
Information Classification: PARTNER CONFIDENTIAL

EnterpriseDB
Postgres-BDR

Version 3.6.33 Standard Edition
28 October 2022

BDR Development Team

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Contents
Postgres-BDR 13

Architectural Overview 14
Basic Architecture . 14

Multiple Groups . 14
Multiple Masters . 14
Asynchronous, by default . 15
Mesh Topology . 15
Logical Replication . 15
High Availability . 15
Limits . 16

Deployment . 16
Clocks and Timezones . 16

Application Usage 17
Application Behavior . 17
Transaction Handling . 19
Non-replicated statements . 19
Replicating between different release levels . 19
Replicating between nodes with differences . 20
Timing Considerations and Synchronous Replication . 21
Application Testing . 21

TPAexec . 21
pgbench with CAMO/Failover options . 22
isolationtester with multi-node access . 22

Performance Testing & Tuning . 25

PostgreSQL Configuration for BDR 26
PostgreSQL Settings for BDR . 26
pglogical Settings for BDR . 26
BDR Specific Settings . 26

Conflict Handling . 27
Global Sequence Parameters . 27
DDL Handling . 27
Global Locking . 28
Node Management . 28
Generic Replication . 29
Timestamp-based Snapshots . 30
Monitoring and Logging . 30
Internals . 30

Node Management 32
Creating and Joining a BDR Group . 32

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

2

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Connection DSNs and SSL (TLS) . 33
Witness Nodes . 34
Logical Standby Nodes . 34
Physical Standby Nodes . 36
Node Restart and Down Node Recovery . 37

Replication Slots created by BDR . 38
Hashing Long Identifiers . 39

Removing a Node From a BDR Group . 39
Uninstalling BDR . 40

Listing BDR Topology . 41
Listing BDR Groups . 41
Listing Nodes in a BDR Group . 41
List of Node States . 41

Node Management Interfaces . 42
bdr.create_node . 42
bdr.drop_node . 43
bdr.create_node_group . 44
bdr.alter_node_group_config . 45
bdr.join_node_group . 46
bdr.promote_node . 47
bdr.wait_for_join_completion . 47
bdr.part_node . 48
bdr.alter_node_interface . 49
bdr.alter_subscription_enable . 50
bdr.alter_subscription_disable . 50

Node Management Commands . 51
bdr_init_physical . 51

DDL Replication 54
DDL Replication Options . 54
Executing DDL on BDR Systems . 55
DDL Locking Details . 56
Minimizing the Impact of DDL . 58
Handling DDL With Down Nodes . 58
Statement Specific DDL Replication Concerns . 59

DDL Statements Requiring a DML Lock . 59
Non Replicated DDL Statements . 60
DDL on Databases and Tablespaces . 60
DDL Statements With Restrictions . 61
Restricted DDL Workarounds . 63
BDR Functions that behave like DDL . 65

Security and Roles 67
Granting privileges on catalog objects . 67

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

3

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Role Management . 67
Roles and Replication . 68
Connection Role . 68
Triggers . 69
Catalog Tables . 70
BDR Functions & Operators . 70
BDR Default Roles . 70

bdr_superuser . 70
bdr_read_all_stats . 70
bdr_monitor . 72
bdr_application . 72

Verification . 72
Coverity . 73
CIS Benchmark . 73

Conflicts 76
How conflicts happen . 76
Types of conflict . 77

PRIMARY KEY or UNIQUE Conflicts . 77
Foreign Key Constraint Conflicts . 83
TRUNCATE Conflicts . 84
Exclusion Constraint Conflicts . 85
Data Conflicts for Roles and Tablespace differences . 86
Lock Conflicts and Deadlock Aborts . 86
Divergent Conflicts . 86
TOAST Support Details . 87

Avoiding or Tolerating Conflicts . 88
Conflict Detection . 89

Origin Conflict Detection . 89
Row Version Conflict Detection . 90
bdr.alter_table_conflict_detection . 91
List of Conflict Types . 92

Conflict Resolution . 92
bdr.alter_node_set_conflict_resolver . 93
List of Conflict Resolvers . 93
List of Conflict Resolutions . 94

Conflict Logging . 94
bdr.alter_node_add_log_config . 95
bdr.alter_node_remove_log_config . 96
Conflict Reporting . 97

Sequences 98
BDR Global Sequences . 98

Timeshard Sequences . 99

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

4

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Globally-allocated range Sequences . 100
UUIDs, KSUUIDs and Other Approaches . 103

UUIDs and KSUUIDs . 103
Step & Offset Sequences . 104

Global Sequence Management Interfaces . 105
bdr.alter_sequence_set_kind . 105
bdr.extract_timestamp_from_timeshard . 106
bdr.extract_nodeid_from_timeshard . 106
bdr.extract_localseqid_from_timeshard . 107
bdr.timestamp_to_timeshard . 107

KSUUID v2 Functions . 108
bdr.gen_ksuuid_v2 . 108
bdr.ksuuid_v2_cmp . 108
bdr.extract_timestamp_from_ksuuid_v2 . 108

KSUUID v1 Functions . 109
bdr.gen_ksuuid . 109
bdr.uuid_v1_cmp . 109
bdr.extract_timestamp_from_ksuuid . 110

Durability & Performance Options 111
Overview . 111
Comparison . 111
Internal Timing of Operations . 112
Planned Shutdown and Restarts . 112
Synchronous Replication using PGLogical . 113

Usage . 113
Limitations . 113

Replication Sets 114
Behavior of Partitioned Tables . 114
Behavior with Foreign Keys . 114
Replication Set Management . 116

bdr.create_replication_set . 116
bdr.alter_replication_set . 117
bdr.drop_replication_set . 118
bdr.alter_node_replication_sets . 119

Replication Set Membership . 119
bdr.replication_set_add_table . 120
bdr.replication_set_remove_table . 121
Listing Replication Sets . 121

DDL Replication Filtering . 123
bdr.replication_set_add_ddl_filter . 123
bdr.replication_set_remove_ddl_filter . 124

Monitoring 126

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

5

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Monitoring Node Join and Removal . 126
Monitoring Replication Peers . 127

Monitoring Outgoing Replication . 127
Monitoring Incoming Replication . 129

Monitoring BDR Replication Workers . 129
Monitoring Global Locks . 130
Monitoring Conflicts . 130
Apply Statistics . 131
Standard PostgreSQL Statistics Views . 132
Monitoring BDR Versions . 132
Monitoring Raft Consensus . 133
Monitoring Replication Slots . 135

Backup and Recovery 137
Backup . 137

pg_dump . 137
Physical Backup . 137
Eventual Consistency . 138
Point-In-Time Recovery (PITR) . 138

Restore . 139
BDR Cluster Failure or Seeding a New Cluster from a Backup 139

Upgrading 141
Database Encoding . 141
Server Software Upgrade . 141
Rolling Server Software Upgrades . 142
Rolling Application Schema Upgrades . 142

Explicit Two-Phase Commit (2PC) 144
Usage . 144

Catalogs and Views 145
bdr.apply_log . 145
bdr.apply_log_summary . 145
bdr.ddl_epoch . 145
bdr.ddl_replication . 146
bdr.global_consensus_journal . 146
bdr.global_consensus_journal_details . 146
bdr.global_consensus_response_journal . 147
bdr.global_lock . 147
bdr.global_locks . 148
bdr.local_consensus_snapshot . 149
bdr.local_consensus_state . 149
bdr.local_node_summary . 150
bdr.node . 150

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

6

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.node_catchup_info . 150
bdr.node_conflict_resolvers . 151
bdr.node_group . 151
bdr.node_group_replication_sets . 152
bdr.node_local_info . 152
bdr.node_log_config . 152
bdr.node_peer_progress . 153
bdr.node_slots . 153
bdr.node_summary . 155
bdr.replication_sets . 156
bdr.schema_changes . 156
bdr.sequence_alloc . 157
bdr.sequence_kind . 157
bdr.sequences . 157
bdr.stat_relation . 158
bdr.stat_subscription . 159
bdr.state_journal . 159
bdr.state_journal_details . 159
bdr.subscription . 160
bdr.subscription_summary . 160
bdr.tables . 161
bdr.trigger . 162
bdr.triggers . 162
bdr.worker_errors . 162
bdr.monitor_group_versions_details . 163
bdr.monitor_group_raft_details . 163

BDR System Functions 164
Version Information Functions . 164

bdr.bdr_edition . 164
bdr.bdr_version . 164
bdr.bdr_version_num . 164

System Information Functions . 164
bdr.get_relation_stats . 164
bdr.get_subscription_stats . 165

System and Progress Information Parameters . 165
bdr.local_node_id . 165
bdr.last_committed_lsn . 165

Consensus Function . 165
bdr.consensus_disable . 165
bdr.consensus_enable . 165
bdr.consensus_proto_version . 165
bdr.consensus_snapshot_export . 166
bdr.consensus_snapshot_import . 166

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

7

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.get_consensus_status . 167
bdr.get_raft_status . 167

Utility Functions . 167
bdr.wait_slot_confirm_lsn . 167
bdr.wait_for_apply_queue . 168
bdr.get_node_sub_receive_lsn . 168
bdr.get_node_sub_apply_lsn . 169
bdr.set_ddl_replication . 169
bdr.set_ddl_locking . 169
bdr.run_on_all_nodes . 170
bdr.global_lock_table . 171
bdr.monitor_group_versions . 172
bdr.monitor_group_raft . 172
bdr.monitor_replslots . 173

Internal Functions . 173
BDR message payload functions . 173
bdr.get_global_locks . 173
bdr.get_slot_flush_timestamp . 173
bdr internal function replication functions . 173
bdr.internal_submit_join_request . 174
bdr.isolation_test_session_is_blocked . 174
bdr.local_node_info . 174
bdr.msgb_connect . 174
bdr.msgb_deliver_message . 174
bdr.peer_state_name . 174
bdr.request_replay_progress_update . 174
bdr.seq_nextval . 174
bdr.show_subscription_status . 175
bdr.conflict_resolution_to_string . 175
bdr.conflict_type_to_string . 175
bdr.reset_subscription_stats . 175
bdr.reset_relation_stats . 175
bdr.pg_xact_origin . 175
bdr.difference_fix_origin_create . 175
bdr.difference_fix_session_setup . 176
bdr.difference_fix_session_reset . 176
bdr.difference_fix_xact_set_avoid_conflict . 176
bdr.resynchronize_table_from_node(node_name name, relation regclass) 176
bdr.alter_subscription_skip_changes_upto . 177

Credits and Licence 180

Appendix A: Release Notes for BDR3 181
BDR 3.6.32 . 181

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

8

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Resolved Issues . 181
Improvements . 181
Upgrades . 181

BDR 3.6.31 . 181
Resolved Issues . 181
Improvements . 182
Upgrades . 182

BDR 3.6.30 . 182
Resolved Issues . 182
Upgrades . 182

BDR 3.6.29 . 182
Resolved Issues . 182
Improvements . 183
Upgrades . 183

BDR 3.6.28.1 . 183
Resolved Issues . 183

BDR 3.6.28 . 183
Resolved Issues . 184
Improvements . 184
Upgrades . 185

BDR 3.6.27 . 185
Resolved Issues . 185
Upgrades . 185

BDR 3.6.26 . 185
Resolved Issues . 185
Other Changes . 186
Upgrades . 186

BDR 3.6.25 . 186
Resolved Issues . 186
Improvements . 186

BDR 3.6.24 . 187
Resolved Issues . 187
Improvements . 187

BDR 3.6.23 . 187
Resolved Issues . 188
Other Changes . 188

BDR 3.6.22 . 188
Resolved Issues . 189
Improvements . 190

BDR 3.6.21 . 190
Resolved Issues . 190
Improvements . 192

BDR 3.6.20 . 193
Additional Actions . 193

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

9

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Resolved Issues . 193
Improvements . 194

BDR 3.6.19 . 194
Resolved Issues . 194
Improvements . 195

BDR 3.6.18 . 196
Improvements . 196
Resolved Issues . 197

BDR 3.6.17 . 197
Improvements . 197
Resolved Issues . 198

BDR 3.6.16 . 199
Improvements . 199
Resolved Issues . 200

BDR 3.6.15 . 200
Improvements . 201
Resolved Issues . 201

BDR 3.6.14 . 201
Improvements . 201
Resolved Issues . 202

BDR 3.6.12 . 203
Improvements . 203
Resolved Issues . 203

BDR 3.6.11 . 204
Improvements . 204
Resolved Issues . 205

BDR 3.6.10 . 206
Improvements . 206
Resolved Issues . 207

BDR 3.6.9 . 207
Improvements . 208
Resolved Issues . 208

BDR 3.6.8 . 208
Improvements . 208
Resolved Issues . 208

BDR 3.6.7.1 . 209
Resolved Issues . 209

BDR 3.6.7 . 209
Improvements . 209
Resolved Issues . 210

BDR 3.6.6 . 211
Improvements . 211
Resolved Issues . 212

BDR 3.6.5 . 212

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

10

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Improvements . 212
Resolved Issues . 213

BDR 3.6.4 . 214
The Highlights of BDR 3.6.4 . 214
Resolved Issues . 214
Other Improvements . 215

BDR 3.6.3 . 215
The Highlights of BDR 3.6.3 . 215
Resolved Issues . 216
Other Improvements . 216

BDR 3.6.2 . 216
The Highlights of BDR 3.6.2 . 216
Resolved Issues . 217

BDR 3.6.1 . 217
The highlights of 3.6.1 . 217
Resolved Issues . 218

BDR 3.6.0.2 . 218
Resolved Issues . 219

BDR 3.6.0.1 . 219
Resolved Issues . 219

BDR 3.6.0 . 219
The highlights of BDR 3.6 . 219
Resolved issues . 220
Other improvements . 220

Appendix B: Conflict Details 221
Test two_node_dmlconflict_ii . 221
Test two_node_dmlconflict_iu . 223
Test two_node_dmlconflict_id . 228
Test two_node_dmlconflict_it . 230
Test two_node_dmlconflict_uu . 232
Test two_node_dmlconflict_uu_replayorder . 234
Test two_node_dmlconflict_ud . 236
Test two_node_dmlconflict_ud_replayorder . 241
Test two_node_dmlconflict_ut . 242
Test two_node_dmlconflict_dd . 244
Test two_node_dmlconflict_dt . 245
Test two_node_dmlconflict_tt . 246
Test three_node_dmlconflict_iii . 247
Test three_node_dmlconflict_iiu . 248
Test three_node_dmlconflict_iid . 250
Test three_node_dmlconflict_iit . 252
Test three_node_dmlconflict_uuu . 254
Test three_node_dmlconflict_uud . 256

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

11

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Test three_node_dmlconflict_uut . 257
Test three_node_dmlconflict_udt . 261
Test three_node_dmlconflict_duu . 268
Test three_node_dmlconflict_ddd . 271
Test three_node_dmlconflict_ddt . 272
Test three_node_dmlconflict_tuu . 279
Test three_node_dmlconflict_ttt . 281

Appendix C: Known Issues 283
Data Consistency . 283
Concurrent Join and Part . 283
List of Issues . 283

Appendix D: Libraries 285
LLVM . 285
OpenSSL . 285
Original SSLeay Licence . 286
PostgreSQL License . 287

Appendix E: Table Rewrite Example 289
Motivation . 289
Preparation . 289
Actual Table Rewrite . 290
Completing the Alteration of the Column Type . 291
Cleaning up . 292

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

12

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Postgres-BDR

BDR (short for Bi-Directional Replication) is a PostgreSQL extension that provides a solution for building
multi-master clusters with mesh topology. This means that you can write to any server and the changes
will be sent sent row-by-row to all the other servers that are part of the same BDR group.

BDR version 3 (“BDR3”) is built on the pglogical3 extension. However, everything you need to know
about BDR3 is included here and it is unnecessary (and potentially confusing) to refer to pglogical docs.

This documentation refers only to BDR3, not to earlier architectures, referred to as BDR1 and BDR2.
There are significant and important differences in BDR3, and you should not refer to earlier docs or rely
on anything stated within them.

BDR3 comes in two variants:

• Standard Edition (BDR-SE), which runs on PostgreSQL 10+.
• Enterprise Edition (BDR-EE), which requires 2ndQPostgres 11 (2QPG11+) to run.

To provide very high availability, avoid data conflicts, and to cope with more advanced usage scenarios,
the Enterprise Edition provides the following extensive additional features:

• Eager Replication - synchronizes between the nodes of the cluster before committing a transaction
to provide conflict free replication

• Commit At Most Once - a consistency feature helping an application to commit each transaction
only once, even in the presence of node failures

• Conflict-free Replicated Data Types - additional data types which provide mathematically proven
consistency in asynchronous multi-master update scenarios

• Column Level Conflict Resolution - ability to use per column last-update wins resolution so that
UPDATEs on different fields can be “merged” without losing either of them

• Transform Triggers - triggers that are executed on the incoming stream of data providing ability to
modify it or to do advanced programmatic filtering

• Conflict triggers - triggers that are called when conflict is detected, providing a way to use custom
conflict resolution techniques

• Timestamp-based Snapshots - providing consistent reads across multiple nodes for retrieving data
as they appeared or will appear at a given time

This documentation is for the Standard Edition of BDR3.

BDR3 was developed by 2ndQuadrant Ltd and is used by many customers.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

13

https://www.2ndquadrant.com/resources/pglogical/
https://www.2ndquadrant.com

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Architectural Overview

BDR provides loosely-coupled multi-master logical replication using a mesh topology. This means that
you can write to any server and the changes will be sent directly, row-by-row to all the other servers that
are part of the same BDR group.

Figure 1: node diagram

By default BDR uses asynchronous replication, applying changes on the peer nodes only after the local
commit. An optional eager all node replication is available in the Enterprise Edition.

Basic Architecture

Multiple Groups

A BDR node is a member of at least one Node Group, and in the most basic architecture there is a
single node group for the whole BDR cluster.

Multiple Masters

Each node (database) participating in a BDR group both receives changes from other members and can
be written to directly by the user.

This is distinct from Hot or Warm Standby, where only one master server accepts writes, and all the other
nodes are standbys that replicate either from the master or from another standby.

You do not have to write to all the masters, all of the time; it is a frequent configuration to direct writes
mostly to just one master. However, if you just want one-way replication, the use of pglogical may be
more appropriate.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

14

https://2ndquadrant.com/pglogical

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Asynchronous, by default

Changes made on one BDR node are not replicated to other nodes until they are committed locally. As a
result, the data is not exactly the same on all nodes at any given time; some nodes will have data that has
not yet arrived at other nodes. PostgreSQL’s block-based replication solutions default to asynchronous
replication as well. In BDR, because there are multiple masters and as a result multiple data streams, data
on different nodes might differ even when synchronous_commit and synchronous_standby_names
are used.

Mesh Topology

BDR is structured around a mesh network where every node connects to every other node and all nodes
exchange data directly with each other. There is no forwarding of data within BDR except in special
circumstances such as node addition and node removal. Data may arrive from outside the BDR cluster
or be sent onwards using pglogical or native PostgreSQL logical replication.

Logical Replication

Logical replication is a method of replicating data rows and their changes, based upon their replication
identity (usually a primary key). We use the term logical in contrast to physical replication, which uses
exact block addresses and byte-by-byte replication. Index changes are not replicated, thereby avoiding
write amplification and reducing bandwidth.

Logical replication starts by copying a snapshot of the data from the source node. Once that is done, later
commits are sent to other nodes as they occur in real time. Changes are replicated without re-executing
SQL, so the exact data written is replicated quickly and accurately.

Nodes apply data in the order in which commits were made on the source node, ensuring that transactional
consistency is guaranteed for the changes from any single node. Changes from different nodes are
applied independently of other nodes to ensure the rapid replication of changes.

High Availability

Each master node can be protected by one or more standby nodes, so any node that goes down can be
quickly replaced and continue. Each standby node can be a either a logical or a physical standby node.

Replication continues between currently connected nodes, even if one or more nodes are currently
unavailable. When the node recovers, replication can restart from where it left off without missing any
changes.

Nodes can run different release levels, negotiating the required protocols to communicate. As a result,
BDR clusters can use rolling upgrades, even for major versions of database software.

DDL is automatically replicated across nodes by default. DDL execution can be user controlled to allow
rolling application upgrades, if desired.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

15

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Limits

BDR has been tested with up to 99 master nodes in one cluster, but it is currently designed for use
with up to 32 master nodes. Each master node can be protected by multiple physical or logical standby
nodes. There is no specific limit on the number of standby nodes, but typical usage would be to have 2-3
standbys per master, with a typical maximum of 32 standbys per master.

When using timeshard sequences, BDR assumes there will be no more than 1024 nodes (counting both
master nodes and logical standbys for the total), not counting nodes that have been previously removed
(parted/dropped) from a group.

BDR places a limit that at most 10 databases in any one PostgreSQL instance can be BDR nodes across
different BDR node groups. BDR does not support multiple nodes/databases within one instance being
part of the same BDR node group.

Deployment

BDR3 is intended to be deployed in one of a small number of known-good configurations, using either
TPAexec or a 2ndQuadrant-approved configuration management approach and deployment architecture.

Manual deployment is not recommended and may not be supported.

Please refer to the TPAexec Architecture User Manual for your architecture.

Log messages and documentation are currently available only in English.

Clocks and Timezones

BDR has been designed to operate with nodes in multiple timezones, allowing a truly worldwide database
cluster. Individual servers do not need to be configured with matching timezones, though we do
recommend using log_timezone = UTC to ensure the human-readable server log is more accessible and
comparable.

Server clocks should be synchronized using NTP or other solutions.

Clock synchronization is not critical to performance, as is the case with some other solutions. Clock skew
can impact Origin Conflict Detection, though BDR provides controls to report and manage any skew that
exists. BDR also provides Row Version Conflict Detection, as described in Conflict Detection.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

16

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Application Usage

This chapter looks at BDR from an application or user perspective.

Setting up nodes is discussed in a later chapter, as is replication of DDL, and various options for
controlling replication using replication sets.

Application Behavior

BDR will, by default, replicate all changes from INSERTs, UPDATEs, DELETEs and TRUNCATEs from
the source node to other nodes. Only the final changes will be sent, after all triggers and rules have
been processed. For example, INSERT . . . ON CONFLICT UPDATE will send either an INSERT or an
UPDATE depending on what occurred on the origin. If an UPDATE or DELETE affects zero rows, then no
changes will be sent.

INSERTs can be replicated without any pre-conditions.

For UPDATEs and DELETEs to be replicated on other nodes, we must be able to identify the unique
rows affected. BDR requires that a table have either a PRIMARY KEY defined, a UNIQUE constraint or
have a REPLICATION IDENTITY defined. If one of those is not defined, a WARNING will be generated,
and later UPDATEs or DELETEs will be explicitly blocked to prevent nodes from ending with differing
contents, a situation which we describe as divergence. BDR has many mechanisms designed to protect
against divergence, and these are described later in the documentation.

TRUNCATE can be used even without a defined replication identity. Replication of TRUNCATE commands
is supported, but some care must be taken when truncating groups of tables connected by foreign keys.
When replicating a truncate action, the subscriber will truncate the same group of tables that was
truncated on the origin, either explicitly specified or implicitly collected via CASCADE, except in cases
where replication sets are defined, see Replication Sets chapter for further details and examples. This will
work correctly if all affected tables are part of the same subscription. But if some tables to be truncated
on the subscriber have foreign-key links to tables that are not part of the same (or any) replication set,
then the application of the truncate action on the subscriber will fail. TRUNCATE requires some form of
locking or lock avoidance to avoid divergent data errors, see TRUNCATE Conflicts.

Row-level locks taken implicitly by INSERT, UPDATE and DELETE commands will be replicated as the
changes are made. Table-level locks taken implicitly by INSERT, UPDATE, DELETE and TRUNCATE
commands will also be replicated. Explicit row-level locking (SELECT . . . FOR UPDATE/FOR SHARE)
by user sessions is not replicated, nor are advisory locks.

Sequences need special handling, described in the Sequences chapter.

Binary data in BYTEA columns is replicated normally, allowing “blobs” of data up to 1GB in size. Data
stored in the PostgreSQL “Large object” facility is not replicated.

Replication is only possible from base tables to base tables. That is, the tables on the source and target
on the subscription side must be tables, not views, materialized views, or foreign tables. Attempts to
replicate tables other than base tables will result in an error.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

17

conflicts.md#TRUNCATE%20Conflicts

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Partitioned tables are supported by BDR3, but only on PostgreSQL 11+ or 2ndQPostgres 11+ because
of differences in internal APIs utilized. It is possible to replicate between tables with dissimilar partitioning
definitions, such as a source which is a normal table replicating to a partitioned table, including support
for updates that change partitions on the target. It can be faster if the partitioning definition is the same
on the source and target since dynamic partition routing need not be executed at apply time. Further
details are available in the chapter on Replication Sets.

By default, triggers execute only on the origin node. For example, an INSERT trigger executes on the
origin node and is ignored when we apply the change on the target node. You can specify that triggers
should execute on both the origin node at execution time and on the target when it is replicated (“apply
time”) by using ALTER TABLE ... ENABLE ALWAYS TRIGGER, or use the REPLICA option to execute
only at apply time, ALTER TABLE ... ENABLE REPLICA TRIGGER.

Some types of trigger are not executed on apply, even if they exist on a table and are currently enabled.
Trigger types not executed are

• Statement-level triggers (FOR EACH STATEMENT)
• Per-column UPDATE triggers (UPDATE OF column_name [, . . .])

BDR replication apply uses the system-level default search_path. Replica triggers, stream triggers
and index expression functions may assume other search_path settings which will then fail when they
execute on apply. To ensure this does not occur, resolve object references clearly using either the
default search_path only, always use fully qualified references to objects, e.g. schema.objectname, or set
the search path for a function using ALTER FUNCTION ... SET search_path = ... for the functions
affected.

Note that BDR assumes that there are no issues related to text or other collatable datatypes, i.e. all
collations in use are available on all nodes and the default collation is the same on all nodes. Replication
of changes uses equality searches to locate Replica Identity values, so this will not have any effect except
where unique indexes are explicitly defined with non-matching collation qualifiers. Row filters might be
affected by differences in collations if collatable expressions were used.

BDR handling of very-long “toasted” data within PostgreSQL is transparent to the user. Note that the
TOAST “chunkid” values will likely differ between the same row on different nodes, but that does not
cause any problems.

BDR cannot work correctly if Replica Identity columns are marked as “external”.

PostgreSQL allows CHECK() constraints that contain volatile functions. Since BDR re-executes CHECK()
constraints on apply, any subsequent re-execution that doesn’t return the same result as previously will
cause data divergence.

BDR does not restrict the use of Foreign Keys; cascading FKs are allowed.

BDR does not currently support the use of non-ASCII schema or relation names. Later versions will
remove this restriction.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

18

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Transaction Handling

BDR supports all standard transaction options, including savepoints.

All transaction isolation levels are supported, including SERIALIZABLE. SERIALIZABLE level applies
only to transactions executed on the local node; transactions executing in SERIALIZABLE mode on other
nodes have no effect on transactions executing locally, so some transactions may be allowed for which
there is no global/cluster-wide serializable ordering. Workloads that require this should be executed
together on one BDR node at a time.

BDR does not restrict the use of temporary tables, though PostgreSQL does prevent temporary tables
being used with prepared statements (aka 2PC, XA).

There are no defined limits on the duration or size of transactions with BDR.

BDR applies transactions once they have been committed on the origin node. Larger transactions
will take longer to transmit and apply, so can induce replication lag for other transactions. Users are
recommended to limit the size of transactions by breaking larger data loads into smaller chunks, or using
procedures that commit regularly. Note that the duration of a transaction has no impact, only the number
of changes and/or the total data size of the changes has effect.

Non-replicated statements

None of the following user commands are replicated by BDR, so their effects occur on the local/origin
node only:

• Cursor operations (DECLARE, CLOSE, FETCH)
• Execution commands (DO, CALL, PREPARE, EXECUTE, EXPLAIN)
• Session management (DEALLOCATE, DISCARD, LOAD)
• Parameter commands (SET, SHOW)
• Constraint manipulation (SET CONSTRAINTS)
• Locking commands (LOCK)
• Table Maintenance commands (VACUUM, ANALYZE, CLUSTER)
• Async operations (NOTIFY, LISTEN, UNLISTEN)

Note that since the NOTIFY SQL command and the pg_notify() functions are not replicated, notifica-
tions are not reliable in case of failover. This means that notifications could easily be lost at failover if
a transaction is committed just at the point the server crashes. Applications running LISTEN may miss
notifications in case of failover. This is regrettably true in standard PostgreSQL replication and BDR does
not yet improve on this. CAMO and Eager replication options do not allow the NOTIFY SQL command or
the pg_notify() function.

Replicating between different release levels

BDR is designed to replicate between nodes that have different major versions of PostgreSQL. This is a
feature designed to allow major version upgrades without downtime.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

19

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

BDR is also designed to replicate between nodes that have different versions of BDR software. This is a
feature designed to allow version upgrades and maintenance without downtime.

However, while it’s possible to join a node with a major version in a cluster, you can not add a node with a
minor version if the cluster uses a newer protocol version, this will return error.

Both of the above features may be affected by specific restrictions; any known incompatibilities will be
described in the release notes.

Replicating between nodes with differences

By default, DDL will automatically be sent to all nodes. This can be controlled manually, as described in
DDL Replication, which could be used to create differences between database schemas across nodes.
BDR is designed to allow replication to continue even while minor differences exist between nodes. These
features are designed to allow application schema migration without downtime, or to allow logical standby
nodes for reporting or testing.

Currently, replication requires the same table name on all nodes. A future feature may allow a mapping
between different table names.

We can only replicate between tables with the same column names. If a column has the same name
but a different datatype, we attempt to cast from the source type to the target type, if casts have been
defined that allow that.

By default, all columns are replicated. BDR supports replicating between tables that have different
number of columns.

If the target has missing column(s) from the source then BDR will raise a target_column_missing conflict,
for which the default conflict resolver is ignore_if_null. This will throw an ERROR if a non-NULL value
arrives. Alternatively, a node can also be configured with a conflict resolver of ignore. This setting will not
throw an ERROR, just silently ignore any additional columns.

If the target has additional column(s) not seen in the source record then BDR will raise a
source_column_missing conflict, for which the default conflict resolver is use_default_value. Replication
will proceed if the additional columns have a default, either NULL (if nullable) or a default expression, but
will throw an ERROR and halt replication if not.

Transform triggers can also be used on tables to provide default values or alter the incoming data in
various ways before apply.

If the source and the target have different constraints, then replication will be attempted, but it might fail if
the rows from source cannot be applied to the target. Row filters may help here.

Replicating data from one schema to a more relaxed schema won’t cause failures. Replicating data from
a schema to a more restrictive schema will be a source of potential failures. The right way to solve this is
to place a constraint on the more relaxed side, so bad data is prevented from being entered. That way,
no bad data ever arrives via replication, so it will never fail the transform into the more restrictive schema.
For example, if one schema has a column of type TEXT and another schema defines the same column
as XML, add a CHECK constraint onto the TEXT column that enforces that the text is XML.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

20

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

A table may be defined with different indexes on each node. By default, the index definitions will be
replicated. Refer to DDL Replication to specify how to create an index only on a subset of nodes, or just
locally.

Storage parameters, such as fillfactor and toast_tuple_target, may differ between nodes for a table
without problems. An exception to that is the value of a table’s storage parameter user_catalog_table
must be identical on all nodes.

A table being replicated should be owned by the same user/role on each node. Refer to Security and
Roles for further discussion.

Roles may have different passwords for connection on each node, though by default changes to roles
are replicated to each node. Refer to DDL Replication to specify how to alter a role password only on a
subset of nodes, or just locally.

Timing Considerations and Synchronous Replication

Being asynchronous by default, peer nodes may lag behind making it’s possible for a client connected to
multiple BDR nodes or switching between them to read stale data.

The synchronous replication features of PGLogical are available to BDR as well. More advanced variants
of synchronous replication features are available with the Enterprise Edition.

Application Testing

BDR applications can be tested using the following programs, in addition to other techniques.

• TPAexec
• pgbench with CAMO/Failover options
• isolationtester with multi-node access

TPAexec

TPAexec is the system used by 2ndQuadrant to deploy reference TPA architectures, including those
based on Postgres-BDR.

TPAexec includes test suites for each reference architecture; it also simplifies creating and managing a
local collection of tests to be run against a TPA cluster, using a syntax as in the following example:

tpaexec test mycluster mytest

We strongly recommend that developers write their own multi-node suite of TPAexec tests which verify
the main expected properties of the application.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

21

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

pgbench with CAMO/Failover options

pgbench has been extended to allow users to run failover tests while using CAMO or regular BDR
deployments. The following new options have been added:

-m, --mode=regular|camo|failover
mode in which pgbench should run (default: regular)

--retry
retry transactions on failover

in addition to the above options, the connection information about the peer node for failover must be
specified in DSN form.

• Use -m camo or -m failover to specify the mode for pgbench. The -m failover specification
can be used to test failover in regular BDR deployments.

• Use --retry to specify whether transactions should be retried when failover happens with
-m failover mode. This is enabled by default for -m camo mode.

Here’s an example invocation in a CAMO environment:

pgbench -m camo -p $node1_port -h $node1_host bdrdemo \
"host=$node2_host user=postgres port=$node2_port dbname=bdrdemo"

The above command will run in camo mode. It will connect to node1 and run the tests; if the connection
to node1 connection is lost, then pgbench will connect to node2. It will query node2 to get the status of
in-flight transactions. Aborted and in-flight transactions will be retried in camo mode.

In failover mode, if --retry is specified then in-flight transactions will be retried. In this scenario there
is no way to find the status of in-flight transactions.

isolationtester with multi-node access

isolationtester has been extended to allow users to run tests on multiple sessions and on multiple nodes.
This is used for internal BDR testing, though it is also available for use with user application testing.

$ isolationtester \
--outputdir=./iso_output \
--create-role=logical \
--dbname=postgres \
--server 'd1=dbname=node1' \
--server 'd2=dbname=node2' \
--server 'd3=dbname=node3'

Isolation tests are a set of tests run for examining concurrent behaviors in PostgreSQL. These tests
require running multiple interacting transactions, which requires management of multiple concurrent

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

22

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

connections, and therefore can’t be tested using the normal pg_regress program. The name “isolation”
comes from the fact that the original motivation was to test the serializable isolation level; but tests for
other sorts of concurrent behaviors have been added as well.

It is built using PGXS as an external module. On installation, it creates isolationtester binary file which is
run by pg_isolation_regress to perform concurrent regression tests and observe results.

pg_isolation_regress is a tool similar to pg_regress, but instead of using psql to execute a test,
it uses isolationtester. It accepts all the same command-line arguments as pg_regress. It has been
modified to accept multiple hosts as parameters. It then passes these host conninfo’s along with server
names to isolationtester binary. Isolation tester compares these server names with the names specified
in each session in the spec files and runs given tests on respective servers.

To define tests with overlapping transactions, we use test specification files with a custom syntax, which
is described in the next section. To add a new test, place a spec file in the specs/ subdirectory, add the
expected output in the expected/ subdirectory, and add the test’s name to the Makefile.

Isolationtester is a program that uses libpq to open multiple connections, and executes a test specified by
a spec file. A libpq connection string specifies the server and database to connect to; defaults derived
from environment variables are used otherwise.

Specification consists of five parts, tested in this order:

server "<name>"

This defines the name of the servers that the sessions will run on. There can be zero or more server “”
specifications. The conninfo corresponding to the names is provided via the command to run isolation-
tester. This is described in quickstart_isolationtest.md. This part is optional.

setup { <SQL> }

The given SQL block is executed once, in one session only, before running the test. Create any test
tables or other required objects here. This part is optional. Multiple setup blocks are allowed if needed;
each is run separately, in the given order. (The reason for allowing multiple setup blocks is that each block
is run as a single PQexec submission, and some statements such as VACUUM cannot be combined with
others in such a block.)

teardown { <SQL> }

The teardown SQL block is executed once after the test is finished. Use this to clean up in preparation for
the next permutation, e.g dropping any test tables created by setup. This part is optional.

session "<name>"

There are normally several “session” parts in a spec file. Each session is executed in its own connection.
A session part consists of three parts: setup, teardown and one or more “steps”. The per-session setup
and teardown parts have the same syntax as the per-test setup and teardown described above, but
they are executed in each session. The setup part typically contains a “BEGIN” command to begin a
transaction.

Additionally, a session part also consists of connect_to specification. This points to server name
specified in the beginning which indicates the server on which this session runs.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

23

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

connect_to "<name>"

Each step has the syntax

step "<name>" { <SQL> }

where <name> is a name identifying this step, and SQL is a SQL statement (or statements, separated by
semicolons) that is executed in the step. Step names must be unique across the whole spec file.

permutation "<step name>"

A permutation line specifies a list of steps that are run in that order. Any number of permutation lines can
appear. If no permutation lines are given, the test program automatically generates all possible orderings
of the steps from each session (running the steps of any one session in order). Note that the list of steps
in a manually specified “permutation” line doesn’t actually have to be a permutation of the available steps;
it could for instance repeat some steps more than once, or leave others out.

Lines beginning with a # are considered comments.

For each permutation of the session steps (whether these are manually specified in the spec file, or
automatically generated), the isolation tester runs the main setup part, then per-session setup parts, then
the selected session steps, then per-session teardown, then the main teardown script. Each selected
step is sent to the connection associated with its session.

To run isolation tests in a BDR3 environment thats ran all prerequisite make commands, follow the below
steps,

1. Run make isolationcheck-install to install the isolationtester submodule

2. You can run isolation regression tests using either of the following commands from the bdr-private
repo

make isolationcheck-installcheck make isolationcheck-makecheck

A. To run isolationcheck-installcheck, you need to have two or more postgresql servers run-
ning. Pass the conninfo’s of servers to pg_isolation_regress in BDR 3.0 Makefile. Ex:
pg_isolation_regress --server 'd1=host=myhost dbname=mydb port=5434' --server 'd2=host=myhost1 dbname=mydb port=5432'

Now, add a .spec file containing tests in specs/isolation directory of bdr-private/ repo. Add .out file in
expected/isolation directory of bdr-private/ repo.

Then run make isolationcheck-installcheck

B. Isolationcheck-makecheck currently supports running isolation tests on a single instance by setting up
BDR between multiple databases.

You need to pass appropriate database names, conninfos of bdr instances to pg_isolation_regress in
BDR Makefile as follows: pg_isolation_regress --dbname=db1,db2 --server 'd1=dbname=db1' --server 'd2=dbname=db2'

Then run make isolationcheck-makecheck

Each step may contain commands that block until further action has been taken (most likely, some other
session runs a step that unblocks it or causes a deadlock). A test that uses this ability must manually

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

24

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

specify valid permutations, i.e. those that would not expect a blocked session to execute a command. If
a test fails to follow that rule, isolationtester will cancel it after 300 seconds. If the cancel doesn’t work,
isolationtester will exit uncleanly after a total of 375 seconds of wait time. Testing invalid permutations
should be avoided because they can make the isolation tests take a very long time to run, and they serve
no useful testing purpose.

Note that isolationtester recognizes that a command has blocked by looking to see if it is shown as
waiting in the pg_locks view; therefore, only blocks on heavyweight locks will be detected.

Performance Testing & Tuning

BDR allows you to issue write transactions onto multiple master nodes. Bringing those writes back
together onto each node has a cost in performance that you should be aware of.

First, replaying changes from another node has a CPU cost, an I/O cost and it will generate WAL records.
The resource usage is usually less than in the original transaction since CPU overheads are lower as a
result of not needing to re-execute SQL. In the case of UPDATE and DELETE transactions there may be
I/O costs on replay if data isn’t cached.

Second, replaying changes holds table-level and row-level locks that can produce contention against
local workloads. The CRDTs and CLCD features ensure you get the correct answers even for concurrent
updates, but they don’t remove the normal locking overheads. If you get locking contention, try to avoid
conflicting updates and/or keep transactions as short as possible. A heavily updated row within a larger
transaction will cause a bottleneck on performance for that transaction. Complex applications require
some thought to maintain scalability.

If you think your are having performance problems, you are encouraged to develop performance tests
using the benchmarking tools above. pgbench allows you to write custom test scripts specific to your use
case so you can understand the overheads of your SQL and measure the impact of concurrent execution.

So if “BDR is running slow”, then we suggest the following:

1. Write a custom test script for pgbench, as close as you can make it to the production system’s
problem case.

2. Run the script on one node to give you a baseline figure.
3. Run the script on as many nodes as occurs in production, using the same number of sessions in

total as you did on one node. This will show you the effect of moving to multiple nodes.
4. Increase the number of sessions for the above 2 tests, so you can plot the effect of increased

contention on your application.
5. Make sure your tests are long enough to account for replication delays.
6. Ensure that replication delay isn’t growing during your tests.

Use all of the normal Postgres tuning features to improve the speed of critical parts of your application.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

25

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

PostgreSQL Configuration for BDR

There are several PostgreSQL configuration parameters that affect BDR.

PostgreSQL Settings for BDR

BDR requires certain PostgreSQL settings to be set to appropriate values:

• wal_level - Must be set to logical for logical decoding (which BDR uses) to work.
• shared_preload_libraries - This must contain pglogical,bdr (in that order).
• max_worker_processes - BDR uses background workers for replication and maintenance tasks,

so there need to be enough worker slots for it to work correctly. The formula for the correct minimal
number of workers is: one per PostgreSQL instance + one per database on that instance + two per
BDR-enabled database + two per peer node in the BDR group for each database.

• max_wal_senders - Two needed per every peer node.
• max_replication_slots - Same as max_wal_senders.
• track_commit_timestamp - Must be set to ‘on’ for conflict resolution to work.
• synchronous_commit - affects the durability and performance of BDR replication in a similar way

to physical replication.

Note that in normal running for a group with N peer nodes, BDR will require N slots/walsenders. During
synchronization, BDR will temporarily use another N - 1 slots/walsenders, so be careful to set the above
parameters high enough to cater for this occasional peak demand.

pglogical Settings for BDR

BDR is also affected by some of the pglogical settings as it uses pglogical internally to implement the
basic replication.

• pglogical.track_subscription_apply - Track apply statistics for each subscription.
• pglogical.track_relation_apply - Track apply statistics for each relation.
• pglogical.track_apply_lock_timing - Track lock timing when tracking statistics for relations.
• pglogical.standby_slot_names - When using physical Standby nodes intended for failover

purposes, should be set to the replication slot(s) for each intended Standby.

BDR Specific Settings

There are also BDR specific configuration settings that can be set. Unless noted otherwise, values may
be set by any user at any time.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

26

https://www.postgresql.org/docs/11/runtime-config-wal.html#GUC-SYNCHRONOUS-COMMIT

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Conflict Handling

• bdr.default_conflict_detection - Sets the default conflict detection method for newly created
tables; accepts same values as bdr.alter_table_conflict_detection()

Global Sequence Parameters

• bdr.default_sequence_kind - Sets the default sequence kind.

DDL Handling

• bdr.default_replica_identity - Sets the default value for REPLICA IDENTITY on newly
created tables. The REPLICA IDENTITY defines which information is written to the write-ahead
log to identify rows which are updated or deleted.

The accepted values are:

– DEFAULT - records the old values of the columns of the primary key, if any (this is the default
PostgreSQL behavior).

– FULL - records the old values of all columns in the row.
– NOTHING - records no information about the old row.

See PostgreSQL documentation for more details.

BDR can not replicate UPDATEs and DELETEs on tables without a PRIMARY KEY or UNIQUE con-
straint, unless the replica identity for the table is FULL, either by table-specific configuration or via
bdr.default_replica_identity.

If bdr.default_replica_identity is DEFAULT and there is a UNIQUE constraint on the table, it will
not be automatically picked up as REPLICA IDENTITY. It needs to be set explicitly at the time of
creating the table, or afterwards as described in the documentation above.

Setting the replica identity of table(s) to FULL increases the volume of WAL written and the amount
of data replicated on the wire for the table.

• bdr.ddl_replication - Automatically replicate DDL across nodes (default “on”).

This parameter can be only set by the bdr_superuser or superuser roles. However it is possible to
change this setting using the bdr.set_ddl_replication() function, which can be GRANTed to
other users.

Running DDL or calling BDR administration functions with bdr.ddl_replication = off can
create situations where replication stops until an administrator can intervene. See the DDL
replication chapter for details.

A LOG-level log message is emitted to the PostgreSQL server logs whenever bdr.ddl_replication
is set to off. Additionally, a WARNING-level message is written whenever replication of captured
DDL commands or BDR replication functions is skipped due to this setting.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

27

conflicts.md#bdralter_table_conflict_detection
https://www.postgresql.org/docs/current/sql-altertable.html#SQL-CREATETABLE-REPLICA-IDENTITY

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• bdr.role_replication - Automatically replicate ROLE commands across nodes (default “on”).
This parameter is settable by a superuser only. This setting only works if bdr.ddl_replication
is turned on as well.

Turning this off without using external methods to ensure roles are in sync across all nodes may
cause replicated DDL to interrupt replication until the administrator intervenes.

See Role manipulation statements in the DDL replication chapter for details.

• bdr.ddl_locking - Configures the operation mode of global locking for DDL.

This parameter can be only set by bdr_superuser or superuser roles. However it is possible to
change this setting using the bdr.set_ddl_locking() function, which can be GRANTed to other
users.

Possible options are:

– off - do not use global locking for DDL operations
– on - use global locking for all DDL operations
– dml - only use global locking for DDL operations that need to prevent writes by taking the

global DML lock for a relation

A LOG-level log message is emitted to the PostgreSQL server logs whenever bdr.ddl_replication
is set to off. Additionally, a WARNING message is written whenever any global locking steps are
skipped due to this setting. It is normal for some statements to result in two WARNINGs, one for
skipping the DML lock and one for skipping the DDL lock.

• bdr.truncate_locking - Configures the TRUNCATE locking behavior. If set to true, the
TRUNCATE command will obey the bdr.ddl_locking setting - this is the behavior in BDR 3.7 and
newer. When set to false (default) the TRUNCATE command will not lock - this is the behavior of
BDR 3.6.10 and older.

Global Locking

• bdr.ddl_locking - Described above.
• bdr.global_lock_max_locks - Maximum number of global locks that can be held on a node

(default 1000). May only be set at Postgres server start.
• bdr.global_lock_timeout - Sets the maximum allowed duration of any wait for a global lock

(default 1 minute). A value of zero disables this timeout.
• bdr.global_lock_statement_timeout - Sets the maximum allowed duration of any statement

holding a global lock (default 10 minutes). A value of zero disables this timeout.
• bdr.global_lock_idle_timeout - Sets the maximum allowed duration of idle time in transaction

holding a global lock (default 10 minutes). A value of zero disables this timeout.

Node Management

• bdr.replay_progress_frequency - Interval for sending replication position info to the rest of
the cluster (default 1 minute).

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

28

ddl.md#Role_manipulation_statements

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Generic Replication

• bdr.xact_replication - Replicate current transaction (default “on”).

Turning this off will make the whole transaction local only.

This parameter can be only set by the bdr_superuser or superuser roles.

This parameter can only be set inside the current transaction using the SET LOCAL command; it
cannot be set in the configuration file or the user default configuration.

Note
Even with transaction replication disabled, WAL will be generated but those changes will
be filtered away on the origin.

Warning
Turning off bdr.xact_replication will lead to data inconsistency between nodes, and
should only be used to recover from data divergence between nodes or in replication
situations where changes on single nodes are required for replication to continue. Use at
your own risk.

• bdr.permit_unsafe_commands - Option to override safety check on commands that are deemed
unsafe for general use.

Requires bdr_superuser or PostgreSQL superuser.

Warning
The commands that are normally not considered safe may either produce inconsistent
results or break replication altogether. Use at your own risk.

• bdr.maximum_clock_skew

This specifies what should be considered as the maximum difference between the incom-
ing transaction commit timestamp and the current time on the subscriber before triggering
bdr.maximum_clock_skew_action.

This checks if the timestamp of the currently replayed transaction is in the future compared to the cur-
rent time on the subscriber; and if it is, and the difference is larger than bdr.maximum_clock_skew,
it will do the action specified by the bdr.maximum_clock_skew_action setting.

The default is -1, which means: ignore clock skew (the check is turned off). It is valid to set 0
as when the clock on all servers are synchronized, the fact that we are replaying the transaction
means it has been committed in the past.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

29

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• bdr.maximum_clock_skew_action

This specifies the action to take if a clock skew higher than bdr.maximum_clock_skew is detected.

There are two possible values for this option:

– WARN - Log a warning about this fact. The warnings are logged once per minute (the default)
at the maximum to prevent flooding the server log.

– WAIT - Wait for as long as the current local timestamp is no longer older than remote commit
timestamp minus the bdr.maximum_clock_skew.

Timestamp-based Snapshots

• bdr.timestamp_snapshot_keep - For how long to keep valid snapshots for the timestamp-based
snapshot usage (default 0, meaning do not keep past snapshots). Also see snapshot_timestamp
above.

Monitoring and Logging

• bdr.debug_level - Defines the log level that BDR uses to write its debug messages. The default
value is debug2. If you want to see detailed BDR debug output, set bdr.debug_level = 'log'.

• bdr.trace_level - Similar to the above, this defines the log level to use for BDR trace messages.
Enabling tracing on all nodes of a BDR cluster may help 2ndQuadrant Support to diagnose issues.
May only be set at Postgres server start.

Warning
Setting bdr.debug_level or bdr.trace_level to a value >= log_min_messages can
produce a very large volume of log output, so it should not be enabled long term in
production unless plans are in place for log filtering, archival and rotation to prevent disk
space exhaustion.

Internals

• bdr.raft_keep_min_entries - The minimum number of entries to keep in the Raft log when
doing log compaction (default 100). The value of 0 will disable log compaction. WARNING: If log
compaction is disabled, the log will grow in size forever. May only be set at Postgres server
start.

• bdr.raft_response_timeout - To account for network failures, the Raft consensus protocol
implemented will time out requests after a certain amount of time. This timeout defaults to 30
seconds.

• bdr.raft_log_min_apply_duration - To move the state machine forward, Raft appends entries
to its internal log. During normal operation, appending takes only a few milliseconds. This poses
an upper threshold on the duration of that append action, above which an INFO message is logged.
This may indicate an actual problem. Default value of this parameter is 3000 ms.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

30

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• bdr.raft_log_min_message_duration - When to log a consensus request. Measure round trip
time of a bdr consensus request and log an INFO message if the time exceeds this parameter.
Default value of this parameter is 5000 ms.

• bdr.backwards_compatibility - Specifies the version to be backwards-compatible to, in the
same numerical format as used by bdr.bdr_version_num, e.g. 30618. Enables exact behavior
of a former BDR version, even if this has generally unwanted effects. Defaults to the current BDR
version. Since this changes from release to release, we advise against explicit use within the
configuration file unless the value is different to the current version.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

31

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Node Management

Each database that is member of a BDR group must be represented by its own node. A node is an
unique identifier of such a database in the BDR group.

At present, each node can be a member of just one node group; this may be extended in later releases.
Each node may subscribe to one or more Replication Sets to give fine-grained control over replication.

Creating and Joining a BDR Group

For BDR, every node has to have a connection to every other node. To make configuration easy,
when a new node joins, it automatically configures all existing nodes to connect to it. For this rea-
son, every node, including the first BDR node created, must know the PostgreSQL connection string
(sometimes referred to as a DSN, for “data source name”) that other nodes can use to connect to
it. Both formats of connection string are supported. So you can use either key-value format like
host=myhost port=5432 dbname=mydb or URI format postgresql://myhost:5432/mydb.

The SQL function bdr.create_node_group() is used to create the BDR group from the local node.
Doing so activates BDR on that node and allows other nodes to join the BDR group (which consists only
of one node at that point). You must specify the connection string that other nodes will use to connect to
this node at the time of creation.

Once the node group is created, every further node can join the BDR group using the
bdr.join_node_group() function.

Alternatively, the command line utility bdr_init_physical can be used to create a new node
using pg_basebackup (or a physical standby) of an existing node. If using pg_basebackup, the
bdr_init_physical utility can optionally specify the base backup of the target database only as
opposed to the earlier behavior of backup of the entire database cluster. This should make this activity
complete faster and also allow it to use less space due to the exclusion of unwanted databases. If only
the target database is specified, then the excluded databases get cleaned up and removed on the new
node.

The bdr_init_physical utility replaces the functionality of the bdr_init_copy utility from BDR1 and
BDR2. It is the BDR3 equivalent of the pglogical pglogical_create_subscriber utility.

Warning
Only one node at the time should join the BDR node group, or be parted from it. If a new
node is being joined while there is another join or part operation in progress, the new
node will sometimes not have consistent data after the join has finished.

When a new BDR node is joined to an existing BDR group, or a node is subscribed to an upstream peer,
the system must copy the existing data from the peer node(s) to the local node before replication can
begin. This copy has to be carefully co-ordinated so that the local and remote data starts out identical; so

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

32

https://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-CONNSTRING

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

it’s not sufficient to just use pg_dump yourself. The BDR extension provides built-in facilities for making
this initial copy.

During the join process, the BDR extension will synchronize existing data using the provided source node
as the basis and creates all metadata information needed for establishing itself in the mesh topology in
the BDR group. If the connection between the source and the new node disconnects during this initial
copy, the join process will need to be restarted from the beginning.

