cDB

POSTGRES

Database Compatibility for Oracle®
Developers Built-in Package Guide

EDB Postgres™ Advanced Server 12
August 31, 2020

Database Compatibility for Oracle® Developers

Built-in Package Guide

by EnterpriseDB® Corporation

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

EnterpriseDB Corporation, 34 Crosby Drive, Suite 201, Bedford, MA 01730, USA
T +17813573390 F +1978 467 1307 E info@enterprisedb.com www.enterprisedb.com

http://www.enterprisedb.com/

Database Compatibility for Oracle® Developers
Built-in Package Guide

Table of Contents

R 1011 (0T [0 o SOOI 8
11 WHAE"S INEW L.ttt ettt ettt ettt ekt e bt s b bt e e b e e s b bt e sb e e s b bt e sbb e e s b b e e nabe e s bb e e nabeenrbeennbe e e 9
1.2 Typographical Conventions Used in thiS GUITEccoiriiriiiiiiieineecseees e 10

2 PACKAGES ...ttt bR R e R R bRt Rt b e bt b et e 11
21 PACKAGE COMPONENES. ...ttt b et eb bbbt nb et eb b bt sb e et nbe e b nnes 11

211 Package SPecifiCation SYNTAXcciriiiiriiiiiieesie et 12
212 PaCKage BOOY SYNTAXeiviieiiiriieeiiitirieieste sttt sttt b et eb e sr e eb e sn e ebenes 16
I O (- | (1o [o1 1= Vo SR 22
221 Creating the Package SPeCITICAtioNcccvcviieiieii i 22
222 Creating the PaCKage BOGYccoviiieiiiriiieiicieiesie sttt sreens 22
2 B = T =T Lo Lo - Vo Vo[- SRR 25
24 Using Packages With User Defined TYPES....ccov oot se et sen e 26
25 DropPPING @ PACKAJEcuveivieiieeie et see st ste ettt ettt e e e e s e ta e s teesteeseenteanbesseesteesraeseeaneeas 30

3 BUIHE-IN PACKAGES. ... ettt bbb bbb bbb bbb bbbt b bbb 31

3.1 DBMS _ALERT Lttt ettt b et b e be et e b e b e be e nbe et et e Rt e ebeenbe e be e bennae s 32
3.1.1 REGISTER .. oottt sttt s e e st e e sab e e st e e saa e e sbaeeabbeesteeesteeestaeennraens 33
3.1.2 REIMONVE ...ttt sttt e e st e e sab e e st e e saa e e sbb e e sab e e steeesteeestaeennreens 33
3.1.3 REMOWVEALL. ...ttt ettt sttt e st e e st e e sab e e snreestbeeanaeesnreeas 34
3.14 SIGNALL ettt e et e te et e e e br e ta e e beeanreearen 34
3.15 WAITANY Lt ettt bbbttt et st b e st b e bt s be e et e s be st e nesbe s ene st e 34
3.16 WAITONE ..ottt ettt sttt sttt ettt e bbb e b st s ere st 36
3.1.7 Comprehensive EXAmMPIEcov i e 37

3.2 DBMS _AQ ittt bR bR bRt E e bRt bRt Ee bt et et rere et 40
3.2.1 ENQUEUEooiiiiitt ettt et sttt sttt bbbt st e nbe st e nbe e 42
3.2.2 DEQUEUEoiiiiiitt ettt sttt bt s a et sttt sttt s et nb et e st e e abeneas 44
3.23 REGISTER .. oottt s e e st e st e e st e e saa e e sbb e e sabeesreeesteeestaeenneeens 48
3.24 UNREGISTER ..ottt ettt sat e e st e e saa e e ste e e sat e e snteesnbeeanneennreeas 49

3.3 DBMS_AQADM ...ttt sttt ettt ettt e re e ereente e te et e Rt e areente e teenaeaneeas 51
3.3.1 ALTER_QUEUE ...ttt ettt sttt et sneesneesneeeas 52
3.3.2 ALTER_QUEUE_TABLEottt nae e 53
3.33 CREATE_QUEUEoitiiiictes ettt 54
3.34 CREATE_QUEUE_TABLEcoitiiictieeese ettt 56
3.35 DROP_QUEUE ..ottt ettt et sttt bbbt st e ebe st e ete e 58
3.3.6 DROP_QUEUE_TABLEociiiiii ittt sttt sttt sttt e 59
3.3.7 PURGE_QUEUE_TABLE ..ottt sttt sttt sbe s 60
3.38 START _QUEUE ..ottt ettt sttt 61
3.3.9 STOP_QUEUE ..ottt sttt s et e b e sa s b e nenaere e 61

34 DBMS _CRYPTO ...ttt sttt ettt et e et e s s e she e sbeenbeeteenteeseesaeesbeeteeneeaneeas 63
34.1 D] O 0 S SUSSUSRSR 64
3.4.2 N[0 0 SRS USUSSR 66
343 HASH Lottt sttt st e et e ettt b et r e bena e re b e erenrs 68
3.4.4 IMIAC .ottt ettt et e bbbt h R e b et R bt eRe bt eRe b et ereebe et ereere st ere et 68
345 RANDOMBY TES.......oiiiiiieistesiee sttt sttt sttt sttt abe st e sbesbeseebesae e abesbeseatennas 69
3.4.6 RANDOMINTEGERcooiiiitiiiiiiteieeste ettt sttt st e ete st sbe st sbestesesbesbeseetesnes 70
3.4.7 RANDOMNUMBER ..ottt sttt sttt sbe st stesse e ebesbeseetesnes 71

3.5 DBMS _JOBi... ittt ettt R bttt ettt b s nent s 72
35.1 BROKEN ...ttt ittt ettt sttt et s e e e b e st e s e ebe s b e s e et e sbeseebe st e s e abesteseeteneas 73
3.5.2 (O o A N] PSSP 74
353 INTERWV AL ..ottt et e e et e e st e e e st e e e e st e e e nnaeeeeanteeeeanneeeeennnes 75
354 NEXT D ATE ettt s bbbt e sb bt e sbb e e sbb e e sabeenbb e e siaeenareens 75
355 REIMONVE ...ttt ettt sat e e st e e s bt e e s te e e saae e staeesbbeesteeesteeestaeennreens 76
3.5.6 L SRR 77

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 3

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.5.7 SUBMIT L.t r e 77
3538 WMWVHAT et E et 78
3.8 DBMS_LOB ...ttt 80
3.6.1 APPEND ...ttt n e 81
3.6.2 COMPARE ..ottt bR n e 81
3.6.3 CONVERTTOBLOB ..ottt bbbt 82
3.64 CONVERTTOCLOBooiiiitiieieiiet ettt bbbt 84
3.6.5 COPY et bbb h b E b b e Rt bbbttt 85
3.6.6 ERASE ..ottt bbb E et bbbt b e nr b e 86
3.6.7 GET_STORAGE_LIMIT ..ottt 87
3.6.8 GETLENGTH ..ottt 87
3.6.9 INSTR et E bt r bR bR 87
3.8.10 READ ..ot 88
3.8.11 SUBSTR ..ottt 89
3i8.12 TRIM iRt 90
3i8.13 WRITE .ottt bbbt bbb b et b bbb 90
3.6.14 WRITEAPPENDoiiiiittiitit ettt b bbbt bbbt nnes 91
3.7 DBMS_LOCK ... itttk bbb bbbt bbbt e 92
3.7.1 SLEEPR ettt b bbbt b e 92
3.8 DBMS_IMVIEW ...ttt bbb bbbt 93
3.8.1 GET_MV_DEPENDENCIES ..ottt 94
3.8.2 REFRESH. ...ttt b bbbt eb e bbb nn e ebe e 94
3.8.3 REFRESH_ALL_MVIEWS ...ttt 96
3.84 REFRESH_DEPENDENT ..ottt e 98
3.9 DBMS_OUTPUT ..ottt bbbttt b e nen e 100
391 CHARARR ...ttt bbb bbbt bbb e bbb 100
3.9.2 DISABLE ...ttt bbbt 100
393 ENABLE ..ot 101
3.94 GET_LINE ..o bbbt ettt b ettt e ettt nn e ebe e 102
3.95 GET_LINES ...ttt b et sb et b et nn e ebe e 104
3.9.6 NEW _LINE ...ttt bbb e b ettt b bbbttt b et ebe e 105
3.9.7 P U T bbb R b bbb bbb bbbttt b 105
3.9.8 PUT _LINE .ottt bbbt b ettt b ettt b et abens 106
3.9.9 SERVEROUTPUT ...ttt bbbttt 107
310 DBMS_PIPE.....c ettt bbbt bbbt n e 109
3101 CREATE_PIPE ..ottt 110
3102 NEXT_ITEM_TYPE ..ottt 111
3.10.3 PACK _MESSAGEotiiitiiieittse et bbbttt 113
3104 PURGE ...ttt bbb bbb 113
3.10.5 RECEIVE_MESSAGE ..ottt bbbt 115
3.10.6 REMOWVE_PIPEociiiiiite ettt bttt bbbttt bbbt 115
3.10.7 RESET_BUFFER. ..ottt bbbttt 117
3.10.8 SEND_IMESSAGE ..ottt bbbt bbb 118
3.10.9 UNIQUE_SESSION_NAMEcotitiitieiet ettt 119
3.10.10 UNPACK_MESSAGE ..ottt 119
3.10.11 Comprehensive EXAMPIEo e 120
311 DBMS_PROFILERociiiitiectte ettt ettt bbb 123
311D FLUSH_DATA ettt bbb bbbt bbbt bbbttt 123
3112 GET_VERSION ..ottt bbbk bbbt bbbt 124
3.11.3 INTERNAL_VERSION_CHECK ..ottt s 124
3114 PAUSE_PROFILER.......cciiitittiet ettt 125
3115 RESUME_PROFILERcoooiiiiiiieet ettt 125
3116 START_PROFILERottt 125
3117 STOP_PROFILER. ..ottt sttt sttt 126
3.11.8 UsSiNg DBMS_PROFILER........coocitiiiitie e 127
3.11.8.1 Querying the DBMS_PROFILER Tables and VIeW.........ccccovivineininenecieeiee, 129

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 4

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.11.8.2 DBMS_PROFILER - REFEIENCEoveiiiieiiei ettt 136
3.11.8.2.1 PLSQL_PROFILER_RUNScoiiiiiiiiieisie ettt 136
3.11.8.2.2 PLSQL_PROFILER_UNITS ...ciiiiiieiie ettt 136
3.11.8.2.3 PLSQL_PROFILER_DATA ..ottt ettt sttt st 137
3.11.8.2.4 PLSQL_PROFILER_RAWDATA ..ottt ettt sttt eene e 137

3.12 DBMS RANDOMociitiiitiiiee ettt ettt ettt s et s ettt e b nen et nn e ne s 144
3121 INITIALIZE oottt sttt bttt se bt e s bt re it 144
3122 INORMAL ..ottt sttt bttt s e bbb ettt et bR bt ne bt re et 145
3.12.3 RANDOM ...ttt bbbt b ettt ettt ettt ane s 145
3124 SEED ..ottt R et R R bR Rt re bt re et it re it 146
3125 SEED ..ttt et bbbttt sttt re et 146
3128 STRING ..o ettt et ettt bbbttt et bt b ettt e bt be st e r et 147
3127 TERMINATE ..ottt et ettt bbbttt sttt b et b n et 147
3128 WALUE. ...ttt ettt bbbttt ettt 148
312,90 WALUE. ..ottt ettt et bbbt be ettt 148

3.13 DBMS _REDACT ..ottt sttt ettt ettt ettt b e bbbttt n et e ne st s 150
3.13.1 Using DBMS_REDACT Constants and Function Parametersccooveveverenenesesennenn. 151
3.13.2 ADD _POLICY .ottt ettt bbbt be e bbb e nbenre e 159
3.13.3 ALTER_POLICY Lttt sttt ettt sttt st e e nbe et et enn e s e 163
3.13.4 DISABLE _POLICY ..ottt ettt st sttt e enb e e 166
3.13.5 ENABLE _POLICY ittt sttt st sttt e 167
3.13.6 DROP_POLICY ettt ettt ettt sbe ettt et te s sbe e ste e s be e nbe e b enbenree e 168
3.13.7 UPDATE_FULL_REDACTION_VALUES.......ccccctiiitiinetse et 169

314 DBMS _RLS .ottt bbbttt R et n et e re s 172
3141 ADD_POLICY ittt sttt sttt bttt et 175
3.14.2 DROP_POLICY .ottt sttt sttt sttt bbbttt st nbene et 182
3.14.3 ENABLE_POLICY ..ottt sttt sttt 183

3.15 DBMS_SCHEDULERocctiiiiiiieistirieiee ettt sne s 184
3.15.1 Using Calendar Syntax to Specify a Repeating Interval.............ccccooeviiiiiniiiinciienee, 186
3152 CREATE_JOB... .ottt sttt ettt ettt te e et sre e saeenaeenteeneeenee e 188
3.15.3 CREATE_PROGRAM ...ttt ettt ettt ettt sre e sreesteenaeeneeeneeenee e 191
3.15.4 CREATE_SCHEDULEcci ittt sttt st st et enee e 193
3.15.5 DEFINE_PROGRAM_ARGUMENT ..ottt e 195
3158 DISABLE ...ttt ettt sttt re et 197
3157 DROP_JOB ..ottt sttt sttt sttt e bbbttt r ettt renae s 198
3.15.8 DROP_PROGRAM ..ottt sttt sttt sttt sttt sttt e re st st ne et b ene et 199
3.15.9 DROP_PROGRAM_ARGUMENTcoiiitiiitieieeste ettt 200
3.15.10 DROP_SCHEDULE ...ttt 201
3.15.11 ENABLE ..ottt ettt ettt s ettt et nes 202
3.15.12 EVALUATE_CALENDAR_STRINGcuiiiieiet ettt 203
3.15.13 RUN _JOB ...ttt ettt e ste et e e nbeeneeeteesbeesteebeeneenneens 205
3.15.14 SET_JOB_ARGUMENT _VALUE ...ttt 206

3.16 DBMS_SESSION.oiiiiiiteiieieeeieeeteie sttt sttt ettt st ee s et atese e s teseseete st se et ereseebeneseeneneneenenens 208
3161 SET ROLE ..ottt sttt et b ettt b e be st e be e be st ene bt nennns 208

317 DBMS SOL ittt ettt bttt et et neer e n et s 209
3171 BIND_VARIABLE ..ottt sttt sttt et 211
3.17.2 BIND_VARIABLE_CHARcoot ittt 213
3.17.3 BIND VARIABLE RAW ..ottt ettt sttt sttt st ne st 214
3.17.4 CLOSE_CURSOR......ccititiiieitatesiet st sie ettt st e st st te st st sesbe st ase st st esesbe st asesbeseeneetesseneatns 215
3175 COLUMN_VALUE ..ottt sttt sttt 216
3.17.6 COLUMN_VALUE_CHAR ..ottt ettt nne e eneenne e 218
3.17.7 COLUMN VALUE RAW ...ttt sttt anae s sneesteenneeneeaneennee e 219
3.17.8 DEFINE_COLUMNI. ..ottt st se e st e ste e te e e eneesneesreesaeenaeaneeeneeesee e 220
3.17.9 DEFINE_COLUMN_CHAR ... oottt sttt ettt sneenae e aneennee e 222
3.17.10 DEFINE COLUMN RAW ..ottt st stnate e e s e st e sneenteeneenneens 223
3.17.11 DESCRIBE COLUMNS ...ttt sre et steenteeneennee s 224

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 5

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.12 EXECUTE .ottt bbbttt bbbttt nbe e 225
3.17.13 EXECUTE_AND_FETCH ...oiiiiiceetrer st 226
3.17.14 FETCH_ROWS ...ttt 228
3.17.15 IS_OPEN ..ottt ettt ettt ettt sttt et na e 230
3.17.16 LAST_ROW _COUNT ..ottt sttt sttt sne et sn e sne e sne e 231
3.17.17 OPEN_CURSOR ...ttt sttt et s ettt et e tebeseesbesneeneas 233
3.17.18 PARSE ..ottt bbbt Rttt st Rt bRt e re et et stenaenneeneas 234
318 DBMS UTILITY ittt sttt bbbttt st sttt et s e et e e e e e nbesbesneenes 236
3.18. 1 LNAME_ARRAY ..ottt sttt st b ettt b et bbb ne et et et saesreene e 237
3.18.2 UNCL_ARRAY ittt ettt st b ettt et et st e bt e beene e s e e sbenbesaeseeene e 237
3.183 ANALYZE_DATABASE, ANALYZE SCHEMA and ANALYZE PART_OBJECT 238
3.18.4 CANONICALIZEcoeitiieeet ettt ettt bbbt 241
3.185 COMMA _TO _TABLE.. ..ottt et 243
3.18.6 DB_VERSION ..ottt ettt sttt ettt bbb n et 245
3.18.7 EXEC_DDL_STATEMENT ..oiiititiet sttt sttt sttt 246
3.18.8 FORMAT _CALL_STACK ..ottt sttt st 247
3.18.9 GET_CPU _TIME ..ottt sttt sttt e e nbesaeneeane e 248
3.18.10 GET_DEPENDENCY ..ottt ittt sttt sttt e e nsesbestesnesneaneas 249
3.18.11 GET _HASH _VALUE ...ttt sttt 250
3.18.12 GET_PARAMETER _VALUEc.ootii ettt ane s 252
3.18.13 GET _TIME ...ttt ettt ettt e e st e eenbesbestestesneeneas 253
3.18.14 NAME_TOKENIZE ..ottt sttt e nte e enes 254
3.18.15 TABLE_TO _COMMAttt ettt bbbt 257
319 UTL_ENGCODEooiiitiiiiieitieeee ettt sttt bt n et ne st s 259
3.19.1 BASEBS _DECODEcociiiiiieietse ettt ettt et 259
3.19.2 BASEBS _ENCODEocciiiiiiteiet ettt sttt bttt 260
3.19.3 MIMEHEADER _DECODEcotiitiiiiteiieese ettt sttt sttt 261
3.19.4 MIMEHEADER _ENCODEcotiiiiiitiiiietse ettt sttt sttt 262
3.195 QUOTED_PRINTABLE DECODE......cccoitiieieiine sttt st 263
3.19.6 QUOTED_PRINTABLE ENCODE......ccccotiieieene sttt 264
3.19.7 TEXT _DECODEottt sttt e st stesbesseeneeseensentesaeseeeneans 265
3.19.8 TEXT _ENCODE ...ttt sttt ste st ne e enaestesneseeeneens 266
3.19.9 UUDEGCODE ..ottt sttt st st e s e e e et seeebenreeneeseensentesaeneenneans 267
3.19.10 UUENCODE ..ottt ettt ettt ettt e nne s 268
320 UTL_FILE ottt ettt s et n et n et ne et e 271
3.20.1 Setting File Permissions with utl_file.umask...........c.ccccoviiiiniiiiii e, 272
B.20.2 FCLOSE ...ttt ettt bbbt r ettt ne st re et 274
3.20.3 FCLOSE _ALL ..ottt ettt et sttt 274
32014 FCOPY ottt ettt ettt b e et R bbbt R et e ne bt re et 274
B0 o o I 1] o S 276
B0 T o] N OSSR 277
3.20.7 FREMONE ..ottt sttt e et steebeeneene e s e e ntentenaeneenne e 278
3.20.8 FRENAMEottt sttt eene e et e e saeeteeseeneeseeneenbeneeseenneans 278
B0 R T €1 = I I OSSR 280
3.20.10 ST L 1 281
3.20.11 NEW _LINE ...ttt ettt ettt sttt e n e ane s 282
3.20.12 o U SRS 283
3.20.13 PUT _LINE ..ottt sttt sttt bttt b e ne s 285
3.20.14 o U I TSSO 286
T U I IR I I TS STPR 288
B0 I O o 8 IV |0 TSSO 291
B0 7 = = S 291
B0 T T o] S 291
3.21.4 BEGIN_REQUESTooiiiiii ettt sttt e st ste e enaenaeneensennessenneens 292
3.21.5 END_REQUEST ..ooiioiit sttt sttt st ste e ena e s e aeneenaennenneens 292
3.21.6 END_RESPONSEooiiititisieieiesiese st e e e e te e ste e e e e s e testestesneenaeseeneeseesnessenneens 293

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 6

Database Compatibility for Oracle® Developers
Built-in Package Guide

3217 GET_BODY_CHARSET ..ottt 293
3.21.8 GET_FOLLOW_REDIRECT ...octiiiiiiiiiisieie et 294
3219 GET_HEADER ..ottt 294
3.21.10 GET_HEADER_BY_INAMEociiiiiitiiei e 296
3.21.11 GET_HEADER _COUNT ...ttt 297
3.21.12 GET _RESPONSE.......cctitiiitiitiictste sttt bttt 297
3.21.13 GET_RESPONSE_ERROR_CHECKcciiiiiiiiritieisee e 297
3.21.14 GET_TRANSFER_TIMEOUT ..ottt 298
3.21.15 READ _LINE ...ttt bbbt 298
3.21.16 READ _RAW ..ottt bbbt bbbt b 300
3.21.17 READ _TEXT oottt 301
3.21.18 REQUEST ..ttt ettt 302
3.21.19 REQUEST _PIECES ...ttt 302
3.21.20 SET_BODY _CHARSET ..ottt 303
3.21.21 SET_FOLLOW_REDIRECT ...ocoitiiiiitetisieensiee s 303
3.21.22 SET_HEADER ..ottt 304
3.21.23 SET_RESPONSE_ERROR_CHECKccciitiitiiirtieisesesie et 304
3.21.24 SET_TRANSFER_TIMEQOUT ...ttt 305
3.21.25 WRITE_LINE ...ttt bbbt nr et ebe e 305
3.21.26 WRITE_RAW ...ttt bt nn et sb e ebennes 306
3.21.27 WRITE _TEXT ..ottt e bbb bbbt bt nn et b b nnes 307
322 UTL_MAILL ottt bbbt bbbttt bbbttt b et nb s 309
31221 SEND ..ottt bt 309
3222 SEND_ATTACH_RAW ...ttt 310
3.22.3 SEND_ATTACH_VARCHAR?cooiiiiiet et 312
323 UTL_RAW L.t b bbbt bbb bt bbb bbbt nen e 314
3231 CAST_TO_RAW ..ttt 314
3232 CAST_TO_VARCHARZ ...ttt 315
B.23.3 CONC AT -ttt bbb bbbt b e bbb bbb bbbt b n e n e 316
3234 CONVERT .ottt ettt bbbt bbb bbbttt b et b et nbens 316
3235 LENGTH ettt bbbt b e e bbb b e e bbb 317
3238 SUBSTR ...ttt b bbb bbb bbbt b e et 318
324 UTL_SIMTP ...ttt bbbt bbb bbbt b bbbttt 320
3241 CONNECTION ..oiiiiiiitee et bbb bbb b 321
3242 REPLY/REPLIES. ..ottt bbbt 321
3.24.3 CLOSE_DATA Lottt bbbt bbb bbb 321
3244 COMMAND ..ottt bbbttt b et b bbbttt 322
3.245 COMMAND_REPLIES ..ottt e 322
324,68 DAT A bbbttt 323
B24.7 EHLO bbbt bbb 323
3248 HELOD bbbttt a s 324
B24.9 HELP e bbbt b et e 324
3.24.10 VAL L.t b bbb bbbt et b e et b e bt b e nr b e 325
3.24.11 INOOP .ot b b bbbt b b bbbt bbbttt bbbttt b 325
3.24.12 OPEN_CONNECTION ..ottt bbb 326
3.24.13 OPEN_DATA ettt bbbt b bt bbbt b bbbt b et 326
3.24.14 QU T et b bbb bR e bbb bbbt 327
3.24.15 RO P T bbb b bbbt bbbttt bt nrens 327
3.24.16 RS ET .ttt bbb bbb b bbbt bbb bbbt ens 327
3.24.17 WRFY ettt bbb E bbbttt 328
3.24.18 WRITE_DATA ettt et b e et b e bbbttt s b st ne st ebenb et ebenras 328
3.24.19 Comprehensive EXAMPIE ..o e 329
325 UTL_URL ¢ttt bbbttt bbbttt ettt 331
3251 ESCAPE ...ttt b ettt r et 331
3252 UNESCAPE ...ttt bbb bbbttt 333
4 ACKNOWIBAGEMENTS ...ttt ettt bbbttt sttt be st ettt bt st e ebe st 335

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 7

Database Compatibility for Oracle® Developers
Built-in Package Guide

1 Introduction

Database Compatibility for Oracle means that an application runs in an Oracle
environment as well as in the EDB Postgres Advanced Server (Advanced Server)
environment with minimal or no changes to the application code. This guide focuses
solely on the features that are related to the package support provided by Advanced
Server.

For more information about using other compatibility features offered by Advanced
Server, please see the complete set of Advanced Server guides, available at:

https://www.enterprisedb.com/edb-docs

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 8

https://www.enterprisedb.com/edb-docs

Database Compatibility for Oracle® Developers
Built-in Package Guide

1.1 What's New

The following database compatibility for Oracle features have been added to Advanced
Server 11 to create Advanced Server 12:

e Advanced Server introduces COMPOUND TRIGGERS, Which are stored as a PL
block that executes in response to a specified triggering event. For information,
see the Database Compatibility for Oracle Developer’s Guide.

e Advanced Server now supports new DATA DICTIONARY VIEWS that provide
information compatible with the Oracle data dictionary views. For information,
see the Database Compatibility for Oracle Developer's Reference Guide.

e Advanced Server has added the L.TSTAGG function to support string aggregation
that concatenates data from multiple rows into a single row in an ordered manner.
For information, see the Database Compatibility for Oracle Developer's
Reference Guide.

e Advanced Server now supports CAST (MULTISET) function, allowing subquery
output to be casT to a nested table type. For information, see the Database
Compatibility for Oracle Developer's Reference Guide.

e Advanced Server has added the MEDIAN function to calculate a median value
from the set of provided values. For information, see the Database Compatibility
for Oracle Developer's Reference Guide.

e Advanced Server has added the sys Gu1D function to generate and return a
globally unique identifier in the form of 16-bytes of raw data. For information,
see the Database Compatibility for Oracle Developer's Reference Guide.

e Advanced Server now supports an Oracle-compatible SELECT UNIQUE clause in
addition to an existing SELECT DISTINCT clause. For information, see the
Database Compatibility for Oracle Developer's Reference Guide.

e Advanced Server has re-implemented default with rowids to create a table
that includes a Row1D column in the newly created table. For information, see the
EDB Postgres Advanced Server Guide.

e Advanced Server now supports logical decoding on the standby server, which
allows creating a logical replication slot on a standby, independently of a primary
server. For information, see the EDB Postgres Advanced Server Guide.

e Advanced Server introduces INTERVAL PARTITIONING, which allows a
database to automatically create partitions of a specified interval as new data is

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 9

Database Compatibility for Oracle® Developers
Built-in Package Guide

inserted into a table. For information, see the Database Compatibility for Oracle
Developer's Guide.

1.2 Typographical Conventions Used in this Guide

Certain typographical conventions are used in this manual to clarify the meaning and
usage of various commands, statements, programs, examples, etc. This section provides a
summary of these conventions.

In the following descriptions a term refers to any word or group of words which may be
language keywords, user-supplied values, literals, etc. A term’s exact meaning depends
upon the context in which it is used.

e [talic font introduces a new term, typically, in the sentence that defines it for the
first time.

e Fixed-width (mono-spaced) font isused for terms that must be given
literally such as SQL commands, specific table and column names used in the
examples, programming language keywords, etc. For example, SELECT * FROM
emp;

e Ttalic fixed-width font isused for terms for which the user must
substitute values in actual usage. For example, DELETE FROM table name;

e A vertical pipe | denotes a choice between the terms on either side of the pipe. A
vertical pipe is used to separate two or more alternative terms within square
brackets (optional choices) or braces (one mandatory choice).

e Square brackets [] denote that one or none of the enclosed term(s) may be
substituted. For example, [a | b], means choose one of “a” or “b” or neither
of the two.

e Braces {} denote that exactly one of the enclosed alternatives must be specified.
Forexample, { a | b }, means exactly one of “a” or “b” must be specified.

e Ellipses ... denote that the proceeding term may be repeated. For example, [a |
b] ... means that you may have the sequence, “b a a b a”.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 10

Database Compatibility for Oracle® Developers
Built-in Package Guide

2 Packages

This chapter discusses the concept of packages in Advanced Server. A package is a
named collection of functions, procedures, variables, cursors, user-defined record types,
and records that are referenced using a common qualifier — the package identifier.
Packages have the following characteristics:

e Packages provide a convenient means of organizing the functions and procedures
that perform a related purpose. Permission to use the package functions and
procedures is dependent upon one privilege granted to the entire package. All of
the package programs must be referenced with a common name.

e Certain functions, procedures, variables, types, etc. in the package can be declared
as public. Public entities are visible and can be referenced by other programs that
are given EXECUTE privilege on the package. For public functions and
procedures, only their signatures are visible - the program names, parameters if
any, and return types of functions. The SPL code of these functions and
procedures is not accessible to others, therefore applications that utilize a package
are dependent only upon the information available in the signature — not in the
procedural logic itself.

e Other functions, procedures, variables, types, etc. in the package can be declared
as private. Private entities can be referenced and used by function and procedures
within the package, but not by other external applications. Private entities are for
use only by programs within the package.

e Function and procedure names can be overloaded within a package. One or more
functions/procedures can be defined with the same name, but with different
signatures. This provides the capability to create identically named programs that
perform the same job, but on different types of input.

2.1 Package Components
Packages consist of two main components:

e The package specification: This is the public interface, (these are the elements
which can be referenced outside the package). We declare all database objects
that are to be a part of our package within the specification.

e The package body: This contains the actual implementation of all the database
objects declared within the package specification.

The package body implements the specifications in the package specification. It contains
implementation details and private declarations which are invisible to the application.
You can debug, enhance or replace a package body without changing the specifications.
Similarly, you can change the body without recompiling the calling programs because the
implementation details are invisible to the application.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 11

Database Compatibility for Oracle® Developers
Built-in Package Guide

2.1.1 Package Specification Syntax

The package specification defines the user interface for a package (the API). The
specification lists the functions, procedures, types, exceptions and cursors that are visible
to a user of the package.

The syntax used to define the interface for a package is:

CREATE [OR REPLACE] PACKAGE package name
[authorization clause |
{ IS | AS }
[declaration;]
[procedure or function declaration]
END [package name] ;

Where authorization clause :=
{ AUTHID DEFINER } | { AUTHID CURRENT USER }
Where procedure or function declaration =
procedure declaration | function declaration
Where procedure declaration:=

PROCEDURE proc name | argument list];
[restriction pragma; |

Where function declaration:=

FUNCTION func name [argument 1ist]
RETURN rettype [DETERMINISTIC];
[restriction pragma; |

Where argument list =
(argument declaration [, ...])

Where argumen t declaration: =

argname [IN | IN OUT | OUT] argtype [DEFAULT value]

Where restriction pragma :=

PRAGMA RESTRICT REFERENCES (name, restrictions)

Where restrictions =

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 12

Database Compatibility for Oracle® Developers
Built-in Package Guide

restriction [, ...]
Parameters

package name

package name IS an identifier assigned to the package - each package must have
a name unique within the schema.

AUTHID DEFINER

If you omit the AUTHID clause or specify AUTHID DEFINER, the privileges of the
package owner are used to determine access privileges to database objects.

AUTHID CURRENT USER

If you specify AUTHID CURRENT USER, the privileges of the current user
executing a program in the package are used to determine access privileges.

declaration

declaration is an identifier of a public variable. A public variable can be
accessed from outside of the package using the syntax

package name.variable. There can be zero, one, or more public variables.
Public variable definitions must come before procedure or function declarations.

declaration can be any of the following:

e Variable Declaration

e Record Declaration

e Collection Declaration

e REF CURSOR and Cursor Variable Declaration

e TYPE Definitions for Records, Collections, and REF CURSORS
e Exception

e Object Variable Declaration

proc name
The name of a public procedure.
argname

The name of an argument. The argument is referenced by this name within the
function or procedure body.

IN | IN OUT | OUT

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 13

Database Compatibility for Oracle® Developers
Built-in Package Guide

The argument mode. 1N declares the argument for input only. This is the default.
1N ouT allows the argument to receive a value as well as return a value. ouT
specifies the argument is for output only.

argtype

The data type(s) of an argument. An argument type may be a base data type, a
copy of the type of an existing column using $TYPE, or a user-defined type such
as a nested table or an object type. A length must not be specified for any base
type - for example, specify VARCHAR2, not VARCHAR2 (10).

The type of a column is referenced by writing tablename. columnname%TYPE;
using this can sometimes help make a procedure independent from changes to the
definition of a table.

DEFAULT value

The DEFAULT clause supplies a default value for an input argument if one is not
supplied in the invocation. DEFAULT may not be specified for arguments with
modes IN OUT or OUT.

func _name

The name of a public function.
rettype

The return data type.

DETERMINISTIC

DETERMINISTIC IisasSynonym for IMMUTABLE. A DETERMINISTIC function
cannot modify the database and always reaches the same result when given the
same argument values; it does not do database lookups or otherwise use
information not directly present in its argument list. If you include this clause, any
call of the function with all-constant arguments can be immediately replaced with
the function value.

restriction
The following keywords are accepted for compatibility and ignored:
RNDS

RNPS

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 14

Database Compatibility for Oracle® Developers
Built-in Package Guide

TRUST
WNDS

WNPS

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 15

Database Compatibility for Oracle® Developers
Built-in Package Guide

2.1.2 Package Body Syntax

Package implementation details reside in the package body; the package body may
contain objects that are not visible to the package user. Advanced Server supports the
following syntax for the package body:

CREATE [OR REPLACE] PACKAGE BODY package name
{ IS | AS }
[private declaration; |
[procedure or function deflnltlon 1
[package_lnltlallzer]
END [package name] ;

Where procedure or function definition:=

procedure definition | function definition

Where procedure definition:=

PROCEDURE proc name| argument 1ist]
[options 1list]
{ IS | AS }
procedure body
END [proc name] ;

Where procedure body :=

[PRAGMA AUTONOMOUS TRANSACTION;]

[declaration; 1 [, ...]
BEGIN
statement; [...]
[EXCEPTION
{ WHEN exception [OR exception] [...]] THEN statement; }

[...]

Where function definition:=

FUNCTION func name [argument 1ist]
RETURN rettype [DETERMINISTIC]
[options 1ist]

{ IS | AS }
function body
END [func name] ;

Where function body =

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 16

Database Compatibility for Oracle® Developers
Built-in Package Guide

[PRAGMA AUTONOMOUS TRANSACTION;]

[declaration; 1 [, ...]
BEGIN
statement; [...]
[EXCEPTION
{ WHEN exception [OR exception] [...] THEN statement; }

[...]

Where argument 1list =

(argument declaration [, ...])
Where argument declaration:=

argname [IN | IN OUT | OUT] argtype [DEFAULT value]
Where options list:=

option [...]
Where option :=

STRICT

LEAKPROOF

PARALLEL { UNSAFE | RESTRICTED | SAFE }

COST execution cost

ROWS result rows

SET config param { TO value | = value | FROM CURRENT }

Where package initializer:=

BEGIN
statement,; [...]
END;

Parameters

package name

package name IS the name of the package for which this is the package body.
There must be an existing package specification with this name.

private declaration

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 17

Database Compatibility for Oracle® Developers
Built-in Package Guide

private declarationisan identifier of a private variable that can be
accessed by any procedure or function within the package. There can be zero,
one, or more private variables. private declaration can be any of the
following:

e Variable Declaration

e Record Declaration

e Collection Declaration

e REF CURSOR and Cursor Variable Declaration

e TYPE Definitions for Records, Collections, and REF CURSORS
e Exception

e Object Variable Declaration

proc name
The name of the procedure being created.

PRAGMA AUTONOMOUS TRANSACTION

PRAGMA AUTONOMOUS TRANSACTION is the directive that sets the procedure as
an autonomous transaction.

declaration

A variable, type, REF CURSOR, or subprogram declaration. If subprogram
declarations are included, they must be declared after all other variable, type, and
REF CURSOR declarations.

statement

An SPL program statement. Note that a DECLARE - BEGIN - END block is
considered an SPL statement unto itself. Thus, the function body may contain
nested blocks.

exception

An exception condition name such as NO DATA FOUND, OTHERS, etc.
func name

The name of the function being created.
rettype

The return data type, which may be any of the types listed for argtype. As for
argtype, a length must not be specified for rettype.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 18

Database Compatibility for Oracle® Developers
Built-in Package Guide

DETERMINISTIC

Include DETERMINISTIC to specify that the function will always return the same
result when given the same argument values. A DETERMINISTIC function must
not modify the database.

Note: the DETERMINISTIC Keyword is equivalent to the PostgreSQL
IMMUTABLE option.

Note: If DETERMINISTIC is specified for a public function in the package body,
it must also be specified for the function declaration in the package specification.
(For private functions, there is no function declaration in the package
specification.)

PRAGMA AUTONOMOUS TRANSACTION

PRAGMA AUTONOMOUS TRANSACTION is the directive that sets the function as an
autonomous transaction.

declaration

A variable, type, REF CURSOR, or subprogram declaration. If subprogram
declarations are included, they must be declared after all other variable, type, and
REF CURSOR declarations.

argname

The name of a formal argument. The argument is referenced by this name within
the procedure body.

IN | IN OUT | OUT

The argument mode. 1N declares the argument for input only. This is the default.
1N ouT allows the argument to receive a value as well as return a value. ouT
specifies the argument is for output only.

argtype

The data type(s) of an argument. An argument type may be a base data type, a
copy of the type of an existing column using $TYPE, or a user-defined type such
as a nested table or an object type. A length must not be specified for any base
type - for example, specify VARCHAR2, not VARCHAR2 (10).

The type of a column is referenced by writing tablename. columnname%TYPE;

using this can sometimes help make a procedure independent from changes to the
definition of a table.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 19

Database Compatibility for Oracle® Developers
Built-in Package Guide

DEFAULT value

The DEFAULT clause supplies a default value for an input argument if one is not
supplied in the procedure call. DEFAULT may not be specified for arguments with
modes IN OUT Or OUT.

Please note: the following options are not compatible with Oracle databases; they
are extensions to Oracle package syntax provided by Advanced Server only.

STRICT

The sTRICT keyword specifies that the function will not be executed if called
with a NULL argument; instead the function will return NULL.

LEAKPROOF

The LEAKPROOF keyword specifies that the function will not reveal any
information about arguments, other than through a return value.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The pARALLEL clause enables the use of parallel sequential scans (parallel mode).
A parallel sequential scan uses multiple workers to scan a relation in parallel
during a query in contrast to a serial sequential scan.

When set to UNSAFE, the procedure or function cannot be executed in parallel
mode. The presence of such a procedure or function forces a serial execution plan.
This is the default setting if the PARALLEL clause is omitted.

When set to RESTRICTED, the procedure or function can be executed in parallel
mode, but the execution is restricted to the parallel group leader. If the
qualification for any particular relation has anything that is parallel restricted, that
relation won't be chosen for parallelism.

When set to SAFE, the procedure or function can be executed in parallel mode
with no restriction.

execution cost
execution cost specifies a positive number giving the estimated execution

cost for the function, in units of cpu operator cost. If the function returns a
set, this is the cost per returned row. The defaultis 0.0025.

result rows

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 20

Database Compatibility for Oracle® Developers
Built-in Package Guide

result rows is the estimated number of rows that the query planner should
expect the function to return. The defaultis 1000.

SET
Use the seT clause to specify a parameter value for the duration of the function:
config param Specifies the parameter name.
value specifies the parameter value.

FROM CURRENT guarantees that the parameter value is restored when the
function ends.

package initializer

The statements in the package_initializer are executed once per user’s
session when the package is first referenced.

Please Note: The STRICT, LEAKPROOF, PARALLEL, COST, ROWS and SET keywords
provide extended functionality for Advanced Server and are not supported by Oracle.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 21

Database Compatibility for Oracle® Developers
Built-in Package Guide

2.2 Creating Packages

A package is not an executable piece of code; rather it is a repository of code. When you
use a package, you actually execute or make reference to an element within a package.

2.2.1 Creating the Package Specification

The package specification contains the definition of all the elements in the package that
can be referenced from outside of the package. These are called the public elements of
the package, and they act as the package interface. The following code sample is a
package specification:

-— Package specification for the 'emp admin' package.
CREATE OR REPLACE PACKAGE emp admin
IS

FUNCTION get dept name (
p_deptno NUMBER DEFAULT 10
)
RETURN VARCHAR2;
FUNCTION update emp sal (
p_empno NUMBER,
p raise NUMBER
)
RETURN NUMBER;
PROCEDURE hire emp (

p_empno NUMBER,

p_ename VARCHARZ,

p_job VARCHAR2,

p_sal NUMBER,

p _hiredate DATE DEFAULT sysdate,
p_comm NUMBER DEFAULT O,
p_mgr NUMBER,

p_deptno NUMBER DEFAULT 10

) ;

PROCEDURE fire emp (
p_empno NUMBER

)

END emp admin;
This code sample creates the emp admin package specification. This package

specification consists of two functions and two stored procedures. We can also add the
OR REPLACE clause to the CREATE PACKAGE statement for convenience.

2.2.2 Creating the Package Body
The body of the package contains the actual implementation behind the package
specification. For the above emp admin package specification, we shall now create a

package body which will implement the specifications. The body will contain the
implementation of the functions and stored procedures in the specification.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 22

Database Compatibility for Oracle® Developers
Built-in Package Guide

Package body for the 'emp admin' package.

CREATE OR REPLACE PACKAGE BODY emp admin

IS

-- Function that queries the 'dept' table based on the department
-- number and returns the corresponding department name.

FUNCTION get dept name (
p_deptno IN NUMBER DEFAULT 10

)
RETURN VARCHAR2

IS
v_dname VARCHAR?2 (14) ;
BEGIN
SELECT dname INTO v dname FROM dept WHERE deptno = p deptno;
RETURN v _dname;
EXCEPTION
WHEN NO DATA FOUND THEN
DBMS OUTPUT.PUT LINE ('Invalid department number ' || p deptno);
RETURN '';
END;

-- Function that updates an employee's salary based on the

-- employee number and salary increment/decrement passed

-- as IN parameters. Upon successful completion the function
-— returns the new updated salary.

FUNCTION update emp sal (
p_empno IN NUMBER,
p_raise IN NUMBER

)
RETURN NUMBER

IS
v_sal NUMBER := 0;
BEGIN
SELECT sal INTO v _sal FROM emp WHERE empno = p empno;
v_sal := v _sal + p raise;
UPDATE emp SET sal = v_sal WHERE empno = p empno;
RETURN v sal;
EXCEPTION
WHEN NO DATA FOUND THEN
DBMS OUTPUT.PUT LINE ('Employee ' || p empno || ' not found');
RETURN -1;
WHEN OTHERS THEN
DBMS OUTPUT.PUT LINE ('The following is SQLERRM:');
DBMS OUTPUT.PUT LINE (SQLERRM) ;
DBMS OUTPUT.PUT LINE ('The following is SQLCODE:');
DBMS_OUTPUT.PUT LINE (SQLCODE) ;
RETURN -1;
END;

-- Procedure that inserts a new employee record into the 'emp' table.

PROCEDURE hire emp (

p_empno NUMBER,

p_ename VARCHAR2,

p_Jjob VARCHARZ,

p_sal NUMBER,

p_hiredate DATE DEFAULT sysdate,
p_comm NUMBER DEFAULT O,

p_mgr NUMBER,

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 23

Database Compatibility for Oracle® Developers
Built-in Package Guide

p_deptno NUMBER DEFAULT 10
)
AS
BEGIN

INSERT INTO emp (empno, ename, job, sal, hiredate, comm, mgr, deptno)

VALUES (p_empno, p_ename, p Jjob, p sal,
p_hiredate, p comm, p mgr, p_ deptno);

END;
—-— Procedure that deletes an employee record from the 'emp' table based
—-— on the employee number.

PROCEDURE fire emp (

p_empno NUMBER
)
AS
BEGIN
DELETE FROM emp WHERE empno = p empno;
END;
END;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 24

Database Compatibility for Oracle® Developers
Built-in Package Guide

2.3 Referencing a Package

To reference the types, items and subprograms that are declared within a package
specification, we use the dot notation. For example:

package name.type name
package name.litem name
package name.subprogram name

To invoke a function from the emp admin package specification, we will execute the
following SQL command.

SELECT emp admin.get dept name (10) FROM DUAL;

Here we are invoking the get dept name function declared within the package
emp admin. We are passing the department number as an argument to the function,
which will return the name of the department. Here the value returned should be
ACCOUNTING, Which corresponds to department number 10.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 25

Database Compatibility for Oracle® Developers
Built-in Package Guide

2.4 Using Packages With User Defined Types

The following example incorporates the various user-defined types discussed in earlier
chapters within the context of a package.

The package specification of emp rpt shows the declaration of a record type,
emprec_typ, and a weakly-typed REF CURSOR, emp_refcur, as publicly accessible
along with two functions and two procedures. Function, open emp by dept, returns
the REF CURSOR type, EMP REFCUR. Procedures, fetch emp and close refcur,
both declare a weakly-typed REF CURSOR as a formal parameter.

CREATE OR REPLACE PACKAGE emp rpt

IS
TYPE emprec typ IS RECORD (
empno NUMBER (4) ,
ename VARCHAR (10)

);
TYPE emp refcur IS REF CURSOR;

FUNCTION get dept name (
p_deptno IN NUMBER
) RETURN VARCHAR2;
FUNCTION open emp by dept (
p_deptno IN emp.deptno$TYPE
) RETURN EMP REFCUR;
PROCEDURE fetch emp (
p_refcur IN OUT SYS REFCURSOR
)
PROCEDURE close refcur (
p_refcur IN OUT SYS REFCURSOR
) i
END emp rpt;

The package body shows the declaration of several private variables - a static cursor,
dept cur, a table type, depttab typ, a table variable, t dept, an integer variable,
t dept max, and a record variable, r emp.

CREATE OR REPLACE PACKAGE BODY emp rpt
IS
CURSOR dept cur IS SELECT * FROM dept;
TYPE depttab typ IS TABLE of dept3%ROWTYPE
INDEX BY BINARY INTEGER;

t dept DEPTTAB TYP;
t dept max INTEGER := 1;
r_ emp EMPREC TYP;

FUNCTION get dept name (

p_deptno IN NUMBER
) RETURN VARCHAR2
IS
BEGIN

FOR i IN 1..t dept max LOOP
IF p deptno = t dept(i).deptno THEN
RETURN t dept (i) .dname;
END IF;
END LOOP;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 26

Database Compatibility for Oracle® Developers
Built-in Package Guide

RETURN 'Unknown';
END;

FUNCTION open emp by dept (

p_deptno IN emp.deptno%TYPE
) RETURN EMP REFCUR
IS

emp by dept EMP REFCUR;
BEGIN

OPEN emp by dept FOR SELECT empno, ename FROM emp
WHERE deptno = p deptno;
RETURN emp by dept;
END;

PROCEDURE fetch emp (
p_refcur IN OUT SYS REFCURSOR
)
IS
BEGIN
DBMS OUTPUT.PUT LINE ('EMPNO ENAME') ;
DBMS OUTPUT.PUT LINE('----- = --—--—-- -
LOOP
FETCH p refcur INTO r emp;
EXIT WHEN p refcur3%NOTFOUND;
DBMS OUTPUT.PUT LINE (r emp.empno || ' ' || r_emp.ename);
END LOOP;
END;

PROCEDURE close refcur (
p_refcur IN OUT SYS REFCURSOR
)
IS
BEGIN
CLOSE p refcur;
END;
BEGIN
OPEN dept cur;
LOOP
FETCH dept cur INTO t dept(t dept max);
EXIT WHEN dept cur%NOTFOUND;

t dept max := t dept max + 1;
END LOOP;
CLOSE dept cur;
t dept max := t dept max - 1;

END emp rpt;

This package contains an initialization section that loads the private table variable,
t dept, using the private static cursor, dept cur. t dept Serves as a department name
lookup table in function, get dept name.

