | -g <target_timestamp> }]
[-c]

For information about using a continuous archive backup for recovery, see the PostgreSQL Core
Documentation. This reference material provides detailed information about the underlying point-
in-time recovery process and the meaning and usage of the restore options that are generated into
the postgresql.auto.conf file by BART.

Please note:

• For special requirements when restoring an incremental backup to a remote database server,
see Restoring an Incremental Backup on a Remote Host.

• Check to ensure that the host where the backup is to be restored contains enough disk space
for the backup and its archived WAL files. The RESTORE subcommand may result in an
error while copying files if there is not enough disk space available.

• See Performing a Restore Operation to view steps on how to perform a restore operation
and see Point-In-Time Recovery Operation to view steps on how to perform a point-in-time
recovery operation.

• If the backup is restored to a different database cluster directory than where the original
database cluster resided, certain operations dependent upon the database cluster location
may fail. This happens if their supporting service scripts are not updated to reflect the new
directory location of restored backup. For information about the usage and modification
of service scripts, see the EDB Advanced Server Installation Guide available at the EDB
website.

The following table describes the command options:

Options Description
-s or --server <server_name> <server_name> is the name of the database

server to be restored.
continues on next page

3.3. Basic BART Subcommand Usage 53

https://www.postgresql.org/docs/13/static/continuous-archiving.html
https://www.postgresql.org/docs/13/static/continuous-archiving.html
https://www.enterprisedb.com/edb-docs
https://www.enterprisedb.com/edb-docs

EDB Backup and Recovery User Guide, Release 2.5.7

Table 10 – continued from previous page
Options Description
-p or --restore-path
<restore_path>

<restore_path> is the directory path
where the backup of the database server is to
be restored. The directory must be empty and
have the proper ownership and privileges as-
signed to it.

-i or --backupid { <backup_id>
| <backup_name> } <backup_id> is the backup identifier of the

backup to be used for the restoration and
<backup_name> is the user-defined
alphanumeric name for the backup.
If the option is omitted, the default is to use
the latest backup.

-r or --remote-host
<remote_user
@remote_host_address>

<remote_user> is the user account on the
remote database server host that accepts a
passwordless SSH/SCP login connection and
is the owner of the directory where the backup
is to be restored and
<remote_host_address> is the IP
address of the remote host to which the
backup is to be restored. This option must be
specified if the <remote_host> parameter
for this database server is not set in the BART
configuration file.
If the BART user account is not the same as
the operating system account owning the
<restore_path> directory given with the
-p option, use the <remote_host> BART
configuration parameter or the RESTORE
subcommand -r option to specify the
<restore_path> directory owner even
when restoring to a directory on the same host
as the BART host.
See the EDB Backup and Recovery
Installation and Upgrade Guide available at
the EDB website for information about the
<remote_host> parameter.

continues on next page

3.3. Basic BART Subcommand Usage 54

https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

Table 10 – continued from previous page
Options Description
-w or --workers
<number_of_workers> <number_of_workers> is the

specification of the number of worker
processes to run in parallel to stream the
modified blocks of an incremental backup to
the restore location.
For example, if 4 worker processes are
specified, 4 receiver processes on the restore
host and 4 streamer processes on the BART
host are used. The output of each streamer
process is connected to the input of a receiver
process. When the receiver gets to the point
where it needs a modified block file, it obtains
those modified blocks from its input. With
this method, the modified block files are never
written to the restore host disk. If the -w
option is omitted, the default is 1 | worker
process.

-t or --target-tli
<timeline_id>

<timeline_id> is the integer identifier of
the timeline to be used for replaying the
archived WAL files for point-in-time recovery.

-x or --target-xid
<target_xid>

<target_xid> is the integer identifier of
the transaction ID that determines the transac-
tion up to and including, which point-in-time
recovery encompasses. Include either the -x
<target_xid> or the --target-xid
<target_xid> option if point-in-time re-
covery is desired.