The node which is joining the cluster must not contain any schema or data which already exists on
databases in the BDR group. It’s recommended that the newly joining database is empty except for the
BDR and pglogical extension. Ensure that all required database users and roles are created.

It’s recommended to pick the source node which has the best connection (i.e. is closest) as the source
node for joining, since that lowers the time needed for the join to finish.

The join procedure is coordinated using the Raft consensus algorithm, which requires the majority of
existing nodes to be online and reachable.

The logical join procedure (which uses bdr.join_node_group() function) performs data sync doing
INSERT operations individually within a single transaction, though this restriction is lifted in later releases.
For performance reasons, it is recommended to use bdr_init_physical instead.

Note that the join process uses only one node as the source, so can be executed when nodes are down as
long as a majority of nodes are available. This can cause a complexity when running logical join: During
logical join, the commit timestamp of rows copied from the source node will be set to the latest commit
timestamp on the source node. Committed changes on nodes that have a commit timestamp earlier than
this because nodes are down or have significant lag could conflict with changes from other nodes; in this
case, the newly joined node could be resolved differently to other nodes, causing a divergence. As a
result, we recommend not to run a node join when significant replication lag exists between nodes, but if
this is necessary then run LiveCompare on the newly joined node to correct any data divergence once all
nodes are available and caught up.

Connection DSNs and SSL (TLS)

The DSN of a node is simple a libpq connection string, since nodes connect using libpq. As such,
it can contain any permitted libpq connection parameter, including those for SSL. Note that the DSN
must work as the connection string from the client connecting to the node in which it is specified. An
example of such a set of parameters using a client certificate is:

sslmode=verify-full sslcert=bdr_client.crt sslkey=bdr_client.key
sslrootcert=root.crt

With this setup, the files bdr_client.crt, bdr_client.key and root.crt must be present in the data
directory on each node, with the appropriate permissions. For verify-full mode the server’s SSL
certificate will be checked to ensure that it is directly or indirectly signed with the root.crt Certificate
Authority, and that the host name or address used in the connection matches the contents of the certificate.
In the case of a name, this can match a Subject Alternative Name or, if there are no such names in
the certificate, the Subject’s Common Name (CN) field. Postgres does not currently support Subject

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

33

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Alternative Names for IP addresses, so if the connection is made by address rather than name, it must
match the CN field.

The CN of the client certificate must be the name of the user making the BDR connection. This is usually
the user postgres. Each node will require matching lines permitting the connection in the pg_hba.conf
file, for example:

hostssl all postgres 10.1.2.3/24 cert
hostssl replication postgres 10.1.2.3/24 cert

Another setup could be to use SCRAM-SHA-256 passwords instead of client certificates, and not bother
about verifying the server identity as long as the certificate is properly signed. here the DSN parameters
might be just:

sslmode=verify-ca sslrootcert=root.crt

and the corresponding pg_hba.conf lines would be like this:

hostssl all postgres 10.1.2.3/24 scram-sha-256
hostssl replication postgres 10.1.2.3/24 scram-sha-256

In such a scenario, the postgres user would need a .pgpass file containing the correct password.

Witness Nodes

If the cluster has an even number of nodes it may be beneficial to create an extra node to help break ties
in the event of a network split (or network partition as it is sometimes called).

Rather than create an additional full-size node, you can create a micro node, sometimes called a Witness
node. This is a normal BDR node, just that it is deliberately set up not to replicate any tables or data to it.

Logical Standby Nodes

BDR allows you to create a “logical standby node”, also known as an “offload node”, a “read-only node”,
“receive-only node” or “logical read replicas”. A master node can have zero, one or more logical standby
nodes.

With a physical standby node the node never comes up fully, forcing it to stay in continual recovery mode.
BDR allows something similar. bdr.join_node_group has the pause_in_standby option to make the
node stay in half-way-joined as a logical standby node. Logical standby nodes receive changes but do
not send changes made locally to other nodes.

Later, if desired, use bdr.promote_node() to move the logical standby into a full, normal send/receive
node.

A logical standby is sent data by one source node, defined by the DSN in bdr.join_node_group.
Changes from all other nodes are received from this one source node, minimizing bandwidth between
multiple sites.

There are multiple options for high availability:

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

34

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• If the source node dies, one physical standby can be promoted into a master. In this case, the new
master can continue to feed any/all logical standby nodes.

• If the source node dies, one logical standby can be promoted into a full node and replace the
source in a failover operation similar to single master operation. Note that if there are multiple
logical standby nodes, the other nodes cannot follow the new master, so the effectiveness of this
technique is effectively limited to just one logical standby.

Note that in case a new standby is created of an existing BDR node, the necessary replication slots for
operation are not synced to the new standby until at least 16MB of LSN has elapsed since the group
slot was last advanced. In extreme cases, this may require a full 16MB before slots are synced/created
on the streaming replica. In the event a failover or switchover occurs during this interval, the streaming
standby cannot be promoted to replace its BDR node, as the group slot and other dependent slots do not
exist yet. This is resolved automatically by BDR-EE, but not by BDR-SE.

Therefore, it is important to ensure that slots sync up has completed on the standby before promoting it.
The following query can be run on the standby in the target database to monitor and ensure that the slots
have synced up with the upstream. The promotion can go ahead when this query returns true.

SELECT true FROM pg_catalog.pg_replication_slots WHERE
slot_type = 'logical' AND confirmed_flush_lsn IS NOT NULL;

It is also possible to nudge the slot sync up process in the entire BDR cluster by manually performing
WAL switches and by requesting all BDR peer nodes to replay their progress updates. This activity will
cause the group slot to move ahead in a short timespan and also hasten the slot sync up activity on the
standby. The following queries can be run on any BDR peer node in the target database for this.

SELECT bdr.run_on_all_nodes('SELECT pg_catalog.pg_switch_wal()');
SELECT bdr.run_on_all_nodes('SELECT bdr.request_replay_progress_update()');

Use the monitoring query from above on the standby to check that these queries indeed help in faster
slot sync up on that standby.

Logical standby nodes can themselves be protected using physical standby nodes, if desired, so
Master->LogicalStandby->PhysicalStandby. Note that you cannot cascade from LogicalStandby to
LogicalStandby.

Note that a logical standby does allow write transactions, so the restrictions of a physical standby do not
apply. This can be used to great benefit, since it allows the logical standby to have additional indexes,
longer retention periods for data, intermediate work tables, LISTEN/NOTIFY, temp tables, materialized
views and other differences.

Any changes made locally to logical standbys that commit before the promotion will not be sent to other
nodes. All transactions that commit after promotion will be sent onwards. If you perform writes to a logical
standby, you are advised to take care to quiesce the database before promotion.

You may make DDL changes to logical standby nodes but they will not be replicated, nor will they attempt
to take global DDL locks. BDR functions which act similarly to DDL will also not be replicated. See DDL
Replication. If you have made incompatible DDL changes to a logical standby then the database is said

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

35

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

to be a divergent node. Promotion of a divergent node will currently result in replication failing. As a
result you should plan to either ensure that a logical standby node is kept free of divergent changes if
you intend to use as a standby, or ensure that divergent nodes are never promoted.

Physical Standby Nodes

BDR also enables creation of traditional physical standby failover nodes as well. These are commonly
intended to directly replace a BDR node within the cluster after a short promotion procedure. As with any
standard Postgres cluster, a node may have any number of these physical replicas.

There are however, some minimal prerequisites for this to work properly due to use of replication slots,
and other functional requirements in BDR:

• The connection between BDR Primary and Standby uses streaming replication through a physical
replication slot.

• The Standby has:

– recovery.conf:

* primary_conninfo pointing to the Primary

* primary_slot_name naming a physical replication slot on the Primary to be used only
by this Standby

– postgresql.conf:

* shared_preload_libraries = 'pglogical, bdr' at minimum

* hot_standby = on

* hot_standby_feedback = on

• The Primary has:

– postgresql.conf:

* pglogical.standby_slot_names should specify the physical replication slot used for
the Standby’s primary_slot_name.

While this is enough to produce a working physical standby of a BDR node, there are some additional
concerns that should be addressed.

Once established, the Standby requires sufficient time and WAL traffic to trigger an initial copy of the
Primary’s other BDR-related replication slots, including the BDR group slot. At minimum, slots on a
Standby are only “live” and and will survive a failover if they report a non-zero confirmed_flush_lsn
as reported by pg_replication_slots.

As a consequence, physical standby nodes in newly initialized BDR clusters with low amounts of write
activity should be checked before assuming a failover will work normally. Failing to take this precaution
can result in the Standby having an incomplete subset of required replication slots necessary to function
as a BDR node, and thus an aborted failover.

Upon failover, the Standby must perform one of two actions to replace the Primary:

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

36

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

1. Assume control of the same IP address or hostname as the Primary.
2. Inform the BDR cluster of the change in address by executing the bdr.alter_node_interface function

on all other BDR nodes.

Once this is done, the other BDR nodes will re-establish communication with the newly promoted Standby
-> Primary node. Since replication slots are only synchronized periodically, this new Primary may reflect
a lower LSN than expected by the existing BDR nodes. If this is the case, BDR will fast-forward each
lagging slot to the last location used by each BDR node.

Take special note of the pglogical.standby_slot_names parameter as well. While this is a pglogical
configuration parameter, it is important to set in a BDR cluster where there is a Primary -> Physical
Standby relationship. While pglogical uses this to ensure physical standby servers always receive WAL
traffic before logical replicas, the BDR use case is much different.

BDR maintains a group slot that always reflects the state of the cluster node showing the most lag. With
the addition of a physical replica, BDR must be informed that there is a non-participating node member
that will, regardless, affect the state of the group slot.

Since the Standby does not directly communicate with the other BDR nodes, the standby_slot_names
parameter informs BDR to consider named slots as necessary constraints on the group slot as well.
When set, the group slot will be held if the Standby shows lag, even if the group slot would have normally
been advanced.

As with any physical replica, this type of standby may also be configured as a synchronous replica. As a
reminder, this requires:

• On the Standby:

– Specifying a unique application_name in primary_conninfo

• On the Primary:

– Enabling synchronous_commit
– Including the Standby application_name in synchronous_standby_names

It is possible to mix physical Standby and other BDR nodes in synchronous_standby_names.

Node Restart and Down Node Recovery

BDR is designed to recover from node restart or node disconnection. The disconnected node will
automatically rejoin the group by reconnecting to each peer node and then replicating any missing data
from that node.

When a node starts up, each connection will begin showing bdr.node_slots.state = catchup and
begin replicating missing data. Catching-up will continue for a period of time that depends upon the
amount of missing data from each peer node, which will likely increase over time, depending upon the
server workload.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

37

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

If the amount of write activity on each node is not uniform then you may see that the catchup period
from nodes with more data could take significantly longer than other nodes. Eventually, the slot state will
change to bdr.node_slots.state = streaming.

Nodes that are offline for longer periods of time such as hours or days, can begin to cause resource
issues for various reasons. Users should not plan on extended outages without understanding the
following issues.

Each node retains change information (using one replication slot for each peer node) so it can later replay
changes to a temporarily unreachable node. If a peer node remains offline indefinitely, this accumulated
change information will eventually cause the node to run out of storage space for PostgreSQL transaction
logs (WAL in pg_wal), and will likely cause the database server to shut down with an error like:

PANIC: could not write to file "pg_wal/xlogtemp.559": No space left on device

or report other out-of-disk related symptoms.

In addition, slots for offline nodes also hold back the catalog xmin, preventing vacuuming of catalog
tables.

In BDR-EE, offline nodes also hold back freezing of data to prevent losing conflict resolution data. (see:
Origin Conflict Detection). BDR-SE users may need to alter their configuration settings as specified.

Administrators should monitor for node outages (see: monitoring) and make sure nodes have sufficient
free disk space. If the workload is predictable, it may be possible to calculate how much space is used
over time, allowing a prediction of the maximum time a node can be down before critical issues arise.

Replication slots created by BDR must not be removed manually. Should that happen, the cluster is
damaged and the node that was using the slot must be parted from the cluster, as described below.

Note that while a node is offline, the other nodes may not yet have received the same set of data from
the offline node, so this may appear as a slight divergence across nodes. This imbalance across nodes
is corrected automatically during the parting process. Later versions may do this at an earlier time.

Replication Slots created by BDR

On a BDR master node, the following replication slots are automatically created:

• One group slot, named bdr_<database name>_<group name>;
• N-1 node slots, named bdr_<database name>_<group name>_<node name>, where N is the

total number of BDR nodes in the cluster, including logical standbys, if any.

The user must not drop those slots: they have been automatically created by BDR, and therefore must
be dropped automatically by BDR itself.

On the other hand, replication slots required by software like Barman or pglogical can be created or
dropped, using the appropriate commands for the software, without any effect on BDR.

For example, in a cluster composed by 3 nodes alpha, beta and gamma where BDR is used to replicate
the mydb database, and the BDR group is called mygroup:

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

38

http://www.postgresql.org/docs/current/static/logicaldecoding-explanation.html

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Node alpha has three slots:

– One group slot named bdr_mydb_mygroup
– Two node slots named bdr_mydb_mygroup_beta and bdr_mydb_mygroup_gamma

• Node beta has three slots:

– One group slot named bdr_mydb_mygroup
– Two node slots named bdr_mydb_mygroup_alpha and bdr_mydb_mygroup_gamma

• Node gamma has three slots:

– One group slot named bdr_mydb_mygroup
– Two node slots named bdr_mydb_mygroup_alpha and bdr_mydb_mygroup_beta

Hashing Long Identifiers

Note that the name of a replication slot, like any other PostgreSQL identifier, cannot be longer than 63
bytes; BDR handles this by shortening the database name, the BDR group name and the name of the
node, in case the resulting slot name is too long for that limit. The shortening of an identifier is carried
out by replacing the final section of the string with a hash of the string itself.

As an example of this, consider a cluster that replicates a database named db20xxxxxxxxxxxxxxxx (20
bytes long) using a BDR group named group20xxxxxxxxxxxxx (20 bytes long); the logical replication
slot associated to node a30xxxxxxxxxxxxxxxxxxxxxxxxxxx (30 bytes long) will be called

bdr_db20xxxx3597186_group20xbe9cbd0_a30xxxxxxxxxxxxx7f304a2

since 3597186, be9cbd0 and 7f304a2 are respectively the hashes of db20xxxxxxxxxxxxxxxx,
group20xxxxxxxxxxxxx and a30xxxxxxxxxxxxxxxxxxxxxxxxxx.

Removing a Node From a BDR Group

Since BDR is designed to recover from extended node outages it is necessary to explicitly tell the system
if you are removing a node permanently. If you permanently shut down a node and don’t tell the other
nodes then performance will suffer and eventually the whole system will stop working.

Node removal, also called parting, is done using the bdr.part_node() function. You must specify the
node name (as passed during node creation) to remove a node. The bdr.part_node() function can be
called from any active node in the BDR group, including the node which is being removed.

Just like the join procedure, parting is done using Raft consensus and requires a majority of nodes to be
online to work.

The parting process affects all nodes. The Raft leader will manage a vote between nodes to see which
node has the most recent data from the parting node. Then all remaining nodes will make a secondary,
temporary connection to the most-recent node allow them to catchup any missing data.

A parted node still is known to BDR, but won’t consume resources. A node my well be re-added under
the very same name as a parted node. In rare cases, it may be advisable to clear all metadata of a
parted node with the function bdr.drop_node().

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

39

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Uninstalling BDR

Dropping the BDR extension will remove all the BDR objects in a node, including metadata tables. This
can be done with the following command:

DROP EXTENSION bdr;

If the database depends on some BDR-specific objects, then the BDR extension cannot be dropped.
Examples include:

• Tables using BDR-specific sequences such as timeshard or galloc
• Column using CRDT data types
• Views that depend on some BDR catalog tables

Those dependencies must be removed before dropping the BDR extension, for instance by dropping the
dependent objects, altering the column type to a non-BDR equivalent, or changing the sequence type
back to local.

Warning
The BDR extension must only be performed if the node has been successfully parted
from its BDR node group, or if it is the last node in the group: dropping BDR and pglogical
metadata will break replication to/from the other nodes.

Warning
When dropping a local BDR node, or the BDR extension in the local database, any
preexisting session might still try to execute a BDR specific workflow, and therefore fail.
The problem can be solved by disconnecting the session and then reconnecting the client,
or by restarting the instance.
Moreover, the “could not open relation with OID (. . .)” error could occur when (1) parting
a node from a BDR cluster, then (2) dropping the BDR extension (3) recreating it, and
finally (4) running pglogical.replication_set_add_all_tables(). Restarting the
instance will solve the problem.

Similar considerations apply to the pglogical extension, which is required by BDR.

If pglogical is only used by BDR, then it is possible to drop both extensions with a single statement:

DROP EXTENSION pglogical, bdr;

Conversely, if the node is also using pglogical independently of BDR, e.g. for one-way replication of some
tables to a remote database, then only the BDR extension should be dropped.

Warning
Dropping BDR from a database that independently uses pglogical can block an existing
pglogical subscription from working further with the “BDR global lock manager not
initialized yet” error. Restarting the instance will solve the problem.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

40

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Listing BDR Topology

Listing BDR Groups

The following (simple) query lists all the BDR node groups of which the current node is a member: (will
currently return one row only)

SELECT node_group_name
FROM bdr.local_node_summary;

The configuration of each node group can be displayed using a more complex query:

SELECT g.node_group_name
, ns.default_repset_name
, node_group_insert_to_update AS insert_to_update
, node_group_update_to_insert AS update_to_insert
, node_group_ignore_redundant_updates AS ignore_redundant_updates
, node_group_check_full_tuple AS check_full_tuple
, node_group_apply_delay AS apply_delay
, node_group_check_constraints AS check_constraints
FROM bdr.local_node_summary ns
JOIN bdr.node_group g USING (node_group_name)

Listing Nodes in a BDR Group

The list of all nodes in a given node group (e.g. mygroup) can be extracted from the bdr.node_summary
view as in the following example:

SELECT node_name AS name
, node_seq_id AS ord
, peer_state_name AS current_state
, peer_target_state_name AS target_state
, interface_connstr AS dsn
FROM bdr.node_summary
WHERE node_group_name = 'mygroup';

Note that the read-only state of a node, as shown in the current_state or in the target_state query
columns, is indicated as STANDBY.

List of Node States

• NONE: Node state is unset when the worker starts, expected to be set quickly to the current known
state.

• CREATED: bdr.create_node() has been executed, but the node is not a member of any BDR
cluster yet.

• JOIN_START: bdr.join_node_group() begins to join the local node to an existing BDR cluster.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

41

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• JOINING: The node join started and is currently at the initial sync phase, creating the schema and
data on the node.

• CATCHUP: Initial sync phase is completed, now the join is at the last step of retrieving and applying
transactions that were performed on the upstream peer node since the join started.

• STANDBY: Node join finished, but not yet started to broadcast changes. All joins spend some time
in this state, but if defined as a Logical Standby the node will continue in this state.

• PROMOTE: Node was a logical standby and we just called bdr.promote_node to move the node state
to ACTIVE. These two PROMOTEstates have to be coherent to the fact, that only one node can be
with a state higher than STANDBY but lower than ACTIVE.

• PROMOTING: Promotion from logical standby to full BDR node is in progress.
• ACTIVE: The node is a full BDR node and is currently ACTIVE. This is the most common node

status.
• PART_START: Node was ACTIVE or STANDBY and we just called bdr.part_node to remove the node

from the BDR cluster.
• PARTING: Node disconnects from other nodes and plays no further part in consensus or replication.
• PART_CATCHUP: Non-parting nodes synchronize any missing data from the recently parted node.
• PARTED: Node parting operation is now complete on all nodes.

Only one node at a time can be in either of the states PROMOTE or PROMOTING.

Node Management Interfaces

Nodes can be added and removed dynamically using the SQL interfaces.

bdr.create_node

Creates a node

Synopsis

bdr.create_node(node_name text, local_dsn text)

Parameters

• node_name - name of the new node; only one node is allowed per database. Valid node names
consist of lower case letters, numbers, hyphens and underscores.

• local_dsn - connection string to the node

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

42

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Notes

This function just creates record for the local node with the associated public connection string. There
can be only one local record so once it’s it will error when trying to run again.

This function is a transactional function - it can be rolled back and the changes made by it are visible to
current transaction.

The function will hold lock on the newly created bdr node until end of transaction.

bdr.drop_node

Drops a node. This function is not intended for regular use and shold only be executed under the
instructions of 2ndQuadrant support.

This function removes the metadata for a given node from the local database. The node can be either:

• The local node, in which case all the node metadata is removed, including information about
remote nodes;

• A remote node, in which case only metadata for that specific node is removed.

Synopsis

bdr.drop_node(node_name text, cascade boolean DEFAULT false, force boolean DEFAULT false)

Parameters

• node_name - Name of an existing node
• cascade - Whether to cascade to dependent objects, this will also delete the associated pglogical

node. This option should be used with caution!
• force - Circumvents all sanity checks and forces the removal of all metadata for the given BDR

node despite a possible danger of causing inconsistencies. A forced node drop is to be used by
2ndQuadrant support only in case of emergencies related to parting.

Notes

Before you run this you should already have parted the node using bdr.part_node().

This function is only executed locally without any replication. The node being dropped is locked by this
command for other commands that might want to modify it locally.

Note
BDR3 can have a maximum of 1024 node records (both ACTIVE and PARTED) at one
time. This is because each node has a unique sequence number assigned to it, for use by
timeshard sequences. PARTED nodes are not automatically cleaned up at the moment;
should this become a problem, this function can be used to remove those records.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

43

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.create_node_group

Creates a BDR group with the local node as the only member of the group.

Synopsis

bdr.create_node_group(node_group_name text,
insert_to_update boolean DEFAULT true,
update_to_insert boolean DEFAULT false,
ignore_redundant_updates boolean DEFAULT false,
check_full_tuple boolean DEFAULT false,
apply_delay interval DEFAULT INTERVAL '0',
check_constraints boolean DEFAULT true)

Parameters

• node_group_name - Name of the new BDR group; as with the node name, valid group names
must consist of lower case letters, numbers and underscores, exclusively.

• insert_to_update - Whether an INSERT that conflicts with an existing tuple (due to an INSERT-
INSERT conflict) should be converted to an UPDATE, default is yes.
This option is deprecated and may be disabled or removed in future versions of BDR. Use
bdr.alter_node_set_conflict_resolver instead.

• update_to_insert - Whether an UPDATE to a missing row (e.g. due to a concurrent DELETE)
should be converted to an INSERT, default is no. This feature is only available for tables with
REPLICA IDENTITY set to FULL. For other tables, this setting has no effect and the UPDATE to a
missing row will be skipped.
This option is deprecated and may be disabled or removed in future versions of BDR. Use
bdr.alter_node_set_conflict_resolver instead.

• ignore_redundant_updates - Whether UPDATEs that don’t actually change any attribute of a
tuple can safely be ignored, defaults to no.

• check_full_tuple - Whether to use and compare all attributes of the existing tuple with the
expected tuple to update, influences conflict detection, applies only to relations with Row Version
Tracking enabled, defaults to off.

• apply_delay - An interval of time a subscriber waits before applying changes from a provider
node. Defaults to 0.

• check_constraints - Should the apply process check constraints when writing replicated data.
Defaults to true.

Note that all of these parameters, with the exception of the node_group_name are simply passed on to
pglogical.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

44

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Notes

This function will pass request to local consensus worker that is running for the local node.

The function is not transactional. The creation of the group is a background process so once the function
has finished the changes cannot be rolled back. Also the changes might not be immediately visible to the
current transaction, the bdr.wait_for_join_completion can be called to wait until they are.

The group creation does not hold any locks.

bdr.alter_node_group_config

Changes configuration parameter(s) of an existing BDR group. Options with NULL value (default for all of
them) will not be modified.

Synopsis

bdr.alter_node_group_config(node_group_name text,
insert_to_update boolean DEFAULT NULL,
update_to_insert boolean DEFAULT NULL,
ignore_redundant_updates boolean DEFAULT NULL,
check_full_tuple boolean DEFAULT NULL,
apply_delay interval DEFAULT NULL,
check_constraints boolean DEFAULT NULL)

Parameters

• node_group_name - Name of an existing BDR group; local node must be part of the group.
• insert_to_update - Whether an INSERT that conflicts with an existing tuple should be converted

to an UPDATE.
This option is deprecated and may be disabled or removed in future versions of BDR. Use
bdr.alter_node_set_conflict_resolver instead.

• update_to_insert - Whether an UPDATE to a missing row (e.g. due to a concurrent DELETE)
should be converted to an INSERT. See bdr.create_node_group for more details.
This option is deprecated and may be disabled or removed in future versions of BDR. Use
bdr.alter_node_set_conflict_resolver instead.

• ignore_redundant_updates - Whether UPDATEs that don’t actually change any attribute of a
tuple can safely be ignored.

• check_full_tuple - Whether to use and compare all attributes of the existing tuple with
the expected tuple to update, influences conflict detection, applies only to relations with
REPLICA IDENTITY FULL.

• apply_delay - An interval of time a subscriber waits before applying changes from a provider
node.

• check_constraints - Whether the apply process will check the constraints when writing replicated
data.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

45

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Note that all of the options parameters are simply used to control the pglogical writer.

Notes

This function will pass a request to the group consensus mechanism to change the defaults. The changes
made are replicated globally via the consensus mechanism.

The function is not transactional. The request is processed in the background so the function call cannot
be rolled back. Also the changes may not be immediately visible to the current transaction.

This function does not hold any locks.

Warning
When this function is used to change the apply_delay value, the change does not apply
to nodes that are already members of the group.
Note that this restriction has little consequence on production usage, because this value
is normally not used outside of testing.

bdr.join_node_group

Joins the local node to an already existing BDR group.

Synopsis

bdr.join_node_group (
join_target_dsn text,
node_group_name text DEFAULT NULL,
pause_in_standby boolean DEFAULT false,
wait_for_completion boolean DEFAULT true,
synchronize_structure text DEFAULT 'all'

)

Parameters

• join_target_dsn - Specifies the connection string to existing (source) node in the BDR group
we wish to add local node to.

• node_group_name - Optional name of the BDR group, defaults to NULL which tries to autodetect
the group name from information present on the source node.

• pause_in_standby - Optionally tells the join process to only join as a logical standby node which
can be later promoted to a full member.

• wait_for_completion - Wait for the join process to complete before returning, defaults to true.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

46

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• synchronize_structure - Set what kind of structure (schema) synchronization should be done
during the join. Valid options are ‘all’ which synchronizes, complete database structure and ‘none’
which will not synchronize any structure, however it will still synchronize data.

If wait_for_completion is specified as false, this is an asynchronous call which returns as
soon as the joining procedure has started. Progress of the join can be seen in logs and the
bdr.state_journal_details information view or by calling the bdr.wait_for_join_completion()
function once bdr.join_node_group() returns.

Notes

This function will pass a request to the group consensus mechanism via the node to which the
join_target_dsn connection string points to. The changes made are replicated globally via the
consensus mechanism.

The function is not transactional. The joining process happens in the background and as such cannot be
rolled back. The changes are only visible to the local transaction if wait_for_completion was set to
true or by calling bdr.wait_for_join_completion later.

Node can only be part of a single group so this function can only be called once on each node.

Node join does not hold any locks in the BDR group.

bdr.promote_node

Promotes a local logical standby node to full member of BDR group.

Synopsis

bdr.promote_node(wait_for_completion boolean DEFAULT true)

Notes

This function will pass a request to the group consensus mechanism to change the defaults. The changes
made are replicated globally via the consensus mechanism.

The function is not transactional. The promotion process happens in the background and as such cannot
be rolled back. The changes are only visible to the local transaction if wait_for_completion was set
to true or by calling bdr.wait_for_join_completion later.

The promotion process holds lock against other promotions. This lock will not block other
bdr.promote_node calls, but will prevent the background process of promotion from moving forward on
more than one node at a time.

bdr.wait_for_join_completion

Waits for the join procedure of a local node to finish.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

47

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Synopsis

bdr.wait_for_join_completion(verbose_progress boolean DEFAULT false)

Parameters

• verbose_progress - Optionally prints information about individual steps taken during the join
procedure.

Notes

This function waits until the checks state of the local node reaches the target state which was set by
bdr.create_node_group, bdr.join_node_group or bdr.promote_node.

bdr.part_node

Removes (“parts”) the node from the BDR group, but does not remove data from the node.

The function can be called from any active node in the BDR group, including the node which is being
removed. However, just to make it clear, once the node is PARTED it can not part other nodes in the
cluster.

Note
If you are parting the local node you must set wait_for_completion to false, otherwise
it will error.

Warning
This action is permanent. If you wish to temporarily halt replication to a node, see
bdr.alter_subscription_disable().

Synopsis

bdr.part_node (
node_name text,
wait_for_completion boolean DEFAULT true,
force boolean DEFAULT false

)

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

48

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Parameters

• node_name - Name of an existing node to part.
• wait_for_completion - If true, the function will not return until the node is fully parted from the

cluster, otherwise the function will just start the parting procedure and returns immediately without
waiting. Always set to false when executing on the local node, or when using force.

• force - Forces removal of the node on the local node. This will set the node state locally if
consensus could not be reached or if the node parting process has stuck.

Warning
Using force = true may leave the BDR group in a inconsistent state and should be
only used to recover from byzantine failures where it’s impossible to remove the node any
other way.**

Notes

This function will pass a request to the group consensus mechanism to part the given node. The
changes made are replicated globally via the consensus mechanism. The parting process happens in
the background and as such cannot be rolled back. The changes made by the parting process are only
visible to the local transaction if wait_for_completion was set to true.

With force set to true this function will, on consensus failure, set the state of the given node only on
the local node. In such case the function is transactional (because the function itself changes the node
state) and can be rolled back. If the function is called on a node which is already in process of parting
with force set to true it will also just mark the given node as parted locally and exit. This is only useful
when the consensus cannot be reached on the cluster (majority of the nodes are down) or if the parting
process gets stuck for whatever reason. But it’s important to take into account that when parting node
which was receiving writes, the parting process may take long time without being stuck as the other
nodes need to resynchronize any missing data from the given node. The force parting completely skips
this resynchronization and as such can leave the other nodes in inconsistent state.

The parting process does not hold any locks.

bdr.alter_node_interface

Changes the connection string (DSN) of a specified node.

Synopsis

bdr.alter_node_interface(node_name text, interface_dsn text)

Parameters

• node_name - name of an existing node to alter
• interface_dsn - new connection string for a node

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

49

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Notes

This function is only run on the local node and the changes are only made on the local node. This
means that it should normally be executed on every node in BDR group including the node which is being
changed.

This function is transactional - it can be rolled back and the changes are visible to the current transaction.

The function holds lock on the local node.

bdr.alter_subscription_enable

Enables either the specified subscription or all the subscriptions of the local BDR node. Also known as
resume subscription. No error is thrown if the subscription is already enabled.

Synopsis

bdr.alter_subscription_enable(
subscription_name name DEFAULT NULL,
immediate boolean DEFAULT false

)

Parameters

• subscription_name - Name of the subscription to enable; if NULL (the default), all subscriptions
on local node will be enabled.

• immediate - This currently has no effect.

Notes

This function is not replicated and only affects local node subscriptions (either a specific node or all
nodes).

This function is transactional - it can be rolled back and any catalog changes can be seen by the current
transaction. The subscription workers will be started by a background process after the transaction has
committed.

bdr.alter_subscription_disable

Disables either the specified subscription or all the subscriptions of the local BDR node. Optionally it
can immediately stop all the workers associated with the disabled subscriptions as well. Also known as
pause subscription. No error is thrown if the subscription is already disabled.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

50

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Synopsis

bdr.alter_subscription_disable(
subscription_name name DEFAULT NULL,
immediate boolean DEFAULT false

)

Parameters

• subscription_name - Name of the subscription to disable; if NULL (the default), all subscriptions
on local node will be disabled.

• immediate - Immediate is used to force the action immediately, stopping all the workers associated
with the disabled subscription. With this option true, this function cannot be run inside of transaction
block.

Notes

This function is not replicated and only affects local node subscriptions (either a specific subscription or
all subscriptions).

This function is transactional - it can be rolled back and any catalog changes can be seen by the current
transaction. However, the timing of the subscription worker stopping depends on the value of immediate;
if set to true, the workers will be stopped immediately; if set to false, they will be stopped at the COMMIT
time.

Note
With the parameter immediate set to true, the stop will however wait for the workers to
finish current work.

Node Management Commands

BDR also provides a command line utility for adding nodes to the BDR group via physical copy
(pg_basebackup) of an existing node and for converting a physical standby of an existing node to
a new node in the BDR group.

bdr_init_physical

This is a regular command which is added to the PostgreSQL’s bin directory.

The user must specify a data directory. If this data directory is empty, the pg_basebackup -X stream
command is used to fill the directory using a fast block-level copy operation.

If the specified data directory is non-empty, this will be used as the base for the new node. If the data
directory is already active as a physical standby node, it is required to stop the standby before running

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

51

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr_init_physical, which will manage Postgres itself. Initially it will wait for catchup and then promote
to a master node before joining the BDR group. Note that the --standby option, if used, will turn the
existing physical standby into a logical standby node; it refers to the end state of the new BDR node, not
the starting state of the specified data directory.

This command will drop all pglogical-only subscriptions and configuration from the database and will also
drop all PostgreSQL native logical replication subscriptions from the database (or just disable them when
the -S option is used) as well as any replication origins and slots.

It is the BDR3 version of the pglogical_create_subscriber utility.

Note that bdr_init_physical requires BDR versions to match between the original or source node
and the new node to be initialized.

Synopsis

bdr_init_physical [OPTION] ...

Options

General Options

• -D, --pgdata=DIRECTORY - The data directory to be used for the new node; it can be either
empty/non-existing directory, or a directory populated using the pg_basebackup -X stream
command (required).

• -l, --log-file=FILE - Use FILE for logging; default is bdr_init_physical_postgres.log .
• -n, --node-name=NAME - The name of the newly created node (required).
• --replication-sets=SETS - The name of a comma-separated list of replication set names to

use, all replication sets will be used if not specified.
• --standby - Create a logical standby (receive only node) rather than full send/receive node.
• -s, --stop - Stop the server once the initialization is done.
• -v - Increase logging verbosity.
• -S - Instead of dropping logical replication subscriptions, just disable them.

Connection Options

• -d, --remote-dsn=CONNSTR - connection string for remote node (required)
• --local-dsn=CONNSTR - connection string for local node (required)

Configuration Files Override

• --hba-conf -path to the new pg_hba.conf
• --postgresql-conf - path to the new postgresql.conf
• --postgresql-auto-conf - path to the new postgresql.auto.conf
• --recovery-conf - path to the template recovery.conf

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

52

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Notes

The replication set names specified in the command do not affect the data that exists in the data directory
before the node joins the BDR group. This is true whether bdr_init_physical makes its own basebackup
or an existing base backup is being promoted to a new BDR node. Thus the --replication-sets
option only affects the data published and subscribed-to after the node joins the BDR node group.
This behaviour is different from the way replication sets are used in a logical join i.e. when using
bdr.join_node_group().

Unwanted tables may be truncated by the operator after the join has completed. Refer to the bdr.tables
catalog to determine replication set membership and identify tables that are not members of any
subscribed-to replication set. It’s strongly recommended that you truncate the tables rather than drop
them, because:

1. DDL replication sets are not necessarily the same as row (DML) replication sets, so you could
inadvertently drop the table on other nodes;

2. If you later want to add the table to a replication set and you have dropped it on some subset of
nodes, you will need to take care to re-create it only on those nodes without creating DDL conflicts
before you can add it to any replicaiton sets.

It’s much simpler and safer to truncate your non-replicated tables, leaving them present but empty.

A future version of BDR may automatically omit or remove tables that are not part of the selected
replication set(s) for a physical join, so your application should not rely on details of the behaviour
documented here.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

53

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

DDL Replication

DDL stands for “Data Definition Language”: the subset of the SQL language that creates, alters and
drops database objects.

For operational convenience and correctness, BDR replicates most DDL actions, with these exceptions:

• Temporary or Unlogged relations
• Certain, mostly long-running DDL statements (see list below)
• Locking commands (LOCK)
• Table Maintenance commands (VACUUM, ANALYZE, CLUSTER)
• Actions of autovacuum
• Operational commands (CHECKPOINT, ALTER SYSTEM)
• Actions related to Databases or Tablespaces

Automatic DDL replication makes it easier to make certain DDL changes without having to manually
distribute the DDL change to all nodes and ensure that they are consistent.

In the default replication set, DDL is replicated to all nodes by default. To replicate DDL, a DDL replication
filter has to be added to the replication set. See DDL Replication Filtering.

BDR is significantly different to standalone PostgreSQL when it comes to DDL handling, and treating it
as the same is the most common operational issue with BDR.

The main difference from table replication is that DDL replication does not replicate the result of the DDL,
but the statement itself. This works very well in most cases, though introduces the requirement that the
DDL must execute similarly on all nodes. A more subtle point is that the DDL must be immutable with
respect to all datatype-specific parameter settings, including any datatypes introduced by extensions
(i.e. not built-in). For example, the DDL statement must execute correctly in the default encoding used on
each node.

DDL Replication Options

The bdr.ddl_replication parameter specifies replication behavior.

bdr.ddl_replication = on is the default and will replicate DDL to the default replication set, which
by default means all nodes. Non-default replication sets do not replicate DDL, unless they have a DDL
filter defined for them.

You can also replicate DDL to specific replication sets using the function bdr.replicate_ddl_command().
This can be helpful if you want to run DDL commands when a node is down, or if you want to have
indexes or partitions that exist on a subset of nodes or rep sets, e.g. all nodes at site1.

SELECT bdr.replicate_ddl_command(
'CREATE INDEX CONCURRENTLY ON foo (col7);',
ARRAY['site1'], -- the replication sets
'on'); -- ddl_locking to apply

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

54

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

It is possible, but not recommended, to skip automatic DDL replication and execute it manually on each
node using bdr.ddl_replication configuration parameters.

SET bdr.ddl_replication = off;

When set, it will make BDR skip both the global locking and the replication of executed DDL commands,
so you must then run the DDL manually on all nodes.

Warning
Executing DDL manually on each node without global locking can cause the whole BDR
group to stop replicating if conflicting DDL or DML is executed concurrently.

The bdr.ddl_replication parameter can only be set by the bdr_superuser or bdr_application roles,
or in the config file. For convenience, a function is also provided to change the value within a session:

SELECT bdr.set_ddl_replication('off');

This allows it to be used sparingly and when essential to keep the cluster operational.

This function can be used to set the mode for the current transaction only, e.g.

BEGIN;
SELECT bdr.set_ddl_replication('off', true);
... other commands ...
COMMIT;

. . . though this cannot be used with VACUUM or CONCURRENTLY commands since they cannot be
executed within a transaction block.

Executing DDL on BDR Systems

A BDR group is not the same as a standalone PostgreSQL server. It is based on asynchronous multi-
master replication without central locking and without a transaction co-ordinator. This has important
implications when executing DDL.

DDL that executes in parallel will continue to do so with BDR. DDL execution will respect the parameters
that affect parallel operation on each node as it executes, so differences in the settings between nodes
may be noticeable.

Execution of conflicting DDL needs to be prevented, otherwise DDL replication will end up causing errors
and the replication will stop.

BDR offers 3 levels of protection against those problems:

ddl_locking = 'dml' is the best option for operations, usable when you execute DDL from only one
node at a time. This is not the default, but it is recommended that you use this setting if you can control
where DDL is executed from, to ensure that there are no inter-node conflicts. Intra-node conflicts are
already handled by PostgreSQL.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

55

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

ddl_locking = on is the strictest option, and is best when DDL might be executed from any node
concurrently and you would like to ensure correctness.

ddl_locking = off is the least strict option, and is dangerous in general use. This option skips locks
altogether and so avoids any performance overhead, making it a useful option when creating a new and
empty database schema.

These options can only be set by the bdr_superuser or bdr_application roles, or in the config file. For
convenience, a function is also provided to change the value within a session:

SELECT bdr.set_ddl_locking('off');

It also can be used to set the mode for the current transaction only, with the second parameter true
(false by DEFAULT) e.g.:

BEGIN;
SELECT bdr.set_ddl_locking('off', true);
... other commands ...
COMMIT;

When using the bdr.replicate_ddl_command, it is possible to set this parameter directly via the third
argument, using the specified bdr.ddl_locking setting only for the DDL commands passed to that
function.

DDL Locking Details

There are two kinds of locks used to enforce correctness of DDL with BDR.

The first kind is known as a Global DDL Lock, and is only used when ddl_locking = on. A Global DDL
Lock prevents any other DDL from executing on the cluster while each DDL statement runs. This ensures
full correctness in the general case, but is clearly too strict for many simple cases. BDR acquires a global
lock on DDL operations the first time in a transaction where schema changes are made. This effectively
serializes the DDL-executing transactions in the cluster. In other words, while DDL is running, no other
connection on any node can run another DDL command, even if it affects different table(s).

To acquire a lock on DDL operations, the BDR node executing DDL contacts the other nodes in a BDR
group and asks them to grant it the exclusive right to execute DDL. The lock request is sent via regular
replication stream and the nodes respond via replication stream as well. So it’s important that nodes
(or at least a majority of the nodes) should be running without much replication delay. Otherwise it may
take a very long time for the node to acquire the DDL lock. Once the majority of nodes agrees, the DDL
execution is carried out.

The ordering of DDL locking is decided using the Raft protocol. DDL statements executed on one node
will be executed in the same sequence on all other nodes.

In order to ensure that the node running a DDL has seen effects of all prior DDLs run in the cluster, it
waits until it has caught up with the node that had run the previous DDL. If the node running the current
DDL is lagging behind in replication with respect to the node that ran the previous DDL, then it make take

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

56

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

very long to acquire the lock. Hence it’s preferable to run DDLs from a single node or the nodes which
have nearly caught up with replication changes originating at other nodes.

The second kind is known as a Relation DML Lock. This kind of lock is used when either
ddl_locking = on or ddl_locking = dml, and the DDL statement might cause in-flight DML
statements to fail, e.g. when you change a CHECK constraint on a column. Relation DML locks affect
only one relation at a time. Relation DML locks ensure that no DDL executes while there are changes in
the queue that might cause replication to halt with an error.

To acquire the global DML lock on a table, the BDR node executing the DDL contacts all other nodes in a
BDR group, asking them to lock the table against writes, and we wait while all pending changes to that
table are drained. Once all nodes are fully caught up, the originator of the DML lock is free to perform
schema changes to the table and replicate them to the other nodes.

Waiting for pending DML operations to drain could take a long time, or longer if replication is currently
lagging behind. This means that schema changes affecting row representation and constraints, unlike
with data changes, can only be performed while all configured nodes are reachable and keeping up
reasonably well with the current write rate. If such DDL commands absolutely must be performed while a
node is down, the down node must first be removed from the configuration.

Locking behavior is specified by the bdr.ddl_locking parameter, as explained in Executing DDL on
BDR systems:

• ddl_locking = on takes Global DDL Lock and, if needed, takes Relation DML Lock.
• ddl_locking = dml skips Global DDL Lock and, if needed, takes Relation DML Lock.
• ddl_locking = off skips both Global DDL Lock and Relation DML Lock.

Note also that some BDR functions make DDL changes, so for those functions, DDL locking behavior
applies. This will be noted in the docs for each function.

Thus, ddl_locking = dml is safe only when we can guarantee that no conflicting DDL will be executed
from other nodes, because with this setting, the statements which only require the Global DDL Lock will
not use the global locking at all.

ddl_locking = off is safe only when the user can guarantee that there are no conflicting DDL and no
conflicting DML operations on the database objects we execute DDL on. If you turn locking off and then
experience difficulties, you may lose in-flight changes to data; any issues caused will need to be resolved
by the user application team.

In some cases, concurrently executing DDL cannot properly be serialized. Should these serialization
failures occur, the DDL may be re-executed.

DDL replication is not active on Logical Standby nodes until they are promoted.

Note that some BDR management functions act like DDL, meaning that they will attempt to take global
locks and their actions will be replicated, if DDL replication is active. The full list of replicated functions is
listed in BDR Functions that behave like DDL.

Monitoring of global DDL locks and global DML locks is shown in the Monitoring chapter.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

57

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Minimizing the Impact of DDL

DDL replicated by BDR will be applied on other nodes. BDR3.6 does not support parallel apply, so while
the DDL executes, no other changes can be applied.

To minimize the impact of DDL, transactions performing DDL should be short, should not be combined
with lots of row changes, and should avoid long running foreign key or other constraint re-checks. This
is good operational advice on any database, but is especially important on BDR. Please use ADD
CONSTRAINT NOT VALID, followed by another transaction with VALIDATE CONSTRAINT.

An alternate way of executing long running DDL is to disable DDL replication and then to execute the
DDL statement separately on each node.

REINDEX is replicated in versions up to BDR3.6, but not in BDR3.7 or later. Using REINDEX should be
avoided because of the AccessExclusiveLocks it holds.

Multiple DDL statements might benefit from bunching into a single transaction rather than fired as
individual statements, so the DDL lock only has to be taken once. This may not be desirable if the
table-level locks interfere with normal operations.

If DDL is holding the system up for too long, it is possible and safe to cancel the DDL on the
originating node as you would cancel any other statement, e.g. with Control-C in psql or with
pg_cancel_backend(). You cannot cancel a DDL lock from any other node.

It is possible to control how long the global lock will take with (optional) global locking timeout settings.
The bdr.global_lock_timeout will limit how long the wait for acquiring the global lock can take before
it is cancelled; bdr.global_lock_statement_timeout limits the runtime length of any statement in
transaction that holds global locks, and bdr.global_lock_idle_timeout sets the maximum allowed
idle time (time between statements) for a transaction holding any global locks. All of these timeouts can
be disabled by setting their values to zero.

Once the DDL operation has committed on the originating node, it cannot be canceled or aborted. The
BDR group must wait for it to apply successfully on other nodes that confirmed the global lock and for
them to acknowledge replay. This is why it is important to keep DDL transactions short and fast.

Handling DDL With Down Nodes

If the node initiating the global DDL lock goes down after it has acquired the global lock (either DDL or
DML), the lock stays active. The global locks will not time out, even if timeouts have been set. In case the
node comes back up, it will automatically release all the global locks that it holds. If it stays down for a
prolonged period time (or forever), remove the node from BDR group in order to release the global locks.
This might be one reason for executing emergency DDL using the bdr.set_ddl_locking function.

If one of the other nodes goes down after it has confirmed the global lock, but before the command
acquiring it has been executed, the execution of that command requesting the lock will continue as if the
node was up.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

58

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

As mentioned in the previous section, the global DDL lock only requires a majority of the nodes to
respond, and so it will work if part of the cluster is down, as long as a majority is running and reachable,
while the DML lock cannot be acquired unless the whole cluster is available.

If we have the global DDL or global DML lock and another node goes down, the command will continue
normally and the lock will be released.

Statement Specific DDL Replication Concerns

Not all commands can be replicated automatically. Such commands are generally disallowed, unless
DDL replication is turned off by turning bdr.ddl_replication off.

BDR prevents some DDL statements from running when it is active on a database. This protects the
consistency of the system by disallowing statements that cannot be replicated correctly, or for which
replication is not yet supported. Statements that are supported with some restrictions are covered in
DDL Statements With Restrictions; while commands that are entirely disallowed in BDR are covered in
prohibited DDL statements.

If a statement is not permitted under BDR, it is often possible to find another way to do the same thing.
For example, you can’t do an ALTER TABLE which adds column with a volatile default value, but it is
generally possible to rephrase that as a series of independent ALTER TABLE and UPDATE statements
that will work.

Generally unsupported statements are prevented from being executed, raising a feature_not_supported
(SQLSTATE 0A000) error.

DDL Statements Requiring a DML Lock

For non-temporary, non-unlogged tables, these DDL command types require a global DML lock on that
table only:

• some variants of ALTER TABLE (see ALTER TABLE Locking below for details)
• DROP TABLE
• CREATE UNIQUE INDEX (non-unique index creations do NOT need a DML lock)
• DROP INDEX (both unique and non-unique indexes require a DML lock)
• CREATE POLICY
• CREATE RULE
• ALTER SEQUENCE
• DROP SEQUENCE

Actions on indexes, views, materialized views and foreign tables never require a global DML lock.

Actions on objects created in the current transaction never require a global DML lock.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

59

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

ALTER TABLE Locking

The following variants of ALTER TABLE will only take DDL lock and not a DML lock. This applies to the
ALTER MATERIALIZED VIEW variant, too:

• ALTER TABLE ... ADD COLUMN ... (immutable) DEFAULT
• ALTER TABLE ... ALTER COLUMN ... SET DEFAULT expression
• ALTER TABLE ... ALTER COLUMN ... DROP DEFAULT
• ALTER TABLE ... ALTER COLUMN ... SET STATISTICS
• ALTER TABLE ... VALIDATE CONSTRAINT
• ALTER TABLE ... ATTACH PARTITION
• ALTER TABLE ... DETACH PARTITION
• ALTER TABLE ... ENABLE TRIGGER (ENABLE REPLICA TRIGGER will still take a DML lock)
• ALTER TABLE ... CLUSTER ON
• ALTER TABLE ... SET WITHOUT CLUSTER
• ALTER TABLE ... SET (storage_parameter = value [, ...])
• ALTER TABLE ... RESET (storage_parameter = value [, ...])
• ALTER TABLE ... OWNER TO

All other variants of ALTER TABLE take a DML lock on the table being modified. Some variants of
ALTER TABLE have restrictions, noted below.

Non Replicated DDL Statements

REFRESH MATERIALIZED VIEW

REFRESH MATERIALIZED VIEW will only refresh the view on the node where it was executed. As a result,
the contents of Materialized Views will likely differ between nodes and should never be assumed to be
the same.

LOCK TABLE

LOCK TABLE is only executed locally and is not replicated. Normal replication happens after transaction
commit, so LOCK TABLE would not have any effect on other nodes.

For globally locking table, users can request a global DML lock explicitly by calling bdr.global_lock_table().

DDL on Databases and Tablespaces

DDL commands on Databases and Tablespaces can be executed while BDR is active on a database.
The action will execute normally on the local node, but the DDL is not replicated to other nodes. This is
because they are global objects and not limited to a single database.

The following commands are restricted in this way:

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

60

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• CREATE DATABASE
• ALTER DATABASE
• DROP DATABASE
• COMMENT ON DATABASE
• SECURITY LABEL ON DATABASE
• CREATE TABLESPACE
• ALTER TABLESPACE
• DROP TABLESPACE
• COMMENT ON TABLESPACE
• SECURITY LABEL ON TABLESPACE

DDL Statements With Restrictions

The following statements or statement options are not currently permitted when BDR is active on a
database. If used, they will fail with an ERROR; workarounds are listed in the next section.

CREATE TABLE

Generally, CREATE TABLE is allowed. There are a few options/subcommands that are not supported.

The unsupported commands are:

• CONSTRAINT ... EXCLUDE - Not supported due to required internode locking.
• AS SELECT - Not supported unless creating a TEMPORARY table. This restriction may be lifted in

later versions. (Also applies to SELECT INTO.)
• WITH OIDS - This is an outdated option not recommended by PostgreSQL itself; in BDR the Oids

of rows would be different on different nodes, making it even less useful than normal.
• CONSTRAINT ... EXCLUDE - Not supported due to required internode locking.

CREATE MATERIALIZED VIEW

Not supported. This restriction may be lifted in later versions.

ALTER TABLE

Generally, ALTER TABLE commands are allowed. There are, however, several sub-commands that are
not supported:

• ADD COLUMN ... DEFAULT (non-immutable expression) - This is not allowed because it
would currently result in different data on different nodes. See Adding a Column for a suggested
workaround.

• ADD CONSTRAINT ... EXCLUDE - Exclusion constraints are not supported for now. Exclusion
constraints do not make much sense in an asynchronous system and lead to changes that cannot
be replayed.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

61

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• ALTER TABLE ... SET WITH[OUT] OIDS - Is not supported for the same reasons as in
CREATE TABLE.

• ALTER COLUMN ... SET STORAGE external - Will be rejected if the column is one of the
columns of the replica identity for the table.

• ALTER COLUMN ... TYPE - Changing a column’s type is not supported if the command causes the
whole table to be rewritten, which occurs when the change is not binary coercible. Note that binary
coercible changes may only be allowed one way. For example, the change from VARCHAR(128) to
VARCHAR(256) is binary coercible and therefore allowed, whereas the change VARCHAR(256)
to VARCHAR(128) is not binary coercible and therefore normally disallowed. For non-replicated
ALTER COLUMN ... TYPE it can be allowed if the column is automatically castable to the new
type (it does not contain the USING clause). See below for an example. Table rewrites would hold
an AccessExclusiveLock for extended periods on larger tables, so such commands are likely to
be infeasible on highly available databases in any case. See Changing a Column’s Type for a
suggested workarounds.

The following example fails because it tries to add a constant value of type timestamp onto a column of
type timestamptz. The cast between timestamp and timestamptz relies upon the time zone of the
session and so is not immutable.

ALTER TABLE foo
ADD expiry_date timestamptz DEFAULT timestamp '2100-01-01 00:00:00' NOT NULL;

CREATE SEQUENCE

Generally CREATE SEQUENCE is supported, but when using distributed sequences, some options have
no effect.