Function, open _emp by dept returns a REF CURSOR Variable for a result set of
employee numbers and names for a given department. This REF CURSOR variable can
then be passed to procedure, fetch emp, to retrieve and list the individual rows of the
result set. Finally, procedure, close refcur, can be used to close the REF CURSOR
variable associated with this result set.

The following anonymous block runs the package function and procedures. In the
anonymous block's declaration section, note the declaration of cursor variable,

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 27

Database Compatibility for Oracle® Developers
Built-in Package Guide

v_emp cur, using the package’s public REF CURSOR type, EMP REFCUR. Vv _emp cur
contains the pointer to the result set that is passed between the package function and
procedures.
DECLARE
v_deptno dept.deptnos$TYPE DEFAULT 30;
Vv_emp cur emp rpt.EMP REFCUR;
BEGIN
v_emp cur := emp rpt.open emp by dept(v_deptno);
DBMS OUTPUT.PUT LINE ('EMPLOYEES IN DEPT #' | v_deptno ||

END;

' ' || emp rpt.get dept name(v_deptno));
emp rpt.fetch emp(v emp cur);
DBMg OUTPUT'PET LINE(' *I******************** ') 8
DBMS_OUTPUT.PUT_LINE(v_emp_cur%ROWCOUNT |l ' rows were retrieved');
emp rpt.close refcur(v_emp cur);

The following is the result of this anonymous block.

EMPLOYEES IN DEPT #30: SALES
EMPNO ENAME

7499 ALLEN

7521 WARD

7654 MARTIN

7698 BLAKE

7844 TURNER

7900 JAMES
*hkkhkhkhkhkkhhkhkhkkhhkhkk,hkhkkk*x*k

6 rows were retrieved

The following anonymous block illustrates another means of achieving the same result.
Instead of using the package procedures, fetch emp and close refcur, the logic of

these p

rograms is coded directly into the anonymous block. In the anonymous block’s

declaration section, note the addition of record variable, r _emp, declared using the
package’s public record type, EMPREC_TYP.

DECL

BEGI

END;

ARE
v_deptno dept.deptnos$TYPE DEFAULT 30;
Vv_emp cur emp rpt.EMP REFCUR;
r emp emp rpt.EMPREC TYP;
N
v_emp cur := emp rpt.open emp by dept (v _deptno);
DBMS OUTPUT.PUT LINE ('EMPLOYEES IN DEPT #' || v_deptno ||
' ' || emp rpt.get dept name (v_deptno));
DBMSioUTPUT.PUTiLINE('EMPNO ENAME') ;
DBMS_OUTPUT.PUT_LINE(' ————————————) g
LOOP
FETCH v_emp cur INTO r emp;
EXIT WHEN viempicur%NOTFOUND;
DBMS OUTPUT.PUT LINE (r emp.empno || ' '
r emp.ename) ;
END LOOP;
DBMS OUTPUT.PUT LINE (Thhkrhkkhkkhkhhkhkhkkhkhkrhkhkhhkhkhkhkxx l) g
DBMS OUTPUT.PUT LINE (v _emp cur3ROWCOUNT || ' rows were retrieved') ;
CLOSE v_emp cur;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 28

Database Compatibility for Oracle® Developers
Built-in Package Guide

The following is the result of this anonymous block.

EMPLOYEES IN DEPT #30: SALES

EMPNO ENAME
7499 ALLEN
7521 WARD
7654 MARTIN
7698 BLAKE
7844 TURNER
7900 JAMES

kAhkkhkkhkhkkhkhkkhkk kA hkhkkhkkkxkkx

6 rows were retrieved

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 29

Database Compatibility for Oracle® Developers
Built-in Package Guide

2.5 Dropping a Package
The syntax for deleting an entire package or just the package body is as follows:
DROP PACKAGE [BODY] package name;

If the keyword, BoDY, is omitted, both the package specification and the package body
are deleted - i.e., the entire package is dropped. If the keyword, BoDY, is specified, then
only the package body is dropped. The package specification remains intact.

package name IS the identifier of the package to be dropped.

Following statement will destroy only the package body of emp admin:

DROP PACKAGE BODY emp admin;

The following statement will drop the entire emp admin package:

DROP PACKAGE emp admin;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 30

Database Compatibility for Oracle® Developers
Built-in Package Guide

3 Built-In Packages

This chapter describes the built-in packages that are provided with Advanced Server. For
certain packages, non-superusers must be explicitly granted the ExEcUTE privilege on the
package before using any of the package’s functions or procedures. For most of the built-
in packages, EXECUTE privilege has been granted to puBLIC by default.

For information about using the GRANT command to provide access to a package, please
see the Database Compatibility for Oracle Developers Reference Guide, available at:

https://www.enterprisedb.com/edb-docs

All built-in packages are owned by the special sys user which must be specified when
granting or revoking privileges on built-in packages:

GRANT EXECUTE ON PACKAGE SYS.UTL FILE TO john;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 31

https://www.enterprisedb.com/edb-docs

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.1 DBMS_ALERT

The DBMS ALERT package provides the capability to register for, send, and receive alerts.
The following table lists the supported procedures:

Function/Procedure Return Description
Type
REGISTER (name) n/a Register to be able to receive alerts named,
name.
REMOVE (name) n/a Remove registration for the alert named, name.
REMOVEALL n/a Remove registration for all alerts.
SIGNAL (name, message) n/a Signals the alert named, name, with message.
WAITANY (name OUT, message OUT, n/a \Wait for any registered alert to occur.
status OUT, timeout)
WAITONE (name, message OUT, status|n/a \Wait for the specified alert, name, to occur.
OUT, timeout)

Advanced Server's implementation of DBMS ALERT is a partial implementation when
compared to Oracle's version. Only those functions and procedures listed in the table
above are supported.

Advanced Server allows a maximum of 500 concurrent alerts. You can use the
dbms alert.max alerts GUC variable (located in the postgresgl.conf file) to
specify the maximum number of concurrent alerts allowed on a system.

To set a value for the dbms_alert.max_alerts variable, open the postgresqgl.conf file
(located by default in /opt/PostgresPlus/10AS/data) with your choice of editor,
and edit the dbms alert.max alerts parameter as shown:

dbms alert.max alerts = alert count

alert count

alert count specifies the maximum number of concurrent alerts. By default, the value
of dbms_alert.max _alertsis 100. To disable this feature, set
dbms alert.max alertsto 0.

For the dbms alert.max alerts GUC to function correctly, the
custom variable classes parameter must contain dbms alerts:

custom variable classes = 'dbms alert, ..'

After editing the postgresqgl.conf file parameters, you must restart the server for the
changes to take effect.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 32

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.1.1 REGISTER
The REGISTER procedure enables the current session to be notified of the specified alert.
REGISTER (name VARCHAR?2)
Parameters
name
Name of the alert to be registered.

Examples

The following anonymous block registers for an alert named, alert test, then waits
for the signal.

DECLARE
V_name VARCHARZ (30) := 'alert test';
v_msg VARCHARZ2 (80) ;
v_status INTEGER;
v_timeout NUMBER (3) := 120;
BEGIN
DBMS ALERT.REGISTER (v_name) ;
DBMSioUTPUT.PUTiLINE(’Registered for alert ' || v_name);

DBMS OUTPUT.PUT LINE ('Waiting for signal...');
DBMS ALERT.WAITONE (v_name,v _msg,v_status,v timeout);
DBMS OUTPUT.PUT LINE ('Alert name : ' || v_name);

(
DBMS OUTPUT.PUT LINE ('Alert msg ' || v_msqg);
DBMS OUTPUT.PUT LINE ('Alert status : ' || v _status);
DBMS OUTPUT.PUT LINE ('Alert timeout: ' || v_timeout || ' seconds');

DBMS ALERT.REMOVE (v_name) ;
END;

Registered for alert alert test
Waiting for signal...

3.1.2 REMOVE
The REMOVE procedure unregisters the session for the named alert.
REMOVE (name VARCHAR2)

Parameters

name

Name of the alert to be unregistered.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 33

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.1.3 REMOVEALL

The REMOVEALL procedure unregisters the session for all alerts.

REMOVEALL

3.1.4 SIGNAL
The s1GNAL procedure signals the occurrence of the named alert.
SIGNAL (name VARCHARZ2, message VARCHARZ)

Parameters

name

Name of the alert.
message

Information to pass with this alert.
Examples

The following anonymous block signals an alert for alert test.

DECLARE
V_name VARCHARZ2 (30) := 'alert test';

BEGIN
DBMS ALERT.SIGNAL (v _name, 'This is the message from ' || v _name);
DBMS OUTPUT.PUT LINE ('Issued alert for ' || v_name);

END;

Issued alert for alert test
3.1.5 WAITANY
The wATTANY procedure waits for any of the registered alerts to occur,

WAITANY (name OUT VARCHAR2, message OUT VARCHAR2,
status OUT INTEGER, timeout NUMBER)

Parameters

name

Variable receiving the name of the alert.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 34

message

Database Compatibility for Oracle® Developers
Built-in Package Guide

Variable receiving the message sent by the STGNAL procedure.

status

Status code returned by the operation. Possible values are: 0 — alert occurred; 1 —

timeout occurred.

timeout

Time to wait for an alert in seconds.

Examples

The following anonymous block uses the waITANY procedure to receive an alert named,

alert testOrany alert:

= 120;

DECLARE
V_name VARCHAR2 (30) ;
vV_msg VARCHAR?2 (80) ;
v_status INTEGER;
v_timeout NUMBER (3)
BEGIN

DBMS ALERT.REGISTER('alert test');

DBMS ALERT.REGISTER('any alert');

DBMS OUTPUT.PUT LINE ('Registered for alert alert test and any alert');
DBMS OUTPUT.PUT LINE ('Waiting for signal...');

DBMS_ALERT.WAITANY(V name, v 1

DBMS OUTPUT.PUT LINE ('Alert
DBMS OUTPUT.PUT LINE ('Alert
DBMS OUTPUT.PUT LINE ('Alert
DBMS OUTPUT.PUT LINE ('Alert
DBMS ALERT.REMOVEALL;

END;

Registered for alert alert test
Waiting for signal...

msg,v_status,v timeout);

name : " || v_name);

msg " || v_msg);

status : ' || v_status);

timeout: ' || v_timeout || ' seconds');

and any alert

An anonymous block in a second session issues a signal for any alert:

DECLARE
V_name
BEGIN

VARCHAR?2 (30) :=

DBMS ALERT.SIGNAL (v _name, 'This is the message from '
DBMS OUTPUT.PUT LINE ('Issued alert for '

END;

Issued alert for any alert

'any alert';

[l v_name);
[l v_name);

Control returns to the first anonymous block and the remainder of the code is executed:

Registered for alert alert test
Waiting for signal...

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

and any alert

35

Database Compatibility for Oracle® Developers
Built-in Package Guide

Alert name : any alert

Alert msg : This is the message from any alert
Alert status : O

Alert timeout: 120 seconds

3.1.6 WAITONE

The waTTONE procedure waits for the specified registered alert to occur.

WAITONE (name VARCHAR2, message OUT VARCHARZ,
status OUT INTEGER, timeout NUMBER)

Parameters
name
Name of the alert.
message
Variable receiving the message sent by the STGNAL procedure.
status

Status code returned by the operation. Possible values are: 0 — alert occurred; 1 —
timeout occurred.

timeout
Time to wait for an alert in seconds.
Examples

The following anonymous block is similar to the one used in the wATTANY example
except the WAITONE procedure is used to receive the alert named, alert test.

DECLARE
vV_name VARCHARZ2 (30) := 'alert test';
vV_msg VARCHARZ2 (80) ;
v_status INTEGER;
v_timeout NUMBER (3) := 120;
BEGIN
DBMS_ALERT.REGISTER(v_name);
DBMS OUTPUT.PUT LINE ('Registered for alert ' || v_name);

DBMS OUTPUT.PUT LINE ('Waiting for signal...');
DBMS ALERT.WAITONE (v_name,v_msg,v_status,v timeout);

DBMS_OUTPUT.PUT_LINE?'Alert name : ' || v_name);

DBMS OUTPUT.PUT LINE ('Alert msg ' || v_msqg);

DBMS OUTPUT.PUT LINE ('Alert status : ' || v _status);

DBMS OUTPUT.PUT LINE ('Alert timeout: ' || v_timeout || ' seconds');

DBMS ALERT.REMOVE (v_name) ;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 36

Database Compatibility for Oracle® Developers

END;

Registered for alert alert test
Waiting for signal...

Built-in Package Guide

Signal sent for alert test sent by an anonymous block in a second session:

DECLARE
V_name VARCHARZ (30) := 'alert test';
BEGIN

DBMS ALERT.SIGNAL (v _name, 'This is the message from '
DBMS OUTPUT.PUT LINE ('Issued alert for ' || v_name);

END;

Issued alert for alert test

[l v _name);

First session is alerted, control returns to the anonymous block, and the remainder of the

code is executed:

Registered for alert alert test

Waiting for signal...

Alert name : alert test

Alert msg : This is the message from alert test
Alert status : 0

Alert timeout: 120 seconds

3.1.7 Comprehensive Example

The following example uses two triggers to send alerts when the dept table or the emp
table is changed. An anonymous block listens for these alerts and displays messages

when an alert is received.

The following are the triggers on the dept and emp tables:

CREATE OR REPLACE TRIGGER dept alert trig
AFTER INSERT OR UPDATE OR DELETE ON dept
DECLARE

v_action VARCHARZ2 (25) ;

BEGIN
IF INSERTING THEN
viaction := ' added department(s) ';
ELSIF UPDATING THEN
v_action := ' updated department(s) ';
ELSIF DELETING THEN
v_action := ' deleted department(s) ';
END IF;
DBMS ALERT.SIGNAL ('dept alert',K USER | | viaction
SYSDATE) ;
END;

CREATE OR REPLACE TRIGGER emp alert trig
AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
v_action
BEGIN
IF INSERTING THEN

VARCHAR?2 (25) ;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

'on ' ||

37

Database Compatibility for Oracle® Developers
Built-in Package Guide

v_action := ' added employee(s) ';
ELSIF UPDATING THEN
v_action := ' updated employee(s) ';
ELSIF DELETING THEN
v_action := ' deleted employee(s) ';
END IF;
DBMS ALERT.SIGNAL('emp alert',6 USER || v_action |l 'on ' ||
SYSDATE) ;

END;

The following anonymous block is executed in a session while updates to the dept and
emp tables occur in other sessions:

DECLARE
v_dept alert VARCHARZ (30) := 'dept alert';
v_emp_ alert VARCHAR? (30) = 'emp_ alert';
vV_name VARCHAR2 (30) ;
vV_msg VARCHAR? (80) ;
v_status INTEGER;
v_timeout NUMBER (3) := 60;

BEGIN

DBMS ALERT.REGISTER(v_dept alert);

DBMS ALERT.REGISTER (v emp alert);

DBMS OUTPUT.PUT LINE ('Registered for alerts dept alert and emp alert');
DBMS OUTPUT.PUT LINE ('Waiting for signal...');

LOOP
DBMS ALERT.WAITANY (v_name,v_msg,v_status,v timeout);
EXIT WHEN v status != 0;
DBMS OUTPUT.PUT LINE ('Alert name : " || v_name);
DBMS OUTPUT.PUT LINE ('Alert msg : ' || v._msqg);
DBMS OUTPUT.PUT LINE ('Alert status : ' || v_status);
DBMS OUTPUT.PUT LINE ('-————=—————————————————————————————— U

¥ e e e e e e e e e e A}) g

END LOOP;

DBMS OUTPUT.PUT LINE ('Alert status : ' || v_status);

DBMS_ALERT.REMOVEALL;

END;

Registered for alerts dept alert and emp alert
Waiting for signal...

The following changes are made by user, mary:

INSERT INTO dept VALUES (50, 'FINANCE', 'CHICAGQO');
INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES',50);
INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'ALICE',50);

The following change is made by user, john:

INSERT INTO dept VALUES (60, 'HR', 'LOS ANGELES'):;

The following is the output displayed by the anonymous block receiving the signals from
the triggers:

Registered for alerts dept alert and emp alert

Waiting for signal...

Alert name : dept alert

Alert msg : mary added department (s) on 25-OCT-07 16:41:01

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 38

Database Compatibility for Oracle® Developers
Built-in Package Guide

Alert status : 0

Alert name : emp alert
Alert msg : mary added employee(s) on 25-OCT-07 16:41:02

Alert name : dept alert
Alert msg : john added department (s) on 25-0OCT-07 16:41:22

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 39

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.2 DBMS_AQ

EDB Postgres Advanced Server Advanced Queueing provides message queueing and
message processing for the Advanced Server database. User-defined messages are stored
in a queue; a collection of queues is stored in a queue table. Procedures in the
DBMS_AQADM package create and manage message queues and queue tables. Use the
DBMS_AQ package to add messages to a queue or remove messages from a queue, or
register or unregister a PL/SQL callback procedure.

Advanced Server also provides extended (non-compatible) functionality for the
DBMS_AQ package with SQL commands. Please see the Database Compatibility for
Oracle Developers Reference Guide for detailed information about the following SQL
commands:

e ALTER QUEUE

e ALTER QUEUE TABLE
e CREATE QUEUE

e CREATE QUEUE TABLE
e DROP QUEUE

e DROP QUEUE TABLE

The DBMS_AQ package provides procedures that allow you to enqueue a message,
dequeue a message, and manage callback procedures. The supported procedures are:

Function/Procedure Return Type Description
ENQUEUE n/a Post a message to a queue.
DEQUEUE n/a Retrieve a message from a queue if or when a message
is available.
REGISTER n/a Register a callback procedure.
UNREGISTER n/a Unregister a callback procedure.

Advanced Server's implementation of DBMS_AQ is a partial implementation when
compared to Oracle's version. Only those procedures listed in the table above are
supported.

Advanced Server supports use of the constants listed below:

Constant Description For Parameters
DBMS AQ.BROWSE (0) Read the message without dequeue options t.dequeue mode
locking.
DBMS AQ.LOCKED (1) This constant is defined, but |dequeue_options_t.dequeue_mode
will return an error if used.
DBMS AQ.REMOVE (2) Delete the message after dequeue options t.dequeue mode
reading; the default.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 40

Database Compatibility for Oracle® Developers
Built-in Package Guide

Constant Description For Parameters

DBMS AQ.REMOVE NODATA (3) This constant is defined, but |[dequeue options t.dequeue mode
will return an error if used.

DBMS AQ.FIRST MESSAGE (0) Return the first available dequeue options_ t.navigation
message that matches the
search terms.

DBMS AQ.NEXT MESSAGE (1) Return the next available dequeue options_t.navigation
message that matches the
search terms.

DBMS AQ.NEXT TRANSACTION This constant is defined, but |dequeue options_t.navigation

(2) will return an error if used.

DBMS AQ.FOREVER (-1) vatfmeverﬁarnegﬁge dequeue options_t.wait
that matches the search term
is not found, the default.

DBMS AQ.NO WAIT (O) Donotm@hifanmsg@ethm dequeue options t.wait
matches the search term is
not found.

DBMS AQ.ON COMMIT (O0) Thedequeueispmtofthe enqueue_ options t.visibility,
current transaction_ dequeue_options_t . Visibility

DBMS AQ.IMMEDIATE (1) This constant is defined, but [enqueue options t.visibility,
will return an error if used. |dequeue options t.visibility

DBMS AQ.PERSISTENT (0) Therneﬁﬁgeshoukjbesuxedenqueue_options_t.delivery_mode
in a table.

DBMS AQ.BUFFERED (1) This constant is defined, but |enqueue_options_t.delivery mode
will return an error if used.

DBMS AQ.READY (0) Spedfmsthatﬂw|ne$mgeis message properties t.state
ready to process.

DBMS AQ.WAITING (1) Spedfmsthatﬂm|nessageis message properties t.state
waiting to be processed.

DBMS AQ.PROCESSED (2) Spedfbsthatﬂm[nessage message properties t.state
has been processed.

DBMS AQ.EXPIRED (3) Spedfmsthatﬂm|nessageis message properties t.state
in the exception queue.

DBMS AQ.NO DELAY (0) This constant is defined, but |message properties_t.delay
will return an error if used

DBMS AQ.NEVER (NULL) This constant is defined, but |message properties_t.expiration
will return an error if used

DBMS AQ.NAMESPACE AQ (0) Amceptnoﬁﬁcaﬁonsfnnn sys.aqg$ reg info.namespace
DBMS_AQ queues.

DBMS_AQ.NAMESPACE_ANONYMOUS [This constant is defined, but [sys.ag$ _reg info.namespace

(1)

will return an error if used

The DBMS_AQ configuration parameters listed in the following table can be defined in
the postgresqgl .conf file. After the configuration parameters are defined, you can
invoke the DBMS_AQ package to use and manage messages held in queues and queue

tables.

Parameter

Description

dbms aqg.max workers

The maximum number of workers to run.

dbms aqg.max idle time

The idle time a worker must wait before exiting.

dbms_aqg.min work time

The minimum time a worker can run before exiting.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

41

Database Compatibility for Oracle® Developers
Built-in Package Guide

Parameter Description
dbms_ag.launch_delay The minimum time between creating workers.
dbms_aqg.batch_size The maximum number of messages to process in a single

transaction. The default batch size is 10.
dbms_aq.max_databases The size of DBMS_AQ’s hash table of databases. The default
value is 1024,
dbms_aqg.max_pending retries The size of DBMS_AQ’s hash table of pending retries. The
default value is 1024.

3.2.1 ENQUEUE
The ENQUEUE procedure adds an entry to a queue. The signature is:

ENQUEUE (
queue_name IN VARCHARZ,
enqueue options IN DBMS AQ.ENQUEUE OPTIONS T,
message properties IN DBMS AQ.MESSAGE PROPERTIES T,
payload IN <type name>,
msgid OUT RAW)

Parameters
que ue_name

The name (optionally schema-qualified) of an existing queue. If you omit the
schema name, the server will use the schema specified in the SEARCH_PATH.
Please note that unlike Oracle, unquoted identifiers are converted to lower case
before storing. To include special characters or use a case-sensitive name,
enclose the name in double quotes.

For detailed information about creating a queue, please see
DBMS_AQADM.CREATE_QUEUE.

enqueue_options
enqueue_options is a value of the type, enqueue options t:
DBMS_AQ . ENQUEUE_OPTIONS_T IS RECORD (
visibility BINARY_INTEGER DEFAULT ON_COMMIT,
relative msgid RAW(16) DEFAULT NULL,
sequence_deviation BINARY INTEGER DEFAULT NULL,

transformation VARCHAR2 (61) DEFAULT NULL,
delivery_mode PLS_INTEGER NOT NULL DEFAULT PERSISTENT) ;

Currently, the only supported parameter values for enqueue_options t are:

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 42

Database Compatibility for Oracle® Developers
Built-in Package Guide

visibility ON COMMIT.
delivery mode PERSISTENT
sequence deviation NULL
transformation NULL
relative msgid NULL

message properties

message properties IS a value of the type, message properties t:

message properties t IS RECORD (

priority INTEGER,

delay INTEGER,

expiration INTEGER,

correlation CHARACTER VARYING(128) COLLATE pg catalog.”C”,
attempts INTEGER,

recipient list “AQ$ RECIPIENT LIST T”,

exception queue CHARACTER VARYING (61) COLLATE pg catalog.”C”,
enqueue time TIMESTAMP WITHOUT TIME ZONE,

state INTEGER,

original msgid BYTEA,

transaction group CHARACTER VARYING(30) COLLATE pg catalog.”C”,
delivery mode INTEGER
DBMS AQ.PERSISTENT) ;

The supported values for message_properties t are:

priority If the queue table definition includes a sort_1ist that
references priority, this parameter affects the order that
messages are dequeued. A lower value indicates a higher
dequeue priority.

delay Specify the number of seconds that will pass before a
message is available for dequeueing or NO_DELAY.

expiration Use the expiration parameter to specify the number of
seconds until a message expires.

correlation Use correlation to specify a message that will be associated
with the entry; the default is NULL.

attempts This is a system-maintained value that specifies the number
of attempts to dequeue the message.

recipient list This parameter is not supported.

exception_queue Use the exception_queue parameter to specify the name

of an exception queue to which a message will be moved if it
expires or is dequeued by a transaction that rolls back too

many times.

enqueue_time enqueue_time is the time the record was added to the
queue; this value is provided by the system.

state This parameter is maintained by DBMS_AQ; state can be:

DBMS_AQ.WAITING — the delay has not been reached.
DBMS_AQ.READY — the queue entry is ready for processing.
DBMS_AQ.PROCESSED — the queue entry has been processed.
DBMS_AQ.EXPIRED — the queue entry has been moved to the
exception queue.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 43

Database Compatibility for Oracle® Developers
Built-in Package Guide

original msgid This parameter is accepted for compatibility and ignored.

transaction group This parameter is accepted for compatibility and ignored.

delivery mode This parameter is not supported; specify a value of
DBMS_AQ.PERSISTENT.

payload
Use the pay1oad parameter to provide the data that will be associated with the
queue entry. The payload type must match the type specified when creating the
corresponding queue table (see DBMS_AQADM.CREATE_QUEUE_TABLE).

msqgid

Use the msgid parameter to retrieve a unique (system-generated) message
identifier.

Example

The following anonymous block calls DBMS_2Q.ENQUEUE, adding a message to a queue
named work_order:

DECLARE
enqueue_options DBMS AQ.ENQUEUE OPTIONS T;
message properties DBMS AQ.MESSAGE PROPERTIES T;
message handle raw (16) ;
payload work order;

BEGIN
payload := work order ('Smith', 'system upgrade');

DBMS_AQ.ENQUEUE (

queue name => 'work order',
enqueue options => enqueue options,
message properties => message properties,
payload => payload,
msgid => message handle
) i
END;

3.2.2 DEQUEUE

The DEQUEUE procedure dequeues a message. The signature is:
DEQUEUE (
queue_name IN VARCHARZ,
dequeue options IN DBMS AQ.DEQUEUE OPTIONS T,

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 44

Database Compatibility for Oracle® Developers
Built-in Package Guide

message properties OUT DBMS AQ.MESSAGE PROPERTIES T,
payload OUT type name,
msgid OUT RAW)

Parameters

queue name

The name (optionally schema-qualified) of an existing queue. If you omit the
schema name, the server will use the schema specified in the SEARCH_PATH.
Please note that unlike Oracle, unquoted identifiers are converted to lower case
before storing. To include special characters or use a case-sensitive name,
enclose the name in double quotes.

For detailed information about creating a queue, please see
DBMS_AQADM.CREATE_QUEUE.

dequeue_options
dequeue _options is a value of the type, dequeue options t:

DEQUEUE OPTIONS T IS RECORD (
consumer name CHARACTER VARYING(30),
dequeue mode INTEGER,
navigation INTEGER,
visibility INTEGER,
wait INTEGER,
msgid BYTEA,
correlation CHARACTER VARYING (128),
deq_condition CHARACTER VARYING (4000),
transformation CHARACTER VARYING(61),
delivery mode INTEGER) ;

Currently, the supported parameter values for dequeue_options t are:

consumer name Must be NULL.

dequeue mode The locking behavior of the dequeue
operation. Must be either:
DBMS_AQ.BROWSE — Read the message
without obtaining a lock.
DBMS_AQ.LOCKED — Read the message after
acquiring a lock.

DBMS_AQ.REMOVE — Read the message
before deleting the message.
DBMS_AQ.REMOVE_NODATA — Read the
message, but do not delete the message.
navigation Identifies the message that will be
retrieved. Must be either:

FIRST MESSAGE — The first message
within the queue that matches the search

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 45

Database Compatibility for Oracle® Developers
Built-in Package Guide

term.

NEXT MESSAGE — The next message that is
available that matches the first term.
visibility Must be on_comm1T — if you roll back the
current transaction the dequeued item will
remain in the queue.

wait Must be a number larger than 0, or:
DBMS_AQ.FOREVER — Wait indefinitely.
DBMS_AQ.NO_WAIT — Do not wait.

msgid The message ID of the message that will be
dequeued.

correlation Accepted for compatibility, and ignored.

deg_condition A VARCHAR?2 expression that evaluates to a

BOOLEAN Vvalue, indicating if the message
should be dequeued.

transformation Accepted for compatibility, and ignored.
delivery mode Must be PERSTSTENT; buffered messages
are not supported at this time.

message properties

message properties IS avalue of the type, message properties t:

message properties t IS RECORD (
priority INTEGER,
delay INTEGER,
expiration INTEGER,
correlation CHARACTER VARYING(128) COLLATE pg catalog.”C”,
attempts INTEGER,
recipient list “AQ$ RECIPIENT LIST T”,
exception gqueue CHARACTER VARYING (61) COLLATE pg catalog.”C”,
enqueue time TIMESTAMP WITHOUT TIME ZONE,
state INTEGER,
original msgid BYTEA,
transaction group CHARACTER VARYING(30) COLLATE pg catalog.”C”,
delivery mode INTEGER
DBMS AQ.PERSISTENT) ;

The supported values for message_properties t are:

priority If the queue table definition includes a sort_11ist that
references priority, this parameter affects the order that
messages are dequeued. A lower value indicates a higher
dequeue priority.

delay Specify the number of seconds that will pass before a
message is available for dequeueing or NO_DELAY.

expiration Use the expiration parameter to specify the number of
seconds until a message expires.

correlation Use correlation to specify a message that will be associated
with the entry; the default is NULL.

attempts This is a system-maintained value that specifies the number

of attempts to dequeue the message.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 46

Database Compatibility for Oracle® Developers
Built-in Package Guide

recipient list This parameter is not supported.

exception_queue Use the exception_queue parameter to specify the name
of an exception queue to which a message will be moved if it
expires or is dequeued by a transaction that rolls back too

many times.

enqueue_time enqueue_time is the time the record was added to the
queue; this value is provided by the system.

state This parameter is maintained by pDBMS_AQ; state can be:

DBMS_AQ.WAITING — the delay has not been reached.
DBMS_AQ.READY — the queue entry is ready for processing.
DBMS_AQ.PROCESSED — the queue entry has been processed.
DBMS_AQ.EXPIRED — the queue entry has been moved to the
exception queue.

original msgid This parameter is accepted for compatibility and ignored.
transaction_group This parameter is accepted for compatibility and ignored.
delivery mode This parameter is not supported; specify a value of

DBMS_AQ.PERSISTENT.

payload
Use the payload parameter to retrieve the payload of a message with a dequeue
operation. The payload type must match the type specified when creating the
queue table.

msgid
Use the msgid parameter to retrieve a unique message identifier.

Example

The following anonymous block calls DBMS_2Q.DEQUEUE, retrieving a message from the
queue and a payload:

DECLARE
dequeue options DBMS AQ.DEQUEUE OPTIONS T;
message properties DBMS AQ.MESSAGE PROPERTIES T;
message handle raw (16) ;
payload work order;

BEGIN
dequeue options.dequeue mode := DBMS AQ.BROWSE;

DBMS AQ.DEQUEUE (

queue name => 'work queue',
dequeue options => dequeue_ options,
message properties => message properties,
payload => payload,

msgid => message handle

)

DBMS OUTPUT.PUT LINE (

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 47

Database Compatibility for Oracle® Developers
Built-in Package Guide

'The next work order is [' || payload.subject || '].'
)i
END;

The payload is displayed by bDBMS_OUTPUT.PUT LINE.
3.2.3 REGISTER

Use the REGTSTER procedure to register an email address, procedure or URL that will be
notified when an item is enqueued or dequeued. The signature is:

REGISTER (
reg list IN SYS.AQ$S REG INFO LIST,
count IN NUMBER)

Parameters
reg list
reg listisalist of type A0$ REG_INFO LIST; that provides information

about each subscription that you would like to register. Each entry within the list
is of the type A0S REG INFO, and may contain:

Attribute Type Description

name VARCHAR?2 (128) | The (optionally schema-qualified) name of the
subscription.

namespace NUMERIC The only supported value is
DBMS AQ.NAMESPACE AQ (0)

callback VARCHAR?2 Describes the action that will be performed upon
(4000) notification. Currently, only calls to PL/SQL
procedures are supported. The call should take
the form:

plsqgl://schema.procedure

Where:

schema specifies the schema in which the
procedure resides.

procedure specifies the name of the procedure
that will be notified.

context RAW (16) Any user-defined value required by the callback
procedure.

count
count is the number of entries in reg list.
Example

The following anonymous block calls DBMS_AQ.REGISTER, registering procedures that
will be notified when an item is added to or removed from a queue. A set of attributes (of

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 48

Database Compatibility for Oracle® Developers
Built-in Package Guide

sys.aqg$ reg info type) is provided for each subscription identified in the DECLARE
section:

DECLARE
subscriptionl sys.ag$ reg info;
subscription2 sys.aq$ reg info;
subscription3 sys.aqg$ reg info;
subscriptionlist sys.aqg$ reg info list;

BEGIN

subscriptionl := sys.aq$ reg info('qg', DBMS AQ.NAMESPACE AQ,
'plsgl://assign worker?PR=0', HEXTORAW ('FFFF')) ;

subscription2 := sys.aq$ reg info('qg', DBMS_ AQ.NAMESPACE AQ,
'plsgl://add to history?PR=1',HEXTORAW ('FFFF'));

subscription3 := sys.aq$ reg info('qg', DBMS AQ.NAMESPACE AQ,

'plsgl://reserve parts?PR=2"', HEXTORAW ('FFFF')) ;

subscriptionlist := sys.aqg$ reg info list (subscriptionl, subscription2,
subscription3) ;
dbms_aqg.register (subscriptionlist, 3);
commit;
END;
/

The subscriptionlist isoftype sys.aq$ reg info list, and contains the
previously described sys.ag$ reg info objects. The list name and an object count
are passed to dbms_ag.register.

3.2.4 UNREGISTER

Use the UNREGISTER procedure to turn off notifications related to enqueueing and
dequeueing. The signature is:

UNREGISTER (

reg list IN SYS.AQ$ REG INFO LIST,
count IN NUMBER)

Parameters
reg list
reg listisalist of type AQ$_REG_INFO LIST; that provides information

about each subscription that you would like to register. Each entry within the list
is of the type A0$ REG INFO, and may contain:

Attribute Type Description
name VARCHAR?2 (128) | The (optionally schema-qualified) name of the
subscription.
namespace NUMERIC The only supported value is
DBMS AQ.NAMESPACE AQ (0)

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 49

Database Compatibility for Oracle® Developers
Built-in Package Guide

callback VARCHAR?2 Describes the action that will be performed upon
(4000) notification. Currently, only calls to PL/SQL
procedures are supported. The call should take

the form:
plsqgl://schema.procedure

Where:

schema specifies the schema in which the
procedure resides.

procedure specifies the name of the procedure
that will be notified.

context RAW (16) Any user-defined value required by the
procedure.

count
count is the number of entries in reg list.

Example

The following anonymous block calls DBMS_AQ.UNREGISTER, disabling the notifications
specified in the example for DBMS_AQ.REGISTER:

DECLARE
subscriptionl sys.ag$ reg info;
subscription2 sys.aq$ reg info;
subscription3 sys.aq$ reg info;
subscriptionlist sys.aqg$ reg info list;

BEGIN
subscriptionl := sys.aq$ reg info('qg', DBMS AQ.NAMESPACE AQ,
'plsqgl://assign worker?PR=0', HEXTORAW ('FFFF'));
subscription2 := sys.aq$ reg info('qg', DBMS AQ.NAMESPACE AQ,
'plsgl://add to history?PR=1',6HEXTORAW ('FFFE'));
subscription3 := sys.aq$ reg info('qg', DBMS AQ.NAMESPACE AQ,
'plsqgl://reserve parts?PR=2', HEXTORAW ('FFFF'));
subscriptionlist := sys.aq$ reg info list (subscriptionl, subscription2,
subscription3) ;
dbms ag.unregister (subscriptionlist, 3);
commit;
END;
/

The subscriptionlist isoftype sys.aqg$ reg info list, and contains the
previously described sys.ag$ reg info objects. The list name and an object count
are passed to dbms_ag.unregister.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 50

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.3 DBMS_AQADM

EDB Postgres Advanced Server Advanced Queueing provides message queueing and
message processing for the Advanced Server database. User-defined messages are stored
in a queue; a collection of queues is stored in a queue table. Procedures in the
DBMS_AQADM package create and manage message queues and queue tables. Use the
DBMS_AQ package to add messages to a queue or remove messages from a queue, or
register or unregister a PL/SQL callback procedure.

Advanced Server also provides extended (non-compatible) functionality for the
DBMS_AQ package with SQL commands. Please see the Database Compatibility for
Oracle Developers Reference Guide for detailed information about the following SQL
commands:

e ALTER QUEUE

e ALTER QUEUE TABLE
e CREATE QUEUE

e CREATE QUEUE TABLE
e DROP QUEUE

e DROP QUEUE TABLE

The DBMS_AQADM package provides procedures that allow you to create and manage
queues and queue tables.

Function/Procedure Return Type Description
ALTER_QUEUE n/a Modify an existing queue.
ALTER_QUEUE_TABLE n/a Modify an existing queue table.
CREATE_QUEUE n/a Create a queue.

CREATE_QUEUE_TABLE n/a Create a queue table.

DROP_QUEUE n/a Drop an existing queue.

DROP_QUEUE_TABLE n/a Drop an existing queue table.

PURGE_QUEUE_TABLE n/a Remove one or more messages from a queue table.

START_QUEUE n/a Make a queue available for enqueueing and
dequeueing procedures.

STOP_QUEUE n/a Make a queue unavailable for enqueueing and
dequeueing procedures

Advanced Server's implementation of DBMS AQADM is a partial implementation when
compared to Oracle's version. Only those functions and procedures listed in the table
above are supported.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 51

Database Compatibility for Oracle® Developers
Built-in Package Guide

Advanced Server supports use of the arguments listed below:

Constant

Description

For Parameters

DBMS AQADM.TRANSACTIONAL (1)

This constant is defined, but
will return an error if used.

message grouping

DBMS AQADM.NONE (0)

Use to specify message
grouping for a queue table.

message grouping

DBMS AQADM.NORMAL QUEUE (0)

Use with create queue to
specify queue type.

queue type

DBMS AQADM.EXCEPTION QUEUE

(1)

Use with create queue to
Specify queue_ type.

queue type

DBMS AQADM.INFINITE (-1)

Use with create queue to
specify retention time.

retention time

DBMS AQADM.PERSISTENT

(0)

in a table.

The message should be stored

enqueue options t.delivery mode

DBMS AQADM.BUFFERED

(1)

This constant is defined, but
will return an error if used.

enqueue options t.delivery mode

DBMS__
FFERED

AQADM.PERSISTENT OR BU
(2)

This constant is defined, but
will return an error if used.

enqueue options t.delivery mode

3.3.1 ALTER_QUEUE

Use the ALTER QUEUE procedure to modify an existing queue. The signature is:

ALTER QUEUE (

max retries IN NUMBER DEFAULT NULL,
retry delay IN NUMBER DEFAULT O
retention time IN NUMBER DEFAULT O,
auto commit IN BOOLEAN DEFAULT TRUE)
comment IN VARCHAR2 DEFAULT NULL,

Parameters

queue name

The name of the new

max retries

queue.

max_retries Specifies the maximum number of attempts to remove a message
with a dequeue statement. The value of max_retries is incremented with each

ROLLBACK statement. When the number of failed attempts reaches the value
specified by max_retries, the message is moved to the exception queue.

Specify 0 to indicate that no retries are allowed.

retry delay

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

52

Database Compatibility for Oracle® Developers
Built-in Package Guide

retry delay specifies the number of seconds until a message is scheduled for
re-processing after a ROLLBACK. Specify 0 to indicate that the message should be
retried immediately (the default).

retention time

retention time Specifies the length of time (in seconds) that a message will be
stored after being dequeued. You can also specify 0 (the default) to indicate the
message should not be retained after dequeueing, or INFINITE to retain the
message forever.

auto commit
This parameter is accepted for compatibility and ignored.

comment

comment specifies a comment associated with the queue.

Example

The following command alters a queue named work_order, setting the retry_delay
parameter to 5 seconds:

EXEC DBMS AQADM.ALTER QUEUE (queue name => 'work order', retry delay => 5);

3.3.2 ALTER_QUEUE_TABLE

Use the ALTER QUEUE TABLE procedure to modify an existing queue table. The
signature is:

ALTER QUEUE TABLE (
queue table IN VARCHARZ,
comment IN VARCHAR2 DEFAULT NULL,
primary instance IN BINARY INTEGER DEFAULT O,
secondary instance IN BINARY INTEGER DEFAULT O,

Parameters
queue table

The (optionally schema-qualified) name of the queue table.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 53

Database Compatibility for Oracle® Developers
Built-in Package Guide

comment

Use the comment parameter to provide a comment about the queue table.
primary instance

primary instance IS accepted for compatibility and stored, but is ignored.
secondary instance

secondary instance iIs accepted for compatibility, but is ignored.
Example

The following command modifies a queue table named work order table:

EXEC DBMS AQADM.ALTER QUEUE TABLE
(queue table => 'work order table', comment => 'This queue table
contains work orders for the shipping department.');

The queue table is named work_order_table; the command adds a comment to the
definition of the queue table.

3.3.3 CREATE_QUEUE

Use the CREATE QUEUE procedure to create a queue in an existing queue table. The
signature is:

CREATE QUEUE (
queue name IN VARCHARZ
queue table IN VARCHARZ,
queue type IN BINARY INTEGER DEFAULT NORMAL QUEUE,
max_retries IN NUMBER DEFAULT 5,
retry delay IN NUMBER DEFAULT 0
retention time IN NUMBER DEFAULT O,
dependency tracking IN BOOLEAN DEFAULT FALSE,
comment IN VARCHARZ DEFAULT NULL,
auto commit IN BOOLEAN DEFAULT TRUE)

Parameters

gueue name

The name of the new queue.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 54

Database Compatibility for Oracle® Developers
Built-in Package Guide

queue table
The name of the table in which the new queue will reside.
queue type
The type of the new queue. The valid values for queue_type are:

DBMS AQADM.NORMAL QUEUE — This value specifies a normal queue (the
default).

DBMS AQADM.EXCEPTION QUEUE — This value specifies that the new queue is
an exception queue. An exception queue will support only dequeue operations.

max retries

max_retries Specifies the maximum number of attempts to remove a message
with a dequeue statement. The value of max_retries is incremented with each
ROLLBACK statement. When the number of failed attempts reaches the value
specified by max_retries, the message is moved to the exception queue. The
default value for a system table is O; the default value for a user created table is 5.

retry delay

retry delay specifies the number of seconds until a message is scheduled for
re-processing after a ROLLBACK. Specify 0 to indicate that the message should be
retried immediately (the default).

retention time

retention time Specifies the length of time (in seconds) that a message will be
stored after being dequeued. You can also specify 0 (the default) to indicate the
message should not be retained after dequeueing, or INFINITE to retain the
message forever.

dependency tracking
This parameter is accepted for compatibility and ignored.

comment
comment specifies a comment associated with the queue.

auto commit

This parameter is accepted for compatibility and ignored.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 55

Database Compatibility for Oracle® Developers
Built-in Package Guide

Example

The following anonymous block creates a queue named work_order in the
work order table table:

BEGIN

DBMS AQADM.CREATE QUEUE (queue name => 'work order', queue table =>

'work order table', comment => 'This queue contains pending work orders.');
END;

3.3.4 CREATE_QUEUE_TABLE

Use the CREATE QUEUE TABLE procedure to create a queue table. The signature is:

CREATE QUEUE TABLE (
queue table IN VARCHARZ,
queue payload type IN VARCHARZ,
storage clause IN VARCHAR2Z DEFAULT NULL,
sort list IN VARCHAR2 DEFAULT NULL,
multiple consumers IN BOOLEAN DEFAULT FALSE,
message grouping IN BINARY INTEGER DEFAULT NONE,
comment IN VARCHAR2 DEFAULT NULL,
auto commit IN BOOLEAN DEFAULT TRUE,
primary instance IN BINARY INTEGER DEFAULT O,
secondary instance IN BINARY INTEGER DEFAULT O,
compatible IN VARCHAR2 DEFAULT NULL,
secure IN BOOLEAN DEFAULT FALSE)

Parameters
queue table

The (optionally schema-qualified) name of the queue table.
queue payload type

The user-defined type of the data that will be stored in the queue table. Please
note that to specify a RawW data type, you must create a user-defined type that
identifies a RAW type.

storage clause

Use the storage_clause parameter to specify attributes for the queue table.
Please note that only the TABLESPACE option is enforced; all others are accepted
for compatibility and ignored. Use the TABLESPACE clause to specify the name
of a tablespace in which the table will be created.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 56

Database Compatibility for Oracle® Developers
Built-in Package Guide

storage_clause may be one or more of the following:

TABLESPACEtablespace_name,PCTFREEinmgehPCTUSEDintegeL
INITRANS integer, MAXTRANS integer OF STORAGE storage option.

storage_option may be one or more of the following:

MINEXTENTS integer, MAXEXTENTS integer, PCTINCREASE integer,
INITIAL size _clause, NEXT, FREELISTS integer, OPTIMAL
size clause, BUFFER_POOL {KEEP|RECYCLE|DEFAULT}.

sort list
sort 1ist controls the dequeueing order of the queue; specify the names of the
column(s) that will be used to sort the queue (in ascending order). The currently
accepted values are the following combinations of eng_time and priority:
enqg time, priority
priority, enqg time
priority
eng time
multiple consumers
multiple consumers queue tables is not supported.
message grouping
If specified, message grouping must be NONE.
comment
Use the comment parameter to provide a comment about the queue table.
auto commit
auto commit is accepted for compatibility, but is ignored.
primary instance
primary instance is accepted for compatibility and stored, but is ignored.

secondary instance

secondary instance is accepted for compatibility, but is ignored.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 57

Database Compatibility for Oracle® Developers
Built-in Package Guide

compatible

compatible is accepted for compatibility, but is ignored.

secure
secure Is accepted for compatibility, but is ignored.

Example

The following anonymous block first creates a type (work_order) with attributes that
hold a name (a VARCHAR?2), and a project description (a TEXT). The block then uses that

type to create a queue table:

BEGIN

CREATE TYPE work order AS (name VARCHAR2, project TEXT, completed BOOLEAN) ;

EXEC DBMS AQADM.CREATE QUEUE TABLE

(queue table => 'work order table',

queue payload type => 'work order',

comment => 'Work order message queue table');
END;

The queue table is named work_order_table, and contains a payload of a type

work_order. A comment notes that this is the Work order message queue table.

3.3.5 DROP_QUEUE

Use the DROP QUEUE procedure to delete a queue. The signature is:

DROP QUEUE (
gueue name IN VARCHARZ,
auto_commit IN BOOLEAN DEFAULT TRUE)

Parameters

queue name

The name of the queue that you wish to drop.

auto commit
auto commit is accepted for compatibility, but is ignored.

Example

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

58

Database Compatibility for Oracle® Developers
Built-in Package Guide

The following anonymous block drops the queue named work_order:

BEGIN
DBMS AQADM.DROP QUEUE (queue name => 'work order');
END;

3.3.6 DROP_QUEUE_TABLE

Use the DROP QUEUE TABLE procedure to delete a queue table. The signature is:

DROP_QUEUE_TABLE (
gueue_ table IN VARCHARZ,
force IN BOOLEAN default FALSE,
auto commit IN BOOLEAN default TRUE)

Parameters
queue table

The (optionally schema-qualified) name of the queue table.
force

The force keyword determines the behavior of the DROP_QUEUE_TABLE
command when dropping a table that contain entries:

If the target table contains entries and force is FALSE, the command will
fail, and the server will issue an error.

If the target table contains entries and force is TRUE, the command will
drop the table and any dependent objects.

auto commit
auto commit is accepted for compatibility, but is ignored.
Example

The following anonymous block drops a table named work_order_table:

BEGIN
DBMS AQADM.DROP QUEUE TABLE ('work order table', force => TRUE);
END;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 59

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.3.7 PURGE_QUEUE_TABLE

Use the PURGE QUEUE TABLE procedure to delete messages from a queue table. The
signature is:

PURGE_QUEUE_TABLE (
queue_ table IN VARCHARZ,
purge condition IN VARCHARZ,
purge options IN ag$ purge options t)

Parameters
queue table

queue table specifies the name of the queue table from which you are deleting
a message.

purge condition

Use purge condition to specify a condition (a SQL wHERE clause) that the
server will evaluate when deciding which messages to purge.

purge options

purge options isan object of the type ag$ purge options t. An
ag$ purge options_t object contains:

Attribute Type Description
Block Boolean Specify TRUE if an exclusive lock should be held
on all queues within the table; the default is
FALSE.
delivery mode INTEGER delivery mode specifies the type of message
that will be purged. The only accepted value is
DBMS_AQ.PERSISTENT.