-g or --target-timestamp
<target_timestamp>

<target_timestamp> is the times-
tamp that determines the point in time
up to and including, which point-in-
time recovery encompasses. Include
either the --target-timestamp
<target_timestamp> or the -g
<target_timestamp> option if point-in-
time recovery is desired.

continues on next page

3.3. Basic BART Subcommand Usage 55

EDB Backup and Recovery User Guide, Release 2.5.7

Table 10 – continued from previous page
Options Description
-c or --copy-wals

Specify this option to copy archived WAL
files from the BART backup catalog to
<restore_path>/archived_wals
directory.
If recovery settings are saved in the
postgresql.auto.conf file for
point-in-time recovery, the
restore_command retrieves the WAL files
from
<restore_path>/archived_wals for
the database server archive recovery.
If the -c option is omitted and the
copy_wals_during_restore
parameter in the BART configuration file is
not enabled in a manner applicable to this
database server, the restore_command in
the postgresql.auto.conf file is
generated by default to retrieve the archived
WAL files directly from the BART backup
catalog. See the EDB Backup and Recovery
Installation and Upgrade Guide available at
the EDB website for information about the
copy_wals_during_restore
parameter.

3.3. Basic BART Subcommand Usage 56

https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

3.3.9 DELETE

The DELETE subcommand removes the subdirectory and data files from the BART backup catalog
for the specified backups along with its archived WAL files.

Syntax:

bart DELETE -s <server_name>
-i { all |

[']{ <backup_id> | <backup_name> },... }[']
}

[-n]

Note: While invoking the DELETE subcommand, you must specify a specific database server.

For database servers under a retention policy, there are conditions where certain backups may not
be deleted. See Deletions Permitted Under a Retention Policy for information about permitted
backup deletions.

The following table describes the command options:

Options Description
-s or --server
<server_name>

<server_name> is the name of the database server whose back-
ups are to be deleted.

-i or --backupid
{ all | [']{
<backup_id> |
<backup_name> },.
.. }['] }

<backup_id> is the backup identifier of the backup to be
deleted and <backup_name> is the user-defined alphanumeric
name for the backup.
Multiple backup identifiers and backup names may be specified
in a comma-separated list. The list must be enclosed within single
quotes if there is any white space appearing before or after each
comma.
If all is specified, all of the backups and their archived WAL
files for the specified database server are deleted.

continues on next page

3.3. Basic BART Subcommand Usage 57

EDB Backup and Recovery User Guide, Release 2.5.7

Table 11 – continued from previous page
Options Description
-n or --dry-run

Displays the results as if the deletions were done, however, no
physical removal of the files are actually performed. In other
words, a test run is performed so that you can see the potential
results prior to actually initiating the action.
After the deletion, the BART backup catalog for the database
server no longer contains the corresponding directory for the
deleted backup ID. The archived_wals subdirectory no
longer contains the WAL files of the backup.

3.3. Basic BART Subcommand Usage 58

EDB Backup and Recovery User Guide, Release 2.5.7

3.4 Running the BART WAL Scanner

Use the BART WAL scanner to invoke the bart-scanner program located in the
BART_HOME/bin directory.

Syntax:

bart-scanner
[-d]
[-c <config_file_path>]
{ -h |

-v |
--daemon |
-p mbm_file |
wal_file |
RELOAD |
STOP

}

Note: For clarity, the syntax diagram shows only the single-character option form (for example,
-d), but the multi-character option form (for example, --debug) is supported as well.

The WAL scanner processes each WAL file to find and record modified blocks in a corresponding
modified block map (MBM) file. The default approach is that the WAL scanner gets notified when-
ever a new WAL file is added to the archived_wals directory specified in the archive_path
parameter of the configuration file. It then scans the WAL file and produces the MBM file.