ALTER SEQUENCE

Generally ALTER SEQUENCE is supported, but when using distributed sequences, some options have no
effect.

Role manipulation statements

Users are global objects in a PostgreSQL instance, which means they span multiple databases while
BDR operates on an individual database level. This means that role manipulation statement handling
needs extra thought.

BDR requires that any roles that are referenced by any replicated DDL must exist on all nodes. The roles
are not required to have the same grants, password, etc., but they must exist.

BDR will replicate role manipulation statements if bdr.role_replication is enabled (default) and role
manipulation statements are run in a BDR-enabled database.

The role manipulation statements include the following statements:

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

62

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• CREATE ROLE
• ALTER ROLE
• DROP ROLE
• GRANT ROLE
• CREATE USER
• ALTER USER
• DROP USER
• CREATE GROUP
• ALTER GROUP
• DROP GROUP

In general, either:

• The system should be configured with bdr.role_replication = off and all role (user and
group) changes should be deployed by external orchestration tools like Ansible, Puppet, Chef, etc.,
or explicitly replicated via bdr.replicate_ddl_command(...); or

• The system should be configured so that exactly one BDR-enabled database on the PostgreSQL
instance has bdr.role_replication = on and all role management DDL should be run on that
database.

It is strongly recommended that you run all role management commands within one database.

If role replication is turned off, then the administrator must ensure that any roles used by DDL on one
node also exist on the other nodes, or BDR apply will stall with an ERROR until the role is created on the
other node(s).

Note: BDR will not capture and replicate role management statements when they are run on a non-BDR-
enabled database within a BDR-enabled PostgreSQL instance. For example if you have DBs ‘bdrdb’ (bdr
group member) and ‘postgres’ (bare db), and bdr.role_replication = on, then a CREATE USER run
in bdrdb will be replicated, but a CREATE USER run in postgres will not.

ALTER TYPE

Users should note that ALTER TYPE is replicated but a Global DML lock is not applied to all tables that
use that data type, since PostgreSQL does not record those dependencies. See workarounds, below.

Restricted DDL Workarounds

As noted in DDL Statements With Restrictions, BDR limits some kinds of DDL operations, in particular
some variants of the ALTER TABLE command that manipulate the row representation in the table.

It is often possible to split up this operation into smaller changes.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

63

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Adding a Column

To add a column with a volatile default, run these commands in separate transactions:

ALTER TABLE mytable ADD COLUMN newcolumn coltype; -- Note the lack of DEFAULT or NOT NULL

ALTER TABLE mytable ALTER COLUMN newcolumn DEFAULT volatile-expression;

BEGIN;
SELECT bdr.global_lock_table('mytable');
UPDATE mytable SET newcolumn = default-expression;
COMMIT;

This splits schema changes and row changes into separate transactions that can be executed by BDR
and result in consistent data across all nodes in a BDR group.

For best results, batch the update into chunks so that you do not update more than a few tens or hundreds
of thousands of rows at once. This can be done using a PROCEDURE with embedded transactions.

It is important that the last batch of changes runs in a transaction that takes a global DML lock on the
table, otherwise it is possible to miss rows that are inserted concurrently into the table on other nodes.

If required, ALTER TABLE mytable ALTER COLUMN newcolumn NOT NULL; can be run after the
UPDATE has finished.

Changing a Column’s Type

PostgreSQL causes a table rewrite in some cases where it could be avoided, for example:

CREATE TABLE foo (id BIGINT PRIMARY KEY, description VARCHAR(128));
ALTER TABLE foo ALTER COLUMN description TYPE VARCHAR(20);

This statement can be rewritten to avoid a table rewrite by making the restriction a table constraint rather
than a datatype change, which can then be validated in a subsequent command to avoid long locks, if
desired.

CREATE TABLE foo (id BIGINT PRIMARY KEY, description VARCHAR(128));
ALTER TABLE foo

ALTER COLUMN description TYPE varchar,
ADD CONSTRAINT description_length_limit CHECK (length(description) <= 20) NOT VALID;

ALTER TABLE foo VALIDATE CONSTRAINT description_length_limit;

Should the validation fail, then it is possible to UPDATE just the failing rows. This technique can be used
for TEXT and VARCHAR using length(), or with NUMERIC datatype using scale().

In case a table rewrite cannot be avoided, the following approach serves as a general solution:

• extend the table with a new column of the required type and with a temporary name
• ensure newly inserted or updated rows get the new column populated by using either a default (if

possible) or a trigger to copy over data from the old column

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

64

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• rewrite all pre-existing rows to copy over data from the old column, possibly in multiple small
transactions

• wait for all nodes to have applied the table rewrite transaction(s)
• re-add required indices and constraints, as required
• in a single transaction, drop the old column and rename the new one in its place

More details and a specific example of how this approach works is given in Appendix E.

CREATE TABLE AS SELECT

Instead of CREATE TABLE AS SELECT, you can achieve the same effect using:

CREATE TABLE mytable;
INSERT INTO mytable SELECT ... ;

CREATE MATERIALIZED VIEW

Instead of CREATE MATERIALIZED VIEW, you can achieve the same effect using:

CREATE TABLE mytable;
INSERT INTO mytable SELECT ... ;

Changing Other Types

The ALTER TYPE statement is replicated, but affected tables are not locked.

When this DDL is used, the user should ensure that the statement has successfully executed on all nodes
before using the new type. This can be achieved using the bdr.wait_slot_confirm_lsn() function.

For example,

ALTER TYPE contact_method ADD VALUE 'email';
SELECT bdr.wait_slot_confirm_lsn(NULL, NULL);

will ensure that the DDL has been written to all nodes before using the new value in DML statements.

BDR Functions that behave like DDL

The following BDR management functions act like DDL. This means that they will attempt to take global
locks and their actions will be replicated, if DDL replication is active and DDL filter settings allow that. For
detailed information, see the documentation for the individual functions.

Replication Set Management

• bdr.create_replication_set
• bdr.alter_replication_set

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

65

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• bdr.drop_replication_set
• bdr.replication_set_add_table
• bdr.replication_set_remove_table
• bdr.replication_set_add_ddl_filter
• bdr.replication_set_remove_ddl_filter

Conflict Management

• bdr.alter_table_conflict_detection

Sequence Management

• bdr.alter_sequence_set_kind

Stream Triggers

• bdr.create_conflict_trigger
• bdr.create_transform_trigger
• bdr.drop_trigger

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

66

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Security and Roles

The BDR3 extension can be created only by superusers, although if desired, it is possible to set up the
pgextwlist extension and configure it to allow BDR3 to be created by a non-superuser.

Configuring and managing BDR3 does not require superuser access, nor is that recommended. The
privileges required by BDR3 are split across the following default roles, named similarly to the PostgreSQL
default roles:

• bdr_superuser - the highest-privileged role, having access to all BDR tables and functions.
• bdr_read_all_stats - the role having read-only access to the tables, views and functions, sufficient

to understand the state of BDR.
• bdr_monitor - at the moment the same as bdr_read_all_stats, to be extended later.
• bdr_application - the minimal privileges by applications running BDR.

These BDR default roles are created when the BDR3 extension is installed. See BDR Default Roles
below for more details.

Granting privileges on catalog objects

Administrators should not grant explicit privileges on catalog objects such as tables, views and functions;
manage access to those objects by granting one of the roles documented in BDR Default Roles.

This requirement is a consequence of the flexibility that allows joining a node group even if the nodes on
either side of the join do not have the exact same version of BDR (and therefore of the BDR catalog).

More precisely, if privileges on individual catalog objects have been explicitly granted, then the
bdr.join_node_group() procedure could fail because the corresponding GRANT statements
extracted from the node being joined might not apply to the node that is joining.

Role Management

Users are global objects in a PostgreSQL instance. CREATE USER and CREATE ROLE commands
are replicated automatically if they are executed in the database where BDR is running and the
bdr.role_replication is turned on. However, if these commands are executed in other databases in
the same PostgreSQL instance then they will not be replicated, even if those users have rights on the
BDR database.

When a new BDR node joins the BDR group, existing users are not automatically copied unless the node
is added using bdr_init_physical. This is intentional and is an important security feature. PostgreSQL
allows users to access multiple databases, with the default being to access any database. BDR does not
know which users access which database and so cannot safely decide which users to copy across to the
new node.

PostgreSQL allows you to dump all users with the command:

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

67

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

pg_dumpall --roles-only > roles.sql

The file roles.sql can then be edited to remove unwanted users before re-executing that on the newly
created node. Other mechanisms are possible, depending on your identity and access management
solution (IAM), but are not automated at this time.

Roles and Replication

DDL changes executed by a user are applied as that same user on each node.

DML changes to tables are replicated as the table-owning user on the target node. It is recommended -
but not enforced - that a table is owned by the same user on each node.

If table A is owned by user X on node1 and owned by user Y on node2, then if user Y has higher privileges
than user X, this could be viewed as a privilege escalation. Since some nodes have different use cases,
we allow this but warn against it to allow the security administrator to plan and audit this situation.

On tables with row level security policies enabled, changes will be replicated without re-enforcing policies
on apply. This is equivalent to the changes being applied as NO FORCE ROW LEVEL SECURITY, even
if FORCE ROW LEVEL SECURITY is specified. If this is not desirable, specify a row_filter that avoids
replicating all rows. It is recommended - but not enforced - that the row security policies on all nodes be
identical or at least compatible.

Note that bdr_superuser controls replication for BDR and may add/remove any table from any replication
set. bdr_superuser does not need, nor is it recommended to have, any privileges over individual tables. If
the need exists to restrict access to replication set functions, restricted versions of these functions can be
implemented as SECURITY DEFINER functions and GRANTed to the appropriate users.

Connection Role

When allocating a new BDR node, the user supplied in the DSN for the local_dsn argument of
bdr.create_node and the join_target_dsn of bdr.join_node_group are used frequently to refer
to, create, and manage database objects. This is especially relevant during the initial bootstrapping
process, where the specified accounts may invoke operations on database objects directly or through the
pglogical module rather than BDR.

BDR is carefully written to prevent privilege escalation attacks even when using a role with SUPERUSER
rights in these DSNs.

To further reduce the attack surface, a more restricted user may be specified in the above DSNs. At a
minimum, such a user must be granted permissions on all nodes, such that following stipulations are
satisfied:

• the user has the REPLICATION attribute
• it is granted the CREATE permission on the database
• it inherits the pglogical_superuser and bdr_superuser roles

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

68

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• it owns all database objects to replicate, either directly or via permissions from the owner role(s).

(Only in combination with Postgres 10, an additional explicit USAGE permission on schema pglogical is
required on the joining node.)

Once all nodes are joined, the permissions may be further reduced to just the following to still allow DML
and DDL replication:

• The user has the REPLICATION attribute.
• It inherits the pglogical_superuser and bdr_superuser roles.

Triggers

In PostgreSQL, triggers may be created by both the owner of a table and anyone who has been granted
the TRIGGER privilege. Triggers granted by the non-table owner would execute as the table owner in
BDR, which could cause a security issue.

BDR mitigates this problem by using stricter rules on who can create a trigger on a table:

• superuser
• bdr_superuser
• Owner of the table can create triggers according to same rules as in PostgreSQL (must have

EXECUTE privilege on function used by the trigger).
• Users who have TRIGGER privilege on the table can only create a trigger if they create the trigger

using a function that is owned by the same owner as the table and they satisfy standard PostgreSQL
rules (again must have EXECUTE privilege on the function). So if both table and function have
same owner and the owner decided to give a user both TRIGGER privilege on the table and
EXECUTE privilege on the function, it is assumed that it is okay for that user to create a trigger on
that table using this function.

• Users who have TRIGGER privilege on the table can create triggers using functions that are
defined with the SECURITY DEFINER clause if they have EXECUTE privilege on them. This
clause makes the function always execute in the context of the owner of the function itself both in
standard PostgreSQL and BDR.

The above logic is built on the fact that in PostgreSQL, the owner of the trigger is not the user who created
it but the owner of the function used by that trigger.

The same rules apply to existing tables, and if the existing table has triggers which are not owned by the
owner of the table and do not use SECURITY DEFINER functions, it will not be possible to add it to a
replication set.

These checks were added with BDR 3.6.19. An application that relies on the behavior of previous
versions can set bdr.backwards_compatibility to 30618 (or lower) to behave like earlier versions.

BDR replication apply uses the system-level default search_path only. Replica triggers, stream triggers
and index expression functions may assume other search_path settings which will then fail when they

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

69

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

execute on apply. To ensure this does not occur, resolve object references clearly using either the default
search_path only (always use fully qualified references to objects, e.g. schema.objectname), or set the
search path for a function using ALTER FUNCTION . . . SET search_path = . . . for the functions affected.

Catalog Tables

System catalog and Information Schema tables are always excluded from replication by BDR.

In addition, tables owned by extensions are excluded from replication.

BDR Functions & Operators

All BDR functions are exposed in the bdr schema. Any calls to these functions should be schema
qualified, rather than putting bdr in the search_path.

All BDR operators are available via pg_catalog schema to allow users to exclude the public schema
from the search_path without problems.

BDR Default Roles

BDR default roles are created when the BDR3 extension is installed. Note that after BDR3 extension is
dropped from a database, the roles continue to exist and need to be dropped manually if required. This
allows BDR to be used in multiple databases on the same PostgreSQL instance without problem.

Remember that the GRANT ROLE DDL statement does not participate in BDR replication, thus you should
execute this on each node of a cluster.

bdr_superuser

• ALL PRIVILEGES ON ALL TABLES IN SCHEMA BDR
• ALL PRIVILEGES ON ALL ROUTINES IN SCHEMA BDR

bdr_read_all_stats

• SELECT ON

• bdr.apply_log_summary

• bdr.ddl_epoch

• bdr.ddl_replication

• bdr.global_consensus_journal_details

• bdr.global_lock

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

70

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• bdr.global_locks

• bdr.local_consensus_state

• bdr.local_node_summary

• bdr.node

• bdr.node_catchup_info

• bdr.node_conflict_resolvers

• bdr.node_group

• bdr.node_local_info

• bdr.node_peer_progress

• bdr.node_slots

• bdr.node_summary

• bdr.replication_sets

• bdr.sequences

• bdr.state_journal_details

• bdr.stat_relation

• bdr.stat_subscription

• bdr.subscription

• bdr.subscription_summary

• bdr.tables

• bdr.worker_errors

• EXECUTE ON

• bdr.bdr_edition

• bdr.bdr_version

• bdr.bdr_version_num

• bdr.conflict_resolution_to_string

• bdr.conflict_type_to_string

• bdr.decode_message_payload

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

71

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• bdr.get_global_locks

• bdr.get_raft_status

• bdr.get_relation_stats

• bdr.get_slot_flush_timestamp

• bdr.get_sub_progress_timestamp

• bdr.get_subscription_stats

• bdr.peer_state_name

• bdr.show_subscription_status

bdr_monitor

Same as bdr_read_all_stats

bdr_application

• EXECUTE ON
• All functions for column_timestamps datatypes
• All functions for CRDT datatypes
• bdr.alter_sequence_set_kind
• bdr.create_conflict_trigger
• bdr.create_transform_trigger
• bdr.drop_trigger
• bdr.global_lock_table
• bdr.is_camo_partner_connected
• bdr.logical_transaction_status
• bdr.ri_fkey_trigger
• bdr.seq_nextval
• bdr.set_ddl_locking
• bdr.set_ddl_replication
• bdr.trigger_get_committs
• bdr.trigger_get_conflict_type
• bdr.trigger_get_row
• bdr.trigger_get_type
• bdr.trigger_get_xid
• bdr.wait_slot_confirm_lsn

Verification

BDR has been verified using the following tools and approaches.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

72

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Coverity

Coverity Scan has been used to verify the BDR stack providing coverage against vulnerabilities using the
following rules and coding standards:

• MISRA C
• ISO 26262
• ISO/IEC TS 17961
• OWASP Top 10
• CERT C
• CWE Top 25
• AUTOSAR

CIS Benchmark

CIS PostgreSQL Benchmark v1, 19 Dec 2019 has been used to verify the BDR stack. Using the
cis_policy.yml configuration available as an option with TPAexec gives the following results for the
Scored tests:

Result Description
1.4 PASS Ensure systemd Service

Files Are Enabled

1.5 PASS Ensure Data Cluster
Initialized Successfully

2.1 PASS Ensure the file
permissions mask is
correct

2.2 PASS Ensure the PostgreSQL
pg_wheel group
membership is correct

3.1.2 PASS Ensure the log
destinations are set
correctly

3.1.3 PASS Ensure the logging
collector is enabled

3.1.4 PASS Ensure the log file
destination directory is
set correctly

3.1.5 PASS Ensure the filename
pattern for log files is set
correctly

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

73

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Result Description
3.1.6 PASS Ensure the log file

permissions are set
correctly

3.1.7 PASS Ensure
‘log_truncate_on_rotation’
is enabled

3.1.8 PASS Ensure the maximum log
file lifetime is set
correctly

3.1.9 PASS Ensure the maximum log
file size is set correctly

3.1.10 PASS Ensure the correct
syslog facility is selected

3.1.11 PASS Ensure the program
name for PostgreSQL
syslog messages is
correct

3.1.14 PASS Ensure
‘debug_print_parse’ is
disabled

3.1.15 PASS Ensure
‘debug_print_rewritten’ is
disabled

3.1.16 PASS Ensure
‘debug_print_plan’ is
disabled

3.1.17 PASS Ensure
‘debug_pretty_print’ is
enabled

3.1.18 PASS Ensure ‘log_connections’
is enabled

3.1.19 PASS Ensure
‘log_disconnections’ is
enabled

3.1.21 PASS Ensure ‘log_hostname’
is set correctly

3.1.23 PASS Ensure ‘log_statement’
is set correctly

3.1.24 PASS Ensure ‘log_timezone’ is
set correctly

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

74

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Result Description
3.2 PASS Ensure the PostgreSQL

Audit Extension (pgAudit)
is enabled

4.1 PASS Ensure sudo is
configured correctly

4.2 PASS Ensure excessive
administrative privileges
are revoked

4.3 PASS Ensure excessive
function privileges are
revoked

4.4 PASS Tested Ensure excessive
DML privileges are
revoked

5.2 Not Tested Ensure login via ‘host’
TCP/IP Socket is
configured correctly

6.2 PASS Ensure ‘backend’
runtime parameters are
configured correctly

6.7 Not Tested Ensure FIPS 140-2
OpenSSL Cryptography
Is Used

6.8 PASS Ensure SSL is enabled
and configured correctly

7.3 PASS Ensure WAL archiving is
configured and
functional

Note that test 5.2 can PASS if audited manually, but does not have an automatable test.

Test 6.7 succeeds on default deployments using CentOS, but it requires extra packages on Debian
variants.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

75

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Conflicts

BDR is an active/active or multi-master DBMS. If used asynchronously, writes to the same or related
row(s) from multiple different nodes can result in data conflicts when using standard data types.

Conflicts aren’t ERRORs, they are events that can be detected and resolved automatically as they occur
by BDR, in most cases. Resolution depends upon the nature of the application and the meaning of the
data, so it is important that BDR provides the application a range of choices as to how to resolve conflicts.

By default conflicts are resolved at row level. That is, when changes from two nodes conflict, we pick
either the local or remote tuple and discard the other one. For example we may compare commit
timestamps for the two conflicting changes and keep the newer one. This ensures all nodes converge to
the same result, and establishes commit-order-like semantics on the whole cluster.

Conflict handling is fully configurable, as described later in this chapter. Conflicts can be detected and
handled differently for each table using conflict triggers, available with BDR-EE .

Column-level conflict detection and resolution is available with BDR-EE .

Conflict-free data types (CRDTs) are also available with BDR-EE . However it’s still important to under-
stand information in this chapter even when using CRDTs exclusively.

If you wish to avoid conflicts, you can use Eager replication or in certain workloads CAMO, both additional
features in BDR-EE.

This chapter covers conflicts with standard data types in detail.

Some clustering systems use distributed lock mechanisms to prevent concurrent access to data. These
can perform reasonably when servers are very close but cannot support geographically distributed
applications where very low latency is critical for acceptable performance.

Distributed locking is essentially a pessimistic approach, whereas BDR advocates an optimistic approach:
avoid conflicts where possible but allow some types of conflict to occur and resolve them when they arise.

How conflicts happen

Inter-node conflicts arise as a result of sequences of events that could not happen if all the involved
transactions happened concurrently on the same node. Because the nodes only exchange changes after
transactions commit, each transaction is individually valid on the node it committed on but would not
be valid if applied on another node that has done other conflicting work at the same time. Since BDR
replication essentially replays the transaction on the other nodes, the replay operation can fail if there is a
conflict between a transaction being applied and a transaction that was committed on the receiving node.

The reason most conflicts can’t happen when all transactions run on a single node is that PostgreSQL has
inter-transaction communication mechanisms to prevent it - UNIQUE indexes, SEQUENCEs, row and relation
locking, SERIALIZABLE dependency tracking, etc. All of these mechanisms are ways to communicate
between ongoing transactions to prevent undesirable concurrency issues.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

76

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

BDR does not have a distributed transaction manager or lock manager. That’s part of why it performs
well with latency and network partitions. As a result, transactions on different nodes execute entirely
independently from each other, when using the default, lazy replication. Less independence between
nodes can avoid conflicts altogether, which is why BDR also offers eager replication for when this is
important.

Types of conflict

PRIMARY KEY or UNIQUE Conflicts

The most common conflicts are row conflicts where two operations affect a row with the same key in ways
they could not do on a single node. BDR can detect most of those and will apply the update_if_newer
conflict resolver.

Row conflicts include:

• INSERT vs INSERT
• UPDATE vs UPDATE
• UPDATE vs DELETE
• INSERT vs UPDATE
• INSERT vs DELETE
• DELETE vs DELETE

The view bdr.node_conflict_resolvers provides information on how conflict resolution is currently
configured for all known conflict types.

INSERT/INSERT Conflicts

The most common conflict, INSERT/INSERT, arises where INSERTs on two different nodes create a tuple
with the same PRIMARY KEY values (or the same values for a single UNIQUE constraint if no PRIMARY KEY
exists). BDR handles this by retaining the most recently inserted tuple of the two, according to the
originating host’s timestamps, unless a user-defined conflict handler overrides this.

This conflict will generate the insert_exists conflict type, which is by default resolved by choosing
the newer (based on commit time) row and keeping only that one (update_if_newer resolver). Other
resolvers can be configured - see Conflict Resolution for details.

To resolve this conflict type in the Enterprise Edition, you can also use column-level conflict resolution
and user-defined conflict triggers.

This type of conflict can be effectively eliminated by use of Global Sequences.

INSERTs that Violate Multiple UNIQUE Constraints

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

77

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

An INSERT/INSERT conflict can violate more than one UNIQUE constraint (of which one might be the
PRIMARY KEY). If a new row violates more than one UNIQUE constraint and that results in a conflict
against more than one other row then the apply of the replication change will result in ERROR.

BDR can only handle an INSERT/INSERT conflict on multiple constraints as long as the violations are all
produced by the same other row.

In case of such a conflict, you must manually remove the conflicting tuple(s) from the local side by
DELETEing it or by UPDATEing it so that it no longer conflicts with the new remote tuple. There may be
more than one conflicting tuple. There is not currently any built-in facility to ignore, discard or merge
tuples that conflict with more than one local row.

UPDATE/UPDATE Conflicts

Where two concurrent UPDATEs on different nodes change the same tuple (but not its PRIMARY KEY), an
UPDATE/UPDATE conflict can occur on replay.

These can generate different conflict kinds based on configuration and situation. If the table is configured
with Row Version Conflict Detection then the original (key) row is compared with the local row; if they
are different, the update_differing conflict is generated. When using Origin Conflict Detection, the
origin of the row is checked (origin is node which the current local row came from), if that has changed,
the update_origin_change conflict is generated. In all other cases, the UPDATE is normally applied
without conflict being generated.

Both of these conflicts are resolved same way as insert_exists as described above.

UPDATE Conflicts on the PRIMARY KEY

BDR cannot currently perform conflict resolution where the PRIMARY KEY is changed by an UPDATE
operation. It is permissible to update the primary key, but you must ensure that no conflict with existing
values is possible.

Conflicts on update of the primary key are Divergent Conflicts and require manual operator intervention.

Updating a PK is possible in PostgreSQL, but there are issues in both PostgreSQL and BDR.

Let’s create a very simple example schema to explain:

CREATE TABLE pktest (pk integer primary key, val integer);
INSERT INTO pktest VALUES (1,1);

Updating the Primary Key column is possible, so this SQL succeeds:

UPDATE pktest SET pk=2 WHERE pk=1;

. . . but if we have multiple rows in the table, e.g.:

INSERT INTO pktest VALUES (3,3);

. . . then some UPDATEs would succeed:

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

78

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

UPDATE pktest SET pk=4 WHERE pk=3;

SELECT * FROM pktest;
pk | val

----+-----
2 | 1
4 | 3

(2 rows)

. . . but other UPDATEs fail with constraint errors:

UPDATE pktest SET pk=4 WHERE pk=2;
ERROR: duplicate key value violates unique constraint "pktest_pkey"
DETAIL: Key (pk)=(4) already exists

So PostgreSQL applications that UPDATE PKs need to be very careful to avoid runtime errors, even
without BDR.

With BDR, the situation becomes more complex if UPDATEs are allowed from multiple locations at same
time.

Executing these two changes concurrently works:

node1: UPDATE pktest SET pk=pk+1 WHERE pk = 2;
node2: UPDATE pktest SET pk=pk+1 WHERE pk = 4;

SELECT * FROM pktest;
pk | val

----+-----
3 | 1
5 | 3

(2 rows)

. . . but executing these next two changes concurrently will cause a divergent error, since both changes are
accepted. But when the changes are applied on the other node it will result in update_missing conflicts.

node1: UPDATE pktest SET pk=1 WHERE pk = 3;
node2: UPDATE pktest SET pk=2 WHERE pk = 3;

. . . leaving the data different on each node:

node1:
SELECT * FROM pktest;
pk | val

----+-----
1 | 1
5 | 3

(2 rows)

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

79

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

node2:
SELECT * FROM pktest;
pk | val

----+-----
2 | 1
5 | 3

(2 rows)

This situation can be identified and resolved using LiveCompare.

Concurrent conflicts give problems. Executing these two changes concurrently is not easily resolvable:

node1: UPDATE pktest SET pk=6, val=8 WHERE pk = 5;
node2: UPDATE pktest SET pk=6, val=9 WHERE pk = 5;

Both changes are applied locally, causing a divergence between the nodes. But then apply on the target
fails on both nodes with a duplicate key value violation ERROR, which causes replication to halt and
currently requires manual resolution.

This duplicate key violation error can now be avoided and replication will not break, if you set the
conflict_type update_pkey_exists to skip, update or update_if_newer. This may still lead to
divergence depending on the nature of the update.

You can avoid divergence in cases like the one described above where the same old key is being updated
by the same new key concurrently by setting update_pkey_exists to update_if_newer.

As a result, we recommend strongly against allowing PK UPDATEs in your applications, especially with
BDR. If there are parts of your application that change Primary Keys then those changes should be made
using Eager replication to avoid concurrent changes.

UPDATEs that Violate Multiple UNIQUE Constraints

Like INSERTs that Violate Multiple UNIQUE Constraints, where an incoming UPDATE violates more than
one UNIQUE index (and/or the PRIMARY KEY), BDR cannot apply the standard conflict resolution if more
than one conflicting row is identified.

These are Divergent Conflicts and will therefore require manual operator intervention.

BDR supports deferred unique constraints. If a transaction can commit on the source then it will apply
cleanly on target, unless it sees conflicts. However, a deferred Primary Key cannot be used as a REPLICA
IDENTITY, so the use cases are already limited by that and the warning about using multiple unique
constraints, above.

UPDATE/DELETE Conflicts

It is possible for one node to UPDATE a row that another node simultaneously DELETEs. In this case an
UPDATE/DELETE conflict can occur on replay.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

80

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

If the DELETEd row is still detectable (the deleted row wasn’t removed by VACUUM), the update_recently_deleted
conflict will be generated. By default the UPDATE will just be skipped, but the resolution for this can be
configured; see Conflict Resolution for details.

The deleted row can be cleaned up from the database by the time the UPDATE is receiver in case the
local node is lagging behind in replication. In this case BDR cannot differentiate between UPDATE/DELETE
conflicts and INSERT/UPDATE Conflicts and will simply generate the update_missing conflict. This
conflict is by default resolved by skipping the UPDATE.

Another type of conflicting DELETE and UPDATE is a DELETE operation that comes after the row was
UPDATEd locally. In this situation, the outcome depends upon the type of conflict detection used. When
using the default, Origin Conflict Detection, no conflict is detected at all, leading to the DELETE being ap-
plied and the row removed. If you enable Row Version Conflict Detection, a delete_recently_updated
conflict is generated. The default resolution for this conflict type is to to apply the DELETE and remove the
row, but this can be configured or handled via a conflict trigger.

INSERT/UPDATE Conflicts

When using the default asynchronous mode of operation, a node may receive an UPDATE of a row before
the original INSERT was received. This can only happen with 3 or more nodes being active (see Conflicts
with 3 or more nodes below).

When this happens the update_missing conflict is generated. This conflict is by default resolved by
skipping the UPDATE. Other resolvers like insert_or_skip or insert_or_error try to INSERT new
row based on data from UPDATE when possible (when the whole row was received) For the reconstruction
of the row to be possible, the table either needs to have REPLICA IDENTITY FULL or the row must not
contain any TOASTed data.

See TOAST Support Details for more info about TOASTed data.

INSERT/DELETE Conflicts

Similarly to the INSERT/UPDATE conflict, the node may also receive a DELETE operation on a row for
which it didn’t receive an INSERT yet. This is again only possible with 3 or more nodes set up (see
Conflicts with 3 or more nodes below).

BDR cannot currently detect this conflict type: the INSERT operation will not generate any conflict type
and the INSERT will be applied.

The DELETE operation will always generate a delete_missing conflict which is by default resolved by
skipping the operation.

DELETE/DELETE Conflicts

A DELETE/DELETE conflict arises where two different nodes concurrently delete the same tuple.

This will always generate a delete_missing conflict which is by default resolved by skipping the
operation.

This conflict is harmless since both DELETEs have the same effect, so one of them can be safely ignored.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

81

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Conflicts with 3 or more nodes

If one node INSERTs a row which is then replayed to a 2nd node and UPDATEd there, a 3rd node can
receive the UPDATE from the 2nd node before it receives the INSERT from the 1st node. This is an
INSERT/UPDATE conflict.

These conflicts are handled by discarding the UPDATE. This can lead to different data on different nodes,
i.e. these are Divergent Conflicts.

Note that this conflict type can only happen with 3 or more masters, of which at least 2 must be actively
writing.

Also, the replication lag from node 1 to node 3 must be high enough to allow the following sequence of
actions:

1. node 2 receives INSERT from node 1
2. node 2 performs UPDATE
3. node 3 receives UPDATE from node 2
4. node 3 receives INSERT from node 1

Using insert_or_error or in some cases the insert_or_skip conflict resolver for the
update_missing conflict type is a viable mitigation strategy for these conflicts. Note however
that enabling this option opens the door for INSERT/DELETE conflicts; see below.

1. node 1 performs UPDATE
2. node 2 performs DELETE
3. node 3 receives DELETE from node 2
4. node 3 receives UPDATE from node 1, turning it into an INSERT

If these are problems it’s recommended to tune freezing settings for a table or database so that they
are correctly detected as update_recently_deleted. This is done automatically in BDR Enterprise
Edition.

Another alternative is to use [Eager Replication] to prevent these conflicts.

INSERT/DELETE conflicts can also occur with 3 or more nodes. Such a conflict is identical to
INSERT/UPDATE, except with the UPDATE replaced by a DELETE. This can result in a delete_missing
conflict.

BDR could choose to make each INSERT into a check-for-recently deleted, as occurs with an up-
date_missing conflict. However, the cost of doing this penalizes majority of users, so at this time we
simply log delete_missing.

Later releases will automatically resolve INSERT/DELETE anomalies via re-checks using LiveCompare
when delete_missing conflicts occur. These can be performed manually by applications by checking
conflict logs or conflict log tables; see later.

These conflicts can occur in two main problem use cases:

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

82

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• INSERT, followed rapidly by a DELETE - as can be used in queuing applications
• Any case where the PK identifier of a table is re-used

Neither of these cases is common and we recommend not replicating the affected tables if these problem
use cases occur.

BDR has problems with the latter case because BDR relies upon the uniqueness of identifiers to make
replication work correctly.

Applications that insert, delete and then later re-use the same unique identifiers can cause difficulties.
This is known as the ABA Problem. BDR has no way of knowing whether the rows are the current row,
the last row or much older rows. https://en.wikipedia.org/wiki/ABA_problem

Unique identifier reuse is also a business problem, since it is prevents unique identification over time,
which prevents auditing, traceability and sensible data quality. Applications should not need to reuse
unique identifiers.

Any identifier reuse that occurs within the time interval it takes for changes to pass across the system
will cause difficulty. Although that time may be short in normal operation, down nodes may extend that
interval to hours or days.

We recommend that applications do not reuse unique identifiers; but if they do, take steps to avoid reuse
within a period of less than a year.

Any application that uses Sequences or UUIDs will not suffer from this problem.

Foreign Key Constraint Conflicts

Conflicts between a remote transaction being applied and existing local data can also occur for
FOREIGN KEY constraints (FKs).

BDR applies changes with session_replication_role = 'replica' so foreign keys are not re-
checked when applying changes. In an active/active environment this can result in FK violations if deletes
occur to the referenced table at the same time as inserts into the referencing table. This is similar to an
INSERT/DELETE conflict.

First, we will explain the problem and then provide solutions.

In single-master PostgreSQL, any INSERT/UPDATE that refers to a value in the referenced table will have
to wait for DELETEs to finish before they can gain a row-level lock. If a DELETE removes a referenced
value then the INSERT/UPDATE will fail the FK check.

In multi-master BDR there are no inter-node row-level locks. So an INSERT on the referencing table
does not wait behind a DELETE on the referenced table, so both actions can occur concurrently. Thus
an INSERT/UPDATE on one node on the referencing table can utilize a value at the same time that as a
DELETE on the referenced table on another node. This then results in a value in the referencing table
that is no longer present in the referenced table.

In practice, this only occurs if DELETEs occur on referenced tables in separate transactions from
DELETEs on referencing tables. This is not a common operation.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

83

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

In a parent-child relationship, e.g. Orders -> OrderItems it isn’t typical to do this, more likely to mark an
OrderItem as cancelled than to remove it completely. For reference/lookup data it would be strange to
completely remove entries at the same time as using those same values for new fact data.

While there is a possibility of dangling FKs, the risk of this in general is very low and so BDR does not
impose a generic solution to cover this case. Once users understand the situation in which this occurs,
two solutions are possible:

The first solution is to restrict the use of FKs to closely related entities that are generally modified
from only one node at a time, are infrequently modified, or where the modification’s concurrency is
application-mediated. This simply avoids any FK violations at the application level.

The second solution is to add triggers to protect against this case using the BDR-provided functions
bdr.ri_fkey_trigger() and bdr.ri_fkey_on_del_trigger(). When called as BEFORE triggers,
these functions will use FOREIGN KEY information to avoid FK anomalies by setting referencing columns
to NULL, much as if we had a SET NULL constraint. Note that this re-checks ALL FKs in one trigger, so
you only need to add one trigger per table to prevent FK violation.

As an example, we have two tables: Fact and RefData. Fact has an FK that references RefData. Fact is
the referencing table and RefData is the referenced table. One trigger needs to be added to each table.

Add a trigger that will set columns to NULL in Fact if the referenced row in RefData has already been
deleted.

CREATE TRIGGER bdr_replica_fk_iu_trg
BEFORE INSERT OR UPDATE ON fact
FOR EACH ROW
EXECUTE PROCEDURE bdr.ri_fkey_trigger();

ALTER TABLE fact
ENABLE REPLICA TRIGGER bdr_replica_fk_iu_trg;

Add a trigger that will set columns to NULL in Fact at the time a DELETE occurs on the RefData table.

CREATE TRIGGER bdr_replica_fk_d_trg
BEFORE DELETE ON refdata
FOR EACH ROW
EXECUTE PROCEDURE bdr.ri_fkey_on_del_trigger();

ALTER TABLE refdata
ENABLE REPLICA TRIGGER bdr_replica_fk_d_trg;

Adding both triggers will avoid dangling foreign keys.

TRUNCATE Conflicts

TRUNCATE behaves similarly to a DELETE of all rows, but performs this action by physical removal of
the table data, rather than row-by-row deletion. As a result, row-level conflict handling is not available, so

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

84

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

TRUNCATE commands do not generate conflicts with other DML actions, even when there is a clear
conflict.

As a result the ordering of replay could cause divergent changes if another DML is executed close in time
to TRUNCATE statements.

Users may wish to take one of the following options:

• Ensure TRUNCATE is not executed alongside other concurrent DML and rely on LiveCompare to
highlight any such inconsistency.

• Replace TRUNCATE with a DELETE statement with no WHERE clause, noting that this is likely to
have very poor performance on larger tables.

• Set the bdr.truncate_locking to true which changes TRUNCATE behavior to be controlled by
bdr.ddl_locking like other statements which can conflict with DML operations. This will be the
default behavior on BDR 3.7 and newer. Note that this requires all nodes to be up and running in
order to execute the TRUNCATE command.

• Explicitly request a global DML lock using the function bdr.global_lock_table() prior to executing
the TRUNCATE command to prevent any race conditions that could result in divergent changes,
as shown below. Note that this requires all nodes to be up and running in order to execute the
TRUNCATE command.

BEGIN;
SELECT bdr.global_lock_table('foo');
TRUNCATE foo;
COMMIT;

Exclusion Constraint Conflicts

BDR doesn’t support exclusion constraints, and prevents their creation.

If an existing stand-alone database is converted to a BDR database then all exclusion constraints should
be manually dropped.

In a distributed asynchronous system it is not possible to ensure that no set of rows that violate the
constraint exists, because all transactions on different nodes are fully isolated. Exclusion constraints
would lead to replay deadlocks where replay could not progress from any node to any other node because
of exclusion constraint violations.

If you force BDR to create an exclusion constraint, or you don’t drop existing ones when converting a
standalone database to BDR, you should expect replication to break. You can get it to progress again by
removing or altering the local tuple(s) that an incoming remote tuple conflicts with so that the remote
transaction can be applied.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

85

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Data Conflicts for Roles and Tablespace differences

Conflicts can also arise where nodes have global (PostgreSQL-system-wide) data, like roles, that differs.
This can result in operations - mainly DDL - that can be run successfully and committed on one node, but
then fail to apply to other nodes.

For example, node1 might have a user named fred, but that user was not created on node2. If fred on
node1 creates a table, it will be replicated with its owner set to fred. When the DDL command is applied
to node2, the DDL will fail because there is no user named fred. This failure will emit an ERROR in the
PostgreSQL logs.

Administrator intervention is required to resolve this conflict by creating the user fred in the database
where BDR is running. You may wish to set bdr.role_replication = on to resolve this in future.

Lock Conflicts and Deadlock Aborts

Because BDR writer processes operate much like normal user sessions, they are subject to the usual
rules around row and table locking. This can sometimes lead to BDR writer processes waiting on locks
held by user transactions, or even by each other.

Relevant locking includes:

• explicit table-level locking (LOCK TABLE ...) by user sessions
• explicit row-level locking (SELECT ... FOR UPDATE/FOR SHARE) by user sessions
• implicit locking because of row UPDATEs, INSERTs or DELETEs, either from local activity or from

replication from other nodes

It is even possible for a BDR writer process to deadlock with a user transaction, where the user transaction
is waiting on a lock held by the writer process and vice versa. Two writer processes may also deadlock
with each other. PostgreSQL’s deadlock detector will step in and terminate one of the problem transactions.
If the BDR writer process is terminated it will simply retry and generally succeed.

All these issues are transient and generally require no administrator action. If a writer process is stuck for
a long time behind a lock on an idle user session, the administrator may choose to terminate the user
session to get replication flowing again, but this is no different to a user holding a long lock that impacts
another user session.

Use of the log_lock_waits facility in PostgreSQL can help identify locking related replay stalls.

Divergent Conflicts

Divergent conflicts arise when data that should be the same on different nodes differs unexpectedly.
Divergent conflicts should not occur, but not all such conflicts can be reliably prevented at the time of
writing.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

86

https://www.postgresql.org/docs/current/static/runtime-config-logging.html#GUC-LOG-LOCK-WAITS

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Changing the PRIMARY KEY of a row can lead to a divergent conflict if another node changes the key of
the same row before all nodes have replayed the change. Avoid changing primary keys, or change them
only on one designated node.

Divergent conflicts involving row data generally require administrator action to manually adjust the data
on one of the nodes to be consistent with the other one. Such conflicts should not arise so long as BDR
is used as documented and settings or functions marked as unsafe are avoided.

The administrator must manually resolve such conflicts. Use of the advanced options such as
bdr.ddl_replication and bdr.ddl_locking may be required depending on the nature of the conflict.
However, careless use of these options can make things much worse and it isn’t possible to give general
instructions for resolving all possible kinds of conflict.

TOAST Support Details

PostgreSQL uses out of line storage for larger columns called TOAST.

The TOAST values handling in logical decoding (which BDR is built on top of) and logical replication is
different from in-line data stored as part of the main row in the table.

TOAST value will be logged into the transaction log (WAL) only if the value has changed. This can
cause problems especially when handling UPDATE conflicts because the UPDATE statement which
didn’t change a value of a toasted column will produce a row without that column. As mentioned in
the INSERT/UPDATE Conflicts BDR will produce an error if update_missing conflict is resolved using
insert_or_error and there are missing TOAST columns.

However there are more subtle issues than the above one in case of concurrent workloads with asyn-
chronous replication (eager transactions are not affected). Imagine for example following workload on a
BDR cluster with 3 nodes called A,B and C:

1. on node A: txn A1 does an UPDATE SET col1 = ‘toast data. . . ’ and commits first
2. on node B: txn B1 does UPDATE SET other_column = ‘anything else’; and commits after A1
3. on node C: the connection to node A lags behind
4. on node C: txn B1 is applied first, it misses the TOASTed column in col1, but gets applied without

conflict
5. on node C: txn A1 will conflict (on update_origin_change) and get skipped
6. node C will miss the toasted data from A1 forever

The above is not usually a problem when using BDR (it would be when using either built-in logical
replication or plain pglogical for multi-master) because BDR adds its own logging of TOAST columns
when it detects a local UPDATE to a row which recently replicated a TOAST column modification and the
local UPDATE is not modifying the TOAST. Thus BDR will prevent any inconsistency for TOASTed data
across different nodes, at the price of increased WAL logging when updates occur on multiple nodes
(i.e. when origin changes for a tuple). Additional WAL overhead will be zero if all updates made from a
single node, as is normally the case with BDR AlwaysOn architecture.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

87

https://www.postgresql.org/docs/current/storage-toast.html

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Note
Running VACUUM FULL or CLUSTER on just the TOAST table without also doing same
on the main table will remove metadata needed for the extra logging to work, which
means that for a short period of time after such statement the protection against these
concurrency issues will not be present.

Warning
In Standard Edition of BDR, the additional WAL logging of TOAST is done using
BEFORE UPDATE trigger. This trigger must be sorted alphabetically last (based on trigger
name) among all BEFORE UPDATE triggers on the table. It’s prefixed with zzzz_bdr_ to
make this easier, but make sure you don’t create any trigger with name that would sort
after it, otherwise the protection against the concurrency issues will not be present.

For the insert_or_error conflict resolution, the use of REPLICA IDENTITY FULL is however still
required.

None of these problems associated with TOASTed columns affect tables with REPLICA IDENTITY FULL
as this setting will always log a TOASTed values as part of the key since the whole row is considered
to be part of the key. Both BDR and pglogical are smart enough to reconstruct the new row, filling the
missing data from the key row. Be aware that as a result, the use of REPLICA IDENTITY FULL can
increase WAL size significantly.

Avoiding or Tolerating Conflicts

In most cases the application can be designed to avoid conflicts, or to tolerate them.

Conflicts can only happen if there are things happening at the same time on multiple nodes, so the
simplest way to avoid conflicts is to only ever write to one node, or to only ever write to a specific row in a
specific way from one specific node at a time. This happens naturally in many applications, for example,
many consumer applications only allow data to be changed by the owning user, e.g. changing the default
billing address on your account, so data changes seldom experience update conflicts.

It might happen that you make a change just before a node goes down, so the change appears to have
been lost. You might then make the same change again, leading to two updates via different nodes.
When the down node comes back up it will try to send the older change to other nodes, but it will be
rejected because the last update of the data is kept.

For INSERT/INSERT conflicts, use of Global Sequences can completely prevent this type of conflict.

For applications that assign relationships between objects, e.g. a room booking application, applying
update_if_newer may not give an acceptable business outcome, i.e. it isn’t useful to confirm to two people
separately that they have booked the same room. The simplest resolution is to use Eager replication to
ensure that only one booking succeeds. More complex ways might be possible, depending upon the
application, e.g. assign 100 seats to each node and allow those to be booked by a writer on that node,

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

88

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

but if none are available locally, use a distributed locking scheme or Eager replication once most seats
have been reserved.

Another technique for ensuring certain types of update only occur from one specific node would be to
route different types of transaction through different nodes:

• e.g. receiving parcels on one node, but delivering parcels via another node.
• e.g. a service application where orders are input on one node, work is prepared on a second node

and then served back to customers on another.

The best course of action is frequently to allow conflicts to occur and design the application to work with
BDR’s conflict resolution mechanisms to cope with the conflict.

Conflict Detection

BDR provides three mechanisms for conflict detection:

• Origin Conflict Detection (default)
• Row Version Conflict Detection
• Column-Level Conflict Detection

Origin Conflict Detection

(Previously known as Timestamp Conflict Detection, but this was confusing).

Origin conflict detection uses and relies on commit timestamps as recorded on the host where the
transaction originates from. This requires clocks to be in sync to work correctly, or to be within a tolerance
of the fastest message between two nodes. If this is not the case, conflict resolution will tend to favour
the node that is further ahead. Clock skew between nodes can be managed using the parameters
bdr.maximum_clock_skew and bdr.maximum_clock_skew_action.

Row origins are only available if track_commit_timestamps = on.

Conflicts are initially detected based upon whether the replication origin has changed or not, so conflict
triggers will be called in situations that may turn out not to be actual conflicts. Hence, this mechanism is
not precise since it can generate false positive conflicts.

Origin info is available only up to the point where a row is frozen. Updates arriving for a row after it has
been frozen will not raise a conflict, so will be applied in all cases. This is the normal case when we add
a new node by bdr_init_physical, so raising conflicts would cause many false positive cases in that case.

When a node has been offline for some time reconnects and begins sending data changes this could
potentially cause divergent errors if the newly arrived updates are actually older than the frozen rows that
they update. Inserts and Deletes are not affected by this situation.

Users are advised to not leave down nodes for extended outages, as discussed in Node Restart and
Down Node Recovery.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

89

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

To handle this situation gracefully, BDR-EE will automatically hold back the freezing of rows while a node
is down. BDR-SE users need to manage this situation with some care:

Freezing normally occurs when a row being vacuumed is older than vacuum_freeze_min_age xids from
the current xid, which means you need to configure these parameters to suitably high values:

• vacuum_freeze_min_age
• vacuum_freeze_table_age
• autovacuum_freeze_max_age

Values should be chosen based upon the transaction rate, giving an grace period of downtime before
any conflict data is removed from the database server. For example, a node performing 1000 TPS could
be down for just over 5.5 days before conflict data is removed, when vacuum_freeze_min_age is set
to 500 million. The CommitTS datastructure will take on-disk space of 5GB with that setting, so lower
transaction rate systems may benefit from lower settings.

Initially recommended settings would be:

1 billion = 10GB
autovacuum_freeze_max_age = 1000000000

vacuum_freeze_min_age = 500000000

90% of autovacuum_freeze_max_age
vacuum_freeze_table_age = 900000000

Note that autovacuum_freeze_max_age can only be set at server start.

Note also that vacuum_freeze_min_age is user-settable, so using a low value will freeze
rows early and could result in conflicts being ignored. autovacuum_freeze_min_age and
toast.autovacuum_freeze_min_age can also be set for individual tables.

Note also that running the CLUSTER or VACUUM FREEZE commands will also freeze rows early and
could result in conflicts being ignored. .

Row Version Conflict Detection

Alternatively, BDR provides the option to use row versioning and make conflict detection independent of
the nodes’ system clock.

Row version conflict detection requires 3 things to be enabled. If any of these steps are not performed
correctly then Origin Conflict Detection will be used.

1. check_full_tuple must be enabled for the BDR node group

2. REPLICA IDENTITY FULL must be enabled on all tables that intended to use row version conflict
detection.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

90

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

3. Row Version Tracking must be enabled on the table by using bdr.alter_table_conflict_detection.
This function will add a new column (with user defined name) and an UPDATE trigger which
manages the new column value. The column will be created as INTEGER type.

Although the counter is incremented only on UPDATE, detection of conflicts for both UPDATE and
DELETE is possible using this technique.

This approach resembles Lamport timestamps and fully prevents the ABA problem for conflict detection.

bdr.alter_table_conflict_detection

This function changes how the conflict detection works for a given table.

Synopsis

bdr.alter_table_conflict_detection(relation regclass,
method text,
column_name name DEFAULT NULL)

Parameters

• relation - name of the relation for which to set new conflict detection method
• method - which conflict detection method to use
• column_name - which column to use for storing of the column detection data, can be skipped, in

which case column name will be automatically chosen based on the conflict detection method, the
row_origin method does not require extra column for metadata storage

The recognized methods for conflict detection are:

• row_origin - origin of the previous change made on the tuple (see Origin Conflict Detection
above), this is the only method supported which does not require extra column in the table

• row_version - row version column (see Row Version Conflict Detection above)

Notes

This function uses the same replication mechanism as DDL statements. This means the replication is
affected by the ddl filters configuration.

The function will take a DML global lock on the relation for which column-level conflict resolution is being
enabled.

This function is transactional - the effects can be rolled back with the ROLLBACK of the transaction and
the changes are visible to the current transaction.

The bdr.alter_table_conflict_detection function can be only executed by the owner of the
relation, unless bdr.backwards_compatibility is set is set to 30618 or below.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

91

repsets.md#ddl-replication-filtering

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Warning
Please note that when changing the conflict detection method from one that uses extra
column for storage of metadata, that column will be dropped.

List of Conflict Types

BDR recognizes the following conflict types, which can be used as the conflict_type parameter:

• insert_exists - an incoming insert conflicts with an existing row via a primary key or an unique
key/index (formerly called insert_insert)

• update_differing - an incoming update’s key row is differing from a local row, this can only
happen when using Row Version Conflict Detection. (formerly called update_update)

• update_origin_change - an incoming update is modifying a row which was last changed by a
different node (also formerly called update_update)

• update_missing - an incoming update is trying to modify a row which does not exist (formerly
called update_delete)

• update_recently_deleted - an incoming update is trying to modify a row which was recently
deleted

• update_pkey_exists - an incoming update has modified the PRIMARY KEY to a value which
already exists on the node which is applying the change

• delete_recently_updated - an incoming delete with an older commit timestamp than the most
recent update of the row on the current node, or when using Row Version Conflict Detection.
(formerly called update_update)

• delete_missing - an incoming delete is trying to remove a row which does not exist (formerly
called delete_delete)

• target_column_missing - the target table is missing one or more columns present in the incom-
ing row

• source_column_missing - the incoming row is missing one or more columns that are present in
the target table

• target_table_missing - target table is missing

Conflict Resolution

Most conflicts can be resolved automatically. BDR defaults to a last-update-wins mechanism, or more
accurately the update_if_newer conflict resolver. This mechanism will retain the most recently inserted or
changed row of the two conflicting ones based on the same commit timestamps used for conflict detection.
The behavior in certain corner case scenarios depends on the settings used for bdr.create_node_group
and alternatively for bdr.alter_node_group_config.

BDR lets the user override the default behavior of conflict resolution via the following function:

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

92

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.alter_node_set_conflict_resolver

This function sets the behavior of conflict resolution on a given node.

Synopsis

bdr.alter_node_set_conflict_resolver(node_name text,
conflict_type text,
conflict_resolver text)

Parameters

• node_name - name of the node that is being changed
• conflict_type - conflict type for which the setting should be applied (see List of Conflict Types)
• conflict_resolver - which resolver to use for the given conflict type (see List of Conflict Re-

solvers)

Notes

Currently only the local node can be changed. The function call is not replicated. If you want to change
settings on multiple nodes, the function must be run on each of them.

Note that the configuration change made by this function will override any default behavior of conflict
resolutions specified via bdr.create_node_group or bdr.alter_node_group_config.

This function is transactional - the changes made can be rolled back and are visible to the current
transaction.

List of Conflict Resolvers

There are several conflict resolvers available in BDR, with differing coverage of the conflict types they
can handle:

• error - throws error and stops replication. Can be used for any conflict type.
• skip - skips processing of the remote change and continues replication with the next change. Can

be used for insert_exists, update_differing, update_origin_change, update_missing,
update_recently_deleted, update_pkey_exists, delete_recently_updated, delete_missing,
target_table_missing, target_column_missing and source_column_missing conflict
types.