Example

The following anonymous block removes any messages from the work order_table
with a value in the completed column of YES:

DECLARE

purge options dbms agadm.aq$ purge options t;
BEGIN

dbms agadm.purge queue table('work order table', 'completed = YES',
purge options);

END;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 60

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.3.8 START_QUEUE

Use the START QUEUE procedure to make a queue available for enqueuing and
dequeueing. The signature is:

START QUEUE (
queue_name IN VARCHARZ,

enqueue IN BOOLEAN DEFAULT TRUE,
dequeue IN BOOLEAN DEFAULT TRUE)

Parameters

queue name

queue name specifies the name of the queue that you are starting.

enqueue

Specify TRUE to enable enqueueing (the default), or FALSE to leave the current
setting unchanged.

dequeue

Specify TRUE to enable dequeueing (the default), or FALSE to leave the current
setting unchanged.

Example

The following anonymous block makes a queue named work_order available for
enqueueing:

BEGIN

DBMS_AQADM . START_QUEUE
(queue_name => 'work order);
END;

3.3.9 STOP_QUEUE

Use the sTOP QUEUE procedure to disable enqueuing or dequeueing on a specified
queue. The signature is:

STOP QUEUE (
queue name IN VARCHARZ,
enqueue IN BOOLEAN DEFAULT TRUE,
dequeue IN BOOLEAN DEFAULT TRUE,
wait IN BOOLEAN DEFAULT TRUE)

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 61

Database Compatibility for Oracle® Developers
Built-in Package Guide

Parameters

queue name

queue name specifies the name of the queue that you are stopping.

enqueue

Specify TRUE to disable enqueueing (the default), or FALSE to leave the current
setting unchanged.

dequeue

Specify TRUE to disable dequeueing (the default), or FALSE to leave the current
setting unchanged.

wait

Specify TRUE to instruct the server to wait for any uncompleted transactions to
complete before applying the specified changes; while waiting to stop the queue,
no transactions are allowed to enqueue or dequeue from the specified queue.
Specify FALSE to stop the queue immediately.

Example

The following anonymous block disables enqueueing and dequeueing from the queue
named work_order:

BEGIN

DBMS AQADM.STOP QUEUE (queue name =>'work order',6 enqueue=>TRUE,
dequeue=>TRUE, wait=>TRUE) ;

END;

Enqueueing and dequeueing will stop after any outstanding transactions complete.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 62

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.4 DBMS_CRYPTO

The DBMS_CRYPTO package provides functions and procedures that allow you to encrypt
or decrypt RAW, BLOB Or CLOB data. You can also use bBMS_CRYPTO functions to
generate cryptographically strong random values.

The following table lists the DBMS_CRYPTO Functions and Procedures.

Function/Procedure Return Type Description

DECRYPT (src, typ, key, 1v) RAW Decrypts Raw data.

DECRYPT (dst INOUT, src, typ, key, N/A Decrypts BLOB data.

iv)

DECRYPT (dst INOUT, src, typ, key, N/A Decrypts cLoB data.

iv)

ENCRYPT (src, typ, key, 1iv) RAW Encrypts rRaW data.

ENCRYPT (dst INOUT, src, typ, key, N/A Encrypts BLOB data.

iv)

ENCRYPT (dst INOUT, src, typ, key, N/A Encrypts cLos data.

iv)

HASH (src, typ) RAW Applies a hash algorithm to raw data.

HASH (src) RAW Applies a hash algorithm to cLos data.

MAC (src, typ, key) RAW Returns the hashed mMac value of the given
RAW data using the specified hash algorithm
and key.

MAC (src, typ, key) RAW Returns the hashed mac value of the given
cLOB data using the specified hash algorithm
and key.

RANDOMBYTES (number_bytes) RAW Returns a specified number of
cryptographically strong random bytes.

RANDOMINTEGER () INTEGER [Returns a random INTEGER.

RANDOMNUMBER () NUMBER Returns a random NUMBER.

DBMS CRYPTO functions and procedures support the following error messages:
ORA-28239 - DBMS CRYPTO.KeyNull
ORA-28829 - DBMS CRYPTO.CipherSuiteNull

ORA-28827 - DBMS CRYPTO.CipherSuiteInvalid

Unlike Oracle, Advanced Server will not return error ora-28233 if you re-encrypt
previously encrypted information.

Please note that Raw and BL.OB are synonyms for the PostgreSQL BYTEA data type, and
CLOB is a synonym for TEXT.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 63

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.4.1 DECRYPT

The pDECRYPT function or procedure decrypts data using a user-specified cipher
algorithm, key and optional initialization vector. The signature of the DECRYPT function
is:

DECRYPT

(src IN RAW, typ IN INTEGER, key IN RAW, iv IN RAW
DEFAULT NULL) RETURN RAW

The signature of the DECRYPT procedure is:

DECRYPT
(dst INOUT BLOB, src IN BLOB, typ IN INTEGER, key IN RAW,
iv IN RAW DEFAULT NULL)

or

DECRYPT
(dst INOUT CLOB, src IN CLOB, typ IN INTEGER, key IN RAW,
iv IN RAW DEFAULT NULL)

When invoked as a procedure, DECRYPT returns BLOB Or CLOB data to a user-specified
BLOB.

Parameters

dst

dst specifies the name of a B1.oB to which the output of the DECRYPT procedure
will be written. The bECrYPT procedure will overwrite any existing data
currently in dst.

src
src specifies the source data that will be decrypted. If you are invoking
DECRYPT as a function, specify rRaw data; if invoking DECRYPT as a procedure,
specify BLOB or CLOB data.

typ

typ specifies the block cipher type and any modifiers. This should match the
type specified when the src was encrypted. Advanced Server supports the
following block cipher algorithms, modifiers and cipher suites:

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 64

Database Compatibility for Oracle® Developers

Built-in Package Guide

Block Cipher Algorithms

ENCRYPT DES CONSTANT INTEGER := 1;
ENCRYPT 3DES CONSTANT INTEGER := 3;
ENCRYPT AES CONSTANT INTEGER := 4;
ENCRYPT AES128 CONSTANT INTEGER := 6;
Block Cipher Modifiers
CHAIN CBC CONSTANT INTEGER := 256;
CHAIN ECB CONSTANT INTEGER := 768;
Block Cipher Padding Modifiers
PAD PKCS5 CONSTANT INTEGER := 4096;
PAD NONE CONSTANT INTEGER := 8192;
Block Cipher Suites
DES CBC_PKCS5 CONSTANT INTEGER := ENCRYPT DES + CHAIN CBC +
PAD PKCS5;
DES3 CBC PKCS5 CONSTANT INTEGER := ENCRYPT 3DES + CHAIN CBC
+ PAD PKCS5;
AES CBC_PKCS5 CONSTANT INTEGER := ENCRYPT AES + CHAIN CBC +
PAD PKCS5;
key
key specifies the user-defined decryption key. This should match the key
specified when the src was encrypted.
iv
iv (optional) specifies an initialization vector. If an initialization vector was
specified when the src was encrypted, you must specify an initialization vector
when decrypting the src. The default is NULL.
Examples

The following example uses the DBMS CRYPTO.DECRYPT function to decrypt an
encrypted password retrieved from the passwords table:

CREATE TABLE passwords

(

)
CREATE FUNCTION get password (username VARCHAR?2)
DBMS CRYPTO.DES CBC_PKCS5;

'my secret key';
= 'my initialization wvector';

principal
ciphertext RAW(9)

typ INTEGER :=
key RAW (128) :=
iv RAW (100)
password RAW (2048) ;
BEGIN

SELECT ciphertext INTO password FROM passwords WHERE principal =

RETURN dbms crypto.decrypt (password, typ,

END;

VARCHAR2 (90)

PRIMARY KEY,

—— username

-— encrypted password

key,

iv);

RETURN RAW AS

username;

Note that when calling DECRYPT, you must pass the same cipher type, key value and

initialization vector that was used when ENCRYPTING the target.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

65

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.4.2 ENCRYPT

The ENCRYPT function or procedure uses a user-specified algorithm, key, and optional
initialization vector to encrypt RAW, BLOB Or CLOB data. The signature of the ENCRYPT
function is:

ENCRYPT

(src IN RAW, typ IN INTEGER, key IN RAW,
iv IN RAW DEFAULT NULL) RETURN RAW

The signature of the ENCRYPT procedure is:

ENCRYPT
(dst INOUT BLOB, src IN BLOB, typ IN INTEGER, key IN RAW,
iv IN RAW DEFAULT NULL)

or

ENCRYPT
(dst INOUT BLOB, src IN CLOB, typ IN INTEGER, key IN RAW,
iv IN RAW DEFAULT NULL)

When invoked as a procedure, ENCRYPT returns BLOB Or CLOB data to a user-specified
BLOB.

Parameters

dst

dst specifies the name of a B1.oB to which the output of the ENCRYPT procedure
will be written. The ENCRYPT procedure will overwrite any existing data
currently in dst.

src
src specifies the source data that will be encrypted. If you are invoking
ENCRYPT as a function, specify raw data; if invoking ENCRYPT as a procedure,
specify BLOB or CLOB data.

typ

typ specifies the block cipher type that will be used by ENCRYPT, and any
modifiers. Advanced Server supports the block cipher algorithms, modifiers and
cipher suites listed below:

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 66

Database Compatibility for Oracle® Developers
Built-in Package Guide

Block Cipher Algorithms
ENCRYPT DES CONSTANT INTEGER := 1;
ENCRYPT 3DES CONSTANT INTEGER := 3;
ENCRYPT AES CONSTANT INTEGER := 4;
ENCRYPT AES128 CONSTANT INTEGER := 6;
Block Cipher Modifiers
CHAIN CBC CONSTANT INTEGER := 256;
CHAIN ECB CONSTANT INTEGER := 768;
Block Cipher Padding Modifiers
PAD PKCS5 CONSTANT INTEGER := 4096;
PAD NONE CONSTANT INTEGER := 8192;
Block Cipher Suites
DES CBC_PKCS5 CONSTANT INTEGER := ENCRYPT DES + CHAIN CBC +
PAD PKCS5;
DES3 CBC PKCS5 CONSTANT INTEGER := ENCRYPT 3DES + CHAIN CBC
+ PAD PKCS5;
AES CBC_PKCS5 CONSTANT INTEGER := ENCRYPT AES + CHAIN CBC +
PAD PKCS5;
key
key specifies the encryption key.
iv
iv (optional) specifies an initialization vector. By default, iv is NULL.
Examples

The following example uses the DBMS CRYPTO.DES CBC PKCS5 Block Cipher Suite (a
pre-defined set of algorithms and modifiers) to encrypt a value retrieved from the
passwords table:

CREATE TABLE passwords

(

)

principal VARCHAR2 (90) PRIMARY KEY, —-— username
ciphertext RAW(9) -- encrypted password

CREATE PROCEDURE set password (username VARCHAR2, cleartext RAW) AS

typ INTEGER := DBMS CRYPTO.DES CBC PKCS5;
key RAW(128) := 'my secret key';
iv RAW(100) := 'my initialization wvector';
encrypted RAW(2048);
BEGIN
encrypted := dbms crypto.encrypt (cleartext, typ, key, iv);

UPDATE passwords SET ciphertext = encrypted WHERE principal = username;

END;

ENCRYPT uses a key value of my secret key and an initialization vector of my
initialization vector when encrypting the password; specify the same key and
initialization vector when decrypting the password.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 67

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.4.3 HASH

The HASH function uses a user-specified algorithm to return the hash value of a raw or
croB value. The HASH function is available in three forms:

HASH
(src IN RAW, typ IN INTEGER) RETURN RAW

HASH
(src IN CLOB, typ IN INTEGER) RETURN RAW

Parameters

src

src specifies the value for which the hash value will be generated. You can
specify a RAW, a BLOB, Or a CLOB Value.

typ
typ specifies the HAsH function type. Advanced Server supports the HASH
function types listed below:
HASH Functions
HASH MD4 CONSTANT INTEGER := 1;
HASH MD5 CONSTANT INTEGER := 2;
HASH SH1 CONSTANT INTEGER := 3;
Examples

The following example uses DBMS_CRYPTO.HASH to find the md5 hash value of the
string, cleartext source:

DECLARE
typ INTEGER := DBMS CRYPTO.HASH MD5;
hash value RAW(100);
BEGIN
hash value := DBMS CRYPTO.HASH('cleartext source', typ);

END;

3.4.4 MAC

The Mac function uses a user-specified Mac function to return the hashed Mac value of a
RAW Or CLOB value. The MacC function is available in three forms:

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 68

Database Compatibility for Oracle® Developers
Built-in Package Guide

MAC
(src IN RAW, typ IN INTEGER, key IN RAW) RETURN RAW

MAC
(src IN CLOB, typ IN INTEGER, key IN RAW) RETURN RAW

Parameters
sSrc

src specifies the value for which the mac value will be generated. Specify a
RAW, BLOB, OfF CLOB Vvalue.

typ
typ specifies the MAC function used. Advanced Server supports the MAC
functions listed below.
MAC Functions
HMAC MD5 CONSTANT INTEGER := 1;
HMAC SHI1 CONSTANT INTEGER := 2;
key
key specifies the key that will be used to calculate the hashed Mac value.
Examples

The following example finds the hashed Mac value of the string cleartext source:

DECLARE

typ INTEGER := DBMS_CRYPTO.HMAC_MDS;

key RAW(100) := 'my secret key';

mac_value RAW(100) ;
BEGIN

mac_value := DBMS CRYPTO.MAC('cleartext source', typ, key);
END;

DBMS_CRYPTO.MAC USeS a key value of my secret key when calculating the MAc value
of cleartext source.

3.4.5 RANDOMBYTES

The rRanDOMBYTES function returns a RawW value of the specified length, containing
cryptographically random bytes. The signature is:

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 69

Database Compatibility for Oracle® Developers
Built-in Package Guide

RANDOMBYTES
(number bytes IN INTEGER) RETURNS RAW

Parameters

number bytes
number bytes specifies the number of random bytes to be returned
Examples

The following example uses RANDOMBYTES to return a value that is 1024 bytes long:

DECLARE

result RAW(1024);
BEGIN

result := DBM87CRYPTO.RANDOMBYTES(1024);
END;

3.4.6 RANDOMINTEGER

The RANDOMINTEGER () function returns a random INTEGER between 0 and
268,435,455, The signature is:

RANDOMINTEGER () RETURNS INTEGER
Examples

The following example uses the RANDOMINTEGER function to return a cryptographically
strong random INTEGER value:

DECLARE
result INTEGER;

BEGIN
result := DBMS CRYPTO.RANDOMINTEGER () ;
DBMS_OUTPUT.PUT_LINE(result);

END;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 70

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.4.7 RANDOMNUMBER

The RANDOMNUMBER () function returns a random NUMBER between 0 and
268,435,455, The signature is:

RANDOMNUMBER () RETURNS NUMBER
Examples

The following example uses the RANDOMNUMBER function to return a cryptographically
strong random number:

DECLARE
result NUMBER;

BEGIN
result := DBMSi(:RYPTO.RANDOMNUMBER() 9
DBMS OUTPUT.PUT LINE (result);

END;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 71

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.5 DBMS_JOB

The pBMS JoB package provides for the creation, scheduling, and managing of jobs. A
job runs a stored procedure which has been previously stored in the database. The
SUBMIT procedure is used to create and store a job definition. A job identifier is assigned
to a job along with its associated stored procedure and the attributes describing when and
how often the job is to be run.

This package relies on the pgagent scheduler. By default, the Advanced Server installer
installs pgAgent, but you must start the pgAgent service manually prior to using

DBMS JOB. If you attempt to use this package to schedule a job after un-installing
pgAgent, DBMS JOB Will throw an error. DBMS JOB verifies that pgAgent is installed,
but does not verify that the service is running.

The following table lists the supported DBMS_JOB procedures:

Function/Procedure Return Description
Type
BROKEN (job, broken [, next date n/a Specify that a given job is either broken or not
1 broken.
CHANGE (job, what, next date, n/a Change the job’s parameters.
interval, instance, force)
INTERVAL (job, interval) n/a Set the execution frequency by means of a date

function that is recalculated each time the job is
run. This value becomes the next date/time for

execution.
NEXT_DATE (job, next date) n/a Set the next date/time the job is to be run.
REMOVE (job) n/a Delete the job definition from the database.
RUN (job) n/a Forces execution of a job even if it is marked
broken.
SUBMIT (job OUT, what [, next_date n/a Creates a job and stores its definition in the
[, interval [, no parse]]]) database.
WHAT (job, what) n/a Change the stored procedure run by a job.

Advanced Server's implementation of DBMS JOB is a partial implementation when
compared to Oracle's version. Only those functions and procedures listed in the table
above are supported.

Before using DBMS JOB, a database superuser must create the pgAgent extension. Use
the psql client to connect to a database and invoke the command:

CREATE EXTENSION pgagent;

When and how often a job is run is dependent upon two interacting parameters —
next dateand interval. The next date parameter is a date/time value that

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 72

Database Compatibility for Oracle® Developers
Built-in Package Guide

specifies the next date/time when the job is to be executed. The interval parameter is
a string that contains a date function that evaluates to a date/time value.

Just prior to any execution of the job, the expression in the interval parameter is
evaluated. The resulting value replaces the next date value stored with the job. The
job is then executed. In this manner, the expression in interval is repeatedly re-
evaluated prior to each job execution, supplying the next date date/time for the next
execution.

Note: The database user must be the same that created a job and schedule to start the
pgAgent server and execute the job.

The following examples use the following stored procedure, job proc, which simply
inserts a timestamp into table, jobrun, containing a single VARCHAR2 column.

CREATE TABLE jobrun (
runtime VARCHAR?2 (40)
)

CREATE OR REPLACE PROCEDURE job proc
IS
BEGIN
INSERT INTO jobrun VALUES ('job proc run at ' || TO CHAR(SYSDATE,
'yyyy-mm-dd hh24:mi:ss'));
END;

3.5.1 BROKEN

The BROKEN procedure sets the state of a job to either broken or not broken. A broken job
cannot be executed except by using the RUN procedure.

BROKEN (job BINARY INTEGER, broken BOOLEAN [, next date DATE])
Parameters
job

Identifier of the job to be set as broken or not broken.

broken

If set to TRUE the job’s state is set to broken. If set to FALSE the job’s state is set
to not broken. Broken jobs cannot be run except by using the RuN procedure.

next date

Date/time when the job is to be run. The default is SYSDATE.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 73

Database Compatibility for Oracle® Developers
Built-in Package Guide

Examples

Set the state of a job with job identifier 104 to broken:

BEGIN
DBMS JOB.BROKEN (104, true) ;
END;

Change the state back to not broken:

BEGIN
DBMS JOB.BROKEN (104, false) ;
END;

3.5.2 CHANGE

The cHANGE procedure modifies certain job attributes including the stored procedure to
be run, the next date/time the job is to be run, and how often it is to be run.

CHANGE (job BINARY INTEGER what VARCHAR2Z2, next_date DATE,
interval VARCHARZ, instance BINARY INTEGER, force BOOLEAN)

Parameters
job

Identifier of the job to modify.
what

Stored procedure name. Set this parameter to null if the existing value is to
remain unchanged.

next date

Date/time when the job is to be run next. Set this parameter to null if the existing
value is to remain unchanged.

interval

Date function that when evaluated, provides the next date/time the job is to run.
Set this parameter to null if the existing value is to remain unchanged.

instance

This argument is ignored, but is included for compatibility.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 74

Database Compatibility for Oracle® Developers
Built-in Package Guide

force

This argument is ignored, but is included for compatibility.

Examples

Change the job to run next on December 13, 2007. Leave other parameters unchanged.

BEGIN
DBMS JOB.CHANGE (104, NULL, TO DATE ('13-DEC-07"', 'DD-MON-YY') ,NULL, NULL,

NULL) ;
END;

3.5.3 INTERVAL

The INTERVAL procedure sets the frequency of how often a job is to be run.

INTERVAL (job BINARY INTEGER, interval VARCHAR2)

Parameters

job
Identifier of the job to modify.

interval
Date function that when evaluated, provides the next date/time the job is to be
run. If interval is NULL and the job is complete, the job is removed from the
queue.

Examples

Change the job to run once a week:

BEGIN
DBMS JOB.INTERVAL (104, 'SYSDATE + 7');
END;

3.5.4 NEXT_DATE

The NEXT_DATE procedure sets the date/time of when the job is to be run next.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 75

Database Compatibility for Oracle® Developers
Built-in Package Guide

NEXT DATE (job BINARY INTEGER, next date DATE)
Parameters
job

Identifier of the job whose next run date is to be set.
next date

Date/time when the job is to be run next.
Examples

Change the job to run next on December 14, 2007:

BEGIN
DBMS JOB.NEXT DATE (104, TO DATE('l4-DEC-07', 'DD-MON-YY'));
END;

3.5.5 REMOVE

The rREMOVE procedure deletes the specified job from the database. The job must be
resubmitted using the suBMIT procedure in order to have it executed again. Note that the
stored procedure that was associated with the job is not deleted.

REMOVE (job BINARY INTEGER)
Parameters
job
Identifier of the job that is to be removed from the database.
Examples

Remove a job from the database:

BEGIN
DBMS JOB.REMOVE (104) ;
END;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 76

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.5.6 RUN
The rUN procedure forces the job to be run, even if its state is broken.
RUN (job BINARY INTEGER)
Parameters
job
Identifier of the job to be run.
Examples

Force a job to be run.

BEGIN
DBMS JOB.RUN (104) ;
END;

3.5.7 SUBMIT

The suBMIT procedure creates a job definition and stores it in the database. A job
consists of a job identifier, the stored procedure to be executed, when the job is to be first
run, and a date function that calculates the next date/time the job is to be run.

SUBMIT (job OUT BINARY INTEGER, what VARCHAR2
[, next date DATE [, interval VARCHARZ [, no parse BOOLEAN]]])

Parameters
job
Identifier assigned to the job.
what
Name of the stored procedure to be executed by the job.

next date

Date/time when the job is to be run next. The default is SYSDATE.

interval

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 77

Database Compatibility for Oracle® Developers
Built-in Package Guide

Date function that when evaluated, provides the next date/time the job is to run. If
interval is set to null, then the job is run only once. Null is the default.

no _parse

If set to TRUE, do not syntax-check the stored procedure upon job creation —
check only when the job first executes. If set to FALSE, check the procedure upon
job creation. The default is FALSE.

Note: The no parse option is not supported in this implementation of
SUBMIT (). Itisincluded for compatibility only.

Examples

The following example creates a job using stored procedure, job proc. The job will
execute immediately and run once a day thereafter as set by the interval parameter,
SYSDATE + 1.

DECLARE
jobid INTEGER;
BEGIN
DBMS JOB.SUBMIT (jobid, 'job proc;',SYSDATE,
'SYSDATE + 1'");
DBMS OUTPUT.PUT LINE ('jobid: ' || jobid);
END;

jobid: 104

The job immediately executes procedure, job proc, populating table, jobrun, with a
row:

SELECT * FROM jobrun;

job proc run at 2007-12-11 11:43:25
(1 row)

3.5.8 WHAT

The wHAT procedure changes the stored procedure that the job will execute.

WHAT (job BINARY INTEGER, what VARCHARZ)

Parameters

job

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 78

Database Compatibility for Oracle® Developers
Built-in Package Guide

Identifier of the job for which the stored procedure is to be changed.
what

Name of the stored procedure to be executed.
Examples

Change the job to run the 1ist emp procedure:

BEGIN
DBMS JOB.WHAT (104, 'list emp;');
END;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 79

3.6 DBMS_LOB

Database Compatibility for Oracle® Developers
Built-in Package Guide

The pBMS 1.0B package provides the capability to operate on large objects. The
following table lists the supported functions and procedures:

Function/Procedure Return Description
Type

APPEND (dest_lob IN OUT, src_lob) n/a Appends one large object to another.
COMPARE (lob 1, lob 2 [, amount INTEGER [Compares two large objects.
[, offset 1 [, offset 2]111])
CONVERTOBLOB (dest_lob IN OUT, n/a Converts character data to binary.
src clob, amount, dest offset IN
OUT, src offset IN OUT,
blob csid, lang context IN OUT,
warning OUT)
CONVERTTOCLOB (dest_lob IN OUT, n/a Converts binary data to character.
src blob, amount, dest offset IN
OUT, src offset IN OUT,
blob csid, lang context IN OUT,
warning OUT)
COPY (dest_lob IN OUT, src_lob, n/a Copies one large object to another.
amount [, dest offset [,
src offset]1])
ERASE (lob_loc IN OUT, amount IN n/a Erase a large object.
OUT [, offset])
GET_STORAGE_LIMIT (lob_loc) INTEGER |Get the storage limit for large objects.
GETLENGTH (1ob_loc) INTEGER |Get the length of the large object.
INSTR (lob_loc, pattern [, offset| INTEGER [Get the position of the nth occurrence of a pattern
[, nth 11) in the large object starting at of fset.
READ (1ob_loc, amount IN OUT, n/a Read a large object.
offset, buffer OUT)
SUBSTR (lob_loc [, amount [, RAW, Get part of a large object.
offset 11]) VARCHAR?2
TRIM(lob_loc IN OUT, newlen) n/a Trim a large object to the specified length.
WRITE (1ob_loc IN OUT, amount, n/a \Write data to a large object.
offset, buffer)
WRITEAPPEND (lob_loc IN OUT, n/a \Write data from the buffer to the end of a large

amount, buffer)

object.

Advanced Server's implementation of DBMS LOB is a partial implementation when
compared to Oracle's version. Only those functions and procedures listed in the table

above are supported.

The following table lists the public variables available in the package.

Public Variables Data Type Value
compress off INTEGER 0
compress on INTEGER 1
deduplicate off INTEGER 0

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

80

Database Compatibility for Oracle® Developers
Built-in Package Guide

Public Variables Data Type Value
deduplicate on INTEGER 4
default csid INTEGER 0
default lang ctx INTEGER 0
encrypt off INTEGER 0
encrypt on INTEGER 1
file readonly INTEGER 0
lobmaxsize INTEGER 1073741823
lob readonly INTEGER 0
lob readwrite INTEGER 1
no warning INTEGER 0
opt compress INTEGER 1
opt deduplicate INTEGER 4
opt encrypt INTEGER 2
warn inconvertible char INTEGER 1

In the following sections, lengths and offsets are measured in bytes if the large objects are
BLOBS. Lengths and offsets are measured in characters if the large objects are CLOBS.

3.6.1 APPEND

The ApPEND procedure provides the capability to append one large object to another.
Both large objects must be of the same type.

APPEND (dest lob IN OUT { BLOB | CLOB }, src lob { BLOB | CLOB })
Parameters
dest lob

Large object locator for the destination object. Must be the same data type as
src lob.

src lob

Large object locator for the source object. Must be the same data type as
dest lob.

3.6.2 COMPARE

The coMpPARE procedure performs an exact byte-by-byte comparison of two large objects
for a given length at given offsets. The large objects being compared must be the same
data type.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 81

Database Compatibility for Oracle® Developers
Built-in Package Guide

status INTEGER COMPARE (Iob 1 { BLOB | CLOB 1},

lob 2 { BLOB | CLOB }
[, amount INTEGER [, offset 1 INTEGER [, offset 2 INTEGER]]])

Parameters
lob 1

Large object locator of the first large object to be compared. Must be the same
data type as 1ob 2.

lob 2

Large object locator of the second large object to be compared. Must be the same
data type as 1ob 1.

amount

If the data type of the large objects is B1L.OB, then the comparison is made for
amount bytes. If the data type of the large objects is c1.0B, then the comparison is
made for amount characters. The default it the maximum size of a large object.

offset 1

Position within the first large object to begin the comparison. The first
byte/character is offset 1. The default is 1.

offset 2

Position within the second large object to begin the comparison. The first
byte/character is offset 1. The default is 1.

status

Zero if both large objects are exactly the same for the specified length for the
specified offsets. Non-zero, if the objects are not the same. NULL if amount,
offset 1,0r offset 2 are less than zero.

3.6.3 CONVERTTOBLOB

The cONVERTTOBLOB procedure provides the capability to convert character data to
binary.

CONVERTTOBLOB (dest lob IN OUT BLOB, src clob CLOB,
amount INTEGER, dest offset IN OUT INTEGER,
src offset IN OUT INTEGER, blob csid NUMBER,
lang context IN OUT INTEGER, warning OUT INTEGER)

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 82

Database Compatibility for Oracle® Developers
Built-in Package Guide

Parameters
dest lob
BLOB large object locator to which the character data is to be converted.
src _clob
cLoB large object locator of the character data to be converted.
amount
Number of characters of src _clob to be converted.
dest offset IN

Position in bytes in the destination BLOB where writing of the source cL.os should
begin. The first byte is offset 1.

dest offset OUT

Position in bytes in the destination BL.OB after the write operation completes. The
first byte is offset 1.

src offset IN

Position in characters in the source cLoB where conversion to the destination
BLOB should begin. The first character is offset 1.

src offset OUT

Position in characters in the source c1.oB after the conversion operation
completes. The first character is offset 1.

blob csid
Character set ID of the converted, destination BLOB.
lang context IN

Language context for the conversion. The default value of 0 is typically used for
this setting.

lang context OUT

Language context after the conversion completes.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 83

Database Compatibility for Oracle® Developers
Built-in Package Guide

warning

0 if the conversion was successful, 1 if an inconvertible character was
encountered.

3.6.4 CONVERTTOCLOB

The CONVERTTOCLOB procedure provides the capability to convert binary data to
character.

CONVERTTOCLOB (dest _lob IN OUT CLOB, src blob BLOB,
amount INTEGER, dest offset IN OUT INTEGER,
src offset IN OUT INTEGER, blob csid NUMBER,
lang context IN OUT INTEGER, warning OUT INTEGER)

Parameters
dest lob
cLoB large object locator to which the binary data is to be converted.
src _blob
BLOB large object locator of the binary data to be converted.
amount

Number of bytes of src_biob to be converted.

dest offset IN

Position in characters in the destination cLoB where writing of the source BLOB
should begin. The first character is offset 1.

dest offset OUT

Position in characters in the destination c1.0B after the write operation completes.
The first character is offset 1.

src offset IN

Position in bytes in the source BL.OB where conversion to the destination cL.oB
should begin. The first byte is offset 1.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 84

Database Compatibility for Oracle® Developers
Built-in Package Guide

src offset OUT

Position in bytes in the source BLOB after the conversion operation completes.
The first byte is offset 1.

blob csid
Character set ID of the converted, destination CLOB.
lang context IN

Language context for the conversion. The default value of 0 is typically used for
this setting.

lang context OUT
Language context after the conversion completes.
warning

0 if the conversion was successful, 1 if an inconvertible character was
encountered.

3.6.5 COPY

The copy procedure provides the capability to copy one large object to another. The
source and destination large objects must be the same data type.

COPY (dest l1ob IN OUT { BLOB | CLOB }, src lob
{ BLOB | CLOB 1},

amount INTEGER
[, dest offset INTEGER [, src offset INTEGER]])

Parameters
dest lob

Large object locator of the large object to which src 1obis to be copied. Must
be the same data type as src_lob.

src _lob
Large object locator of the large object to be copied to dest 1ob. Must be the

same data type as dest lob.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 85

Database Compatibility for Oracle® Developers
Built-in Package Guide

amount
Number of bytes/characters of src_1ob to be copied.
dest offset

Position in the destination large object where writing of the source large object
should begin. The first position is offset 1. The default is 1.

src offset

Position in the source large object where copying to the destination large object
should begin. The first position is offset 1. The default is 1.

3.6.6 ERASE

The ERASE procedure provides the capability to erase a portion of a large object. To erase
a large object means to replace the specified portion with zero-byte fillers for BL.OBS or
with spaces for c.oBs. The actual size of the large object is not altered.

ERASE (Iob loc IN OUT { BLOB | CLOB }, amount IN OUT INTEGER
[, offset INTEGER 1])

Parameters
lob loc
Large object locator of the large object to be erased.
amount IN
Number of bytes/characters to be erased.
amount OUT
Number of bytes/characters actually erased. This value can be smaller than the
input value if the end of the large object is reached before amount

bytes/characters have been erased.

offset

Position in the large object where erasing is to begin. The first byte/character is
position 1. The default is 1.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 86

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.6.7 GET_STORAGE_LIMIT

The GET STORAGE LIMIT function returns the limit on the largest allowable large
object.

size INTEGER GET STORAGE LIMIT (lob loc BLOB)

size INTEGER GET STORAGE LIMIT (lob loc CLOB)
Parameters
size

Maximum allowable size of a large object in this database.
lob loc

This parameter is ignored, but is included for compatibility.

3.6.8 GETLENGTH

The GETLENGTH function returns the length of a large object.

amount INTEGER GETLENGTH (lob loc BLOB)

amount INTEGER GETLENGTH (lob loc CLOB)

Parameters

lob loc
Large object locator of the large object whose length is to be obtained.

amount

Length of the large object in bytes for BLOBs or characters for CL.OBS.

3.6.9 INSTR

The 1nSTR function returns the location of the nth occurrence of a given pattern within a
large object.

position INTEGER INSTR(Iob loc { BLOB | CLOB },

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 87

Database Compatibility for Oracle® Developers
Built-in Package Guide

pattern { RAW | VARCHARZ2 } [, offset INTEGER [, nth
INTEGER]11])

Parameters
lob loc
Large object locator of the large object in which to search for pattern.

pattern

Pattern of bytes or characters to match against the large object, 1ob. pattern
must be RAW if 1ob locis a BLOB. pattern must be VARCHAR? if 1ob locisa
CLOB.

offset

Position within 1ob Ioc to start search for pattern. The first byte/character is
position 1. The default is 1.

nth

Search for pattern, nth number of times starting at the position given by
offset. The default is 1.

position

Position within the large object where pattern appears the nth time specified by
nth starting from the position given by offset.

3.6.10 READ

The READ procedure provides the capability to read a portion of a large object into a
buffer.

READ (lob loc { BLOB | CLOB }, amount IN OUT BINARY INTEGER,
offset INTEGER, buffer OUT { RAW | VARCHAR2 1})

Parameters
lob loc

Large object locator of the large object to be read.
amount IN

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 88

Database Compatibility for Oracle® Developers
Built-in Package Guide

Number of bytes/characters to read.
amount OUT

Number of bytes/characters actually read. If there is no more data to be read, then
amount returns 0 and a DATA NOT_ FOUND exception is thrown.

offset
Position to begin reading. The first byte/character is position 1.

buffer

Variable to receive the large object. If 1ob locisaBLOB, then buffer must be
RAW. If 1ob locisaCLOB, then buffer must be VARCHAR?.

3.6.11 SUBSTR

The suBsTR function provides the capability to return a portion of a large object.

data { RAW | VARCHAR2Z } SUBSTR(lob loc { BLOB | CLOB }
[, amount INTEGER [, offset INTEGER]])

Parameters
lob loc
Large object locator of the large object to be read.
amount
Number of bytes/characters to be returned. Default is 32,767.
offset

Position within the large object to begin returning data. The first byte/character is
position 1. The default is 1.

data

Returned portion of the large object to be read. If 1ob I1ocisaBLOB, the return
data type is RAW. If 1ob locisa CLOB, the return data type iS VARCHAR?.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 89

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.6.12 TRIM

The TrIM procedure provides the capability to truncate a large object to the specified
length.

TRIM(lob loc IN OUT { BLOB | CLOB }, newlen INTEGER)
Parameters
lob loc

Large object locator of the large object to be trimmed.
newlen

Number of bytes/characters to which the large object is to be trimmed.

3.6.13 WRITE

The wrITE procedure provides the capability to write data into a large object. Any
existing data in the large object at the specified offset for the given length is overwritten
by data given in the buffer.

WRITE (1ob loc IN OUT { BLOB | CLOB },

amount BINARY INTEGER,
offset INTEGER, buffer { RAW | VARCHARZ2 })

Parameters
lob loc
Large object locator of the large object to be written.
amount
The number of bytes/characters in buffer to be written to the large object.
offset

The offset in bytes/characters from the beginning of the large object (origin is 1)
for the write operation to begin.

buffer

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 90

Database Compatibility for Oracle® Developers
Built-in Package Guide

Contains data to be written to the large object. If 1ob Iocis a BLOB, then
buffer must be RAW. If 1ob Iocisa CLOB, then buffer must be VARCHAR?2.

3.6.14 WRITEAPPEND

The wRITEAPPEND procedure provides the capability to add data to the end of a large
object.

WRITEAPPEND (lob loc IN OUT { BLOB | CLOB },
amount BINARY INTEGER, buffer { RAW | VARCHARZ })

Parameters
lob loc

Large object locator of the large object to which data is to be appended.
amount

Number of bytes/characters from buf fer to be appended the large object.

buffer

Data to be appended to the large object. If 1o0b 1ocisaBLOB, then buffer must
be rRaw. If 1ob locisaCLOB, then buffer must be VARCHAR?2.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 91

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.7 DBMS_LOCK

Advanced Server provides support for the DBMS LOCK.SLEEP procedure.

Function/Procedure Return Type Description
SLEEP (seconds) n/a Suspends a session for the specified number

of seconds.

Advanced Server's implementation of DBMS LOCK is a partial implementation when
compared to Oracle's version. Only DBMS LOCK.SLEEP is supported.

3.7.1 SLEEP

The SLEEP procedure suspends the current session for the specified number of seconds.
SLEEP (seconds NUMBER)
Parameters

seconds

seconds specifies the number of seconds for which you wish to suspend the
session. seconds can be a fractional value; for example, enter 1. 75 to specify
one and three-fourths of a second.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 92

3.8 DBMS_MVIEW

Database Compatibility for Oracle® Developers

Built-in Package Guide

Use procedures in the bBMS MvIEW package to manage and refresh materialized views
and their dependencies. Advanced Server provides support for the following

DBMS MVIEW procedu res:

Procedure Return Description
Type
GET MV DEPENDENCIES (I1ist VARCHARZ, n/a The GET MV DEPENDENCIES procedure
deplist VARCHARZ); returns a list of dependencies for a specified
view.
REFRESH (1ist VARCHAR2, method n/a |This variation of the REFRESH procedure
VARCHARZ, rollback seg VARCHARZ , refreshes all views named in a comma-
push_deferred rpc BOOLEAN, separated list of view names.
refresh after errors BOOLEAN ,
purge option NUMBER, parallelism
NUMBER, heap size NUMBER ,
atomic refresh BOOLEAN , nested
BOOLEAN) ;
REFRESH (tab dbms_utility.uncl_array, n/a |This variation of the REFRESH procedure
methd ‘ZfARCHAIZ% l{OlleCk_Segoo refreshes all views named in a table of
[VARCHARZ, push deferred rpc BOOLEAN, C s
refresh after errors BOOLEAN, dbms_utility.uncl array values.
purge option NUMBER, parallelism
NUMBER, heap size NUMBER,
atomic refresh BOOLEAN, nested
BOOLEAN) ;
REFRESH ALL MVIEWS (number of failures n/a The REFRESH ALL MVIEWS procedure
BINARY_INTEGER, method VARCHARZ, refreshes all materialized views.
rollback seg VARCHARZ,
refresh after errors BOOLEAN,
atomic refresh BOOLEAN) ;
REFRESH DEPENDENT (number of failures n/a |This variation of the REFRESH DEPENDENT
BINARY INTEGER, Iist VARCHARZ, method procedure refreshes all views that are
VARCHARZ, rollback seg VARCHARZ, dependent on the views listed in a comma-
refresh after errors BOOLEAN, senarated list
atomic refresh BOOLEAN, nested P '
BOOLEAN) ;
REFRESH DEPENDENT (number of failures n/a |This variation of the REFRESH DEPENDENT

BINARY INTEGER, tab
dbms_utility.uncl array, method
VARCHAR2, rollback seg VARCHAR2Z,
refresh after errors BOOLEAN,
atomic _refresh BOOLEAN, nested
BOOLEAN) ;

procedure refreshes all views that are
dependent on the views listed in a table of
dbms utility.uncl array values.

Advanced Server's implementation of DBMS MVIEW is a partial implementation when
compared to Oracle's version. Only those functions and procedures listed in the table

above are supported.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 93

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.8.1 GET_MV_DEPENDENCIES

When given the name of a materialized view, GET MV DEPENDENCIES returns a list of
items that depend on the specified view. The signature is:

GET MV DEPENDENCIES (
list IN VARCHARZ,
deplist OUT VARCHARZ2) ;

Parameters
list

11ist specifies the name of a materialized view, or a comma-separated list of
materialized view names.

deplist

deplist is a comma-separated list of schema-qualified dependencies. deplist
iS a VARCHAR?2 value.

Examples

The following example:

DECLARE
deplist VARCHAR2 (1000) ;

BEGIN
DBMS MVIEW.GET MV DEPENDENCIES ('public. empiview’ , deplist);
DBMS OUTPUT.PUT LINE ('deplist: ' || deplist);

END;

Displays a list of the dependencies on a materialized view named public.emp view.

3.8.2 REFRESH

Use the REFRESH procedure to refresh all views specified in either a comma-separated
list of view names, or a table of DBMS UTILITY.UNCL ARRAY values. The procedure
has two signatures; use the first form when specifying a comma-separated list of view
names:

REFRESH (
list IN VARCHARZ,
method IN VARCHAR2 DEFAULT NULL,
rollback seg IN VARCHARZ DEFAULT NULL,
push deferred rpc IN BOOLEAN DEFAULT TRUE,

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 94

Database Compatibility for Oracle® Developers
Built-in Package Guide

refresh after errors IN BOOLEAN DEFAULT FALSE,
purge option IN NUMBER DEFAULT 1,

parallelism IN NUMBER DEFAULT O,

heap_size IN NUMBER DEFAULT O,

atomic_refresh IN BOOLEAN DEFAULT TRUE,
nested IN BOOLEAN DEFAULT FALSE);

Use the second form to specify view names in a table of DBMS UTILITY.UNCL ARRAY

values:

REFRESH (

tab IN OUT DBMS UTILITY.UNCL ARRAY,

method IN VARCHAR2 DEFAULT NULL,

rollback seg IN VARCHAR2 DEFAULT NULL,

push deferred rpc IN BOOLEAN DEFAULT TRUE,
refresh after errors IN BOOLEAN DEFAULT FALSE,
purge option IN NUMBER DEFAULT 1,

parallelism IN NUMBER DEFAULT O,

heap size IN NUMBER DEFAULT O,

atomic refresh IN BOOLEAN DEFAULT TRUE,

nested IN BOOLEAN DEFAULT FALSE) ;

Parameters

list

tab

method

1ist isaVARCHAR? value that specifies the name of a materialized view, or a
comma-separated list of materialized view names. The names may be schema-
qualified.

tabisatable of DBMS UTILITY.UNCL ARRAY values that specify the name (or
names) of a materialized view.

method iSa VARCHAR? value that specifies the refresh method that will be
applied to the specified view (or views). The only supported method is c; this
performs a complete refresh of the view.

rollback seg

rollback seg is accepted for compatibility and ignored. The default is NULL.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 95

Database Compatibility for Oracle® Developers
Built-in Package Guide

push deferred rpc

push deferred rpc isaccepted for compatibility and ignored. The default is
TRUE.

refresh after errors

refresh after errors isaccepted for compatibility and ignored. The default
IS FALSE.

purge option

purge option is accepted for compatibility and ignored. The default is 1.
parallelism

parallelismisaccepted for compatibility and ignored. The default is 0.
heap size IN NUMBER DEFAULT O,

heap sizeis accepted for compatibility and ignored. The default is 0.
atomic refresh

atomic refresh is accepted for compatibility and ignored. The default is
TRUE.

nested
nested is accepted for compatibility and ignored. The default is FALSE.
Examples

The following example uses DBMS_MVIEW.REFRESH to perform a COMPLETE refresh on
the public.emp view materialized view:

EXEC DBMS MVIEW.REFRESH(list => 'public.emp view',6 method => 'C');

3.8.3 REFRESH_ALL_MVIEWS

Use the REFRESH ALL MVIEWS procedure to refresh any materialized views that have
not been refreshed since the table or view on which the view depends has been modified.
The signature is:

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 96

Database Compatibility for Oracle® Developers
Built-in Package Guide

REFRESH ALL MVIEWS (
number_of_failures OUT BINARY INTEGER,
method IN VARCHAR2 DEFAULT NULL,
rollback_seg IN VARCHAR2 DEFAULT NULL,
refresh after errors IN BOOLEAN DEFAULT FALSE,
atomic refresh IN BOOLEAN DEFAULT TRUE);

Parameters

number of failures

number of failuresiSaBINARY INTEGER that specifies the number of
failures that occurred during the refresh operation.

method

method IS a VARCHAR2 Vvalue that specifies the refresh method that will be
applied to the specified view (or views). The only supported method is c; this
performs a complete refresh of the view.

rollback seg
rollback seg is accepted for compatibility and ignored. The default is NULL.

refresh after errors

refresh after errors isaccepted for compatibility and ignored. The default
IS FALSE.

atomic refresh

atomic refresh is accepted for compatibility and ignored. The default is
TRUE.

Examples

The following example performs a coMpLETE refresh on all materialized views:

DECLARE

errors INTEGER;
BEGIN

DBMS MVIEW.REFRESH ALL MVIEWS (errors, method => 'C');
END;

Upon completion, errors contains the number of failures.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 97

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.8.4 REFRESH_DEPENDENT

Use the REFRESH_DEPENDENT procedure to refresh all material views that are dependent
on the views specified in the call to the procedure. You can specify a comma-separated
list or provide the view names in a table of DBMS UTILITY.UNCL ARRAY Values.

Use the first form of the procedure to refresh all material views that are dependent on the
views specified in a comma-separated list:

REFRESH DEPENDENT (

numbez;of_failures OUT BINARY INTEGER,

list IN VARCHARZ,

method IN VARCHARZ DEFAULT NULL,

rollback seg IN VARCHAR2 DEFAULT NULL

refresh after errors IN BOOLEAN DEFAULT FALSE,
atomic refresh IN BOOLEAN DEFAULT TRUE,

nested IN BOOLEAN DEFAULT FALSE);

Use the second form of the procedure to refresh all material views that are dependent on
the views specified in a table of DBMS UTILITY.UNCL ARRAY values:

REFRESH DEPENDENT (

number of failures OUT BINARY INTEGER,

tab IN DBMS UTILITY.UNCL ARRAY,

method IN VARCHARZ DEFAULT NULL,

rollback seg IN VARCHAR2 DEFAULT NULL,
refresh after errors IN BOOLEAN DEFAULT FALSE,
atomic refresh IN BOOLEAN DEFAULT TRUE,

nested IN BOOLEAN DEFAULT FALSE) ;

Parameters

number of failures

list

tab

number of failuresiSaBINARY INTEGER that contains the number of
failures that occurred during the refresh operation.

1istisaVARCHAR2 Vvalue that specifies the name of a materialized view, or a
comma-separated list of materialized view names. The names may be schema-
qualified.

tabis atable of DBMS UTILITY.UNCL ARRAY Values that specify the name (or
names) of a materialized view.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 98

Database Compatibility for Oracle® Developers
Built-in Package Guide

method

method IS a VARCHAR? Vvalue that specifies the refresh method that will be
applied to the specified view (or views). The only supported method is c; this
performs a complete refresh of the view.

rollback seg

rollback seg is accepted for compatibility and ignored. The default is NULL.

refresh after errors

refresh after errors isaccepted for compatibility and ignored. The default
IS FALSE.

atomic refresh

atomic refresh is accepted for compatibility and ignored. The default is
TRUE.

nested
nested is accepted for compatibility and ignored. The default is FALSE.
Examples

The following example performs a coMpLETE refresh on all materialized views
dependent on a materialized view named emp view that resides in the public schema:

DECLARE
errors INTEGER;
BEGIN
DBMS MVIEW.REFRESH DEPENDENT (errors, list => 'public.emp view',6 method =>
'C');
END;

Upon completion, errors contains the number of failures.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 99

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.9 DBMS_OUTPUT

The DBMS 0UTPUT package provides the capability to send messages (lines of text) to a
message buffer, or get messages from the message buffer. A message buffer is local to a
single session. Use the DBMS PIPE package to send messages between sessions.