The default approach does not work in some cases; for example when the WAL files are shipped
to the archive_path using the rsync utility and also in case of some specific platforms. This
results in the WAL files being copied to the archived_wals directory, but the WAL scanner
does not scan them (as WAL scanner is not aware of WAL file) and produce the MBM files. This
results in the failure of an incremental backup. This can be avoided by using the timer-based
WAL scanning approach, which is done by using the scan_interval parameter in the BART
configuration file. The value for scan_interval is the number of seconds after which the WAL
scanner will initiate force scanning of the new WAL files.

Note: After upgrading to the latest version of BART, users who have set this parameter to a non-
default value may see increased CPU consumption on the part of bart-scanner. If this is an issue,
consider increasing the configured value of scan_interval parameter, or removing the setting
if it is not required.

See the EDB Backup and Recovery Installation and Upgrade Guide available at the EDB website
for information about scan_interval parameter.

3.4. Running the BART WAL Scanner 59

https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

When the bart-scanner program is invoked, it forks a separate process for each database
server enabled with the allow_incremental_backups parameter.

The WAL scanner processes can run in either the foreground or background depending upon usage
of the --daemon option:

• If the --daemon option is specified, the WAL scanner process runs in the background. All
output messages can be viewed in the BART log file.

• If the --daemon option is omitted, the WAL scanner process runs in the foreground. All
output messages can be viewed from the terminal running the program as well as in the
BART log file.

See the EDB Backup and Recovery Installation and Upgrade Guide available at the
EDB website for additional information about WAL scanning, scan_interval,
allow_incremental_backups, and logfile parameters.

When invoking the WAL scanner, the current user must be the BART user account.

Note: The BART user account’s LD_LIBRARY_PATH environment variable may need to be set
to include the directory containing the libpq library if invocation of the WAL scanner program
fails. See Basic BART Subcommand Usage for information about setting the LD_LIBRARY_PATH
environment variable.

3.4. Running the BART WAL Scanner 60

https://www.enterprisedb.com/edb-docs/

EDB Backup and Recovery User Guide, Release 2.5.7

The following table describes the scanner options:

Options Description
-h or --help Displays general syntax and information on WAL scanner usage.
-v or --version Displays the WAL scanner version information.
-d or --debug Displays debugging output while executing the WAL scanner with

any of its options.
-c or --config-path
config_file_path

Specifies config_file_path as the full directory path to a
BART configuration file. Use this option if you do not want to use
the default BART configuration file BART_HOME/etc/bart.
cfg.

--daemon Runs the WAL scanner as a background process.
-p or --print
mbm_file

Specifies the full directory path to an MBM file whose content
is to be printed. The directory specified in the archive_path
parameter in the bart.cfg file contains the MBM files.

wal_file
Specifies the full directory path to a WAL file to be scanned. The
directory specified in the archive_path parameter in the
bart.cfg file contains the WAL files. Use it if a WAL file in
the archive path is missing its MBM file.
This option is to be used for assisting the EnterpriseDB support
team for debugging problems that may have been encountered.

RELOAD
Reloads the BART configuration file. The keyword RELOAD is
not case-sensitive.
The RELOAD option is useful if you make changes to the
configuration file after the WAL scanner has been started. It will
reload the configuration file and adjust the WAL scanners
accordingly. For example, if a server section allowing incremental
backups is removed from the BART configuration file, then the
process attached to that server will stop. Similarly, if a server
allowing incremental backups is added, a new WAL scanner
process will be launched to scan the WAL files of that server.

STOP Stops the WAL scanner. The keyword STOP is not case-sensitive.

3.4. Running the BART WAL Scanner 61

CHAPTER 4

Using Tablespaces

If the database cluster contains user-defined tablespaces (that is, tablespaces created with the
CREATE TABLESPACE command):

• You can take full backups with the BACKUP subcommand in either tar (-Ft) or plain text
(-Fp) backup file format.

• You must take incremental backups in the plain text (-Fp) backup file format.

• You can take full backups using the transaction log streaming method (xlog_method = stream
in the BART configuration file) --with-pg_basebackup and the BACKUP subcom-
mand in either tar (-Ft) or plain text (-Fp) backup file format.