• skip_if_recently_dropped - skip the remote change if it’s for a table that does not exist
on downstream because it has been recently (currently within 1 day) dropped on the down-
stream; throw an error otherwise. Can be used for the target_table_missing conflict type.
skip_if_recently_dropped conflict resolver may pose challenges if a table with the same name
is recreated shortly after it’s dropped. In that case, one of the nodes may see the DMLs on the

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

93

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

recreated table before it sees the DDL to recreate the table. It will then incorrectly skip the remote
data, assuming that the table is recently dropped and cause data loss. It is hence recommended to
not reuse the object names immediately after they are dropped along with this conflict resolver.

• update_if_newer - update if the remote row was committed later (as determined by the wall
clock of the originating server) than the conflicting local row. If the timestamps are same, the
node id is used as a tie-breaker to ensure that same row is picked on all nodes (higher nodeid
wins). Can be used for insert_exists, update_differing, update_origin_change and
update_pkey_exists conflict types.

• update - always perform the replicated action. Can be used for insert_exists (will turn the
INSERT into UPDATE), update_differing, update_origin_change, update_pkey_exists,
and delete_recently_updated (performs the delete).

• insert_or_skip - try to build a new row from available information sent by the origin and INSERT
it; if there is not enough information available to build a full row, skip the change. Can be used for
update_missing and update_recently_deleted conflict types.

• insert_or_error - try to build new row from available information sent by origin and INSERT it, if
there is not enough information available to build full row, throw error and stop the replication. Can
be used for update_missing and update_recently_deleted conflict types.

• ignore - ignore any missing target column and continue processing. Can be used for the
target_column_missing conflict type.

• ignore_if_null - ignore a missing target column if the extra column in the remote row
contains a NULL value, otherwise throw error and stop replication. Can be used for the
target_column_missing conflict type.

• use_default_value - fill the missing column value with the default (including NULL if that’s the
column default) and continue processing. Any error while processing the default or violation of
constraints (i.e. NULL default on NOT NULL column) will stop replication. Can be used for the
source_column_missing conflict type.

List of Conflict Resolutions

The conflict resolution represents the kind of resolution chosen by the conflict resolver, and corresponds
to the specific action which was taken to resolve the conflict.

The following conflict resolutions are currently supported for the conflict_resolution parameter:

• apply_remote - the remote (incoming) row has been applied
• skip - the processing of the row was skipped (no change has been made locally)
• merge - a new row was created, merging information from remote and local row
• user - user code (a conflict trigger) has produced the row that was written to the target table

Conflict Logging

To make diagnosis and handling of multi-master conflicts easier, BDR will, by default, log every conflict
into the PostgreSQL log file. This behavior can be changed with more granularity with the following
functions.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

94

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.alter_node_add_log_config

Add a named conflict logging configuration for a node.

Synopsis

bdr.alter_node_add_log_config(node_name text,
log_config_name text,
log_to_file bool DEFAULT true,
log_to_table regclass DEFAULT NULL,
conflict_type text[] DEFAULT NULL,
conflict_resolution text[] DEFAULT NULL)

Parameters

• node_name - name of the node that is being changed
• log_config_name - name of the logging configuration
• log_to_file - whether to log to the server log file
• log_to_table - whether to log to a table, and which table should be the target; NULL (the default)

means do not log to a table
• conflict_type - which conflict types to log; NULL (the default) means all
• conflict_resolution - which conflict resolutions to log; NULL (the default) means all

Notes

Currently only the local node can be changed. The function call is not replicated. If you want to change
settings on multiple nodes, the function must be run on each of them.

This function is transactional - the changes can be rolled back and are visible to the current transaction.

Listing Conflict Logging Configurations

The view bdr.node_log_config shows all the logging configurations. It lists the name of the logging
configuration, where it logs and which conflicts type and resolution it logs.

Logging to a Table

Conflicts will be logged to a table if log_to_table is set non-NULL value. The target table can be any
user table which contains any recognized columns. There is a preexisting table with all the recognized
columns called bdr.apply_log, so this table can be used as the parameter for log_to_table without
needing any additional configuration.

The user conflict log table can be any regular table which contains any of the following columns (the
column matching is done using column name and type so these need to be exact):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

95

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• sub_id of type oid - which subscription has produced this conflict; can be joined to
bdr.subscription table

• local_xid of type xid - local transaction of the replication process at the time of conflict
• local_lsn of type pg_lsn - local lsn of the replication process at the time of conflict
• local_time of type timestamptz - local time of the conflict
• remote_xid of type xid - transaction which produced the conflicting change on the remote node

(a peer)
• remote_commit_lsn of type pg_lsn - commit lsn of the transaction which produced the conflicting

change on the remote node (a peer)
• remote_commit_time of type timestamptz - commit timestamp of the transaction which pro-

duced the conflicting change on the remote node (a peer)
• conflict_type of type integer - detected type of the conflict (see List of Conflict Types)
• conflict_resolution of type integer - conflict resolution chosen (see List of Conflict Resolu-

tions)
• conflict_index of type regclass - conflicting index (only valid if the index wasn’t dropped since)
• nspname of type text - name of the schema for the relation on which the conflict has occurred
• relname of type text - name of the relation on which the conflict has occurred
• key_tuple of type json - json representation of the key used for matching the row
• remote_tuple of type json - json representation of an incoming conflicting row
• local_tuple of type json - json representation of the local conflicting row
• apply_tuple of type json - json representation of the resulting (the one that has been applied)

row
• local_tuple_xmin of type xid - transaction which produced the local conflicting row (if
local_tuple is set and the row is not frozen)

• local_tuple_node_id of type oid - node which produced the local conflicting row (if
local_tuple is set and the row is not frozen)

• local_tuple_commit_time of type timestamptz - last known change timestamp of the local
conflicting row (if local_tuple is set and the row is not frozen)

Any of the columns above may be omitted from the table in which case the information associated with it
won’t be saved.

Please note that any of the values for these columns may be NULL with the exception of sub_id.

bdr.alter_node_remove_log_config

Remove an existing conflict logging configuration from a node.

Synopsis

bdr.alter_node_remove_log_config(node_name text,
log_config_name text)

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

96

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Parameters

• node_name - name of the node that is being changed
• log_config_name - name of the logging configuration to be removed

Notes

Currently only the local node can be changed. The function call is not replicated. If you want to change
settings on multiple nodes, the function must be run on each of them.

This function is transactional - the changes can be rolled back and are visible to the current transaction.

Conflict Reporting

Conflicts logged to tables can be summarized in reports. This allows application owners to identify,
understand and resolve conflicts and/or introduce application changes to prevent them.

SELECT nspname, relname
, date_trunc('day', local_time) :: date AS date
, count(*)
FROM bdr.apply_log
GROUP BY 1,2,3
ORDER BY 1,2;

nspname | relname | date | count
---------+---------+------------+-------
my_app | test | 2019-04-05 | 1

(1 row)

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

97

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Sequences

Many applications require that unique surrogate ids be assigned to database entries. Often the database
SEQUENCE object is used to produce these. In PostgreSQL these can be either a manually created
sequence using the CREATE SEQUENCE command and retrieved by calling nextval() function, or
serial and bigserial columns or alternatively GENERATED BY DEFAULT AS IDENTITY columns.

However, standard sequences in PostgreSQL are not multi-node aware, and only produce values that
are unique on the local node. This is important because unique ids generated by such sequences will
cause conflict and data loss (by means of discarded INSERTs) in multi-master replication.

BDR Global Sequences

For this reason BDR provides an application-transparent way to generate unique ids using sequences on
bigint or bigserial datatypes across the whole BDR group, called global sequences.

BDR global sequences provide an easy way for applications to use the database to generate unique
synthetic keys in an asynchronous distributed system that works for most cases, but not necessarily all.

Using global sequences allows you to avoid the problems with insert conflicts. If you define a
PRIMARY KEY or UNIQUE constraint on a column which is using a global sequence, it is not possible for
any node to ever get the same value as any other node. When BDR synchronizes inserts between the
nodes, they can never conflict.

BDR global sequences extend PostgreSQL sequences, so are crash-safe. To use them you must have
been granted the bdr_application role.

There are various possible algorithms for global sequences:

• Timeshard sequences
• Globally-allocated range sequences

Timeshard sequences generate values using an algorithm that does not require inter-node communication
at any point, so is faster and more robust, as well as having the useful property of recording the timestamp
at which they were created. Timeshard sequences have the restriction that they work only for 64-bit
BIGINT datatypes and produce values 19 digits long, which may be too long for use in some host
language datatypes such as Javascript Integer types. Globally-allocated sequences allocate a local
range of values which can be replenished as-needed by inter-node consensus, making them suitable for
either BIGINT or INTEGER sequences.

A global sequence can be created using the bdr.alter_sequence_set_kind() function. This function
takes a standard PostgreSQL sequence and marks it as a BDR global sequence. It can also convert the
sequence back to the standard PostgreSQL one (see below).

BDR also provides the configuration variable bdr.default_sequence_kind, which determines what
kind of sequence will be created when the CREATE SEQUENCE command is executed or when a serial,
bigserial or GENERATED BY DEFAULT AS IDENTITY column is created. Valid settings are

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

98

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• local (the default) meaning that newly created sequences are the standard PostgreSQL (local)
sequences.

• galloc which always creates globally-allocated range sequences.
• timeshard which creates time-sharded global sequences for BIGINT sequences, but will throw

ERRORs when used with INTEGER sequences.

The bdr.sequences view shows information about individual sequence kinds.

currval() and lastval() work correctly for all types of global sequence.

Timeshard Sequences

The ids generated by timeshard sequences are loosely time-ordered so they can be used to get the
approximate order of data insertion, like standard PostgreSQL sequences. Values generated within the
same millisecond might be out of order, even on one node. The property of loose time-ordering means
they are suitable for use as range partition keys.

Timeshard sequences work on one or more nodes and do not require any inter-node communication after
the node join process completes. So they may continue to be used even if there’s the risk of extended
network partitions and are not affected by replication lag or inter-node latency.

Timeshard sequences generate unique ids in a different way to standard sequences. The algorithm uses
3 components for a sequence number. The first component of the sequence is a timestamp at the time of
sequence number generation. The second component of the sequence number is the unique id assigned
to each BDR node, which ensures that the ids from different nodes will always be different. Finally, the
third component is the number generated by the local sequence itself.

While adding a unique node id to the sequence number would be enough to ensure there are no conflicts,
we also want to keep another useful property of sequences, which is the fact that the ordering of the
sequence numbers roughly corresponds to the order in which data was inserted into the table. Putting
the timestamp first ensures this.

A few limitations and caveats apply to timeshard sequences.

Timeshard sequences are 64-bits wide and need a bigint or bigserial. Values generated will be
at least 19 digits long. There is no practical 32-bit integer version, so cannot be used with serial
sequences - use globally-allocated range sequences instead.

There is a limit of 8192 sequence values generated per millisecond on any given node for any given
sequence. If more than 8192 sequences per millisecond are generated from one sequence on one node,
the generated values will wrap around and could collide. There is no check on that for performance
reasons; the value is not reset to 0 at the start of each ms. Collision will usually result in a UNIQUE
constraint violation on INSERT or UPDATE. It cannot cause a replication conflict because sequence values
generated on different nodes cannot ever collide since they contain the nodeid.

In practice this is harmless since values are not generated fast enough to trigger this limitation as there
will be other work being done, rows inserted, indexes updated, etc. Despite that, applications should
have a UNIQUE constraint in place where they absolutely rely on a lack of collisions.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

99

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Perhaps more importantly, the timestamp component will run out of values in the year 2050 and if used
in combination with bigint, the values will wrap to negative numbers in the year 2033. This means that
sequences generated after 2033 will have negative values. If you plan to deploy your application beyond
this date, try one of UUIDs, KSUUIDs and Other Approaches mentioned below, or use globally-allocated
range sequences instead.

The INCREMENT option on a sequence used as input for timeshard sequences is effectively ignored. This
could be relevant for applications that do sequence ID caching, like many object-relational mapper (ORM)
tools, notably Hibernate. Because the sequence is time-based this has little practical effect since the
sequence will have advanced to a new non-colliding value by the time the application can do anything
with the cached values.

Similarly, the START, MINVALUE, MAXVALUE and CACHE settings may be changed on the underlying
sequence, but there is no benefit to doing so. The sequence’s low 14 bits are used and the rest is
discarded, so the value range limits do not affect the function’s result. For the same reason, setval() is
not useful for timeshard sequences.

Globally-allocated range Sequences

The globally-allocated range (or galloc) sequences allocate ranges (chunks) of values to each node.
When the local range is used up, a new range is allocated globally by consensus amongst the other
nodes. This uses the key space efficiently but requires that the local node be connected to a majority of
the nodes in the cluster for the sequence generator to progress when the currently assigned local range
has been used up.

Unlike timeshard sequences, galloc sequences support all sequence data types provided by PostgreSQL
- smallint, integer and bigint. This means that galloc sequences can be used in environments where
64-bit sequences are problematic, such as using integers in javascript since that supports only 53-bit
values, or when the sequence is displayed on output with limited space.

The range assigned by each voting is currently predetermined based on the datatype the sequence is
using:

• smallint - 1 000 numbers
• integer - 1 000 000 numbers
• bigint - 1 000 000 000 numbers

Each node will allocate 2 chunks of seq_chunk_size, one for the current use plus a reserved chunk for
future usage, so the values generated from any one node will increase monotonically. However, viewed
globally, the values generated will not be ordered at all. This could cause a loss of performance due to
the effects on b-tree indexes and will typically mean that generated values will not be useful as range
partition keys.

The main downside of the galloc sequences is that once the assigned range is used up, the sequence
generator has to ask for consensus about the next range for the local node which requires inter-node
communication, which could lead to delays or operational issues if the majority of the BDR group is not
accessible. This may be avoided in later releases.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

100

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

The CACHE, START, MINVALUE and MAXVALUE options work correctly with galloc sequences, however you
need to set them before transforming the sequence to galloc kind. The INCREMENT BY option also works
correctly, however, you cannot assign an increment value which is equal to or more than the above ranges
assigned for each sequence datatype. setval() does not reset the global state for galloc sequences
and should not be used.

A few limitations apply to galloc sequences. BDR tracks galloc sequences in a special BDR catalog
bdr.sequence_alloc. This catalog is required to track the currently allocated chunks for the galloc
sequences. The sequence name and namespace is stored in this catalog. Since the sequence chunk
allocation is managed via RAFT whereas any changes to the sequence name/namespace is managed
via replication stream, BDR currently does not support renaming galloc sequences, or moving them to
another namespace or renaming the namespace that contains a galloc sequence. The user should be
mindful of this limitation while designing application schema.

Usage

Before transforming a local sequence to galloc, you need to take care of these prerequisites:

When sequence kind is altered to galloc, it will be rewritten and restart from the defined start value of the
local sequence. If this happens on an existing sequence in a production database you will need to query
the current value then set the start value appropriately. To assist with this use case, BDR allows users
to pass a starting value with the function bdr.alter_sequence_set_kind(). If you are already using
offset and you have writes from multiple nodes, you need to check what is the greatest used value and
restart the sequence at least to the next value.

-- determine highest sequence value across all nodes
SELECT max((x->'response'->0->>'nextval')::bigint)

FROM json_array_elements(
bdr.run_on_all_nodes(

E'SELECT nextval(\'public.sequence\');'
)::jsonb AS x;

-- turn into a galloc sequence
SELECT bdr.alter_sequence_set_kind('public.sequence'::regclass, 'galloc', $MAX+MARGIN);

Since users cannot lock a sequence, you must leave a $MARGIN value to allow operations to continue
while the max() value is queried.

The bdr.sequence_alloc table will give information on the chunk size and what ranges are allocated
around the whole cluster. In this example we started our sequence from 333, and we have two nodes in
the cluster, we can see that we have a number of allocation 4, that is 2 per node and the chunk size is
1000000 that is related to an integer sequence.

SELECT * FROM bdr.sequence_alloc
WHERE seqid = 'public.categories_category_seq'::regclass;

seqid | seq_chunk_size | seq_allocated_up_to | seq_nallocs |
seq_last_alloc
-------------------------+----------------+---------------------+-------------+-----------------------------

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

101

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

categories_category_seq | 1000000 | 4000333 |
4 | 2020-05-21 20:02:15.957835+00
(1 row)

To see the ranges currently assigned to a given sequence on each node, use these queries:

• Node Node1 is using range from 333 to 2000333.

SELECT last_value AS range_start, log_cnt AS range_end
FROM categories_category_seq WHERE ctid = '(0,2)'; -- first range

range_start | range_end
-------------+-----------

334 | 1000333
(1 row)

SELECT last_value AS range_start, log_cnt AS range_end
FROM categories_category_seq WHERE ctid = '(0,3)'; -- second range

range_start | range_end
-------------+-----------

1000334 | 2000333
(1 row)

• Node Node2 is using range from 2000004 to 4000003.

SELECT last_value AS range_start, log_cnt AS range_end
FROM categories_category_seq WHERE ctid = '(0,2)'; -- first range

range_start | range_end
-------------+-----------

2000334 | 3000333
(1 row)

SELECT last_value AS range_start, log_cnt AS range_end
FROM categories_category_seq WHERE ctid = '(0,3)'; -- second range

range_start | range_end
-------------+-----------

3000334 | 4000333

NOTE You can’t combine it to single query (like WHERE ctid IN (‘(0,2)’, ‘(0,3)’)) as that will still only show
the first range.

When a node finishes a chunk, it will ask a consensus for a new one and get the first available; in our
case, it will be from 4000334 to 5000333. This will be the new reserved chunk, and it will start to consume
the old reserved chunk.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

102

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

UUIDs, KSUUIDs and Other Approaches

There are other ways to generate globally unique ids without using the global sequences which can be
used with BDR. For example:

• UUIDs, and their BDR variant, KSUUIDs
• Local sequences with a different offset per node (i.e. manual)
• An externally co-ordinated natural key

Please note that BDR applications cannot use other methods safely: counter-table based approaches
relying on SELECT ... FOR UPDATE, UPDATE ... RETURNING ... or similar for sequence generation
will not work correctly in BDR, because BDR doesn’t take row locks between nodes. The same values
will be generated on more than one node. For the same reason the usual strategies for “gapless”
sequence generation do not work with BDR. In most cases the application should coordinate generation
of sequences that must be gapless from some external source using two-phase commit, or it should only
generate them on one node in the BDR group.

UUIDs and KSUUIDs

UUID keys instead avoid sequences entirely and use 128-bit universal unique identifiers. These are
random or pseudorandom values that are large enough that it’s nearly impossible for the same value to
be generated twice. There is no need for nodes to have continuous communication when using UUID
keys.

In the incredibly unlikely event of a collision, conflict detection will choose the newer of the two inserted
records to retain. Conflict logging, if enabled, will record such an event, but it is exceptionally unlikely to
ever occur, since collisions only become practically likely after about 2^64 keys have been generated.

The main downside of UUID keys is that they’re somewhat space- and network inefficient, consuming
more space not only as a primary key, but also where referenced in foreign keys and when transmitted
on the wire. Additionally, not all applications cope well with UUID keys.

BDR provides functions for working with a K-Sortable variant of UUID data, known as KSUUID, which
generates values that can be stored using PostgreSQL’s standard UUID data type. A KSUUID value is
similar to UUIDv1 in that it stores both timestamp and random data, following the UUID standard. The
difference is that KSUUID is K-Sortable, meaning that it’s weakly sortable by timestamp. This makes
it more useful as a database key, improving the effectiveness of search, allows natural time-sorting of
result data and because it produces more compact btree indexes. Unlike UUIDv1, KSUUID values do not
include the MAC of the computer on which they were generated, so there should be no security concerns
from using KSUUIDs.

KSUUID v2 is now recommended in all cases. Values generated are directly sortable with regular
comparison operators.

There are two versions of KSUUID in BDR. The legacy KSUUID v1 is now deprecated but kept in order to
support existing installations and should not be used for new installations. The internal contents of the v1

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

103

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

and v2 are not compatible and as such the functions to manipulate them are also not compatible. The v2
of KSUUID also no longer stores the UUID version number.

Step & Offset Sequences

In offset-step sequences, a normal PostgreSQL sequence is used on each node. Each sequence
increments by the same amount and starts at differing offsets. For example with step 1000, node1’s
sequence generates 1001, 2001, 3001, and so on, node2’s generates 1002, 2002, 3002, etc. This
scheme works well even if the nodes cannot communicate for extended periods, but requires that the
designer specify a maximum number of nodes when establishing the schema and requires per-node
configuration. However, mistakes can easily lead to overlapping sequences.

It is relatively simple to configure this approach with BDR by creating the desired sequence on one node,
like this:

CREATE TABLE some_table (
generated_value bigint primary key

);

CREATE SEQUENCE some_seq INCREMENT 1000 OWNED BY some_table.generated_value;

ALTER TABLE some_table ALTER COLUMN generated_value SET DEFAULT nextval('some_seq');

. . . then on each node calling setval() to give each node a different offset starting value, e.g.:

-- On node 1
SELECT setval('some_seq', 1);

-- On node 2
SELECT setval('some_seq', 2);

-- ... etc

You should be sure to allow a large enough INCREMENT to leave room for all the nodes you may ever
want to add, since changing it in future is difficult and disruptive.

If you use bigint values there is no practical concern about key exhaustion even if you use offsets of
10000 or more. You’ll need hundreds of years with hundreds of machines doing millions of inserts per
second to have any chance of approaching exhaustion.

BDR does not currently offer any automation for configuration of the per-node offsets on such step/offset
sequences.

Composite Keys

A variant on step/offset sequences is to use a composite key composed of PRIMARY KEY (node_number, generated_value)
where the node number is usually obtained from a function that returns a different number on each node.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

104

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Such a function may be created by temporarily disabling DDL replication and creating a constant SQL
function, or by using a one-row table that isn’t part of a replication set to store a different value in each
node.

Global Sequence Management Interfaces

BDR provides an interface for converting between a standard PostgreSQL sequence and the BDR global
sequence.

Note that the following functions are considered to be DDL so DDL replication and global locking applies
to them.

bdr.alter_sequence_set_kind

Sets the kind of a sequence. Once set, seqkind is only visible via the bdr.sequences view; in all other
ways the sequence will appear as a normal sequence.

BDR treats this function as DDL so DDL replication and global locking applies, if that is currently active.
See DDL Replication.

Cannot be used on a sequence created for a SERIAL datatype.

Synopsis

bdr.alter_sequence_set_kind(seqoid regclass, seqkind text, int64 start DEFAULT NULL)

Parameters

• seqoid - name or Oid of the sequence to be altered
• seqkind - local for a standard PostgreSQL sequence, timeshard for BDR global sequence

which uses the “time and sharding” based algorithm described in the BDR Global Sequences
section, or galloc for globally-allocated range sequences which use consensus between nodes to
assign unique ranges of sequence numbers to each node

• start - start value for local and galloc sequence - passing any NOT NULL value is same as calling
ALTER SEQUENCE ... START WITH ... RESTART.

Notes

When changing the sequence kind to galloc, the first allocated range for that sequence will use the
sequence start value as starting point. When there are already existing values used by the sequence
before it was changed to galloc, it is recommended to move the starting point so that the newly
generated values will not conflict the existing ones using the following command:

ALTER SEQUENCE seq_name START starting_value RESTART

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

105

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

This function uses the same replication mechanism as DDL statements. This means the replication is
affected by the ddl filters configuration.

The function will take a global DDL lock. It will also lock the sequence locally.

This function is transactional - the effects can be rolled back with the ROLLBACK of the transaction and
the changes are visible to the current transaction.

The bdr.alter_sequence_set_kind function can be only executed by the owner of the sequence,
unless bdr.backwards_compatibility is set is set to 30618 or below.

bdr.extract_timestamp_from_timeshard

Extract the timestamp component of the timeshard sequence. The return value is of type “timestamptz”.

Synopsis

bdr.extract_timestamp_from_timeshard(timeshard_seq bigint)

Parameters

• timeshard_seq - value of a timeshard sequence

Notes

This function is only executed on the local node.

bdr.extract_nodeid_from_timeshard

Extract the nodeid component of the timeshard sequence.

Synopsis

bdr.extract_nodeid_from_timeshard(timeshard_seq bigint)

Parameters

• timeshard_seq - value of a timeshard sequence

Notes

This function is only executed on the local node.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

106

repsets.md#ddl-replication-filtering

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.extract_localseqid_from_timeshard

Extract the local sequence value component of the timeshard sequence.

Synopsis

bdr.extract_localseqid_from_timeshard(timeshard_seq bigint)

Parameters

• timeshard_seq - value of a timeshard sequence

Notes

This function is only executed on the local node.

bdr.timestamp_to_timeshard

Convert a timestamp value to a dummy timeshard sequence value.

This is useful for doing indexed searches or comparisons of values in the timeshard column and for a
specific timestamp.

For example, given a table foo with a column id which is using a timeshard sequence, we can get the
number of changes since yesterday midnight like this:

SELECT count(1) FROM foo WHERE id > bdr.timestamp_to_timeshard('yesterday')

A query formulated this way will use an index scan on the column id.

Synopsis

bdr.timestamp_to_timeshard(ts timestamptz)

Parameters

• ts - timestamp to be used for the timeshard sequence generation

Notes

This function is only executed on local node.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

107

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

KSUUID v2 Functions

Functions for working with KSUUID v2 data, K-Sortable UUID data.

bdr.gen_ksuuid_v2

Generates a new KSUUID v2 value, using the value of timestamp passed as an argument or current
system time if NULL is passed. If you want to generate KSUUID automatically using system time pass
NULL argument.

The return value is of type “UUID”.

Synopsis

bdr.gen_ksuuid_v2(timestamptz)

Notes

This function is only executed on the local node.

bdr.ksuuid_v2_cmp

Compare the KSUUID v2 values.

Returns 1 if first value is newer, -1 if second value is lower, or zero if they are equal.

Synopsis

bdr.ksuuid_v2_cmp(uuid, uuid)

Parameters

• UUID - KSUUID v2 to compare

Notes

This function is only executed on local node.

bdr.extract_timestamp_from_ksuuid_v2

Extract the timestamp component of KSUUID v2. The return value is of type “timestamptz”.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

108

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Synopsis

bdr.extract_timestamp_from_ksuuid_v2(uuid)

Parameters

• UUID - KSUUID v2 value to extract timestamp from

Notes

This function is only executed on the local node.

KSUUID v1 Functions

Functions for working with KSUUID v1 data, K-Sortable UUID data(v1).

bdr.gen_ksuuid

Generates a new KSUUID v1 value, using the current system time. The return value is of type “UUID”.

Synopsis

bdr.gen_ksuuid()

Notes

This function is only executed on the local node.

bdr.uuid_v1_cmp

Compare the KSUUID v1 values.

Returns 1 if first value is newer, -1 if second value is lower, or zero if they are equal.

Synopsis

bdr.uuid_v1_cmp(uuid, uuid)

Notes

This function is only executed on the local node.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

109

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Parameters

• UUID - KSUUID v1 to compare

bdr.extract_timestamp_from_ksuuid

Extract the timestamp component of KSUUID v1 or UUIDv1 values. The return value is of type “times-
tamptz”.

Synopsis

bdr.extract_timestamp_from_ksuuid(uuid)

Parameters

• UUID - KSUUID v1 value to extract timestamp from

Notes

This function is only executed on the local node.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

110

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Durability & Performance Options

Overview

Synchronous or Eager Replication synchronizes between at least two nodes of the cluster before
committing a transaction. This provides three properties of interest to applications, which are related, but
can all be implemented individually:

• Durability: writing to multiple nodes increases crash resilience and allows the data to be recovered
after a crash and restart.

• Visibility: with the commit confirmation to the client, the database guarantees immediate visibility
of the committed transaction on some sets of nodes.

• No Conflicts After Commit : the client can rely on the transaction to eventually be applied on all
nodes without further conflicts, or get an abort directly informing the client of an error.

PGLogical (PGL) integrates with the synchronous_commit option of Postgres itself, providing a variant
of synchronous replication, which can be used between BDR nodes. In addition, BDR offers Eager
All-Node Replication and Commit At Most Once in the Enterprise Edition.

Postgres itself provides Physical Streaming Replication (PSR), which is uni-directional, but offers a
synchronous variant that can used in combination with BDR.

This chapter covers the various forms of synchronous or eager replication and its timing aspects.

Comparison

Most options for synchronous replication available to BDR allow for different levels of synchronization,
offering different trade-offs between performance and protection against node or network outages.

The following table summarizes what a client can expect from a peer node replicated to after having
received a COMMIT confirmation from the origin node the transaction was issued to.

Variant Mode Received Visible Durable
PGL/BDR (default) no no no

PGL/BDR remote_write yes no no

PGL/BDR on yes yes yes

PGL/BDR remote_apply yes yes yes

PSR remote_write yes no no (1)

PSR on yes no yes

PSR remote_apply yes yes yes

(1) written to the OS, durable if the OS remains running and only Postgres crashes.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

111

https://www.postgresql.org/docs/11/warm-standby.html#SYNCHRONOUS-REPLICATION

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Reception ensures the peer will be able to eventually apply all changes of the transaction without requiring
any further communication, i.e. even in the face of a full or partial network outage. All modes considered
synchronous provide this protection.

Visibility implies the transaction was applied remotely, and any possible conflicts with concurrent transac-
tions have been resolved. Without durability, i.e. prior to persisting the transaction, a crash of the peer
node may revert this state (and require re-transmission and re-application of the changes).

Durability relates to the peer node’s storage and provides protection against loss of data after a crash
and recovery of the peer node. If the transaction has already been visible before the crash, it will be
recovered to be visible, again. Otherwise, the transaction’s payload is persisted and the peer node will be
able to apply the transaction eventually (without requiring any re-transmission of data).

Internal Timing of Operations

For a better understanding of how the different modes work, it is helpful to realize PSR and PGLogical
apply transactions rather differently.

With physical streaming replication, the order of operations is:

• origin flushes a commit record to WAL, making the transaction visible locally
• peer node receives changes and issues a write
• peer flushes the received changes to disk
• peer applies changes, making the transaction visible locally

With PGLogical, the order of operations is different:

• origin flushes a commit record to WAL, making the transaction visible locally
• peer node receives changes into its apply queue in memory
• peer applies changes, making the transaction visible locally
• peer persists the transaction by flushing to disk

The following table summarizes the differences.

Variant
Order of apply vs persist on

peer nodes
Replication before or after origin WAL
commit record write

PSR persist first after

PGL apply first after

Planned Shutdown and Restarts

When using PGL in combination with remote_write, care must be taken with planned shutdown or
restart. By default, the apply queue is consumed prior to shutting down. However, in the immediate

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

112

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

shutdown mode, the queue is discarded at shutdown, leading to the stopped node “forgetting” transactions
in the queue. A concurrent failure of another node could lead to loss of data, as if both nodes failed.

To ensure the apply queue gets flushed to disk, please use either smart or fast shutdown for mainte-
nance tasks. This maintains the required synchronization level and prevents loss of data.

Synchronous Replication using PGLogical

Usage

To enable synchronous replication using PGLogical, the application name of the relevant BDR peer
nodes need to be added to synchronous_standby_names. The use of FIRST x or ANY x offers a lot
of flexibility, if this does not conflict with the requirements of non-BDR standby nodes.

Once added, the level of synchronization can be configured per transaction via synchronous_commit,
which defaults to on - meaning that adding to synchronous_standby_names already enables syn-
chronous replication. Setting synchronous_commit to local or off turns off synchronous replication.

Due to PGLogical applying the transaction before persisting it, the values on and remote_apply are
equivalent (for logical replication).

Limitations

PGLogical uses the same configuration (and internal mechanisms) as Physical Streaming Replication,
therefore the needs for (physical, non-BDR) standbys needs to be considered when configuring syn-
chronous replication between BDR nodes using PGLogical. Most importantly, it is not possible to use
different synchronization modes for a single transaction.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

113

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Replication Sets

A replication set is a group of tables which can be subscribed to by a BDR node. Replication sets can
be used to create more complex replication topologies than regular symmetric multi-master where each
node is exact copy of the other nodes.

Every BDR group automatically creates a replication set with the same name as the group itself. This
replication set is the default replication set which is used for all user tables and DDL replication and all
nodes are subscribed to it. In other words, by default all user tables are replicated between all nodes.

Behavior of Partitioned Tables

From PostgreSQL 11 onwards, BDR supports partitioned tables transparently. This means that a
partitioned table can be added to a replication set and changes that involve any of the partitions will be
replicated downstream.

Note
When partitions are replicated through a partitioned table, the statements executed
directly on a partition are replicated as they were executed on the parent table. The
exception is the TRUNCATE command which always replicates with the list of affected
tables or partitions.

It’s possible to add individual partitions to the replication set in which case they will be replicated like
regular tables (to the table of the same name as the partition on the downstream). This has some
performance advantages in the case partitioning definition is the same on both provider and subscriber,
as the partitioning logic does not have to be executed.

Note
If a root partitioned table is part of any replication set, memberships of individual partitions
are ignored and only the membership of said root table will be taken into account.

In PostgreSQL 10 and older, BDR only allows replication of partitions directly to other partitions.

Behavior with Foreign Keys

A Foreign Key constraint ensures that each row in the referencing table matches a row in the referenced
table. Therefore, if the referencing table is a member of a replication set, the referenced table must also
be a member of the same replication set.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

114

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

The current version of BDR does not automatically check or enforce this condition. It is therefore the
responsibility of the database administrator to make sure, when adding a table to a replication set, that
all the tables referenced via foreign keys are also added.

The following query can be used to list all the foreign keys and replication sets that do not satisfy this
requirement, i.e. such that the referencing table is a member of the replication set, while the referenced
table is not:

SELECT t1.relname,
t1.nspname,
fk.conname,
t1.set_name

FROM bdr.tables AS t1
JOIN pg_catalog.pg_constraint AS fk

ON fk.conrelid = t1.relid
AND fk.contype = 'f'

WHERE NOT EXISTS (
SELECT *

FROM bdr.tables AS t2
WHERE t2.relid = fk.confrelid

AND t2.set_name = t1.set_name
);

The output of this query looks like the following:

relname | nspname | conname | set_name
---------+---------+-----------+----------
t2 | public | t2_x_fkey | s2

(1 row)

This means that table t2 is member of replication set s2, but the table which is referenced by the foreign
key t2_x_fkey is not.

Note
The TRUNCATE CASCADE command will take into account the replication set membership
before replicating the command, e.g.

TRUNCATE table1 CASCADE;

This will become a TRUNCATE without cascade on all the tables that are part of the replication set only:

TRUNCATE table1, referencing_table1, referencing_table2 ...

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

115

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Replication Set Management

Management of replication sets, the following functions:

Note that with the exception of bdr.alter_node_replication_sets, following functions are consid-
ered to be DDL so DDL replication and global locking applies to them, if that is currently active. See DDL
Replication

bdr.create_replication_set

Creates a replication set.

Replication of this command is affected by DDL replication configuration including DDL filtering settings.

Synopsis

bdr.create_replication_set(set_name name,
replicate_insert boolean DEFAULT true,
replicate_update boolean DEFAULT true,
replicate_delete boolean DEFAULT true,
replicate_truncate boolean DEFAULT true,
autoadd_tables boolean DEFAULT false,
autoadd_existing boolean DEFAULT true)

Parameters

• set_name - name of the new replication set; must be unique across the BDR group
• replicate_insert - indicates whether inserts into tables in this replication set should be repli-

cated
• replicate_update - indicates whether updates of tables in this replication set should be replicated
• replicate_delete - indicates whether deletes from tables in this replication set should be

replicated
• replicate_truncate - indicates whether truncates of tables in this replication set should be

replicated
• autoadd_tables - indicates whether newly created (future) tables should be added to this replica-

tion set
• autoadd_existing - indicates whether all existing user tables should be added to this replication

set, this only has effect if autoadd_tables is set to true

Notes

By default, new replication sets do not replicate DDL or BDR administration function calls. See ddl filters
below on how to set up DDL replication for replication sets. There is a preexisting DDL filter set up for the
default group replication set which replicates all DDL and admin function calls, which is created when the

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

116

repsets.md#ddl-replication-filtering

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

group is created, but can be dropped in case it’s not desirable for the BDR group default replication set to
replicate DDL or the BDR administration function calls.

This function uses the same replication mechanism as DDL statements. This means that the replication is
affected by the ddl filters configuration.

The function will take a DDL global lock.

This function is transactional - the effects can be rolled back with the ROLLBACK of the transaction and
the changes are visible to the current transaction.

bdr.alter_replication_set

Modifies options of an existing replication set.

Replication of this command is affected by DDL replication configuration including DDL filtering settings.

Synopsis

bdr.alter_replication_set(set_name name,
replicate_insert boolean DEFAULT NULL,
replicate_update boolean DEFAULT NULL,
replicate_delete boolean DEFAULT NULL,
replicate_truncate boolean DEFAULT NULL,
autoadd_tables boolean DEFAULT NULL)

Parameters

• set_name - name of an existing replication set
• replicate_insert - indicates whether inserts into tables in this replication set should be repli-

cated
• replicate_update - indicates whether updates of tables in this replication set should be replicated
• replicate_delete - indicates whether deletes from tables in this replication set should be

replicated
• replicate_truncate - indicates whether truncates of tables in this replication set should be

replicated
• autoadd_tables - indicates whether newly created (future) tables should be added to this replica-

tion set

Any of the options that are set to NULL (the default) will remain the same as before.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

117

repsets.md#ddl-replication-filtering

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Notes

This function uses same replication mechanism as DDL statements. This means the replication is affected
by the ddl filters configuration.

The function will take a DDL global lock.

This function is transactional - the effects can be rolled back with the ROLLBACK of the transaction and
the changes are visible to the current transaction.

bdr.drop_replication_set

Removes an existing replication set.

Replication of this command is affected by DDL replication configuration including DDL filtering settings.

Synopsis

bdr.drop_replication_set(set_name name)

Parameters

• set_name - name of an existing replication set

Notes

This function uses the same replication mechanism as DDL statements. This means the replication is
affected by the ddl filters configuration.

The function will take a DDL global lock.

This function is transactional - the effects can be rolled back with the ROLLBACK of the transaction and
the changes are visible to the current transaction.

Warning
Do not drop a replication set which is being used by at least another node, because this
will stop replication on that node. Should this happen, please unsubscribe the affected
node from that replication set.
For the same reason, you should not drop a replication set if there is a join operation in
progress, and the node being joined is a member of that replication set; replication set
membership is only checked at the beginning of the join.
This happens because the information on replication set usage is local to each node, so
that it can be configured on a node before it joins the group.

You can manage replication set subscription for a node using alter_node_replication_sets which
is mentioned below.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

118

repsets.md#ddl-replication-filtering
repsets.md#ddl-replication-filtering

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.alter_node_replication_sets

Changes which replication sets a node publishes and is subscribed to.

Synopsis

bdr.alter_node_replication_sets(node_name name,
set_names text[])

Parameters

• node_name - which node to modify; currently has to be local node
• set_names - array of replication sets to replicate to the specified node; an empty array will result in

the use of the group default replication set

Notes

This function is only executed on the local node and not replicated in any manner.

The replication sets listed are not checked for existence, since this function is designed to be executed
before the node joins. Be careful to specify replication set names correctly to avoid errors.

This allows for calling the function not only on the node that’s part of the BDR group, but also on a node
that hasn’t joined any group yet in order to limit what data is synchronized during the join. However please
note that schema is always fully synchronized without regard to the replication sets setting, meaning
that all tables are copied across, not just the ones specified in the replication set. Unwanted tables can
be dropped by referring to the bdr.tables catalog table. These might be removed automatically in
later versions of BDR. This is currently true even if the ddl filters configuration would otherwise prevent
replication of DDL.

Replication Set Membership

Tables can be added and removed to one or multiple replication sets. This only affects replication of
changes (DML) in those tables, schema changes (DDL) handled by DDL replication set filters (see DDL
Replication Filtering below).

The replication uses the table membership in replication sets in combination with the node replication
sets configuration to determine which actions should be replicated to which node. The decision is done
using the union of all the memberships and replication set options. This means that if a table is a member
of replication set A which replicates only INSERTs and replication set B which replicates only UPDATEs,
both INSERTs and UPDATEs will be replicated if the target node is also subscribed to both replication
set A and B.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

119

repsets.md#ddl-replication-filtering

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.replication_set_add_table

Adds a table to a replication set.

This will add a table to replication set and start replication of changes from this moment (or rather
transaction commit). Any existing data the table may have on a node will not be synchronized.

Replication of this command is affected by DDL replication configuration including DDL filtering settings.

Synopsis

bdr.replication_set_add_table(relation regclass,
set_name name DEFAULT NULL,
columns text[] DEFAULT NULL,
row_filter text DEFAULT NULL)

Parameters

• relation - name or Oid of a table
• set_name - name of the replication set; if NULL (the default) the BDR group default replication set

is used
• columns - reserved for future use (currently does nothing and must be NULL)
• row_filter - SQL expression to be used for filtering the replicated rows; if this expression is not

defined (i.e. NULL - the default) all rows are sent

The row_filter specifies an expression producing a Boolean result, with NULLs. Expressions eval-
uating to True or Unknown will replicate the row; a False value will not replicate the row. Expressions
cannot contain subqueries nor refer to variables other than columns of the current row being replicated.
No system columns may be referenced.

row_filter executes on the origin node, not on the target node. This puts an additional CPU overhead
on replication for this specific table, but will completely avoid sending data for filtered rows, hence
reducing network bandwidth and apply overhead on the target node.

row_filter will never remove TRUNCATE commands for a specific table. TRUNCATE commands can be
filtered away at the replication set level; see earlier.

It is possible to replicate just some columns of a table, see Replicating between nodes with differences.

Notes

This function uses same replication mechanism as DDL statements. This means the replication is affected
by the ddl filters configuration.

The function will take a DML global lock on the relation that’s being added to the replication set if the
row_filter is not NULL, otherwise it will take just a DDL global lock.

This function is transactional - the effects can be rolled back with the ROLLBACK of the transaction and
the changes are visible to the current transaction.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

120

repsets.md#ddl-replication-filtering

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.replication_set_remove_table

Removes a table from the replication set.

Replication of this command is affected by DDL replication configuration including DDL filtering settings.

Synopsis

bdr.replication_set_remove_table(relation regclass,
set_name name DEFAULT NULL)

Parameters

• relation - name or Oid of a table
• set_name - name of the replication set; if NULL (the default) then the BDR group default replication

set is used

Notes

This function uses same replication mechanism as DDL statements. This means the replication is affected
by the ddl filters configuration.

The function will take a DDL global lock.

This function is transactional - the effects can be rolled back with the ROLLBACK of the transaction and
the changes are visible to the current transaction.

Listing Replication Sets

Existing replication sets can be listed with the following query:

SELECT set_name
FROM bdr.replication_sets;

This query can be used to list all the tables in a given replication set:

SELECT nspname, relname
FROM bdr.tables
WHERE set_name = 'myrepset';

In the section Behavior with Foreign Keys above we report a query that lists all the foreign keys whose
referenced table is not included in the same replication set as the referencing table.

Use the following SQL to show the replication sets the current node publishes and subscribes from:

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

121

repsets.md#ddl-replication-filtering

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT s.node_id,
s.node_name,
COALESCE(

i.replication_sets,
ARRAY[s.default_repset_name]::NAME[]

) AS replication_sets
FROM bdr.local_node_summary s
INNER JOIN bdr.node_local_info i ON i.node_id = s.node_id;

This produces output like this:

node_id | node_name | replication_sets
------------+-----------+--------------------
1834550102 | s01db01 | {bdrglobal,bdrs01}

(1 row)

To get the same query executed on against all nodes in the cluster, thus getting which replication sets
are associated to all nodes at the same time, we can use the following query:

WITH node_repsets AS (
SELECT jsonb_array_elements(

bdr.run_on_all_nodes($$
SELECT s.node_id,

s.node_name,
COALESCE(

i.replication_sets,
ARRAY[s.default_repset_name]::NAME[]

) AS replication_sets
FROM bdr.local_node_summary s
INNER JOIN bdr.node_local_info i ON i.node_id = s.node_id

$$)::jsonb
) AS j

)
SELECT j->'response'->0->>'node_id' AS node_id,

j->'response'->0->>'node_name' AS node_name,
j->'response'->0->>'replication_sets' AS replication_sets

FROM node_repsets;

This will show, for example:

node_id | node_name | replication_sets
------------+-----------+--------------------
933864801 | s02db01 | {bdrglobal,bdrs02}
1834550102 | s01db01 | {bdrglobal,bdrs01}
3898940082 | s01db02 | {bdrglobal,bdrs01}
1102086297 | s02db02 | {bdrglobal,bdrs02}

(4 rows)

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

122

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

DDL Replication Filtering

By default the replication of all supported DDL happens via the default BDR group replication set. This is
achieved by the existence of a DDL filter with the same name as the BDR group which is automatically
added to the default BDR group replication set when the BDR group is created.

The above can be adjusted by changing the DDL replication filters for all existing replication sets. These
filters are independent of table membership in the replication sets. Just like data changes, each DDL
statement will be replicated only once no matter if it’s matched by multiple filters on multiple replication
sets.

You can list existing DDL filters with the following query, which shows for each filter the regular expression
applied to the command tag and to the role name:

SELECT * FROM bdr.ddl_replication;

The following functions can be used to manipulate DDL filters. Note that they are considered to be DDL,
and therefore subject to DDL replication and global locking.

bdr.replication_set_add_ddl_filter

Adds a DDL filter to a replication set.

Any DDL that matches the given filter will be replicated to any node which is subscribed to that set. This
also affects replication of BDR admin functions.

Note that this does not prevent execution of DDL on any node, it only alters whether DDL is replicated,
or not, to other nodes. So if two nodes have a replication filter between them that excludes all index
commands, then index commands can still be executed freely by directly connecting to each node and
executing the desired DDL on that node.

The DDL filter can specify a command_tag and role_name to allow replication of only some DDL
statements. The command_tag is same as those used by EVENT TRIGGERs for regular PostgreSQL
commands. A typical example might be to create a filter that prevents additional index commands on a
logical standby from being replicated to all other nodes.

The BDR admin functions use can be filtered using a tagname matching the qualified function name
(for example bdr.replication_set_add_table will be the command tag for the function of the same
name). For example, this allows all BDR functions to be filtered using bdr.*.

The role_name is used for matching against the current role which is executing the command. Both
command_tag and role_name are evaluated as regular expressions which are case sensitive.

Synopsis

bdr.replication_set_add_ddl_filter(set_name name,
ddl_filter_name text,
command_tag text,
role_name text DEFAULT NULL)

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

123

https://www.postgresql.org/docs/current/static/event-trigger-matrix.html

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Parameters

• set_name - name of the replication set; if NULL the BDR group default replication set is used
• ddl_filter_name - name of the DDL filter; this must be unique across the whole BDR group
• command_tag - regular expression for matching command tags, NULL means match everything
• role_name - regular expression for matching role name, NULL means match all roles

Notes

This function uses same replication mechanism as DDL statements. This means the replication is affected
by the ddl filters configuration. Please note that this means that replication of changes to ddl filter
configuration is affected by existing ddl filter configuration!

The function will take a DDL global lock.

This function is transactional - the effects can be rolled back with the ROLLBACK of the transaction and
the changes are visible to the current transaction.

To view which replication filters are defined, use the view bdr.ddl_replication.

Examples

To include only BDR admin functions, define a filter like this

SELECT bdr.replication_set_add_ddl_filter('mygroup', 'mygroup_admin', $$bdr\..*$$);

To exclude everything apart from index DDL

SELECT bdr.replication_set_add_ddl_filter('mygroup', 'index_filter',
'^(?!(CREATE INDEX|DROP INDEX|ALTER INDEX)).*');

To include all operations on tables and indexes, but exclude all others, add two filters, one for tables, one
for indexes. This illustrates that multiple filters provide the union of all allowed DDL commands.

SELECT bdr.replication_set_add_ddl_filter('bdrgroup','index_filter', '^((?!INDEX).)*$');
SELECT bdr.replication_set_add_ddl_filter('bdrgroup','table_filter', '^((?!TABLE).)*$');

bdr.replication_set_remove_ddl_filter

Remove DDL filter from a replication set.

Replication of this command is affected by DDL replication configuration including DDL filtering settings
themselves!

Synopsis

bdr.replication_set_remove_ddl_filter(set_name name,
ddl_filter_name text)

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

124

repsets.md#ddl-replication-filtering

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Parameters

• set_name - name of the replication set, if NULL the BDR group default replication set is used
• ddl_filter_name - name of the DDL filter to remove

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is
affected by the ddl filters configuration. Please note that this means that replication of changes to the
DDL filter configuration is affected by the existing DDL filter configuration.

The function will take a DDL global lock.

This function is transactional - the effects can be rolled back with the ROLLBACK of the transaction and
the changes are visible to the current transaction.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

125

repsets.md#ddl-replication-filtering

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Monitoring

Monitoring replication setups is important to ensure that your system performs optimally and does not
run out of disk space or encounter other faults that may halt operations.

It is important to have automated monitoring in place to ensure that if, for example, replication slots start
falling badly behind, the administrator is alerted and can take proactive action.

BDR Cluster Manager, a plugin for OmniDB, provides a packaged monitoring solution that is available via
the 2ndQuadrant portal.

In addition, tools or users can make their own calls into BDR using the facilities discussed
below. When you wish to make the same request of multiple BDR nodes, consider using the
bdr.run_on_all_nodes() function to simplify the task.

Monitoring Node Join and Removal

By default, the node management functions wait for the join or part operation to complete. This can be
turned off using the respective wait_for_completion function argument. If waiting is turned off, then
to see when a join or part operation finishes, check the node state indirectly via bdr.node_summary and
bdr.state_journal_details.

When called, the helper function bdr.wait_for_join_completion() will cause a PostgreSQL session
to pause until all outstanding node join operations complete.

Here is an example output of a SELECT query from bdr.node_summary that indicates that two nodes
are active and another one is joining:

SELECT node_name, interface_connstr, peer_state_name,
node_seq_id, node_local_dbname
FROM bdr.node_summary;
-[RECORD 1]-----+---
node_name | node1
interface_connstr | host=localhost dbname=postgres port=7432
peer_state_name | ACTIVE
node_seq_id | 1
node_local_dbname | postgres
-[RECORD 2]-----+---
node_name | node2
interface_connstr | host=localhost dbname=postgres port=7433
peer_state_name | ACTIVE
node_seq_id | 2
node_local_dbname | postgres
-[RECORD 3]-----+---
node_name | node3
interface_connstr | host=localhost dbname=postgres port=7434

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

126

https://2ndquadrant.com

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

peer_state_name | JOINING
node_seq_id | 3
node_local_dbname | postgres

Also, the table bdr.node_catchup_info will give information on the catch-up state, which can be
relevant to joining nodes or parting nodes.

When a node is parted, it could be that some nodes in the cluster did not receive all the data from that
parting node. So it will create a temporary slot from a node that already received that data and can
forward it.

The catchup_state can be one of the following:

10 = setup
20 = start
30 = catchup
40 = done

Monitoring Replication Peers

There are two main views used for monitoring of replication activity:

• bdr.node_slots for monitoring outgoing replication
• bdr.subscription_summary for monitoring incoming replication

Most of the information provided by bdr.node_slots can be also obtained by querying the
standard PostgreSQL replication monitoring views pg_catalog.pg_stat_replication and
pg_catalog.pg_replication_slots.

Each node has one BDR group slot which should never have a connection to it and will very rarely
be marked as active. This is normal, and does not imply something is down or disconnected. See
Replication Slots created by BDR.

Monitoring Outgoing Replication

Administrators may query bdr.node_slots for outgoing replication from the local node. It shows
information about replication status of all other nodes in the group that are known to the current node, as
well as any additional replication slots created by BDR on the current node.

SELECT node_group_name, target_dbname, target_name, slot_name, active_pid,
catalog_xmin, client_addr, sent_lsn, replay_lsn, replay_lag,
replay_lag_bytes, replay_lag_size
FROM bdr.node_slots;
-[RECORD 1]---+----------------------------
node_group_name | bdrgroup
target_dbname | postgres

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

127

https://www.postgresql.org/docs/current/static/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/current/view-pg-replication-slots.html

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

target_name | node3
slot_name | bdr_postgres_bdrgroup_node3
active_pid | 15089
catalog_xmin | 691
client_addr | 127.0.0.1
sent_lsn | 0/23F7B70
replay_lsn | 0/23F7B70
replay_lag | [NULL]
replay_lag_bytes| 120
replay_lag_size | 120 bytes
-[RECORD 2]---+----------------------------
node_group_name | bdrgroup
target_dbname | postgres
target_name | node2
slot_name | bdr_postgres_bdrgroup_node2
active_pid | 15031
catalog_xmin | 691
client_addr | 127.0.0.1
sent_lsn | 0/23F7B70
replay_lsn | 0/23F7B70
replay_lag | [NULL]
replay_lag_bytes| 84211
replay_lag_size | 82 kB

Note that because BDR is a mesh network, to get full view of lag in the cluster, this query has to be
executed on all nodes participating.

replay_lag_bytes reports the difference in WAL positions between the local server’s current WAL write
position and replay_lsn, the last position confirmed replayed by the peer node. replay_lag_size is
just a human-readable form of the same. It is important to understand that WAL usually contains a lot
of writes that are not replicated but still count in replay_lag_bytes, including VACUUM activity, index
changes, writes associated with other databases on the same node, writes for tables that are not part of a
replication set, etc. So the lag in bytes reported here is not the amount of data that must be replicated on
the wire to bring the peer node up to date, only the amount of server-side WAL that must be processed.