The procedures and functions available in the bBMS ouTPUT package are listed in the
following table.

Function/Procedure Return Description
Type

DISABLE n/a Disable the capability to send and receive
messages.

ENABLE (buffer size) n/a Enable the capability to send and receive
messages.

GET_LINE (line OUT, status OUT) n/a Get a line from the message buffer.

GET_LINES (lines OUT, numlines IN |[n/a Get multiple lines from the message buffer.

OUT)

NEW_LINE n/a Puts an end-of-line character sequence.

PUT (item) n/a Puts a partial line without an end-of-line
character sequence.

PUT_LINE (item) n/a Puts a complete line with an end-of-line
character sequence.

SERVEROUTPUT (stdout) n/a Direct messages from pUT, PUT LINE, Of
NEW LINE to either standard output or the
message buffer.

The following table lists the public variables available in the bBMS 0oUTPUT package.

Public Variables Data Type | Value Description
chararr TABLE For message lines.

3.9.1 CHARARR

The CHARARR is for storing multiple message lines.

TYPE chararr IS TABLE OF VARCHAR2 (32767) INDEX BY BINARY INTEGER;

3.9.2 DISABLE

The DISABLE procedure clears out the message buffer. Any messages in the buffer at the
time the D1SABLE procedure is executed will no longer be accessible. Any messages

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 100

Database Compatibility for Oracle® Developers
Built-in Package Guide

subsequently sent with the PUT, PUT LINE, Of NEW LINE procedures are discarded. No
error is returned to the sender when the PUT, PUT LINE, Or NEW LINE procedures are
executed and messages have been disabled.

Use the ENABLE procedure or SERVEROUTPUT (TRUE) procedure to re-enable the
sending and receiving of messages.

DISABLE
Examples

This anonymous block disables the sending and receiving messages in the current
session.

BEGIN
DBMS OUTPUT.DISABLE;
END;

3.9.3 ENABLE

The ENABLE procedure enables the capability to send messages to the message buffer or
retrieve messages from the message buffer. Running SERVEROUTPUT (TRUE) also
implicitly performs the ENABLE procedure.

The destination of a message sent with PUT, PUT LINE, Or NEW LINE depends upon the
state of SERVEROUTPUT.

e [f the last state of SERVEROUTPUT iS TRUE, the message goes to standard output
of the command line.

e If the last state of SERVEROUTPUT iS FALSE, the message goes to the message
buffer.

ENABLE [(buffer size INTEGER)]

Parameters

buffer size

Maximum length of the message buffer in bytes. If a buffer size of less than
2000 is specified, the buffer size is set to 2000.

Examples

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 101

Database Compatibility for Oracle® Developers
Built-in Package Guide

The following anonymous block enables messages. Setting SERVEROUTPUT (TRUE)
forces them to standard output.

BEGIN
DBMS OUTPUT.ENABLE;
DBMSioUTPUT.SERVEROUTPUT(TRUE);
DBMS OUTPUT.PUT LINE ('Messages enabled');
END;

Messages enabled

The same effect could have been achieved by simply using SERVEROUTPUT (TRUE) .

BEGIN

DBMSiOUTPUT.SERVEROUTPUT(TRUE);

DBMS OUTPUT.PUT LINE ('Messages enabled');
END;

Messages enabled

The following anonymous block enables messages, but setting SERVEROUTPUT (FALSE)
directs messages to the message buffer.

BEGIN
DBMS OUTPUT.ENABLE;
DBMSiOUTPUT.SERVEROUTPUT(FALSE);
DBMS OUTPUT.PUT LINE ('Message sent to buffer');
END;

3.9.4 GET_LINE
The GET LINE procedure provides the capability to retrieve a line of text from the
message buffer. Only text that has been terminated by an end-of-line character sequence
is retrieved — that is complete lines generated using PUT LINE, or by a series of pUT
calls followed by a NEw LINE call.

GET LINE(line OUT VARCHAR2, status OUT INTEGER)
Parameters
line

Variable receiving the line of text from the message buffer.
status

0 if a line was returned from the message buffer, 1 if there was no line to return.

Examples

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 102

Database Compatibility for Oracle® Developers
Built-in Package Guide

The following anonymous block writes the emp table out to the message buffer as a
comma-delimited string for each row.

EXEC DBMS OUTPUT.SERVEROUTPUT (FALSE) ;

DECLARE

vV_emprec VARCHAR?2 (120) ;

CURSOR emp cur IS SELECT * FROM emp ORDER BY empno;
BEGIN

DBMS OUTPUT.ENABLE;
FOR i IN emp cur LOOP

v_emprec := i.empno || ',' || i.ename || ',"' || di.job || '," ||
NVL (LTRIM (TO CHAR (i.mgr,'9999")),'') || ',' || i.hiredate ||
P s A== O O
NVL (LTRIM(TO CHAR(i.comm, '9990.99"')),'"') || ',' || i.deptno;
DBMS OUTPUT.PUT LINE (v_emprec) ;
END LOOP;

END;

The following anonymous block reads the message buffer and inserts the messages
written by the prior example into a table named messages. The rows in messages are
then displayed.

CREATE TABLE messages (

status INTEGER,

msg VARCHARZ2 (100)
);
DECLARE

v _line VARCHARZ2 (100) ;

v_status INTEGER := 0;
BEGIN

DBMS OUTPUT.GET LINE(v_line,v_status);
WHILE v _status = 0 LOOP
INSERT INTO messages VALUES (v_status, v_line);
DBMS OUTPUT.GET LINE (v line,v status);
END LOOP;
END;

SELECT msg FROM messages;

7369, SMITH,CLERK, 7902,17-DEC-80 00:00:00,800.00,,20

7499, ALLEN, SALESMAN, 7698, 20-FEB-81 00:00:00,1600.00,300.00, 30
7521, WARD, SALESMAN, 7698, 22-FEB-81 00:00:00,1250.00,500.00, 30
7566, JONES, MANAGER, 7839, 02-APR-81 00:00:00,2975.00,,20

7654 ,MARTIN, SALESMAN, 7698, 28-SEP-81 00:00:00,1250.00,1400.00,30
7698, BLAKE , MANAGER, 7839, 01-MAY-81 00:00:00,2850.00,,30
7782,CLARK, MANAGER, 7839, 09-JUN-81 00:00:00,2450.00,,10

7788, SCOTT, ANALYST, 7566,19-APR-87 00:00:00,3000.00,,20

7839, KING, PRESIDENT, ,17-NOV-81 00:00:00,5000.00,,10

7844, TURNER, SALESMAN, 7698, 08-SEP-81 00:00:00,1500.00,0.00, 30
7876, ADAMS, CLERK, 7788,23-MAY-87 00:00:00,1100.00,,20

7900, JAMES, CLERK, 7698, 03-DEC-81 00:00:00,950.00,,30

7902, FORD, ANALYST, 7566, 03-DEC-81 00:00:00,3000.00,,20
7934,MILLER, CLERK, 7782,23-JAN-82 00:00:00,1300.00,,10

(14 rows)

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 103

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.9.5 GET_LINES

The GET LINES procedure provides the capability to retrieve one or more lines of text
from the message buffer into a collection. Only text that has been terminated by an end-
of-line character sequence is retrieved — that is complete lines generated using

PUT LINE, or by a series of puT calls followed by a NEw LINE call.

GET LINES (lines OUT CHARARR, numlines IN OUT INTEGER)
Parameters

lines

Table receiving the lines of text from the message buffer. See CHARARR for a
description of 1ines.

numlines IN
Number of lines to be retrieved from the message buffer.

numlines OUT

Actual number of lines retrieved from the message buffer. If the output value of
numlines IS less than the input value, then there are no more lines left in the
message buffer.

Examples

The following example uses the GET LINES procedure to store all rows from the emp
table that were placed on the message buffer, into an array.

EXEC DBMS OUTPUT.SERVEROUTPUT (FALSE) ;

DECLARE

vV_emprec VARCHAR?Z2 (120) ;

CURSOR emp cur IS SELECT * FROM emp ORDER BY empno;
BEGIN

DBMS OUTPUT.ENABLE;
FOR i IN emp cur LOOP

v_emprec := i.empno || ',' || i.ename || ',"' || di.job || ', " ||
NVL (LTRIM(TO CHAR(i.mgr,'9999")),'"') || ',"' || i.hiredate ||
U Il desal || ',
NVL (LTRIM(TO_CHAR(i.comm, '9990.99')),'"') || ',' || i.deptno;
DBMS_ OUTPUT.PUT LINE (v_emprec);
END LOOP;
END;
DECLARE
vilines DBMS OUTPUT.CHARARR;
v_numlines INTEGER := 14;
v_status INTEGER := 0;
BEGIN

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 104

Database Compatibility for Oracle® Developers
Built-in Package Guide

DBMS OUTPUT.GET LINES (v_lines,v numlines);
FOR i IN 1..v numlines LOOP
INSERT INTO messages VALUES (v _numlines, v _lines(i));
END LOOP;
END;

SELECT msg FROM messages;

7369, SMITH,CLERK, 7902,17-DEC-80 00:00:00,800.00,,20

7499, ALLEN, SALESMAN, 7698, 20-FEB-81 00:00:00,1600.00,300.00, 30
7521, WARD, SALESMAN, 7698, 22-FEB-81 00:00:00,1250.00,500.00, 30
7566, JONES, MANAGER, 7839, 02-APR-81 00:00:00,2975.00,,20
7654,MARTIN, SALESMAN, 7698,28-SEP-81 00:00:00,1250.00,1400.00, 30
7698, BLAKE, MANAGER, 7839, 01-MAY-81 00:00:00,2850.00,,30
7782,CLARK, MANAGER, 7839, 09-JUN-81 00:00:00,2450.00,,10

7788, SCOTT,ANALYST, 7566,19-APR-87 00:00:00,3000.00,,20

7839, KING, PRESIDENT, ,17-NOV-81 00:00:00,5000.00,,10

7844, TURNER, SALESMAN, 7698, 08-SEP-81 00:00:00,1500.00,0.00, 30
7876,ADAMS, CLERK, 7788,23-MAY-87 00:00:00,1100.00,,20

7900, JAMES, CLERK, 7698, 03-DEC-81 00:00:00,950.00,, 30

7902, FORD, ANALYST, 7566, 03-DEC-81 00:00:00,3000.00,,20
7934,MILLER, CLERK, 7782,23-JAN-82 00:00:00,1300.00,,10

(14 rows)

3.9.6 NEW_LINE

The NEW LINE procedure writes an end-of-line character sequence in the message buffer.
NEW LINE

Parameters

The NEW LINE procedure expects no parameters.

3.9.7 PUT
The pUT procedure writes a string to the message buffer. No end-of-line character

sequence is written at the end of the string. Use the NEw LINE procedure to add an end-
of-line character sequence.

PUT (item VARCHAR2)
Parameters
item

Text written to the message buffer.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 105

Database Compatibility for Oracle® Developers
Built-in Package Guide

Examples

The following example uses the puT procedure to display a comma-delimited list of
employees from the emp table.

DECLARE
CURSOR emp cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
FOR i IN emp cur LOOP
DBMS OUTPUT.PUT (1. empno);
DBMS OUTPUT.PUT (',');
DBMS_OUTPUT.PUT(l ename) ;
DBMS OUTPUT.PUT (',');
DBMS OUTPUT.PUT (i job);
DBMS OUTPUT.PUT (',');
DBMS OUTPUT.PUT (i mgr);
DBMS_OUTPUT.PUT (', ') ;
(1
('
(1
('
(1
('

DBMS OUTPUT. PUT (i hlredate)
DBMS OUTPUT.PUT ") g

DBMS OUTPUT. PUT (i sal);
DBMS OUTPUT.PUT ") g

DBMS OUTPUT. PUT (i Comm)

DBMS OUTPUT.PUT ") g
DBMS_OUTPUT.PUT(l deptno) ;
DBMS OUTPUT.NEW LINE;
END LOOP;
END;

7369,SMITH,CLERK, 7902,17-DEC-80 00:00:00,800.00,,20

7499, ALLEN, SALESMAN, 7698, 20-FEB-81 00:00:00,1600.00,300.00, 30
7521, WARD, SALESMAN, 7698, 22-FEB-81 00:00:00,1250.00,500.00, 30
7566, JONES, MANAGER, 7839, 02-APR-81 00:00:00,2975.00,,20
7654,MARTIN, SALESMAN, 7698, 28-SEP-81 00:00:00,1250.00,1400.00, 30
7698, BLAKE , MANAGER, 7839, 01-MAY-81 00:00:00,2850.00,,30
7782,CLARK, MANAGER, 7839, 09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT, ANALYST, 7566, 19-APR-87 00:00:00,3000.00,,20

7839, KING, PRESIDENT, ,17-NOV-81 00:00:00,5000.00,,10

7844, TURNER, SALESMAN, 7698, 08-SEP-81 00:00:00,1500.00,0.00, 30
7876,ADAMS, CLERK, 7788, 23-MAY-87 00:00:00,1100.00,,20

7900, JAMES, CLERK, 7698, 03-DEC-81 00:00:00, 950.00,, 30

7902, FORD, ANALYST, 7566, 03-DEC-81 00:00:00,3000.00,,20
7934,MILLER, CLERK, 7782,23-JAN-82 00:00:00,1300.00,,10

3.9.8 PUT_LINE

The pUT LINE procedure writes a single line to the message buffer including an end-of-
line character sequence.

PUT LINE (item VARCHAR2)
Parameters
item

Text to be written to the message buffer.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 106

Database Compatibility for Oracle® Developers
Built-in Package Guide

Examples

The following example uses the PUT LINE procedure to display a comma-delimited list
of employees from the emp table.

DECLARE
V_emprec VARCHARZ (120) ;
CURSOR emp cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
FOR i IN emp cur LOOP
v_emprec := i.empno || ',' || i.ename || '," || i.job || ',"' ||
NVL(LTRIM(TO_CHAR(i.mgr,'9999')),") [l '"," || i.hiredate ||
vl di.sal |ty L
NVL (LTRIM(TO_CHAR (i.comm, '9990.99")),'") || ',' || i.deptno;
DBMS OUTPUT.PUT LINE (v_emprec) ;
END LOOP;
END;

7369,SMITH,CLERK, 7902,17-DEC-80 00:00:00,800.00,,20

7499, ALLEN, SALESMAN, 7698, 20-FEB-81 00:00:00,1600.00,300.00, 30
7521, WARD, SALESMAN, 7698, 22-FEB-81 00:00:00,1250.00,500.00, 30
7566, JONES, MANAGER, 7839, 02-APR-81 00:00:00,2975.00,,20
7654,MARTIN, SALESMAN, 7698, 28-SEP-81 00:00:00,1250.00,1400.00, 30
7698, BLAKE , MANAGER, 7839, 01-MAY-81 00:00:00,2850.00,,30
7782,CLARK, MANAGER, 7839, 09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT, ANALYST, 7566, 19-APR-87 00:00:00,3000.00,,20

7839, KING, PRESIDENT, ,17-NOV-81 00:00:00,5000.00,,10

7844, TURNER, SALESMAN, 7698, 08-SEP-81 00:00:00,1500.00,0.00, 30
7876,ADAMS, CLERK, 7788, 23-MAY-87 00:00:00,1100.00,,20

7900, JAMES, CLERK, 7698, 03-DEC-81 00:00:00, 950.00,, 30

7902, FORD, ANALYST, 7566, 03-DEC-81 00:00:00,3000.00,,20
7934,MILLER, CLERK, 7782,23-JAN-82 00:00:00,1300.00,,10

3.9.9 SERVEROUTPUT

The SERVEROUTPUT procedure provides the capability to direct messages to standard
output of the command line or to the message buffer. Setting SERVEROUTPUT (TRUE)
also performs an implicit execution of ENABLE.

The default setting of SERVEROUTPUT is implementation dependent. For example, in
Oracle SQL*Plus, SERVEROUTPUT (FALSE) is the default. In PSQL,

SERVEROUTPUT (TRUE) is the default. Also note that in Oracle SQL*Plus, this setting is
controlled using the SQL*Plus seT command, not by a stored procedure as implemented
in Advanced Server.

SERVEROUTPUT (stdout BOOLEAN)

Parameters

stdout

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 107

Database Compatibility for Oracle® Developers
Built-in Package Guide

Set to TRUE if subsequent PUT, PUT LINE, Of NEW LINE commands are to send
text directly to standard output of the command line. Set to FALSE if text is to be
sent to the message buffer.

Examples

The following anonymous block sends the first message to the command line and the
second message to the message buffer.

BEGIN
DBMSioUTPUT.SERVEROUTPUT(TRUE);
DBMS OUTPUT.PUT LINE ('This message goes to the command line');
DBMSioUTPUT.SERVEROUTPUT(FALSE);
DBMSioUTPUT.PUTiLINE(’This message goes to the message buffer');
END;

This message goes to the command line

If within the same session, the following anonymous block is executed, the message
stored in the message buffer from the prior example is flushed and displayed on the
command line as well as the new message.

BEGIN

DBMSiOUTPUT.SERVEROUTPUT(TRUE);

DBMS OUTPUT.PUT LINE ('Flush messages from the buffer');
END;

This message goes to the message buffer
Flush messages from the buffer

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 108

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.10DBMS_PIPE

The pBMS PIPE package provides the capability to send messages through a pipe within
or between sessions connected to the same database cluster.

The procedures and functions available in the bBMS PIPE package are listed in the
following table:

Function/Procedure Return Description
Type

CREATE_PIPE (pipename [, INTEGER [Explicitly create a private pipe if privateis

maxpipesize] [, private]) “true” (the default) or a public pipe if private
is “false”.

NEXT ITEM TYPE INTEGER [Determine the data type of the next item in a
received message.

PACK_MESSAGE (item) n/a Place i tem in the session’s local message buffer.

PURGE (pipename) n/a Remove unreceived messages from the specified
pipe.

RECEIVE_MESSAGE (pipename [, INTEGER [Get a message from a specified pipe.

timeout])

REMOVE_PIPE (pipename) INTEGER [Delete an explicitly created pipe.

RESET_BUFFER n/a Reset the local message buffer.

SEND MESSAGE (pipename [, timeout [INTEGER Send a message on a pipe.

] [, maxpipesize])

UNIQUE_SESSION_NAME VARCHARZ [Obtain a unique session name.

UNPACK_MESSAGE (item OUT) n/a Retrieve the next data item from a message into
a type-compatible variable, i tem.

Pipes are categorized as implicit or explicit. An implicit pipe is created if a reference is
made to a pipe name that was not previously created by the CREATE pIPE function. For
example, if the SEND MESSAGE function is executed using a non-existent pipe name, a
new implicit pipe is created with that name. An explicit pipe is created using the
CREATE PIPE function whereby the first parameter specifies the pipe name for the new

pipe.

Pipes are also categorized as private or public. A private pipe can only be accessed by the
user who created the pipe. Even a superuser cannot access a private pipe that was created
by another user. A public pipe can be accessed by any user who has access to the

DBMS PIPE package.

A public pipe can only be created by using the cCREATE PIPE function with the third
parameter set to FALSE. The CREATE PIPE function can be used to create a private pipe
by setting the third parameter to TRUE or by omitting the third parameter. All implicit
pipes are private.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 109

Database Compatibility for Oracle® Developers
Built-in Package Guide

The individual data items or “lines” of a message are first built-in a local message buffer,
unique to the current session. The PACK MESSAGE procedure builds the message in the
session’s local message buffer. The SEND MESSAGE function is then used to send the
message through the pipe.

Receipt of a message involves the reverse operation. The RECEIVE MESSAGE function is
used to get a message from the specified pipe. The message is written to the session’s
local message buffer. The UNPACK MESSAGE procedure is then used to transfer the
message data items from the message buffer to program variables. If a pipe contains
multiple messages, RECEIVE MESSAGE gets the messages in FIFO (first-in-first-out)
order.

Each session maintains separate message buffers for messages created with the

PACK_ MESSAGE procedure and messages retrieved by the RECEIVE MESSAGE function.
Thus messages can be both built and received in the same session. However, if
consecutive RECEIVE MESSAGE calls are made, only the message from the last
RECEIVE MESSAGE call will be preserved in the local message buffer.

3.10.1 CREATE_PIPE

The crREATE PIPE function creates an explicit public pipe or an explicit private pipe
with a specified name.

status INTEGER CREATE_PIPE (pipename VARCHAR2
[, maxpipesize INTEGER] [, private BOOLEAN 1])

Parameters
pipename
Name of the pipe.
maxpipesize
Maximum capacity of the pipe in bytes. Default is 8192 bytes.
private

Create a public pipe if set to FALSE. Create a private pipe if set to TRUE. This is
the default.

status

Status code returned by the operation. O indicates successful creation.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 110

Database Compatibility for Oracle® Developers
Built-in Package Guide

Examples

The following example creates a private pipe named messages:

DECLARE
v_status INTEGER;
BEGIN

v_status := DBMS PIPE.CREATE PIPE ('messages');
DBMS OUTPUT.PUT LINE ('CREATE PIPE status: ' ||

END;

CREATE PIPE status: 0

v_status);

The following example creates a public pipe named mailbox:

DECLARE
v_status INTEGER;
BEGIN
v_status := DBMS PIPE.CREATE PIPE ('mailbox',8192,FALSE);
DBMS OUTPUT.PUT LINE ('CREATE PIPE status: ' || v_status);
END;

CREATE PIPE status: 0

3.10.2 NEXT_ITEM_TYPE

The NEXT ITEM TYPE function returns an integer code identifying the data type of the
next data item in a message that has been retrieved into the session’s local message
buffer. As each item is moved off of the local message buffer with the UNPACK MESSAGE
procedure, the NEXT ITEM TYPE function will return the data type code for the next
available item. A code of 0 is returned when there are no more items left in the message.

typecode INTEGER NEXT ITEM TYPE
Parameters
typecode

Code identifying the data type of the next data item as shown in Table 7-3-1.

Table 7-3-1 NEXT_ITEM_TYPE Data Type Codes

Type Code Data Type
0 No more data items
9 NUMBER
11 VARCHAR?2
13 DATE
23 RAW

Note: The type codes list in the table are not compatible with Oracle databases. Oracle
assigns a different numbering sequence to the data types.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 111

Database Compatibility for Oracle® Developers

Examples

Built-in Package Guide

The following example shows a pipe packed with a NUMBER item, a VARCHAR? item, a
DATE item, and a Raw item. A second anonymous block then uses the NEXT ITEM TYPE

function to display the type code of each item.

DECLARE
v_number NUMBER := 123;
v_varchar VARCHARZ2 (20) :=
v_date DATE := SYSDATE;
vV_raw RAW (4) := '21222324"';
v_status INTEGER;

BEGIN

DBMS PIPE.PACK MESSAGE (v_number) ;
DBMS_PIPE.PACK_MESSAGE(v_varchar);
DBMS PIPE.PACK MESSAGE (v_date);
DBMS PIPE.PACK MESSAGE (v_raw);

'Character data';

v_status := DBMS PIPE.SEND MESSAGE ('datatypes');
DBMS OUTPUT.PUT LINE ('SEND MESSAGE status: ' || v status);
EXCEPTION

WHEN OTHERS THEN
DBMS OUTPUT.PUT LINE ('SQLERRM: '
DBMS OUTPUT.PUT LINE ('SQLCODE: '
END;

SEND MESSAGE status: 0

DECLARE
v_number NUMBER ;
v_varchar VARCHARZ2 (20) ;
v_date DATE;
v_timestamp TIMESTAMP;
v_raw RAW (4) ;
v_status INTEGER;
BEGIN
v status :=

SQLERRM) ;
SQLCODE) ;

_ DBMS PIPE.RECEIVE MESSAGE ('datatypes');
DBMS OUTPUT.PUT LINE ('RECEIVE MESSAGE status: ' ||

v_status);

DBMS_OUTPUT.PUT LINE ('——-———————————————mm oo 'y ;

v_status := DBMS PIPE.NEXT ITEM TYPE;
DBMS OUTPUT.PUT LINE ('NEXT ITEM TYPE:
DBMS PIPE.UNPACK MESSAGE (v_number) ;
DBMS OUTPUT.PUT LINE ('NUMBER Item

|| v_status);

|| v_number) ;

DBMS_OUTPUT.PUT LINE ('——-———————————————mm o= 'y ;

v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
DBMS OUTPUT.PUT LINE ('NEXT ITEM TYPE:
DBMS_PIPE.UNPACK_MESSAGE(v_varchar);
DBMS OUTPUT.PUT LINE ('VARCHAR2 Item

|| v_status);

| | v_varchar);

DBMS_OUTPUT.PUT LINE ('——-————————————m oo ") ;

v_status := DBMS PIPE.NEXT ITEM TYPE;
DBMS_OUTPUT.PUT LINE ('NEXT ITEM TYPE: ' || v_status);

DBMS PIPE.UNPACK MESSAGE (v_date);

DBMS OUTPUT.PUT LINE ('DATE Item ' || v_date);

DBMS OUTPUT.PUT LINE ('-————-——=————————————— oo) g
v_status := DBMS PIPE.NEXT ITEM TYPE;

DBMS OUTPUT.PUT LINE('NEXT ITEM TYPE: ' || v _status);
DBMS_PIPE.UNPACK MESSAGE (v_raw) ;

DBMS OUTPUT.PUT LINE ('RAW Item " || v_raw);

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

112

Database Compatibility for Oracle® Developers
Built-in Package Guide

DBMS OUTPUT.PUT LINE ('-————-————————m———mmmmmmmm o)

v_status := DBMS PIPE.NEXT ITEM TYPE;

DBMS_OUTPUT.PUT LINE ('NEXT ITEM TYPE: ' || v_status);

DBMS_OUTPUT.PUT LINE ('—=-—————————m——m oo ") g
EXCEPTION

WHEN OTHERS THEN

DBMS OUTPUT.PUT LINE ('SQLERRM: ' || SQLERRM) ;
DBMS OUTPUT.PUT LINE ('SQLCODE: ' || SQLCODE) ;
END;

RECEIVE MESSAGE status: 0

NEXT ITEM TYPE: 9
NUMBER Item : 123

NEXT ITEM TYPE: 11
VARCHAR2 Item : Character data

NEXT ITEM TYPE: 13
DATE Item : 02-0CT-07 11:11:43

NEXT ITEM TYPE: 23
RAW Item 1 21222324

NEXT ITEM TYPE: 0

3.10.3 PACK_MESSAGE
The PACK MESSAGE procedure places an item of data in the session’s local message

buffer. PACK_MESSAGE must be executed at least once before issuing a SEND MESSAGE
call.

PACK MESSAGE (item { DATE | NUMBER | VARCHARZ | RAW })

Use the UNPACK MESSAGE procedure to obtain data items once the message is retrieved
using a RECEIVE MESSAGE call.

Parameters
item

An expression evaluating to any of the acceptable parameter data types. The value
is added to the session’s local message buffer.

3.10.4 PURGE

The PURGE procedure removes the unreceived messages from a specified implicit pipe.

PURGE (pipename VARCHAR2)

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 113

Database Compatibility for Oracle® Developers
Built-in Package Guide

Use the REMOVE PIPE function to delete an explicit pipe.
Parameters
pipename
Name of the pipe.
Examples

Two messages are sent on a pipe:

DECLARE
v_status INTEGER;
BEGIN
DBMS PIPE.PACK MESSAGE ('Message #1');
v_status := DBMS PIPE.SEND MESSAGE ('pipe');
DBMS OUTPUT.PUT LINE ('SEND MESSAGE status: ' || v_status);

DBMS PIPE.PACK MESSAGE ('Message #2');

v_status := DBMS PIPE.SEND MESSAGE ('pipe');

DBMS OUTPUT.PUT LINE ('SEND MESSAGE status: ' || v_status);
END;

SEND MESSAGE status: 0
SEND MESSAGE status: 0

Receive the first message and unpack it:

DECLARE
v_item VARCHAR2 (80) ;
v_status INTEGER;
BEGIN
v_status := DBMS PIPE.RECEIVE MESSAGE ('pipe',1);
DBMS OUTPUT.PUT LINE ('RECEIVE MESSAGE status: ' || v _status);
DBMS_PIPE.UNPACK_MESSAGE(v_item);
DBMS OUTPUT.PUT LINE('Item: ' || v_item);
END;

RECEIVE MESSAGE status: 0
Item: Message #1

Purge the pipe:
EXEC DBMS_PIPE.PURGE('pipe');

Try to retrieve the next message. The RECEIVE MESSAGE call returns status code 1
indicating it timed out because no message was available.

DECLARE
v_item VARCHAR2 (80) ;
v_status INTEGER;
BEGIN
v_status := DBMS PIPE.RECEIVE MESSAGE ('pipe',1);
DBMS OUTPUT.PUT LINE ('RECEIVE MESSAGE status: ' || v_status);

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 114

Database Compatibility for Oracle® Developers
Built-in Package Guide

END;

RECEIVE MESSAGE status: 1

3.10.5 RECEIVE_MESSAGE

The RECEIVE MESSAGE function obtains a message from a specified pipe.

status INTEGER RECEIVE MESSAGE (pipename VARCHARZ
[, timeout INTEGER 1])

Parameters
pipename
Name of the pipe.

timeout

Wait time (seconds). Default is 86400000 (1000 days).

status
Status code returned by the operation.

The possible status codes are:

Table 7-3-2 RECEIVE_MESSAGE Status Codes

Status Code Description
Success
Time out
2 Message too large .for the buffer
3.10.6 REMOVE_PIPE

The REMOVE PIPE function deletes an explicit private or explicit public pipe.

status INTEGER REMOVE PIPE (pipename VARCHAR2)

Use the REMOVE PIPE function to delete explicitly created pipes — i.e., pipes created
with the CREATE_PIPE function.

Parameters

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 115

Database Compatibility for Oracle® Developers
Built-in Package Guide

pipename
Name of the pipe.
status

Status code returned by the operation. A status code of 0 is returned even if the
named pipe is non-existent.

Examples

Two messages are sent on a pipe:

DECLARE
v_status INTEGER;
BEGIN
v_status := DBMS_PIPE.CREATE_PIPE('pipe');
DBMS OUTPUT.PUT LINE ('CREATE PIPE status : ' || v status);

DBMS PIPE.PACK MESSAGE ('Message #1');
v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
DBMS OUTPUT.PUT LINE ('SEND MESSAGE status: ' || v status);

DBMS PIPE.PACK MESSAGE ('Message #2');

v_status := DBMS PIPE.SEND MESSAGE ('pipe');

DBMS OUTPUT.PUT LINE ('SEND MESSAGE status: ' || v_status);
END;

CREATE PIPE status : O

SEND MESSAGE status: 0
SEND MESSAGE status: 0

Receive the first message and unpack it:

DECLARE
v_item VARCHARZ2 (80) ;
v_status INTEGER;
BEGIN
v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',l);
DBMS OUTPUT.PUT LINE ('RECEIVE MESSAGE status: ' || v _status);
DBMS_PIPE.UNPACK_MESSAGE(v_item);
DBMS OUTPUT.PUT LINE('Item: ' || v_item);
END;

RECEIVE MESSAGE status: 0
Item: Message #1

Remove the pipe:

SELECT DBMS PIPE.REMOVE PIPE('pipe') FROM DUAL;

remove pipe

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 116

Database Compatibility for Oracle® Developers
Built-in Package Guide

Try to retrieve the next message. The RECEIVE MESSAGE call returns status code 1
indicating it timed out because the pipe had been deleted.

DECLARE

v_item VARCHAR2 (80) ;

v_status INTEGER;
BEGIN

v_status := DBMS PIPE.RECEIVE MESSAGE ('pipe',1);

DBMS OUTPUT.PUT LINE ('RECEIVE MESSAGE status: ' || v_status);
END;

RECEIVE MESSAGE status: 1

3.10.7 RESET_BUFFER

The RESET BUFFER procedure resets a “pointer” to the session’s local message buffer
back to the beginning of the buffer. This has the effect of causing subsequent

PACK MESSAGE calls to overwrite any data items that existed in the message buffer prior
to the RESET BUFFER call.

RESET BUFFER

Examples

A message to John is written to the local message buffer. It is replaced by a message to
Bob by calling RESET BUFFER. The message is sent on the pipe.

DECLARE
v_status INTEGER;

BEGIN
DBMS_PIPE.PACK_MESSAGE('Hi, John') ;
DBMS PIPE.PACK MESSAGE ('Can you attend a meeting at 3:00, today?');
DBMS PIPE.PACK MESSAGE ('If not, is tomorrow at 8:30 ok with you?');
DBMS PIPE.RESET BUFFER;
DBMS_PIPE.PACK_MESSAGE('Hi, Bob') ;
DBMS PIPE.PACK MESSAGE ('Can you attend a meeting at 9:30, tomorrow?');
v_status := DBMS PIPE.SEND MESSAGE ('pipe'):
DBMS OUTPUT.PUT LINE ('SEND MESSAGE status: ' || v_status);

END;

SEND MESSAGE status: 0

The message to Bob is in the received message.

DECLARE
v_item VARCHAR?2 (80) ;
v_status INTEGER;
BEGIN
v_status := DBMSiPIPE.RECEIVEiMESSAGE('pipe‘,1);
DBMS OUTPUT.PUT LINE ('RECEIVE MESSAGE status: ' || v_status);
DBMS PIPE.UNPACK MESSAGE (v_item);
DBMS_OUTPUT.PUT_LINE('Item: ' v_item);

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 117

Database Compatibility for Oracle® Developers
Built-in Package Guide

DBMS PIPE.UNPACK MESSAGE (v_item);
DBMS OUTPUT.PUT LINE('Item: ' || v_item);
END;

RECEIVE MESSAGE status: 0
Item: Hi, Bob
Item: Can you attend a meeting at 9:30, tomorrow?

3.10.8 SEND_MESSAGE

The SEND MESSAGE function sends a message from the session’s local message buffer to
the specified pipe.

status SEND MESSAGE (pipename VARCHARZ [, timeout INTEGER]
[, maxpipesize INTEGER])

Parameters
pipename

Name of the pipe.
timeout

Wait time (seconds). Default is 86400000 (1000 days).
maxpipesize

Maximum capacity of the pipe in bytes. Default is 8192 bytes.
status

Status code returned by the operation.

The possible status codes are:

Table 7-3-3 SEND_MESSAGE Status Codes

Status Code Description
Success
Time out
Function interrupted

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 118

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.10.9 UNIQUE_SESSION_NAME
The UNIQUE SESSION NAME function returns a name, unique to the current session.
name VARCHAR2 UNIQUE SESSION NAME

Parameters

name
Unique session name.
Examples

The following anonymous block retrieves and displays a unique session name.

DECLARE

v_session VARCHAR?2 (30) ;
BEGIN

v_session := DBMS PIPE.UNIQUE SESSION NAME;

DBMS OUTPUT.PUT LINE ('Session Name: ' || v_session);
END;

Session Name: PGSPIPES$S5$2752

3.10.10 UNPACK_MESSAGE

The UNPACK MESSAGE procedure copies the data items of a message from the local

message buffer to a specified program variable. The message must be placed in the local

message buffer with the RECEIVE MESSAGE function before using UNPACK MESSAGE.
UNPACK MESSAGE (item OUT { DATE | NUMBER | VARCHAR2 | RAW })

Parameters

item

Type-compatible variable that receives a data item from the local message buffer.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 119

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.10.11 Comprehensive Example

The following example uses a pipe as a “mailbox”. The procedures to create the mailbox,
add a multi-item message to the mailbox (up to three items), and display the full contents
of the mailbox are enclosed in a package named, mailbox.

CREATE OR REPLACE PACKAGE mailbox
IS
PROCEDURE create mailbox;
PROCEDURE add message (
p_mailbox VARCHARZ,

p_item 1 VARCHAR2,
p_item 2 VARCHAR2 DEFAULT 'END',
p_item 3 VARCHAR2 DEFAULT 'END'

) i
PROCEDURE empty mailbox (
p_mailbox VARCHARZ2,
p_waittime INTEGER DEFAULT 10
) i
END mailbox;

CREATE OR REPLACE PACKAGE BODY mailbox
IS
PROCEDURE create mailbox
IS
v_mailbox VARCHARZ2 (30) ;
v_status INTEGER;
BEGIN
v_mailbox := DBMS PIPE.UNIQUE SESSION NAME;
v_status g= DBMS_PIPE.CREATE_PIPE(v_mailbox,lOOO,FALSE);
IF v _status = 0 THEN
DBMS OUTPUT.PUT LINE ('Created mailbox: ' || v_mailbox);
ELSE
DBMS_OUTPUT.PUT_LINE('CREATE_PIPE failed - status: ' ||
v_status) ;
END IF;
END create mailbox;

PROCEDURE add message (
p_mailbox VARCHARZ2,

p_item 1 VARCHARZ,
p_item 2 VARCHAR2 DEFAULT 'END',
p_item 3 VARCHAR2 DEFAULT 'END'
)
IS
v_item cnt INTEGER := 0;
v_status INTEGER;
BEGIN
DBMS PIPE.PACK MESSAGE (p item 1);
v_item cnt := 1;
IF p item 2 != 'END' THEN
DBMS PIPE.PACK MESSAGE (p item 2);
v_item cnt := v item cnt + 1;
END IF;
IF p item 3 != 'END' THEN
DBMS PIPE.PACK MESSAGE (p item 3);
v_item cnt := v item cnt + 1;
END IF;
v_status := DBMS PIPE.SEND MESSAGE (p mailbox) ;
IF v_status = 0 THEN
DBMS OUTPUT.PUT LINE ('Added message with ' || v_item cnt ||

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 120

Database Compatibility for Oracle® Developers
Built-in Package Guide

' item(s) to mailbox ' || p_mailbox);
ELSE
DBMS OUTPUT.PUT LINE ('SEND MESSAGE in add message failed - ' ||
'status: ' || v_status);
END IF;

END add message;

PROCEDURE empty mailbox (
p_mailbox VARCHARZ,
piwaittime INTEGER DEFAULT 10

IS
V_msgno INTEGER DEFAULT O;
viitemno INTEGER DEFAULT O;
v_item VARCHAR2 (100) ;
v_status INTEGER;
BEGIN
v_status := DBMS PIPE.RECEIVE MESSAGE (p mailbox,p waittime);
WHILE v_status = 0 LOOP
v_msgno := v_msgno + 1;
DBMS OUTPUT.PUT LINE ('****** Start message #' || v _msgno ||
" ******l);
BEGIN
LOOP
v_status := DBMS_PIPE.NEXT_ITEM_TYPE;

EXIT WHEN v _status = 0;
DBMS PIPE.UNPACK MESSAGE (v_item);

v_itemno := v_itemno + 1;
DBMS OUTPUT.PUT LINE('Item #' || v_itemno [| ': ' ||
v_item);
END LOOP;
DBMS OUTPUT.PUT LINE ('*******x End message #' || v_msgno ||

UokkkkkkKk 1),
DBMS OUTPUT.PUT LINE('*');

v_itemno := 0;
v_status := DBMS PIPE.RECEIVE MESSAGE (p mailbox,1);
END;
END LOOP;
DBMS OUTPUT.PUT LINE ('Number of messages received: ' || v_msgno);
v_status := DBMS PIPE.REMOVE PIPE (p mailbox);
IF v_status = 0 THEN
DBMS OUTPUT.PUT LINE ('Deleted mailbox ' || p mailbox);
ELSE
DBMS OUTPUT.PUT LINE ('Could not delete mailbox - status: '
|| v status);
END IF; B

END empty mailbox;
END mailbox;

The following demonstrates the execution of the procedures in mailbox. The first
procedure creates a public pipe using a name generated by the UNIQUE SESSION NAME
function.

EXEC mailbox.create mailbox;

Created mailbox: PGSPIPES13$3940

Using the mailbox name, any user in the same database with access to the mailbox
package and DBMS PIPE package can add messages:

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 121

Database Compatibility for Oracle® Developers
Built-in Package Guide

EXEC mailbox.add message ('PGSPIPES$13$3940', 'Hi, John', 'Can you attend a
meeting at 3:00, today?','-- Mary');

Added message with 3 item(s) to mailbox PGSPIPES$S13$3940

EXEC mailbox.add message ('PGSPIPES13$3940', 'Don''t forget to submit your
report', 'Thanks, ', '-- Joe');

Added message with 3 item(s) to mailbox PGSPIPES$13$3940

Finally, the contents of the mailbox can be emptied:

EXEC mailbox.empty mailbox ('PGSPIPES13$3940");

x*kxxxk Start message #1 FxExxx

Item #1: Hi, John

Item #2: Can you attend a meeting at 3:00, today?
Item #3: -- Mary

* Kk ok ok Kk kK End message #1 * Kk k ok k ok k

*

HEEEEY Start MOSSEge fia M

Item #1: Don't forget to submit your report
Item #2: Thanks,

Item #3: Joe

* Kk ok ok Kk kK End message #2 * Kk k ok k ok ok

*

Number of messages received: 2

Deleted mailbox PGSPIPES13$3940

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 122

3.11DBMS_PROFILER

Database Compatibility for Oracle® Developers

Built-in Package Guide

The DBMS PROFILER package collects and stores performance information about the
PL/pgSQL and SPL statements that are executed during a performance profiling session;
use the functions and procedures listed below to control the profiling tool.

Function/Procedure

Return
Type

Description

FLUSH DATA

Status Code
or Exception

Flushes performance data collected in the current session
without terminating the session (profiling continues).

GET VERSION (major OUT, minor OUT)

n/a

Returns the version number of this package.

INTERNAL VERSION CHECK

Status Code

Confirms that the current version of the profiler will work
with the current database.

PAUSE PROFILER

Status Code
or Exception

Pause data collection.

RESUME PROFILER

Status Code
or Exception

Resume data collection.

START PROFILER (run comment,
run commentl [, run number OUT 1])

Status Code
or Exception

Start data collection.

STOP_PROFILER

Status Code
or Exception

Stop data collection and flush performance data to the

PLSQL PROFILER RAWDATA table.

The functions within the DBMS PROFILER package return a status code to indicate
success or failure; the DBMS PROFILER procedures raise an exception only if they
encounter a failure. The status codes and messages returned by the functions, and the
exceptions raised by the procedures are listed in the table below.

Status Code Message

Exception

Description

-1 error version

version mismatch

The profiler version and the database are

incompatible.
0 success n/a The operation completed successfully.
1 error param profiler error The operation received an incorrect parameter.

error io

profiler error

The data flush operation has failed.

3.11.1 FLUSH_DATA

The rLusH_DATA function/procedure flushes the data collected in the current session
without terminating the profiler session. The data is flushed to the tables described in the
Advanced Server Performance Features Guide. The function and procedure signatures

are:

status INTEGER FLUSH DATA

FLUSH DATA

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

123

Database Compatibility for Oracle® Developers
Built-in Package Guide

Parameters

status

Status code returned by the operation.

3.11.2 GET_VERSION

The GET VERSION procedure returns the version of DBMS PROFILER. The procedure
signature is:

GET VERSION (major OUT INTEGER, minor OUT INTEGER)
Parameters
major
The major version number of DBMS PROFILER.
minor

The minor version number of DBMS PROFILER.

3.11.3 INTERNAL_VERSION_CHECK

The INTERNAL VERSION CHECK function confirms that the current version of
DBMS PROFILER Will work with the current database. The function signature is:

status INTEGER INTERNAL VERSION CHECK

Parameters

status

Status code returned by the operation.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 124

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.11.4 PAUSE_PROFILER

The PAUSE PROFILER function/procedure pauses a profiling session. The function and
procedure signatures are:

status INTEGER PAUSE PROFILER
PAUSE PROFILER
Parameters

status

Status code returned by the operation.

3.11.5 RESUME_PROFILER

The RESUME PROFILER function/procedure pauses a profiling session. The function and
procedure signatures are:

status INTEGER RESUME PROFILER
RESUME PROFILER
Parameters

status

Status code returned by the operation.

3.11.6 START_PROFILER

The START PROFILER function/procedure starts a data collection session. The function
and procedure signatures are:

status INTEGER START_PROFILER(run_comment TEXT := SYSDATE,
run commentl TEXT := '' [, run number OUT INTEGER])

START_PROFILER(run_comment TEXT := SYSDATE,
run commentl TEXT := '' [, run number OUT INTEGER])

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 125

Database Compatibility for Oracle® Developers
Built-in Package Guide

Parameters
run comment

A user-defined comment for the profiler session. The default value is SYSDATE.
run commentl

An additional user-defined comment for the profiler session. The default value is

L]
run _number

The session number of the profiler session.

status

Status code returned by the operation.

3.11.7 STOP_PROFILER
The sTop PROFILER function/procedure stops a profiling session and flushes the
performance information to the bBMS PROFILER tables and view. The function and
procedure signatures are:

status INTEGER STOP PROFILER

STOP_PROFILER
Parameters

status

Status code returned by the operation.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 126

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.11.8 Using DBMS_PROFILER

The DBMS_PROFILER package collects and stores performance information about the
PL/pgSQL and SPL statements that are executed during a profiling session; you can
review the performance information in the tables and views provided by the profiler.

DBMS_PROFILER works by recording a set of performance-related counters and timers
for each line of PL/pgSQL or SPL statement that executes within a profiling session. The
counters and timers are stored in a table named sys.PLSQL_PROFILER _DATA. When
you complete a profiling session, DBMS_PROFILER will write a row to the performance
statistics table for each line of PL/pgSQL or SPL code that executed within the session.
For example, if you execute the following function:

1 - CREATE OR REPLACE FUNCTION getBalance (acctNumber INTEGER)
2 - RETURNS NUMERIC AS $$

3 - DECLARE

4 - result NUMERIC;

5 - BEGIN

6 - SELECT INTO result balance FROM acct WHERE id = acctNumber;
7 —

8 - IF (result IS NULL) THEN

9 - RAISE INFO 'Balance is null';

10- END IF;

11-

12- RETURN result;

13- END;

14- $$ LANGUAGE 'plpgsqgl';

DBMS_PROFILER adds one pL.sQI, PROFILER_DATA entry for each line of code
within the getBalance() function (including blank lines and comments). The entry
corresponding to the SELECT statement executed exactly one time; and required a very
small amount of time to execute. On the other hand, the entry corresponding to the
RAISE INFO Statement executed once or not at all (depending on the value for the
balance column).

Some of the lines in this function contain no executable code so the performance statistics
for those lines will always contain zero values.

To start a profiling session, invoke the DBMS_PROFILER.START_PROFILER function (or
procedure). Once you've invoked START PROFILER, Advanced Server will profile
every PL/pgSQL or SPL function, procedure, trigger, or anonymous block that your
session executes until you either stop or pause the profiler (by calling STOP_PROFILER
Or PAUSE_PROFILER).

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 127

Database Compatibility for Oracle® Developers
Built-in Package Guide

It is important to note that when you start (or resume) the profiler, the profiler will only
gather performance statistics for functions/procedures/triggers that start after the call to
START_PROFILER (Of RESUME_PROFILER).

While the profiler is active, Advanced Server records a large set of timers and counters in
memory; when you invoke the STOP_PROFILER (Or FLUSH_DATA) function/procedure,
DBMS_PROFILER Writes those timers and counters to a set of three tables:

e SYS.PLSQL PROFILER RAWDATA
Contains the performance counters and timers for each statement executed within the session.

e SYS.PLSQL PROFILER RUNS
Contains a summary of each run (aggregating the information found in
PLSQL PROFILER RAWDATA).

e SYS.PLSQL PROFILER UNITS
Contains a summary of each code unit (function, procedure, trigger, or anonymous block)
executed within a session.

In addition, DBMS_PROFILER defines a view, SYS.PLSQL_PROFILER_DATA, Which
contains a subset of the PL.SQI, PROFILER_RAWDATA table.

Please note that a non-superuser may gather profiling information, but may not view that
profiling information unless a superuser grants specific privileges on the profiling tables
(stored in the sys schema). This permits a non-privileged user to gather performance
statistics without exposing information that the administrator may want to keep secret.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 128

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.11.8.1 Querying the DBMS_PROFILER Tables and View

The following step-by-step example uses DBMS_PROFILER to retrieve performance
information for procedures, functions, and triggers included in the sample data distributed
with Advanced Server.