Note: If the particular database cluster you plan to back up contains tablespaces created by the
CREATE TABLESPACE command, then you must set the tablespace_path parameter in the
BART configuration file before you perform a BART RESTORE operation.

The tablespace_path parameter specifies the directory paths to which you want the ta-
blespaces to be restored. It takes the following format:

OID_1=tablespace_path_1;OID_2=tablespace_path_2 ...

Where OID_1, OID_2, . . . are the Object Identifiers of the tablespaces. You can find the OIDs
of the tablespaces and their corresponding soft links to the directories by listing the contents of
the POSTGRES_INSTALL_HOME/data/pg_tblspc subdirectory as shown in the following
example:

62

EDB Backup and Recovery User Guide, Release 2.5.7

[root@localhost pg_tblspc]# pwd
/opt/PostgresPlus/9.6AS/data/pg_tblspc
[root@localhost pg_tblspc]# ls -l
total 0
lrwxrwxrwx 1 enterprisedb enterprisedb 17 Aug 22 16:38 16644 -> /mnt/
→˓tablespace_1
lrwxrwxrwx 1 enterprisedb enterprisedb 17 Aug 22 16:38 16645 -> /mnt/
→˓tablespace_2

The OIDs are 16644 and 16645 to directories /mnt/tablespace_1 and /mnt/
tablespace_2, respectively.

• If you later wish to restore the tablespaces to the same locations as indicated in the preceding
example, the BART configuration file must contain the following entry:

[ACCTG]
host = 127.0.0.1
port = 5444
user = enterprisedb
cluster_owner = enterprisedb
tablespace_path = 16644=/mnt/tablespace_1;16645=/mnt/tablespace_2
description = "Accounting"

• If you later wish to restore the tablespaces to different locations, specify the new directory
locations in the tablespace_path parameter.

In either case, the directories specified in the tablespace_path parameter must exist and be
empty at the time you perform the BART RESTORE operation.

If the database server is running on a remote host (in other words you are also using the
remote_host configuration parameter or will specify the --remote-host option with the
RESTORE subcommand), the specified tablespace directories must exist on the specified remote
host.

To view example of backing up and restoring a database cluster on a remote host containing ta-
blespaces, see the EDB Backup and Recovery Reference Guide available at the EDB website.

The directories must be owned by the user account with which you intend to start the database
server (typically the Postgres user account) with no access by other users or groups as is required
for the directory path to which the main full backup is to be restored.

To view a sample BART managed backup and recovery system consisting of both local and remote
database servers, see the EDB Backup and Recovery Reference Guide available at the EDB website.

63

https://www.enterprisedb.com/edb-docs/
https://www.enterprisedb.com/edb-docs/

CHAPTER 5

Conclusion

EDB Backup and Recovery User Guide

Copyright © 2014 - 2020 EnterpriseDB Corporation.

All rights reserved.

EnterpriseDB® Corporation

34 Crosby Drive, Suite 201, Bedford, MA 01730, USA

T +1 781 357 3390 F +1 978 467 1307 E

info@enterprisedb.com

www.enterprisedb.com

• EnterpriseDB and Postgres Enterprise Manager are registered trademarks of EnterpriseDB
Corporation. EDB and EDB Postgres are trademarks of EnterpriseDB Corporation. Ora-
cle is a registered trademark of Oracle, Inc. Other trademarks may be trademarks of their
respective owners.

• EDB designs, establishes coding best practices, reviews, and verifies input validation for
the logon UI for EDB Postgres product where present. EDB follows the same approach for
additional input components, however the nature of the product may require that it accepts
freeform SQL, WMI or other strings to be entered and submitted by trusted users for which
limited validation is possible. In such cases it is not possible to prevent users from entering
incorrect or otherwise dangerous inputs.