Similarly, replay_lag is not a measure of how long the peer node will take to catch up, or how long it will
take to replay from its current position to the write position at the time bdr.node_slots was queried. It
measures the delay between when the peer confirmed the most recent commit and the current wall-clock
time. We suggest that you monitor replay_lag_bytes and replay_lag_size or catchup_interval
in bdr.node_replication_rates, as this column is set to zero immediately after the node reconnects.

The lag in both bytes and time does not advance while logical replication is streaming a transaction. It
only changes when a commit is replicated. So the lag will tend to “sawtooth”, rising as a transaction
is streamed, then falling again as the peer node commits it, flushes it, and sends confirmation. The
reported LSN positions will “stair-step” instead of advancing smoothly, for similar reasons.

When replication is disconnected (active = 'f'), the active_pid column will be NULL, as will

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

128

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

client_addr and other fields that only make sense with an active connection. The state field will be
'disconnected'. The _lsn fields will be the same as the confirmed_flush_lsn, since that is the
last position that the client is known for certain to have replayed to and saved. The _lag fields will show
the elapsed time between the most recent confirmed flush on the client and the current time, and the
_lag_size and _lag_bytes fields will report the distance between confirmed_flush_lsn and the
local server’s current WAL insert position.

Note: It is normal for restart_lsn to be behind the other lsn columns; this does not indicate a problem
with replication or a peer node lagging. The restart_lsn is the position that PostgreSQL’s internal
logical decoding must be reading WAL at if interrupted, and generally reflects the position of the oldest
transaction that is not yet replicated and flushed. A very old restart_lsn can make replication slow
to restart after disconnection and force retention of more WAL than is desirable, but will otherwise
be harmless. If you are concerned, look for very long running transactions and forgotten prepared
transactions.

Monitoring Incoming Replication

Incoming replication (also called subscription) can be monitored by querying the bdr.subscription_summary
view. This shows the list of known subscriptions to other nodes in the BDR cluster and the state of the
replication worker, e.g.:

SELECT node_group_name, origin_name, sub_enabled, sub_slot_name,
subscription_status
FROM bdr.subscription_summary;
-[RECORD 1]-------+----------------------------
node_group_name | bdrgroup
origin_name | node2
sub_enabled | t
sub_slot_name | bdr_postgres_bdrgroup_node1
subscription_status | replicating
-[RECORD 2]-------+----------------------------
node_group_name | bdrgroup
origin_name | node3
sub_enabled | t
sub_slot_name | bdr_postgres_bdrgroup_node1
subscription_status | replicating

Monitoring BDR Replication Workers

All BDR workers show up in the system view pg_stat_activity. So this view offers some insight into the
state of a BDR system.

The view bdr.worker_errors shows errors (if any) reported by any worker. BDR 3.6 depended explicitly
on pglogical 3.6 as a separate extension. While pglogical deletes older worker errors, BDR does not aim
to, given the additional complexity of bi-directional replication. A side effect of this dependency is that in

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

129

https://www.postgresql.org/docs/current/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

BDR 3.6 some worker errors are deleted over time, while others are retained indefinitely. Because of this
it’s important to note the time of the error and not just the existence of one. Starting from BDR 4, there is
a single extension, and dependency on pglogical as a separate extension has been removed, meaning
that all worker errors are now retained indefinitely.

Monitoring Global Locks

The global lock, which is currently only used for DDL replication, is a heavyweight lock that exists across
the whole BDR group.

There are currently two types of global locks:

• DDL lock, used for serializing all DDL operations on permanent (not temporary) objects (i.e. tables)
in the database

• DML relation lock, used for locking out writes to relations during DDL operations that change the
relation definition

Either or both entry types may be created for the same transaction, depending on the type of DDL
operation and the value of the bdr.ddl_locking setting.

Global locks held on the local node are visible in the bdr.global_locks view. This view shows the type
of the lock; for relation locks it shows which relation is being locked, the PID holding the lock (if local),
and whether the lock has been globally granted or not.

The following is an example output of bdr.global_locks while running an ALTER TABLE statement
with bdr.ddl_locking = on:

SELECT lock_type, relation, pid, granted FROM bdr.global_locks;
-[RECORD 1]--------------
lock_type | GLOBAL_LOCK_DDL
relation | [NULL]
pid | 15534
granted | t
-[RECORD 2]--------------
lock_type | GLOBAL_LOCK_DML
relation | someschema.sometable
pid | 15534
granted | t

See the catalog documentation for details on all fields including lock timing information.

Monitoring Conflicts

Replication conflicts can arise when multiple nodes make changes that affect the same rows in ways that
can interact with each other. The BDR system should be monitored to ensure that conflicts are identified
and, where possible, application changes are made to eliminate them or make them less frequent.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

130

catalogs.md#bdrglobal_locks

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

By default, all conflicts are logged to the PostgreSQL server log. It is however possible to change the
configuration to log only some conflicts, and to log both to the server log and/or a table.

The configuration of logging is defined by the bdr.alter_node_add_log_config and bdr.alter_node_remove_log_config
functions.

Apply Statistics

BDR collects statistics about replication apply, both for each subscription and for each table.

Two monitoring views exist: bdr.stat_subscription for subscription statistics and bdr.stat_relation
for relation statistics. These views both provide:

• Number of INSERTs/UPDATEs/DELETEs/TRUNCATEs replicated
• Block accesses and cache hit ratio
• Total I/O time for read/write

and for relations only, these statistics:

• Total time spent processing replication for the relation
• Total lock wait time to acquire lock (if any) for the relation (only)

and for subscriptions only, these statistics:

• Number of COMMITs/DDL replicated for the subscription
• Number of times this subscription has connected upstream

Tracking of these statistics is controlled by the pglogical GUCs pglogical.track_subscription_apply
and pglogical.track_relation_apply respectively - for details, see pglogical Settings for BDR.

The example output from these would look like this:

SELECT sub_name, nconnect, ninsert, ncommit, nupdate, ndelete, ntruncate, nddl
FROM pglogical.stat_subscription;
-[RECORD 1]----------------------------------
sub_name | bdr_regression_bdrgroup_node1_node2
nconnect | 3
ninsert | 10
ncommit | 5
nupdate | 0
ndelete | 0
ntruncate | 0
nddl | 2

In this case the subscription connected 3 times to the upstream, inserted 10 rows and did 2 DDL
commands inside 5 transactions.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

131

configuration.md#pglogical%20Settings%20for%20BDR

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Standard PostgreSQL Statistics Views

Statistics on table and index usage are updated normally by the downstream master. This is essential
for the correct function of autovacuum. If there are no local writes on the downstream master and
statistics have not been reset, these two views should show corresponding results between upstream
and downstream:

• pg_stat_user_tables
• pg_statio_user_tables

Note
We don’t necessarily expect the upstream table statistics to be similar to the downstream
ones; we only expect them to change by the same amounts. Consider the example of a
table whose statistics show 1M inserts and 1M updates; when a new node joins the BDR
group, the statistics for the same table in the new node will show 1M inserts and zero
updates. However, from that moment, the upstream and downstream table statistics will
change by the same amounts, because all changes on one side will be replicated to the
other side.

Since indexes are used to apply changes, the identifying indexes on the downstream side may appear
more heavily used with workloads that perform UPDATEs and DELETEs than non-identifying indexes are.

The built-in index monitoring views are:

• pg_stat_user_indexes
• pg_statio_user_indexes

All these views are discussed in detail in the PostgreSQL documentation on the statistics views.

Monitoring BDR Versions

BDR allows running different Postgres versions as well as different BDR versions across the nodes in the
same cluster. This is useful for upgrading.

The view bdr.monitor_group_versions_details uses the function bdr.run_on_all_nodes() to
retrieve BDR version, edition, and pglogical version from all nodes at the same time. For example:

bdrdb=# SELECT node_name, postgres_version, pglogical_version,
bdr_version FROM bdr.monitor_group_versions_details;
node_name | postgres_version | pglogical_version | bdr_version

-----------+------------------+-------------------+-------------
node1 | 11.12 | 3.6.26 | 3.6.26
node2 | 11.12 | 3.6.26 | 3.6.26

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

132

https://www.postgresql.org/docs/current/static/routine-vacuuming.html
http://www.postgresql.org/docs/current/static/monitoring-stats.html#MONITORING-STATS-VIEWS-TABLE

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

BDR and pglogical versions should be the same in the same node. It is recommended that the cluster
does not run different BDR versions for too long. The recommended setup is to try to have all nodes
running the same latest BDR version as soon as possible.

For monitoring purposes, we recommend the following alert levels:

• status=UNKNOWN, message=This node is not part of any BDR group
• status=OK, message=All nodes are running same pglogical and BDR versions
• status=WARNING, message=There is at least 1 node that is not accessible
• status=WARNING, message=There are node(s) running different BDR versions when compared to

other nodes
• status=WARNING, message=There are node(s) running different BDR editions when compared to

other nodes

The described behavior is implemented in the function bdr.monitor_group_versions(), which uses
BDR/pglogical version information returned from the view bdr.monitor_group_version_details to
provide a cluster-wide version check. For example:

bdrdb=# SELECT * FROM bdr.monitor_group_versions();
status | message

--------+---
OK | All nodes are running same pglogical and BDR versions

Monitoring Raft Consensus

Raft Consensus should be working cluster-wide at all times. The impact of running a BDR cluster without
Raft Consensus working might be as follows:

• BDR replication might still be working correctly
• Global DDL/DML locks will not work
• Galloc sequences will eventually run out of chunks
• Cluster maintenance operations (join node, part node, promote standby) are still allowed but they

might not finish (simply hang)
• Node statuses might not be correctly synced among the BDR nodes
• BDR group replication slot does not advance LSN, thus keeps WAL files on disk

The view bdr.monitor_group_raft_details uses the functions bdr.run_on_all_nodes() and
bdr.get_raft_status() to retrieve Raft Consensus status from all nodes at the same time. For
example:

bdrdb=# SELECT node_id, node_name, state, leader_id
FROM bdr.monitor_group_raft_details;

node_id | node_name | state | leader_id
------------+-----------+---------------+------------
1148549230 | node1 | RAFT_LEADER | 1148549230
3367056606 | node2 | RAFT_FOLLOWER | 1148549230

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

133

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

We can say that Raft Consensus is working correctly if all below conditions are met:

• A valid state (RAFT_LEADER or RAFT_FOLLOWER) is defined on all nodes
• Only one of the nodes is the RAFT_LEADER
• The leader_id is the same on all rows and must match the node_id of the row where
state = RAFT_LEADER

From time to time, Raft Consensus will start a new election to define a new RAFT_LEADER. During
an election, there might be an intermediary situation where there is no RAFT_LEADER and some of
the nodes consider themselves as RAFT_CANDIDATE. The whole election should not take longer than
bdr.raft_election_timeout (by default it is set to 6 seconds). If the query above returns an in-
election situation, then simply wait for bdr.raft_election_timeout and run the query again. If after
bdr.raft_election_timeout has passed and some the conditions above are still not met, then Raft
Consensus is not working.

Raft Consensus might not be working correctly on a single node only; for example one of the nodes does
not recognize the current leader and considers itself as a RAFT_CANDIDATE. In this case, it is important
to make sure that:

• All BDR nodes are accessible to each other through both regular and replication connections
(check file pg_hba.conf)

• BDR and pglogical versions are the same on all nodes
• bdr.raft_election_timeout is the same on all nodes

In some cases, especially if nodes are geographically distant from each other and/or network latency
is high, the default value of bdr.raft_election_timeout (6 seconds) might not be enough. If
Raft Consensus is still not working even after making sure everything is correct, consider increas-
ing bdr.raft_election_timeout to, say, 30 seconds on all nodes. From BDR 3.6.11 onwards, setting
bdr.raft_election_timeout requires only a server reload.

Given how Raft Consensus affects cluster operational tasks, and also as Raft Consensus is directly
responsible for advancing the group slot, we can define monitoring alert levels as follows:

• status=UNKNOWN, message=This node is not part of any BDR group
• status=OK, message=Raft Consensus is working correctly
• status=WARNING, message=There is at least 1 node that is not accessible
• status=WARNING, message=There are node(s) as RAFT_CANDIDATE, an election might be in

progress
• status=WARNING, message=There is no RAFT_LEADER, an election might be in progress
• status=CRITICAL, message=There is a single node in Raft Consensus
• status=CRITICAL, message=There are node(s) as RAFT_CANDIDATE while a RAFT_LEADER is

defined
• status=CRITICAL, message=There are node(s) following a leader different than the node set as

RAFT_LEADER

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

134

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

The described behavior is implemented in the function bdr.monitor_group_raft(), which uses Raft
Consensus status information returned from the view bdr.monitor_group_raft_details to provide a
cluster-wide Raft check. For example:

bdrdb=# SELECT * FROM bdr.monitor_group_raft();
status | message

--------+-------------------------------------
OK | Raft Consensus is working correctly

Monitoring Replication Slots

Each BDR node keeps:

• One replication slot per active BDR peer
• One group replication slot

For example:

bdrdb=# SELECT slot_name, database, active, confirmed_flush_lsn
FROM pg_replication_slots ORDER BY slot_name;

slot_name | database | active | confirmed_flush_lsn
--------------------------+----------+--------+---------------------
bdr_bdrdb_bdrgroup | bdrdb | f | 0/3110A08
bdr_bdrdb_bdrgroup_node2 | bdrdb | t | 0/31F4670
bdr_bdrdb_bdrgroup_node3 | bdrdb | t | 0/31F4670
bdr_bdrdb_bdrgroup_node4 | bdrdb | t | 0/31F4670

Peer slot names follow the convention bdr_<DATABASE>_<GROUP>_<PEER>, while the BDR group slot
name follows the convention bdr_<DATABASE>_<GROUP>.

Peer replication slots should be active on all nodes at all times. If a peer replication slot is not active, then
it might mean:

• The corresponding peer is shutdown or not accessible; or
• BDR replication is broken. Grep the log file for ERROR or FATAL and also check bdr.worker_errors

on all nodes. The root cause might be, for example, an incompatible DDL was executed with DDL
replication disabled on one of the nodes.

The BDR group replication slot, on the other hand, is inactive most of the time. BDR keeps this slot and
advances LSN, as all other peers have already consumed the corresponding transactions. So it is not
possible to monitor the status (active or inactive) of the group slot.

We recommend the following monitoring alert levels:

• status=UNKNOWN, message=This node is not part of any BDR group

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

135

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• status=OK, message=All BDR replication slots are working correctly
• status=CRITICAL, message=There is at least 1 BDR replication slot which is inactive
• status=CRITICAL, message=There is at least 1 BDR replication slot which is missing

The described behavior is implemented in the function bdr.monitor_local_replslots(), which uses
replication slot status information returned from view bdr.node_slots (slot active or inactive) to provide
a local check considering all BDR node replication slots, except the BDR group slot.

bdrdb=# SELECT * FROM bdr.monitor_local_replslots();
status | message

--------+---
OK | All BDR replication slots are working correctly

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

136

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Backup and Recovery

In this chapter we discuss the backup and restore of a BDR 3.x cluster.

BDR is designed to be a distributed, highly available system. If one or more nodes of a cluster are lost,
the best way to replace them is to clone new nodes directly from the remaining nodes.

The role of backup and recovery in BDR is to provide for Disaster Recovery (DR), such as in the following
situations:

• Loss of all nodes in the cluster
• Significant, uncorrectable data corruption across multiple nodes as a result of data corruption,

application error or security breach

Backup

pg_dump

pg_dump, sometimes referred to as “logical backup”, can be used normally with BDR.

Note that pg_dump dumps both local and global sequences as if they were local sequences. This is
intentional, to allow a BDR schema to be dumped and ported to other PostgreSQL databases. This
means that sequence kind metadata is lost at the time of dump, so a dump and restore would effectively
reset all sequence kinds to the value of bdr.default_sequence_kind.

2ndQuadrant recommends the use of physical backup techniques for backup and recovery.

Physical Backup

Physical backups of a node in a BDR cluster can be taken using standard PostgreSQL software, such as
Barman.

A physical backup of a BDR node can be performed with the same procedure that applies to any
PostgreSQL node: a BDR node is just a PostgreSQL node running the BDR extension.

There are some specific points that must be considered when applying PostgreSQL backup techniques
to BDR:

• BDR operates at the level of a single database, while a physical backup includes all the databases
in the instance; you should plan your databases to allow them to be easily backed-up and restored.

• Backups will make a copy of just one node. In the simplest case, every node has a copy of all data,
so you would need to backup only one node to capture all data. However, the goal of DR will not
be met if the site containing that single copy goes down, so the minimum should be at least one
node backup per site (obviously with many copies etc.).

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

137

https://www.2ndquadrant.com/en/resources/barman/

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• However, each node may have un-replicated local data, and/or the definition of replication sets
may be complex so that all nodes do not subscribe to all replication sets. In these cases, backup
planning must also include plans for how to backup any unreplicated local data and a backup of at
least one node that subscribes to each replication set.

Eventual Consistency

The nodes in a BDR cluster are eventually consistent, but not entirely consistent ; a physical backup of a
given node will provide Point-In-Time Recovery capabilities limited to the states actually assumed by that
node (see the Example below).

The following example shows how two nodes in the same BDR cluster might not (and usually do not) go
through the same sequence of states.

Consider a cluster with two nodes N1 and N2, which is initially in state S. If transaction W1 is applied to
node N1, and at the same time a non-conflicting transaction W2 is applied to node N2, then node N1 will
go through the following states:

(N1) S --> S + W1 --> S + W1 + W2

. . . while node N2 will go through the following states:

(N2) S --> S + W2 --> S + W1 + W2

That is: node N1 will never assume state S + W2, and node N2 likewise will never assume state S + W1,
but both nodes will end up in the same state S + W1 + W2. Considering this situation might affect how
you decide upon your backup strategy.

Point-In-Time Recovery (PITR)

In the example above, the changes are also inconsistent in time, since W1 and W2 both occur at time T1,
but the change W1 is not applied to N2 until T2.

PostgreSQL PITR is designed around the assumption of changes arriving from a single master in
COMMIT order. Thus, PITR is possible by simply scanning through changes until one particular point-
in-time (PIT) is reached. With this scheme, you can restore one node to a single point-in-time from its
viewpoint, e.g. T1, but that state would not include other data from other nodes that had committed near
that time but had not yet arrived on the node. As a result, the recovery might be considered to be partially
inconsistent, or at least consistent for only one replication origin.

To request this, use the standard syntax:

recovery_target_time = T1

BDR allows for changes from multiple masters, all recorded within the WAL log for one node, separately
identified using replication origin identifiers.

BDR allows PITR of all or some replication origins to a specific point in time, providing a fully consistent
viewpoint across all subsets of nodes. This feature will only be available in the Enterprise Edition.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

138

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Restore

While you can take a physical backup with the same procedure as a standard PostgreSQL node, what is
slightly more complex is restoring the physical backup of a BDR node.

BDR Cluster Failure or Seeding a New Cluster from a Backup

The most common use case for restoring a physical backup involves the failure or replacement of all the
BDR nodes in a cluster, for instance in the event of a datacentre failure.

You may also want to perform this procedure to clone the current contents of a BDR cluster to seed a QA
or development instance.

In that case, BDR capabilities can be restored based on a physical backup of a single BDR node,
optionally plus WAL archives:

• If you still have some BDR nodes live and running, fence off the host you restored the BDR node
to, so it cannot connect to any surviving BDR nodes. This ensures that the new node does not
confuse the existing cluster.

• Restore a single PostgreSQL node from a physical backup of one of the BDR nodes.
• If you have WAL archives associated with the backup, create a suitable recovery.conf and

start PostgreSQL in recovery to replay up to the latest state. You can specify a alternative
recovery_target here if needed.

• Start the restored node, or promote it to read/write if it was in standby recovery. Keep it fenced
from any surviving nodes!

• Clean up any leftover BDR metadata that was included in the physical backup, as described below.
• Fully stop and restart the PostgreSQL instance.
• Add further BDR nodes with the standard procedure based on the bdr.join_node_group()

function call.

Cleanup BDR Metadata

The cleaning of leftover BDR metadata is achieved as follows:

1. Drop the BDR node using bdr.drop_node
2. Fully stop and re-start PostgreSQL (important!).

Cleanup of Replication Origins

Replication origins must be explicitly removed with a separate step because they are recorded persistently
in a system catalog, and therefore included in the backup and in the restored instance. They are not
removed automatically when dropping the BDR extension, because they are not explicitly recorded as its
dependencies.

BDR creates one replication origin for each remote master node, to track progress of incoming replication
in a crash-safe way. Therefore we need to run:

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

139

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT pg_replication_origin_drop('bdr_dbname_grpname_nodename');

. . . once for each node in the (previous) cluster. Replication origins can be listed as follows:

SELECT * FROM pg_replication_origin;

. . . and those created by BDR are easily recognized by their name, as in the example shown above.

Cleanup of Replication Slots

If a physical backup was created with pg_basebackup, replication slots will be omitted from the backup.

Some other backup methods may preserve replications slots, likely in outdated or invalid states. Once
you restore the backup, just:

SELECT pg_replication_slot_drop(slot_name)
FROM pg_replication_slots;

. . . to drop all replication slots. If you have a reason to preserve some, you can add a
WHERE slot_name LIKE 'bdr%' clause, but this is rarely useful.

Warning
Never run this on a live BDR node.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

140

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Upgrading

In this chapter we discuss upgrading the BDR 3.x cluster and how to minimize downtime for applications
during the upgrade.

Database Encoding

We recommend using UTF-8 encoding in all replicated databases. BDR does not support replication
between databases with different encoding. There is currently no supported path to upgrade/alter
encoding.

Server Software Upgrade

The upgrade of BDR software on individual nodes happens in-place. There is no need for backup and
restore when upgrading the BDR extension.

The first step in the upgrade is to install the new version of the BDR packages, which will install both the
new binary and the extension SQL script. This step depends on the operating system used.

Upgrading the binary and extension scripts by itself does not upgrade BDR in the running instance of
PostgreSQL. To do that, the PostgreSQL instance needs to be restarted so that the new BDR binary
can be loaded (the BDR binary is loaded at the start of the PostgreSQL server). After that, the node is
upgraded. The extension SQL upgrade scripts are executed automatically as needed.

Warning
It’s important to never run the ALTER EXTENSION ... UPDATE command before the
PostgreSQL instance is restarted, as that will only upgrade the SQL-visible extension
but keep the old binary, which can cause unpredictable behaviour or even crashes. The
ALTER EXTENSION ... UPDATE command should never be needed; BDR3 maintains
the SQL-visible extension automatically as needed.

After this procedure, your BDR node is upgraded. You can verify the current version of BDR3 binary like
this:

SELECT bdr.bdr_version();

The upgrade of BDR3 will usually also upgrade the version of pglogical 3 installed in the system. The
current version of pglogical can be checked using:

SELECT pglogical.pglogical_version();

Always check the monitoring after upgrade of a node to confirm that the upgraded node is working as
expected.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

141

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Rolling Server Software Upgrades

BDR3 supports rolling upgrades from version 3.5 onwards. A rolling upgrade is the process where the
above Server Software Upgrade are done on each node in the BDR Group one by one, while keeping the
replication working.

During the upgrade process, the application can be switched over to a node which is currently not being
upgraded to provide continuous availability of the BDR group for applications.

While the cluster is going through a rolling upgrade, replication happens between mixed versions of
BDR3. For example, nodeA will have BDR 3.5.3, while nodeB and nodeC will have 3.6.21. In this state,
the replication and group management will use the protocol and features from the oldest version (3.5.3
in case of this example), so any new features provided by the newer version which require changes in
the protocol will be disabled. Once all nodes are upgraded to the same version, the new features are
automatically enabled.

A BDR cluster is designed to be easily upgradeable. Most BDR releases support rolling upgrades, which
means running part of the cluster on one release level and the remaining part of the cluster on a second,
compatible, release level.

An rolling upgrade starts with a cluster with all nodes at a prior release, then proceeds by upgrading one
node at a time to the newer release, until all nodes are at the newer release. Should problems occur, do
not attempt to downgrade without contacting 2ndQuadrant support to discuss and provide options.

An upgrade process may take an extended period of time when the user decides caution is required to
reduce business risk, though this should not take any longer than 30 days without discussion and explicit
agreement from 2ndQuadrant Support to extend the period of coexistence of two release levels.

In case of problems during upgrade, do not initiate a second upgrade to a newer/different release level.
Two upgrades should never occur concurrently in normal usage. Nodes should never be upgraded to
a third release without specific and explicit instructions from 2ndQuadrant Support. A case where that
might occur is if an upgrade failed for some reason and a Hot Fix was required to continue the current
cluster upgrade process to successful conclusion. BDR has been designed and tested with more than 2
release levels, but this cannot be relied upon for production usage except in specific cases.

Rolling Application Schema Upgrades

By default, DDL will automatically be sent to all nodes. This can be controlled manually, as described in
DDL Replication, which could be used to create differences between database schemas across nodes.
BDR is designed to allow replication to continue even while minor differences exist between nodes. These
features are designed to allow application schema migration without downtime, or to allow logical standby
nodes for reporting or testing.

Warning
Application Schema Upgrades are managed by the user, not by BDR. Careful scripting
will be required to make this work correctly on production clusters. Extensive testing is
advised.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

142

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Details of this are covered here Replicating between nodes with differences.

When one node runs DDL that adds a new table, nodes that have not yet received the latest DDL will
need to cope with the extra table. In view of this, the appropriate setting for rolling schema upgrades is to
configure all nodes to apply the skip resolver in case of a target_table_missing conflict. This must
be performed before any node has additional tables added, and is intended to be a permanent setting.

This is done with the following query, that must be executed separately on each node, after replacing
node1 with the actual node name:

SELECT bdr.alter_node_set_conflict_resolver('node1',
'target_table_missing', 'skip');

When one node runs DDL that adds a column to a table, nodes that have not yet received the latest
DDL will need to cope with the extra columns. In view of this, the appropriate setting for rolling schema
upgrades is to configure all nodes to apply the ignore resolver in case of a target_column_missing
conflict. This must be performed before one node has additional columns added and is intended to be a
permanent setting.

This is done with the following query, that must be executed separately on each node, after replacing
node1 with the actual node name:

SELECT bdr.alter_node_set_conflict_resolver('node1',
'target_column_missing', 'ignore');

When one node runs DDL that removes a column from a table, nodes that have not yet received the latest
DDL will need to cope with the missing column. This situation will cause a source_column_missing
conflict, which uses the use_default_value resolver. Thus, columns that neither accept NULLs nor
have a DEFAULT value will require a two step process:

1. Remove NOT NULL constraint or add a DEFAULT value for a column on all nodes.
2. Remove the column.

Constraints can be removed in a rolling manner. There is currently no supported way for coping with
adding table constraints in a rolling manner, one node at a time.

When one node runs a DDL that changes the type of an existing column, depending on the existence
of binary coercibility between the current type and the target type, the operation may not rewrite the
underlying table data. In that case, it will be only a metadata update of the underlying column type.
Rewrite of a table is normally restricted. However, in controlled DBA environments, it is possible to
change the type of a column to an automatically castable one by adopting a rolling upgrade for the type
of this column in a non-replicated environment on all the nodes, one by one. More details are provided in
the ALTER TABLE section.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

143

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Explicit Two-Phase Commit (2PC)

An application may opt to use two-phase commit explicitly with BDR. See Distributed Transaction
Processing: The XA Specification.

The X/Open Distributed Transaction Processing (DTP) model envisages three software components:

• An application program (AP) that defines transaction boundaries and specifies actions that consti-
tute a transaction.

• Resource managers (RMs, such as databases or file access systems) that provide access to
shared resources.

• A separate component called a transaction manager (TM) that assigns identifiers to transactions,
monitors their progress, and takes responsibility for transaction completion and for failure recovery.

BDR supports explicit external 2PC using the PREPARE TRANSACTION and COMMIT PRE-
PARED/ROLLBACK PREPARED commands. Externally, a BDR cluster appears to be a single Resource
Manager to the Transaction Manager for a single session.

When bdr.commit_scope is local, the transaction is prepared only on the local node. Once committed,
changes will be replicated, and BDR then applies post-commit conflict resolution.

Using bdr.commit_scope set to local may seem nonsensical with explicit two-phase commit, but the
option is offered to allow the user to control the trade-off between transaction latency and robustness.

Explicit two-phase commit does not work in combination with either CAMO or the global commit scope.
Future releases may enable this combination.

Usage

Two-phase commits with a local commit scope work exactly like standard PostgreSQL. Please use the
local commit scope and disable CAMO.

BEGIN;

SET LOCAL pg2q.enable_camo = 'off';
SET LOCAL bdr.commit_scope = 'local';

... other commands possible...

To start the first phase of the commit, the client must assign a global transaction id, which can be any
unique string identifying the transaction:

PREPARE TRANSACTION 'some-global-id';

After a successful first phase, all nodes have applied the changes and are prepared for committing the
transaction. The client must then invoke the second phase from the same node:

COMMIT PREPARED 'some-global-id';

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

144

http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Catalogs and Views

This section contains a listing of system catalogs and views used by BDR in alphabetical order.

bdr.apply_log

This table provides all the columns that are recognized when logging row conflict details to a table.

It can be used either as a target for row-level conflict detail logging, or just as an example of which
columns are supported.

bdr.apply_log Columns

The columns of bdr.apply_log are documented in Logging to a Table, together with more details on
row conflict logging.

bdr.apply_log_summary

A view containing user-readable details on row conflict.

bdr.apply_log_summary Columns

Name Type Description
schema text Name of the schema

table text Name of the table

local_tuple_commit_time timestamp with time zone Time of local commit

remote_commit_time timestamp with time zone Time of remote commit

conflict_type text Type of conflict

conflict_resolution text Resolution adopted

bdr.ddl_epoch

An internal catalog table holding state per DDL epoch.

bdr.ddl_epoch Columns

Name Type Description
ddl_epoch int8 Monotonically increasing epoch number

origin_node_id oid Internal node id of the node that requested creation
of this epoch

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

145

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Name Type Description
epoch_consume_timeout timestamptz Timeout of this epoch

epoch_consumed boolean Switches to true as soon as the local node has fully
processed the epoch

bdr.ddl_replication

This view lists DDL replication configuration as set up by current DDL filters.

bdr.ddl_replication Columns

Name Type Description
set_ddl_name name Name of DDL filter

set_ddl_tag text Which command tags it applies on (regular expression)

set_ddl_role text Which roles it applies to (regular expression)

set_name name Name of the replication set for which this filter is defined

bdr.global_consensus_journal

This catalog table logs all the Raft messages that were sent while managing global consensus.

As for the bdr.global_consensus_response_journal catalog, the payload is stored in a binary
encoded format, which can be decoded with the bdr.decode_message_payload() function; see the
bdr.global_consensus_journal_details view for more details.

bdr.global_consensus_journal Columns

Name Type Description
log_index int8 Id of the journal entry

term int8 Raft term

origin oid Id of node where the request originated

req_id int8 Id for the request

req_payload bytea Payload for the request

trace_context bytea Trace context for the request

bdr.global_consensus_journal_details

This view presents Raft messages that were sent, and the corresponding responses, using the
bdr.decode_message_payload() function to decode their payloads.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

146

repsets.md#ddl-replication-filtering

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.global_consensus_journal_details Columns

Name Type Description
log_index int8 Id of the journal entry

term int8 Raft term

request_id int8 Id of the request

origin_id oid Id of the node where the request originated

req_payload bytea Payload of the request

origin_node_name name Name of the node where the request originated

message_type_no oid Id of the BDR message type for the request

message_type text Name of the BDR message type for the request

message_payload text BDR message payload for the request

response_message_type_no oid Id of the BDR message type for the response

response_message_type text Name of the BDR message type for the response

response_payload text BDR message payload for the response

response_errcode_no text SQLSTATE for the response

response_errcode text Error code for the response

response_message text Error message for the response

bdr.global_consensus_response_journal

This catalog table collects all the responses to the Raft messages that were received while managing
global consensus.

As for the bdr.global_consensus_journal catalog, the payload is stored in a binary-encoded
format, which can be decoded with the bdr.decode_message_payload() function; see the
bdr.global_consensus_journal_details view for more details.

bdr.global_consensus_response_journal Columns

Name Type Description
log_index int8 Id of the journal entry

res_status oid Status code for the response

res_payload bytea Payload for the response

trace_context bytea Trace context for the response

bdr.global_lock

This catalog table stores the information needed for recovering the global lock state on server restart.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

147

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

For monitoring usage, operators should prefer the bdr.global_locks view, because the visible rows in
bdr.global_lock do not necessarily reflect all global locking activity.

Do not modify the contents of this table: it is an important BDR catalog.

bdr.global_lock Columns

Name Type Description
ddl_epoch int8 DDL epoch for the lock

origin_node_id oid OID of the node where the global lock has originated

lock_type oid Type of the lock (DDL or DML)

nspname name Schema name for the locked relation

relname name Relation name for the locked relation

bdr.global_locks

A view containing active global locks on this node. The bdr.global_locks view exposes BDR’s shared-
memory lock state tracking, giving administrators a greater insight into BDR’s global locking activity and
progress.

See Monitoring Global Locks for more information about global locking.

bdr.global_locks Columns

Name Type Description
origin_node_id oid The OID of the node where the global lock

has originated

origin_node_name name Name of the node where the global lock
has originated

lock_type text Type of the lock (DDL or DML)

relation text Locked relation name (for DML locks)

pid int4 PID of the process holding the lock

acquire_stage text Internal state of the lock acquisition
process

waiters int4 List of backends waiting for the same
global lock

global_lock_request_time timestamptz Time this global lock acquire was initiated
by origin node

local_lock_request_time timestamptz Time the local node started trying to
acquire the local-lock

last_state_change_time timestamptz Time acquire_stage last changed

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

148

monitoring.md#Monitoring-Global-Locks

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Column details:

• origin_node_id and origin_node_name: If these are the same as the local node’s ID and name,
then the local node is the initiator of the global DDL lock, i.e. it is the node running the acquiring
transaction. If these fields specify a different node, then the local node is instead trying to acquire
its local DDL lock to satisfy a global DDL lock request from a remote node.

• pid: The process ID of the process that requested the global DDL lock, if the local node is the
requesting node. Null on other nodes; query the origin node to determine the locker pid.

• global_lock_request_time: The timestamp at which the global-lock request initiator started
the process of acquiring a global lock. May be null if unknown on the current node. This time is
stamped at the very beginning of the DDL lock request, and includes the time taken for DDL epoch
management and any required flushes of pending-replication queues. Currently only known on
origin node.

• local_lock_request_time: The timestamp at which the local node started trying to acquire the
local lock for this global lock. This includes the time taken for the heavyweight session lock acquire,
but does NOT include any time taken on DDL epochs or queue flushing. If the lock is re-acquired
after local node restart, this will be the node restart time.

• last_state_change_time: The timestamp at which the bdr.global_locks.acquire_stage
field last changed for this global lock entry.

bdr.local_consensus_snapshot

This catalog table contains consensus snapshots created or received by the local node.

bdr.local_consensus_snapshot Columns

Name Type Description
log_index int8 Id of the journal entry

log_term int8 Raft term

snapshot bytea Raft snapshot data

bdr.local_consensus_state

This catalog table stores the current state of Raft on the local node.

bdr.local_consensus_state Columns

Name Type Description
node_id oid Id of the node

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

149

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Name Type Description
current_term int8 Raft term

apply_index int8 Raft apply index

voted_for oid Vote cast by this node in this term

last_known_leader oid node_id of last known Raft leader

bdr.local_node_summary

A view containing the same information as bdr.node_summary but only for the local node.

bdr.node

This table lists all the BDR nodes in the cluster.

bdr.node Columns

Name Type Description
node_id oid Id of the node

node_group_id oid Id of the node group

source_node_id oid Id of the source node

node_state oid Consistent state of the node

target_state oid State that the node is trying to reach (during join or
promotion)

seq_id int4 Sequence identifier of the node used for generating
unique sequence numbers

dbname name Database name of the node

proto_version_min int2 Minimum protocol version supported by the node

proto_version_max int2 Maximum protocol version supported by the node

synchronize_structure “char” Schema synchronization done during the join

bdr.node_catchup_info

This catalog table records relevant catch-up information on each node, either if it is related to the join or
part procedure.

bdr.node_catchup_info Columns

Name Type Description
node_id oid Id of the node

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

150

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Name Type Description
node_source_id oid Id of the node used as source for the data

slot_name name Slot used for this source

min_node_lsn pg_lsn Minimum LSN at which the node can switch to direct replay from
a peer node

catchup_state oid Status code of the catchup state

origin_node_id oid Id of the node from which we want transactions

If a node(node_id) needs missing data from a parting node(origin_node_id), it can get it from a node that
already has it(node_source_id) via forwarding. The records in this table will persist until the node(node_id)
is a member of the BDR cluster.

bdr.node_conflict_resolvers

Currently configured conflict resolution for all known conflict types.

bdr.node_conflict_resolvers Columns

Name Type Description
conflict_type text Type of the conflict

conflict_resolver text Resolver used for this conflict type

bdr.node_group

This catalog table lists all the BDR node groups.

bdr.node_group Columns

Name Type Description
node_group_id oid ID of the node group

node_group_name name Name of the node group

node_group_default_repset oid Default replication set for this node group

node_group_insert_to_update bool On conflict, whether INSERT should be
converted to UPDATE

node_group_update_to_insert bool On conflict, whether UPDATE should be
converted to INSERT

node_group_ignore_redundant_updates bool Whether an UPDATE that does not change
any value can be ignored

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

151

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Name Type Description
node_group_check_full_tuple bool Whether on UPDATE all attributes should be

used and compared; requires REPLICA
IDENTITY FULL

node_group_apply_delay interval How long a subscriber waits before applying
changes from the provider

node_group_check_constraints bool Whether the apply process should check
constraints when applying data

bdr.node_group_replication_sets

A view showing replication sets used by the BDR group. See also bdr.replication_sets.

bdr.node_group_replication_sets Columns

Name Type Description
node_group_name name Name of the BDR group

node_name name Name of the local node

set_name name Name of the replication set

bdr.node_local_info

A catalog table used to store per-node information that changes less frequently than peer progress.

bdr.node_local_info Columns

Name Type Description
node_id oid The OID of the node (including the local node)

applied_state oid Internal id of the node state

ddl_epoch int8 Last epoch number processed by the node

replication_sets text[] List of replication sets subscribed to (only for the local node)

slot_name name Name of the slot used to connect to that node (NULL for the
local node)

bdr.node_log_config

A catalog view that stores information on the conflict logging configurations.

bdr.node_log_config Columns

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

152

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Name Description
log_name name of the logging configuration

log_to_file whether it logs to the server log file

log_to_table whether it logs to a table, and which table is the target

log_conflict_type which conflict types it logs, if NULL means all

log_conflict_res which conflict resolutions it logs, if NULL means all

bdr.node_peer_progress

Catalog used to keep track of every node’s progress in the replication stream. Every node in the cluster
regularly broadcasts its progress every bdr.replay_progress_frequency milliseconds to all other
nodes (default is 60000 ms - i.e 1 minute). Expect N * (N-1) rows in this relation.

You may be more interested in the bdr.node_slots view for monitoring purposes. See also Monitoring.

bdr.node_peer_progress Columns

Name Type Description
node_id oid The OID of the originating node which reported this

position info

peer_node_id oid The OID of the node’s peer (remote node) for which
this position info was reported

last_update_sent_time timestamptz The time at which the report was sent by the
originating node

last_update_recv_time timestamptz The time at which the report was received by the
local server

last_update_node_lsn pg_lsn LSN on the originating node at the time of the report

peer_position pg_lsn Latest LSN of the node’s peer seen by the originating
node

peer_replay_time timestamptz Latest replay time of peer seen by the reporting node

last_update_horizon_xid oid Internal resolution horizon: all lower xids are known
resolved on the reporting node

last_update_horizon_lsn pg_lsn Internal resolution horizon: same in terms of an LSN
of the reporting node

bdr.node_slots

This view contains information about replication slots used in the current database by BDR.

See Monitoring Outgoing Replication for guidance on the use and interpretation of this view’s fields.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

153

monitoring.md#Monitoring-Outgoing-Replication

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.node_slots Columns

Name Type Description
target_dbname name Database name on the target node

node_group_name name Name of the BDR group

node_group_id oid The OID of the BDR group

origin_name name Name of the origin node

target_name name Name of the target node

origin_id oid The OID of the origin node

target_id oid The OID of the target node

local_slot_name name Name of the replication slot according to BDR

slot_name name Name of the slot according to Postgres (should be same
as above)

plugin name Logical decoding plugin using this slot (should be
pglogical_output)

slot_type text Type of the slot (should be logical)

datoid oid The OID of the current database

database name Name of the current database

temporary bool Is the slot temporary

active bool Is the slot active (does it have a connection attached to it)

active_pid int4 The PID of the process attached to the slot

xmin xid The XID needed by the slot

catalog_xmin xid The catalog XID needed by the slot

restart_lsn pg_lsn LSN at which the slot can restart decoding

confirmed_flush_lsn pg_lsn Latest confirmed replicated position

usesysid oid sysid of the user the replication session is running as

usename name username of the user the replication session is running as

application_name text Application name of the client connection (used by
synchronous_standby_names)

client_addr inet IP address of the client connection

client_hostname text Hostname of the client connection

client_port int4 Port of the client connection

backend_start timestamptz When the connection started

state text State of the replication (catchup, streaming, . . .) or
‘disconnected’ if offline

sent_lsn pg_lsn Latest sent position

write_lsn pg_lsn Latest position reported as written

flush_lsn pg_lsn Latest position reported as flushed to disk

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

154

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Name Type Description
replay_lsn pg_lsn Latest position reported as replayed (visible)

write_lag interval Approximate lag time for reported write

flush_lag interval Approximate lag time for reported flush

replay_lag interval Approximate lag time for reported replay

sent_lag_bytes int8 Bytes difference between sent_lsn and current WAL write
position

write_lag_bytes int8 Bytes difference between write_lsn and current WAL
write position

flush_lag_bytes int8 Bytes difference between flush_lsn and current WAL
write position

replay_lag_bytes int8 Bytes difference between replay_lsn and current WAL
write position

sent_lag_size text Human-readable bytes difference between sent_lsn and
current WAL write position

write_lag_size text Human-readable bytes difference between write_lsn and
current WAL write position

flush_lag_size text Human-readable bytes difference between flush_lsn and
current WAL write position

replay_lag_size text Human-readable bytes difference between replay_lsn
and current WAL write position

Note
The replay_lag is set immediately to zero after reconnect; we suggest as a workaround
to use replay_lag_bytes or replay_lag_size.

bdr.node_summary

This view contains summary information about all BDR nodes known to the local node.

bdr.node_summary Columns

Name Type Description
node_name name Name of the node

node_group_name name Name of the BDR group the node is part of

interface_name name Name of the connection interface used by the node

interface_connstr text Connection string to the node

peer_state_name text Consistent state of the node in human readable form

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

155

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Name Type Description
peer_target_state_name text State which the node is trying to reach (during join or

promotion)

node_seq_id int4 Sequence identifier of the node used for generating
unique sequence numbers

node_local_dbname name Database name of the node

default_repset_name name Name of the default replication set

set_repl_ops text Which operations does the default replication set replicate

node_id oid The OID of the node

node_group_id oid The OID of the BDR node group

default_repset_id oid The OID of the default replication set

if_id oid The OID of the connection interface used by the node

bdr.replication_sets

A view showing replication sets defined in the BDR group, even if they are not currently used by any
node.

bdr.replication_sets Columns

Name Type Description
set_id Oid The OID of the replication set

set_name name Name of the replication set

replicate_insert boolean Indicates if the replication set replicates INSERTs

replicate_update boolean Indicates if the replication set replicates UPDATEs

replicate_delete boolean Indicates if the replication set replicates DELETEs

replicate_truncate boolean Indicates if the replication set replicates TRUNCATEs

set_autoadd_tables boolean Indicates if new tables will be automatically added to this
replication set

set_autoadd_seqs boolean Indicates if new sequences will be automatically added to
this replication set

node_name name Name of the local node if the replication set is used by it,
otherwise NULL

node_group_name name Name of the BDR group if the replication set is used by local
node, otherwise NULL

bdr.schema_changes

A simple view to show all the changes to schemas within BDR.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

156

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.schema_changes Columns

Name Type Description
schema_changes_ts timestampstz The ID of the trigger

schema_changes_change char A flag of change type

schema_changes_classid oid Class ID

schema_changes_objectid oid Object ID

schema_changes_subid smallint The subscription

schema_changes_descr text The object changed

schema_changes_addrnames text[] Location of schema change

bdr.sequence_alloc

A view to see the sequences allocated.

bdr.sequence_alloc Columns

Name Type Description
seqid regclass The ID of the sequence

seq_chunk_size bigint A sequence number for the chunk within its value

seq_allocated_up_to bigint

seq_nallocs bigint

seq_last_alloc timestamptz Last sequence allocated

bdr.sequence_kind

An internal state table storing the type of each non-local sequence. The view bdr.sequences is
recommended for diagnostic purposes.

bdr.sequence_kind Columns

Name Type Description
seqid oid Internal OID of the sequence

seqkind char Internal sequence kind identifier

bdr.sequences

This view lists all sequences with their kind, excluding sequences for internal BDR book-keeping.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

157

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.sequences Columns

Name Type Description
nspname name Namespace containing the sequence

relname name Name of the sequence

seqkind text Type of the sequence (local, timeshard)

bdr.stat_relation

Apply statistics for each relation. Only contains data if the tracking is enabled and something was
replicated for a given relation.

bdr.stat_relation Columns

Column Type Description
nspname name Name of the relation’s schema

relname name Name of the relation

relid oid Oid of the relation

total_time double precision Total time spent processing replication for the relation

ninsert bigint Number of inserts replicated for the relation

nupdate bigint Number of updates replicated for the relation

ndelete bigint Number of deletes replicated for the relation

ntruncate bigint Number of truncates replicated for the relation

shared_blks_hit bigint Total number of shared block cache hits for the relation

shared_blks_read bigint Total number of shared blocks read for the relation

shared_blks_dirtied bigint Total number of shared blocks dirtied for the relation

shared_blks_written bigint Total number of shared blocks written for the relation

blk_read_time double precision Total time spent reading blocks for the relation, in
milliseconds (if track_io_timing is enabled,
otherwise zero)

blk_write_time double precision Total time spent writing blocks for the relation, in
milliseconds (if track_io_timing is enabled,
otherwise zero)

lock_acquire_time double precision Total time spent acquiring locks on the relation (if
pglogical.track_apply_lock_timing is enabled,
otherwise zero)

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

158

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.stat_subscription

Apply statistics for each subscription. Only contains data if the tracking is enabled.

bdr.stat_subscription Columns

Column Type Description
sub_name name Name of the subscription

subid oid Oid of the subscription

nconnect bigint Number of times this subscription has connected
upstream

ncommit bigint Number of commits this subscription did

ninsert bigint Number of inserts this subscription did

nupdate bigint Number of updates this subscription did

ndelete bigint Number of deletes this subscription did

ntruncate bigint Number of truncates this subscription did

nddl bigint Number of DDL operations this subscription has executed

shared_blks_hit bigint Total number of shared block cache hits by the
subscription

shared_blks_read bigint Total number of shared blocks read by the subscription

shared_blks_dirtied bigint Total number of shared blocks dirtied by the subscription

shared_blks_written bigint Total number of shared blocks written by the subscription

blk_read_time double precision Total time the subscription spent reading blocks, in
milliseconds (if track_io_timing is enabled, otherwise
zero)

blk_write_time double precision Total time the subscription spent writing blocks, in
milliseconds (if track_io_timing is enabled, otherwise
zero)

bdr.state_journal

An internal node state journal. Please use bdr.state_journal_details for diagnostic purposes
instead.

bdr.state_journal_details

Every change of node state of each node is logged permanently in bdr.state_journal for diag-
nostic purposes. This view provides node names and human-readable state names and carries
all of the information in that journal. Once a node has successfully joined, the last state entry will

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

159

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

be BDR_PEER_STATE_ACTIVE. This differs from the state of each replication connection listed in
bdr.node_slots.state.

bdr.state_journal_details Columns

Name Type Description
state_counter oid Monotonically increasing event

counter, per node

node_id oid Internal node id

node_name name Name of the node

state oid Internal state id

state_name text Human-readable state name

entered_time timestamptz Point in time the current node
observed the state change

bdr.subscription

This catalog table lists all the subscriptions owned by the local BDR node, and which mode they are in.

bdr.subscription Columns

Name Type Description
pgl_subscription_id oid Subscription in pglogical

nodegroup_id oid Id of nodegroup

origin_node_id oid Id of origin node

target_node_id oid Id of target node

subscription_mode char Mode of subscription

source_node_id oid Id of source node

bdr.subscription_summary

This view contains summary information about all BDR subscriptions that the local node has to other
nodes.

bdr.subscription_summary Columns

Name Type Description
node_group_name name Name of the BDR group the node is part of

sub_name name Name of the subscription

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

160

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Name Type Description
origin_name name Name of the origin node

target_name name Name of the target node (normally local node)

sub_enabled bool Is the subscription enabled

sub_slot_name name Slot name on the origin node used by this
subscription

sub_replication_sets text[] Replication sets subscribed

sub_forward_origins text[] Does the subscription accept changes forwarded
from other nodes besides the origin

sub_apply_delay interval Delay transactions by this much compared to the
origin

sub_origin_name name Replication origin name used by this subscription

bdr_subscription_mode char Subscription mode

subscription_status text Status of the subscription worker

node_group_id oid The OID of the BDR group the node is part of

sub_id oid The OID of the subscription

origin_id oid The OID of the origin node

target_id oid The OID of the target node

last_xact_replay_timestamp timestamptz Timestamp of last transaction replayed on this
subscription

bdr.tables

This view lists information about table membership in replication sets. If a table exists in multiple
replication sets, it will appear multiple times in this table.

bdr.tables Columns

Name Type Description
relid oid The OID of the relation

nspname name Name of the schema relation is in

relname name Name of the relation

set_name name Name of the replication set

set_ops text[] List of replicated operations

rel_columns text[] List of replicated columns (NULL = all columns) (*)

row_filter text Row filtering expression

(*) These columns are reserved for future use and should currently be NULL

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

161

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.trigger

Within this view, you can see all the stream triggers created. Often triggers here are created from
bdr.create_conflict_trigger.

bdr.trigger Columns

Name Type Description
trigger_id oid The ID of the trigger

trigger_reloid regclass Name of the relating function

trigger_pgtgid oid Postgres trigger ID

trigger_type char Type of trigger call

trigger_name name Name of the trigger

bdr.triggers

An expanded view of bdr.trigger with more easy to read columns.

Name Type Description
trigger_name name The name of the trigger

event_manipulation text The operation(s)

trigger_type bdr.trigger_type Type of trigger

trigger_table bdr.trigger_reloid The table that calls it

trigger_function name The function used

bdr.worker_errors

A persistent log of errors from BDR background worker processes, which includes errors from the
underlying pglogical worker processes.

bdr.worker_errors Columns

Name Type Description
sub_name name Name of the subscription

worker_role int4 Internal identifier of the role of this worker (1:
manager, 2: receive, 3: writer, 4: output, 5:
extension)

worker_pid int4 Process id of the worker causing the error

error_time timestamptz Date and time of the error

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

162

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Name Type Description
error_message text Description of the error

error_context_message text Context in which the error happened

bdr.monitor_group_versions_details

Uses bdr.run_on_all_nodes to gather BDR/pglogical information from all nodes.

bdr.monitor_group_versions_details Columns

Name Type Description
node_id oid Internal node id

node_name name Name of the node

postgres_version text PostgreSQL version on the node

pglogical_version text Pglogical version on the node

bdr_version text BDR version on the node

bdr_edition text BDR edition (SE or EE) on the node

bdr.monitor_group_raft_details

Uses bdr.run_on_all_nodes to gather Raft Consensus status from all nodes.

bdr.monitor_group_raft_details Columns

Name Type Description
node_id oid Internal node id

node_name name Name of the node

state text Raft worker state on the node

leader_id oid Node id of the RAFT_LEADER

current_term int Raft election internal id

commit_index int Raft snapshot internal id

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

163

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

BDR System Functions

BDR management is primarily accomplished via SQL-callable functions. All functions in BDR are exposed
in the bdr schema. Any calls to these functions should be schema-qualified, rather than putting bdr in
the search_path.

This page contains additional system functions that are not documented in the other sections of the
documentation.

Note that you cannot manipulate BDR-owned objects using pglogical functions; only using the following
supplied functions.

Version Information Functions

bdr.bdr_edition

This function returns a textual representation of the BDR edition. BDR3 is distributed in either Standard
Edition (SE) and Enterprise Edition (EE); this function can be used to check which of those is currently
installed.