1.

Open the EDB-PSQL command line, and establish a connection to the Advanced Server database.
Use an EXEC statement to start the profiling session:

acctg=# EXEC dbms profiler.start profiler('profile list emp'):;

EDB-SPL Procedure successfully completed

(Note: The callto start profiler () includes a comment that DBMS_PROFILER
associates with the profiler session).

2. Thencall the 1ist_emp function:
acctg=# SELECT list emp();
INFO: EMPNO ENAME
INFO: =—----- ——————-
INFO: 7369 SMITH
INFO: 7499 ALLEN
INFO: 7521 WARD
INFO: 7566 JONES
INFO: 7654 MARTIN
INFO: 7698 BLAKE
INFO: 7782 CLARK
INFO: 7788 SCOTT
INFO: 7839 KING
INFO: 7844 TURNER
INFO: 7876 ADAMS
INFO: 7900 JAMES
INFO: 7902 FORD
INFO: 7934 MILLER

list emp

(1 row)

3. Stop the profiling session with a call to dbms profiler.stop profiler:

acctg=# EXEC dbms profiler.stop profiler;

EDB-SPL Procedure successfully completed

4.

Start a new session with the dbms profiler.start profiler function (followed by a
new comment):

acctg=# EXEC dbms profiler.start profiler('profile get dept name and
emp sal trig');

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 129

Database Compatibility for Oracle® Developers
Built-in Package Guide

EDB-SPL Procedure successfully completed

5. Invoke the get dept name function:

acctg=# SELECT get dept name (10) ;
get dept name

ACCOUNTING
(1 row)

6. Execute an UPDATE statement that causes a trigger to execute:

acctg=# UPDATE memp SET sal

INFO: Updating employee 7902

500 WHERE empno = 7902;

INFO: ..01ld salary: 3000.00

INFO: ..New salary: 500.00

INFO: ..Raise -2500.00

INFO: User enterprisedb updated employee(s) on 04-FEB-14
UPDATE 1

7. Terminate the profiling session and flush the performance information to the profiling tables:

acctg=# EXEC dbms profiler.stop profiler;

EDB-SPL Procedure successfully completed

8. Now, querythe plsgl profiler_runs table to view a list of the profiling sessions,

arranged by runid:

acctg=# SELECT * FROM plsql profiler runs;

runid | related run | run owner | run_date | run_comment
| run total time | run system info | run commentl | sparel
——————— e e e Sttt
——————————— e e e SS ettt
1| | enterprisedb | 04-FEB-14 09:32:48.874315 | profile list emp
| 4154 | | |
2 | | enterprisedb | 04-FEB-14 09:41:30.546503 | profile get dept name and
emp sal trig | 2088 |
(2 rows)

9. Querytheplsgl profiler_units table to view the amount of time consumed by each
unit (each function, procedure, or trigger):

acctg=# SELECT * FROM plsqgl profiler units;

runid | unit number | unit type unit owner
unit timestamp | total time | sparel | spare2
——————— R e e ettt e
————— e it

1] 16999 | FUNCTION enterprisedb
| a | |

2 | 17002 | FUNCTION enterprisedb
| 1] |

2 | 17000 | FUNCTION enterprisedb
| 1] |

2 | 17004 | FUNCTION enterprisedb

unit name
list emp ()
user audit trig()
get dept name(p deptno numeric)

emp sal trig()

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

130

Database Compatibility for Oracle® Developers
Built-in Package Guide

(4 rows)

10. Querytheplsgl profiler rawdata table to view a list of the wait event counters and
wait event times:

acctg=# SELECT runid, sourcecode, func oid, line number, exec count, tuples returned,
time total FROM plsqgl profiler rawdata;

runid | sourcecode | func oid |
line number | exec count | tuples returned | time total

——————— e
————— o

1 | DECLARE | 16999 |
1| 0 | 0 | 0

1 | v_empno NUMERIC (4) ; | 16999
2 | 0 | 0 | 0

1 | vV_ename VARCHAR (10) ; | 16999
3 0 | 0 | 0

1 | emp cur CURSOR FOR | 16999
4 | 0 | 0 | 0

1| SELECT empno, ename FROM memp ORDER BY empno; | 16999
5 0 | 0 | 0

1 | BEGIN | 16999
6 | 0 | 0 | 0

1 | OPEN emp cur; | 16999
7 0 | 0 | 0

1 | RAISE INFO 'EMPNO ENAME ' ; | 16999 |
8 | 1] 0 | 0.001621

1] RAISE INFO '----- = ——=———- 'y | 16999
9 | 1| 0 | 0.000301

1| LOOP | 16999
10 | 1] 0 | 4.6e-05

1 | FETCH emp cur INTO v empno, VvV ename; | 16999
11 | 1 0 | 0.001114

1 | EXIT WHEN NOT FOUND; | 16999 |
12 | 15 | 0 | 0.000206

1 | RAISE INFO '% %', v_empno, Vv_ename; | 16999
13 | 15 | 0 | 8.3e-05

1 | END LOOP; | 16999 |
14 | 14 | 0 | 0.000773

1 | CLOSE emp cur; | 16999
15 | 0 | 0 | 0

1 | RETURN; | 16999 |
16 | 1] 0 | le-05

1 | END; | 16999
17 | 1 | 0 | 0

1| | 16999
18 | 0 | 0 | 0

2 | DECLARE | 17002 |
1| 0 | 0 | 0

2 | v_action VARCHAR (24) ; | 17002 |
2 | 0 | 0 | 0

2 | v_text TEXT; | 17002 |
3 | 0 | 0 | 0

2 | BEGIN | 17002 |
4 | 0 | 0 | 0

2 | IF TG OP = '"INSERT' THEN | 17002 |
5 | 0 | 0 | 0

2 | v_action := ' added employee(s) on '; | 17002 |
6 | 1] 0 | 0.000143

2 | ELSIF TG OP = 'UPDATE' THEN | 17002 |
7 0 | 0 | 0

2 | v_action := ' updated employee(s) on '; | 17002 |
8 | 0 | 0 | 0

2 | ELSIF TG OP = 'DELETE' THEN | 17002 |
9 | 1| 0 | 3.2e-05

2 | v_action := ' deleted employee(s) on '; | 17002 |
10 | 0 | 0 | 0

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 131

11

12

13

14

15

16

10

11

12

13

14

15

16

17

18

Database Compatibility for Oracle® Developers

Built-in Package Guide

END IF; | 17002 |
0 | 0 | 0
v_text := 'User ' || USER || v _action || CURRENT DATE; | 17002 |
0 | 0 | 0
RAISE INFO ' %', v_text; | 17002 |
1| 0 | 0.000383
RETURN NULL; | 17002 |
1| 0 | 6.3e-05
END; | 17002 |
1| 0 | 3.6e-05
| 17002 |
0 | 0 | 0
DECLARE | 17000 |
0 | 0 | 0
v _dname VARCHAR (14) ; | 17000 |
0 | 0 | 0
BEGIN | 17000 |
0 | 0 | 0
SELECT INTO v dname dname FROM dept WHERE deptno p deptno; | 17000
0 | 0 | 0
RETURN v dname; | 17000 |
1| 0 | 0.000647
IF NOT FOUND THEN | 17000 |
1| 0 | 2.6e-05
RAISE INFO 'Invalid department number %', p deptno; | 17000 |
0 | 0 | 0
RETURN ''; | 17000 |
0 | 0 | 0
END IF; | 17000 |
0 | 0 | 0
END; | 17000 |
0 | 0 | 0
| 17000 |
0 | 0 | 0
DECLARE | 17004 |
0 | 0 | 0
sal diff NUMERIC (7,2); | 17004 |
0 | 0 | 0
BEGIN | 17004 |
0 | 0 | 0
IF TG _OP = 'INSERT' THEN | 17004 |
0 | 0 | 0
RAISE INFO 'Inserting employee %', NEW.empno; | 17004 |
1| 0 | 8.4e-05
RAISE INFO '..New salary: %', NEW.sal; | 17004
0 | 0 | 0
RETURN NEW; | 17004 |
0 | 0 | 0
END IF; | 17004 |
0 | 0 | 0
IF TG OP = 'UPDATE' THEN | 17004 |
0 | 0 | 0
sal diff := NEW.sal - OLD.sal; | 17004 |
1| 0 | 0.000355
RAISE INFO 'Updating employee %', OLD.empno; | 17004 |
1| 0 | 0.000177
RAISE INFO '..0Old salary: %', OLD.sal; | 17004 |
1| 0 | 5.5e-05
RAISE INFO '..New salary: %', NEW.sal; | 17004 |
1| 0 | 3.1e-05
RAISE INFO '..Raise : %', sal diff; | 17004 |
1| 0 | 2.8e-05
RETURN NEW; \ 17004 |
1 0 | 2.7e-05
END IF; | 17004 |
1| 0 | le-06
IF TG OP = 'DELETE' THEN | 17004 |
0 | 0 | 0
RAISE INFO 'Deleting employee %', OLD.empno; | 17004 |
0 | 0 | 0
132

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

Database Compatibility for Oracle® Developers
Built-in Package Guide

2 | RAISE INFO '..0Old salary: %', OLD.sal; | 17004 |
19 | 0 | 0 | 0

2 | RETURN OLD; | 17004 |
20 | 0 | 0 | 0

2 | END IF; | 17004 |
21 | 0 | 0 | 0

2 | END; | 17004 |
22 | 0 | 0 | 0

2 | | 17004 |
23 | 0 | 0 | 0
(68 rows)

11. Querythe plsgl _profiler_data view to review a subset of the information found in
plsgl profiler rawdata table:

acctg=# SELECT * FROM plsql profiler data;

runid | unit number | line# | total occur | total time | min time | max time | sparel | spare2
| spare3 | spare4
——————— e I e e
e b

1 | 16999 | 1 | 0 | 0 | 0 | 0 |
1		16999	2	0	0	0	0
1		16999	3	0	0	0	0
1		16999	4	0	0	0	0
1		16999	5	0	0	0	0
1		16999	6	0	0	0	0
1		16999	7 0	0	0	0	
1		16999	8	1	0.001621	0.001621	0.001621
1		16999	9	1	0.000301	0.000301	0.000301
1		16999	10	1	4.6e-05	4.6e-05	4.6e-05
1		16999	11	1	0.001114	0.001114	0.001114
1		16999	12	15	0.000206	5e-06	7.8e-05
1		16999	13	15	8.3e-05	2e-06	4.7e-05
1		16999	14	14	0.000773	4.7e-05	0.000116
1		16999	15	0	0	0	0
1		16999	16	1	le-05	le-05	1le=05
1		16999	17	1	0	0	0
1		16999	18	0	0	0	0
2		17002	1	0	0	0	0
2		17002	2	0	0	0	0
2		17002	3	0	0	0	0
2		17002	4	0	0	0	0
2		17002	5	0	0	0	0
2		17002	6	1	0.000143	0.000143	0.000143

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 133

Database Compatibility for Oracle® Developers
Built-in Package Guide

2 | 17002 | 7| 0 | 0 | 0 | 0 |
2		17002	8	0	0	0	0
2		17002	9	1] 3:.2e=05		3.2e=05	3I.2e=05
2		17002	10	0	0	0	0
2		17002	11	0	0	0	0
2		17002	12	0	0	0	0
2		17002	13	1] 0.000383	0.000383	0.000383	
2		17002	14	1] 6.32=05	6.3e=05	6.3e=05	
2		17002	15	1	3.6e-05	3.6e-05	3.6e-05
2		17002	16	0	0	0	0
2		17000	1	0	0	0	0
2		17000	2	0	0	0	0
2		17000	3	0	0	0	0
2		17000	4	0	0	0	0
2		17000	5	1	0.000647	0.000647	0.000647
2		17000	6	1] 2.6e-05	2.6e-05	2.6e-05	
2		17000	71 0	0	0	0	
2		17000	8	0	0	0	0
2		17000	9	0	0	0	0
2		17000	10	0	0	0	0
2		17000	11	0	0	0	0
2		17004	1	0	0	0	0
2		17004	2	0	0	0	0
2		17004	3	0	0	0	0
2		17004	4	0	0	0	0
2		17004	5	1	8.4e-05	8.4e-05	8.4e-05
2		17004	6	0	0	0	0
2		17004	71 0	0	0	0	
2		17004	8	0	0	0	0
2		17004	9	0	0	0	0
2		17004	10	1 0.000355	0.000355	0.000355	
2		17004	11	1	0.000177	0.000177	0.000177
2		17004	12	1	5:.5a=05	5.5@=05	5,5¢=05
2		17004	13	1	3.1e-05	3.1e-05	3.1e-05
2		17004	14	1	2:.8e=05	2.8e=05	2.8c=05

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 134

Database Compatibility for Oracle® Developers
Built-in Package Guide

2 | 17004 | 15 | 1] 2.7e-05 | 2.7e-05 | 2.7e-05 |
2		17004	16	1	le-06	le-06	le-06
2		17004	17	0	0	0	0
2		17004	18	0	0	0	0
2		17004	19	0	0	0	0
2		17004	20	0	0	0	0
2		17004	21	0	0	0	0
2		17004	22	0	0	0	0
2		17004	23	0	0	0	0

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 135

3.11.8.2

Database Compatibility for Oracle® Developers

Built-in Package Guide

DBMS_PROFILER - Reference

The Advanced Server installer creates the following tables and views that you can query
to review PL/SQL performance profile information:

Table Name

Description

PLSQL PROFILER RUNS

runid.

Table containing information about all profiler runs, organized by

PLSQL PROFILER UNITS

unit.

Table containing information about all profiler runs, organized by

PLSQL PROFILER DATA

View containing performance statistics.

PLSQL PROFILER RAWDATA

Table containing the performance statistics and the extended
performance statistics for DRITA counters and timers.

3.11.8.21

PLSQL_PROFILER_RUNS

The PLSQL PROFILER_RUNS table contains the following columns:

Column Data Type Description
runid INTEGER (NOT NULL) Unique identifier (p1sql profiler runnumber)
related_run INTEGER The runid of a related run.
run_owner TEXT The role that recorded the profiling session.
run_date TIMESTAMP WITHOUT The profiling session start time.

TIME ZONE

run_comment TEXT User comments relevant to this run
run_total time | BIGINT Run time (in microseconds)
run_system info | TEXT Currently Unused
run_commentl TEXT Additional user comments
sparel TEXT Currently Unused
3.11.8.2.2 PLSQL_PROFILER_UNITS

The PLSQL_PROFILER_UNITS table contains the following columns:

Column Data Type Description

runid INTEGER Unique identifier (p1sql profiler runnumber)

unit number 01D Corresponds to the OID of the row in the pg_proc
table that identifies the unit.

unit_type TEXT PL/SQL function, procedure, trigger or anonymous
block

unit owner TEXT The identity of the role that owns the unit.

unit name TEXT The complete signature of the unit.

unit_timestamp TIMESTAMP WITHOUT | Creation date of the unit (currently NULL).

TIME ZONE

Copyright © 2007 - 2020 EnterpriseDB Corporation.

All rights reserved. 136

Database Compatibility for Oracle® Developers

Built-in Package Guide

Column Data Type Description
total_time BIGINT Time spent within the unit (in milliseconds)
sparel BIGINT Currently Unused
spare? BIGINT Currently Unused
3.11.8.2.3 PLSQL_PROFILER_DATA

The PLSQL_PROFILER_DATA View contains the following columns:

Column Data Type Description
runid INTEGER Unique identifier (p1sql profiler runnumber)
unit_number OID Object 1D of the unit that contains the current line.
line# INTEGER Current line number of the profiled workload.
total_occur BIGINT The number of times that the line was executed.

total time

DOUBLE PRECISION

The amount of time spent executing the line (in
seconds)

min time

DOUBLE PRECISION

The minimum execution time for the line.

max_ time

DOUBLE PRECISION

The maximum execution time for the line.

sparel NUMBER Currently Unused
spare?2 NUMBER Currently Unused
spare3 NUMBER Currently Unused
spare4 NUMBER Currently Unused
3.11.8.24 PLSQL_PROFILER_RAWDATA

The PLSQL_PROFILER_RAWDATA table contains the statistical and wait events
information that is found in the PL.SQI, PROFILER_DATA View, as well as the
performance statistics returned by the DRITA counters and timers.

Column Data Type Description

runid INTEGER The run identifier (plsgl_profiler_runnumber).

sourcecode TEXT The individual line of profiled code.

func_oid OID Object ID of the unit that contains the current line.

line_number INTEGER Current line number of the profiled workload.

exec_count BIGINT The number of times that the line was executed.

tuples returned BIGINT Currently Unused

time total DOUBLE The amount of time spent executing the line (in
PRECISION Seconds)

time_shortest DOUBLE The minimum execution time for the line.
PRECISION

time_longest DOUBLE The maximum execution time for the line.
PRECISION

num_scans BIGINT Currently Unused

tuples fetched BIGINT Currently Unused

tuples inserted BIGINT Currently Unused

tuples updated BIGINT Currently Unused

tuples deleted BIGINT Currently Unused

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

137

Database Compatibility for Oracle® Developers

Built-in Package Guide

Column Data Type Description

blocks fetched BIGINT Currently Unused

blocks hit BIGINT Currently Unused

wal write BIGINT A server has waited for a write to the write-ahead
log buffer (expect this value to be high).

wal flush BIGINT A server has waited for the write-ahead log to flush
to disk.

wal file sync BIGINT A server has waited for the write-ahead log to sync
to disk (related to the wal_sync_method parameter
which, by default, is 'fsync' - better performance can
be gained by changing this parameter to
open_sync).

db_file read BIGINT A server has waited for the completion of a read
(from disk).

db_file write BIGINT A server has waited for the completion of a write (to
disk).

db file sync BIGINT A server has waited for the operating system to
flush all changes to disk.

db_file extend BIGINT A server has waited for the operating system while
adding a new page to the end of a file.

sql parse BIGINT Currently Unused.

query_plan BIGINT A server has generated a query plan.

other lwlock acquire BIGINT A server has waited for other light-weight lock to
protect data.

shared plan_cache collision | BIGINT A server has waited for the completion of the
shared plan cache collision event.

shared_plan_cache_insert BIGINT A server has waited for the completion of the
shared plan cache insert event.

shared_plan_cache_hit BIGINT A server has waited for the completion of the
shared plan cache hit event.

shared_plan_cache_miss BIGINT A server has waited for the completion of the
shared plan cache miss event.

shared plan_cache_lock BIGINT A server has waited for the completion of the
shared plan cache lock event.

shared plan_cache_busy BIGINT A server has waited for the completion of the
shared plan cache busy event.

shmemindexlock BIGINT A server has waited to find or allocate space in the
shared memory.

oidgenlock BIGINT A server has waited to allocate or assign an OID.

xidgenlock BIGINT A server has waited to allocate or assign a
transaction ID.

procarraylock BIGINT A server has waited to get a snapshot or clearing a
transaction ID at transaction end.

sinvalreadlock BIGINT A server has waited to retrieve or remove messages
from shared invalidation queue.

sinvalwritelock BIGINT A server has waited to add a message to the shared
invalidation queue.

walbufmappinglock BIGINT A server has waited to replace a page in WAL
buffers.

walwritelock BIGINT A server has waited for WAL buffers to be written
to disk.

controlfilelock BIGINT A server has waited to read or update the control file
or creation of a new WAL file.

checkpointlock BIGINT A server has waited to perform a checkpoint.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 138

Database Compatibility for Oracle® Developers

Built-in Package Guide

Column Data Type Description

clogcontrollock BIGINT A server has waited to read or update the transaction
status.

subtranscontrollock BIGINT A server has waited to read or update the sub-
transaction information.

multixactgenlock BIGINT A server has waited to read or update the shared
multixact state.

multixactoffsetcontrollock | BIGINT A server has waited to read or update multixact
offset mappings.

multixactmembercontrollock | BIGINT A server has waited to read or update multixact
member mappings.

relcacheinitlock BIGINT A server has waited to read or write the relation
cache initialization file.

checkpointercommlock BIGINT A server has waited to manage the fsync requests.

twophasestatelock BIGINT A server has waited to read or update the state of
prepared transactions.

tablespacecreatelock BIGINT A server has waited to create or drop the tablespace.

btreevacuumlock BIGINT A server has waited to read or update the vacuum
related information for a B-tree index.

addinshmeminitlock BIGINT A server has waited to manage space allocation in
shared memory.

autovacuumlock BIGINT The autovacuum launcher waiting to read or update
the current state of autovacuum workers.

autovacuumschedulelock BIGINT A server has waited to ensure that the table selected
for a vacuum still needs vacuuming.

syncscanlock BIGINT A server has waited to get the start location of a
scan on a table for synchronized scans.

relationmappinglock BIGINT A server has waited to update the relation map file
used to store catalog to file node mapping.

asyncctllock BIGINT A server has waited to read or update shared
notification state.

asyncqueuelock BIGINT A server has waited to read or update the
notification messages.

serializablexacthashlock BIGINT A server has waited to retrieve or store information
about serializable transactions.

serializablefinishedlistloc | BIGINT A server has waited to access the list of finished

k serializable transactions.

serializablepredicatelockli | BIGINT A server has waited to perform an operation on a list

stlock of locks held by serializable transactions.

oldserxidlock BIGINT A server has waited to read or record the conflicting
serializable transactions.

syncreplock BIGINT A server has waited to read or update information
about synchronous replicas.

backgroundworkerlock BIGINT A server has waited to read or update the
background worker state.

dynamicsharedmemorycontroll | BIGINT A server has waited to read or update the dynamic

ock shared memory state.

autofilelock BIGINT A server has waited to update the
postgresqgl.auto.conf file.

replicationslotallocationlo | BIGINT A server has waited to allocate or free a replication

ck slot.

replicationslotcontrollock | BIGINT A server has waited to read or update replication
slot state.

committscontrollock BIGINT A server has waited to read or update transaction

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 139

Database Compatibility for Oracle® Developers

Built-in Package Guide

Column

Data Type

Description

commit timestamps.

committslock

BIGINT

A server has waited to read or update the last value
set for the transaction timestamp.

replicationoriginlock

BIGINT

A server has waited to set up, drop, or use
replication origin.

multixacttruncationlock

BIGINT

A server has waited to read or truncate multixact
information.

oldsnapshottimemaplock

BIGINT

A server has waited to read or update old snapshot
control information.

backendrandomlock

BIGINT

A server has waited to generate a random number.

logicalrepworkerlock

BIGINT

A server has waited for the action on logical
replication worker to finish.

clogtruncationlock

BIGINT

A server has waited to truncate the write-ahead log
or waiting for write-ahead log truncation to finish.

bulkloadlock

BIGINT

A server has waited for the bulkloadlock to bulk
upload the data.

edbresourcemanagerlock

BIGINT

The edbresourcemanagerlock provides detail
about edb resource manager lock module.

wal write time

BIGINT

The amount of time that the server has waited for a
wal write wait event to write to the write-ahead
log buffer (expect this value to be high).

wal flush time

BIGINT

The amount of time that the server has waited for a
wal flush wait event to write-ahead log to flush
to disk.

wal file sync time

BIGINT

The amount of time that the server has waited for a
wal file sync wait event to write-ahead log to
sync to disk (related to the wal_sync_method
parameter which, by default, is 'fsync' - better
performance can be gained by changing this
parameter to open_sync).

db file read time

BIGINT

The amount of time that the server has waited for
the db file read wait event for completion of a
read (from disk).

db file write time

BIGINT

The amount of time that the server has waited for
the db file write wait event for completion of a
write (to disk).

db file sync time

BIGINT

The amount of time that the server has waited for
the db file sync wait event to sync all changes
to disk.

db file extend time

BIGINT

The amount of time that the server has waited for
the db file extend wait event while adding a
new page to the end of a file.

sgl parse time

BIGINT

The amount of time that the server has waited for
the sql_parse wait event to parse a SQL
statement.

query plan time

BIGINT

The amount of time that the server has waited for
the query plan wait event to compute the
execution plan for a SQL statement.

other lwlock acquire time

BIGINT

The amount of time that the server has waited for
the other lwlock acquire Wait event to protect
data.

shared plan cache collision
_time

BIGINT

The amount of time that the server has waited for
the shared plan cache collision Waitevent.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 140

Database Compatibility for Oracle® Developers

Built-in Package Guide

Column

Data Type

Description

shared plan cache insert ti
me

BIGINT

The amount of time that the server has waited for
the shared plan cache insert Wait event.

shared plan cache hit time

BIGINT

The amount of time that the server has waited for
the shared plan cache hit Wait event.

shared plan cache miss time

BIGINT

The amount of time that the server has waited for
the shared plan cache miss Wait event.

shared plan cache lock time

BIGINT

The amount of time that the server has waited for
the shared plan cache lock Wait event.

shared plan cache busy time

BIGINT

The amount of time that the server has waited for
the shared plan cache busy Wait event.

shmemindexlock time

BIGINT

The amount of time that the server has waited for
the shmemindexlock wait event to find or allocate
space in the shared memory.

oidgenlock time

BIGINT

The amount of time that the server has waited for
the oidgenlock wait event to allocate or assign an
OID.

xidgenlock time

BIGINT

The amount of time that the server has waited for
xidgenlock wait event to allocate or assign a
transaction ID.

procarraylock time

BIGINT

The amount of time that the server has waited for a
procarraylock wait event to clear a transaction
ID at transaction end.

sinvalreadlock time

BIGINT

The amount of time that the server has waited for a
sinvalreadlock wait event to retrieve or remove
messages from shared invalidation queue.

sinvalwritelock time

BIGINT

The amount of time that the server has waited for a
sinvalwritelock wait event to add a message to
the shared invalidation queue.

walbufmappinglock time

BIGINT

The amount of time that the server has waited for a
walbufmappinglock wait event to replace a page
in WAL buffers.

walwritelock time

BIGINT

The amount of time that the server has waited for a
walwritelock wait event to write the WAL
buffers to disk.

controlfilelock time

BIGINT

The amount of time that the server has waited for a
controlfilelock wait event to read or update the
control file or to create a new WAL file.

checkpointlock time

BIGINT

The amount of time that the server has waited for a
checkpointlock wait event to perform a
checkpoint.

clogcontrollock time

BIGINT

The amount of time that the server has waited for a
clogcontrollock Wait event to read or update the
transaction status.

subtranscontrollock time

BIGINT

The amount of time that the server has waited for
the subtranscontrollock Wait event to read or
update the sub-transaction information.

multixactgenlock time

BIGINT

The amount of time that the server has waited for
the multixactgenlock wait event to read or
update the shared multixact state.

multixactoffsetcontrollock
time

BIGINT

The amount of time that the server has waited for
the multixactoffsetcontrollock wait event to
read or update multixact offset mappings.

multixactmembercontrollock

BIGINT

The amount of time that the server has waited for

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 141

Database Compatibility for Oracle® Developers

Built-in Package Guide

Column

Data Type

Description

time

the multixactmembercontrollock Wait event to
read or update multixact member mappings.

relcacheinitlock time

BIGINT

The amount of time that the server has waited for
the relcacheinitlock Wait event to read or write
the relation cache initialization file.

checkpointercommlock time

BIGINT

The amount of time that the server has waited for
the checkpointercommlock wait event to manage
the fsync requests.

twophasestatelock time

BIGINT

The amount of time that the server has waited for
the twophasestatelock wait event to read or
update the state of prepared transactions.

tablespacecreatelock time

BIGINT

The amount of time that the server has waited for
the tablespacecreatelock Wait event to create
or drop the tablespace.

btreevacuumlock time

BIGINT

The amount of time that the server has waited for
the bt reevacuumlock wait event to read or update
the vacuum related information for a B-tree index.

addinshmeminitlock time

BIGINT

The amount of time that the server has waited for
the addinshmeminitlock wait event to manage
space allocation in shared memory.

autovacuumlock time

BIGINT

The amount of time that the server has waited for
the autovacuumlock wait event to read or update
the current state of autovacuum workers.

autovacuumschedulelock time

BIGINT

The amount of time that the server has waited for
the autovacuumschedulelock Wait event to
ensure that the table selected for a vacuum still
needs vacuuming.

syncscanlock time

BIGINT

The amount of time that the server has waited for
the syncscanlock wait event to get the start
location of a scan on a table for synchronized scans.

relationmappinglock time

BIGINT

The amount of time that the server has waited for
the relationmappinglock Wait event to update
the relation map file used to store catalog to file
node mapping.

asyncctllock time

BIGINT

The amount of time that the server has waited for
the asyncctllock wait event to read or update
shared notification state.

asyncqueuelock time

BIGINT

The amount of time that the server has waited for
the asyncqueuelock wait event to read or update
the notification messages.

serializablexacthashlock ti
me

BIGINT

The amount of time that the server has waited for
the serializablexacthashlock wait event to
retrieve or store information about serializable
transactions.

serializablefinishedlistloc
k time

BIGINT

The amount of time that the server has waited for
the serializablefinishedlistlock wait event
to access the list of finished serializable
transactions.

serializablepredicatelockli
stlock time

BIGINT

The amount of time that the server has waited for
the serializablepredicatelocklistlock
wait event to perform an operation on a list of locks
held by serializable transactions.

oldserxidlock time

BIGINT

The amount of time that the server has waited for

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 142

Database Compatibility for Oracle® Developers

Built-in Package Guide

Column

Data Type

Description

the oldserxidlock wait event to read or record
the conflicting serializable transactions.

syncreplock time

BIGINT

The amount of time that the server has waited for
the syncreplock wait event to read or update
information about synchronous replicas.

backgroundworkerlock time

BIGINT

The amount of time that the server has waited for
the backgroundworkerlock Wait event to read or
update the background worker state.

dynamicsharedmemorycontroll
ock time

BIGINT

The amount of time that the server has waited for
the dynamicsharedmemorycontrollock wait
event to read or update the dynamic shared memory
state.

autofilelock time

BIGINT

The amount of time that the server has waited for
the autofilelock wait event to update the
postgresqgl.auto.conf file.

replicationslotallocationlo
ck time

BIGINT

The amount of time that the server has waited for
the replicationslotallocationlock wait
event to allocate or free a replication slot.

replicationslotcontrollock
time

BIGINT

The amount of time that the server has waited for
the replicationslotcontrollock Wait event to
read or update replication slot state.

committscontrollock time

BIGINT

The amount of time that the server has waited for
the committscontrollock wait event to read or
update transaction commit timestamps.

committslock time

BIGINT

The amount of time that the server has waited for
the committslock wait event to read or update the
last value set for the transaction timestamp.

replicationoriginlock time

BIGINT

The amount of time that the server has waited for
the replicationoriginlock Wait event to set
up, drop, or use replication origin.

multixacttruncationlock tim
e

BIGINT

The amount of time that the server has waited for
the multixacttruncationlock wait event to
read or truncate multixact information.

oldsnapshottimemaplock time

BIGINT

The amount of time that the server has waited for
the oldsnapshottimemaplock wait event to read
or update old snapshot control information.

backendrandomlock time

BIGINT

The amount of time that the server has waited for
the backendrandomlock wait event to generate a
random number.

logicalrepworkerlock time

BIGINT

The amount of time that the server has waited for
the logicalrepworkerlock wait event for an
action on logical replication worker to finish.

clogtruncationlock time

BIGINT

The amount of time that the server has waited for
the clogtruncationlock wait event to truncate
the write-ahead log or waiting for write-ahead log
truncation to finish.

bulkloadlock time

BIGINT

The amount of time that the server has waited for
the bulkloadlock wait event to bulk upload the
data.

edbresourcemanagerlock time

BIGINT

The amount of time that the server has waited for
the edbresourcemanagerlock wait event.

totalwaits

BIGINT

The total number of event waits.

totalwaittime

BIGINT

The total time spent waiting for an event.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 143

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.12DBMS_RANDOM

The DBMS_RANDOM package provides a number of methods to generate random values.
The procedures and functions available in the bBMS_RANDOM package are listed in the
following table.

Function/Procedure Return Type Description
INITIALIZE (val) n/a Initializes the pBMSs RrRanDoM package with the
specified seed value. Deprecated, but
supported for backward compatibility.
INORMAL () NUMBER |Returns a random NUMBER.
RANDOM INTEGER |Returns a random INTEGER with a value

greater than or equal to -2731 and less than 2/31.
Deprecated, but supported for backward

compatibility.

SEED (val) n/a Resets the seed with the specified value.

SEED (val) n/a Resets the seed with the specified value.

STRING (opt, len) VARCHARZ [Returns a random string.

TERMINATE n/a TERMINATE has no effect. Deprecated, but
supported for backward compatibility.

VALUE NUMBER |Returns a random number with a value greater
than or equal to 0 and less than 1, with 38 digit
precision.

VALUE (low, high) NUMBER |Returns a random number with a value greater

than or equal to 1owand less than high.

3.12.1 INITIALIZE

The INITIALIZE procedure initializes the pBMS RANDOM package with a seed value.
The signature is:

INITIALIZE (val IN INTEGER)

This procedure should be considered deprecated; it is included for backward
compatibility only.

Parameters
val

val is the seed value used by the bBMS_RANDOM package algorithm.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 144

Database Compatibility for Oracle® Developers
Built-in Package Guide

Example

The following code snippet demonstrates a call to the INITIALIZE procedure that
initializes the DBMS_RANDOM package with the seed value, 6475.

DBMS RANDOM.INITIALIZE (6475);

3.12.2 NORMAL

The NorMATL function returns a random number of type NUMBER. The signature is:
result NUMBER NORMAL ()

Parameters

result
result IS a random value of type NUMBER.

Example

The following code snippet demonstrates a call to the NORMAL function:

x:= DBMS RANDOM.NORMAL () ;

3.12.3 RANDOM

The ranDoOM function returns a random INTEGER Vvalue that is greater than or equal to -2
~31 and less than 2 ~31. The signature is:

result INTEGER RANDOM ()

This function should be considered deprecated; it is included for backward compatibility
only.

Parameters

result

result is a random value of type INTEGER.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 145

Database Compatibility for Oracle® Developers
Built-in Package Guide

Example

The following code snippet demonstrates a call to the RanpoMm function. The call returns
a random number:

x := DBMS RANDOM.RANDOM () ;

3.12.4 SEED
The first form of the sEED procedure resets the seed value for the DBMS_RANDOM package

with an INTEGER value. The SEED procedure is available in two forms; the signature of
the first form is:

SEED (val IN INTEGER)
Parameters
val

val is the seed value used by the bBMS_RANDOM package algorithm.
Example

The following code snippet demonstrates a call to the seED procedure; the call sets the
seed value at 8495.

DBMS RANDOM.SEED (8495) ;

3.12.5 SEED

The second form of the sEED procedure resets the seed value for the DBMS_RANDOM
package with a string value. The seeD procedure is available in two forms; the signature
of the second form is:

SEED (val IN VARCHAR2)

Parameters

val

val Is the seed value used by the pBMS_RANDOM package algorithm.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 146

Database Compatibility for Oracle® Developers
Built-in Package Guide

Example

The following code snippet demonstrates a call to the SEED procedure; the call sets the
seed value to abc123.

DBMS RANDOM.SEED ('abcl23');

3.12.6 STRING

The sTRING function returns a random VARCHAR? string in a user-specified format. The
signature of the sSTRING function is:

result VARCHAR2 STRING (opt IN CHAR, len IN NUMBER)
Parameters
opt

Formatting option for the returned string. option may be:

Option Specifies Formatting Option

uoru Uppercase alpha string

10rL Lowercase alpha string

aora Mixed case string

x OF X Uppercase alpha-numeric string

porp Any printable characters
len

The length of the returned string.
result

result IS arandom value of type VARCHAR?.

Example

The following code snippet demonstrates a call to the sSTRING function; the call returns a
random alpha-numeric character string that is 10 characters long.

x := DBMS RANDOM.STRING('X', 10);

3.12.7 TERMINATE

The TERMINATE procedure has no effect. The signature is:

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 147

Database Compatibility for Oracle® Developers
Built-in Package Guide

TERMINATE

The TERMINATE procedure should be considered deprecated; the procedure is supported
for compatibility only.

3.12.8 VALUE
The vALUE function returns a random NUMBER that is greater than or equal to 0, and less
than 1, with 38 digit precision. The vALUE function has two forms; the signature of the
first form is:

result NUMBER VALUE ()
Parameters
result

result IS a random value of type NUMBER.

Example

The following code snippet demonstrates a call to the vALUE function. The call returns a
random NUMBER:

x := DBMS RANDOM.VALUE () ;

3.12.9 VALUE

The vALUE function returns a random NUMBER with a value that is between user-specified
boundaries. The vALUE function has two forms; the signature of the second form is:

result NUMBER VALUE (low IN NUMBER, high IN NUMBER)
Parameters

low

1ow specifies the lower boundary for the random value. The random value may
be equal to 1ow.

high

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 148

Database Compatibility for Oracle® Developers
Built-in Package Guide

high specifies the upper boundary for the random value; the random value will
be less than high.

result
result is a random value of type NUMBER.
Example

The following code snippet demonstrates a call to the vALUE function. The call returns a
random NUMBER With a value that is greater than or equal to 1 and less than 100:

X := DBMS RANDOM.VALUE (1, 100);

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 149

3.13DBMS_REDACT

Database Compatibility for Oracle® Developers

Built-in Package Guide

The DBMS REDACT package enables the redacting or masking of data returned by a
query. The DBMS REDACT package provides a procedure to create policies, alter policies,
enable policies, disable policies, and drop policies. The procedures available in the
DBMS REDACT package are listed in the following table.

Function/Procedure

Function or
Procedure

Return
Type

Description

[ADD POLICY (object schema,

object name, policy name,

policy description, column name,
column description,

function type,

function parameters, expression,
enable, regexp pattern,

regexp replace string,

regexp position,

regexp occurence,
regexp match parameter,

custom function expression)

Procedure

n/a

Adds a data redaction policy.

ALTER POLICY (object schema,
object name, policy name, action,
column name, function type,
function parameters, expression,
regexp pattern,

regexp replace string,

regexp position,

regexp occurence,
regexp match parameter,

policy description,

column description,

custom function expression)

Procedure

n/a

Alters the existing data redaction policy.

DISABLE POLICY (object schema,
object name, policy name)

Procedure

n/a

Disables the existing data redaction policy.

ENABLE POLICY (object schema,
object name, policy name)

Procedure

n/a

Enables a previously disabled data redaction
policy.

DROP POLICY (object schema,
object name, policy name)

Procedure

n/a

Drops a data redaction policy.

UPDATE FULL REDACTION VALUES (numb
er val, binfloat val,

bindouble val, char val,

varchar val, nchar val,

nvarchar val, datecol val,

ts val, tswtz val, blob val,

clob val, nclob val)

Procedure

n/a

Updates the full redaction default values for
the specified datatype.

The data redaction feature uses the bBMS REDACT package to define policies or
conditions to redact data in a column based on the table column type and redaction type.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

150

Database Compatibility for Oracle® Developers

Built-in Package Guide

Note that you must be the owner of the table to create or change the data redaction
policies. The users are exempted from all the column redaction policies, which the table
owner or super-user is by default.

3.13.1 Using DBMS_REDACT Constants and Function
Parameters

The DBMS REDACT package uses the constants and redacts the column data by using any
one of the data redaction types. The redaction type can be decided based on the
function type parameter of doms redact.add policy and

dbms redact.alter policy procedure. The below table highlights the values for
function type parameters of doms redact.add policy and

dbms redact.alter policy.

Constant Type Value Description

NONE INTEGER 0 No redaction, zero effect on the result of a query against
table.

FULL INTEGER 1 Full redaction, redacts full values of the column data.

PARTIAL INTEGER 2 Partial redaction, redacts a portion of the column data.

RANDOM INTEGER 4 Random redaction, each query results in a different random
value depending on the datatype of the column.

REGEXP INTEGER 5 Regular Expression based redaction, searches for the pattern
of data to redact.

CUSTOM INTEGER 99 Custom redaction type.

The following table shows the values for the action parameter of
dbms redact.alter policy.

Constant Type Value Description

ADD_COLUMN INTEGER 1 Adds a column to the redaction policy.

DROP_COLUMN INTEGER 2 Drops a column from the redaction policy.

MODIFY EXPRESSION INTEGER 3 Modifies the expression of a redaction policy. The
redaction is applied when the expression evaluates to the
BOOLEAN value to TRUE.

MODIFY_ COLUMN INTEGER 4 Modifies a column in the redaction policy to change the
redaction function type or function parameter.

SET_POLICY_ DESCRIPTION| INTEGER Sets the redaction policy description.

SET_COLUMN_DESCRIPTION| INTEGER Sets a description for the redaction performed on the

column.

The partial data redaction enables you to redact only a portion of the column data. To use
partial redaction, you must set the dbms redact.add policy procedure

function type parameterto dbms redact.partial and use the

function parameters parameter to specify the partial redaction behavior.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 151

Database Compatibility for Oracle® Developers
Built-in Package Guide

The data redaction feature provides a predefined format to configure policies that use the
following datatype:

e Character
e Number
e Datetime

The following table highlights the format descriptor for partial redaction with respect to
datatype. The example described below shows how to perform a redaction for a string
datatype (in this scenario, a Social Security Number (SSN)), a Number datatype, and a
DATE datatype.

Datatype Format Descriptor Description Examples

Character REDACT_PARTIAL INPUT_FORMAT |Specifies the input format. Consider

Enter v for each character from|' VVVEVVEVVVV, VVV-VV-

the input string to be possibly [vvvv,x,1,5" for masking
redacted. Enter F for each first 5 digits of SSN strings
character from the input string [suchas 123-45-6789,

that can be considered as a adding hyphen to format it and
separator such as blank spaces [thereby resulting in strings

or hyphens. such as Xxx-Xx-6789.

The field value vvvEvvVEVVVY
for matching SSN strings such
as 123-45-6789.

REDACT_ PARTIAL OUTPUT_ FORMAT[Specifies the output format. |The field value vvv-vv-vvvv
Enter v for each character from|can be used to redact SSN
the input string to be possibly |strings into xxx-xx-6789

redacted. Replace each F where x comes from
character from the input format[REDACT PARTIAL MASKCHAR
with a character such as a field.
hyphen or any other separator.
REDACT_PARTIAL_MASKCHAR Specifies the character to be [The value x for redacting SSN
used for redaction. strings into Xxx-xX-6789.
REDACT_PARTIAL_MASKFROM Specifies which v within the [The value 1 for redacting SSN
input format from which to strings starting at the first v of
start the redaction. the input format of

VVVEVVEVVVV into strings
such as xXxX-xX-6789.

REDACT_PARTIAL_MASKTO Specifies which v within the [The value 5 for redacting SSN
input format at which to end |strings up to and including the
the redaction. fifth v within the input format

of vvvFVVFVVVV into strings
such as xxx-XxX-6789.

Number REDACT_PARTIAL_ MASKCHAR Specifies the charactertobe |9, 1, s’ for redacting the
displayed in the range between [first five digits of the Social
0 and 9. Security Number 123456789
REDACT PARTIAL_MASKFROM Specifies the start digit position|into 999996789.
for redaction.
REDACT_PARTIAL_MASKTO Specifies the end digit position

for redaction.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 152

Database Compatibility for Oracle® Developers

Built-in Package Guide

Datatype Format Descriptor

Description

Examples

Datetime REDACT PARTIAL DATE MONTH

‘m’ redacts the month. To

mask a specific month, specify
‘m#/ where # indicates the
month specified by its number
between 1 and 12.

m3 displays as March.

REDACT PARTIAL DATE DAY

d’ redacts the day of the
month. To mask with a day of
the month, append 1-31 to a
lowercase d.

d3 displays as 03.

REDACT PARTIAL DATE YEAR

‘v’ redacts the year. To mask
with a year, append 1-9999 to
a lowercase y.

y1960 displays as 60.

REDACT PARTIAL DATE HOUR

‘h’ redacts the hour. To mask
with an hour, append 0-23 to a
lowercase h.

h1sg displays as 18.

REDACT PARTIAL DATE MINUTE

‘m’ redacts the minute. To
mask with a minute, append 0-
59 to a lowercase m.

m20 displays as 20.

REDACT PARTIAL DATE SECOND

‘s’ redacts the second. To
mask with a second, append 0-
59 to a lowercase s.

s40 displays as 40.

The following table represents function parameters values that can be used in

partial redaction.

Function Parameter Data Type Value Description
REDACT US_SSN_F5 VARCHAR? ['VVVEFVVFVVVV, V [Redacts the first 5 numbers of SSN.
V-V ' Example: The number 123-45-6789
MAMETETE becomes xxx-xx-6789.
REDACT US_SSN_L4 VARCHAR? ['VVVFVVFVVVV, V [Redacts the last 4 numbers of SSN.
VV-vy- ' Example: The number 123-45-6789
VUV, X, 6,9 becomes 123-45-xxXX.
REDACT US SSN_ENTIRE VARCHAR?2 ['VVVFVVFVVVV, V [Redacts the entire SSN.
V-V ' Example: The number 123-45-6789
V'V, X, L9 becomes Xxx-Xx-xXXX.
REDACT_NUM_US_SSN_F5 VARCHARZ2 ['9,1,5' Redacts the first 5 numbers of SSN when the
column is a number datatype.
Example: The number 123456789 becomes
999996789.
REDACT_NUM US_SSN_L4 VARCHARZ ('9,6,9' Redacts the last four numbers of SSN when
the column is a number datatype.
Example: The number 123456789 becomes
123459999,
REDACT_NUM US_SSN_ENTIRE VARCHARZ2 ['9,1,9" Redacts the entire SSN when the column is a
number datatype.
Example: The number 123456789 becomes
999999999.
REDACT ZIP CODE VARCHAR2 ['VVVVV, VVVVV, X |Redacts a 5 digit zip code.
r1,50 Example: 12345 becomes Xxxxx.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

153

Database Compatibility for Oracle® Developers

Built-in Package Guide

Function Parameter Data Type Value Description
REDACT_NUM_ZIP_ CODE VARCHARZ ['9,1,5" Redacts a 5 digit zip code when the column
is a number datatype.
Example: 12345 becomes 99999.
REDACT CCN16 F12 VARCHARZ2 |'VVVVEVVVVEVVV |Redacts a 16 digit credit card number and
VEVVVV, VVVV= Idisplays only 4 digits.
VVVV-VVVV-

VvV, *,1,12"

Example: 1234 5678 9000 2358
DECOMES ****—**k**x _**x**x_D358,

REDACT DATE MILLENNIUM VARCHAR2 |'mldly2000' Redacts a date that is in the bpD-MM-YY

format.
Example: Redacts all date to 01-JaN-
2000.
REDACT DATE EPOCH VARCHAR2 |'mldly1970' Redacts all dates to 01-JaN-70.
REDACT AMEX CCN FORMATTED VARCHARZ |'VVVVEVVVVVVEV |Redacts the Amercian Express credit card
VVVV, VVVV= number and replaces the digit with * except
o s 1 1o+ [for the last 5 digits.
o Example: The credit card number 1234
567890 34500 hecomes **xx xxxxskx
34500.

REDACT_AMEX_CCN_NUMBER VARCHARZ2 |'0,1,10' Redacts the Amercian Express credit card
number and replaces the digit with 0 except
the last 5 digits.

Example: The credit card number 1234
567890 34500 becomes 0000 000000
34500.
REDACT SIN FORMATTED VARCHAR2 ['VVVEVVVFVVV, V |Redacts the Social Insurance Number by
VV‘V‘*’V‘ ' replacing the first 6 digits by *.
VY, 1,6 Example: 123-456-789 becomes ***-
*Ax-789,

REDACT_SIN_NUMBER VARCHARZ ['9,1,6" Redacts the Social Insurance Number by

replacing the first 6 digits by 9.
Example: 123456789 becomes
999999789.
REDACT SIN UNFORMATTED VARCHAR2 ['VVVVVVVVV,VVV |Redacts the Social Insurance Number by
VVVVVV, *, 1, 6" Ireplacing the first 6 digits by *.
Example: 123456789 becomes
* Kk Kk ok x 7 8 9
REDACT CCN_FORMATTED VARCHAR? ['VVVVEVVVVEVVY [Redacts a credit card number by * and
xggz/f"‘\;\r]‘x‘f"‘ displays only 4 digits.
VY, %, 1,12 Example: The credit card number 1234-
5678-9000-4671 becomes *xxx—xxxx—
*Exx-4671.