• EDB reserves the right to add features to products that accept freeform SQL, WMI or other
potentially dangerous inputs from authenticated, trusted users in the future, but will ensure

64

mailto:info@enterprisedb.com

EDB Backup and Recovery User Guide, Release 2.5.7

all such features are designed and tested to ensure they provide the minimum possible risk,
and where possible, require superuser or equivalent privileges.

• EDB does not that warrant that we can or will anticipate all potential threats and therefore
our process cannot fully guarantee that all potential vulnerabilities have been addressed or
considered.

65

Index

B
BACKUP Subcommand, 40
BACKUP Subcommand Error

Messages, 45
BART Management Overview, 18
Basic BART Subcommand Usage, 35
Block-Level Incremental Backup, 9

C
CHECK-CONFIG Subcommand, 37
Concept Overview, 10
Conclusion, 64
Conventions Used in this Guide, 2
Creating a Backup Chain, 17

D
DELETE Subcommand, 57
Deleting obsolete backups, 31
Deletions permitted under

retention policy, 30

E
Evaluating obsolete backups, 31

I
Incremental Backup Limitations

and Requirements, 9
INIT Subcommand, 38
Introduction, 1

M
MANAGE Subcommand, 50

Managing Backups Using a
Retention Policy, 24

Managing Incremental Backups, 32
Managing the Backups Based on

the Retention Policy, 29
Marking backups for indefinite

keep status, 31
Marking obsolete backups, 31
Marking the Backup Status, 25

O
Overview, 4
Overview - Managing Backups

Using a Retention Policy,
24

P
Performing a Restore Operation,

20
Performing an Incremental

Backup, 13
Point-In-Time Recovery

Operation, 22

R
Recovery window retention

policy, 29
Recovery window retention with

incremental backups, 33
Redundancy retention policy, 27
Redundancy retention with

incremental backups, 33
RESTORE Subcommand, 53

66

EDB Backup and Recovery User Guide, Release 2.5.7

Restoring an Incremental Backup,
15

Restoring incremental backup on
bart host, 16

Restoring incremental backup on
remote host, 16

Restrictions on pg_basebackup, 2
Running the BART WAL Scanner, 59

S
Setting the Retention Policy, 27
SHOW-BACKUPS Subcommand, 48
SHOW-SERVERS Subcommand, 47

U
Using BART, 18
Using Tablespaces, 62

V
VERIFY-CHKSUM Subcommand, 49

W
WAL Scanning - Preparation for

an Incremental Backup, 11

Index 67

	Introduction
	Conventions Used in this Guide
	Restrictions on pg_basebackup

	Overview
	Block-Level Incremental Backup
	Incremental Backup Limitations and Requirements
	Concept Overview
	WAL Scanning – Preparation for an Incremental Backup
	Performing an Incremental Backup
	Restoring an Incremental Backup
	Restoring an Incremental Backup on a BART Host
	Restoring an Incremental Backup on a Remote Host

	Creating a Backup Chain

	Using BART
	BART Management Overview
	Performing a Restore Operation
	Point-In-Time Recovery Operation

	Managing Backups Using a Retention Policy
	Overview - Managing Backups Using a Retention Policy
	Marking the Backup Status
	Setting the Retention Policy
	Redundancy Retention Policy
	Recovery Window Retention Policy

	Managing the Backups Based on the Retention Policy
	Deletions Permitted Under a Retention Policy
	Marking Backups for Indefinite Keep Status
	Evaluating, Marking, and Deleting Obsolete Backups

	Managing Incremental Backups
	Using a Redundancy Retention Policy with Incremental Backups
	Using a Recovery Window Retention Policy with Incremental Backups

	Basic BART Subcommand Usage
	CHECK-CONFIG
	INIT
	BACKUP
	SHOW-SERVERS
	SHOW-BACKUPS
	VERIFY-CHKSUM
	MANAGE
	RESTORE
	DELETE

	Running the BART WAL Scanner

	Using Tablespaces
	Conclusion
	Index