The Standard Edition runs on the community version of PostgreSQL 10 and 11, while the Enterprise
Edition requires 2ndQPostgres 11. The Enterprise Edition includes more advanced features than the
Standard Edition provides.

bdr.bdr_version

This function retrieves the textual representation of the BDR version that is currently in use.

bdr.bdr_version_num

This function retrieves a numerical representation of the BDR version that is currently in use. Version
numbers are monotonically increasing, allowing this value to be used for less-than and greater-than
comparisons.

The following formula is used to turn the version number consisting of major version, minor verion and
patch release into a single numerical value:

MAJOR_VERSION * 10'000 + MINOR_VERSION * 100 + PATCH_RELEASE

System Information Functions

bdr.get_relation_stats

Returns the relation information.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

164

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.get_subscription_stats

Returns the current subscription statistics.

System and Progress Information Parameters

BDR exposes some parameters that can be queried via SHOW in psql or using PQparameterStatus (or
equivalent) from a client application. This section lists all such parameters BDR reports to.

bdr.local_node_id

Upon session initialization, this is set to the node id the client is connected to. This allows an application
to figure out what node it is connected to even behind a transparent proxy.

bdr.last_committed_lsn

After every COMMIT of an asynchronous transaction, this parameter is updated to point to the end of
the commit record on the origin node. In combination with bdr.wait_for_apply_queue, this allows
applications to perform causal reads across multiple nodes, i.e. to wait until a transaction becomes
remotely visible.

Consensus Function

bdr.consensus_disable

Disables the consensus worker on the local node until server restart or until it’s re-enabled using
bdr.consensus_enable (whichever happens first).

Warning
Disabling consensus will disable some features of BDR and eventually will impact avail-
ability of the BDR cluster if left disabled for prolonged periods of time. This function
should only be used in coordination with 2ndQuadrant Support.

bdr.consensus_enable

Re-enabled disabled consensus worker on local node.

bdr.consensus_proto_version

Returns currently used consensus protocol version by the local node.

Needed by the BDR group reconfiguration internal mechanisms.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

165

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.consensus_snapshot_export

Generate a new BDR consensus snapshot from the currently committed-and-applied state of the local
node and return it as bytea.

The exporting node does not have to be the current Raft leader, nor does it need to be completely
up to date with the latest state on the leader. However, such snapshot might not be accepted by
bdr.consensus_snapshot_import() (see bellow).

The new snapshot is not automatically stored to the local node’s bdr.local_consensus_snapshot
table. It’s only returned to the caller.

The generated snapshot may be passed to bdr.consensus_snapshot_import() on any other node(s)
in the same BDR nodegroup that is behind the exporting node’s raft log position.

The local BDR consensus worker must be disabled for this function to work. Typical usage is:

SELECT bdr.bdr_consensus_disable();
\copy (SELECT * FROM bdr.consensus_snapshot_export()) TO 'my_node_consensus_snapshot.data'
SELECT bdr.bdr_consensus_enable();

While the BDR consensus worker is disabled, DDL locking attempts on the node will fail or time out,
galloc sequences will not get new values, Eager and CAMO transactions will pause or ERROR, and
other functionality that needs the distributed consensus system will be disrupted. The required downtime
is generally very brief.

Depending on the use case, it may be practical to extract a snapshot that already exists from the
snapshot field of the bdr.local_consensus_snapshot table and use that instead. Doing so does not
require that the consensus worker be stopped.

bdr.consensus_snapshot_import

Synopsis

bdr.consensus_snapshot_import(IN snapshot bytea)

Import a consensus snapshot which was exported by bdr.consensus_snapshot_export(), usually
from another node in the same BDR nodegroup.

It’s also possible to use a snapshot extracted directly from the snapshot field of the bdr.local_consensus_snapshot
table on another node.

This function is useful for resetting a BDR node’s catalog state to known good state in case of corruption
or user mistake.

The snapshot can be imported if the importing node’s apply_index is less than or equal to
the snapshot-exporting node’s commit_index at the time the snapshot was generated. See
bdr.get_raft_status(). A node that cannot accept the snapshot because its logs is already too far
ahead will raise an ERROR and make no changes. The imported snapshot does not have to be completely

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

166

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

up-to-date, as once the snapshot is imported the node will fetch the remaining changes from the current
leader.

The BDR consensus worker must be disabled on the importing node for this function to work. See notes
on bdr.consensus_snapshot_export() for details.

It’s possible to use this to force the local node to generate a new Raft snapshot by running:

SELECT bdr.consensus_snapshot_import(bdr.consensus_snapshot_export());

This may also cause it to truncate its Raft logs up to the current applied log position.

bdr.get_consensus_status

Returns status information about the current consensus (Raft) worker.

bdr.get_raft_status

Returns status information about the current consensus (Raft) worker. Alias for bdr.get_consensus_status.

Utility Functions

bdr.wait_slot_confirm_lsn

Allows the user to wait until the last write on this session has been replayed to one or all nodes.

Waits until a slot passes certain LSN. If no position is supplied, the current write position is used on the
local node.

If no slot name is passed, it will wait until all BDR slots pass the LSN. This is a separate function from
the one provided by pglogical so that we can only wait for slots registered for other BDR nodes, not all
pglogical slots and, more importantly, not our BDR group slot.

The function polls every 1000ms for changes from other nodes.

If a slot is dropped concurrently the wait will end for that slot. If a node is currently down and is not
updating its slot then the wait will continue. You may wish to set statement_timeout to complete earlier
in that case.

Synopsis

bdr.wait_slot_confirm_lsn(slot_name text DEFAULT NULL, target_lsn pg_lsn DEFAULT NULL)

Parameters

• slot_name - name of replication slot, or if NULL, all BDR slots (only)
• target_lsn - LSN to wait for, or if NULL, use the current write LSN on the local node

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

167

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.wait_for_apply_queue

The function bdr.wait_for_apply_queue allows a BDR node to wait for the local application of certain
transactions originating from a given BDR node. It will return only after all transactions from that peer
node are applied locally. An application or a proxy can use this function to prevent stale reads.

In case a specific LSN is given, that’s the point in the recovery stream from the peer to wait for. This can
be used in combination with bdr.last_committed_lsn retrieved from that peer node on a previous or
concurrent connection.

If the given target_lsn is NULL, this function checks the local receive buffer and uses the LSN of
the last transaction received from the given peer node. Effectively waiting for all transactions already
received to be applied. This is especially useful in case the peer node has failed and it’s not known which
transactions have been sent. Note that in this case, transactions that are still in transit or buffered on the
sender side are not waited for.

Synopsis

bdr.wait_for_apply_queue(peer_node_name TEXT, target_lsn pg_lsn)

Parameters

• peer_node_name - the name of the peer node from which incoming transactions are expected to
be queued and which should be waited for. If NULL, waits for all peer node’s apply queue to be
consumed.

• target_lsn - the LSN in the replication stream from the peer node to wait for, usually learned via
bdr.last_committed_lsn from the peer node.

bdr.get_node_sub_receive_lsn

This function can be used on a subscriber to get the last LSN that has been received from the given
origin. Either filtered to take into account only relevant LSN increments for transactions to be applied or
unfiltered.

The difference between the output of this function and the output of bdr.get_node_sub_apply_lsn()
measures the size of the corresponding apply queue.

Synopsis

bdr.get_node_sub_receive_lsn(node_name name, committed bool default true)

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

168

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Parameters

• node_name - the name of the node which is the source of the replication stream whose LSN we
are retrieving

• committed - the default (true) makes this function take into account only commits of transactions
received, rather than the last LSN overall, including actions that have no effect on the subscriber
node.

bdr.get_node_sub_apply_lsn

This function can be used on a subscriber to get the last LSN that has been received and applied from
the given origin.

Synopsis

bdr.get_node_sub_apply_lsn(node_name name)

Parameters

• node_name - the name of the node which is the source of the replication stream whose LSN we
are retrieving

bdr.set_ddl_replication

This function allows us to turn off the DDL replication within a session locally.

Synopsis

bdr.set_ddl_replication(ddl_replication text, local boolean DEFAULT false)

Parameters

• ddl_replication - value of ddl replication (‘on’, ‘off’)
• local - boolean value for the change; if true, it lasts’ only for the current transaction (true, false)

bdr.set_ddl_locking

Set the DDL locking to apply, either locally or globally on all nodes as explained in Executing DDL on
BDR systems.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

169

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Synopsis

bdr.set_ddl_locking(ddl_locking text, local boolean DEFAULT false)

Parameters

• ddl_locking - value for the DDL locking (‘on’, ‘off’, ‘DML’)
• local - boolean value for the change; if true, it lasts’ only for the current transaction (true, false)

bdr.run_on_all_nodes

Function to run a query on all nodes.

Warning
This function will run an arbitrary query on a remote node with the privileges of the user
used for the internode connections as specified in the node’s DSN. Caution needs to be
taken when granting privileges to this function.

Synopsis

bdr.run_on_all_nodes(query text)

Parameters

• query - arbitrary query to be executed

Notes

This function will connect to other nodes and execute the query, returning a result from each of them in
json format. Multiple rows may be returned from each node, encoded as a json array. Any errors, such
as being unable to connect because a node is down, will be shown in the response field. No explicit
statement_timeout or other runtime parameters are set, so defaults will be used.

This function does not go through normal replication, it uses direct client connection to all known nodes.

Don’t use this function for running DDL, otherwise you risk breaking replication and inconsistencies
between nodes. Use either transparent DDL replication or bdr.bdr_replicate_ddl_command() to
replicate DDL. DDL may be blocked in a future release.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

170

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Example

It’s useful to use this function in monitoring, for example in the following query:

SELECT bdr.run_on_all_nodes($$
SELECT local_slot_name, origin_name, target_name, replay_lag_size

FROM bdr.node_slots
WHERE origin_name IS NOT NULL

$$);

. . . will return something like this on a two node cluster:

[
{

"dsn": "host=192.168.0.90 dbname=testdb port=7432",
"node_id": "2079384130",
"response": [

{
"origin_name": "dc1n1",
"target_name": "dc1n2",
"local_slot_name": "bdr_testdb_bdrgroup_dc1n2",
"replay_lag_size": "168 bytes"

}
],
"node_name": "dc1n1"

},
{

"dsn": "host=192.168.0.91 dbname=testdb port=7433",
"node_id": "4121887394",
"response": [

{
"origin_name": "dc1n2",
"target_name": "dc1n1",
"local_slot_name": "bdr_testdb_bdrgroup_dc1n1",
"replay_lag_size": "0 bytes"

}
],
"node_name": "dc1n2"

}
]

bdr.global_lock_table

This function will acquire a global DML locks on a given table. See DDL Locking Details for information
about global DML lock.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

171

ddl.md#ddl-locking-details

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Synopsis

bdr.global_lock_table(relation regclass)

Parameters

• relation - name or Oid of the relation to be locked

Notes

This function will acquire the global DML lock independently of the ddl_locking setting.

The bdr.global_lock_table function requires UPDATE, DELETE, or TRUNCATE privilege on the locked
relation, unless bdr.backwards_compatibility is set is set to 30618 or below.

bdr.monitor_group_versions

This function uses BDR/pglogical version information returned from view bdr.monitor_group_version_details
to provide a cluster-wide version check.

Synopsis

bdr.monitor_group_versions()

Notes

This function returns a record with fields status and message, as explained in Monitoring.

This function calls bdr.run_on_all_nodes().

bdr.monitor_group_raft

This function uses BDR/pglogical Raft information returned from view bdr.monitor_group_raft_details
to provide a cluster-wide Raft check.

Synopsis

bdr.monitor_group_raft()

Notes

This function returns a record with fields status and message, as explained in Monitoring.

This function calls bdr.run_on_all_nodes().

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

172

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.monitor_replslots

This function uses replication slot status information returned from view pg_replication_slots (slot
active or inactive) to provide a local check considering all replication slots, except the BDR group slots.

Synopsis

bdr.monitor_replslots()

Notes

This function returns a record with fields status and message, as explained in Monitoring.

Internal Functions

BDR message payload functions

bdr.decode_message_response_payload and bdr.decode_message_payload

These functions decode the consensus payloads to a more human-readable output.

Used primarily by the bdr.global_consensus_journal_details debug view.

bdr.get_global_locks

This function shows information about global locks held on the local node.

Used to implement the bdr.global_locks view, to provide a more detailed overview of the locks.

bdr.get_slot_flush_timestamp

Retrieves the timestamp of the last flush position confirmation for a given replication slot.

Used internally to implement the bdr.node_slots view.

bdr internal function replication functions

bdr.internal_alter_sequence_set_kind, internal_replication_set_add_table, internal_replication_set_remove_table

Functions used internally for replication of the various function calls.

No longer used by the current version of BDR. Only exists for backwards compatibility during rolling
upgrades.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

173

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.internal_submit_join_request

Submits a consensus request for joining a new node.

Needed by the BDR group reconfiguration internal mechanisms.

bdr.isolation_test_session_is_blocked

A helper function, extending (and actually invoking) the original pg_isolation_test_session_is_blocked
with an additional check for blocks on global locks.

Used for isolation/concurrency tests.

bdr.local_node_info

This function displays information for the local node, needed by the BDR group reconfiguration internal
mechanisms.

The view bdr.local_node_summary provides similar information useful for user consumption.

bdr.msgb_connect

Function for connecting to the connection pooler of another node, used by the consensus protocol.

bdr.msgb_deliver_message

Function for sending messages to another node’s connection pooler, used by the consensus protocol.

bdr.peer_state_name

This function transforms the node state (node_state) into a textual representation, and is used mainly
to implement the bdr.node_summary view.

bdr.request_replay_progress_update

Requests the immediate writing of a ‘replay progress update’ Raft message. It is used mainly for test
purposes, but can be also used to test if the consensus mechanism is working.

bdr.seq_nextval

Internal implementation of sequence increments.

This function will be used instead of standard nextval in queries which interact with BDR Global
Sequences.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

174

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

bdr.show_subscription_status

Retrieves information about the subscription status, and is used mainly to implement the
bdr.subscription_summary view.

bdr.conflict_resolution_to_string

Transforms the conflict resolution from oid to text.

The view bdr.apply_log_summary is using it to give user-friendly information for the conflict resolution.

bdr.conflict_type_to_string

Transforms the conflict type from oid to text.

The view bdr.apply_log_summary is using it to give user-friendly information for the conflict type.

bdr.reset_subscription_stats

A function that resets the statistics created by subscriptions. Simply returns a boolean result.

bdr.reset_relation_stats

A function that resets the relation stats. Simply returns a boolean result.

bdr.pg_xact_origin

Return origin id of a given transaction.

Synopsis

bdr.pg_xact_origin(xmin xid)

Parameters

• xid - Transaction id whose origin is returned

bdr.difference_fix_origin_create

Creates a replication origin with a given name passed as argument, but adding a bdr_ prefix. It returns
the internal id of the origin. This performs same functionality as pg_replication_origin_create(),
except this requires bdr_superuser rather than postgres superuser permissions.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

175

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Synopsis

bdr.difference_fix_session_setup

Marks the current session as replaying from the current origin. The function uses the pre-
created bdr_local_only_origin local replication origin implicitly for the session. It allows
replay progress to be reported. It returns void. This performs the same functionality as
pg_replication_origin_session_setup(), except that this requires bdr_superuser rather than
postgres superuser permissions. Note that the earlier form of the function: bdr.difference_fix_session_setup(text)
has been deprecated and will be removed in upcoming releases.

Synopsis

bdr.difference_fix_session_setup()

bdr.difference_fix_session_reset

Marks the current session as not replaying from any origin, essentially resetting the effect of
bdr.difference_fix_session_setup(). It returns void. This performs the same functionality
as pg_replication_origin_session_reset(), except this requires bdr_superuser rather than
postgres superuser permissions.

Synopsis

bdr.difference_fix_session_reset()

bdr.difference_fix_xact_set_avoid_conflict

Marks the current transaction as replaying a transaction that has committed at LSN ‘0/0’ and timestamp
‘2000-01-01’. This performs the same functionality as pg_replication_origin_xact_setup('0/0', '2000-01-01'),
except this requires bdr_superuser rather than postgres superuser permissions.

Synopsis

bdr.difference_fix_xact_set_avoid_conflict()

bdr.resynchronize_table_from_node(node_name name, relation regclass)

Resynchronizes the relation from a remote node.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

176

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Synopsis

bdr.resynchronize_table_from_node(node_name name, relation regclass)

Parameters

• node_name - the node from which to copy/resync the relation data.
• relation - the relation to be copied from the remote node.

Notes

This acquires a global DML lock on the relation, truncates the relation locally, and copies data into it from
the remote node.

The relation must exist on both nodes with the same name and definition.

Resynchronization of partitioned tables with identical partition definitions, resynchronization partitioned
table to non-partitioned table and vice-versa and resynchronization of referenced tables by temporarily
dropping and recreating foreign key constraints are all supported.

After running the function on a referenced table, if the referenced column data no longer matches the
referencing column values, it throws an error and function should be rerun after resynchronizing the
referencing table data.

Currently, row_filters are ignored by this function.

The bdr.resynchronize_table_from_node function can be only executed by the owner of the table,
provided the owner has bdr_superuser privileges.

bdr.alter_subscription_skip_changes_upto

This does the same as pglogica.alter_subscription_skip_changes_upto

Because logical replication can replicate across versions, doesn’t replicate global changes like roles, and
can replicate selectively, sometimes the logical replication apply process can encounter an error and
stop applying changes.

Wherever possible such problems should be fixed by making changes to the target side. CREATEing any
missing table that’s blocking replication, CREATE a needed role, GRANT a necessary permission, etc. But
occasionally a problem can’t be fixed that way and it may be necessary to skip entirely over a transaction.
Changes are skipped as entire transactions, all or nothing. To decide where to skip to, use log output
to find the commit LSN, per the example below, or peek the change stream with the logical decoding
functions.

Unless a transaction only made one change, it’s often necessary to manually apply the transaction’s
effects on the target side, so it’s important to save the problem transaction whenever possible. See the
example below.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

177

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

It’s possible to skip over changes without bdr.alter_subscription_skip_changes_upto by using
pg_catalog.pg_logical_slot_get_binary_changes to skip to the LSN of interest, so this is really
a convenience function. It does do a faster skip; however, it may bypass some kinds of errors in logical
decoding.

This function only works on disabled subscriptions.

The usual sequence of steps is:

• identify the problem subscription and LSN of the problem commit
• disable the subscription
• save a copy of the transaction(s) using pg_catalog.pg_logical_slot_peek_changes on the

source node (if possible)
• bdr.alter_subscription_skip_changes_upto on the target node
• apply repaired or equivalent changes on the target manually, if necessary
• re-enable the subscription

Warning
It’s easy to make problems worse when using this function. Don’t do anything unless
you’re really, really sure it’s the only option.

Synopsis

bdr.alter_subscription_skip_changes_upto(
subname text,
skip_upto_and_including pg_lsn

);

Example

Apply of a transaction is failing with an ERROR, and you’ve determined that lower-impact fixes such as
changes on the target side will not resolve this issue. You determine that you must skip the transaction.

In the error logs, find the commit record LSN to skip to, as in this artificial example:

ERROR: XX000: CONFLICT: target_table_missing; resolver skip_if_recently_dropped returned an error: table does not exist
CONTEXT: during apply of INSERT from remote relation public.break_me in xact with commit-end lsn 0/300AC18 xid 131315
committs 2021-02-02 15:11:03.913792+01 (action #2) (effective sess origin id=2 lsn=0/300AC18)
while consuming 'I' message from receiver for subscription bdr_regression_bdrgroup_node1_node2 (id=2667578509)
on node node2 (id=3367056606) from upstream node node1 (id=1148549230, reporiginid=2)

In this portion of log we have the information we need: the_target_lsn: 0/300AC18 the_subscription:
bdr_regression_bdrgroup_node1_node2

Next, disable the subscription so the apply worker doesn’t try to connect to the replication slot:

SELECT pglogical.alter_subscription_disable('the_subscription');

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

178

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Note that you cannot skip only parts of the transaction, it’s all or nothing. So it’s strongly recommended
that you save a record of it by COPYing it out on the provider side first, using the subscription’s slot name.

\\copy (SELECT * FROM pg_catalog.pg_logical_slot_peek_changes('the_slot_name',
'the_target_lsn', NULL, 'min_proto_version', '1', 'max_proto_version', '1',
'startup_params_format', '1', 'proto_format', 'json'))

TO 'transaction_to_drop.csv' WITH (FORMAT csv);

Note that the example is broken into multiple lines for readability, but it should be issued in a single line
because \copy does not support multi-line commands.

Now you can skip the change by changing “peek” to “get” above, but bdr....skip_changes_upto does
a faster skip that avoids decoding and outputting all the data:

SELECT bdr.alter_subscription_skip_changes_upto('subscription_name',
'the_target_lsn');

If necessary or desired, apply the same changes (or repaired versions of them) manually to the target
node, using the dumped transaction contents as a guide.

Finally, re-enable the subscription:

SELECT bdr.alter_subscription_enable('the_subscription');

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

179

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Credits and Licence

BDR3 has been designed, developed and tested by the 2ndQuadrant team:

• Petr Jelinek
• Craig Ringer
• Markus Wanner
• Pavan Deolasee
• Tomas Vondra
• Simon Riggs
• Nikhil Sontakke
• Pallavi Sontakke
• Amruta Deolasee
• Rahila Syed

Copyright © 2018-2020 2ndQuadrant Ltd

BDR3 is provided under the terms of the 2ndQuadrant Product Usage License.

The reproduction of these documents is prohibited.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

180

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Appendix A: Release Notes for BDR3

BDR 3.6.32

This is a maintenance release for BDR 3.6 which includes fixes for issues identified previously.

Resolved Issues

• Catchup replication slot cleanup during PARTing of a node (BDR-2368, RT82884)
When parting a node, the catcup replication slot may be left behind if the source node used for
catching up changes. Clean up these replication slots once the catchup finishes. Similarly clean
up the catchup information from BDR catalogs.

• Cleanup replication slot when bdr_init_physical fails (BDR-2364, RT74789)
If bdr_init_physical aborts without being able to join the node, it will leave behind an inactive
replication slot. Remove such a replication slot when it is inactive before an irregular exit.

Improvements

• Allow consumption of the reserved galloc sequence slot (BDR-2367, RT83437, RT68255)
The galloc sequence slot reserved for future use by background allocator can be consumed in the
presece of consensus failure.

Upgrades

This release supports upgrading from the following versions of BDR:

• 3.6.20 and higher

BDR 3.6.31

This is a maintenance release for BDR 3.6 which includes fixes for issues identified previously.

Resolved Issues

• Make ALTER TABLE lock the underlying relation only once (RT80204)
This avoids the ALTER TABLE operation falling behind in the queue when it released the lock in
between internal operations. With this fix, concurrent transactions trying to acquire the same lock
after the ALTER TABLE command will properly wait for the ALTER TABLE to finish.

• Reduce log for bdr.run_on_all_nodes (BDR-2153, RT80973)
Don’t log when setting bdr.ddl_replication to off if it’s done with the “run_on_all_nodes”
variants of function. This eliminates the flood of logs for monitoring functions.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

181

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Improvements

• Use 64 bits for calculating lag size in bytes (BDR-2215)

Upgrades

This release supports upgrading from the following versions of BDR:

• 3.6.20 and higher

BDR 3.6.30

This is a maintenance release for BDR 3.6 which includes fixes for issues identified previously.

Resolved Issues

• Ensure loss of CAMO partner connectivity switches to Local Mode immediately
This prevents disconnected partner from being reported as CAMO ready.

• Fix the cleanup of bdr.node_pre_commit for async CAMO configurations (BDR-1808)
Previously, the periodic cleanup of commit decisions on the CAMO partner checked the readiness of
it’s partner, rather than the origin node. This is the same node for symmetric CAMO configurations,
so those were not affected. This release corrects the check for asymmetric CAMO pairings.

Upgrades

This release supports upgrading from the following versions of BDR:

• 3.6.20 and higher

BDR 3.6.29

This is a maintenance release for BDR 3.6 which includes fixes for issues identified previously.

Resolved Issues

• Switch from CAMO to Local Mode only after timeouts (EE, RT74892)
Do not use the catchup_interval estimate when switching from CAMO protected to Local Mode,
as that could induce inadvertent switching due to load spikes. Use the estimate only when switching
from Local Mode back to CAMO protected (to prevent toggling forth and back due to lag on the
CAMO partner).

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

182

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Prevent duplicate values generated locally by galloc sequence in high concurrency situations when
the new chunk is used (RT76528)
The galloc sequence could have temporarily produce duplicate value when switching which chunk
is used locally (but not across nodes) if there were multiple sessions waiting for the new value. This
is now fixed.

• Ensure that the group slot is moved forward when there is only one node in the BDR group
This prevents disk exhaustion due to WAL accumulation when the group is left running with just
single BDR node for prolonged period of time. This is not recommended setup but the WAL
accumulation was not intentional.

• Advance Raft protocol version when there is only one node in the BDR group
Single node clusters would otherwise always stay on oldest support protocol until another node
was added. This could limit available feature set on that single node.

Improvements

• Reduce frequency of CAMO partner connection attempts (EE)
In case of a failure to connect to a CAMO partner do not retry immediately (leading to a fully busy
pglogical manager process), but throttle down repeated attempts to reconnect to once per minute.

• Ensure CAMO configuration is checked again after a reconnect (EE)

Upgrades

This release supports upgrading from the following versions of BDR:

• 3.6.20 and higher

BDR 3.6.28.1

This is a hotfix release for BDR 3.6.28.

Resolved Issues

• Fix potential FATAL error when using global DML locking with CAMO (BDR-1675, BDR-1655)

• Fix lag calculation for CAMO local mode delay (BDR-1681)

BDR 3.6.28

This is a security and maintenance release for BDR 3.6 which includes fixes for issues identified
previously.

Please make sure you read the pglogical 3.6.28 release notes for the important security and physical
promotion data loss fixes provided there.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

183

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Resolved Issues

• Ensure bdr.camo_local_mode_delay is actually being applied (BDR-803)
This artificial delay allows throttling a CAMO node that is not currently connected to its CAMO
partner to prevent it from producing transactions faster than the CAMO partner can possibly apply.
In previous versions, it did not properly kick in after bdr.global_commit_timeout amount of lag,
but only 1000 times later (due to erroneously comparing seconds to milliseconds).

• Fix bdr.alter_sequence_set_kind to accept a bigint as a start value (RT74294)
The function was casting the value to an int thus getting bogus values when bigint was used.

• Fix node replication slot handling on node name reuse (RT71888)
Cleanup local info slot name when the slot is dropped, this will prevent data loss by not dropping
the slot during bdr_init_physical when it joins a node re-using the same name.

• Don’t stop consensus worker when manager exists (RT73539)
Killing the consensus after configuration changes would destabilize Raft.

• Fix ignored --recovery-conf option in bdr_init_physical.
bdr_init_physical was completely ignoring the value of the –recovery-conf option if provided.
It would append to a recovery.conf if one already existed in the target data dir but totally ignored
the supplementary config provided on the command line, if any.

Improvements

• Allow user to specify a different postgres.auto.conf file. (BDR-1400)
Added command-line argument --postgresql-auto-conf to be used when the user needs to
specify a different postgres.auto.conf file.

• Log LSN when advancing replication origin during join
Make bdr_process_node_state_join_start() log the LSN it advances the replication ori-
gin for the catchup join-target node to when BDR is started by bdr_init_physical with a
bdr.init_physical_lsn set. This is critical information for diagnosing issues with physical join.

• Replication slot monitoring improvements (BDR-720)
Differentiate decoder slot in bdr.node_slots.
Include node and group information in bdr.node_slots when origin and target are in different
node group.
Teach bdr.monitor_local_replslots what slots to expect.

• Improve documentation of the backup/restore procedure (RT72503, BDR-1340) Recommend
against dropping the extension with cascade because it may drop user columns that are using
CRDT types and break the sequences. It’s better do use drop_node function instead.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

184

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Upgrades

This release supports upgrading from following versions of BDR:

• 3.6.20 and higher

BDR 3.6.27

This is a security and maintenance release for BDR 3.6 which includes fixes for issues identified
previously.

Please make sure you read the pglogical 3.6.27 release notes for the important security and physical
promotion data loss fixes provided there.

Resolved Issues

• Make sure bdr_init_physical does not leave temporary replication slots behind (BDR-191,
RT70355)
We now use native temporary slots in PostgreSQL which are automatically cleaned up.

• Make the consensus worker exit if postmaster dies (BDR1063, RT70024)
This solves issues with consensus worker hanging after crash of other PostgreSQL process.

• Fix reuse of internal connection pool connections
Improves behavior with larger number of nodes.

Upgrades

This release supports upgrading from following versions of BDR:

• 3.6.20 and higher

BDR 3.6.26

This is a security and maintenance release for BDR 3.6 which includes fixes for issues identified
previously.

Please make sure you read the pglogical 3.6.26 release notes for the important security and physical
promotion data loss fixes provided there.

Resolved Issues

• Fix crash in bdr.run_on_all_nodes when remote node returned an error

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

185

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Other Changes

• Add bdr.alter_subscription_skip_changes_upto() (BDR-195) This function allows moving
subscription ahead without replicating the changes which is useful for error recovery.

• Add a new documentation appendix which shows example of how to do table rewriting DDL safely
with BDR (RTRT69514, RT69340).

• Improve coexistence with BDR 3.7 in the same BDR group (during upgrades).

Upgrades

This release supports upgrading from following versions of BDR:

• 3.6.20 and higher

BDR 3.6.25

This is a security and maintenance release for BDR 3.6 which includes fixes for issues identified
previously.

Resolved Issues

• Don’t display additional node connection string in node_summary and local_node_summary views
(RT69564)
BDR only supports one connection string for each node.

• Fix “bdr node . . . not found” in replay progress update (RT69779)
Nodes that have pending progress info globally might no longer exist locally, and if that’s the case
is safe to ignore the progress update for them.

• Update state journal on node creation (RM20111)
This solves corner cases where we could sometimes fail to join or part a node if the node with
same name previously existed and was removed.

• Fix issues with stopping supervisor process when blocked by network call (RM20311)
This issue could have resulted in PostgreSQL refusing to stop if the supervisor process was stuck
on a network call.

Improvements

• Add new param detector_args to bdr.alter_table_conflict_detection (RT69677)
To allow additional parameters for individual detectors.

Currently the only additional parameter is atttype for the row_version detection method which allows
using smallint and bigint, rather than just the default integer for the column type.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

186

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

BDR 3.6.24

This is a security and maintenance release for BDR 3.6 which includes fixes for issues identified
previously.

Resolved Issues

• Unblock replay progress updates after a failing CAMO connection (EE) (RT69493, RM19924)
After a connection to the configured CAMO partner (or origin) failed, for example if the CAMO
partner simply has not been started at the start of the origin node, it was not properly reset. This
not only prevented further connection attempts and prevented CAMO from operating, but also
blocked replay progress updates from the blocked node. Which in turn prevents the group slot from
advancing, meaning WAL data piled up on all nodes.

This release not only corrects the cleanup of the CAMO connection state to enable retries, but also
decouples replay progress updates from the CAMO connection. Should there ever be another issue with
CAMO connections, replay progress updates and the group slot should not be affected.

• Ensure bdr_init_physical works on matching BDR versions (RT69520, RM19975)
To initialize a new node from a physical copy, the new node must use the same BDR version as the
node the physical backup was copied from. This release ensures bdr_init_physical checks
and gives a useful error otherwise.

• Relax the safety checks in bdr.drop_node a bit again (RT69639)
The check to prevent premature removal introduced in 3.6.23 turned out to be too strict and
prevented dropping nodes as soon as any one peer had properly dropped the node already. This
release relaxes the check again to allow dropping on all peer nodes.

Improvements

• Local node information in bdr.node_summary (RM20002, RT69541) Allow user to see information
related to the local node even before the node is part of a node_group. This extends also to the
bdr.local_node_summary view.

BDR 3.6.23

This is a security and maintenance release for BDR 3.6 which includes fixes for issues identified
previously.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

187

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Resolved Issues

• Resolve CAMO transactions within a local transaction (RT69404)
On rare occasions, the final commit stage of a CAMO or Eager All Node transaction still needs to
do lookups in the system catalog. This led to a segfault, because BDR did not properly wrap this
operation in a (read-only) transaction with full access to system catalogs.

• Better validate inputs to administration functions (RM19276, RM18108, RM17994, RT69013)
When intentionally fed with invalid input (mostly NULL), some of the administrative functions of BDR
crashed, leading to a restart of the Postgres node. This would constitute a denial of service attack
for roles with either bdr_application or bdr_superuser privileges.

• Add a warning when trying to join known broken BDR versions (RT69088)
BDR versions 3.6.19 and older are susceptible to data-loss when joining a BDR cluster. BDR now
identifies this situation and logs a warning at join time.

• Handle missing column gracefully for ALTER COLUMN TYPE (RM19389, RT69114)
The fix just throws same error Postgres would when ALTER COLUMN TYPE with non-existent column
is executed.

• Fix JOINING state handling on consensus request timeout (RT69076)
The timeout during JOINING state handling could result in node unable to join the BDR group. The
retry logic now handles this state correctly.

• Change the snapshot restore to follow Raft paper more closely
Fixes potential metadata consistency issues when node returns after longer period of downtime.

• Fix potential crash in bdr.resynchronize_table_from_node (RM19527)

• Extend bdr.drop_node with a check preventing premature removal (RM19280)
The function bdr.drop_node by default now checks whether the node to drop has been fully
parted on all nodes prior to allowing to drop its metadata. An additional force argument allows to
disable this check and effectively exposes the previous behavior.

• Validation of replication_set_remove_table input (RT69248, RM19620)
Check if the relation Oid passed as the function argument is valid.

Other Changes

• Improve error messages (RM19483)

• Minor documentation clarifications and language fixes (RM19825, RM19296, RT69401, RT69044)

BDR 3.6.22

This is a security and maintenance release for BDR 3.6 which also includes various minor features.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

188

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Resolved Issues

• Correct a hang in bdr.wait_for_apply_queue (RM11416, also affects CAMO)
Keepalive messages possibly move the LSN forward. In an otherwise quiescent system (without
any transactions processed), this may have led to a hang in bdr.wait_for_apply_queue,
because there may not be anything to apply for the corresponding PGL writer, so the
apply_lsn doesn’t ever reach the receive_lsn. A proper CAMO client implementation uses
bdr.logical_transaction_status, which in turn uses the affected function internally. Thus
a CAMO switch- or fail-over could also have led to a hang. This release prevents the hang by
discarding LSN increments for which there is nothing to apply on the subscriber.

• Correct a problem with Raft snapshot writing when a 3.6.21 node became leader of a cluster that
also included nodes on version 3.6.20 or earlier. Nodes that were parted but not subsequently
dropped (so they still appear in the bdr.node table) can cause it as well. The issue can cause
DDL locking to time out, galloc sequence allocation to stop, and other issues related to loss of
functioning Raft-based consensus. If this problem is encountered, the following error will be seen
in logs:

ERROR: invalid snapshot: record length [. . .] doesn’t match expected length [. . .] for chunk
“ddl_epoch”

and SELECT bdr.get_raft_status() will intermittently report ERROR: could not find consensus worker
when called.

To check if this issue could be affecting you, check bdr.node for any parted nodes with
proto_version_max less than 13. Also query

SELECT status->>'protocol_version'
FROM bdr.get_raft_status() status;

to see if the result is less than 13. If either is true and your cluster has 3.6.21 nodes you could be affected
by the issue. To prevent or solve it you are affected by it, upgrade immediately to 3.6.22.

This issue does not arise when all nodes are on 3.6.20 or older.

• Fix a problem with NULL values in bdr.ddl_epoch catalog (RM19046). Release 3.6.21 added a
new epoch_consumed_lsn column to bdr.ddl_epoch catalog. Adding a new column would set
the column value to NULL in all existing rows in the table. But the code failed to handle the NULL
values properly. This could lead to reading garbage values or even memory access errors. The
garbage values can potentially lead to global lock timeouts as a backend may wait on a LSN which
is far into the future.

We fix this by updating all NULL values to ‘0/0’ LSN, which is an invalid value representation for LSN.
The column is marked NOT NULL explicitly and the code is fixed to never generate new NULL values for
the column.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

189

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Allow consensus protocol version upgrades despite parted nodes (RM19041)
Exclude already parted nodes from the consensus protocol version negotiation, as such nodes do
not participate in the consensus protocol any more. Ensures the newest protocol version among
the set of active nodes is used.

• Check relation oid in bdr.drop_trigger (RM19276, RT69013) Error instead of segfault when we
pass an invalid relation oid to the function bdr.drop_trigger.

Improvements

• Numerous fixes for galloc sequences (RM18519, RM18512) The “nextval” code for galloc se-
quences had numerous issues:

• Large INCREMENT BY values (+ve or -ve) were not working correctly

• Large CACHE values were not handled properly

• MINVAL/MAXVAL not honored in some cases The crux of the issue was that large increments or
cache calls would need to make multiple RAFT fetch calls. This caused the loop retry code to be
invoked multiple times. The various variables to track the loops needed adjustment.

• Error out if INCREMENT BY is more than galloc chunk range (RM18519) The smallint, int and bigint
galloc sequences get 1000, 1000000, 1000000000 values allocated in each chunk respectively.
We error out if the INCREMENT value is more than these ranges.

• Extend bdr.get_node_sub_receive_lsn with an optional committed argument
The default behaviour has been corrected to return only the last received LSN for a committed
transaction to apply (filtered), which is the original intent and use of the function (e.g. by HARP).
Passing a false lets this function return the unfiltered most recent LSN received, matching the
previous version’s behavior. This change is related to the hang in bdr.wait_for_apply_queue
mentioned above.

• Fix tracking of the last committed LSN for CAMO and Eager transactions (RM13509)
The GUC bdr.last_committed_lsn was only updated for standard asynchronous BDR transac-
tions, not for CAMO or Eager ones.

BDR 3.6.21

This is a security and maintenance release for BDR 3.6 which also includes various minor features.

Resolved Issues

• SECURITY: Qualify calls to unnest from bdr.logical_transaction_status (RM18359)
Required to protect CAMO users from attack risks identified in CVE-2018-1058, when the user
application avoids the insecure coding practices identified there. See BDR Security chapter for

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

190

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

further explanation. bdr.logical_transaction_status is typically only used by an application
taking advantage of the CAMO feature.

• SECURITY: Qualify a call to an inequality operator in bdr_init_physical (RM18359)
Since 3.6.20, the bdr_init_physical utility uses the <> inequality operator. Similar to the above
entry, the operator is now called by its fully qualified name to avoid attack risks identified in
CVE-2018-1058.

• SECURITY: Recent PostgreSQL 11.9 et al reported CVE-2020-14349. The related risk is the same
as CVE-2018-1058 and was already handled in BDR3.6.19, so no further action has been taken in
this release.

• Re-add the “local_only” replication origin (RT68021)
Using bdr_init_physical may have inadvertently removed it due to a bug that existing up until
release 3.6.19. This release ensures to recreate it, if it’s missing.

• Eliminate SQL calls to pg_switch_wal from BDR (RT68159, RM17356)
The helper function bdr.move_group_slot_all_nodes as well internal replay progress update
handling invoked the Postgres function pg_switch_wal via SQL, thus requiring explicit execute
permissions. Instead use direct internal calls from the BDR extension to avoid that requirement.

• Handle NULL arguments passed to functions in BDR schema gracefully (RT68375, RM17994)
Some of the functions in BDR schema, e.g. bdr.alter_node_add_log_config() caused segmentation
fault when NULL arguments were passed to those. Those are fixed to handle the NULL arguments
appropriately. Those functions which do not expect NULL arguments now throw an error mentioning
so. Others handle NULL arguments according to the functionality offered by individual function.

• Prevent violation of NOT NULL constraints in BDR-internal catalogs (RM18335)
Postgres 11.9 is more strict with NOT NULL constraints for catalog tables. Correct and relax
constraints for two internal tables for which BDR stores NULL values in.

• Wait for replication changes triggered by prior epoch (RM17594, RM17802)
When a node requests a global DDL lock, it now waits until it has seen the replication changes
associated with the previous DDL. If the previous DDL was run on the same node, then there won’t
be any additional wait. But if the previous DDL was run on some other node, then this node must
wait until it catches up replication changes from the other node. This improves handling of multiple
concurrent DDL operations across the BDR Group which would previously result in global lock
timeout, but now may cause additional wait in case of a large replication lag between the pair of
nodes.

• Fix incorrect handling of MAXVALUE and MINVALUE for galloc sequences (RM14596)

• Fix concurrent action of nextval/currval when changing sequence kind (RT68438)
During nextval/currval calls, the sequence kind was fetched prior to locking the sequence, which
allowed a concurrently executed call to bdr.alter_sequence_set_kind() to influence the returned
value incorrectly.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

191

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Disallow SCHEMA and SEQUENCE RENAME for galloc sequences (RM15554)
The consistent range allocator for galloc sequences identifies the sequence using schema name
and sequence name, so changing the name of either of those could break it.

• Adjust chunk size of a galloc seq chunk if type was changed (RT68470, RM18297)

• Don’t drop bdr_local_only_origin in bdr_init_physical
Also recreate it in upgrade script in case previous version of BDR has dropped it.

• Ensure there is at least one transaction after wal switch in bdr.move_group_slot_all_nodes
(RT67591, RM17356)
This will move the group slot forward more hastily on servers with low concurrent activity.

• Fix PART_CATCHUP node state handling (RM17418)
In 3.6.20 different nodes might have had different ideas about what to do when there is not fully
joined node during part of another node which could cause the part operation to stall indefinitely
with only possible solution being forced part. 3.6.21 leaves the decision on what to do next on Raft
leader and other nodes just follow, so the decision making is consistent across whole BDR group.

• Fix incorrect cache handling for sessions established prior to BDR node creation (RT68499).

Improvements

• Allow use of CRDTs when BDR extension installed but without any node (RM17470)
Previously, restoring CRDT values on a node with BDR extension installed, but without a node
created, would throw an ERROR when the CRDT data type requests the node id. We now store an
InvalidOid value when the node id is not available. If the node is subsequently added to a BDR
cluster, when the CRDT column is updated, InvalidOid will be replaced by a normal node id.

• Check validity of options when altering a galloc sequence (RM18301, RT68470)
Galloc sequences do not accept some options, so warn the user in case invalid options are used,
as already occurs with timeshard sequences.

• resynchronize_table_from_node() freezes the table on target node (RM15987) When we
use this function the target table is truncated first and then copied into on the destination node.
This activity additionally FREEZEs the tuples as the data is loaded. This then avoids a rewriting the
target table to set hint bits, as well as avoiding high volume WAL writes which would occur when
the table was first used after resyncronizing.

• Create a virtual sequence record on other nodes (RM16008, RT68438, RT68432)
If we create a galloc sequence and try to use its value in the same transaction block, then because
it does not exist yet on other nodes, it used to error out with “could not fetch next sequence chunk”
on the other nodes. We solve this by creating a virtual record on the other nodes.

• Add start parameter to bdr.alter_sequence_set_kind() (RT68430)
Allows specifying new starting point for galloc and local sequenes in single step with changing the
sequence kind.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

192

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Add an internal consistent consensus-based key-value store for use by HARP (RM17825)
This is not meant for direct use by users, but enables features for additional tooling.

• Improve latency of global locks in cases where other nodes respond very quickly, such as when
there is no replication lag

• Throw errors for configuration paarmeters that were supported by BDR1 and BDR2, but are no
longer supported by BDR3 (RT68529). Since PostgreSQL does not throw an ERROR/WARNING
while setting an extension qualified, non-existent parameter, users with BDR1/BDR2 experience
may fail to notice that the parameter is not supported by BDR3. We now explicitly catch all attempts
to use parameter names that match unsupported BDR1/BDR2 configuration parameters and throw
an ERROR.

• Document known issues in “Appendix C” section of documentation (RM18169)

BDR 3.6.20

This is a security and maintenance release for BDR 3.6 which also includes various minor features.

Additional Actions

• Run LiveCompare following logical join to handle rare divergent errors (RT67307)
When running a logical join when nodes are down or have large replication lag can cause divergence
of concurrent transactions that conflict during join. When running a logical join from a source to
a target node, changes made on other nodes that were still in-flight could cause conflicts when
applied; if conflicts occurs, conflict resolution might diverge for those rows. Running LiveCompare
immediately following the join will clean up any such issues; this can be carefully targeted using a
conflict logging table. Required actions are now fully documented.

Resolved Issues

• Ignore self-conflicts during logical join that could lead to data loss (RT67858)
Changes made to tables during logical join could conflict with the original rows, as a result of
rewriting the commit timestamp onto the target node. Explicitly ignore such conflicts seen while in
join catchup mode, avoiding the associated data loss.

• Ensure origin position messages cannot be skipped during join (RT67858)
Progress watermark messages are now written to WAL transaction stream rather than being issued
asynchronously via the messaging layer. During join we now wait for the joining node to see at least
one watermark to ensure no timing window exists that could lead to skipping the origin position
during join, thus avoiding data loss.

• Resilience against idle_in_transaction_session_timeout (RM13649, RT67029, RT67688)
Set idle_in_transaction_session_timeout to 0 so we avoid any user setting that could close
the connection and invalidate the snapshot.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

193

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Allow early part_node to interrupt a hanging join (RT67980, RM16659)
In case a new node failing to join and not making any progress, attempting to remove it with plain
(non-forced) bdr.part_node could lead to a hang. Resolve this by skipping the PART_CATCHUP
phase for such a node, as it did not possibly produce any transactions to catch up to.

• Warn when joining to BDR group with versions of BDR which have known consistency issues
The above fixes for join process only work if whole BDR node is upgraded to the 3.6.20 or higher
(protocol version 12+), so we warn about joining to groups with older versions. In-place upgrades
work normally.

• Fix minor issues detected by Coverity scanner.

Improvements

• Ignore bdr.assess_update_replica_identity parameter in writer worker processes (RM15983) (EE)
Setting this in postgresql.conf can cause a potential outage if executed by writer worker processes.
Hence, writer worker processes ignore this parameter.

• CentOS 8 is now supported, starting with this release.

• Improve diagnostic logging of the join process (RT67858)
Include the fact that we retry the join state requests after failure in the error message and raise the
log level of slot/origin creation/movement from DEBUG to LOG so that it’s always logged by default.

BDR 3.6.19

This is a security and maintenance release for BDR 3.6 which also includes various minor features.

Resolved Issues

• SECURITY: Set search_path to empty for internal BDR SQL statements (RM15373)
Also, fully qualify all operators used internally. BDR is now protected from attack risks identified in
CVE-2018-1058, when the user application avoids the insecure coding practices identified there.
See BDR Security chapter for further explanation.

• SECURITY: Raise required privileges for BDR admin functions (RM15542)
When executed by roles other than superuser or bdr_superuser:

– bdr.alter_table_conflict_detection needs table owner
– bdr.column_timestamps_enable needs table owner
– bdr.column_timestamps_disable needs table owner
– bdr.drop_trigger needs table owner
– bdr.alter_sequence_set_kind needs sequence owner
– bdr.global_lock_table needs UPDATE, DELETE or TRUNCATE (like LOCK TABLE)

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

194

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

– bdr.create_conflict_trigger needs TRIGGER permission on the table and EXECUTE permis-
sion on the function

– bdr.create_transform_trigger needs TRIGGER permission on the table and EXECUTE per-
mission on the function

A new GUC bdr.backwards_compatibility allows to skip this newly introduced check for existing
clients requiring the former behavior.

• Resolve a hang possible after multiple global lock releases (RT67570, RM14994)
A bug in the code path for releasing a global lock after a timeout led to overriding the backend’s
PID with a value of -1, also showing up in the waiters list of bdr.global_locks. This in turn
crippled the waiters list and ultimately led to an infinite loop. This release fixes the override, which
is the original cause of this hang and correctly removes entries from the lock wait list.

• Correct parsing of BDR WAL messages (RT67662)
In rare cases a DDL which is replicated across a BDR cluster and requires a global lock may cause
errors such as “invalid memory alloc request size” or “insufficient data left in message” due to
incorrect parsing of direct WAL messages. The code has been fixed to parse and handle such
WAL messages correctly.

• Fix locking in ALTER TABLE with multiple sub commands (RM14771) Multiple ALTER TABLE
sub-commands should honor the locking requirements of the overall set. If one sub-command
needs the locks, then the entire ALTER TABLE command needs it as well.

• Fix bug in example of ALTER TABLE . . . ADD COLUMN workaround (RT67668)
Explain why bdr.global_lock_table() is needed to avoid concurrent changes that cause problems, in
that case.

• Fix a hang after promotion of a physical standby (RM15728)
A physical standby promoted to a BDR node may have failed to start replicating due to the use of
stale data from an internal catalog cache.

• Fix crash when bdr.trigger_get_type() is called by itself (RM15592) Calling bdr.trigger_get_type()
outside a streaming trigger function would cause a crash. Fixed the function to return NULL when
called outside a streaming trigger function.

Improvements

• bdr.trigger_get_origin_node_id() allows preferred-node resolution (RM15105, RT67601)
Some customers have a requirement to resolve conflicts based upon the node that is the source of
the change. This is also known as trusted source, trusted site or AlwaysWins resolution. Previous
versions of BDR allowed these mechanisms with 2 nodes; this new function allows this option with
any number of nodes. Examples are documented.

• BDR now accepts URIs in connection strings (RM14588)
All connection strings can now use the format URI “postgresql://. . . ”

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

195

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• New function bdr.resynchronize_table_from_node() (RM13565, RT67666, RT66968) allows a
single table to be truncated and then resynced from a chosen node, while holding a global dml lock.
This allows a table to be resynchronized following a data divergence or data corruption without
needing to regenerate the whole node. Foreign Keys are removed and re-enabled afterwards.

• Improve filtering of changes made by explicitly unreplicated transactions (RM15557)
Previously changes made by transactions using bdr.xact_replication = off or by bdr.difference_fix
transactions would be sent to the remote node, generating spurious conflicts and wasting effort.
Changes are now filtered on the source node instead, improving performance.

• Initial and periodic transaction status checks use async libpq (RM13504) (EE)
With CAMO enabled, the status of in-flight transactions is checked against a partner node. This
uses an standard Postgres connection via libpq, which used to block the PGL manager process.
This release changes the logic to use asynchronous libpq to allow the PGL manager to perform
other tasks (e.g. process Raft messages) while that status check is performed. This reduces
chances of timeouts or deadlocks due to a more responsive PGL manager process.

• Additional message fields assist diagnosis of DDL replication issues (RM15292)

• Clarify documentation regarding privileges required for BDR users (RT67259, RM15533)

BDR 3.6.18

This is a maintenance release for BDR 3.6 which includes minor features as well as fixes for issues
identified previously.

Improvements

• Add synchronize_structure option to join_node_group (RM14200, RT67243)
New synchronize_structure option can be set to either ‘all’ or ‘none’, which either sychronizes
the whole schema or copies no DDL. This allows for rolling application schema upgrades to be
performed with a user-managed schema (DDL) change step.

• Make bdr_difference_fix_* functions use pre-created local origin (RM14189)
The bdr_difference_fix_* family of functions used to create a local origin to carry out conflict fixes.
We now pre-create “bdr_local_only_origin” local origin at extension creation time. This same local
origin is used by the above functions now.

• Adjust monitored values in bdr.monitor_group_versions() (RM14494)
We no longer report CRITICAL when pglogical version different to bdr version, which is actually not
important. We now report WARNING if BDR editions differ between nodes.

• Substantial formatting corrections and spelling check of documentation

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

196

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Resolved Issues

• Fix node join so it uses only bdr_superuser permissions (RM14121, RT67259)
This affects the join_target_dsn connection of the join_node_group function, which has been
fixed to work with only bdr_superuser right for the role used to connect.

• GRANT EXECUTE on bdr.show_subscription_status TO bdr_real_all_stats (RT67360, RM14624)
This allows both bdr_read_all_stats and bdr_monitor roles to access the bdr.subscription_summary
view

• Fix failure of bdr_init_physical to copy data columns using BDR types (RM14522)
bdr_init_physical now uses bdr.drop_node() rather than DROP EXTENSION, which caused all
columns using BDR datatypes such as CRDTs to be silently dropped from tables.

• Fix failure in 3.6.17 upgrade script caused by views referencing CRDTs (RT67505)
Upgrade script now executed only on tables and mat views. Upgrade failure may give a spurious
error such as “ERROR: BDR global lock manager not initialized yet”

• Set non-join subscriptions to CATCHUP state rather than INIT state at startup
Avoids a rare but possible case of copying metadata twice during node join.

• Fix lookup for a galloc sequence when BDR catalogs are absent. (RT67455, RM14564)
This might cause a query on a sequence to throw an error like “cache lookup failed for relation . . . ”
when bdr library is added to shared_preload_libraries but BDR extension is not created.

• Allow ALTER TABLE ALTER COLUMN with BDR loaded but not initialized (RM14435)
With the BDR extension loaded, but no local BDR node created, the DDL replication logic now still
allows execution of an ALTER TABLE ALTER COLUMN operation.

• LOCK TABLE warning not shown when BDR node is not created (RM14613)
Assess LOCK TABLE statement does not show when bdr.assess_lock_statement is set to a value
other than ‘ignore’ until BDR node is created.