REDACT_CCN_NUMBER VARCHARZ ('9,1,12' Redacts a credit card number by 0 except

the last 4 digits.
Example: The credit card number
1234567890004671 becomes
0000000000004671.
REDACT NA PHONE FORMATTED VARCHAR?2 |‘VVVFVVVFEVVVV, |Redacts the North American phone number
VVV-VVVE - |by x leaving the area code.
VUV, X4 10T ey ample: 123-456-7890 becomes 123-
XXX~ XXKX.
REDACT_NA_PHONE_NUMBER VARCHAR2 ['0,4,10" Redacts the North American phone number

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

154

Database Compatibility for Oracle® Developers

Built-in Package Guide

VVVVVVVV, X, 4,1

Function Parameter Data Type Value Description
by 0 leaving the area code.
Example: 1234567890 becomes
1230000000.
REDACT NA PHONE UNFORMATTED| VARCHARZ2 |'VVVVVVVVVV,VV [Redacts the North American phone number

by x leaving the area code.

VVVVVV, X, 3,8"'

o' Example: 1234567890 becomes
123XXXKXXXX.
REDACT UK_NIN FORMATTED VARCHARZ |' VVEVVEVVEVVEV |Redacts the UK National Insurance Number
(VV VY VYV VY gy x but leaving the alphabetic characters.
VX, 3,8 Example: NY 22 01 34 Dbecomes Ny xx
XX XX D.
REDACT UK _NIN UNFORMATTED | VARCHARZ |'VVVVVVVVV,VVV |Redacts the UK National Insurance Number

by x but leaving the alphabetic characters.
Example: NY220134D becomes
NYXXXXXXD.

A regular expression-based redaction searches for patterns of data to redact. The
regexp pattern search the values in order for the regexp replace stringto
change the value. The following table illustrates the regexp pattern values that you
can use during REGEXP based redaction.

Function Parameter

Data Type

Value

Description

RE PATTERN CC L6 T4

VARCHAR2

" (\d\d\d\d\d\d)
(\d\d\d=*) (\d\a\
d\d) '

Searches for the middle digits of a credit card
number that includes 6 leading digits and 4
trailing digits. The regexp replace string
setting to use with the format is
RE_REDACT CC MIDDLE DIGITS that
replaces the identified pattern with the
characters specified by the

RE REDACT CC MIDDLE DIGITS parameter.

RE_PATTERN ANY DIGIT

VARCHAR2

l\dv

Searches for any digit and replaces the

identified pattern with the characters specified

by the following values of the

regexp replace string parameter.

] regexp_ replace string=>
RE REDACT WITH SINGLE X (replaces
any matched digit with the x character).

® regexp replace string=>
RE_REDACT WITH SINGLE 1 (replaces
any matched digit with the 1 character) .

RE_PATTERN US_PHONE

VARCHAR2

" (N (\d\d\d\) [\d
\d\d) - (\d\d\d) -
(\d\d\d\d) "

Searches for the U.S phone number and
replaces the identified pattern with the
characters specified by the

regexp replace string parameter.

° regexp replace string=>
RE_REDACT US PHONE L7 (searches the
phone number and then replaces the last 7
digits).

RE PATTERN EMAIL ADDRESS

VARCHAR2

'([A-Za-z0-

9. %+-1+)@ ([A-

Searches for the email address and replaces the

identified pattern with the characters specified

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

155

Database Compatibility for Oracle® Developers
Built-in Package Guide

Function Parameter Data Type Value Description
Za-z0-9.- by the following values of the
1+\.[A-Za-
z1{2,4})"

regexp replace string parameter.

] regexp replace string=>
RE_REDACT EMAIL NaME (finds the
email address and redacts the email
username).

] regexp replace string=>
RE_REDACT EMAIL DOMAIN (finds the
email address and redacts the email
domain).

] regexp replace string=>
RE_REDACT EMAIL ENTIRE (finds the
email address and redacts the entire email
address).

RE_PATTERN_IP_ADDRESS VARCHAR2 [' (\d{1,3}\.\d{1 |Searches for an IP address and replaces the
+33\.\d{1, 3})\. lidentified pattern with the characters specified
\d{l, 3} by the regexp replace string parameter.
The regexp replace string parameter to
be used is RE_REDACT 1P L3 that replaces
the last section of an IP address with 999 and
indicates it is redacted.

RE PATTERN AMEX CCN VARCHAR2 ['.* (\d\d\d\d\d) |Searches for the American Express credit card
§' number. The regexp replace string
parameter to be used iS RE_REDACT AMEX CCN

that redacts all of the digits except the last 5.

RE_PATTERN_CCN VARCHARZ [".* (\d\d\d\d) $" [Searches for the credit card number other than
American Express credit cards. The

regexp replace string parameter to be
used is RE_REDACT CCN that redacts all of the
digits except the last 4.

RE_PATTERN US SSN VARCHAR2 [' (\d\d\d) - Searches the SSN number and replaces the
(\d\d) - identified pattern with the characters specified
(\d\d\d\d) '

by the regexp replace string parameter.
"\1-XXX-XXXX' or 'XxX-xxx-\3' will
return 123-XXX-XXXX OF XxX-Xxx-6789 for
the value '123-45-6789" respectively.

The below table illustrates the regexp replace string values that you can use
during REGExP based redaction.

Function Parameter Data Type Value Description

RE REDACT CC MIDDLE DIGITS| VARCHARZ |[' \IXXXXXX\3!' Redacts the middle digits of a credit card
number according to the regexp pattern
parameter with the RE_ PATTERN CC_L6 T4
format and replaces each redacted character
with an x.

Example: The credit card number 1234 5678
9000 2490 becomes 1234 56XX XXXX
2490.

RE_REDACT_WITH_SINGLE_X VARCHARZ ['X' Replaces the data with a single x character for
each matching pattern as specified by setting

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 156

Database Compatibility for Oracle® Developers

Built-in Package Guide

Function Parameter

Data Type

Value

Description

the regexp pattern parameter with the
RE_PATTERN ANY DIGIT format.

Example: The credit card number 1234 5678
9000 2490 becomes XxXXX XXXX XXXX

X XXX

RE_REDACT WITH SINGLE 1

VARCHARZ2

Replaces the data with a single 1 digit for each
of the data digits as specified by setting the
regexp_ pattern parameter with the
RE_PATTERN ANY DIGIT format.

Example: The credit card number 1234 5678
9000 2490 becomes 1111 1111 1111
1111.

RE REDACT US_PHONE L7

VARCHAR2

T\ 1-XXX-XXXX"

Redacts the last 7 digits of U.S phone number
according to the regexp_pattern parameter
with the RE_ PATTERN US_PHONE format and
replaces each redacted character with an x.
Example: The phone number 123-444-5900
becomes 123-xxx-XxxX.

RE REDACT EMAIL NAME

VARCHAR2

'xxxx@\2'

Redacts the email name according to the
regexp_ pattern parameter with the

RE PATTERN EMAIL ADDRESS formatand
replaces the email username with the four x
characters.

Example: The email address
sjohn@example.com becomes
xxxx@example.com.

RE REDACT EMAIL DOMAIN

VARCHARZ2

'"\1Q@xxxxXX.com
L}

Redacts the email domain name according to
the regexp pattern parameter with the

RE PATTERN EMAIL ADDRESS formatand
replaces the domain with the five x characters.
Example: The email address
sjohn@example.com becomes
sjohn@xxxxx.com.

RE REDACT EMAIL ENTIRE

VARCHARZ2

'XXXXAXXKKX . C
om'

Redacts the entire email address according to
the regexp pattern parameter with the
RE_PATTERN EMAIL ADDRESS formatand
replaces the email address with the x
characters.

Example: The email address
sjohn@example.com becomes
XXXXKE@XXXXX . COM.

RE REDACT IP L3

VARCHARZ2

"\1.999"

Redacts the last 3 digits of an IP address
according to the regexp pattern parameter
with the RE_ PATTERN IP ADDRESS format.
Example: The IP address 172.0.1.258
becomes 172.0.1.999, which is an invalid IP
address.

RE_REDACT AMEX CCN

VARCHAR2

l**********\l

Redacts the first 10 digits of an American
Express credit card number according to the
regexp_ pattern parameter with the

RE_PATTERN AMEX CCN format.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

157

mailto:john@example.com
mailto:john@example.com
mailto:john@example.com

Database Compatibility for Oracle® Developers

Built-in Package Guide

Function Parameter Data Type Value Description
Example: 123456789062816 becomes
**********62816.
RE_REDACT_CCN VARCHARZ2 ' **xxxxxxkxx* [Redacts the first 12 digits of a credit card
A1’

number as specified by the regexp pattern
parameter with the RE_ PATTERN CCN format.
Example: 8749012678345671 becomes

************5671.

The following tables show the regexp position value and regexp occurence
values that you can use during REGEXP based redaction.

Function Parameter Data Type Value Description
RE_BEGINNING INTEGER 1 Specifies the position of a character where search must
begin. By default, the value is 1 that indicates the
search begins at the first character of source char.
Function Parameter Data Type Value Description
RE_ALL INTEGER 0 Specifies the replacement occurrence of a substring. If
the value is 0, then the replacement of each matching
substring occurs.
RE_FIRST INTEGER 1 Specifies the replacement occurrence of a substring. If

the value is 1, then the replacement of the first
matching substring occurs.

The following table shows the regexp match parameter values that you can use
during REGExP based redaction which lets you change the default matching behavior of a

function.

Function Parameter Data Type Value Description
RE_CASE_SENSITIVE VARCHARZ 'c! Specifies the case-sensitive matching.
RE_CASE_INSENSITIVE VARCHARZ i Specifies the case-insensitive matching.
RE_MULTIPLE_LINES VARCHARZ 'm' Treats the source string as multiple lines but if you

omit this parameter, then it indicates as a single line.
RE_NEWLINE_WILDCARD VARCHARZ 'n' Specifies the period (.), but if you omit this parameter,

then the period does not match the newline character.
RE_IGNORE_WHITESPACE VARCHARZ 'x! Ignores the whitespace characters.

Note: If you create a redaction policy based on a numeric type column, then make sure
that the result after redaction is a number and accordingly set the replacement string to

avoid runtime errors.

Note: If you create a redaction policy based on a character type column, then make sure
that a length of the result after redaction is compatible with the column type and
accordingly set the replacement string to avoid runtime errors.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 158

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.13.2 ADD_POLICY

The add policy procedure creates a new data redaction policy for a table.

PROCEDURE add policy (

object schema IN VARCHARZ? DEFAULT NULL,
object name IN VARCHARZ2,

policy name IN VARCHARZ2,
policy_description IN VARCHARZ2 DEFAULT NULL,
column name IN VARCHARZ? DEFAULT NULL,
Column_description IN VARCHARZ2 DEFAULT NULL,
function_type IN INTEGER DEFAULT DBMS REDACT.FULL,
function parameters IN VARCHARZ DEFAULT NULL,
expression IN VARCHARZ,

enable IN BOOLEAN DEFAULT TRUE,
regexp pattern IN VARCHARZ2? DEFAULT NULL,
regexp replace string IN VARCHARZ2 DEFAULT NULL,

regexp position IN INTEGER DEFAULT DBMS REDACT.RE BEGINNING,
regexp occurrence IN INTEGER DEFAULT DBMS REDACT.RE ALL,
regexp match parameter IN VARCHAR2 DEFAULT NULL,
custom function expression IN VARCHAR2 DEFAULT NULL
)

Parameters

object schema

Specifies the name of the schema in which the object resides and on which the
data redaction policy will be applied. If you specify NULL then the given object is
searched by the order specified by search path setting.

object name
Name of the table on which the data redaction policy is created.
policy name

Name of the policy to be added. Ensure that the policy name is unique for the
table on which the policy is created.

policy description
Specify the description of a redaction policy.

column name

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 159

Database Compatibility for Oracle® Developers
Built-in Package Guide

Name of the column to which the redaction policy applies. To redact more than
one column, use the alter policy procedure to add additional columns.

column description

Description of the column to be redacted. The column description is not
supported, but if you specify the description for a column then, you will get a
warning message.

function type

The type of redaction function to be used. The possible values are NONE, FULL,
PARTIAL, RANDOM, REGEXP, and CUSTOM.

function parameters

Specifies the function parameters for the partition redaction and is applicable only
for partial redaction.

expression

Specifies the Boolean expression for the table and determines how the policy is to
be applied. The redaction occurs if this policy expression is evaluated to TRUE.

enable

When set to TRUE, the policy is enabled upon creation. The default is set as TRUE.
When set to FALSE, the policy is disabled but the policy can be enabled by calling
the enable policy procedure.

regexp pattern

Specifies the regular expression pattern to redact data. If the regexp pattern
does not match, then the NULL value is returned.

regexp replace string
Specifies the replacement string value.
regexp position

Specifies the position of a character where search must begin. By default, the
function parameter is RE BEGINNING.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 160

Database Compatibility for Oracle® Developers
Built-in Package Guide

regexp occurrence

Specifies the replacement occurrence of a substring. If the constant is RE_ALL,
then the replacement of each matching substring occurs. If the constant is
RE FIRST, then the replacement of the first matching substring occurs.

regexp match parameter

Changes the default matching behavior of a function. The possible

regexp match parameter cOnstants can be ‘RE CASE SENSITIVE',
‘RE_CASE INSENSITIVE’, ‘RE MULTIPLE LINES’,

‘RE_NEWLINE WILDCARD’, ‘RE IGNORE WHITESPACE'.

Note: For more information on constants, function parameters, Of
regexp (regular expressions) see, Using DBMS REDACT Constants and
Function Parameters.

custom function expression

The custom function expression is applicable only for the cusTom
redaction type. The custom function expression isa function expression
that is, schema-qualified function with a parameter such as

schema name.function name (argumentl, ..)thatallows a user to use
their redaction logic to redact the column data.

Example

The following example illustrates how to create a policy and use full redaction for values

inthe payment details tab table customer id column.

edb=# CREATE TABLE payment details tab (
customer id NUMBER NOT NULL,

card string VARCHARZ (19) NOT NULL) ;
CREATE TABLE

edb=# BEGIN
INSERT INTO payment details tab VALUES (4000, '1234-1234-1234-1234");
INSERT INTO payment details tab VALUES (4001, '2345-2345-2345-2345");
END;

EDB-SPL Procedure successfully completed

edb=# CREATE USER redact user;

CREATE ROLE

edb=# GRANT SELECT ON payment details tab TO redact user;
GRANT

\c edb base user

BEGIN
DBMS REDACT.add policy (

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 161

Database Compatibility for Oracle® Developers
Built-in Package Guide

object schema => 'public',

object name => 'payment details tab',

policy name => 'redactPolicy 001',

policy description => 'redactPolicy 001 for payment details tab
table',

column name => 'customer id',

function type => DBMS REDACT. full,

expression => '1=1",

enable => TRUE) ;

END;

Redacted Result:

edb=# \c edb redact user
You are now connected to database "edb" as user "redact user".

edb=> select customer id from payment details tab order by 1;
customer id

(2 rows)

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 162

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.13.3 ALTER_POLICY

The alter policy procedure alters or modifies an existing data redaction policy for a
table.

PROCEDURE alter policy (

object schema IN VARCHARZ? DEFAULT NULL,
object name IN VARCHARZ,

policy name IN VARCHARZ2,

action IN INTEGER DEFAULT DBMS REDACT.ADD COLUMN,
column name IN VARCHARZ2 DEFAULT NULL,
function_type IN INTEGER DEFAULT DBMS REDACT.FULL,
function_parameters IN VARCHARZ? DEFAULT NULL,
expression IN VARCHARZ? DEFAULT NULL,
regexp pattern IN VARCHARZ? DEFAULT NULL,
regexp replace string IN VARCHARZ2 DEFAULT NULL,

regexp position IN INTEGER DEFAULT DBMS REDACT.RE BEGINNING,
regexp occurrence IN INTEGER DEFAULT DBMS REDACT.RE ALL,

regexp match parameter IN VARCHARZ? DEFAULT NULL,
policy description IN VARCHAR2? DEFAULT NULL,
column description IN VARCHARZ DEFAULT NULL,

custom function expression IN VARCHAR2 DEFAULT NULL
)

Parameters

object schema

Specifies the name of the schema in which the object resides and on which the
data redaction policy will be altered. If you specify NULL then the given object is
searched by the order specified by search path setting.

object name

Name of the table to which to alter a data redaction policy.
policy name

Name of the policy to be altered.

action

The action to perform. For more information about action parameters see, Using
DBMS REDACT Constants and Function Parameters.

column name

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 163

Database Compatibility for Oracle® Developers
Built-in Package Guide

Name of the column to which the redaction policy applies.

function type

The type of redaction function to be used. The possible values are NONE, FULL,
PARTIAL, RANDOM, REGEXP, and CUSTOM.

function parameters
Specifies the function parameters for the redaction function.
expression

Specifies the Boolean expression for the table and determines how the policy is to
be applied. The redaction occurs if this policy expression is evaluated to TRUE.

regexp pattern

Enables the use of regular expressions to redact data. If the regexp pattern
does not match the data, then the NULL value is returned.

regexp replace string
Specifies the replacement string value.
regexp position

Specifies the position of a character where search must begin. By default, the
function parameter iSs RE_ BEGINNING.

regexp occurence

Specifies the replacement occurrence of a substring. If the constant is RE_ ALL,
then the replacement of each matching substring occurs. If the constant is
RE FIRST, then the replacement of the first matching substring occurs.

regexp match parameter

Changes the default matching behavior of a function. The possible

regexp match parameter constants can be ‘RE CASE SENSITIVE',
‘RE_CASE_INSENSITIVE' , ‘RE_MULTIPLE_LINES’ ’

‘RE_NEWLINE WILDCARD’, ‘RE_IGNORE WHITESPACE'.
Note: For more information on constants, function parameters, Of

regexp (regular expressions) see, Using DBMS REDACT Constants and
Function Parameters.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 164

Database Compatibility for Oracle® Developers
Built-in Package Guide

policy description
Specify the description of a redaction policy.
column description

Description of the column to be redacted. The column description is not
supported, but if you specify the description for a column then, you will get a
warning message.

custom function expression

The custom function expression is applicable only for the cusTom
redaction type. The custom function expression isa function expression
that is, schema-qualified function with a parameter such as

schema name.function name (argumentl, ..) that allows a user to use
their redaction logic to redact the column data.

Example

The following example illustrates to alter a policy using partial redaction for values in the
payment details tabtable card string (usually a credit card number) column.

\c edb base user

BEGIN
DBMS REDACT.alter policy (
object schema => 'public',
object name => 'payment details tab',
policy name => 'redactPolicy 001',
action => DBMS REDACT.ADD COLUMN,
column name => 'card string',
function type => DBMS REDACT.partial,
function_parameters => DBMS_REDACT.REDACT_CCN16_F12);
END;

Redacted Result:

edb=# \c - redact user
You are now connected to database "edb" as user "redact user".
edb=> SELECT * FROM payment details tab;

customer id | card string
_____________ +_____________________
O | ****_****_****_1234
O I ****_****_****_2345

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 165

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.13.4 DISABLE_POLICY

The disable policy procedure disables an existing data redaction policy.

PROCEDURE disable policy (

object schema IN VARCHARZ2 DEFAULT NULL,
object name IN VARCHARZ,
policy name IN VARCHAR2
)
Parameters

object schema

Specifies the name of the schema in which the object resides and on which the
data redaction policy will be applied. If you specify NULL then the given object is
searched by the order specified by search path setting.

object name
Name of the table for which to disable a data redaction policy.
policy name

Name of the policy to be disabled.

Example

The following example illustrates how to disable a policy.

\c edb base user

BEGIN
DBMS REDACT.disable policy (
object schema => 'public',
object name => 'payment details tab',
policy name => 'redactPolicy 001"');
END;

Redacted Result: Data is no longer redacted after disabling a policy.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 166

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.13.5 ENABLE_POLICY

The enable policy procedure enables the previously disabled data redaction policy.

PROCEDURE enable policy (

object schema IN VARCHAR2? DEFAULT NULL,
object name IN VARCHARZ2,
policy name IN VARCHAR?2
)
Parameters

object schema

Specifies the name of the schema in which the object resides and on which the
data redaction policy will be applied. If you specify NULL then the given object is
searched by the order specified by search path setting.

object name
Name of the table to which to enable a data redaction policy.
policy name

Name of the policy to be enabled.

Example

The following example illustrates how to enable a policy.

\c edb base user

BEGIN
DBMS REDACT.enable policy (
object schema => 'public',
object name => 'payment details tab',
policy name => 'redactPolicy 001');
END;

Redacted Result: Data is redacted after enabling a policy.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 167

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.13.6 DROP_POLICY

The drop policy procedure drops a data redaction policy by removing the masking
policy from a table.

PROCEDURE drop policy (

object schema IN VARCHAR2 DEFAULT NULL,
object name IN VARCHARZ2,
policy name IN VARCHAR?2
)
Parameters

object schema

Specifies the name of the schema in which the object resides and on which the
data redaction policy will be applied. If you specify NULL then the given object is
searched by the order specified by search path setting.

object name

Name of the table from which to drop a data redaction policy.
policy name

Name of the policy to be dropped.

Example

The following example illustrates how to drop a policy.

\c edb base user

BEGIN
DBMS REDACT.drop policy(
object schema => 'public',
object name => 'payment details tab',
policy name => 'redactPolicy 001');
END;

Redacted Result: The server drops the specified policy.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 168

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.13.7 UPDATE_FULL_REDACTION_VALUES

The update full redaction values procedure updates the default displayed
values for a data redaction policy and these default values can be viewed using the
redaction values for type full view that use the full redaction type.

PROCEDURE update full redaction values (

number val IN NUMBER DEFAULT NULL,
binfloat val IN FLOAT4 DEFAULT NULL,
bindouble val IN FLOATS DEFAULT NULL,
char val IN CHAR DEFAULT NULL,
varchar val IN VARCHAR2 DEFAULT NULL,
nchar val IN NCHAR DEFAULT NULL,
nvarchar val IN NVARCHARZ DEFAULT NULL,
datecol val IN DATE DEFAULT NULL,
ts val IN TIMESTAMP DEFAULT NULL,
tswtz val IN TIMESTAMPTZ DEFAULT NULL,
blob val IN BLOB DEFAULT NULL,
clob val IN CLOB DEFAULT NULL,
nclob val IN CLOB DEFAULT NULL
)
Parameters

number val
Updates the default value for columns of the NUMBER datatype.
binfloat val

The FLOAT4 datatype is a random value. The binary float datatype is not
supported.

bindouble val

The FLOATS datatype is a random value. The binary double datatype is not
supported.

char val

Updates the default value for columns of the cHAR datatype.

varchar val

Updates the default value for columns of the vARCHAR2 datatype.

nchar val

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 169

Database Compatibility for Oracle® Developers
Built-in Package Guide

The nchar val is mapped to CHAR datatype and returns the CHAR value.

nvarchar val

The nvarchar val is mapped to VARCHAR?2 datatype and returns the VARCHAR
value.

datecol val

Updates the default value for columns of the DATE datatype.
ts val

Updates the default value for columns of the TTMESTAMP datatype.
tswtz val

Updates the default value for columns of the TTMESTAMPTZ datatype.
blob val

Updates the default value for columns of the BL.OB datatype.
clob val

Updates the default value for columns of the cr.oB datatype.

nclob val

The nclob val is mapped to cLOB datatype and returns the cLOB value.

Example

The following example illustrates how to update the full redaction values but before
updating the values, you can:

1. View the default values using redaction values for type full View asshown
below:

edb=# \x

Expanded display is on.

edb=# SELECT number value, char value, varchar value, date value,
timestamp value, timestamp with time zone value, blob value,

clob value

FROM redaction values for type full;

-[RECORD 1]-—--————- cmmcmcccom e ccecoss s e e s s s e e esnea

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 170

Database Compatibility for Oracle® Developers
Built-in Package Guide

number value

char value |

varchar value

date value | 01-JAN-01 00:00:00
timestamp value | 01-JAN-01 01:00:00
timestamp with time zone value | 31-DEC-00 20:00:00 -05:00
blob value | \x5b72656461637465645d
clob value | [redacted]

(1 row)

2. Now, update the default values for full redaction type. The NULL values will be
ignored.

\c edb base user

edb=# BEGIN
DBMS REDACT.update full redaction values (
number val => 9999999,
char val => 'Z',
varchar val => 'V',
datecol val => to date('17/10/2018', 'DD/MM/YYYY'),
ts val => to timestamp('17/10/2018 11:12:13', 'DD/MM/YYYY HH24:MI:SS'),
tswtz val => NULL,
blob_val => 'NEW REDACTED VALUE',
clob val => 'NEW REDACTED VALUE') ;
END;

3. You can now see the updated values using redaction values for type full
view.

EDB-SPL Procedure successfully completed

edb=# SELECT number value, char value, varchar value, date value,
timestamp value, timestamp with time zone value, blob value,

clob value

FROM redaction values for type full;

—[RECORD 1]—————————————————— BT T

number value 9999999
char value Z
varchar value Vv

17-0CT-18 00:00:00

17-0CT-18 11:12:13

31-DEC-00 20:00:00 -05:00
\x4e45572052454441435445442056414c5545
NEW REDACTED VALUE

date value

timestamp value
timestamp with time zone value
blob value

clob value

(1 row)

Redacted Result:

edb=# \c edb redact user
You are now connected to database "edb" as user "redact user".

edb=> select * from payment details tab order by 1;

customer id | card string
_____________ +_____________
9999999 | Vv
9999999 | Vv
(2 rows)

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 171

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.14DBMS_RLS

The DBMS RLS package enables the implementation of Virtual Private Database on
certain Advanced Server database objects.

Function/Procedure Function or| Return Description
Procedure Type
ADD_POLICY (object_schema, Procedure n/a Add a security policy to a database object.

object name, policy name,
function schema, policy function
[, statement types [,

update check [, enable [,
static policy [, policy type [,
long predicate [,

sec relevant cols [,

sec relevant cols opt]11111111)

DROP_POLICY (object_schema, Procedure n/a Remove a security policy from a database
object name, policy name) object.
ENABLE_POLICY (object schema, Procedure n/a Enable or disable a security policy.

object name, policy name, enable)

Advanced Server's implementation of DBMS RLS is a partial implementation when
compared to Oracle's version. Only those functions and procedures listed in the table
above are supported.

Virtual Private Database is a type of fine-grained access control using security policies.
Fine-grained access control in Virtual Private Database means that access to data can be
controlled down to specific rows as defined by the security policy.

The rules that encode a security policy are defined in a policy function, which is an SPL
function with certain input parameters and return value. The security policy is the named
association of the policy function to a particular database object, typically a table.

Note: In Advanced Server, the policy function can be written in any language supported
by Advanced Server such as SQL, PL/pgSQL and SPL.

Note: The database objects currently supported by Advanced Server Virtual Private
Database are tables. Policies cannot be applied to views or synonyms.

The advantages of using Virtual Private Database are the following:
e Provides a fine-grained level of security. Database object level privileges given by
the GRANT command determine access privileges to the entire instance of a

database object, while Virtual Private Database provides access control for the
individual rows of a database object instance.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 172

Database Compatibility for Oracle® Developers
Built-in Package Guide

e A different security policy can be applied depending upon the type of SQL
command (INSERT, UPDATE, DELETE, Of SELECT).

e The security policy can vary dynamically for each applicable SQL command
affecting the database object depending upon factors such as the session user of
the application accessing the database object.

e Invocation of the security policy is transparent to all applications that access the
database object and thus, individual applications do not have to be modified to
apply the security policy.

e Once a security policy is enabled, it is not possible for any application (including
new applications) to circumvent the security policy except by the system privilege
noted by the following.

e Even superusers cannot circumvent the security policy except by the system
privilege noted by the following.

Note: The only way security policies can be circumvented is if the EXEMPT ACCESS
POLICY system privilege has been granted to a user. The EXEMPT ACCESS POLICY
privilege should be granted with extreme care as a user with this privilege is exempted
from all policies in the database.

The DBMS RLS package provides procedures to create policies, remove policies, enable
policies, and disable policies.

The process for implementing Virtual Private Database is as follows:

e Create a policy function. The function must have two input parameters of type
VARCHAR?2. The first input parameter is for the schema containing the database
object to which the policy is to apply and the second input parameter is for the
name of that database object. The function must have a VARCHAR?2 return type.
The function must return a string in the form of a wHERE clause predicate. This
predicate is dynamically appended as an AND condition to the SQL command that
acts upon the database object. Thus, rows that do not satisfy the policy function
predicate are filtered out from the SQL command result set.

e Usethe ADD POLICY procedure to define a new policy, which is the association
of a policy function with a database object. With the ADD PoLICY procedure, you
can also specify the types of SQL commands (INSERT, UPDATE, DELETE, Of
SELECT) to which the policy is to apply, whether or not to enable the policy at the
time of its creation, and if the policy should apply to newly inserted rows or the
modified image of updated rows.

e Usethe ENABLE POLICY procedure to disable or enable an existing policy.

e Usethe DROP POLICY procedure to remove an existing policy. The
DROP_POLICY procedure does not drop the policy function or the associated
database object.

Once policies are created, they can be viewed in the catalog views, compatible with
Oracle databases: ALL,_POLICIES, DBA POLICIES, Of USER POLICIES. The

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 173

Database Compatibility for Oracle® Developers
Built-in Package Guide

supported compatible views are listed in the Database Compatibility for Oracle
Developers Reference Guide, available at the EnterpriseDB website at:

https://www.enterprisedb.com/edb-docs

The sys_coNTEXT function is often used with DBMS_RLsS. The signature is:

SYS CONTEXT (namespace, attribute)
Where:

namespace IS a VARCHAR?; the only accepted value is USERENV. Any other
value will return NULL.

attributelSaVARCHAR2. attribute may be:

attribute Value Equivalent Value
SESSION USER pg catalog.session user
CURRENT USER pg catalog.current user
CURRENT SCHEMA pg catalog.current schema
HOST pg catalog.inet host
IP ADDRESS pg catalog.inet client addr
SERVER HOST pg catalog.inet server addr

Note: The examples used to illustrate the DBMS RLS package are based on a modified
copy of the sample emp table provided with Advanced Server along with a role named
salesmgr that is granted all privileges on the table. You can create the modified copy of
the emp table named vpemp and the salesmgr role as shown by the following:

CREATE TABLE public.vpemp AS SELECT empno, ename, job, sal, comm, deptno FROM
emp;

ALTER TABLE vpemp ADD authid VARCHAR2 (12) ;

UPDATE vpemp SET authid = 'researchmgr' WHERE deptno = 20;

UPDATE vpemp SET authid = 'salesmgr' WHERE deptno = 30;

SELECT * FROM vpemp;

empno | ename | job | sal | comm | deptno | authid
——————— e et it i e e
7782 | CLARK | MANAGER | 2450.00 | \ 10 |
7839 | KING | PRESIDENT | 5000.00 | | 10 |
7934 | MILLER | CLERK | 1300.00 | \ 10 |
7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
7566 | JONES | MANAGER | 2975.00 | | 20 | researchmgr
7788 | SCOTT | ANALYST | 3000.00 | | 20 | researchmgr
7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
7902 | FORD | ANALYST | 3000.00 | | 20 | researchmgr
7499 | ALLEN | SALESMAN | 1600.00 | 300.00 | 30 | salesmgr
7521 | WARD | SALESMAN | 1250.00 | 500.00 | 30 | salesmgr
7654 | MARTIN | SALESMAN | 1250.00 | 1400.00 | 30 | salesmgr
7698 | BLAKE | MANAGER | 2850.00 | | 30 | salesmgr
7844 | TURNER | SALESMAN | 1500.00 | 0.00 | 30 | salesmgr
7900 | JAMES | CLERK | 950.00 | | 30 | salesmgr
(14 rows)

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 174

https://www.enterprisedb.com/edb-docs

Database Compatibility for Oracle® Developers
Built-in Package Guide

CREATE ROLE salesmgr WITH LOGIN PASSWORD 'password';
GRANT ALL ON vpemp TO salesmgr;

3.14.1 ADD_POLICY

The ADD POLICY procedure creates a new policy by associating a policy function with a
database object.

You must be a superuser to execute this procedure.

ADD POLICY (object schema VARCHARZ, object name VARCHARZ,
policy name VARCHAR2, function schema VARCHARZ,
policy function VARCHAR2
[, statement types VARCHARZ

, update check BOOLEAN

, enable BOOLEAN

, static policy BOOLEAN

policy type INTEGER

, long predicate BOOLEAN

, sec relevant cols VARCHARZ2

, sec relevant cols opt INTEGER]]]1]1]1]1)

~

[
[
[
[
[
[
[

Parameters
object schema

Name of the schema containing the database object to which the policy is to be
applied.

object name

Name of the database object to which the policy is to be applied. A given database
object may have more than one policy applied to it.

policy name

Name assigned to the policy. The combination of database object (identified by
object schema and object name) and policy name must be unique within the
database.

function schema

Name of the schema containing the policy function.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 175

Database Compatibility for Oracle® Developers
Built-in Package Guide

Note: The policy function may belong to a package in which case
function schema must contain the name of the schema in which the package is
defined.

policy function

Name of the SPL function that defines the rules of the security policy. The same
function may be specified in more than one policy.

Note: The policy function may belong to a package in which case
policy function Mmustalso contain the package name in dot notation (that is,
package name.function name).

statement types

Comma-separated list of SQL commands to which the policy applies. Valid SQL
commands are INSERT, UPDATE, DELETE, and SELECT. The default is
INSERT, UPDATE, DELETE, SELECT.

Note: Advanced Server accepts INDEX as a Statement type, but it is ignored.
Policies are not applied to index operations in Advanced Server.

update check
Applies to INSERT and UPDATE SQL commands only.

When set to TRUE, the policy is applied to newly inserted rows and to the
modified image of updated rows. If any of the new or modified rows do not
qualify according to the policy function predicate, then the INSERT or UPDATE
command throws an exception and no rows are inserted or modified by the
INSERT Of UPDATE command.

When set to FALSE, the policy is not applied to newly inserted rows or the
modified image of updated rows. Thus, a newly inserted row may not appear in
the result set of a subsequent SQL command that invokes the same policy.
Similarly, rows which qualified according to the policy prior to an UPDATE
command may not appear in the result set of a subsequent SQL command that
invokes the same policy.

The default is FALSE.

enable

When set to TRUE, the policy is enabled and applied to the SQL commands given
by the statement types parameter. When set to FALSE the policy is disabled

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 176

Database Compatibility for Oracle® Developers
Built-in Package Guide

and not applied to any SQL commands. The policy can be enabled using the
ENABLE POLICY procedure. The default is TRUE.

static policy

In Oracle, when set to TRUE, the policy is static, which means the policy function
is evaluated once per database object the first time it is invoked by a policy on
that database object. The resulting policy function predicate string is saved in
memory and reused for all invocations of that policy on that database object while
the database server instance is running.

When set to FALSE, the policy is dynamic, which means the policy function is re-
evaluated and the policy function predicate string regenerated for all invocations
of the policy.

The default is FALSE.

Note: In Oracle 10g, the policy type parameter was introduced, which is
intended to replace the static policy parameter. In Oracle, if the
policy type parameter is not set to its default value of NULL, the
policy type parameter setting overridesthe static policy Setting.

Note: The setting of static policy isignored by Advanced Server. Advanced
Server implements only the dynamic policy, regardless of the setting of the
static policy parameter.

policy type

In Oracle, determines when the policy function is re-evaluated, and hence, if and
when the predicate string returned by the policy function changes. The default is
NULL.

Note: The setting of this parameter is ignored by Advanced Server. Advanced
Server always assumes a dynamic policy.

long predicate

In Oracle, allows predicates up to 32K bytes if set to TRUE, otherwise predicates
are limited to 4000 bytes. The default is FALSE.

Note: The setting of this parameter is ignored by Advanced Server. An Advanced

Server policy function can return a predicate of unlimited length for all practical
purposes.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 177

Database Compatibility for Oracle® Developers
Built-in Package Guide

sec relevant cols

Comma-separated list of columns of object name. Provides column-level
Virtual Private Database for the listed columns. The policy is enforced if any of
the listed columns are referenced in a SQL command of a type listed in
statement types. The policy is not enforced if no such columns are
referenced.

The default is NULL, which has the same effect as if all of the database object’s
columns were included in sec_relevant cols.

sec relevant cols opt

In Oracle, if sec relevant cols optissetto DBMS RLS.ALL ROWS
(INTEGER constant of value 1), then the columns listed in sec relevant cols
return NULL on all rows where the applied policy predicate is false. (If

sec relevant cols opt iSnotsetto DBMS RLS.ALL ROWS, these rows
would not be returned at all in the result set.) The default is NULL.

Note: Advanced Server does not support the DBMS RLS.ALL ROWS
functionality. Advanced Server throws an error if sec_relevant cols opt IS
set to DBMS RLS.ALL ROWS (INTEGER value of 1).

Examples

This example uses the following policy function:

CREATE OR REPLACE FUNCTION verify_session_user (
p_schema VARCHARZ2,
p_object VARCHAR?2

)
RETURN VARCHAR2
IS
BEGIN
RETURN 'authid = SYS CONTEXT (''USERENV'', ''SESSION USER'')';
END;

This function generates the predicate authid = SYS CONTEXT ('USERENV',
'"SESSION USER'), which is added to the wHERE clause of any SQL command of the
type specified in the ADD POLICY procedure.

This limits the effect of the SQL command to those rows where the content of the
authid column is the same as the session user.

Note: This example uses the sys cONTEXT function to return the login user name. In

Oracle the sys coNTEXT function is used to return attributes of an application context.
The first parameter of the sys coNTEXT function is the name of an application context
while the second parameter is the name of an attribute set within the application context.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 178

Database Compatibility for Oracle® Developers
Built-in Package Guide

USERENV is a special built-in namespace that describes the current session. Advanced
Server does not support application contexts, but only this specific usage of the
SYS CONTEXT function.

The following anonymous block calls the ADD pPOLICY procedure to create a policy
named secure update to be applied to the vpemp table using function

verify session user Whenever an INSERT, UPDATE, of DELETE SQL command is
given referencing the vpemp table.

DECLARE
v_object schema VARCHAR?2 (30) := 'public';
v_object name VARCHAR2 (30) := 'vpemp';
v_policy name VARCHARZ2 (30) := 'secure update';
v_function schema VARCHAR2 (30) := 'enterprisedb';
v_policy function VARCHAR2 (30) := 'verify session user';
v_statement types VARCHAR2 (30) := 'INSERT,UPDATE,DELETE';
v _update check BOOLEAN := TRUE;
v_enable BOOLEAN = TRUE;

BEGIN

DBMS RLS.ADD POLICY (
v_object schema,
v_object name,
v_policy name,
v_function schema,
v_policy function,
v_statement types,
v_update check,
v_enable

)

END;

After successful creation of the policy, a terminal session is started by user salesmgr.
The following query shows the content of the vpemp table:

edb=# \c edb salesmgr

Password for user salesmgr:

You are now connected to database "edb" as user "salesmgr".
edb=> SELECT * FROM vpemp;

empno | ename | Jjob | sal | comm | deptno | authid
——————— B et e s Tt E L P
7782 | CLARK | MANAGER | 2450.00 | \ 10 |
7839 | KING | PRESIDENT | 5000.00 | | 10 |
7934 | MILLER | CLERK | 1300.00 | | 10 |
7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
7566 | JONES | MANAGER | 2975.00 | | 20 | researchmgr
7788 | SCOTT | ANALYST | 3000.00 | | 20 | researchmgr
7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
7902 | FORD | ANALYST | 3000.00 | | 20 | researchmgr
7499 | ALLEN | SALESMAN | 1600.00 | 300.00 | 30 | salesmgr
7521 | WARD | SALESMAN | 1250.00 | 500.00 | 30 | salesmgr
7654 | MARTIN | SALESMAN | 1250.00 | 1400.00 | 30 | salesmgr
7698 | BLAKE | MANAGER | 2850.00 | | 30 | salesmgr
7844 | TURNER | SALESMAN | 1500.00 | 0.00 | 30 | salesmgr
7900 | JAMES | CLERK | 950.00 | | 30 | salesmgr
(14 rows)

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 179

Database Compatibility for Oracle® Developers
Built-in Package Guide

An unqualified upDATE command (no WHERE clause) is issued by the salesmgr user:

edb=> UPDATE vpemp SET comm = sal * .75;
UPDATE 6

Instead of updating all rows in the table, the policy restricts the effect of the update to
only those rows where the authid column contains the value salesmgr as specified by
the policy function predicate authid = SYS CONTEXT ('USERENV',

'"SESSION USER').

The following query shows that the comm column has been changed only for those rows
where authid contains salesmgr. All other rows are unchanged.

edb=> SELECT * FROM vpemp;

empno | ename | Jjob | sal | comm | deptno | authid
——————— B it e e S et s
7782 | CLARK | MANAGER | 2450.00 | | 10 |
7839 | KING | PRESIDENT | 5000.00 | \ 10 |
7934 | MILLER | CLERK | 1300.00 | | 10 |
7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
7566 | JONES | MANAGER | 2975.00 | | 20 | researchmgr
7788 | SCOTT | ANALYST | 3000.00 | | 20 | researchmgr
7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
7902 | FORD | ANALYST | 3000.00 | | 20 | researchmgr
7499 | ALLEN | SALESMAN | 1600.00 | 1200.00 | 30 | salesmgr
7521 | WARD | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
7654 | MARTIN | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
7698 | BLAKE | MANAGER | 2850.00 | 2137.50 | 30 | salesmgr
7844 | TURNER | SALESMAN | 1500.00 | 1125.00 | 30 | salesmgr
7900 | JAMES | CLERK | 950.00 | 712.50 | 30 | salesmgr
(14 rows)

Furthermore, since the update check parameter was set to TRUE in the ADD_POLICY
procedure, the following INSERT command throws an exception since the value given for
the authid column, researchmgr, does not match the session user, which is
salesmgr, and hence, fails the policy.

edb=> INSERT INTO vpemp VALUES (9001, 'SMITH', 'ANALYST',3200.00,NULL, 20,
'researchmgr') ;

ERROR: policy with check option violation

DETAIL: Policy predicate was evaluated to FALSE with the updated values

If update check was set to FALSE, the preceding 1NSERT command would have
succeeded.

The following example illustrates the use of the sec_relevant cols parameter to
apply a policy only when certain columns are referenced in the SQL command. The
following policy function is used for this example, which selects rows where the
employee salary is less than 2000.

CREATE OR REPLACE FUNCTION Sal_lt_ZOOO (
p_schema VARCHARZ,
p_object VARCHAR?2

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 180

)

RETURN VARCHAR2

IS

BEGIN

END;

RETURN 'sal < 2000';

Database Compatibility for Oracle® Developers

Built-in Package Guide

The policy is created so that it is enforced only if a SELECT command includes columns
sal Or comm:

DECLARE

v_object schema
v_object name
v_policy name
v_function schema
v_policy function
v_statement types
v_sec relevant cols

BEGIN

END;

DBMS RLS.ADD POLICY (
v_object schema,
v_object name,
v_policy name,
v_function schema,
v_policy function,
v_statement types,
sec_relevant cols =

)i

VARCHARZ2 (30) = 'public';
VARCHAR2 (30) := 'vpemp';
VARCHAR?2 (30) = 'secure_ salary';
VARCHAR2 (30) := 'enterprisedb';
VARCHAR2 (30) := 'sal 1t 2000';
VARCHARZ2 (30) = 'SELECT';
VARCHAR?2 (30) = 'sal,comm';

> v_sec relevant cols

If a query does not reference columns sal or comm, then the policy is not applied. The
following query returns all 14 rows of table vpemp:

edb=# SELECT empno, ename,

empno | ename | Jjob

_______ +________+__________
7782 | CLARK | MANAGER
7839 | KING | PRESIDENT
7934 | MILLER | CLERK
7369 | SMITH | CLERK
7566 | JONES | MANAGER
7788 | SCOTT | ANALYST
7876 | ADAMS | CLERK
7902 | FORD | ANALYST
7499 | ALLEN | SALESMAN
7521 | WARD | SALESMAN
7654 | MARTIN | SALESMAN
7698 | BLAKE | MANAGER
7844 | TURNER | SALESMAN
7900 | JAMES | CLERK

(14 rows)

job, deptno,

| deptno | authid
_+ ________ + _____________

\ 10 |

\ 10 |

\ 10 |

| 20 | researchmgr
| 20 | researchmgr
| 20 | researchmgr
| 20 | researchmgr
| 20 | researchmgr
| 30 | salesmgr

| 30 | salesmgr

| 30 | salesmgr

| 30 | salesmgr

| 30 | salesmgr

| 30 | salesmgr

authid FROM vpemp;

If the query references the sal or comm columns, then the policy is applied to the query
eliminating any rows where sa1l is greater than or equal to 2000 as shown by the

following:
edb=# SELECT empno, ename,
empno | ename | job

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

job, sal, comm,
| sal |

deptno,
comm |

authid FROM vpemp;

deptno |

authid

181

Database Compatibility for Oracle® Developers
Built-in Package Guide

——————— B et e s s sttt
7934 | MILLER | CLERK | 1300.00 | | 10 |
7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
7499 | ALLEN | SALESMAN | 1600.00 | 1200.00 | 30 | salesmgr
7521 | WARD | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
7654 | MARTIN | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
7844 | TURNER | SALESMAN | 1500.00 | 1125.00 | 30 | salesmgr
7900 | JAMES | CLERK | 950.00 | 712.50 | 30 | salesmgr

(8 rows)

3.14.2 DROP_POLICY

The DrROP POLICY procedure deletes an existing policy. The policy function and
database object associated with the policy are not deleted by the broP POLICY
procedure.

You must be a superuser to execute this procedure.

DROP_POLICY (object schema VARCHARZ, object name VARCHARZ,
policy name VARCHAR2)

Parameters

object schema

Name of the schema containing the database object to which the policy applies.

object name

Name of the database object to which the policy applies.
policy name

Name of the policy to be deleted.
Examples

The following example deletes policy secure update on table public.vpemp:

DECLARE
v_object schema VARCHAR?2 (30) = 'public';
v_object name VARCHAR2 (30) := 'vpemp';
v_policy name VARCHAR2 (30) := 'secure update';
BEGIN

DBMS RLS.DROP POLICY (
v_object schema,
v_object name,
v_policy name

) i

END;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 182

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.14.3 ENABLE_POLICY

The ENABLE POLICY procedure enables or disables an existing policy on the specified
database object.

You must be a superuser to execute this procedure.

ENABLE POLICY (object schema VARCHAR2, object name VARCHARZ2,
policy name VARCHAR2, enable BOOLEAN)

Parameters

object schema

Name of the schema containing the database object to which the policy applies.

object name

Name of the database object to which the policy applies.
policy name

Name of the policy to be enabled or disabled.

enable

When set to TRUE, the policy is enabled. When set to FALSE, the policy is
disabled.

Examples

The following example disables policy secure update on table public.vpemp:

DECLARE
v_object schema VARCHAR2 (30) = 'public';
v_object name VARCHAR2 (30) := 'vpemp';
v_policy name VARCHAR2 (30) := 'secure update';
v_enable BOOLEAN := FALSE;

BEGIN

DBMS RLS.ENABLE POLICY (
v_object schema,
v_object name,
v_policy name,
v_enable

) ;

END;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 183

Database Compatibility for Oracle® Developers

3.15DBMS_SCHEDULER

Built-in Package Guide

The DBMS_SCHEDULER package provides a way to create and manage Oracle-styled jobs,
programs and job schedules. The pBMS_SCHEDULER package implements the following

functions and procedures:

Function/Procedure

Return Type

Description

CREATE JOB (job name,

job type, job action,
number of arguments,

start date, repeat interval,
end date, job class, enabled,
auto drop, comments)

n/a

Use the first form of the CREATE JoOB procedure to
create a job, specifying program and schedule details
by means of parameters.

CREATE_JOB (job_name, n/a Use the second form of CREATE JOB to create a job

program name, schedule name, that uses a named program and named schedule.

job class, enabled,

auto drop, comments)

CREATE_PROGRAM (program_name, n/a Use CREATE PROGRAM t0 create a program.

program type, program action,

number of arguments, enabled,

comments)

CREATE_SCHEDULE (n/a Use the CREATE SCHEDULE procedure to create a

schedule name, start date, schedule.

repeat interval, end date,

comments)

DEFINE PROGRAM ARGUMENT (n/a Use the first form of the

[program name, DEFINE PROGRAM ARGUMENT procedure to define a

argument position, program argument that has a default value.

argument name, argument type,

default value, out argument)

DEFINE_ PROGRAM ARGUMENT (n/a Use the first form of the

program_name, DEFINE_PROGRAM ARGUMENT procedure to define a

argument position, program argument that does not have a default value.

argument name, argument type,

out_argument)

DISABLE (name, force, n/a Use the D1saBLE procedure to disable a job or

commit semantics) program.

DROP_JOB (job_name, force, n/a Use the DROP_JOB procedure to drop a job.

defer, commit semantics)

DROP_PROGRAM (program_name, n/a Use the DROP_PROGRAM procedure to drop a

force) program.

DROP_PROGRAM ARGUMENT (n/a Use the first form of DROP_ PROGRAM ARGUMENT t0

program_name, drop a program argument by specifying the argument

argument position) poﬁﬂon

DROP_PROGRAM_ARGUMENT (n/a Use the second form of DROP_ PROGRAM ARGUMENT

program name, argument name) to drop a program argument by specifying the
argument name.

DROP_SCHEDULE (schedule name, n/a Use the DROP SCHEDULE procedure to drop a

force) schedule.

ENABLE (name, n/a Use the ENaBLE command to enable a program or

commit semantics) job.

EVALUATE CALENDAR STRING (n/a Use EVALUATE_CALENDAR_STRING to review the

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

184

Database Compatibility for Oracle® Developers
Built-in Package Guide

Function/Procedure Return Type Description
calendar_string, start date, execution date described by a user-defined calendar
return date after, schedule.
next run date)

RUN_JOB (job_name, n/a Use the RUN_JOB procedure to execute a job

use current session, immediately.

manually)

SET_JOB_ARGUMENT_VALUE(n/a Use the first form of SET JOB ARGUMENT value to
job_name, argument position, set the value of a job argument described by the
argument_value) argument's position.

SET_JOB_ARGUMENT_VALUE (n/a Use the second form of SET JOB ARGUMENT Vvalue
job_name, argument name, to set the value of a job argument described by the
argument_value) argument's name.

Advanced Server's implementation of DBMS SCHEDULER is a partial implementation
when compared to Oracle's version. Only those functions and procedures listed in the
table above are supported.

The DBMS SCHEDULER package is dependent on the pgAgent service; you must have a
pgAgent service installed and running on your server before using DBMS SCHEDULER.

Before using DBMS SCHEDULER, a database superuser must create the catalog tables in
which the DBMS SCHEDULER programs, schedules and jobs are stored. Use the psql
client to connect to the database, and invoke the command:

CREATE EXTENSION dbms scheduler;
By default, the dbms_scheduler extension resides in the
contrib/dbms_ scheduler ext subdirectory (under the Advanced Server
installation).

Note that after creating the DBMS SCHEDULER tables, only a superuser will be able to
perform a dump or reload of the database.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 185

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.15.1 Using Calendar Syntax to Specify a Repeating Interval

The CREATE JOB and CREATE SCHEDULE procedures use Oracle-styled calendar syntax
to define the interval with which a job or schedule is repeated. You should provide the
scheduling information in the repeat interval parameter of each procedure.

repeat interval isavalue (or series of values) that define the interval between the
executions of the scheduled job. Each value is composed of a token, followed by an
equal sign, followed by the unit (or units) on which the schedule will execute. Multiple
token values must be separated by a semi-colon (;).
For example, the following value:

FREQ=DAILY; BYDAY=MON, TUE, WED, THU, FRI ; BYHOUR=17; BYMINUTE=45

Defines a schedule that is executed each weeknight at 5:45.

The token types and syntax described in the table below are supported by Advanced
Server:

Token type Syntax Valid Values

FREQ FREQ=predefined interval Where predefined intervallis
one of the following: YEARLY,
MONTHLY, WEEKLY, DAILY,
HOURLY, MINUTELY. The SECONDLY
keyword is not supported.

BYMONTH BYMONTH=month (, month) ... Where month is the three-letter

abbreviation of the month name: Jan
| FEB | MAR | APR | MAY |
JUN | JUL | AUG | SEP | OCT
| NOV | DEC

BYMONTH BYMONTH=month (, month) ... Where month is the numeric value

representing the month: 1 | 2 | 3
|41 5161 7181 9] 10

| 11 | 12
BYMONTHDAY BYMONTHDAY=day of month Where day of month is avalue
from 1 through 31
BYDAY BYDAY=weekday Where weekday is a three-letter

abbreviation or single-digit value
representing the day of the week.

Monday MON 1
Tuesday TUE 2
Wednesday WED 3
Thursday THU 4
Friday FRI 5
Saturday SAT 6
Sunday SUN 7
BYDATE BYDATE=date(, date) ... Where date IS YYYYMMDD.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 186

Database Compatibility for Oracle® Developers
Built-in Package Guide

YYYY is a four-digit year
representation of the year,

MM is a two-digit representation of the
month,

and pp is a two-digit day
representation of the day.

BYDATE BYDATE=date(, date)... Where date is MMDD.

MM is a two-digit representation of the
month,

and DD is a two-digit day
representation of the day

BYHOUR BYHOUR=hour Where hour isa value from 0
through 23.

BYMINUTE BYMINUTE=minute Where minute is a value from 0
through 59.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 187

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.15.2 CREATE_JOB

Use the CREATE JOB procedure to create a job. The procedure comes in two forms; the
first form of the procedure specifies a schedule within the job definition, as well as a job
action that will be invoked when the job executes:

CREATE JOB (
job name IN VARCHARZ2,
job type IN VARCHAR2,
job _action IN VARCHARZ,
number of arguments IN PLS INTEGER DEFAULT O,
start date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
repeat interval IN VARCHAR2Z DEFAULT NULL,
end date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
job class IN VARCHARZ DEFAULT 'DEFAULT JOB CLASS',
enabled IN BOOLEAN DEFAULT FALSE,
auto drop IN BOOLEAN DEFAULT TRUE,
comments IN VARCHAR2 DEFAULT NULL)

The second form uses a job schedule to specify the schedule on which the job will
execute, and specifies the name of a program that will execute when the job runs:

CREATE JOB (
job name IN VARCHAR2Z,
program name IN VARCHARZ,
schedule name IN VARCHARZ,
job class IN VARCHARZ DEFAULT 'DEFAULT JOB CLASS',
enabled IN BOOLEAN DEFAULT FALSE,
auto drop IN BOOLEAN DEFAULT TRUE,
comments IN VARCHAR2 DEFAULT NULL)

Parameters

Jjob name

job name specifies the optionally schema-qualified name of the job being
created.

Jjob type

job_type specifies the type of job. The current implementation of CREATE JOB
supports a job type of PLSQL BLOCK Of STORED PROCEDURE.

Jjob action

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 188

Database Compatibility for Oracle® Developers
Built-in Package Guide

If job typeis PLSQL BLOCK, job action Specifies the content of the
PL/SQL block that will be invoked when the job executes. The block must be
terminated with a semi-colon (;).

If job typeiS STORED PROCEDURE, job action specifies the optionally
schema-qualified name of the procedure.

number of arguments

number of arguments IS an INTEGER Vvalue that specifies the number of
arguments expected by the job. The default is 0.

start date

start datelisaTIMESTAMP WITH TIME ZONE Value that specifies the first
time that the job is scheduled to execute. The default value is NULL, indicating
that the job should be scheduled to execute when the job is enabled.

repeat interval

repeat interval iSa VARCHAR?2 value that specifies how often the job will
repeat. If a repeat interval is not specified, the job will execute only once.
The default value is NULL.

end date

end date iISaTIMESTAMP WITH TIME ZONE Value that specifies a time after
which the job will no longer execute. If a date is specified, the end date must
be after start date. The default value is NULL.

Please note that if an end date is not specified and a repeat interval is
specified, the job will repeat indefinitely until it is disabled.

program name
program name iS the name of a program that will be executed by the job.
schedule name
schedule name is the name of the schedule associated with the job.
Jjob class
job class is accepted for compatibility and ignored.

enabled

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 189

Database Compatibility for Oracle® Developers
Built-in Package Guide

enabled is a BOOLEAN Value that specifies if the job is enabled when created.

By default, a job is created in a disabled state, with enabled set to FALSE. To
enable a job, specify a value of TRUE when creating the job, or enable the job with
the DBMS SCHEDULER.ENABLE procedure.

auto_drop
The auto drop parameter is accepted for compatibility and is ignored. By

default, a job's status will be changed to D1SABLED after the time specified in
end date.

comments
Use the comments parameter to specify a comment about the job.
Example

The following example demonstrates a call to the CREATE JoB procedure:

EXEC

DBMS SCHEDULER.CREATE JOB (
job_ name => 'update log',
job type => 'PLSQL BLOCK',
job_action => '"BEGIN INSERT INTO my log VALUES (current timestamp) ;

END; ',

start date => '01-JUN-15 09:00:00.000000",
repeat interval => 'FREQ=DAILY;BYDAY=MON, TUE,WED, THU, FRI; BYHOUR=17;"',
end date => NULL,
enabled => TRUE,
comments => 'This job adds a row to the my log table.');

The code fragment creates a job named update 1log that executes each weeknight at
5:00. The job executes a PL/SQL block that inserts the current timestamp into a logfile
(my log). Since no end date is specified, the job will execute until it is disabled by
the DBMS SCHEDULER.DISABLE procedure.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 190

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.15.3 CREATE_PROGRAM

Use the CREATE PROGRAM procedure to create a DBMS SCHEDULER program. The
signature is:

CREATE PROGRAM (
program name IN VARCHARZ,
program type IN VARCHARZ,
program action IN VARCHAR?2Z,
number of arguments IN PLS INTEGER DEFAULT O,

enabled IN BOOLEAN DEFAULT FALSE,
comments IN VARCHAR2 DEFAULT NULL)

Parameters
program name
program_name Specifies the name of the program that is being created.

program type

program_type specifies the type of program. The current implementation of
CREATE PROGRAM SUPPOIts a program type Of PLSQL BLOCK Of PROCEDURE.

program action

If program type IS PLSQL BLOCK, program action contains the PL/SQL
block that will execute when the program is invoked. The PL/SQL block must be
terminated with a semi-colon (;).

If program type IS PROCEDURE, program action contains the name of the
stored procedure.

number of arguments
If program type is PLSQL BLOCK, this argument is ignored.

If program_type iS PROCEDURE, number of arguments Specifies the
number of arguments required by the procedure. The default value is 0.

enabled
enabled specifies if the program is created enabled or disabled:

e |If enabledis TRUE, the program is created enabled.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 191

Database Compatibility for Oracle® Developers
Built-in Package Guide

e If enabledis FALSE, the program is created disabled; use the
DBMS SCHEDULER.ENABLE program to enable a disabled program.

The default value is FALSE.

comments

Use the comments parameter to specify a comment about the program; by
default, this parameter is NULL.

Example

The following call to the CREATE PROGRAM procedure creates a program named
update log:

EXEC
DBMS SCHEDULER.CREATE PROGRAM (
program name => 'update log',
program type => 'PLSQL BLOCK',
program action => 'BEGIN INSERT INTO my log VALUES (current timestamp);
END; ',
enabled => TRUE,
comment => 'This program adds a row to the my log table.');

update log isaPL/SQL block that adds a row containing the current date and time to

the my log table. The program will be enabled when the CREATE PROGRAM procedure
executes.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 192

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.15.4 CREATE_SCHEDULE

Use the CREATE SCHEDULE procedure to create a job schedule. The signature of the
CREATE SCHEDULE procedure is:

CREATE SCHEDULE (
schedule name IN VARCHARZ,
start date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
repeat interval IN VARCHARZ,
end date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
comments IN VARCHAR2 DEFAULT NULL)

Parameters

schedule name
schedule name specifies the name of the schedule.
start date

start datelisa TIMESTAMP WITH TIME ZzONE Value that specifies the date
and time that the schedule is eligible to execute. If a start date is not
specified, the date that the job is enabled is used as the start date. By default,
start date iS NULL.

repeat interval

repeat interval iSa VARCHAR?2 value that specifies how often the job will
repeat. If a repeat interval is not specified, the job will execute only once,
on the date specified by start date.

Please note: you must provide a value for either start date or
repeat interval;ifboth start dateand repeat interval are NULL,
the server will return an error.

end date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL
end date iSaTIMESTAMP WITH TIME ZONE Value that specifies a time after
which the schedule will no longer execute. If a date is specified, the end date
must be after the start date. The default value is NULL.

Please note that if a repeat interval is specified and an end date is not
specified, the schedule will repeat indefinitely until it is disabled.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 193

Database Compatibility for Oracle® Developers
Built-in Package Guide

comments IN VARCHAR2 DEFAULT NULL)

Use the comments parameter to specify a comment about the schedule; by
default, this parameter is NULL.

Example

The following code fragment calls CREATE SCHEDULE to create a schedule named

weeknights at 5!

EXEC
DBMS SCHEDULER.CREATE
schedule name =>
start date =>
repeat interval =>
comments =>

SCHEDULE (

'weeknights at 5',

'01-JUN-13 09:00:00.000000"
'FREQ=DAILY;BYDAY=MON, TUE, WED, THU, FRI; BYHOUR=17; ",
'This schedule executes each weeknight at 5:00'");

The schedule executes each weeknight, at 5:00 pm, effective after June 1, 2013. Since no
end_date is specified, the schedule will execute indefinitely until it is disabled with
DBMS SCHEDULER.DISABLE.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 194

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.15.5 DEFINE_PROGRAM_ARGUMENT

Use the DEFINE PROGRAM ARGUMENT procedure to define a program argument. The

DEFINE PROGRAM ARGUMENT procedure comes in two forms; the first form defines an
argument with a default value:

DEFINE PROGRAM ARGUMENT (
program name IN VARCHARZ2,
argument position IN PLS INTEGER,
argument name IN VARCHAR2Z DEFAULT NULL,
argument type IN VARCHARZ,

default value IN VARCHARZ,
out argument IN BOOLEAN DEFAULT FALSE)

The second form defines an argument without a default value:
DEFINE PROGRAM ARGUMENT (
program name IN VARCHARZ,
argument position IN PLS INTEGER,
argument name IN VARCHAR2 DEFAULT NULL,
argument type IN VARCHARZ,
out argument IN BOOLEAN DEFAULT FALSE)
Parameters

program_name

program name IS the name of the program to which the arguments belong.

argument position

argument position specifies the position of the argument as it is passed to the
program.

argument name

argument name specifies the optional name of the argument. By default,
argument name IS NULL.

argument type IN VARCHAR2Z

argument type Specifies the data type of the argument.

default value

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 195

Database Compatibility for Oracle® Developers
Built-in Package Guide

default value specifies the default value assigned to the argument.
default value Will be overridden by a value specified by the job when the job
executes.

out argument IN BOOLEAN DEFAULT FALSE
out argument is not currently used; if specified, the value must be FALSE.
Example

The following code fragment uses the DEFINE PROGRAM ARGUMENT procedure to
define the first and second arguments in a program named add_emp:

EXEC
DBMS SCHEDULER.DEFINE PROGRAM ARGUMENT (
program name => 'add emp',
argument position = 1,
argument name => 'dept no',
argument type => 'INTEGER,
default value => '20");
EXEC
DBMS SCHEDULER.DEFINE PROGRAM ARGUMENT (
program name => 'add emp',
argument position => 2,
argument name => 'emp name',
argument type => 'VARCHAR2') ;

The first argument is an INTEGER value named dept_no that has a default value of 20.

The second argument is a VARCHAR?2 value named emp name; the second argument does
not have a default value.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 196

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.15.6 DISABLE

Use the DISABLE procedure to disable a program or a job. The signature of the DISABLE
procedure is:

DISABLE (
name IN VARCHARZ2,
force IN BOOLEAN DEFAULT FALSE,
commit semantics IN VARCHAR2 DEFAULT 'STOP_ON FIRST ERROR')

Parameters
name
name specifies the name of the program or job that is being disabled.
force
force IS accepted for compatibility, and ignored.
commit semantics

commit semantics instructs the server how to handle an error encountered
while disabling a program or job. By default, commit semanticsis setto
STOP_ON_FIRST_ ERROR, instructing the server to stop when it encounters an
error. Any programs or jobs that were successfully disabled prior to the error will
be committed to disk.

The TRANSACTIONAL and ABSORB_ERRORS keywords are accepted for
compatibility, and ignored.

Example

The following call to the DISABLE procedure disables a program named update emp:

DBMS SCHEDULER.DISABLE ('update emp') ;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 197

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.15.7 DROP_JOB

Use the DrROP JOB procedure to DROP a job, DROP any arguments that belong to the job,
and eliminate any future job executions. The signature of the procedure is:

DROP_JOB (
job name IN VARCHARZ,
force IN BOOLEAN DEFAULT FALSE,
defer IN BOOLEAN DEFAULT FALSE,
commit semantics IN VARCHARZ DEFAULT 'STOP_ON_ FIRST ERROR')

Parameters

job name
job name specifies the name of the job that is being dropped.

force
force IS accepted for compatibility, and ignored.

defer
defer is accepted for compatibility, and ignored.

commit semantics
commit_semantics instructs the server how to handle an error encountered
while dropping a program or job. By default, commit semantics is Set to
STOP_ON_FIRST_ ERROR, instructing the server to stop when it encounters an

error.

The TRANSACTTIONAL and ABSORB_ERRORS keywords are accepted for
compatibility, and ignored.

Example

The following call to brop_JoB drops a job named update log:

DBMS_SCHEDULER.DROP_JOB ('update log');

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 198

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.15.8 DROP_PROGRAM
The DROP_PROGRAM procedure

The signature of the DROP_PROGRAM procedure is:

DROP_PROGRAM (
program name IN VARCHARZ,
force IN BOOLEAN DEFAULT FALSE)

Parameters
program name
program name Specifies the name of the program that is being dropped.

force

force IS a BOOLEAN Value that instructs the server how to handle programs with
dependent jobs.

Specify FALSE to instruct the server to return an error if the program is
referenced by a job.

Specify TRUE to instruct the server to disable any jobs that reference the
program before dropping the program.

The default value is FALSE.
Example

The following call to DROP_PROGRAM drops a job named update emp:

DBMS SCHEDULER.DROP PROGRAM ('update emp') ;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 199

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.15.9 DROP_PROGRAM_ARGUMENT

Use the DROP PROGRAM ARGUMENT procedure to drop a program argument. The
DROP_PROGRAM ARGUMENT procedure comes in two forms; the first form uses an
argument position to specify which argument to drop:

DROP PROGRAM ARGUMENT (
program name IN VARCHARZ2,
argument position IN PLS INTEGER)

The second form takes the argument name:

DROP PROGRAM ARGUMENT (
program name IN VARCHARZ2,
argument name IN VARCHARZ)

Parameters
program name

program name Specifies the name of the program that is being modified.
argument position

argument position Specifies the position of the argument that is being
dropped.

argument name
argument name Specifies the name of the argument that is being dropped.
Examples

The following call to DROP_PROGRAM ARGUMENT drops the first argument in the
update emp program:

DBMS SCHEDULER.DROP PROGRAM ARGUMENT ('update emp', 1);

The following call to DROP_PROGRAM ARGUMENT drops an argument named emp_name:

DBMS SCHEDULER.DROP PROGRAM ARGUMENT (update emp', 'emp name');

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 200

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.15.10 DROP_SCHEDULE

Use the DROP SCHEDULE procedure to drop a schedule. The signature is:

DROP_SCHEDULE (
schedule name IN VARCHARZ,
force IN BOOLEAN DEFAULT FALSE)

Parameters
schedule name
schedule name specifies the name of the schedule that is being dropped.

force

force specifies the behavior of the server if the specified schedule is referenced
by any job:

e Specify FALSE to instruct the server to return an error if the specified
schedule is referenced by a job. This is the default behavior.

e Specify TRUE to instruct the server to disable to any jobs that use the
specified schedule before dropping the schedule. Any running jobs will be
allowed to complete before the schedule is dropped.

Example

The following call to brRopP SCHEDULE drops a schedule named weeknights at 5:

DBMS_SCHEDULER.DROP_SCHEDULE ('weeknights at 5', TRUE);

The server will disable any jobs that use the schedule before dropping the schedule.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 201

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.15.11 ENABLE
Use the ENABLE procedure to enable a disabled program or job.

The signature of the ENABLE procedure is:

ENABLE (
name IN VARCHARZ2,
commit semantics IN VARCHAR2 DEFAULT 'STOP_ON FIRST ERROR')

Parameters

name
name specifies the name of the program or job that is being enabled.

commit semantics
commit semantics instructs the server how to handle an error encountered
while enabling a program or job. By default, commit semantics is setto
STOP_ON_FIRST ERROR, instructing the server to stop when it encounters an

error.

The TRANSACTTIONAL and ABSORB_ERRORS keywords are accepted for
compatibility, and ignored.

Example

The following call to DBMS SCHEDULER.ENABLE enables the update emp program:

DBMS SCHEDULER.ENABLE ('update emp');

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 202

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.15.12 EVALUATE_CALENDAR_STRING

Use the EVALUATE CALENDAR STRING procedure to evaluate the repeat interval
value specified when creating a schedule with the CREATE SCHEDULE procedure. The
EVALUATE CALENDAR STRING procedure will return the date and time that a specified
schedule will execute without actually scheduling the job.

The signature of the EVALUATE CALENDAR_STRING procedure is:

EVALUATE CALENDAR STRING (
calendar string IN VARCHARZ,
start date IN TIMESTAMP WITH TIME ZONE,
return date after IN TIMESTAMP WITH TIME ZONE,
next run date OUT TIMESTAMP WITH TIME ZONE)

Parameters

calendar string

calendar stringis the calendar string that describes a repeat interval
that is being evaluated.

start date IN TIMESTAMP WITH TIME ZONE

start_date is the date and time after which the repeat interval will
become valid.

return date after

Use the return date after parameter to specify the date and time that
EVALUATE CALENDAR_ STRING should use as a starting date when evaluating the
repeat interval.

For example, if you specify a return date after value of 01-APR-13
09.00.00.000000, EVALUATE CALENDAR_STRING Will return the date and
time of the first iteration of the schedule after April 1%, 2013.

next run date OUT TIMESTAMP WITH TIME ZONE

next run date isan oUT parameter that will contain the first occurrence of the
schedule after the date specified by the return date after parameter.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 203

Database Compatibility for Oracle® Developers
Built-in Package Guide

Example

The following example evaluates a calendar string and returns the first date and time that
the schedule will be executed after June 15, 2013:

DECLARE
result TIMESTAMP;
BEGIN

DBMS SCHEDULER.EVALUATE CALENDAR STRING

(
'FREQ=DAILY;BYDAY=MON, TUE, WED, THU, FRI; BYHOUR=17; "',
'15-JUN-2013"', NULL, result

)

DBMS OUTPUT.PUT LINE ('next run date: ' || result);
END;
/
next run date: 17-JUN-13 05.00.00.000000 PM

June 15, 2013 is a Saturday; the schedule will not execute until Monday, June 17, 2013 at
5:00 pm.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 204

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.15.13 RUN_JOB

Use the RUN_JOB procedure to execute a job immediately. The signature of the
RUN_JOB procedure is:

RUN_JOB (
job name IN VARCHARZ,
use current session IN BOOLEAN DEFAULT TRUE

Parameters
job name
job name specifies the name of the job that will execute.
use current session
By default, the job will execute in the current session. If specified,
use current session Mmustbe setto TRUE ; if use current sessionis
set to FALSE, Advanced Server will return an error.

Example

The following call to RUN_JOB executes a job named update log:

DBMS SCHEDULER.RUN JOB ('update log', TRUE);

Passing a value of TRUE as the second argument instructs the server to invoke the job in
the current session.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 205

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.15.14 SET_JOB_ARGUMENT_VALUE

Use the SET JOB ARGUMENT VALUE procedure to specify a value for an argument. The
SET_JOB_ARGUMENT VALUE procedure comes in two forms; the first form specifies
which argument should be modified by position:

SET JOB_ ARGUMENT VALUE (
job name IN VARCHARZ2,
argument position IN PLS INTEGER,
argument value IN VARCHAR2Z)

The second form uses an argument name to specify which argument to modify:

SET JOB_ ARGUMENT VALUE (
job name IN VARCHARZ,
argument name IN VARCHARZ,
argument value IN VARCHAR2)

Argument values set by the SET JOB ARGUMENT VALUE procedure override any values
set by default.

Parameters
job name

job name specifies the name of the job to which the modified argument belongs.
argument position

Use argument position to specify the argument position for which the value
will be set.

argument name

Use argument name to specify the argument by name for which the value will
be set.

argument value
argument value specifies the new value of the argument.
Examples

The following example assigns a value of 30 to the first argument in the update emp
job:

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 206

Database Compatibility for Oracle® Developers
Built-in Package Guide

DBMS SCHEDULER.SET JOB ARGUMENT VALUE ('update emp', 1, '30');

The following example sets the emp name argument to SMITH:

DBMS SCHEDULER.SET JOB ARGUMENT VALUE ('update emp', 'emp name', 'SMITH');

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 207

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.16 DBMS_SESSION

Advanced Server provides support for the following DBMS SESSION.SET ROLE
procedure:

Function/Procedure Return Type Description

SET_ROLE (role cmd) n/a Executes a SET ROLE statement followed by
the string value specified in role cmd.

Advanced Server's implementation of DBMS SESSION is a partial implementation when
compared to Oracle's version. Only DBMS SESSION.SET ROLE iS supported.

3.16.1 SET_ROLE
The sET ROLE procedure sets the current session user to the role specified in

role cmd. After invoking the SET_ROLE procedure, the current session will use the
permissions assigned to the specified role. The signature of the procedure is:

SET ROLE (role cmd)

The seT ROLE procedure appends the value specified for role_cmd to the SET ROLE
statement, and then invokes the statement.

Parameters
role cmd

role cmd Specifies a role name in the form of a string value.
Example

The following call to the SET ROLE procedure invokes the SET ROLE command to set
the identity of the current session user to manager:

edb=# exec DBMS SESSION.SET ROLE ('manager');

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 208

3.17DBMS_SQL

Database Compatibility for Oracle® Developers

Built-in Package Guide

The DBMS sQL package provides an application interface compatible with Oracle
databases to the EnterpriseDB dynamic SQL functionality. With DBMS sSOL you can
construct queries and other commands at run time (rather than when you write the
application). EnterpriseDB Advanced Server offers native support for dynamic SQL;
DBMS SQL provides a way to use dynamic SQL in a fashion compatible with Oracle
databases without modifying your application.

DBMS SQL assumes the privileges of the current user when executing dynamic SQL

statements.

Function/Procedure Functionor| Return Description

Procedure Type

BIND_VARIABLE (¢, name, value [, [Procedure [n/a Bind a value to a variable.
out value size])
BIND VARIABLE CHAR(c, name, valuelProcedure [n/a Bind a cHAR value to a variable.
[, out value size])
BIND VARIABLE RAW(c, name, value [Procedure [n/a Bind a rRaw value to a variable.
[, out value size])
CLOSE_CURSOR (¢ IN OUT) Procedure |n/a Close a cursor.
COLUMN_VALUE (c, position, value |[Procedure [n/a Return a column value into a variable.
OUT [, column error OUT [,
actual length OUT]1])
COLUMN_VALUE_CHAR(c, position, Procedure |n/a Return a cHAR column value into a variable.
value OUT [, column error OUT [,
actual length OUT]])
COLUMN_VALUE_RAW (¢, position, Procedure |n/a Return a raw column value into a variable.
value OUT [, column error OUT [,
actual length OUT]1])
DEFINE_COLUMN (¢, position, column|Procedure [n/a Define a column in the SELECT list.
[, column size])
DEFINE_COLUMN_CHAR(c, position, |Procedure [n/a Define a caaR column in the SELECT list.
column, column size)
DEFINE_COLUMN_RAW(c, position, Procedure |n/a Define a rRaw column in the SELECT list.
column, column size)
DESCRIBE_COLUMNS Procedure |n/a Defines columns to hold a cursor result set.
EXECUTE (c) Function INTEGER [Execute a cursor.
EXECUTE_AND_FETCH(c [, exact 1) |Function INTEGER [Execute a cursor and fetch a single row.
FETCH_ROWS (c) Function INTEGER [Fetch rows from the cursor.
IS_OPEN (c) Function BOOLEAN |Check if a cursor is open.
LAST_ROW_COUNT Function INTEGER [Return cumulative number of rows fetched.
OPEN_CURSOR Function INTEGER |Open a cursor.
PARSE (c, statement, Procedure |n/a Parse a statement.

language flag)

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

209

Database Compatibility for Oracle® Developers
Built-in Package Guide

Advanced Server's implementation of DBMS sSQL is a partial implementation when

compared to Oracle's version. Only those functions and procedures listed in the table
above are supported.

The following table lists the public variable available in the DBMS sQL package.

Public Variables Data Type Value Description
s || roded o compaty i Orce oy, e
B s [[rord forcompatilty i, Orace sy, S
i nomcen || e for conpellty i Orack sy, S

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 210

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.1 BIND_VARIABLE

The BIND VARIABLE procedure provides the capability to associate a value with an IN
or IN ouT bind variable in a SQL command.

BIND VARIABLE (¢ INTEGER, name VARCHARZ2,
value { BLOB | CLOB | DATE | FLOAT | INTEGER | NUMBER |
TIMESTAMP | VARCHAR2 }
[, out value size INTEGER])

Parameters

Cursor ID of the cursor for the SQL command with bind variables.

name

Name of the bind variable in the SQL command.

value

Value to be assigned.

out value size

If name isan 1N OUT variable, defines the maximum length of the output value.
If not specified, the length of vaiue is assumed.

Examples

The following anonymous block uses bind variables to insert a row into the emp table.

DECLARE

curid INTEGER;

v_sql VARCHAR2 (150) := 'INSERT INTO emp VALUES ' ||
'(:p_empno, :p ename, :p_ job, :p mgr, ' ||
':p hiredate, :p sal, :p comm, :p deptno)';

V_empno emp.empnosTYPE;

V_ename emp.ename%TYPE;

v_job emp. jobSTYPE;

v_mgr emp.mgr3TYPE;

v_hiredate emp.hiredate$TYPE;

v_sal emp.sal$TYPE;

v_comm emp.comm%TYPE;

v_deptno emp.deptnos$TYPE;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 211

Database Compatibility for Oracle® Developers
Built-in Package Guide

v_status INTEGER;
BEGIN
curid := DBMS SQL.OPEN CURSOR;
DBMS SQL.PARSE (curid,v_sqgl,DBMS SQL.native);
vV_empno 3= S001%
vV_ename := '"JONES';
v_job := 'SALESMAN';
vV _mgr 3= 73693
v_hiredate := TO DATE('l13-DEC-07', 'DD-MON-YY');
v_sal := 8500.00;
v_comm := 1500.00;
v_deptno := 40;

DBMS SQL.BIND VARIABLE (curid, ':p_empno',Vv_empno) ;

DBMS SQL.BIND VARIABLE (curid, ':p ename',v ename);

DBMS SQL.BIND VARIABLE (curid, ':p_ job',v job);

DBMS SQL.BIND VARIABLE (curid,':p mgr',v mgr) ;

DBMS SQL.BIND VARIABLE (curid, ':p hiredate',v hiredate);
DBMS SQL.BIND VARIABLE (curid,':p sal',v sal);
DBMS_SQL.BIND_VARIABLE(curid,':p_comm',v_comm);
DBMS_SQL.BIND_VARIABLE(curid,':p_deptno',v_deptno);

v_status := DBMS SQL.EXECUTE (curid) ;
DBMS OUTPUT.PUT LINE ('Number of rows processed: ' || v_status);
DBMS SQL.CLOSE CURSOR (curid) ;

END;

Number of rows processed: 1

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 212

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.2 BIND_VARIABLE_CHAR

The BIND VARIABLE CHAR procedure provides the capability to associate a CHAR value
with an TN or IN ouUT bind variable in a SQL command.

BIND_VARIABLE_CHAR(C INTEGER, name VARCHAR2, value CHAR
[, out value size INTEGER])

Parameters

Cursor ID of the cursor for the SQL command with bind variables.

name
Name of the bind variable in the SQL command.
value
Value of type CHAR to be assigned.

out value size

If name isan 1N OUT variable, defines the maximum length of the output value.
If not specified, the length of vaiue is assumed.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 213

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.3 BIND VARIABLE RAW

The BIND VARIABLE RAW procedure provides the capability to associate a RAw value
with an TN or IN ouUT bind variable in a SQL command.

BIND_VARIABLE_RAW(C INTEGER, name VARCHAR2, value RAW
[, out value size INTEGER])

Parameters

Cursor ID of the cursor for the SQL command with bind variables.

name
Name of the bind variable in the SQL command.
value
Value of type rRaW to be assigned.

out value size

If name isan 1N OUT variable, defines the maximum length of the output value.
If not specified, the length of vaiue is assumed.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 214

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.4 CLOSE_CURSOR

The CLOSE_CURSOR procedure closes an open cursor. The resources allocated to the
cursor are released and it can no longer be used.

CLOSE CURSOR (c IN OUT INTEGER)

Parameters

Cursor ID of the cursor to be closed.
Examples

The following example closes a previously opened cursor:

DECLARE
curid INTEGER;
BEGIN
curid := DBMS SQL.OPEN CURSOR;

DBMS SQL.CLOSE CURSOR (curid) ;
END;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 215

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.5 COLUMN_VALUE

The coLuMN VALUE procedure defines a variable to receive a value from a cursor.

COLUMN_VALUE(C INTEGER, position INTEGER, value OUT { BLOB |
CLOB | DATE | FLOAT | INTEGER | NUMBER | TIMESTAMP | VARCHAR2 }
[, column error OUT NUMBER [, actual Iength OUT INTEGER]])

Parameters

Cursor id of the cursor returning data to the variable being defined.
position

Position within the cursor of the returned data. The first value in the cursor is
position 1.

value
Variable receiving the data returned in the cursor by a prior fetch call.
column error
Error number associated with the column, if any.
actual length
Actual length of the data prior to any truncation.
Examples

The following example shows the portion of an anonymous block that receives the values
from a cursor using the COLUMN VALUE procedure.

DECLARE
curid INTEGER;
V_empno NUMBER (4) ;
V_ename VARCHARZ2 (10) ;
v_hiredate DATE;
v_sal NUMBER (7, 2) ;
v_comm NUMBER (7, 2) ;
v_sql VARCHAR?2 (50) := 'SELECT empno, ename, hiredate, sal, ' ||
'comm FROM emp';
v_status INTEGER;
BEGIN

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 216

Database Compatibility for Oracle® Developers
Built-in Package Guide

LOOP
v_status := DBMS SQL.FETCH ROWS (curid) ;
EXIT WHEN v _status = 0;
DBMSisQL.COLUMN7VALUE(curid,l,viempno);
DBMS SQL.COLUMN VALUE (curid,2,v_ename) ;
DBMS SQL.COLUMN VALUE (curid,3,v_hiredate);
DBMS SQL.COLUMN VALUE (curid,4,v_sal);
DBMS SQL.COLUMN VALUE curid,4,visal);
DBMS SQL.COLUMN VALUE (curid,5,v_comm) ;
DBMS OUTPUT.PUT LINE (v_empno || ' '
TO CHAR(v_hiredate, 'yyyy-mm-dd') |
TO CHAR(v_sal,'9,999.99') [| " ' |
TO CHAR(NVL(v_comm,0),'9,999.99"));
END LOOP;
DBMS SQL.CLOSE CURSOR (curid) ;
END;

|| RPAD(v_ename,10) || ' ' ||
[t
|

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 217

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.6 COLUMN_VALUE_CHAR

The COLUMN VALUE_CHAR procedure defines a variable to receive a CHAR value from a
cursor.

COLUMN VALUE CHAR(c INTEGER, position INTEGER, value OUT CHAR
[, column error OUT NUMBER [, actual Iength OUT INTEGER]1])

Parameters

Cursor id of the cursor returning data to the variable being defined.
position

Position within the cursor of the returned data. The first value in the cursor is
position 1.

value

Variable of data type CHAR receiving the data returned in the cursor by a prior
fetch call.

column error

Error number associated with the column, if any.

actual length

Actual length of the data prior to any truncation.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 218

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.7 COLUMN VALUE RAW

The coLuMN VALUE RAW procedure defines a variable to receive a Raw value from a
cursor.

COLUMN VALUE RAW (c INTEGER, position INTEGER, value OUT RAW
[, column error OUT NUMBER [, actual Iength OUT INTEGER]1])

Parameters

Cursor id of the cursor returning data to the variable being defined.
position

Position within the cursor of the returned data. The first value in the cursor is
position 1.

value

Variable of data type raw receiving the data returned in the cursor by a prior fetch
call.

column error

Error number associated with the column, if any.

actual length

Actual length of the data prior to any truncation.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 219

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.8 DEFINE_COLUMN

The DEFINE _COLUMN procedure defines a column or expression in the SELECT list that
is to be returned and retrieved in a cursor.

DEFINE_COLUMN(C INTEGER, position INTEGER, column { BLOB |
CLOB | DATE | FLOAT | INTEGER | NUMBER | TIMESTAMP | VARCHARZ2 }
[, column size INTEGER])

Parameters

Cursor id of the cursor associated with the SELECT command.
position

Position of the column or expression in the SELECT list that is being defined.
column

A variable that is of the same data type as the column or expression in position
position Of the SELECT list.

column size

The maximum length of the returned data. column size must be specified only
if column is VARCHAR?2. Returned data exceeding column size is truncated to
column size Characters.

Examples

The following shows how the empno, ename, hiredate, sal, and comm columns of the
emp table are defined with the DEFINE cOLUMN procedure.

DECLARE
curid INTEGER;
V_empno NUMBER (4) ;
V_ename VARCHARZ2 (10) ;
v_hiredate DATE;
v_sal NUMBER (7, 2) ;
v_comm NUMBER (7, 2) ;
v_sql VARCHAR?2 (50) := 'SELECT empno, ename, hiredate, sal, ' ||
'comm FROM emp';
v_status INTEGER;
BEGIN
curid := DBMS SQL.OPEN CURSOR;

DBMS SQL.PARSE (curid,v_sqgl,DBMS SQL.native);

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 220

Database Compatibility for Oracle® Developers
Built-in Package Guide

DBMS_SQL.DEFINE_COLUMN(Curid,l,V_empno);
DBMS SQL.DEFINE COLUMN (curid,2,v_ename, 10);
DBMS_SQL.DEFINE_COLUMN(Curid,3,V_hiredate);
DBMS SQL.DEFINE COLUMN (curid, 4,v_sal);
DBMS_SQL.DEFINE_COLUMN(Curid,5,v_comm);

END;

The following shows an alternative to the prior example that produces the exact same
results. Note that the lengths of the data types are irrelevant — the empno, sal, and comm
columns will still return data equivalent to NUMBER (4) and NUMBER (7, 2), respectively,
even though v _num is defined as NUMBER (1) (assuming the declarations in the

COLUMN VALUE procedure are of the appropriate maximum sizes). The ename column
will return data up to ten characters in length as defined by the 1ength parameter in the
DEFINE COLUMN call, not by the data type declaration, VARCHAR?2 (1) declared for
v_varchar. The actual size of the returned data is dictated by the COLUMN VALUE

procedure.

DECLARE
curid INTEGER;
v_num NUMBER (1) ;
v_varchar VARCHARZ2 (1) ;
v_date DATE;
v_sql VARCHAR2 (50) := 'SELECT empno, ename,

'comm FROM emp';

v_status INTEGER;

BEGIN
curid := DBMS SQL.OPEN CURSOR;

DBMS SQL.PARSE (curid,v_sqgl,DBMS SQL.native);
DBMS_SQL.DEFINE_COLUMN(curid,l,v_num);
DBMS SQL.DEFINE COLUMN (curid,2,v_varchar,10);
DBMS SQL.DEFINE COLUMN (curid, 3,v_date);
DBMS SQL.DEFINE COLUMN (curid, 4,v_num) ;
DBMS SQL.DEFINE COLUMN (curid, 5,v_num) ;

END;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

221

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.9 DEFINE_COLUMN_CHAR

The DEFINE COLUMN CHAR procedure defines a CHAR column or expression in the
SELECT list that is to be returned and retrieved in a cursor.

DEFINE_COLUMN_CHAR(C INTEGER, position INTEGER, column
CHAR, column size INTEGER)

Parameters

Cursor id of the cursor associated with the SELECT command.
position

Position of the column or expression in the SELECT list that is being defined.
column

A CHAR variable.

column size

The maximum length of the returned data. Returned data exceeding
column size s truncated to column size characters.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 222

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.10 DEFINE COLUMN RAW

The DEFINE COLUMN RAW procedure defines a RAw column or expression in the
SELECT list that is to be returned and retrieved in a cursor.

DEFINE_COLUMN_RAW(C INTEGER, position INTEGER, column RAW,
column size INTEGER)

Parameters

Cursor id of the cursor associated with the SELECT command.
position

Position of the column or expression in the SELECT list that is being defined.
column

A RAW variable.

column size

The maximum length of the returned data. Returned data exceeding
column size s truncated to column size characters.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 223

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.11 DESCRIBE COLUMNS

The DESCRIBE_COLUMNS procedure describes the columns returned by a cursor.

DESCRIBE_COLUMNS (c INTEGER, col cnt OUT INTEGER, desc t OUT
DESC_TAB) ;

Parameters

The cursor ID of the cursor.
col cnt

The number of columns in cursor result set.
desc tab

The table that contains a description of each column returned by the cursor. The
descriptions are of type DESC REC, and contain the following values:

Column Name Type
col type INTEGER
col max len INTEGER
col name VARCHAR?2 (128)
col name len INTEGER
col schema name VARCHAR?2 (128)
col schema name len INTEGER
col precision INTEGER
col scale INTEGER
col charsetid INTEGER
col charsetform INTEGER
col null ok BOOLEAN

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 224

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.12 EXECUTE
The execUTE function executes a parsed SQL command or SPL block.
status INTEGER EXECUTE (c INTEGER)

Parameters

Cursor ID of the parsed SQL command or SPL block to be executed.

status

Number of rows processed if the SQL command was DELETE, INSERT, Of
UPDATE. status is meaningless for all other commands.

Examples

The following anonymous block inserts a row into the dept table.

DECLARE
curid INTEGER;
v_sql VARCHARZ2 (50) ;
v_status INTEGER;
BEGIN
curid := DBMS SQL.OPEN CURSOR;
v_sqgl := '"INSERT INTO dept VALUES (50, '"'HR'', ''LOS ANGELES'')';
DBMS SQL.PARSE (curid, v sql, DBMS SQL.native);
v_status := DBMSisQL.EXECUTE(curid);
DBMS OUTPUT.PUT LINE ('Number of rows processed: ' || v status);
DBMSisQL.CLOSE7CURSOR(Curid);
END;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 225

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.13 EXECUTE_AND_FETCH

Function EXECUTE_AND_ FETCH executes a parsed SELECT command and fetches one
row.

status INTEGER EXECUTE AND FETCH(c INTEGER
[, exact BOOLEAN 1])

Parameters

Cursor id of the cursor for the sSELECT command to be executed.

exact

If set to TRUE, an exception is thrown if the number of rows in the result set is not
exactly equal to 1. If set to FALSE, no exception is thrown. The default is FALSE.
A NO_DATA FOUND exception is thrown if exact is TRUE and there are no rows
in the result set. A ToO MANY ROWS exception is thrown if exact is TRUE and
there is more than one row in the result set.

status

Returns 1 if a row was successfully fetched, 0 if no rows to fetch. If an exception
is thrown, no value is returned.

Examples
The following stored procedure uses the EXECUTE _AND FETCH function to retrieve one

employee using the employee’s name. An exception will be thrown if the employee is not
found, or there is more than one employee with the same name.

CREATE OR REPLACE PROCEDURE select by name (

p_ename emp.enamesTYPE
)
Is
curid INTEGER;
V_empno emp.empnosTYPE;
v_hiredate emp.hiredate3TYPE;
v_sal emp.sal$TYPE;
v_comm emp.comm%TYPE;
v_dname dept.dnameS$TYPE;
v_disp date VARCHAR2 (10) ;
v_sql VARCHAR2 (120) := 'SELECT empno, hiredate, sal, ' ||
'NVL (comm, 0), dname ' ||
'FROM emp e, dept d ' ||
'WHERE ename = :p ename ' ||

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 226

Database Compatibility for Oracle® Developers
Built-in Package Guide

'AND e.deptno = d.deptno';

v_status INTEGER;
BEGIN
curid := DBMS SQL.OPEN CURSOR;

DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);

DBMS SQL.BIND VARIABLE (curid, ':p_ ename', UPPER(p ename)) ;
DBMS_SQL.DEFINE_COLUMN(Curid,l,v_empno);

DBMS SQL.DEFINE COLUMN (curid,2,v hiredate);
DBMS_SQL.DEFINE_COLUMN(Curid,3,v_sal);

DBMS_ SQL.DEFINE COLUMN (curid, 4,v_comm) ;
DBMS_SQL.DEFINE_COLUMN(Curid,5,v_dname,14);

v_status := DBMSisQL.EXECUTEiANDiFETCH(curid,TRUE);

DBMS SQL.COLUMN VALUE (curid,l,v_empno) ;

DBMS SQL.COLUMN VALUE (curid,2,v_hiredate);

DBMS SQL.COLUMN VALUE (curid,3,v_sal);
DBMSisQL.COLUMN7VALUE(curid,4,v7comm);

DBMS SQL.COLUMN VALUE (curid,5,v_dname) ;

v_disp date := TO CHAR(v_hiredate, 'MM/DD/YYYY');

DBMS OUTPUT.PUT LINE ('Number : " || v_empno);

DBMS OUTPUT.PUT LINE ('Name : ' || UPPER(p_ename)) ;
DBMS OUTPUT.PUT LINE('Hire Date : ' || v disp date);
DBMS OUTPUT.PUT LINE ('Salary : ' || v _sal);
(I
([

DBMS OUTPUT.PUT LINE ('Commission: ' v_comm) ;
DBMS OUTPUT.PUT LINE ('Department: ' v dname) ;
DBMS SQL.CLOSE CURSOR (curid) ;
EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS OUTPUT.PUT LINE ('Employee ' || p ename || ' not found');

DBMS SQL.CLOSE CURSOR (curid) ;

WHEN TOO MANY ROWS THEN
DBMS OUTPUT.PUT LINE ('Too many employees named, ' ||

p_ename || ', found');

DBMS SQL.CLOSE CURSOR (curid) ;

WHEN OTHERS THEN
DBMS OUTPUT.PUT LINE ('The following is SQLERRM:');
DBMS OUTPUT.PUT LINE (SQLERRM) ;
DBMS OUTPUT.PUT LINE ('The following is SQLCODE:');
DBMS OUTPUT.PUT LINE (SQLCODE) ;
DBMS SQL.CLOSE CURSOR (curid) ;

END;

EXEC select by name ('MARTIN')

Number : 7654

Name : MARTIN
Hire Date : 09/28/1981
Salary : 1250

Commission: 1400
Department: SALES

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 227

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.14 FETCH_ROWS

The FETCH_ROWS function retrieves a row from a cursor.

status INTEGER FETCH ROWS (¢ INTEGER)

Parameters

Cursor ID of the cursor from which to fetch a row.

status

Returns 1 if a row was successfully fetched, 0 if no more rows to fetch.

Examples

The following examples fetches the rows from the emp table and displays the results.