• Prevent a NULL dereference in consensus_disable (RM14618)
bdr.consensus_disable expected the consensus process to be running. Fix it to prevent a
segfault if that’s not the case when the function is called.

BDR 3.6.17

This is a maintenance release for BDR 3.6 which includes minor features as well as fixes for issues
identified previously.

Improvements

• Allow ALTER TABLE ALTER COLUMN TYPE with rewrite when not replicating DDL (EE) (RM13244)
In some cases, in controlled DBA environments, it is possible to change the type of a column to an

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

197

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

implicitly castable one by adopting a rolling upgrade for the type of this column in a non replicated
environment on all the nodes one by one. We allow concurrent activity on this table on other nodes
during the rewrite. Also note that such ALTER commands cannot be run within transaction blocks.

• Add conflict logging configuration view (RM13691, RT66898)
Add bdr.node_log_config view that shows information on the conflict logging configuration.

• Add new group monitoring views and functions (RM14014)
These views and functions report the state of the BDR installation, replication slots and consensus
across all nodes in the BDR group.

• Add current state of DDL replication related configuration parameters to log context (RM13637)
Improves troubleshooting.

Resolved Issues

• Don’t drop existing slot for a joining node (RM13310, RT67289, RT66797)
This could have caused inconsistencies when node was joined using bdr_init_physical be-
cause it precreated the slot for new node which was supposed to be reused during join, instead
it was dropped and recreated. We now keep the slot correctly which ensures there are no
inconsistencies.

• Fix restart of CAMO node despite missing partner node (EE) (RM13899, RT67161)
Prevent an error looking up the BDR node configured as a CAMO origin. In case the node got
dropped, it does not exist, but might still be configured for CAMO.

• Fix locking in bdr.column_timestamps_enable() (EE) (RT67150)
Don’t hold same transaction and session level locks otherwise PREPARE, CAMO and Eager replica-
tion can’t work for transactions where this is used.

• Don’t try to apply BDR conflict resolution to PGL-only subscriptions (RT67178)
BDR should only be active on BDR subscriptions, not pglogical ones.

• Let the CAMO partner return the final decision, once learned (RM13520)
If an origin node switches to Local mode, temporarily dropping CAMO protections, it’s possible
for the CAMO partner to provisionally abort the transaction internally, but actually commit it
eventually (to be in sync with the origin node). In earlier releases, this was not recorded leading
to the status query function to continue to return an “aborted” result for the transaction. This
release allows the final commit decision to override the provisional abort internally (catalog table
bdr.node_pre_commit).

• Make CLCD/CRDT data types properly TOAST-able (EE) (RM13689)
CLCD/CRDT data types were defined as using PLAIN storage. This can become as issue with
a table with too many columns or if a large number of nodes are involved. This is now solved by
converting these data types to use EXTENDED storage thus allowing for large sized values.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

198

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Ensure duplicate messages are not received during node promotion (RM13972) Send a watermark
from join source to the joining node during catchup phase of join to ensure it learns about current
replication positions of all other nodes even if there are no data to forward from them during
the catchup. Otherwise we might ask for older lsns during the promotion and receive duplicate
messages and fail the join.

• Fix errors when bdr.move_group_slot_all_nodes is called with no BDR node present in the
database (RT67245)
Allows setting up physical standbys of future BDR master before creating the BDR node.

• Make sure table has a PRIMARY KEY when CLCD is turned on (EE)
This is sanity check that prevents user from enabling CLCD on tables without a PRIMARY KEY as
that would break the conflict detection for such tables.

• Automatically disable CAMO for non-transactional DDL operations (EE)
Several DDL operations are not allowed within a transaction block and as such cannot reasonably
benefit from the protection that CAMO offers. Automatically disable CAMO for these, so as to avoid
“cannot PREPARE” errors at COMMIT time.

BDR 3.6.16

BDR 3.6.16 is the sixteenth minor release of the BDR 3.6 series. This release includes minor new
features as well as fixes for issues identified previously.

Improvements

• Add bdr.alter_table_conflict_detection() (RM13631)
This function unifies the UI for changing conflict detection method for individual tables. Allows choice
between origin based, row_version based and column level based (EE-only) conflict detection
using same interface. The old functions are still supported, although they should be considered
deprecated and will be removed in BDR 3.7.

• Add bdr.default_conflict_detection configuration option (RM13631)
Related to the above bdr.alter_table_conflict_detection() function, the new configuration
option allows setting the default conflict detection method for newly created tables.

• Change how forced part node works (RM13447)
Forced node part will now first try to get consensus for parting and only do the local change if the
consensus fails or if it’s called for node which already started consensus based part process but
the process has stuck on one of the steps.

• Automatically drop bdr-enterprise extension when dropping the bdr extension (RM13703)
This improves usability when trying to drop the bdr extension without cascade, which is useful for
example when user wants to keep the pglogical node associated with BDR.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

199

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Improve error reporting when joining node with same name as existing active node (RM13447,
RT66940)
The previous error message was confusing as it made it seem like BDR does not allow node name
reuse at all (which it does).

• Set application_name in bdr_init_physical
Helps when diagnosing issues with this tool.

• Improve documentation of ALTER TABLE limitations (RM13512, RM13244, RT66940)
Including new workaround for changing length of varchar columns.

Resolved Issues

• Fix pg_dump for BDR galloc sequences (RM13462, RT67051)
Galloc sequences internally store extra data in sequence heap; BDR now hides the extra data
from SELECTs so that queries on the sequence (which can be normal user query or a query from
pg_dump for example) only show the usual sequence information.

• Fix enforcement of REPLICA IDENTITY FULL for CLCD
Advanced conflict-handling approaches (CLCD, CRDT) require the table to have REPLICA IDEN-
TITY FULL. However due to how the features initially evolved independently, this was not enforced
(and documented) properly and consistently. We now correctly enforce the REPLICA IDENTITY
FULL for CLCD for every table.

• Fix node name reuse of nodes which were used as join sources for other existing nodes in a BDR
group (RM12178, RM13447)
The source nodes have special handling so we need to make sure that newly joining node is not
confused with node of same name that has been parted.

• Apply local states for existing nodes on newly joining node (RT66940)
Otherwise decision making in during the join process might use wrong state information and miss
some tasks like slot creation or subscription creation.

• Correctly clean node-level log filters and conflict resolver configuration (RM13704)
This solves issues when trying to drop BDR node without dropping associated pglogical node and
later recreating the BDR node again.

• Prevent a segfault in Raft on the parted BDR node (RM13705)

BDR 3.6.15

BDR 3.6.15 is the fifteenth minor release of the BDR 3.6 series. This release includes minor new features
as well as fixes for issues identified previously.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

200

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Improvements

• Keep a permanent log of all resolved CAMO decisions (RM12712)
Record every decision taken by the CAMO partner when queried by bdr.logical_transaction_status,
i.e. in the failover case.

• Add functions for enabling/disabling row version tracking (RM12930)
Easier to use and less error prone interface than manually adding column and trigger.

• Add currval() and lastval() support for timeshard and galloc sequences (RM12059)

• Add pglogical.min_worker_backoff_delay setting to rate limit background worker re-
launches, and pglogical.worker_tasks diagnostic view for background worker activity. See
pglogical 3.6.15 release notes and documentation for details.

Resolved Issues

• Prevent buffer overrun when copying a TOAST column value inside the walsender output plugin
(RT66839)
This fixes issue that resulted in walsender crashes with certain types of workloads which touch
TOASTed columns.

• Fix “type bdr.column_timestamps not found” error when bdr-enterprise extension is not installed
when bdr enterprise library is in shared_preload_libraries (RT66758, RM13110)

BDR 3.6.14

BDR 3.6.14 is a critical maintenance release of the BDR 3.6 series. This release includes major fixes for
CAMO and other features as well as minor new features.

Improvements

• Add bdr.camo_local_mode_delay to allow throttling in CAMO Local mode (RM12402)
Provides a simple throttle on transactional throughput in CAMO Local mode, so as to prevent the
origin node from processing more transactions than the pair would be able to handle with CAMO
enabled.

• Add bdr.camo_enable_client_warnings to control warnings in CAMO mode (RM12558)
Warnings are emitted if an activity is carried out in the database for which CAMO properties cannot
be guaranteed. Well-informed users can choose to disable this if they want to avoid such warnings
filling up their logs.

• Warn on unrecognized configuration settings

• Move ‘loading BDR’ message earlier in startup messages

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

201

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Significantly enhance docs for Row Version Conflict Detection (RT66493)

• Clarify docs that NOTIFY is not possible with CAMO/Eager

• Add global_lock_request_time, local_lock_request_time and last_state_change_time
columns to bdr.global_locks view for lock monitoring and diagnostic use.

• Add SQL functions for export/import of consensus snapshot (RM11433)
These functions allow for manual synchronization of BDR system catalogs in case of corruption or
user mistake.

Resolved Issues

• UPDATEs skipped on the partner node because remote_commit_ts set incorrectly (RM12476)
Commit timestamps were unset in some CAMO messages, leading to losing last-update-wins
comparisons that they should have won, which meant some UPDATEs were skipped when an
UPDATE happened concurrently from another master. This doesn’t occur normally in an AlwaysOn
cluster, though could occur if writes happen via a passive master node.

• Only resolve those prepared transactions for which controlling backend is gone (RM12388)
This fixes a race condition between the pglogical manager process and the user backend running a
CAMO transaction. A premature attempt by the manager process to resolve a prepared transaction
could lead to the transaction getting marked as aborted on the partner node, whereas the origin
ends up committing the transaction. This results in data divergence. This fix ensures that the
manager process only attempts to resolve prepared transactions for which the controlling user
backend has either exited or is no longer actively managing the CAMO transaction. The revised
code also avoids taking ProcArrayLock, reducing contention and thus improving performance and
throughput.

• Prevent premature cleanup of commit decisions on a CAMO partner. (RM12540)
Ensure to keep commit or abort decisions on CAMO or Eager All Node transactions in
bdr.node_pre_commit for longer than 15 minutes if there is at least one node that has not learned
the decision and may still query it. This eliminates a potential for inconsistency between the CAMO
origin and partner nodes.

• Resolve deadlocked CAMO or Eager transactions (RM12903, RM12910)
Add a lock_timeout as well as an abort feedback to the origin node to resolve distributed
deadlocking due to conflicting primary key updates. This also prevents frequent restarts and retries
of the PGL writer process for Eager All Node and sync CAMO transactions.

• Fix potential divergence by concurrent updates on toasted data from multiple nodes (RM11058)
This can occur when an UPDATE changes one or more toasted columns, while a concurrent, but
later UPDATE commits on a different node. This occurs because PostgreSQL does not WAL log
TOAST data if it wasn’t changed by an UPDATE command. As a result the logically decoded
rows have these columns marked as unchanged TOAST and don’t contain the actual value. Fix
is handled automatically on BDR-EE, but on BDR-SE additional triggers need to be created on

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

202

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

tables that publish updates and that have toastable data (this is also done automatically). The
additional check has a small but measurable performance overhead. Logged data will increase
in affected cases only. We recommend tuning toast_tuple_target to optimize storage. Tables
with REPLICA IDENTITY FULL are not affected by this issue or fix.

• Properly close connections after querying camo partner to avoid leak. (RM12572)

• Correct bdr.wait_for_apply_queue to respect the given LSN (RM12552)
In former releases, the target_lsn argument was overridden and the function acted the same as
if no target_lsn had been given.

• Ignore progress messages from unknown nodes (RT66461)
Avoids problems during node parting.

• Make bdr.xact_replication work with ALTER TABLE and parallel query (RM12489)

BDR 3.6.12

BDR 3.6.12 is the twelfth minor release of the BDR 3.6 series. This release includes minor new features
as well as fixes for issues identified previously.

Improvements

• Apply check_full_row on DELETE operations (RT66493)
This allows detection of delete_recently_updated conflict even if the DELETE operation hap-
pened later in wall-clock time on tables with full row checking enabled.

• Improve Global DML lock tracing
Add more information to the Global DML Lock trace to help debugging global locking issues more
effectively.

• Validate replication sets at join time. (RM12020, RT66310)
Raise an ERROR from bdr.join_node_group() if the joining node was configured to subscribe
to non-default replication sets by using bdr.alter_node_replication_sets() before join but
some of the subscribed-to replication sets are missing.

On prior releases the joining node might fail later in the join process and have to be force-parted. Or it
might appear to succeed but join with empty tables.

Resolved Issues

• Fix crash in bdr.run_on_all_nodes (RM12114, RT66515)
Due to incorrect initialization the bdr.run_on_all_nodes could have previously crashed with
segmentation fault in presence of PARTED nodes.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

203

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Don’t broadcast the epoch consumed WAL messages (RM12042)
Broadcasting the message to all nodes could result in some nodes moving the Global DDL Lock
Epoch forward in situations where it wasn’t safe to do so yet, resulting in lowered protection against
concurrent DML statements when running a statement that requires a Global DML Lock.

• Fix global locking on installations with multiple BDR nodes on single PostgreSQL instance
The global locking could get spurious timeouts because the lock messages contained wrong node
id if there were more than one BDR node on a single PostgreSQL instance.

• Fix typos in some example SQL in docs

BDR 3.6.11

BDR 3.6.11 is the eleventh minor release of the BDR 3.6 series. This release includes minor new features
as well as fixes for issues identified previously.

Improvements

• Support APIs for PostgreSQL 11.6

• Allow the use of “-”(hyphen) character in the node name (RM11567, RT65945)
If a pglogical3 node would have been created with a hyphen in the node name BDR couldn’t create
the node on that database.

• Don’t generate update_origin_change conflict if we know the updating node has seen the latest
local change (RM11556, RT66145)
Reduces conflict resolution overhead and logging of update_origin_change when the con-
flict can be shown to be false-positive. This does not completely remove false-positives from
update_origin_change but reduces their occurrence in presence of UPDATES on older rows.
This reduces conflict log spam when origin changes for older rows. Also, conflict triggers will be
called significantly fewer times.

• Extend bdr.wait_for_apply_queue to wait for a specific LSN (RM11059, RT65827)

• Add new parameter bdr.last_committed_lsn (RM11059, RT65827)
Value will be reported back to client after each COMMIT, allowing applications to perform causal
reads across multiple nodes.

• Add status query functions for apply and received LSN (RM11059, RM11664)
New functions bdr.get_node_sub_receive_lsn and bdr.get_node_sub_apply_lsn simplify
fetching the internal information required for HAproxy health check scripts.

• Add sum() and avg() aggregates for CRDT types (RM11592, RT66168)

• Speed up initial synchronization of replication slots on physical standby (RM6747)

• Add bdr.pg_xact_origin function to request origin for an xid (RM11971)

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

204

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Add bdr.truncate_locking configuration option which sets the TRUNCATE command’s locking
behavior (RT66326)
This configuration option determines whether (when true) TRUNCATE obeys the bdr.ddl_locking
setting which is the new, safe behavior or if (when false, the default) never does any locking,
which is the old, potentially unsafe behavior.

• Allow conflict triggers to see commit timestamp of update_recently_deleted target rows
(RM11808, RT66182)

Resolved Issues

• Add hash/equality opclass for the column_timestamps data type (RT66207)
REPLICA IDENTITY FULL requires comparison of all columns of a tuple, hence col-
umn_timestamps data type must support equality comparisons.

• Correct conflict docs for BDR-EE (RT66239, RM9670)
Changes made in BDR3.5 were not correctly reflected in conflict docs

• Don’t check protocol version for galloc sequences during initial sync (RM11576, RT65660)
If galloc sequences already exist, bdr_init_physical doesn’t need to recheck protocol versions.

• Fix galloc sequence chunk tracking corruption on lagging nodes (RM11933, RT66294)
In presence of node with lagging consensus the chunk tracking table would diverge on different
nodes which then resulted in wrong chunks being assigned on consensus leader change. As a
result node might start generating already used sequence numbers. This fix ensures that the table
never diverges.

• Fix galloc sequence local chunk information corruption (RM11932, RT66294)
Make sure we correctly error out when in all cases request of new chunk has failed, otherwise
we might assign bogus chunks to the sequence locally which would result in potentially duplicate
sequence numbers generated on different nodes.

• Fix a case where the consensus worker event loop could stall in the message broker when trying
to reconnect to an unreachable or unresponsive peer node by being more defensive about socket
readability/writeability checks during the libpq async connection establishment phase. (RM11914)

This issue is most likely to arise when a peer node’s underlying host fails hard and ceases replying to all
TCP requests, or where the peer’s network blackholes traffic to the peer instead of reporting a timely
ICMP Destination Unreachable message.

Effect of the issue on affected nodes would result in operations which require consensus to either
stall or not work at all - those include: DDL lock acquisition, Eager transaction commit, calling
bdr.get_consensus_status() function, galloc sequence chunk allocation, leader election and BDR
group slot advancing. This could have been visible to users as spurious lock timeout errors or increased
lag for the BDR group slot.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

205

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Fix a race condition with global locks and DML (RM12042)
Prevent mismatching ordering of lock operations against DML with three or more concurrently
writing nodes. This allows to properly protect a TRUNCATE against concurrent DML from multiple
writer nodes.

• Repeat reporting of local_node_id to support transparent proxies (EE) (RM12025, RM12033)
With CAMO enabled, BDR reports a bdr.local_node_id GUC to the client. To fully support trans-
parent proxies like HAproxy, BDR now reports this value once per transaction in combination with
transaction_id, to ensure a client doesn’t ever return incorrect results from PQparameterStatus()
because of a stale cache caused by missing a transparent connection switch.

• Fix global DDL and DML lock recovery after instance restart or crash (RM12042)
Previous versions of BDR might not correctly block the writes against global lock if the node or
apply worker restarted after the lock was acquired. This could lead to divergent data changes in
case the protected command(s) were changing data concurrently.

• Fix global DDL and DML lock blocking of replication changes (RM12042)
Previous versions of BDR would continue replication of changes to a locked table from other
nodes. This could result in temporary replication errors or permanent divergent data changes if the
transaction which acquired the global lock would be applied on some nodes with delay.

• Fix hang in cleanup/recovery of acquired global lock in the apply worker
The apply worker which acquired global lock for another node could on exit leak the hanging lock
which could then get “stolen” by different backend. This could cause the apply worker to wait for
lock acquisition of same lock forever after restart.

• Don’t hold back freezeLimit forever (EE) (RM11783)
The Enterprise Edition of BDR holds back freeze point to ensure enough info is available for conflict
resolution at all times. Make sure that we don’t hold the freeze past xid wraparound warning limit to
avoid loss of availability. Allow the limit to move forward gracefully to avoid risk of vacuum freeze
storms.

• Properly close connections in bdr.run_on_all_nodes
Removes log spam about connection reset by peer when bdr.run_on_all_nodes is used.

• Clarify docs that CREATE MATERIALIZED VIEW is not supported yet. (RT66363)

BDR 3.6.10

BDR 3.6.10 is the tenth minor release of the BDR 3.6 series. This release includes minor new features
as well as fixes for issues identified previously.

Improvements

• Add new optional performance mode for CAMO - remote_write (EE) (RM6749)
This release enables a CAMO remote_write mode offering quicker feedback at time of reception

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

206

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

of a pre-commit message from the CAMO partner, rather than only after the application of the
transaction. Significantly better performance in exchange for small loss of robustness.

• Defer switching to CAMO mode until the partner has caught up (EE) (RM9605/RT65000/RT65827)
In async mode for improved availability, CAMO allows to switch to a local mode in case the CAMO
partner is not reachable. When switching back, it may have to catchup before it can reasonably
confirm new transactions from its origin. The origin now uses an estimate of the catchup time to
defer the switch back to CAMO mode to eliminate transactions timing out due to the CAMO partner
still catching up.

• Add functions wait_for_apply_queue and wait_for_camo_partner_queue (EE)
Allows to wait for transactions already received but currently queued for application. These can be
used to prevent stale reads on a BDR node replicated to in remote_write mode.

• Improve monitoring of replication, especially around catchup estimates for peer nodes (EE)
(RM9798)
Introduce two new views bdr.node_replication_rates and bdr.node_estimates to get a
reasonable estimate of how far behind a peer node is in terms of applying WAL from this local
node. The bdr.node_replication_rates view gives an overall picture of the outgoing replica-
tion activity in terms of the average apply rate whereas the bdr.node_estimates focuses on the
catchup estimates for peer nodes.

• Support Column-Level Conflict Resolution for partitioned tables (EE) (RM10098, RM11310)
Make sure that newly created or attached partitions are setup for CLCD if their parent table has
CLCD enabled.

• Take global DML lock in fewer cases (RM9609).
Don’t globally lock relations created in current transaction, and also relations that are not tables (for
example views) as those don’t get data via replication.

Resolved Issues

• Disallow setting external storage parameter on columns that are part of a primary key (RM11336).
With such a setting, any UPDATE could not be replicated as the primary key would not get decoded
by PostgreSQL.

• Prevent ABA issue with check_full_tuple = true. (RM10940, RM11233)
We only do the full row check if bdr.inc_row_version() trigger exists on a table from now on
to prevent ABA issue when detecting conflict on UPDATEs that didn’t change any data when
check_full_tuple is set to true.

BDR 3.6.9

BDR 3.6.9 is the ninth minor release of the BDR 3.6 series. This release includes minor new features as
well as fixes for issues identified previously.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

207

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Improvements

• Parameters to help BDR assessment by tracking certain application events (EE) bdr.assess_update_replica_identity
= IGNORE (default) | LOG | WARNING | ERROR Updates of the Replica Identity (typically the
Primary Key) bdr.assess_lock_statement = IGNORE (default) | LOG | WARNING | ERROR Two
types of locks that can be tracked are:

– explicit table-level locking (LOCK TABLE . . .) by user sessions
– explicit row-level locking (SELECT . . . FOR UPDATE/FOR SHARE) by user sessions

(RM10812,RM10813)

Resolved Issues

• Fix crash MIN/MAX for gsum and pnsum CRDT types (RM11049)

• Disallow parted nodes from requesting bdr.part_node() on other nodes. (RM10566, RT65591)

BDR 3.6.8

BDR 3.6.8 is the eighth minor release of the BDR 3.6 series. This release includes a fix for a critical data
loss issue as well as fixes for other issues identified with previous releases.

Improvements

• Create the bdr.triggers view (EE) (RT65773) (RM10874) More information on the triggers
related to the table name, the function that is using it, on what event is triggered and what’s the
trigger type.

Resolved Issues

• Loss of TOAST data on remote nodes replicating UPDATEs (EE) (RM10820, RT65733)
A bug in the transform trigger code path has been identified to potentially set toasted columns (very
long values for particular columns) to NULL when applying UPDATEs on remote nodes, even when
transform triggers have never been used. Only BDR-EE is affected and only when tables have a
toast table defined and are not using REPLICA IDENTITY FULL. BDR3 SE is not affected by this
issue. LiveCompare has been enhanced with damage assessment and data recovery features,
with details provided in a separate Tech Alert to known affected users. This release prevents further
data loss due to this issue.

• CAMO: Eliminate a race leading to inadvertent timeouts (EE) (RM10721)
A race condition led to pre-commit confirmations from a CAMO partner being ignored. This
in turn caused inadvertent timeouts for CAMO-protected transactions and poor performance in
combination with synchronous_replication_availability set to async. This fixes an issue
introduced with release 3.6.7.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

208

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• CAMO: Properly handle transaction cancellation at COMMIT time (EE) (RM10741)
Allow the COMMIT of a CAMO-protected transaction to be aborted (more gracefully than via node
restart or PANIC). Enable run-time reconciliation with the CAMO partner to make the CAMO pair
eventually consistent.

• CAMO: Ensure the status query function keeps CAMO enabled. (EE) (RM10803)
The use of the logical_transaction_status function disabled CAMO for the entire session,
rather than just for the query. Depending on how a CAMO client (or a proxy in between) used the
session, this could lead to CAMO being inadvertently disabled. This has been fixed and CAMO
remains enabled independent of calls of this function.

• Eager: cleanup stale transactions. (EE) (RM10595)
Ensures transactions aborted during their COMMIT phase are cleaned up eventually on all nodes.

• Correct TransactionId comparison when setting VACUUM freeze limit.
This could lead to ERROR: cannot freeze committed xmax for a short period at xid wrap, causing
VACUUMs to fail. (EE) (RT65814, RT66211)

BDR 3.6.7.1

This is a hot-fix release on top of 3.6.7.

Resolved Issues

• Prevent bogus forwarding of transactions from a removed origin. (RT65671, RM10605)
After the removal of an origin, filter transactions from that origin in the output plugin, rather than
trying to forward them without origin information.

BDR 3.6.7

BDR 3.6.7 is the seventh minor release of the BDR 3.6 series. This release includes minor new features
as well as fixes for issues identified previously.

Improvements

• CAMO and Eager switched to use two-phase commit (2PC) internally.
This is an internal change that made it possible to resolve a deadlock and two data divergence
issues (see below). This is a node-local change affecting the transaction’s origin node exclusively
and has no effect on the network protocol between BDR nodes. BDR nodes running CAMO now
require a configuration change to allow for enough max_prepared_transactions; see Upgrading
for more details. Note that there is no restriction on the use of temporary tables, as exists in explicit
2PC in PostgreSQL.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

209

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Add globally-allocated range sequences (RM2125)
New sequence kind which uses consensus between nodes to assign ranges of sequence numbers
to individual nodes for each sequence as needed. Supports all of smallint, integer and bigint
sequences (that includes serial column type).

• Implement Multi-Origin PITR Recovery (EE) (RM5826)
BDR will now allow PITR of all or some replication origins to a specific point in time, providing a
fully consistent viewpoint across all subsets of nodes. For multi-origins, we view the WAL stream as
containing multiple streams all mixed up into one larger stream. There is still just one PIT, but that
will be reached as different points for each origin separately. Thus we use physical WAL recovery
using multiple separate logical stopping points for each origin. We end up with one LSN “stopping
point” in WAL, but we also have one single timestamp applied consistently, just as we do with
“single origin PITR”.

• Add bdr.xact_replication option for transaction replication control
Allows for skipping replication of whole transaction in a similar way to what bdr.ddl_replication
does for DDL statements but it affects all changes including INSERT/UPDATE/DELETE. Can only
be set via SET LOCAL. Use with care!

• Prevent accidental manual drop of replication slots created and managed by BDR

• Add bdr.permit_unsafe_commands option to override otherwise disallowed commands
(RM10148)
Currently overrides the check for manual drop of BDR replication slot in the Enterprise Edition.

• Allow setting bdr.ddl_replication and bdr.ddl_locking as bdr_superuser using the SET
command
This was previously possible only via the wrapper functions bdr.set_ddl_replication() and
bdr.set_ddl_locking() which are still available.

• Improve performance of consensus messaging layer (RM10319, RT65396)

Resolved Issues

• Delete additional metadata in bdr.drop_node (RT65393, RM10346)
We used to keep some of the local node info behind which could prevent reuse of the node name.

• Correctly synchronize node-dependent metadata when using bdr_init_physical (RT65221,
RM10409)
Synchronize additional replication sets and table membership in those as well as stream triggers
and sequence information in bdr_init_physical, in a similar way to logical synchronization.

• Fix potential data divergence with CAMO due to network glitch (RM#10147)
This fixes an data inconsistency that could arise between the nodes of a CAMO pair in case of an
unreachable or unresponsive (but operational) CAMO partner and a concurrent crash of the CAMO
origin node. An in-flight COMMIT of a transaction protected by CAMO may have ended up getting
committed on one node, but aborted on the other, after both nodes are operational and connected.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

210

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Fix a potential deadlock between a cross-CAMO pair (RM#7907)
With two nodes configured as a symmetric CAMO pair, it was possible for the pair to deadlock, if
both nodes were down and restarting, but both having CAMO transactions in-flight.

• Fix potential data divergence for Eager transaction in face of a crash (RM#9907)
In case of a crash of the origin node of an Eager transaction just before the final local commit, such
a transaction could have ended up aborted on the origin but committed on all other nodes. This is
fixed by using 2PC on the origin node as well and properly resolving in-flight Eager transaction
after a restart of the origin node.

• Correct handling of fast shutdown with CAMO transactions in-flight (RM#9556)
A fast shutdown of Postgres on a BDR node that’s in the process of committing a CAMO-protected
transaction previously led to a PANIC. This is now handled gracefully, with the in-flight CAMO
transaction still being properly recovered after a restart of that node.

BDR 3.6.6

BDR 3.6.6 is the sixth minor release of the BDR 3.6 series. This release includes minor new features as
well as fixes for issues identified previously.

Improvements

• Add bdr.drop_node() (RM9938)
For removing node metadata from local database, allowing reuse of the node name in the cluster.

• Include bdr_init_physical in BDR-SE (RM9892)
Improves performance during large node joins - BDR-EE has included this tool for some time.

• Enhance bdr_init_physical utility in BDR-EE (RM9988) Modify bdr_init_physical to optionally use
selective pg_basebackup of only the target database as opposed to the earlier behavior of backup
of the entire database cluster. Should make this activity complete faster and also allow it to use
less space due to the exclusion of unwanted databases.

• TRUNCATE is now allowed during eager replicated transactions (RM9812)

• New bdr.global_lock_table() function (RM9735).
Allows explicit acquire of global DML lock on a relation. Especially useful for avoidance of conflicts
when using TRUNCATE with concurrent write transactions.

• New conflict type update_pkey_exists (RM9976)
Allows conflict resolution when a PRIMARY KEY was updated to one which already exists on the
node which is applying the change.

• Reword DDL locking skip messages and reduce log level
The previous behavior was too intrusive.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

211

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Add bdr.apply_log_summary (RM6596)
View over bdr.apply_log which shows the human-readable conflict type and resolver string
instead of internal id.

• Add bdr.maximum_clock_skew and bdr.maximum_clock_skew_action configuration options
(RM9379)
For checking clock skew between nodes and either warning or delaying apply in case the clock
skew is too high.

Resolved Issues

• Move CRDT type operators from public schema to pg_catalog (RT65280, RM10027)
Previously BDR operators were installed in public schema, preventing their use by servers imple-
menting stricter security policies. No action required.

• Remember if unsupported Eager Replication command was run in current transaction.
This allows us to prevent situations where an unsupported command was run while Eager Replica-
tion was turned off and later in the transaction the Eager Replication is turned on.

• Fix the “!” operator for crdt_pnsum data type (RM10156)
It’s the operator for resetting the value of the column, but in previous versions the reset operation
didn’t work on this type.

BDR 3.6.5

BDR 3.6.5 is the fifth minor release of the BDR 3.6 series. This release includes minor new features as
well as fixes for issues identified in 3.6.4.

Improvements

• Allow late enabling of CAMO (RM8886)
The setting pg2q.enable_camo may now be turned on at any point in time before a commit, even
if the transaction already has an id assigned.

• Add version-2 KSUUIDs which can be compared using simple comparison operators (RM9662)

• New delete_recently_updated conflict type (RM9673/RT65063) Triggered by DELETE operation
arriving out of order - the DELETE has an older commit timestamp than the most recent local UPDATE
of the row. Can be used to override the default policy of DELETE always winning.

• Make bdr admin function replication obey DDL replication filters (RT65174)
So that commands like bdr.replication_set_add_table don’t get replicated to a node which
didn’t replicate CREATE TABLE in the first place.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

212

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Don’t require group replication set to be always subscribed by every node (RT65161)
Since we now apply DDL replication filters to admin functions, it’s no longer necessary to force
group replication set to be subscribed by every node as other replication sets can be configured to
replicate the admin function calls.

• Allow a few more DDL operations to skip the global DML lock
The following DDL operations have been optimized to acquire only a global DDL lock, but not the
DML one:

– ALTER TABLE .. ALTER COLUMN .. SET STATISTICS
– ALTER TABLE .. VALIDATE CONSTRAINT
– ALTER TABLE .. CLUSTER ON
– ALTER TABLE .. RESET
– CREATE TRIGGER

• Add new BDR trigger that resolves Foreign Key anomalies on DELETE (RM9580)

• Add new function bdr.run_on_all_nodes() to assist monitoring and diagnostics (RM9945)

• Extend the CAMO reference client in C
Allow setting a bdr.commit_scope for test transactions.

• Prevent replication of CLUSTER command to avoid operational impact

• To assist with security and general diagnostics, any DDL that skips replication or global DDL locking
at user request will be logged. For regular users of non-replicated and/or non-logged DDL this may
increase log volumes. Some log messages have changed in format. This change comes into effect
when bdr.ddl_locking = off and/or bdr.ddl_replication = off.

• Greatly enhance descriptions of BDR admin functions with regard to (RM8345)
their operational impact, replication, locking and transactional nature

• Detailed docs to explain concurrent Primary Key UPDATE scenarios (RM9873/RT65156)

• Document examples of using bdr.replication_set_add_ddl_filter() (RM9691)

Resolved Issues

• Rework replication of replication set definition (RT64451)
Solves the issue with the replication set disappearing from some nodes that could happen in certain
situations.

• Acquire a Global DML lock for these DDL commands for correctness (RM9650)

– CREATE UNIQUE INDEX CONCURRENTLY
– DROP INDEX CONCURRENTLY
– bdr.drop_trigger() admin function since adding or removing any constraint could allow

replication-halting DML

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

213

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Correctly ignore nodes that are parting or parted in the Raft code (RM9666/RT64891)
Removes the excessive logging of node membership changes.

• Don’t try to do CRDT/CLCD merge on update_recently_deleted (RM9674)
It’s strictly row-level conflict; doing a merge would produce the wrong results.

• Allow BDR apps that require standard_conforming_strings = off (RM9573/RT64949)
• Use replication slot metadata to postpone freezing of rows (RM9670) (EE-only)

Otherwise an update_origin_change conflict might get undetected after a period of node downtime
or disconnect. The SE version can only avoid this using parameters.

• Correct bdr_wait_slot_confirm_lsn() to wait for the LSN of last commit, rather
than the LSN of the current write position. In some cases that could have released the wait earlier
than appropriate, and in other cases it might have been delayed.

BDR 3.6.4

BDR 3.6.4 is the fourth minor release of the BDR 3.6 series. This release includes minor new features as
well as fixes for issues identified in 3.6.3.

The Highlights of BDR 3.6.4

• Apply statistics tracking (RM9063)
We now track statistics about replication and resource use for individual subscriptions
and relations and make them available in the pglogical.stat_subscription and
pglogical.stat_relation views. The tracking can be configured via the pglogical.stat_track_subscription
and pglogical.stat_track_relation configuration parameters.

• Support CAMO client protocol with Eager All Node Replication
Extend bdr.logical_transaction_status to be able to query the status of transactions repli-
cated in global commit scope (Eager All Node Replication). Add support for Eager All Node
Replication in the Java CAMO Reference client.

Resolved Issues

• Fix initial data copy of multi-level partitioned tables (RT64809)
The initial data copy used to support only single level partitioning; multiple levels of partitioning are
now supported.

• Don’t try to copy initial data twice for partitions in some situations (RT64809)
The initial data copy used to try to copy data from all tables that are in replication sets without
proper regard to partitioning. This could result in partition data being copied twice if both the root
partition and individual partitions were published via the replication set. This is now solved; we only
do the initial copy on the root partition if it’s published.

• Fix handling of indexes when replicating INSERT to a partition (RT64809)
Close the indexes correctly in all situations.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

214

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Improve partitioning test coverage (RM9311)
In light of the partitioning related issues, increase the amount of automated testing done against
partitioned tables.

• Fix merging of crdt_pnsum data type (RT64975)
The internal index was handled wrongly, potentially causing a segmentation fault; this is now
resolved.

• Fix cache lookup failed on database without BDR extension installed (RM9217)
This could previously lead to errors when dropping tables on a PostgreSQL instance which has the
BDR library loaded but does not have the extension installed.

• Fix permission issues on bdr.subscription_summary (RT64945)
No need to have permissions on pglogical.get_sub_progress_timestamp() to use this view
anymore.

• Cleanup prepared Eager All Node transactions after failures (RM8996)
Prevents inconsistencies and hangs due to unfinished transactions after node or network failures.
Uses Raft to ensure consistency between the nodes for the cleanup of such dangling prepared
transactions.

Other Improvements

• The replicate_inserts option now affects initial COPY
We now do initial copy of data only if the table replicates inserts.
• Lower log level for internal node management inside Raft worker (RT64891)

This was needlessly spamming logs during node join or parting.
• Warn when executing DDL without DDL replication or without DDL locking

The DDL commands executed without DDL replication or locking can lead to divergent databases
and cause replication errors so it’s prudent to warn about them.

• Allow create statistics without dml lock (RM9507)
• Change documentation to reflect the correct default settings for the update_missing conflict type.

BDR 3.6.3

BDR 3.6.3 is the third minor release of the BDR 3.6 series. This release includes minor new features as
well as fixes for issues identified in 3.6.2.

The Highlights of BDR 3.6.3

• Add btree/hash operator classes for CRDT types (EE, RT64319) This allows the building of
indexes on CRDT columns (using the scalar value) and the querying of them them using simple
equality/inequality clauses, using the in GROUP BY clauses etc.

• Add implicit casts from int4/int8 for CRDT sum types (EE, RT64600)
To allow input using expressions with integer and CRDT sum types together. For example:
CREATE TABLE t (c bdr.crdt_gsum NOT NULL DEFAULT 0);

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

215

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• New update_recently_deleted conflict type (RM8574)
Conflicts are handled differently for the special case of update_missing when BDR detects that
the row being updated is missing because it was just recently deleted. See UPDATE/DELETE
Conflicts in the documentation for details.

• Allow DDL operations in CAMO protected transactions, making automatic disabling of CAMO
obsolete (EE, RT64769)

• Add the connection status checking function bdr.is_camo_partner_connected for CAMO (EE).
See the Commit At Most Once documentation for details.

• Persist the last_xact_replay_timestamp (RT63881)
So that it’s visible even if the subscription connection is down (or remote node is down).

• Major documentation improvements
Copy-edit sentences to make more sense, add extra clarifying info where the original wording was
confusing.

Resolved Issues

• Use group locking for global DML lock (RT64404)
This allows better cooperation between the global DML locker and the writers which are doing
catch up of the remaining changes.

Other Improvements

• Support mixed use of legacy CRDT types and new CRDT types which are in bdr schema
Implicitly cast between the two so their mixed usage and potential migration is transparent.

• Improve static code scanning
Every build is scanned both by Coverity and Clang scan-build.

• Log changes of bdr.ddl_replication and bdr.ddl_locking
Helps with troubleshooting when divergent DDL was run.

• Rework documentation build procedure for better consistency between HTML and PDF documen-
tation. This mainly changes the way docs are structured into chapters so that there is a single
source of chapter list and ordering for both PDF and HTML docs.

BDR 3.6.2

BDR 3.6.2 is the second minor release of the BDR 3.6 series. This release includes minor new features
as well as fixes for issues identified in 3.6.1

The Highlights of BDR 3.6.2

• All the SQL visible interfaces are now moved to the bdr schema (EE)
The CRDT types and per column conflict resolution interfaces are now in the bdr schema instead
of bdr_crdt and bdr_conflicts. The types and public interfaces still exist in those schemas
for compatibility with existing installations, however their use is not recommended as they are

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

216

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

now deprecated and may be removed in a future release. Please use the ones in bdr schema.
Documentation only contains references to the bdr schema now as well.

• Add bdr.node_conflict_resolvers view (RT64388)
Shows current conflict resolver setting for each conflict type on the local node including the defaults.

• Add a CAMO Reference Client implementation in C and Java to the documentation.
• Support DEFERRED UNIQUE indexes

They used to work only in limited cases before this release.

Resolved Issues

• Fix consensus request timeout during leader election (RT64569)
The timeout wasn’t applied when the leader was unknown leading to immediate failures of any
action requiring consensus (for example global DDL locking). This is now resolved.

• Improve cleanup on failure during a DDL locked operation, This speeds up DDL locking subsystem
recovery after error so that errors don’t create a cascading effect.

• Unify the replication of admin function commands (RT64544)
This makes the replication and locking behavior of administration function commands more in-line
with DDL in all situations, including logical standby.

• Support covering UNIQUE indexes (RT64650)
Previously, the covering UNIQUE indexes could result in ambiguous error messages in some
cases.

• Switch to monotonic time source for Raft timing (RM6390)
This improves reliability of Raft internal timing in presence of time jumps caused by NTPd and
similar. As a result Raft reliability is improved in general.

• Improve locking in the internal connection pooler
For more reliable messaging between nodes.

• Restore consensus protocol version on restart (RT64526)
This removes the need for renegotiation every time a consensus worker or a node is restarted,
making the features depending on newer protocol version consistently available across restarts.

• Correct automatic disabling and re-enabling of pg2q.enable_camo when using DDL in a transaction.
Ensure it cannot be manually re-enabled within the same transaction.

• Fix handling of CAMO confirmations arriving early, before the origin starts to wait. This prevents
timeouts due to such a confirmation being ignored.

BDR 3.6.1

BDR 3.6.1 is the first minor release of the BDR 3.6 series. This release includes minor new features and
fixes including all the fixes from 3.6.0.1 and 3.6.0.2.

The highlights of 3.6.1

• Add bdr.role_replication configuration option (RT64330)
The new option controls the replication of role management statements (CREATE/ALTER/DROP/GRANT ROLE).

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

217

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

This option is dependent on bdr.ddl_replication as the role management statements still
obey the standard rules of the DDL replication. By default this is set to on, meaning that these
statements are replicated if executed in a BDR-enabled database.

• Add --standby option to bdr_init_physical (RM8543, EE)
Allows the creation of a logical standby using bdr_init_physical; previously only a full blown
send/receive node could be created this way.

• Add last_xact_replay_timestamp to bdr.subscription_summary (RT63881)
Shows the commit timestamp of the last replayed transaction by the subscription.

• Stop join on unrecoverable error (RT64463)
Join might fail during the structure synchronization, which currently is an unrecoverable error.
Instead of retrying like for other (transient) errors, just part the joining node and inform the user
that there was an error.

Resolved Issues

• Improve the trigger security checking (RT64412)
Allow triggers to have a different owner than the table if the trigger uses bdr or pglogical trigger
functions, security definer functions (as those redefine security anyway) and also always allow
replication set membership changes during initial replication set synchronization during the node
join.

• Make BDR replicated commands obey bdr.ddl_replication (RT64479)
Some of the BDR function calls (like bdr_conflicts.column_timestamps_enable) are repli-
cated in a similar way as normal DDL commands including the DDL locking as appropriate. These
commands in previous versions of BDR however ignored the bdr.ddl_replication setting and
were always replicated. This is now fixed. In addition just like normal DDL, these commands are
now never replicated from the logical standby.

• Don’t try to replicate generic commands on global objects
Several commands on global objects would be replicated even in situations where they shouldn’t
be because of how they are represented internally. Handling of the following commands has been
fixed:

– ALTER ROLE/DATABASE/TABLESPACE ... RENAME TO
– ALTER DATABASE/TABLESPACE ... OWNER TO
– COMMENT ON ROLE/DATABASE/TABLESPACE
– SECURITY LABEL ON ROLE/DATABASE/TABLESPACE

• Properly timeout on CAMO partner and switch to Local mode (RT64390, EE)
Disregard the connection status of other BDR nodes and switch to Local mode as soon as the
designated CAMO partner node fails. Makes the switch to Local mode work in a four or more node
cluster.

BDR 3.6.0.2

The BDR 3.6.0.2 release is the second bug-fix release in the BDR 3.6 series.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

218

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Resolved Issues

• Dynamic disabling of CAMO upon the first DDL (EE, RT64403)
• Fix hang in node join caused by timing issues when restoring Raft snapshot (RT64433)
• Fix the trigger function ownership checks (RT64412)
• Improve behavior of promote_node and join_node_group with wait_for_completion := false

BDR 3.6.0.1

The BDR 3.6.0.1 is the first bug-fix release in the BDR 3.6 series.

Resolved Issues

• Support target_table_missing conflict for transparent partitioning (EE) (RT64389)
• Fix message broker sometimes discarding messages (common side-effect are DDL locking time-

outs)
• Raft protocol negotiations improvements
• Fixed memory leak in tracing code
• Improve synchronous remote_write replication performance (RT64397)
• Fixed commit timestamp variant handling of CLCD (EE)
• Re-add support for binary protocol
• Correct Local mode for CAMO with synchronous_replication_availability = 'async'

(EE)
• Disallow and provide a hint for unsupported operations in combination with CAMO (EE).
• Fix deadlock in logical_transaction_status (EE)

BDR 3.6.0

The version 3.6 of BDR3 is a major update which brings improved CAMO, performance improvements,
better conflict handling and bug fixes.

The highlights of BDR 3.6

• Differentiate BDR RemoteWrite mode and set write_lsn
• Significant replication performance improvement
• Cache table synchronization state
• Only send keepalives when necessary
• Only do flush when necessary
• Serialize transactions in fewer cases in wal sender (2ndQPostgres)
• Improved replication position reporting which is more in line with how physical streaming replication

reports it
• Conflict detection and resolution improvements

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

219

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

• Add new types of conflicts (like target_table_missing)
• Add new types of conflict resolvers
• Make conflict resolution configurable per node and conflict type
• Improve conflict detection for updates
• Simplification of CAMO configuration (EE)
• Performance improvements for CAMO (EE)

Resolved issues

• Fix reporting of replay lag (RT63866)
• Fix CRDTs and conflict triggers for repeated UPDATEs of same row in transaction (RT64297)
• Don’t try to replicate REINDEX of temporary indexes

Other improvements

• Improved vacuum handling of Raft tables
• Improve and clarify CAMO documentation (EE)

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

220

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Appendix B: Conflict Details

This section documents in detail the behavior of BDR3 when conflicts occur.

For every isolation test, the expected output is displayed, with additional annotations commenting the
context and the interpretation of the outcomes.

Each test is defined by a sequence of specific DML actions; the following table provides links to each
relevant combination:

INSERT UPDATE DELETE TRUNCATE

INSERT ii iu id it

UPDATE iu uu ud ut

DELETE id ud dd dt

TRUNCATE it ut dt tt

INSERT-INSERT iii iiu iid iit

UPDATE-UPDATE - uuu uud uut

UPDATE-DELETE - - - udt

DELETE-UPDATE - duu - -

DELETE-DELETE - - ddd ddt

TRUNCATE-UPDATE - tuu - -

TRUNCATE-TRUNCATE - - - ttt

Test two_node_dmlconflict_ii

Parsed test spec with 2 sessions

starting permutation: s1i s2i s1w s2w s1s s2s

We insert a row into node1:

Node 1 (step i):

INSERT INTO test_dmlconflict VALUES('x', 1, 'foo');

We insert a row with the same primary key into node2:

Node 2 (step i):

INSERT INTO test_dmlconflict VALUES('y', 1, 'bar');

We wait until INSERT on node1 is replicated to all other nodes:

Node 1 (step w):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

221

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until INSERT on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

y 1 bar

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

y 1 bar

starting permutation: s1a s2a s1i s2i s1w s2w s1s s2s s1teardown s2teardown

Node 1 (step a):

SELECT bdr.alter_node_set_conflict_resolver('node1', 'insert_exists', 'skip');
alter_node_set_conflict_resolver

t

Node 2 (step a):

SELECT bdr.alter_node_set_conflict_resolver('node2', 'insert_exists', 'skip');
alter_node_set_conflict_resolver

t

We insert a row into node1:

Node 1 (step i):

INSERT INTO test_dmlconflict VALUES('x', 1, 'foo');

We insert a row with the same primary key into node2:

Node 2 (step i):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

222

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

INSERT INTO test_dmlconflict VALUES('y', 1, 'bar');

We wait until INSERT on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until INSERT on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

x 1 foo

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

y 1 bar

Node 1 (step teardown):

SELECT bdr.alter_node_set_conflict_resolver('node1', 'insert_exists', 'update_if_newer');
alter_node_set_conflict_resolver

t

Node 2 (step teardown):

SELECT bdr.alter_node_set_conflict_resolver('node2', 'insert_exists', 'update_if_newer');
alter_node_set_conflict_resolver

t

Test two_node_dmlconflict_iu

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

223

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Parsed test spec with 3 sessions

starting permutation: s3setup s1i s2w1 s2s s2u s2w s1w s1s s2s s3s s3teardown

We artificially introduce a 10 second replication delay between Node 1 and Node 2, to force conflicts due
to a different replay order.

Node 3 (step setup):

SELECT pglogical.alter_subscription_disable
('bdr_postgres_bdrgroup_node1_node3');
UPDATE pglogical.subscription
SET sub_apply_delay = '10s'
WHERE sub_name = 'bdr_postgres_bdrgroup_node1_node3';
SELECT pglogical.alter_subscription_enable
('bdr_postgres_bdrgroup_node1_node3');

alter_subscription_disable

t
alter_subscription_enable

t

We insert a row into node1:

Node 1 (step i):

INSERT INTO test_dmlconflict VALUES('x', 1, 'foo');

We wait until the INSERT on node1 is replicated to node2:

Node 2 (step w1):

SELECT * from pg_sleep(1);
pg_sleep

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

x 1 foo

On node2 we update the row replicated from node1:

Node 2 (step u):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

224

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

UPDATE test_dmlconflict set a='z' where b=1;

We wait until the UPDATE is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Then we wait until the insert from node1 is replicated to node3:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

z 1 foo

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

z 1 foo

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

x 1 foo

Node 3 (step teardown):

SELECT pglogical.alter_subscription_disable
('bdr_postgres_bdrgroup_node1_node3');
UPDATE pglogical.subscription
SET sub_apply_delay = '1s'
WHERE sub_name = 'bdr_postgres_bdrgroup_node1_node3';
SELECT pglogical.alter_subscription_enable

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

225

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

('bdr_postgres_bdrgroup_node1_node3');
SELECT bdr.alter_node_set_conflict_resolver('node3', 'update_missing', 'insert_or_skip');

alter_subscription_disable

t
alter_subscription_enable

t
alter_node_set_conflict_resolver

t

starting permutation: s3setup s3a s1s s1i s2w1 s2s s2u s2w s1w s1s s2s s3s s3teardown

We artificially introduce a 10 second replication delay between Node 1 and Node 2, to force conflicts due
to a different replay order.

Node 3 (step setup):

SELECT pglogical.alter_subscription_disable
('bdr_postgres_bdrgroup_node1_node3');
UPDATE pglogical.subscription
SET sub_apply_delay = '10s'
WHERE sub_name = 'bdr_postgres_bdrgroup_node1_node3';
SELECT pglogical.alter_subscription_enable
('bdr_postgres_bdrgroup_node1_node3');

alter_subscription_disable

t
alter_subscription_enable

t

Node 3 (step a):

SELECT bdr.alter_node_set_conflict_resolver('node3', 'update_missing', 'insert_or_error');
alter_node_set_conflict_resolver

t

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

226

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

We insert a row into node1:

Node 1 (step i):

INSERT INTO test_dmlconflict VALUES('x', 1, 'foo');

We wait until the INSERT on node1 is replicated to node2:

Node 2 (step w1):

SELECT * from pg_sleep(1);
pg_sleep

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

x 1 foo

On node2 we update the row replicated from node1:

Node 2 (step u):

UPDATE test_dmlconflict set a='z' where b=1;

We wait until the UPDATE is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Then we wait until the insert from node1 is replicated to node3:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

z 1 foo

State of node2:

Node 2 (step s):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

227

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT * FROM test_dmlconflict;
a b c

z 1 foo

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

z 1 foo

Node 3 (step teardown):

SELECT pglogical.alter_subscription_disable
('bdr_postgres_bdrgroup_node1_node3');
UPDATE pglogical.subscription
SET sub_apply_delay = '1s'
WHERE sub_name = 'bdr_postgres_bdrgroup_node1_node3';
SELECT pglogical.alter_subscription_enable
('bdr_postgres_bdrgroup_node1_node3');
SELECT bdr.alter_node_set_conflict_resolver('node3', 'update_missing', 'insert_or_skip');

alter_subscription_disable

t
alter_subscription_enable

t
alter_node_set_conflict_resolver

t

Test two_node_dmlconflict_id

Parsed test spec with 3 sessions

starting permutation: s1i s2w1 s2s s2d s2w s1w s1s s2s s3s s3teardown
alter_subscription_enable

t

We insert a row into a table on node1:

Node 1 (step i):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

228

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

INSERT INTO test_dmlconflict VALUES('x', 1, 'foo');

We wait until the INSERT on node1 is replicated to node2:

Node 2 (step w1):

SELECT * from pg_sleep(1);
pg_sleep

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

x 1 foo

On node2 we delete the row replicated from node1:

Node 2 (step d):

DELETE from test_dmlconflict where b=1;

We wait until the DELETE is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Now we wait until the insert from node1 is replicated to node3 as well:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

229

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT * FROM test_dmlconflict;
a b c

x 1 foo

Node 3 (step teardown):

BEGIN;
SELECT pglogical.alter_subscription_disable('bdr_postgres_bdrgroup_node1_node3');
END;
UPDATE pglogical.subscription set sub_apply_delay = '1s' where sub_name = 'bdr_postgres_bdrgroup_node1_node3';
SELECT pglogical.alter_subscription_enable('bdr_postgres_bdrgroup_node1_node3');

alter_subscription_disable

t
alter_subscription_enable

t

Test two_node_dmlconflict_it

Parsed test spec with 3 sessions

starting permutation: s1i s2w1 s2s s2t s2w s1w s1s s2s s3s s3teardown
alter_subscription_enable

t

We INSERT a row into a table on node1:

Node 1 (step i):

INSERT INTO test_dmlconflict VALUES('y', 2, 'baz');

We wait until the INSERT on node1 is replicated to node2:

Node 2 (step w1):

SELECT * from pg_sleep(1);
pg_sleep

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

230

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

x 1 foo
y 2 baz

On node2 we truncate the test table after the INSERT from node1 is replicated:

Node 2 (step t):

TRUNCATE test_dmlconflict;

We wait until the TRUNCATE is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Now we wait until the INSERT from node1 is replicated to node3 as well:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

y 2 baz

Node 3 (step teardown):

BEGIN;
SELECT pglogical.alter_subscription_disable('bdr_postgres_bdrgroup_node1_node3');
END;
UPDATE pglogical.subscription set sub_apply_delay = '1s' where sub_name = 'bdr_postgres_bdrgroup_node1_node3';

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

231

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT pglogical.alter_subscription_enable('bdr_postgres_bdrgroup_node1_node3');

alter_subscription_disable

t
alter_subscription_enable

t

Test two_node_dmlconflict_uu

Parsed test spec with 2 sessions

starting permutation: s1u s2u s1w s2w s1s s2s

We UPDATE a row from node1:

Node 1 (step u):

UPDATE test_dmlconflict SET a = 'x' where b = 1;

We UPDATE a row from node2 concurrently:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y' where b = 1;

We wait until the UPDATE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the UPDATE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

y 1 foo

State of node2:

Node 2 (step s):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

232

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT * FROM test_dmlconflict;
a b c

y 1 foo

starting permutation: s1a s2a s1u s2u s1w s2w s1s s2s s1teardown s2teardown
WARNING: setting update_origin_change to skip may result in loss of UPDATE
DETAIL: This results in loss of update in case conflict is falsely detected
HINT: Use inc_row_version(), check_full_tuple and REPLICA IDENTITY FULL

Node 1 (step a):

SELECT bdr.alter_node_set_conflict_resolver('node1', 'update_origin_change', 'skip');
alter_node_set_conflict_resolver

t
WARNING: setting update_origin_change to skip may result in loss of UPDATE
DETAIL: This results in loss of update in case conflict is falsely detected
HINT: Use inc_row_version(), check_full_tuple and REPLICA IDENTITY FULL

Node 2 (step a):

SELECT bdr.alter_node_set_conflict_resolver('node2', 'update_origin_change', 'skip');
alter_node_set_conflict_resolver

t

We UPDATE a row from node1:

Node 1 (step u):

UPDATE test_dmlconflict SET a = 'x' where b = 1;

We UPDATE a row from node2 concurrently:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y' where b = 1;

We wait until the UPDATE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the UPDATE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

233

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

x 1 foo

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

y 1 foo

Node 1 (step teardown):

SELECT bdr.alter_node_set_conflict_resolver('node1', 'update_origin_change', 'update_if_newer');
alter_node_set_conflict_resolver

t

Node 2 (step teardown):

SELECT bdr.alter_node_set_conflict_resolver('node2', 'update_origin_change', 'update_if_newer');
alter_node_set_conflict_resolver

t

Test two_node_dmlconflict_uu_replayorder

Parsed test spec with 3 sessions

starting permutation: s1u s2w1 s2u s2w s1w s1s s2s s3s s3teardown
alter_subscription_enable

t

Node 1 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'bar';

We wait until the UPDATE on node1 is replicated to node2:

Node 2 (step w1):

SELECT * from pg_sleep(1);
pg_sleep

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

234

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

On node2 we update the same row updated by node1:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'z', b = '1', c = 'baz';

We wait until the UPDATE is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Now we wait until the UPDATE from node1 is replicated to node3 as well:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

z 1 baz

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

z 1 baz

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

z 1 baz

Node 3 (step teardown):

BEGIN;
SELECT pglogical.alter_subscription_disable('bdr_postgres_bdrgroup_node1_node3');
END;

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

235

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

UPDATE pglogical.subscription set sub_apply_delay = '1s' where sub_name = 'bdr_postgres_bdrgroup_node1_node3';
SELECT pglogical.alter_subscription_enable('bdr_postgres_bdrgroup_node1_node3');

alter_subscription_disable

t
alter_subscription_enable

t

Test two_node_dmlconflict_ud

Parsed test spec with 2 sessions

starting permutation: s1alc s1d s2u s1w s2w s1s s2s s1slc s1rlc

call bdr.alter_node_add_log_config():

Node 1 (step alc):

SELECT bdr.alter_node_add_log_config('node1','test_config','t','log_table');;
alter_node_add_log_config

t

We delete the only row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

We update the same row on node2:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'bar';

Now we wait until the commit on node1 is updated on all nodes:

Node 1 (step w):

select bdr.wait_slot_confirm_lsn(null,null);
wait_slot_confirm_lsn

Now we wait until the commit on node2 is replicated on all nodes:

Node 2 (step w):

select bdr.wait_slot_confirm_lsn(null,null);
wait_slot_confirm_lsn

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

236

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

Read entries of the log_table at node1:

Node 1 (step slc):

SELECT nspname, relname, conflict_type, conflict_resolution, conflict_index FROM log_table;
nspname relname conflict_type conflict_resolutionconflict_index

public test_dmlconflict13 2

Remove log_config from node1:

Node 1 (step rlc):

SELECT bdr.alter_node_remove_log_config('node1','test_config');
alter_node_remove_log_config

t

starting permutation: s1urd s2urd s1d s2u s1w s2w s1s s2s s1urdteardown s2urdteardown

Node 1 (step urd):

SELECT bdr.alter_node_set_conflict_resolver('node1', 'update_recently_deleted', 'insert_or_skip');
alter_node_set_conflict_resolver

t

Node 2 (step urd):

SELECT bdr.alter_node_set_conflict_resolver('node2', 'update_recently_deleted', 'insert_or_skip');
alter_node_set_conflict_resolver

t

We delete the only row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

237

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

We update the same row on node2:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'bar';

Now we wait until the commit on node1 is updated on all nodes:

Node 1 (step w):

select bdr.wait_slot_confirm_lsn(null,null);
wait_slot_confirm_lsn

Now we wait until the commit on node2 is replicated on all nodes:

Node 2 (step w):

select bdr.wait_slot_confirm_lsn(null,null);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

y 1 bar

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

Node 1 (step urdteardown):

SELECT bdr.alter_node_set_conflict_resolver('node1', 'update_recently_deleted', 'skip');
alter_node_set_conflict_resolver

t

Node 2 (step urdteardown):

SELECT bdr.alter_node_set_conflict_resolver('node2', 'update_recently_deleted', 'skip');
alter_node_set_conflict_resolver

t

starting permutation: s2u s1d s2w s1w s1s s2s

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

238

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

We update the same row on node2:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'bar';

We delete the only row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

Now we wait until the commit on node2 is replicated on all nodes:

Node 2 (step w):

select bdr.wait_slot_confirm_lsn(null,null);
wait_slot_confirm_lsn

Now we wait until the commit on node1 is updated on all nodes:

Node 1 (step w):

select bdr.wait_slot_confirm_lsn(null,null);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

starting permutation: s1dru s2dru s1d s2u s1w s2w s1s s2s s1druteardown s2druteardown

Node 1 (step dru):

SELECT bdr.alter_node_set_conflict_resolver('node1', 'delete_recently_updated', 'skip');
alter_node_set_conflict_resolver

t

Node 2 (step dru):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

239

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT bdr.alter_node_set_conflict_resolver('node2', 'delete_recently_updated', 'skip');
alter_node_set_conflict_resolver

t

We delete the only row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

We update the same row on node2:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'bar';

Now we wait until the commit on node1 is updated on all nodes:

Node 1 (step w):

select bdr.wait_slot_confirm_lsn(null,null);
wait_slot_confirm_lsn

Now we wait until the commit on node2 is replicated on all nodes:

Node 2 (step w):

select bdr.wait_slot_confirm_lsn(null,null);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

y 1 bar

Node 1 (step druteardown):

SELECT bdr.alter_node_set_conflict_resolver('node1', 'delete_recently_updated', 'update');
alter_node_set_conflict_resolver

t

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

240

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Node 2 (step druteardown):

SELECT bdr.alter_node_set_conflict_resolver('node2', 'delete_recently_updated', 'update');
alter_node_set_conflict_resolver

t

Test two_node_dmlconflict_ud_replayorder

Parsed test spec with 3 sessions

starting permutation: s1u s2d s2w s1w s1s s2s s3s s3teardown
alter_subscription_enable

t

Node 1 (step u):

UPDATE test_dmlconflict SET a = 'y', b = 1, c = 'bar';

On node2 we delete the same row updated by node1:

Node 2 (step d):

DELETE FROM test_dmlconflict where b = 1;

We wait until the DELETE is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Now we wait until the UPDATE from node1 is replicated to node3 as well:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

241

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

Node 3 (step teardown):

BEGIN;
SELECT pglogical.alter_subscription_disable('bdr_postgres_bdrgroup_node1_node3');
END;
UPDATE pglogical.subscription set sub_apply_delay = '1s' where sub_name = 'bdr_postgres_bdrgroup_node1_node3';
SELECT pglogical.alter_subscription_enable('bdr_postgres_bdrgroup_node1_node3');

alter_subscription_disable

t
alter_subscription_enable

t

Test two_node_dmlconflict_ut

Parsed test spec with 2 sessions

starting permutation: s1t s2u s1w s2w s1s s2s

We truncate the table on node1:

Node 1 (step t):

TRUNCATE test_dmlconflict;

We update the same row on node2:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'bar';

We wait until the TRUNCATE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the UPDATE on node2 is replicated to all other nodes:

Node 2 (step w):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

242

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

starting permutation: s2u s1t s2w s1w s1s s2s

We update the same row on node2:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'bar';

We truncate the table on node1:

Node 1 (step t):

TRUNCATE test_dmlconflict;

We wait until the UPDATE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

243

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

Test two_node_dmlconflict_dd

Parsed test spec with 2 sessions

starting permutation: s1d s2d s1w s2w s1s s2s

We delete a row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

We delete same row from node2 concurrently:

Node 2 (step d):

DELETE FROM test_dmlconflict where b = 1;

We wait until the DELETE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the DELETE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

244

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Test two_node_dmlconflict_dt

Parsed test spec with 2 sessions

starting permutation: s1d s2t s1w s2w s1s s2s

We delete a row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

We truncate test_dmlconflict on node2:

Node 2 (step t):

TRUNCATE test_dmlconflict;

We wait until the DELETE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

starting permutation: s2t s1d s1w s2w s1s s2s

We truncate test_dmlconflict on node2:

Node 2 (step t):

TRUNCATE test_dmlconflict;

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

245

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

We delete a row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

We wait until the DELETE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

Test two_node_dmlconflict_tt

Parsed test spec with 2 sessions

starting permutation: s1t s2t s1w s2w s1s s2s

We truncate the table on node1:

Node 1 (step t):

TRUNCATE test_dmlconflict;

Node 2 (step t):

TRUNCATE test_dmlconflict;

We wait until TRUNCATE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

246

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

We wait until TRUNCATE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

Test three_node_dmlconflict_iii

Parsed test spec with 3 sessions

starting permutation: s1i s2i s3i s1w s2w s3w s1s s2s s3s

We insert a row into node1:

Node 1 (step i):

INSERT INTO test_dmlconflict VALUES('x', 1, 'foo');

We insert a row with the same primary key into node2:

Node 2 (step i):

INSERT INTO test_dmlconflict VALUES('y', 1, 'bar');

We insert a row with the same primary key into node3:

Node 3 (step i):

INSERT INTO test_dmlconflict VALUES('z', 1, 'baz');

We wait until INSERT on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until INSERT on node2 is replicated to all other nodes:

Node 2 (step w):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

247

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the INSERT on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

z 1 baz

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

z 1 baz

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

z 1 baz

Test three_node_dmlconflict_iiu

Parsed test spec with 3 sessions

starting permutation: s1i s2w1 s2s s2u s3i s2w s1w s3w s1s s2s s3s s3teardown
alter_subscription_enable

t

We insert a row into a table on node1:

Node 1 (step i):

INSERT INTO test_dmlconflict VALUES('x', 1, 'foo');

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

248

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

We wait until the INSERT on node1 is replicated to node2:

Node 2 (step w1):

SELECT * from pg_sleep(1);
pg_sleep

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

x 1 foo

On node2 we update the same row inserted by node1:

Node 2 (step u):

UPDATE test_dmlconflict set a='z' where b=1;

We insert a row with same primary key on node3 before INSERT from node1‘ is replicated:

Node 3 (step i):

INSERT INTO test_dmlconflict VALUES('y', 1, 'baz');

We wait until the UPDATE is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Now we wait until the insert from node1 is replicated to node3 as well:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the INSERT on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

249

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT * FROM test_dmlconflict;
a b c

y 1 baz

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

y 1 baz

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

y 1 baz

Node 3 (step teardown):

BEGIN;
SELECT pglogical.alter_subscription_disable('bdr_postgres_bdrgroup_node1_node3');
END;
UPDATE pglogical.subscription set sub_apply_delay = '1s' where sub_name = 'bdr_postgres_bdrgroup_node1_node3';
SELECT pglogical.alter_subscription_enable('bdr_postgres_bdrgroup_node1_node3');

alter_subscription_disable

t
alter_subscription_enable

t

Test three_node_dmlconflict_iid

Parsed test spec with 3 sessions

starting permutation: s1i s2w1 s2s s2d s3i s2w s1w s3w s1s s2s s3s s3teardown
alter_subscription_enable

t

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

250

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

We insert a row into a table on node1:

Node 1 (step i):

INSERT INTO test_dmlconflict VALUES('x', 1, 'foo');

We wait until the INSERT on node1 is replicated to node2:

Node 2 (step w1):

SELECT * from pg_sleep(1);
pg_sleep

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

x 1 foo

On node2 we delete the row replicated from node1:

Node 2 (step d):

DELETE from test_dmlconflict where b=1;

We insert a row with same primary key on node3 before INSERT from node1 is replicated:

Node 3 (step i):

INSERT INTO test_dmlconflict VALUES('y', 1, 'baz');

We wait until the DELETE is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Now we wait until the insert from node1 is replicated to node3 as well:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the INSERT on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

251

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

y 1 baz

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

y 1 baz

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

x 1 foo

Node 3 (step teardown):

BEGIN;
SELECT pglogical.alter_subscription_disable('bdr_postgres_bdrgroup_node1_node3');
END;
UPDATE pglogical.subscription set sub_apply_delay = '1s' where sub_name = 'bdr_postgres_bdrgroup_node1_node3';
SELECT pglogical.alter_subscription_enable('bdr_postgres_bdrgroup_node1_node3');

alter_subscription_disable

t
alter_subscription_enable

t

Test three_node_dmlconflict_iit

Parsed test spec with 3 sessions

starting permutation: s1i s2w1 s2s s2t s3i s2w s1w s3w s1s s2s s3s s3teardown
alter_subscription_enable

t

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

252

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

We insert a row into a table on node1:

Node 1 (step i):

INSERT INTO test_dmlconflict VALUES('x', 1, 'foo');

We wait until the INSERT on node1 is replicated to node2:

Node 2 (step w1):

SELECT * from pg_sleep(1);
pg_sleep

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

z 2 bar
x 1 foo

On node2 we truncate the test table after INSERT from node1 is replicated:

Node 2 (step t):

TRUNCATE test_dmlconflict;

We insert a row with the same primary key on node3 before the INSERT from node1 is replicated:

Node 3 (step i):

INSERT INTO test_dmlconflict VALUES('y', 1, 'baz');

We wait until the TRUNCATE is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Now we wait until the insert from node1 is replicated to node3 as well:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the INSERT on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

253

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

y 1 baz

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

y 1 baz

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

x 1 foo

Node 3 (step teardown):

BEGIN;
SELECT pglogical.alter_subscription_disable('bdr_postgres_bdrgroup_node1_node3');
END;
UPDATE pglogical.subscription set sub_apply_delay = '1s' where sub_name = 'bdr_postgres_bdrgroup_node1_node3';
SELECT pglogical.alter_subscription_enable('bdr_postgres_bdrgroup_node1_node3');

alter_subscription_disable

t
alter_subscription_enable

t

Test three_node_dmlconflict_uuu

Parsed test spec with 3 sessions

starting permutation: s1u s2u s3u s1w s2w s3w s1s s2s s3s

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

254

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

We UPDATE a row from node1:

Node 1 (step u):

UPDATE test_dmlconflict SET a = 'x', b = '1', c = 'foo';

We UPDATE a row from node2 concurrently:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'bar';

We UPDATE a row from node3 concurrently:

Node 3 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'baz';

We wait until the UPDATE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the UPDATE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the UPDATE on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

y 1 baz

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

y 1 baz

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

255

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

y 1 baz

Test three_node_dmlconflict_uud

Parsed test spec with 3 sessions

starting permutation: s1u s2w1 s2u s3d s1w s2w s3w s1s s2s s3s s3teardown
alter_subscription_enable

t

Node 1 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'baz';

We wait until the UPDATE on node1 is replicated to node2:

Node 2 (step w1):

SELECT * from pg_sleep(1);
pg_sleep

On node2 we update the same row updated by node1:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'z', b = '1', c = 'bar';

We DELETE the row on node3 before update from node1 arrives:

Node 3 (step d):

DELETE FROM test_dmlconflict;

Now we wait until the UPDATE from node1 is replicated to node3 as well:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the UPDATE is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

256

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

We wait until the DELETE on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

Node 3 (step teardown):

BEGIN;
SELECT pglogical.alter_subscription_disable('bdr_postgres_bdrgroup_node1_node3');
END;
UPDATE pglogical.subscription set sub_apply_delay = '1s' where sub_name = 'bdr_postgres_bdrgroup_node1_node3';
SELECT pglogical.alter_subscription_enable('bdr_postgres_bdrgroup_node1_node3');

alter_subscription_disable

t
alter_subscription_enable

t

Test three_node_dmlconflict_uut

Parsed test spec with 3 sessions

starting permutation: s1u s2u s3t s1w s2w s3w s1s s2s s3s

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

257

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

We update a row on node1:

Node 1 (step u):

UPDATE test_dmlconflict SET a = 'z', b = '1', c = 'baz';

We update the same row on node2:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'bar';

TRUNCATE the table from node3:

Node 3 (step t):

TRUNCATE test_dmlconflict;

We wait until the UPDATE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the UPDATE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE`` onnode3‘ is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

258

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT * FROM test_dmlconflict;
a b c

starting permutation: s1u s3t s2u s1w s2w s3w s1s s2s s3s

We update a row on node1:

Node 1 (step u):

UPDATE test_dmlconflict SET a = 'z', b = '1', c = 'baz';

TRUNCATE the table from node3:

Node 3 (step t):

TRUNCATE test_dmlconflict;

We update the same row on node2:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'bar';

We wait until the UPDATE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the UPDATE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE`` onnode3‘ is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

259

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

starting permutation: s3t s2u s1u s1w s2w s3w s1s s2s s3s

TRUNCATE the table from node3:

Node 3 (step t):

TRUNCATE test_dmlconflict;

We update the same row on node2:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'bar';

We update a row on node1:

Node 1 (step u):

UPDATE test_dmlconflict SET a = 'z', b = '1', c = 'baz';

We wait until the UPDATE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the UPDATE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE`` onnode3‘ is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

260

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

Test three_node_dmlconflict_udt

Parsed test spec with 3 sessions

starting permutation: s1d s2u s3t s1w s2w s3w s1s s2s s3s

We delete a row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

We update the same row on node2:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = 1, c = 'bar' where b = 1;

We truncate the table on node3:

Node 3 (step t):

TRUNCATE test_dmlconflict;

We wait until the DELETE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the UPDATE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

261

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

We wait until the TRUNCATE on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

starting permutation: s2u s1d s3t s1w s2w s3w s1s s2s s3s

We update the same row on node2:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = 1, c = 'bar' where b = 1;

We delete a row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

We truncate the table on node3:

Node 3 (step t):

TRUNCATE test_dmlconflict;

We wait until the DELETE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

262

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

We wait until the UPDATE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

starting permutation: s2u s3t s1d s1w s2w s3w s1s s2s s3s

We update the same row on node2:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = 1, c = 'bar' where b = 1;

We truncate the table on node3:

Node 3 (step t):

TRUNCATE test_dmlconflict;

We delete a row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

263

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

We wait until the DELETE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the UPDATE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

starting permutation: s1d s3t s2u s1w s2w s3w s1s s2s s3s

We delete a row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

We truncate the table on node3:

Node 3 (step t):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

264

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

TRUNCATE test_dmlconflict;

We update the same row on node2:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = 1, c = 'bar' where b = 1;

We wait until the DELETE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the UPDATE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

starting permutation: s3t s2u s1d s1w s2w s3w s1s s2s s3s

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

265

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

We truncate the table on node3:

Node 3 (step t):

TRUNCATE test_dmlconflict;

We update the same row on node2:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = 1, c = 'bar' where b = 1;

We delete a row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

We wait until the DELETE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the UPDATE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

266

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT * FROM test_dmlconflict;
a b c

starting permutation: s3t s1d s2u s1w s2w s3w s1s s2s s3s

We truncate the table on node3:

Node 3 (step t):

TRUNCATE test_dmlconflict;

We delete a row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

We update the same row on node2:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = 1, c = 'bar' where b = 1;

We wait until the DELETE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the UPDATE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

267

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

Test three_node_dmlconflict_duu

Parsed test spec with 3 sessions

starting permutation: s1d s2u s3u s1w s2w s3w s1s s2s s3s

We delete the only row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict;

We update the same row on node2:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'bar';

We update the same row on node3:

Node 3 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'baz';

now we wait until the commit on node1 is updated on all nodes:

Node 1 (step w):

select bdr.wait_slot_confirm_lsn(null,null);
wait_slot_confirm_lsn

now we wait until the commit on node2 is replicated on all nodes:

Node 2 (step w):

select bdr.wait_slot_confirm_lsn(null,null);
wait_slot_confirm_lsn

now we wait until the commit on node3 is replicated on all nodes:

Node 3 (step w):

select bdr.wait_slot_confirm_lsn(null,null);
wait_slot_confirm_lsn

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

268

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

starting permutation: s2u s1d s3u s2w s1w s3w s1s s2s s3s

We update the same row on node2:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'bar';

We delete the only row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict;

We update the same row on node3:

Node 3 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'baz';

now we wait until the commit on node2 is replicated on all nodes:

Node 2 (step w):

select bdr.wait_slot_confirm_lsn(null,null);
wait_slot_confirm_lsn

now we wait until the commit on node1 is updated on all nodes:

Node 1 (step w):

select bdr.wait_slot_confirm_lsn(null,null);
wait_slot_confirm_lsn

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

269

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

now we wait until the commit on node3 is replicated on all nodes:

Node 3 (step w):

select bdr.wait_slot_confirm_lsn(null,null);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

starting permutation: s2u s3u s1d s2w s3w s1w s1s s2s s3s

We update the same row on node2:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'bar';

We update the same row on node3:

Node 3 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'baz';

We delete the only row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict;

now we wait until the commit on node2 is replicated on all nodes:

Node 2 (step w):

select bdr.wait_slot_confirm_lsn(null,null);
wait_slot_confirm_lsn

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

270

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

now we wait until the commit on node3 is replicated on all nodes:

Node 3 (step w):

select bdr.wait_slot_confirm_lsn(null,null);
wait_slot_confirm_lsn

now we wait until the commit on node1 is updated on all nodes:

Node 1 (step w):

select bdr.wait_slot_confirm_lsn(null,null);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

Test three_node_dmlconflict_ddd

Parsed test spec with 3 sessions

starting permutation: s1d s2d s3d s1w s2w s3w s1s s2s s3s

We delete a row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict;

We delete a row from node2 concurrently:

Node 2 (step d):

DELETE FROM test_dmlconflict;

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

271

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

We delete a row from node3 concurrently:

Node 3 (step d):

DELETE FROM test_dmlconflict;

We wait until the DELETE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the DELETE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the DELETE on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

Test three_node_dmlconflict_ddt

Parsed test spec with 3 sessions

starting permutation: s1d s2d s3t s1w s2w s3w s1s s2s s3s

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

272

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

We delete a row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

We delete a row from node2:

Node 2 (step d):

DELETE FROM test_dmlconflict where b = 2;

We truncate test_dmlconclict on node3:

Node 3 (step t):

TRUNCATE test_dmlconflict;

We wait until the DELETE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the DELETE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

273

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT * FROM test_dmlconflict;
a b c

starting permutation: s2d s1d s3t s1w s2w s3w s1s s2s s3s

We delete a row from node2:

Node 2 (step d):

DELETE FROM test_dmlconflict where b = 2;

We delete a row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

We truncate test_dmlconclict on node3:

Node 3 (step t):

TRUNCATE test_dmlconflict;

We wait until the DELETE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the DELETE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

274

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

starting permutation: s2d s3t s1d s1w s2w s3w s1s s2s s3s

We delete a row from node2:

Node 2 (step d):

DELETE FROM test_dmlconflict where b = 2;

We truncate test_dmlconclict on node3:

Node 3 (step t):

TRUNCATE test_dmlconflict;

We delete a row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

We wait until the DELETE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the DELETE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Node 1 (step s):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

275

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

starting permutation: s1d s3t s2d s1w s2w s3w s1s s2s s3s

We delete a row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

We truncate test_dmlconclict on node3:

Node 3 (step t):

TRUNCATE test_dmlconflict;

We delete a row from node2:

Node 2 (step d):

DELETE FROM test_dmlconflict where b = 2;

We wait until the DELETE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the DELETE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE on node3 is replicated to all other nodes:

Node 3 (step w):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

276

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

starting permutation: s3t s2d s1d s1w s2w s3w s1s s2s s3s

We truncate test_dmlconclict on node3:

Node 3 (step t):

TRUNCATE test_dmlconflict;

We delete a row from node2:

Node 2 (step d):

DELETE FROM test_dmlconflict where b = 2;

We delete a row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

We wait until the DELETE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the DELETE on node2 is replicated to all other nodes:

Node 2 (step w):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

277

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

starting permutation: s3t s1d s2d s1w s2w s3w s1s s2s s3s

We truncate test_dmlconclict on node3:

Node 3 (step t):

TRUNCATE test_dmlconflict;

We delete a row from node1:

Node 1 (step d):

DELETE FROM test_dmlconflict where b = 1;

We delete a row from node2:

Node 2 (step d):

DELETE FROM test_dmlconflict where b = 2;

We wait until the DELETE on node1 is replicated to all other nodes:

Node 1 (step w):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

278

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the DELETE on node2 is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

Test three_node_dmlconflict_tuu

Parsed test spec with 3 sessions

starting permutation: s1u s2w1 s2u s3t s1w s2w s3w s1s s2s s3s s3teardown
alter_subscription_enable

t

Node 1 (step u):

UPDATE test_dmlconflict SET a = 'z', b = '1', c = 'baz';

We wait until the UPDATE on node1 is replicated to node2:

Node 2 (step w1):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

279

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT * from pg_sleep(1);
pg_sleep

On node2 we update the same row updated by node1:

Node 2 (step u):

UPDATE test_dmlconflict SET a = 'y', b = '1', c = 'bar';

We TRUNCATE the table on node3 before update from node1 arrives:

Node 3 (step t):

TRUNCATE test_dmlconflict;

Now we wait until the UPDATE from node1 is replicated to node3 as well:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the UPDATE is replicated to all other nodes:

Node 2 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

280

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT * FROM test_dmlconflict;
a b c

Node 3 (step teardown):

BEGIN;
SELECT pglogical.alter_subscription_disable('bdr_postgres_bdrgroup_node1_node3');
END;
UPDATE pglogical.subscription set sub_apply_delay = '1s' where sub_name = 'bdr_postgres_bdrgroup_node1_node3';
SELECT pglogical.alter_subscription_enable('bdr_postgres_bdrgroup_node1_node3');

alter_subscription_disable

t
alter_subscription_enable

t

Test three_node_dmlconflict_ttt

Parsed test spec with 3 sessions

starting permutation: s1t s2t s3t s1w s2w s3w s1s s2s s3s

We truncate the table on node1:

Node 1 (step t):

TRUNCATE test_dmlconflict;

Node 2 (step t):

TRUNCATE test_dmlconflict;

Node 3 (step t):

TRUNCATE test_dmlconflict;

We wait until the TRUNCATE on node1 is replicated to all other nodes:

Node 1 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE on node2 is replicated to all other nodes:

Node 2 (step w):

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

281

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

We wait until the TRUNCATE on node3 is replicated to all other nodes:

Node 3 (step w):

SELECT bdr.wait_slot_confirm_lsn(NULL,NULL);
wait_slot_confirm_lsn

State of node1:

Node 1 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node2:

Node 2 (step s):

SELECT * FROM test_dmlconflict;
a b c

State of node3:

Node 3 (step s):

SELECT * FROM test_dmlconflict;
a b c

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

282

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Appendix C: Known Issues

This section discusses currently known issues in BDR3.

Data Consistency

Please remember to read about Conflicts to understand the implications of the asynchronous operation
mode in terms of data consistency.

Concurrent Join and Part

As noted in Creating and Joining a BDR Group, if a new node is being joined concurrently while there is
another join or part operation in progress, the new node will sometimes not have consistent data after
the join has finished.

List of Issues

In the remaining part of this section we list a number of known issues that are tracked in BDR3’s ticketing
system, each marked with an unique identifier.

• (RM11693) If the resolver for the update_origin_change conflict is set to skip,
synchronous_commit=remote_apply is used, and concurrent updates of the same row are
repeatedly applied on two different nodes, then one of the update statements might hang due to a
deadlock with the pglogical writer. As mentioned in the Conflicts chapter, skip is not the default
resolver for the update_origin_change conflict, and this combination is not intended to be used
in production: it discards one of the two conflicting updates based on the order of arrival on that
node, which is likely to cause a divergent cluster.
In the rare situation that you do choose to use the skip conflict resolver, please note the issue with
the use of the remote_apply mode.

• (RM12052, RM14453) When changing the apply_delay value with alter_node_group_config()
the change does not apply to nodes that are already members of the group. This feature is not
intended for use in production and exists to assist with testing BDR. This has been noted in the
function documentation.

• (RM14528) An ERROR message “unexpected HTSU_Result after locking” might be logged spo-
radically due to a unhandled race condition in conflict detection code. The operation that throws
this will be retried. The issue occurs rarely, and the cluster will recover automatically from it. This is
correctly handled in BDR 3.7.

• (RM16008) A galloc sequence might skip some chunks if the sequence is created in a rolled back
transaction and then created again with the same name, or if it is created and dropped when DDL

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

283

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

replication is not active and then it is created again when DDL replication is active. The impact of
the problem is mild, because the sequence guarantees are not violated; the sequence will only skip
some initial chunks. Also, as a workaround the user can specify the starting value for the sequence
as an argument to the bdr.alter_sequence_set_kind() function.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

284

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Appendix D: Libraries

In this section we list the libraries used by BDR3, with the corresponding licenses.

Library License
LLVM BSD (3-clause)

OpenSSL SSLeay License AND OpenSSL License

Libpq PostgreSQL License

LLVM

Copyright © 1994 The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the University nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS” AND ANY EX-
PRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

OpenSSL

==

Copyright © 1998-2004 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

285

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgment: “This product includes software developed by the OpenSSL Project for use in
the OpenSSL Toolkit. (http://www.openssl.org/)”

4. The names “OpenSSL Toolkit” and “OpenSSL Project” must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please
contact openssl-coreopenssl.org.

5. Products derived from this software may not be called “OpenSSL” nor may “OpenSSL” appear in
their names without prior written permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment: “This
product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/)”

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT “AS IS” AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

==

This product includes cryptographic software written by Eric Young (eaycryptsoft.com). This product
includes software written by Tim Hudson (tjhcryptsoft.com).

Original SSLeay Licence

Copyright © 1995-1998 Eric Young (eaycryptsoft.com) All rights reserved.

This package is an SSL implementation written by Eric Young (eaycryptsoft.com). The implementation
was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following conditions are
aheared to. The following conditions apply to all code found in this distribution, be it the RC4, RSA, lhash,
DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is covered
by the same copyright terms except that the holder is Tim Hudson (tjhcryptsoft.com).

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

286

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Copyright remains Eric Young’s, and as such any Copyright notices in the code are not to be removed. If
this package is used in a product, Eric Young should be given attribution as the author of the parts of the
library used. This can be in the form of a textual message at program startup or in documentation (online
or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgement: “This product includes cryptographic software written by Eric Young (eaycrypt-
soft.com)” The word ‘cryptographic’ can be left out if the rouines from the library being used are not
cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps directory (applica-
tion code) you must include an acknowledgement: “This product includes software written by Tim
Hudson (tjhcryptsoft.com)”

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG “AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

The licence and distribution terms for any publically available version or derivative of this code cannot be
changed. i.e. this code cannot simply be copied and put under another distribution licence [including the
GNU Public Licence.]

PostgreSQL License

PostgreSQL Database Management System (formerly known as Postgres, then as Postgres95)

Portions Copyright © 1996-2020, The PostgreSQL Global Development Group

Portions Copyright © 1994, The Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any purpose,
without fee, and without a written agreement is hereby granted, provided that the above copyright notice
and this paragraph and the following two paragraphs appear in all copies.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

287

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS,
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN “AS IS” BASIS, AND
THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

288

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

Appendix E: Table Rewrite Example

This chapter provides a full example of how to change the type of a column for a large, replicated table.
While trying to reduce the effect on concurrently running transactions.

As a generic example, we use the table pgbench_accounts from a generic pgbench run and demonstrate
how to alter the type of the column bid from INT to BIGINT with minimal impact on transactional
throughput and fully using BDR replication.

Motivation

The naive way to alter the table would simply be a direct ALTER TABLE statement. Given BDR cannot
currently replicate this, it could also be applied on each node individually with DDL replication turned off:

SELECT bdr.set_ddl_replication('off');
ALTER TABLE pgbench_tellers ALTER COLUMN bid TYPE BIGINT;
SELECT bdr.set_ddl_replication('on');

(Note that bdr.run_on_all_nodes cannot be used in this case, because ALTER TABLE...ALTER COLUMN TYPE
cannot run in a transaction block.)

While this may work for smaller tables, it blocks replication and is therefore not a feasible approach for
large tables, unless entire BDR cluster is taken offline for maintenance.

Preparation

To perform the bulk of the table rewrite in the background, a temporary column is needed to hold the data
of the new type, in our example a BIGINT value:

ALTER TABLE pgbench_accounts ADD COLUMN bid_new BIGINT;

Do not add any constraints just yet. Concurrent transactions may insert new rows or update existing
ones. The simplest way to cover inserts is with a DEFAULT, for example now(), if applicable. However,
sometimes a default is not feasible, but data needs to be derived from the old column and assigned to
the new one. This can be achieved with a row trigger as follows:

-- Trigger function to copy value from the old column to the new one. This
-- may need to perform further transformation between types.
CREATE FUNCTION pgbench_accounts_copy_bid_to_bid_new()

RETURNS TRIGGER LANGUAGE plpgsql AS
$$
BEGIN

NEW.bid_new = NEW.bid;
RETURN NEW;

END;

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

289

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

$$;

-- Row trigger for INSERTs and UPDATEs
CREATE TRIGGER pgbench_accounts_insert_update_trigger

BEFORE INSERT OR UPDATE ON pgbench_accounts
FOR EACH ROW EXECUTE FUNCTION pgbench_accounts_copy_bid_to_bid_new();

None of these operations modify any data in the table, yet. These DDL operations will properly replicate
to all BDR nodes and should complete in less than a few seconds.

Actual Table Rewrite

At this point, all rows touched by concurrent transactions should properly populate the new column. To
rewrite existing rows, each one needs to be updated. While it’s possible to perform a single UPDATE,
there’s again a trade-off between holding locks and therefore blocking other transactions versus overhead
and overall time it takes to rewrite the table.

For large tables, it is recommended to update in batches so as to space out the load and minimize locking
time and conflicts with concurrent transactions. This can be achieved with a PROCEDURE updating the
entire table in smaller transactional batches. How exactly rows are batched together is not very relevant
and does not necessarily need to be on the primary key, because the downstream replica nodes will use
the replica identity to lookup the rows to update, anyway.

Due to the async nature of BDR, the application of UPDATEs may be deferred on the peer nodes. Such
a storm of updates - no matter how many transactions these are distributed over - may lead to quite a
lag, which is not desirable. To spread out the load and reduce the impact on concurrent transactions, we
recommend to add waits for peer nodes to catch up.

For our example, we batch by using a modulus of the primary key and wait after every transaction. While
this clearly slows down the table rewrite, it has little impact on the throughput of a concurrent pgbench
run.

CREATE PROCEDURE update_pgbench_accounts_for_alter_column()
LANGUAGE plpgsql
AS $$
DECLARE

-- Batch size in id range, may be adjusted to the table size and
-- concurrent workload. Bigger batches may have a larger impact on
-- latency of concurrent transactions, while smaller batches increase
-- the overall overhead.
batch_size CONSTANT INT := 1000;
aid_min INT;
aid_max INT;
i INT;

BEGIN
SELECT min(aid) INTO aid_min FROM pgbench_accounts;
SELECT max(aid) INTO aid_max FROM pgbench_accounts;

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

290

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

i := aid_min;
LOOP

-- Update a reasonably small chunk of the entire table at once.
UPDATE pgbench_accounts SET bid_new = bid

WHERE aid BETWEEN i AND (i + batch_size)
AND bid_new IS NULL;

COMMIT;

-- After commit, wait for peer nodes to catch up before
-- proceeding with the next batch. This prevents building up a lot of
-- lag and spreads out the load a bit.
PERFORM bdr.wait_slot_confirm_lsn(NULL, NULL);
ROLLBACK;

RAISE NOTICE 'completed % of % transactions',
((i - aid_min) / batch_size),
((aid_max - aid_min + batch_size - 1) / batch_size);

-- Advance to the next batch.
i := i + batch_size;

-- Termination condition.
IF i > aid_max THEN EXIT; END IF;

END LOOP;
END;
$$;

With this procedure in place, the rewriting process can be triggered with:

CALL update_pgbench_accounts_for_alter_column();

The way the procedure above is written, the process may be interrupted and restarted. Most of the work
performed will be retained in subsequent runs. This process may take a long time, as it’s runtime is
proportional to the number of rows in the table.

Completing the Alteration of the Column Type

After the table is fully rewritten, a few more DDL operations are needed. Note that these will need to
acquire global locks. It is therefore mandatory to wait for peer nodes to catch up. Therefore, please
execute SELECT bdr.wait_slot_confirm_lsn(NULL, NULL); at least once after the table rewrite is
completed.

If the column had any indexes, these should be re-created on the new column at this point. It is safe
to use CREATE INDEX CONCURRENTLY individually on each node without DDL replication to reduce lock
durations, if the table is not partitioned. For example:

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

291

Information Classification: PARTNER CONFIDENTIAL

Postgres-BDR 3.6.33 Standard Edition

SELECT bdr.set_ddl_replication('off');
CREATE INDEX CONCURRENTLY pgbench_accounts_bid_new_idx

ON pgbench_accounts(bid_new);
SELECT bdr.set_ddl_replication('on');

All required constraints, including NOT NULL should be duplicated as well now, if required. Using DDL
replication by BDR works well for this, again. For example:

ALTER TABLE pgbench_accounts ALTER COLUMN bid_new SET NOT NULL;

Finally, to swap the new column into place of the old one, drop the trigger and the old column and rename
the new one into place. Which should all be done in a single atomic transaction (again replicated by BDR,
with a runtime of only few seconds, independent of the size of the table):

BEGIN;
DROP TRIGGER pgbench_accounts_insert_update_trigger ON pgbench_accounts;
ALTER TABLE pgbench_accounts DROP COLUMN bid;
ALTER TABLE pgbench_accounts RENAME COLUMN bid_new TO bid;
COMMIT;

Warning
Dropping the column may be prevented by other objects that depend on it, like views,
procedures, etc. It’s possible to use CASCADE to drop the column, but everything that
referred it will need to be recreated.

Cleaning up

Indexes and contstraints may need to be renamed to match the original names. The helper functions and
procedures created may be dropped again:

DROP PROCEDURE update_pgbench_accounts_for_alter_column;
DROP FUNCTION pgbench_accounts_copy_bid_to_bid_new();

Copyright © 2018-2020, EnterpriseDB Corporation. Copyright in these materials belongs to EnterpriseDB Corporation and no permissions
or licences in relation to these materials are granted. No part of these materials may be reproduced in any form, stored in a retrieval system
or transmitted in any way or by any means without the written permission of EnterpriseDB Corporation.

292

	Postgres-BDR
	Architectural Overview
	Basic Architecture
	Multiple Groups
	Multiple Masters
	Asynchronous, by default
	Mesh Topology
	Logical Replication
	High Availability
	Limits

	Deployment
	Clocks and Timezones

	Application Usage
	Application Behavior
	Transaction Handling
	Non-replicated statements
	Replicating between different release levels
	Replicating between nodes with differences
	Timing Considerations and Synchronous Replication
	Application Testing
	TPAexec
	pgbench with CAMO/Failover options
	isolationtester with multi-node access

	Performance Testing & Tuning

	PostgreSQL Configuration for BDR
	PostgreSQL Settings for BDR
	pglogical Settings for BDR
	BDR Specific Settings
	Conflict Handling
	Global Sequence Parameters
	DDL Handling
	Global Locking
	Node Management
	Generic Replication
	Timestamp-based Snapshots
	Monitoring and Logging
	Internals

	Node Management
	Creating and Joining a BDR Group
	Connection DSNs and SSL (TLS)

	Witness Nodes
	Logical Standby Nodes
	Physical Standby Nodes
	Node Restart and Down Node Recovery
	Replication Slots created by BDR
	Hashing Long Identifiers

	Removing a Node From a BDR Group
	Uninstalling BDR

	Listing BDR Topology
	Listing BDR Groups
	Listing Nodes in a BDR Group
	List of Node States

	Node Management Interfaces
	bdr.create_node
	bdr.drop_node
	bdr.create_node_group
	bdr.alter_node_group_config
	bdr.join_node_group
	bdr.promote_node
	bdr.wait_for_join_completion
	bdr.part_node
	bdr.alter_node_interface
	bdr.alter_subscription_enable
	bdr.alter_subscription_disable

	Node Management Commands
	bdr_init_physical

	DDL Replication
	DDL Replication Options
	Executing DDL on BDR Systems
	DDL Locking Details
	Minimizing the Impact of DDL
	Handling DDL With Down Nodes
	Statement Specific DDL Replication Concerns
	DDL Statements Requiring a DML Lock
	Non Replicated DDL Statements
	DDL on Databases and Tablespaces
	DDL Statements With Restrictions
	Restricted DDL Workarounds
	BDR Functions that behave like DDL

	Security and Roles
	Granting privileges on catalog objects
	Role Management
	Roles and Replication
	Connection Role
	Triggers
	Catalog Tables
	BDR Functions & Operators
	BDR Default Roles
	bdr_superuser
	bdr_read_all_stats
	bdr_monitor
	bdr_application

	Verification
	Coverity
	CIS Benchmark

	Conflicts
	How conflicts happen
	Types of conflict
	PRIMARY KEY or UNIQUE Conflicts
	Foreign Key Constraint Conflicts
	TRUNCATE Conflicts
	Exclusion Constraint Conflicts
	Data Conflicts for Roles and Tablespace differences
	Lock Conflicts and Deadlock Aborts
	Divergent Conflicts
	TOAST Support Details

	Avoiding or Tolerating Conflicts
	Conflict Detection
	Origin Conflict Detection
	Row Version Conflict Detection
	bdr.alter_table_conflict_detection
	List of Conflict Types

	Conflict Resolution
	bdr.alter_node_set_conflict_resolver
	List of Conflict Resolvers
	List of Conflict Resolutions

	Conflict Logging
	bdr.alter_node_add_log_config
	bdr.alter_node_remove_log_config
	Conflict Reporting

	Sequences
	BDR Global Sequences
	Timeshard Sequences
	Globally-allocated range Sequences

	UUIDs, KSUUIDs and Other Approaches
	UUIDs and KSUUIDs
	Step & Offset Sequences

	Global Sequence Management Interfaces
	bdr.alter_sequence_set_kind
	bdr.extract_timestamp_from_timeshard
	bdr.extract_nodeid_from_timeshard
	bdr.extract_localseqid_from_timeshard
	bdr.timestamp_to_timeshard

	KSUUID v2 Functions
	bdr.gen_ksuuid_v2
	bdr.ksuuid_v2_cmp
	bdr.extract_timestamp_from_ksuuid_v2

	KSUUID v1 Functions
	bdr.gen_ksuuid
	bdr.uuid_v1_cmp
	bdr.extract_timestamp_from_ksuuid

	Durability & Performance Options
	Overview
	Comparison
	Internal Timing of Operations
	Planned Shutdown and Restarts
	Synchronous Replication using PGLogical
	Usage
	Limitations

	Replication Sets
	Behavior of Partitioned Tables
	Behavior with Foreign Keys
	Replication Set Management
	bdr.create_replication_set
	bdr.alter_replication_set
	bdr.drop_replication_set
	bdr.alter_node_replication_sets

	Replication Set Membership
	bdr.replication_set_add_table
	bdr.replication_set_remove_table
	Listing Replication Sets

	DDL Replication Filtering
	bdr.replication_set_add_ddl_filter
	bdr.replication_set_remove_ddl_filter

	Monitoring
	Monitoring Node Join and Removal
	Monitoring Replication Peers
	Monitoring Outgoing Replication
	Monitoring Incoming Replication

	Monitoring BDR Replication Workers
	Monitoring Global Locks
	Monitoring Conflicts
	Apply Statistics
	Standard PostgreSQL Statistics Views
	Monitoring BDR Versions
	Monitoring Raft Consensus
	Monitoring Replication Slots

	Backup and Recovery
	Backup
	pg_dump
	Physical Backup
	Eventual Consistency
	Point-In-Time Recovery (PITR)

	Restore
	BDR Cluster Failure or Seeding a New Cluster from a Backup

	Upgrading
	Database Encoding
	Server Software Upgrade
	Rolling Server Software Upgrades
	Rolling Application Schema Upgrades

	Explicit Two-Phase Commit (2PC)
	Usage

	Catalogs and Views
	bdr.apply_log
	bdr.apply_log_summary
	bdr.ddl_epoch
	bdr.ddl_replication
	bdr.global_consensus_journal
	bdr.global_consensus_journal_details
	bdr.global_consensus_response_journal
	bdr.global_lock
	bdr.global_locks
	bdr.local_consensus_snapshot
	bdr.local_consensus_state
	bdr.local_node_summary
	bdr.node
	bdr.node_catchup_info
	bdr.node_conflict_resolvers
	bdr.node_group
	bdr.node_group_replication_sets
	bdr.node_local_info
	bdr.node_log_config
	bdr.node_peer_progress
	bdr.node_slots
	bdr.node_summary
	bdr.replication_sets
	bdr.schema_changes
	bdr.sequence_alloc
	bdr.sequence_kind
	bdr.sequences
	bdr.stat_relation
	bdr.stat_subscription
	bdr.state_journal
	bdr.state_journal_details
	bdr.subscription
	bdr.subscription_summary
	bdr.tables
	bdr.trigger
	bdr.triggers
	bdr.worker_errors
	bdr.monitor_group_versions_details
	bdr.monitor_group_raft_details

	BDR System Functions
	Version Information Functions
	bdr.bdr_edition
	bdr.bdr_version
	bdr.bdr_version_num

	System Information Functions
	bdr.get_relation_stats
	bdr.get_subscription_stats

	System and Progress Information Parameters
	bdr.local_node_id
	bdr.last_committed_lsn

	Consensus Function
	bdr.consensus_disable
	bdr.consensus_enable
	bdr.consensus_proto_version
	bdr.consensus_snapshot_export
	bdr.consensus_snapshot_import
	bdr.get_consensus_status
	bdr.get_raft_status

	Utility Functions
	bdr.wait_slot_confirm_lsn
	bdr.wait_for_apply_queue
	bdr.get_node_sub_receive_lsn
	bdr.get_node_sub_apply_lsn
	bdr.set_ddl_replication
	bdr.set_ddl_locking
	bdr.run_on_all_nodes
	bdr.global_lock_table
	bdr.monitor_group_versions
	bdr.monitor_group_raft
	bdr.monitor_replslots

	Internal Functions
	BDR message payload functions
	bdr.get_global_locks
	bdr.get_slot_flush_timestamp
	bdr internal function replication functions
	bdr.internal_submit_join_request
	bdr.isolation_test_session_is_blocked
	bdr.local_node_info
	bdr.msgb_connect
	bdr.msgb_deliver_message
	bdr.peer_state_name
	bdr.request_replay_progress_update
	bdr.seq_nextval
	bdr.show_subscription_status
	bdr.conflict_resolution_to_string
	bdr.conflict_type_to_string
	bdr.reset_subscription_stats
	bdr.reset_relation_stats
	bdr.pg_xact_origin
	bdr.difference_fix_origin_create
	bdr.difference_fix_session_setup
	bdr.difference_fix_session_reset
	bdr.difference_fix_xact_set_avoid_conflict
	bdr.resynchronize_table_from_node(node_name name, relation regclass)
	bdr.alter_subscription_skip_changes_upto

	Credits and Licence
	Appendix A: Release Notes for BDR3
	BDR 3.6.32
	Resolved Issues
	Improvements
	Upgrades

	BDR 3.6.31
	Resolved Issues
	Improvements
	Upgrades

	BDR 3.6.30
	Resolved Issues
	Upgrades

	BDR 3.6.29
	Resolved Issues
	Improvements
	Upgrades

	BDR 3.6.28.1
	Resolved Issues

	BDR 3.6.28
	Resolved Issues
	Improvements
	Upgrades

	BDR 3.6.27
	Resolved Issues
	Upgrades

	BDR 3.6.26
	Resolved Issues
	Other Changes
	Upgrades

	BDR 3.6.25
	Resolved Issues
	Improvements

	BDR 3.6.24
	Resolved Issues
	Improvements

	BDR 3.6.23
	Resolved Issues
	Other Changes

	BDR 3.6.22
	Resolved Issues
	Improvements

	BDR 3.6.21
	Resolved Issues
	Improvements

	BDR 3.6.20
	Additional Actions
	Resolved Issues
	Improvements

	BDR 3.6.19
	Resolved Issues
	Improvements

	BDR 3.6.18
	Improvements
	Resolved Issues

	BDR 3.6.17
	Improvements
	Resolved Issues

	BDR 3.6.16
	Improvements
	Resolved Issues

	BDR 3.6.15
	Improvements
	Resolved Issues

	BDR 3.6.14
	Improvements
	Resolved Issues

	BDR 3.6.12
	Improvements
	Resolved Issues

	BDR 3.6.11
	Improvements
	Resolved Issues

	BDR 3.6.10
	Improvements
	Resolved Issues

	BDR 3.6.9
	Improvements
	Resolved Issues

	BDR 3.6.8
	Improvements
	Resolved Issues

	BDR 3.6.7.1
	Resolved Issues

	BDR 3.6.7
	Improvements
	Resolved Issues

	BDR 3.6.6
	Improvements
	Resolved Issues

	BDR 3.6.5
	Improvements
	Resolved Issues

	BDR 3.6.4
	The Highlights of BDR 3.6.4
	Resolved Issues
	Other Improvements

	BDR 3.6.3
	The Highlights of BDR 3.6.3
	Resolved Issues
	Other Improvements

	BDR 3.6.2
	The Highlights of BDR 3.6.2
	Resolved Issues

	BDR 3.6.1
	The highlights of 3.6.1
	Resolved Issues

	BDR 3.6.0.2
	Resolved Issues

	BDR 3.6.0.1
	Resolved Issues

	BDR 3.6.0
	The highlights of BDR 3.6
	Resolved issues
	Other improvements

	Appendix B: Conflict Details
	Test two_node_dmlconflict_ii
	Test two_node_dmlconflict_iu
	Test two_node_dmlconflict_id
	Test two_node_dmlconflict_it
	Test two_node_dmlconflict_uu
	Test two_node_dmlconflict_uu_replayorder
	Test two_node_dmlconflict_ud
	Test two_node_dmlconflict_ud_replayorder
	Test two_node_dmlconflict_ut
	Test two_node_dmlconflict_dd
	Test two_node_dmlconflict_dt
	Test two_node_dmlconflict_tt
	Test three_node_dmlconflict_iii
	Test three_node_dmlconflict_iiu
	Test three_node_dmlconflict_iid
	Test three_node_dmlconflict_iit
	Test three_node_dmlconflict_uuu
	Test three_node_dmlconflict_uud
	Test three_node_dmlconflict_uut
	Test three_node_dmlconflict_udt
	Test three_node_dmlconflict_duu
	Test three_node_dmlconflict_ddd
	Test three_node_dmlconflict_ddt
	Test three_node_dmlconflict_tuu
	Test three_node_dmlconflict_ttt

	Appendix C: Known Issues
	Data Consistency
	Concurrent Join and Part
	List of Issues

	Appendix D: Libraries
	LLVM
	OpenSSL
	Original SSLeay Licence
	PostgreSQL License

	Appendix E: Table Rewrite Example
	Motivation
	Preparation
	Actual Table Rewrite
	Completing the Alteration of the Column Type
	Cleaning up