DECLARE
curid INTEGER;
V_empno NUMBER (4) ;
v_ename VARCHARZ2 (10) ;
v_hiredate DATE;
v_sal NUMBER (7, 2)
v_comm NUMBER (7, 2)
v_sql VARCHAR?Z2 (50

'comm FROM emp';

v_status INTEGER;

BEGIN
curid := DBMS SQL.OPEN_ CURSOR;

DBMS SQL.PARSE (curid,v sql,DBMS SQL.native);
DBMS_SQL.DEFINE_COLUMN(Curid,l,v_empno);
DBMS SQL.DEFINE COLUMN (curid,2,v ename,10);
DBMS_SQL.DEFINE_COLUMN(Curid,3,V_hiredate);
DBMS SQL.DEFINE COLUMN (curid, 4,v_sal);
DBMS_SQL.DEFINE_COLUMN(Curid,5,V_comm);

v_status := DBMS SQL.EXECUTE (curid) ;
DBMS_OUTPUT.PUT LINE ('EMPNO ENAME HIREDATE

DBMS OUTPUT.PUT LINE('----- ————-——=-= ——————————
|l

———————— ")

LOOP
v_status := DBMS SQL.FETCH ROWS (curid) ;
EXIT WHEN v_status = 0g
DBMS SQL.COLUMN VALUE (curid,l,v_empno) ;
DBMS SQL.COLUMN VALUE (curid,2,v_ename) ;
DBMS SQL.COLUMN VALUE (curid, 3,v hiredate);
DBMS_SQL.COLUMN VALUE (curid, 4,v_sal);
DBMS SQL.COLUMN VALUE (curid,4,v_sal);
DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);

v

DBMS OUTPUT.PUT LINE (v_empno || ' ' || RPAD(v_ename,10) ||

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

) := 'SELECT empno, ename, hiredate, sal, ' ||

coMM') ;

Database Compatibility for Oracle® Developers
Built-in Package Guide

TO CHAR(v_hiredate, 'yyyy-mm-dd') ||
TO CHAR(v_sal,'9,999.99") [| ' ' ||
TO CHAR(NVL(v_comm,0),'9,999.99"));

v ‘ |

END LOOP;

DBMS SQL.CLOSE CURSOR (curid) ;
END;
EMPNO ENAME HIREDATE SAL COMM
7369 SMITH 1980-12-17 800.00 .00
7499 ALLEN 1981-02-20 1,600.00 300.00
7521 WARD 1981-02-22 1,250.00 500.00
7566 JONES 1981-04-02 2,975.00 .00
7654 MARTIN 1981-09-28 1,250.00 1,400.00
7698 BLAKE 1981-05-01 2,850.00 .00
7782 CLARK 1981-06-09 2,450.00 .00
7788 SCOTT 1987-04-19 3,000.00 .00
7839 KING 1981-11-17 5,000.00 .00
7844 TURNER 1981-09-08 1,500.00 .00
7876 ADAMS 1987-05-23 1,100.00 .00
7900 JAMES 1981L=12=03 950.00 .00
7902 FORD 1981-12-03 3,000.00 .00
7934 MILLER 1982-01-23 1,300.00 .00

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 229

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.15 IS_OPEN

The s _oPEN function provides the capability to test if the given cursor is open.

status BOOLEAN IS OPEN (c INTEGER)

Parameters
Cursor ID of the cursor to be tested.

status

Set to TRUE if the cursor is open, set to FALSE if the cursor is not open.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 230

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.16 LAST_ROW_COUNT

The LAST RrRow_cOUNT function returns the number of rows that have been currently

fetched.

rowcnt INTEGER LAST ROW COUNT

Parameters

rowcnt

Number of row fetched thus far.

Examples

The following example uses the LAST Row COUNT function to display the total number

of rows fetched in the query.

DECLARE
curid INTEGER;
V_empno NUMBER (4) ;
v_ename VARCHARZ2 (10) ;
v_hiredate DATE;
v_sal NUMBER (7, 2) ;
v_comm NUMBER (7, 2) ;
v_sql VARCHAR?2 (50) := 'SELECT empno, ename, hiredate, sal, ' ||
'comm FROM emp';
v_status INTEGER;
BEGIN
curid := DBMS SQL.OPEN_ CURSOR;

DBMS SQL.PARSE (curid,v sql,DBMS SQL.native);
DBMS SQL.DEFINE COLUMN curid,l,v_empno);
DBMS SQL.DEFINE COLUMN (curid,2,v ename,10);

DBMS_SQL.DEFINE COLUMN (curid,4,v_sal);

(
(
DBMS SQL.DEFINE COLUMN (curid, 3,v_hiredate) ;
(
(

DBMS SQL.DEFINE COLUMN (curid,5,v_comm) ;

v_status := DBMS_SQL.EXECUTE(curid);
DBMS_OUTPUT.PUT_LINE('EMPNO ENAME HIREDATE SAL COMM"') ;
DEMS OUTRUT . PUT LINE (V===== ooosooosos oosoooooos coooooos '

L}

———————— D)5
LOOP

v_status := DBMS SQL.FETCH ROWS (curid) ;
EXIT WHEN v _status = 0;
DBMS_SQL.COLUMN_VALUE(curid,l,v_empno);

DBMS SQL.COLUMN VALUE
DBMS SQL.COLUMN VALUE
DBMS SQL.COLUMN VALUE
DBMS SQL.COLUMN VALUE

curid, 2,v_ename) ;
curid, 3,v_hiredate);
curid, 4,v_sal);
curid, 4,v_sal);

DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);

DBMS_OUTPUT.PUT LINE (v_empno || ' 0
TO CHAR(v_hiredate, 'yyyy-mm-dd') |
TO CHAR(v_sal,'9,999.99") [| ' ' |
TO CHAR(NVL (v_comm,0),'9,999.99"))

| RPAD(v_ename,10) || " ' ||

’

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 231

Database Compatibility for Oracle® Developers
Built-in Package Guide

END LOOP;

DBMS OUTPUT.PUT LINE ('Number of rows: ' || DBMS SQL.LAST ROW COUNT) ;

DBMS_SQL.CLOSE CURSOR (curid) ;
END;
EMPNO ENAME HIREDATE SAL COMM
7369 SMITH 1980-12-17 800.00 .00
7499 ALLEN 1981-02-20 1,600.00 300.00
7521 WARD 1981-02-22 1,250.00 500.00
7566 JONES 1981-04-02 2,975.00 .00
7654 MARTIN 1981-09-28 1,250.00 1,400.00
7698 BLAKE 1981-05-01 2,850.00 .00
7782 CLARK 1981-06-09 2,450.00 .00
7788 SCOTT 1987-04-19 3,000.00 .00
7839 KING 1981-11-17 5,000.00 .00
7844 TURNER 1981-09-08 1,500.00 .00
7876 ADAMS 1987-05-23 1,100.00 .00
7900 JAMES 1981-12-03 950.00 .00
7902 FORD 1981-12-03 3,000.00 .00
7934 MILLER 1982-01-23 1,300.00 .00

Number of rows: 14

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 232

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.17 OPEN_CURSOR
The OPEN_CURSOR function creates a new cursor. A cursor must be used to parse and
execute any dynamic SQL statement. Once a cursor has been opened, it can be re-used
with the same or different SQL statements. The cursor does not have to be closed and re-
opened in order to be re-used.

c INTEGER OPEN CURSOR

Parameters

Cursor ID number associated with the newly created cursor.
Examples

The following example creates a new cursor:

DECLARE

curid INTEGER;
BEGIN

curid := DBMS SQL.OPEN CURSOR;
END;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 233

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.17.18 PARSE

The PARSE procedure parses a SQL command or SPL block. If the SQL command is a
DDL command, it is immediately executed and does not require running the EXECUTE
function.

PARSE (¢ INTEGER, statement VARCHAR2, language flag INTEGER)

Parameters

Cursor ID of an open cursor.

statement

SQL command or SPL block to be parsed. A SQL command must not end with
the semi-colon terminator, however an SPL block does require the semi-colon
terminator.

language flag

Language flag provided for compatibility with Oracle syntax. Use
DBMS SQL.V6, DBMS SQL.V7 Of DBMS SQL.native. This flag is ignored, and
all syntax is assumed to be in EnterpriseDB Advanced Server form.

Examples
The following anonymous block creates a table named, job. Note that DDL statements

are executed immediately by the PARSE procedure and do not require a separate
EXECUTE Step.

DECLARE
curid INTEGER;
BEGIN
curid := DBMS SQL.OPEN CURSOR;
DBMS_SQL.PARSE (curid, 'CREATE TABLE job (jobno NUMBER(3), ' ||

'jname VARCHAR2 (9))',DBMS SQL.native);
DBMS_SQL.CLOSE_CURSOR (curid) ;
END;

The following inserts two rows into the job table.

DECLARE
curid INTEGER;
v_sql VARCHARZ2 (50) ;
v_status INTEGER;
BEGIN

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 234

Database Compatibility for Oracle® Developers
Built-in Package Guide

curid := DBMS SQL.OPEN CURSOR;

visql := '"INSERT INTO job VALUES (100, ''ANALYST'')';

DBMS SQL.PARSE (curid, v_sql, DBMS SQL.native);

v_status := DBMS SQL.EXECUTE (curid) ;

DBMS OUTPUT.PUT LINE ('Number of rows processed: ' || v_status);
v_sqgl := '"INSERT INTO job VALUES (200, ''CLERK'')';

DBMS SQL.PARSE (curid, v_sql, DBMS SQL.native);

v_status

:= DBMS SQL.EXECUTE (curid) ;

DBMS OUTPUT.PUT LINE ('Number of rows processed: ' || v_status);
DBMS SQL.CLOSE CURSOR (curid) ;

END;

Number of rows processed: 1
Number of rows processed: 1

The following anonymous block uses the beMS sQL package to execute a block
containing two INSERT statements. Note that the end of the block contains a terminating

semi-colon, while in the prior example, each individual INSERT statement does not have
a terminating semi-colon.

DECLARE
curid
v_sql
v_status

BEGIN
curid :=
v_sql :=

DBMS SQL.

v_status

DBMS SQL.

END;

INTEGER;
VARCHAR?2 (100) ;
INTEGER;

DBMS_SQL.OPEN CURSOR;

'BEGIN ' ||
'INSERT INTO job VALUES (300, ''MANAGER''); ' ||
'"INSERT INTO job VALUES (400, ''SALESMAN''); ' ||
'END; ';

PARSE (curid, v_sql, DBMS_ SQL.native);
:= DBMS SQL.EXECUTE (curid) ;
CLOSE_CURSOR(Curid);

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 235

3.18DBMS_UTILITY

Database Compatibility for Oracle® Developers

Built-in Package Guide

The pBMS UTILITY package provides support for the following various utility

programs:
Function/Procedure Function or| Return Description
Procedure Type
ANALYZE_DATABASE (method [, Procedure n/a Analyze database tables.
estimate rows [, estimate percent
[, method opt 111)
ANALYZE_PART OBJECT (schema, Procedure n/a Analyze a partitioned table.
object name [, object type [,
command type [, command opt [,
sample clause]]1])
ANALYZE_SCHEMA (schema, method [, | Procedure n/a Analyze schema tables.
estimate rows [, estimate percent
[, method opt 11])
CANONICALIZE (name, canon_name Procedure n/a Canonicalizes a string — e.g., strips off white
OUT, canon len) space.
COMMA TO TABLE (list, tablen OUT, | Procedure n/a Convert a comma-delimited list of names to
tab OUT) a table of names.
DB_VERSION (version OUT, Procedure n/a Get the database version.
compatibility OUT)
EXEC_DDL_STATEMENT (parse string) | Procedure n/a Execute a DDL statement.
FORMAT_CALL_STACK Function TEXT |Formats the current call stack.
GET_CPU_TIME Function NUMBER |Get the current CPU time.
GET_DEPENDENCY (type, schema, Procedure n/a Get objects that are dependent upon the
name) given object..
GET_HASH_VALUE (name, base, Function NUMBER |Compute a hash value.
hash size)
GET_PARAMETER _VALUE (parnam, Procedure |BINARY_IN|Get database initialization parameter
intval OUT, strval OUT) TEGER settings.
GET_TIME Function NUMBER |Get the current time.
NAME _TOKENIZE (name, a OUT, b OUT,| Procedure n/a Parse the given name into its component
c OUT, dblink OUT, nextpos OUT) parts.
TABLE_TO_COMMA (tab, tablen OUT, Procedure n/a Convert a table of names to a comma-

list OUT)

delimited list.

Advanced Server's implementation of DBMS UTILITY is a partial implementation when
compared to Oracle's version. Only those functions and procedures listed in the table

above are supported.

The following table lists the public variables available in the DBMS UTILITY package.

Public Variables

Data Type

Value

Description

inv_error on restrictions

PLS INTEGER

1

Used by the INVALTIDATE procedure.

lname array TABLE

For lists of long names.

uncl array TABLE

For lists of users and names.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

236

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.18.1 LNAME_ARRAY

The LNAME ARRAY is for storing lists of long names including fully-qualified names.

TYPE lname array IS TABLE OF VARCHARZ (4000) INDEX BY BINARY INTEGER;

3.18.2 UNCL_ARRAY

The UNCL ARRAY is for storing lists of users and names.

TYPE uncl array IS TABLE OF VARCHARZ2 (227) INDEX BY BINARY INTEGER;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 237

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.18.3 ANALYZE_DATABASE, ANALYZE SCHEMA and
ANALYZE PART_OBJECT

The ANALYZE DATABASE (), ANALYZE SCHEMA () and ANALYZE PART OBJECT ()
procedures provide the capability to gather statistics on tables in the database. When you
execute the ANALYZE statement, Postgres samples the data in a table and records
distribution statistics in the pg statistics system table.

ANALYZE DATABASE, ANALYZE SCHEMA, and ANALYZE PART OBJECT differ
primarily in the number of tables that are processed:

e ANALYZE DATABASE analyzes all tables in all schemas within the current
database.

e ANALYZE SCHEMA analyzes all tables in a given schema (within the current
database).

e ANALYZE PART OBJECT analyzes a single table.

The syntax for the ANALYZE commands are:

ANALYZE DATABASE (method VARCHAR2 [, estimate rows NUMBER
[, estimate percent NUMBER [, method opt VARCHARZ2]]])

ANALYZE_SCHEMA(SChema VARCHAR2, method VARCHAR2
[, estimate rows NUMBER [, estimate percent NUMBER
[, method opt VARCHAR2]1]])

ANALYZE PART OBJECT (schema VARCHARZ2, object name VARCHARZ
[, object type CHAR [, command type CHAR
[, command opt VARCHARZ [, sample clause]]1]1])

Parameters - ANALYZE DATABASE and ANALYZE SCHEMA

method

method determines whether the ANALYZE procedure populates the
pg_statistics table or removes entries from the pg statistics table. If
you specify a method of DELETE, the ANALYZE procedure removes the relevant
rows frompg_statistics. If you specify a method of COMPUTE or ESTIMATE,
the ANALYZE procedure analyzes a table (or multiple tables) and records the
distribution information in pg_statistics. There is no difference between
COMPUTE and ESTIMATE; both methods execute the Postgres ANALYZE
statement. All other parameters are validated and then ignored.

estimate rows

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 238

Database Compatibility for Oracle® Developers
Built-in Package Guide

Number of rows upon which to base estimated statistics. One of estimate rows
or estimate percent must be specified if method is ESTIMATE.

This argument is ignored, but is included for compatibility.

estimate percent

Percentage of rows upon which to base estimated statistics. One of

estimate rows Ol estimate percent must be specified if method is
ESTIMATE.

This argument is ignored, but is included for compatibility.

method opt

Object types to be analyzed. Any combination of the following:

[FOR TABLE]

[FOR ALL [INDEXED] COLUMNS] [SIZE n]
[FOR ALL INDEXES]

This argument is ignored, but is included for compatibility.
Parameters - ANALYZE PART OBJECT

schema

Name of the schema whose objects are to be analyzed.

object name
Name of the partitioned object to be analyzed.

object type
Type of object to be analyzed. Valid values are: T — table, T — index.
This argument is ignored, but is included for compatibility.

command _type

Type of analyze functionality to perform. Valid values are: £ - gather estimated
statistics based upon on a specified number of rows or a percentage of rows in the

sample clause clause; C - compute exact statistics; or v — validate the
structure and integrity of the partitions.

This argument is ignored, but is included for compatibility.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 239

Database Compatibility for Oracle® Developers
Built-in Package Guide

command_ opt
For command type C Or E, can be any combination of:

[FOR TABLE]
[FOR ALL COLUMNS]
[FOR ALL LOCAL INDEXES]

For command type V, can be CASCADE if object typelST.
This argument is ignored, but is included for compatibility.
sample clause

If command type is E, contains the following clause to specify the number of
rows or percentage or rows on which to base the estimate.

SAMPLE n { ROWS | PERCENT }

This argument is ignored, but is included for compatibility.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 240

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.18.4 CANONICALIZE
The canoNICALIZE procedure performs the following operations on an input string:

e If the string is not double-quoted, verifies that it uses the characters of a legal
identifier. If not, an exception is thrown. If the string is double-quoted, all
characters are allowed.

e If the string is not double-quoted and does not contain periods, uppercases all
alphabetic characters and eliminates leading and trailing spaces.

e |f the string is double-quoted and does not contain periods, strips off the
double guotes.

e If the string contains periods and no portion of the string is double-quoted,
uppercases each portion of the string and encloses each portion in double
quotes.

e |f the string contains periods and portions of the string are double-quoted,
returns the double-quoted portions unchanged including the double quotes and
returns the non-double-quoted portions uppercased and enclosed in double
quotes.

CANONICALIZE (name VARCHAR2, canon name OUT VARCHARZ,
canon len BINARY INTEGER)

Parameters
name
String to be canonicalized.
canon_ name
The canonicalized string.
canon len
Number of bytes in name to canonicalize starting from the first character.
Examples

The following procedure applies the CANONTICALIZE procedure on its input parameter
and displays the results.

CREATE OR REPLACE PROCEDURE canonicalize (
p_name VARCHARZ,
p_length BINARY INTEGER DEFAULT 30

)
Is

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 241

Database Compatibility for Oracle® Developers
Built-in Package Guide

v_canon VARCHAR?2 (100) ;
BEGIN
DBMS UTILITY.CANONICALIZE (p_name,v_canon,p length);
DBMS OUTPUT.PUT LINE ('Canonicalized name ==>' || v _canon || '<==');
DBMS OUTPUT.PUT LINE ('Length: ' || LENGTH(v_canon));
EXCEPTION
WHEN OTHERS THEN
DBMS OUTPUT.PUT LINE ('SQLERRM: ' || SQLERRM) ;
DBMS OUTPUT.PUT LINE ('SQLCODE: ' || SQLCODE) ;

END;

EXEC canonicalize('Identifier'")
Canonicalized name ==>IDENTIFIER<==

Length: 10

EXEC canonicalize('"Identifier"')
Canonicalized name ==>Identifier<==
Length: 10

EXEC canonicalize('" +142%""'")
Canonicalized name ==> +142%<==
Length: 6

EXEC canonicalize('abc.def.ghi')
Canonicalized name ==>"ABC"."DEF"."GHI"<==

Length: 17

EXEC canonicalize('"abc.def.ghi"")
Canonicalized name ==>abc.def.ghi<==
Length: 11

EXEC canonicalize('"abc".def."ghi""'")
Canonicalized name ==>"abc"."DEF"."ghi"<==
Length: 17

EXEC canonicalize('"abc.def".ghi'")
Canonicalized name ==>"abc.def"."GHI"<==
Length: 15

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 242

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.18.5 COMMA_TO_TABLE

The coMMA TO TABLE procedure converts a comma-delimited list of names into a table
of names. Each entry in the list becomes a table entry. The names must be formatted as
valid identifiers.

COMMA TO TABLE (list VARCHAR2, tablen OUT BINARY INTEGER,
tab OUT { LNAME ARRAY | UNCL ARRAY })

Parameters
list
Comma-delimited list of names.
tablen
Number of entries in tab.
tab
Table containing the individual names in 1ist.
LNAME ARRAY
A DBMS_UTILITY LNAME ARRAY (as described in Section 3.18.1).
UNCL_ ARRAY
A DBMS_UTILITY UNCL ARRAY (as described in Section 3.18.2).
Examples

The following procedure uses the coMmMa TO TABLE procedure to convert a list of names
to a table. The table entries are then displayed.

CREATE OR REPLACE PROCEDURE comma to table (

p_list VARCHAR2

)

IS
r lname DBMS UTILITY.LNAME ARRAY;
v_length BINARY INTEGER;

BEGIN

DBMS UTILITY.COMMA TO TABLE(p list,v length,r lname);
FOR i IN 1..v_length LOOP
DBMS OUTPUT.PUT LINE (r lname (i));
END LOOP;
END;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 243

Database Compatibility for Oracle® Developers
Built-in Package Guide

EXEC comma to table('edb.dept, edb.emp, edb.jobhist')
edb.dept

edb.emp
edb.jobhist

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 244

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.18.6 DB_VERSION

The DB VERSION procedure returns the version number of the database.

DB _VERSION (version OUT VARCHARZ, compatibility OUT
VARCHAR2)

Parameters
version

Database version number.
compatibility

Compatibility setting of the database. (To be implementation-defined as to its
meaning.)

Examples

The following anonymous block displays the database version information.

DECLARE
v_version VARCHAR?Z2 (150) ;
v_compat VARCHARZ2 (150) ;
BEGIN
DBMS UTILITY.DB VERSION (v _version,v_ compat);
DBMS OUTPUT.PUT LINE ('Version: ' || v_version);
DBMS OUTPUT.PUT LINE ('Compatibility: ' || v_compat);
END;

Version: EnterpriseDB 10.0.0 on i686-pc-linux-gnu, compiled by GCC gcc (GCC)
4.1.2 20080704 (Red Hat 4.1.2-48), 32-bit

Compatibility: EnterpriseDB 10.0.0 on 1i686-pc-linux-gnu, compiled by GCC gcc
(GCC) 4.1.220080704 (Red Hat 4.1.2-48), 32-bit

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 245

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.18.7 EXEC_DDL_STATEMENT

The EXEC_DDL STATEMENT provides the capability to execute a DDL command.

EXEC DDL STATEMENT (parse string VARCHARZ)
Parameters
parse string

The DDL command to be executed.
Examples

The following anonymous block creates the §ob table.

BEGIN
DBMS UTILITY.EXEC DDL STATEMENT (
'"CREATE TABLE job (' ||
'jobno NUMBER(3),"' ||
'jname VARCHAR2 (9)) '
);
END;

If the parse stringdoes notinclude a valid DDL statement, Advanced Server returns
the following error:

edb=# exec dbms utility.exec ddl statement ('select rownum from dual');
ERROR: EDB-20001: 'parse string' must be a valid DDL statement

In this case, Advanced Server's behavior differs from Oracle's; Oracle accepts the invalid
parse string without complaint.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 246

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.18.8 FORMAT_CALL_STACK

The FORMAT CALL_ STACK function returns the formatted contents of the current call
stack.

DBMS UTILITY.FORMAT CALL STACK
return VARCHAR2

This function can be used in a stored procedure, function or package to return the current
call stack in a readable format. This function is useful for debugging purposes.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 247

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.18.9 GET_CPU_TIME

The GET _cpuU_TIME function returns the CPU time in hundredths of a second from some
arbitrary point in time.

cputime NUMBER GET CPU TIME
Parameters
cputime

Number of hundredths of a second of CPU time.

Examples

The following sELECT command retrieves the current CPU time, which is 603
hundredths of a second or .0603 seconds.

SELECT DBMS UTILITY.GET CPU TIME FROM DUAL;

get cpu time

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 248

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.18.10 GET_DEPENDENCY

The GET DEPENDENCY procedure provides the capability to list the objects that are
dependent upon the specified object. GET DEPENDENCY does not show dependencies for
functions or procedures.

GET_}HEPENDENCﬁf(type VARCHAR2, schema VARCHARZ,
name VARCHAR?2)

Parameters
type

The object type of name. Valid values are INDEX, PACKAGE, PACKAGE BODY,
SEQUENCE, TABLE, TRIGGER, TYPE and VIEW.

schema

Name of the schema in which name exists.
name

Name of the object for which dependencies are to be obtained.
Examples

The following anonymous block finds dependencies on the EMPp table.

BEGIN
DBMS UTILITY.GET DEPENDENCY ('TABLE', 'public', 'EMP');
END;

DEPENDENCIES ON public.EMP
*TABLE public.EMP ()

CONSTRAINT c public.emp ()
CONSTRAINT f public.emp ()
CONSTRAINT p public.emp ()
TYPE public.emp ()

CONSTRAINT c public.emp ()
CONSTRAINT f public.jobhist ()
VIEW .empname view ()

P T

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 249

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.18.11 GET_HASH_VALUE

The GET HASH VALUE function provides the capability to compute a hash value for a
given string.

hash NUMBER GET_HASH_VALUE(name VARCHAR?2, base NUMBER,
hash size NUMBER)

Parameters

name

The string for which a hash value is to be computed.
base
Starting value at which hash values are to be generated.
hash size
The number of hash values for the desired hash table.
hash
The generated hash value.
Examples
The following anonymous block creates a table of hash values using the ename column

of the emp table and then displays the key along with the hash value. The hash values
start at 100 with a maximum of 1024 distinct values.

DECLARE
v_hash NUMBER;
TYPE hash tab IS TABLE OF NUMBER INDEX BY VARCHARZ (10) ;
r hash HASH TAB;
CURSOR emp cur IS SELECT ename FROM emp;
BEGIN

FOR r emp IN emp cur LOOP
r_hash(r_emp.ename) =
DBMS UTILITY.GET HASH VALUE (r emp.ename,100,1024) ;
END LOOP;
FOR r emp IN emp cur LOOP
DBMS OUTPUT.PUT LINE (RPAD(r emp.ename,10) [[| ' ' ||
r hash(r emp.ename)) ;
END LOOP;
END;

SMITH 377

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 250

Database Compatibility for Oracle® Developers
Built-in Package Guide

ALLEN 740
WARD 718
JONES 131
MARTIN 176
BLAKE 568
CLARK 621
SCOTT 1097
KING 235
TURNER 850
ADAMS 156
JAMES 942
FORD 775
MILLER 148

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 251

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.18.12 GET_PARAMETER_VALUE

The GET PARAMETER VALUE procedure provides the capability to retrieve database
initialization parameter settings.

status BINARY INTEGER GET PARAMETER VALUE (parnam VARCHARZ,
intval OUT INTEGER, strval OUT VARCHAR2)

Parameters

parnam

Name of the parameter whose value is to be returned. The parameters are listed in
the pg settings system view.

intval

Value of an integer parameter or the length of strval.
strval

Value of a string parameter.

status

Returns O if the parameter value is INTEGER or BOOLEAN. Returns 1 if the
parameter value is a string.

Examples

The following anonymous block shows the values of two initialization parameters.

DECLARE
v_intval INTEGER;
v_strval VARCHARZ2 (80) ;

BEGIN
DBMS UTILITY.GET PARAMETER VALUE ('max fsm pages', v_intval, v _strval);
DBMS OUTPUT.PUT LINE ('max fsm pages' || ': ' || v _intval);
DBMS UTILITY.GET PARAMETER VALUE ('client encoding', v_intval, v _strval);
DBMS OUTPUT.PUT LINE ('client encoding' || ': ' || v_strval);

END;

max fsm pages: 72625
client encoding: SQL ASCII

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 252

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.18.13 GET_TIME

The ceT_ TIME function provides the capability to return the current time in hundredths
of a second.

time NUMBER GET TIME
Parameters
time

Number of hundredths of a second from the time in which the program is started.
Examples

The following example shows calls to the GET TIME function.

SELECT DBMS UTILITY.GET TIME FROM DUAL;

1555860

SELECT DBMS UTILITY.GET TIME FROM DUAL;

1556037

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 253

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.18.14 NAME_TOKENIZE

The NAME TOKENIZE procedure parses a name into its component parts. Names without
double quotes are uppercased. The double quotes are stripped from names with double
quotes.

NAME TOKENIZE (name VARCHARZ, a OUT VARCHARZ,
b OUT VARCHAR2,c OUT VARCHAR2, dblink OUT VARCHARZ,
nextpos OUT BINARY INTEGER)

Parameters

name
String containing a name in the following format:

al.b[.cl]l[@dblink]

Returns the leftmost component.

Returns the second component, if any.

Returns the third component, if any.
dblink

Returns the database link name.
nextpos

Position of the last character parsed in name.
Examples

The following stored procedure is used to display the returned parameter values of the
NAME TOKENIZE procedure for various names.

CREATE OR REPLACE PROCEDURE name tokenize (
p_name VARCHAR?2
)

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 254

Database Compatibility for Oracle® Developers

IS
a VARCHARZ2 (30) ;
b VARCHAR2 (30) ;
@ VARCHARZ2 (30) ;
v_dblink VARCHAR2 (30) ;
v_nextpos BINARYilNTEGER;
BEGIN
DBMS UTILITY.NAME TOKENIZE (p name
DBMS OUTPUT.PUT LINE ('name HE
DBMS OUTPUT.PUT LINE (' :
DBMS OUTPUT.PUT LINE (
DBMS OUTPUT.PUT LINE ('
(
(

vi
v
v

_name) ;
_a);
_b);
8) i
DBMS OUTPUT.PUT LINE ('dblink : '
DBMS OUTPUT.PUT LINE ('nextpos:
END;

’

|

a : |
1 b . 1 |
€ |

|

|

Tokenize the name, emp:

BEGIN
name tokenize ('emp');
END;
name : emp
a : EMP
b
©
dblink

nextpos: 3

Tokenize the name, edb.list emp:

BEGIN
name tokenize ('edb.list emp');
END;
name : edb.list emp
a : EDB B
b : LIST EMP
c .
dblink

nextpos: 12

Tokenize the name, "edb"."Emp Admin".update emp sal:

BEGIN
name tokenize ('"edb"."Emp Admin".update emp sal');
END;

name : "edb"."Emp Admin".update emp sal
a : edb

b : Emp Admin

€ : UPDATE EMP SAL

dblink

nextpos: 32

Tokenize the name edb . empRedb dblink:

BEGIN

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

,Vv_b,v _c,v _dblink,v nextpos);

Built-in Package Guide

255

Database Compatibility for Oracle® Developers
Built-in Package Guide

name tokenize ('edb.emp@edb dblink');

END;
name : edb.emp@edb dblink
a : EDB

b : EMP

c :

dblink : EDB DBLINK
nextpos: 18

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 256

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.18.15 TABLE_TO_COMMA

The TABLE TO_COMMA procedure converts table of names into a comma-delimited list of
names. Each table entry becomes a list entry. The names must be formatted as valid
identifiers.

TABLE TO COMMA (tab { LNAME ARRAY | UNCL ARRAY },
tablen OUT BINARY INTEGER, list OUT VARCHARZ)

Parameters
tab

Table containing names.
LNAME ARRAY

A DBMS_UTILITY LNAME ARRAY (as described in Section 3.18.1).
UNCL_ARRAY

A DBMS_UTILITY UNCL ARRAY (as described in Section 3.18.2).
tablen

Number of entries in 1ist.
list

Comma-delimited list of names from tab.

Examples

The following example first uses the coMmMA TO TABLE procedure to convert a comma-
delimited list to a table. The TABLE TO cOMMA procedure then converts the table back to
a comma-delimited list that is displayed.

CREATE OR REPLACE PROCEDURE table to comma (

pilist VARCHAR?2
)
IS
r_lname DBMS UTILITY.LNAME ARRAY;
Vilength BINARY INTEGER;
V_listlen BINARY INTEGER;
v _list VARCHARZ2 (80) ;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 257

Database Compatibility for Oracle® Developers
Built-in Package Guide

BEGIN

DBMS UTILITY.COMMA TO TABLE(p list,v length,r lname);

DBMS OUTPUT.PUT LINE ('Table Entries');

DBMS OUTPUT.PUT LINE (V=mmmmmmmme=== ") g

FOR i IN 1..v_length LOOP

DBMS OUTPUT.PUT LINE(r lname (i));

END LOOP;

DBMS OUTPUT.PUT LINE (Vmmmmmmmmme=== ") g

DBMS UTILITY.TABLE TO COMMA (r lname,v listlen,v list);

DBMS OUTPUT.PUT LINE ('Comma-Delimited List: ' || v _list);
END;

EXEC table to comma ('edb.dept, edb.emp, edb.jobhist')

Table Entries
edb.dept
edb.emp
edb.jobhist

Comma-Delimited List: edb.dept, edb.emp, edb.jobhist

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 258

3.19UTL_ENCODE

Database Compatibility for Oracle® Developers

Built-in Package Guide

The UTL_ENCODE package provides a way to encode and decode data. Advanced Serve
supports the following functions and procedures:

Function/Procedure

Return Type

Description

BASE64 DECODE (r)

RAW

Use the BASE64 DECODE function to
translate a Base64 encoded string to the
original rRaw value.

permission)

BASE64_ENCODE (r) RAW Use the BASE64 ENCODE function to
translate a Raw string to an encoded Base64
value.

BASE64_ENCODE (loid) TEXT Use the BASE64 ENCODE function to
translate a TExT string to an encoded Base64
value.

MIMEHEADER DECODE (buf) VARCHARZ [Use the MIMEHEADER DECODE function to
translate an encoded MIMEHEADER formatted
string to it's original value.

MIMEHEADER_ENCODE (buf, VARCHARZ |Use the MIMEHEADER ENCODE function to

encode_charset, encoding) convert and encode a string in MIMEHEADER
format.

QUOTED PRINTABLE DECODE (r) RAW Use the QUOTED PRINTABLE DECODE
function to translate an encoded string to a
RAW Value.

QUOTED PRINTABLE_ENCODE (r) RAW Use the QUOTED PRINTABLE ENCODE
function to translate an input string to a
quoted-printable formatted raw value.

TEXT DECODE (buf, encode_charset, VARCHAR?2 Use the TEXT DECODE function to decode a

encoding) string encoded by TEXT ENCODE.

TEXT_ENCODE (buf, encode charset, VARCHARZ |Use the TEXT ENCODE function to translate a

encoding) string to a user-specified character set, and
then encode the string.

UUDECODE (r) RAW Use the uuDECODE function to translate a
uuencode encoded string to a rRaw value.

UUENCODE (r, type, filename, RAW Use the UUENCODE function to translate a

RAW string to an encoded uuencode value.

3.19.1

BASE64_DECODE

Use the BASE64_DECODE function to translate a Base64 encoded string to the original
value originally encoded by BASE64_ENCODE. The signature is:

BASE64 DECODE (r IN RAW)

This function returns a Raw value.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

259

Database Compatibility for Oracle® Developers
Built-in Package Guide

Parameters

r 1S the string that contains the Base64 encoded data that will be translated to
RAW form.

Examples
Note: Before executing the following example, invoke the command:
SET bytea output = escape;
This command instructs the server to escape any non-printable characters, and to display
BYTEA Or RAW Values onscreen in readable form. For more information, please refer to

the Postgres Core Documentation available at:

https://www.postgresgl.org/docs/12/static/datatype-binary.html

The following example first encodes (using BASE64 ENCODE), and then decodes (using
BASE64_DECODE) a string that contains the text abc:

edb=+# SELECT UTL_ENCODE.BASE64 ENCODE (CAST ('abc' AS RAW));
base64 encode

edb=# SELECT UTL_ENCODE.BASE64 DECODE (CAST ('YWJJj' AS RAW));
base64 decode

3.19.2 BASEG64_ENCODE

Use the BASE64 ENCODE function to translate and encode a string in Base64 format (as
described in RFC 4648). This function can be useful when composing MIME email that
you intend to send using the uTL_sMTP package. The BASE64_ENCODE function has two
signatures:

BASE64 ENCODE (r IN RAW)

and

BASE64 ENCODE (loid IN OID)

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 260

https://www.postgresql.org/docs/12/static/datatype-binary.html

Database Compatibility for Oracle® Developers
Built-in Package Guide

This function returns a Raw value or an 0ID.

Parameters

r specifies the raw string that will be translated to Base64.
loid

1oid specifies the object ID of a large object that will be translated to Base64.
Examples
Note: Before executing the following example, invoke the command:

SET bytea output = escape;
This command instructs the server to escape any non-printable characters, and to display
BYTEA Or RAW Values onscreen in readable form. For more information, please refer to

the Postgres Core Documentation available at:

https://www.postqgresql.org/docs/12/static/datatype-binary.html

The following example first encodes (using BASE64 ENCODE), and then decodes (using
BASE64_DECODE) a string that contains the text abc:

edb=# SELECT UTL ENCODE.BASE64 ENCODE (CAST ('abc' AS RAW));
base64 encode

edb=# SELECT UTL ENCODE.BASE64 DECODE (CAST ('YWJJ' AS RAW));
base64 decode

3.19.3 MIMEHEADER_DECODE

Use the MIMEHEADER_DECODE function to decode values that are encoded by the
MIMEHEADER_ENCODE function. The signature is:

MIMEHEADER DECODE (buf IN VARCHAR?2)
This function returns a VARCHAR? value.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 261

https://www.postgresql.org/docs/12/static/datatype-binary.html

Database Compatibility for Oracle® Developers
Built-in Package Guide

Parameters

buf

buf contains the value (encoded by MIMEHEADER _ENCODE) that will be
decoded.

Examples

The following examples use the MIMEHEADER _ENCODE and MIMEHEADER _DECODE
functions to first encode, and then decode a string:

edb=# SELECT UTL_ ENCODE.MIMEHEADER ENCODE ('What is the date?') FROM DUAL;
mimeheader encode

=?UTF8?Q?What is the date??=
(1 row)

edb=# SELECT UTL_ ENCODE.MIMEHEADER DECODE ('=?UTF8?Q?What is the date??=")
FROM DUAL;
mimeheader decode

What is the date?
(1 row)

3.194 MIMEHEADER_ENCODE

Use the MIMEHEADER_ENCODE function to convert a string into mime header format, and
then encode the string. The signature is:

MIMEHEADER ENCODE (buf IN VARCHARZ, encode charset IN
VARCHARZ2 DEFAULT NULL, encoding IN INTEGER DEFAULT NULL)

This function returns a VARCHAR? value.

Parameters

buf

buf contains the string that will be formatted and encoded. The string is a
VARCHAR?2 value.

encode charset

encode charset specifies the character set to which the string will be
converted before being formatted and encoded. The default value is NULL.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 262

Database Compatibility for Oracle® Developers
Built-in Package Guide

encoding

encoding Specifies the encoding type used when encoding the string. You can
specify:

e (O to enable quoted-printable encoding. If you do not specify a value,
MIMEHEADER_ENCODE Will use quoted-printable encoding.

e B to enable base-64 encoding.
Examples

The following examples use the MIMEHEADER _ENCODE and MIMEHEADER _DECODE
functions to first encode, and then decode a string:

edb=# SELECT UTL_ENCODE.MIMEHEADER ENCODE ('What is the date?') FROM DUAL;
mimeheader encode

=?UTF8?Q?What is the date??=
(1 row)

edb=# SELECT UTL_ENCODE.MIMEHEADER DECODE ('=?UTF8?Q?What is the date??='")
FROM DUAL;
mimeheader decode

What is the date?
(1 row)

3.19.5 QUOTED_PRINTABLE_DECODE

Use the QUOTED_PRINTABLE_DECODE function to translate an encoded quoted-printable
string into a decoded RAW string.

The signature is:
QUOTED PRINTABLE DECODE (r IN RAW)
This function returns a Raw value.

Parameters

r contains the encoded string that will be decoded. The string is a RAW value,
encoded by QUOTED_PRINTABLE_ENCODE.

Examples

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 263

Database Compatibility for Oracle® Developers
Built-in Package Guide

Note: Before executing the following example, invoke the command:
SET bytea output = escape;

This command instructs the server to escape any non-printable characters, and to display
BYTERA or RAW Values onscreen in readable form. For more information, please refer to
the Postgres Core Documentation available at:

https://www.postgresql.org/docs/12/static/datatype-binary.html

The following example first encodes and then decodes a string:

edb=# SELECT UTL_ ENCODE.QUOTED PRINTABLE ENCODE ('E=mc2') FROM DUAL;
quoted printable encode

E=3Dmc?2
(1 row)

edb=# SELECT UTL ENCODE.QUOTED PRINTABLE DECODE ('E=3Dmc2') FROM DUAL;
quoted printable decode

E=mc2
(1 row)

3.19.6 QUOTED_PRINTABLE_ENCODE

Use the QUOTED_PRINTABLE_ENCODE function to translate and encode a string in
quoted-printable format. The signature is:

QUOTED PRINTABLE ENCODE (r IN RAW)
This function returns a Raw value.

Parameters

r contains the string (a RAW value) that will be encoded in a quoted-printable
format.

Examples
Note: Before executing the following example, invoke the command:

SET bytea output = escape;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 264

https://www.postgresql.org/docs/12/static/datatype-binary.html

Database Compatibility for Oracle® Developers
Built-in Package Guide

This command instructs the server to escape any non-printable characters, and to display
BYTEA or RAW Values onscreen in readable form. For more information, please refer to
the Postgres Core Documentation available at:

https://www.postqgresql.org/docs/12/static/datatype-binary.html

The following example first encodes and then decodes a string:

edb=# SELECT UTL_ ENCODE.QUOTED PRINTABLE ENCODE ('E=mc2') FROM DUAL;
quoted printable encode

E=3Dmc2
(1 row)

edb=# SELECT UTL ENCODE.QUOTED PRINTABLE DECODE ('E=3Dmc2') FROM DUAL;
quoted printable decode

E=mc2
(1 row)

3.19.7 TEXT_DECODE

Use the TEXT DECODE function to translate and decode an encoded string to the
VARCHAR? Value that was originally encoded by the TEXT ENCODE function. The
signature is:

TEXT DECODE (buf IN VARCHAR2, encode charset IN VARCHARZ
DEFAULT NULL, encoding IN PLS INTEGER DEFAULT NULL)

This function returns a VARCHAR? value.
Parameters

buf

buf contains the encoded string that will be translated to the original value
encoded by TEXT ENCODE.

encode charset

encode charset specifies the character set to which the string will be
translated before encoding. The default value is NULL.

encoding

encoding specifies the encoding type used by TEXT DECODE. Specify:

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 265

https://www.postgresql.org/docs/12/static/datatype-binary.html

Database Compatibility for Oracle® Developers
Built-in Package Guide

e UTL ENCODE.BASE64 to specify base-64 encoding.

e UTL ENCODE.QUOTED PRINTABLE to specify quoted printable encoding.
This is the default.

Examples

The following example uses the TEXT ENCODE and TEXT DECODE functions to first
encode, and then decode a string:

edb=# SELECT UTL ENCODE.TEXT ENCODE ('What is the date?', 'BIGS',
UTL ENCODE.BASE64) FROM DUAL;
text encode

V2hhdCBpcyB0aGUgZGF0ZT8=
(1 row)

edb=# SELECT UTL_ ENCODE.TEXT DECODE ('V2hhdCBpcyB0aGUgZGF0ZT8="', 'BIG5',
UTL _ENCODE.BASE64) FROM DUAL;
text decode

What is the date?
(1 row)

3.19.8 TEXT_ENCODE

Use the TEXT ENCODE function to translate a string to a user-specified character set, and
then encode the string. The signature is:

TEXT DECODE (buf IN VARCHAR2, encode charset IN VARCHARZ2
DEFAULT NULL, encoding IN PLS INTEGER DEFAULT NULL)

This function returns a VARCHAR? value.

Parameters

buf

buf contains the encoded string that will be translated to the specified character
set and encoded by TEXT ENCODE.

encode charset

encode_charset specifies the character set to which the value will be translated
before encoding. The default value is NULL.

encoding

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 266

Database Compatibility for Oracle® Developers
Built-in Package Guide

encoding specifies the encoding type used by TEXT ENCODE. Specify:

e UTL ENCODE.BASE64 to specify base-64 encoding.

e UTL ENCODE.QUOTED PRINTABLE to specify quoted printable encoding.
This is the default.

Examples

The following example uses the TEXT ENCODE and TEXT DECODE functions to first
encode, and then decode a string:

edb=# SELECT UTL ENCODE.TEXT ENCODE ('What is the date?', 'BIGS',
UTL ENCODE.BASE64) FROM DUAL;
text encode

V2hhdCBpcyB0aGUgZGF0ZT8=
(1 row)

edb=# SELECT UTL ENCODE.TEXT DECODE ('V2hhdCBpcyB0aGUgZGF0ZT8=", 'BIGS',
UTL ENCODE.BASE64) FROM DUAL;
text decode

What is the date?
(1 row)

3.19.9 UUDECODE

Use the uubeECoDE function to translate and decode a uuencode encoded string to the RAW
value that was originally encoded by the UUENCODE function. The signature is:

UUDECODE (r IN RAW)
This function returns a Raw value.

Note: If you are using the Advanced Server uuDECODE function to decode uuencoded
data that was created by the Oracle implementation of the UTL ENCODE . UUENCODE
function, then you must first set the Advanced Server configuration parameter

utl encode.uudecode redwood t0o TRUE before invoking the Advanced Server
UUDECODE function on the Oracle-created data. (For example, this situation may occur if
you migrated Oracle tables containing uuencoded data to an Advanced Server database.)

The uuencoded data created by the Oracle version of the UUENCODE function results in a
format that differs from the uuencoded data created by the Advanced Server UUENCODE
function. As a result, attempting to use the Advanced Server uuDECODE function on the
Oracle uuencoded data results in an error unless the configuration parameter

utl encode.uudecode redwood IS Set t0 TRUE.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 267

Database Compatibility for Oracle® Developers
Built-in Package Guide

However, if you are using the Advanced Server uUDECODE function on uuencoded data
created by the Advanced Server UUENCODE function, then
utl encode.uudecode redwood Must be set to FALSE, which is the default setting.

Parameters

r contains the uuencoded string that will be translated to raw.
Examples
Note: Before executing the following example, invoke the command:
SET bytea output = escape;
This command instructs the server to escape any non-printable characters, and to display
BYTEA Or RAW Values onscreen in readable form. For more information, please refer to

the Postgres Core Documentation available at:

https://www.postgresgl.org/docs/12/static/datatype-binary.html

The following example uses UUENCODE and UUDECODE to first encode and then decode a
string:

edb=# SET bytea output = escape;

SET

edb=# SELECT UTL ENCODE.UUENCODE ('What is the date?') FROM DUAL;
uuencode

begin 0 uuencode.txt\01215VAA="!I<R!T:&4@9&%T93\\ \012°\012end\012
(1 row)

edb=# SELECT UTL_ENCODE.UUDECODE
edb-# ('begin 0 uuencode.txt\01215VAA="!I<R!T:&4Q9&%T93\\ \012 \012end\012")
edb-# FROM DUAL;

uudecode

What is the date?
(1 row)

3.19.10 UUENCODE

Use the UuENCODE function to translate Raw data into a uuencode formatted encoded
string. The signature is:

UUENCODE (r IN RAW, type IN INTEGER DEFAULT 1, filename IN
VARCHAR2 DEFAULT NULL, permission IN VARCHAR2 DEFAULT NULL)

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 268

https://www.postgresql.org/docs/12/static/datatype-binary.html

Database Compatibility for Oracle® Developers
Built-in Package Guide

This function returns a Raw value.

Parameters

r contains the rRaw string that will be translated to uuencode format.
type

type IS an INTEGER Value or constant that specifies the type of uuencoded string
that will be returned; the default value is 1. The possible values are:

Value Constant
complete

header piece

middle piece

end piece

BIWIN| -

filename

filename IS a VARCHAR?2 Value that specifies the file name that you want to
embed in the encoded form; if you do not specify a file name, UUENCODE will
include a filename of uuencode. txt in the encoded form.

permission

permission iSa VARCHAR? that specifies the permission mode; the default
value is NULL.

Examples
Note: Before executing the following example, invoke the command:
SET bytea output = escape;
This command instructs the server to escape any non-printable characters, and to display
BYTEA Or RAW Values onscreen in readable form. For more information, please refer to

the Postgres Core Documentation available at:

https://www.postgresgl.org/docs/12/static/datatype-binary.html

The following example uses UUENCODE and UUDECODE to first encode and then decode a
string:

edb=# SET bytea output = escape;
SET
edb=# SELECT UTL_ENCODE.UUENCODE ('What is the date?') FROM DUAL;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 269

https://www.postgresql.org/docs/12/static/datatype-binary.html

Database Compatibility for Oracle® Developers
Built-in Package Guide

uuencode

begin 0 uuencode.txt\01215VAA="!I<R!T:&4Q@9&%T93\\ \012 '\012end\012
(1 row)

edb=# SELECT UTL ENCODE.UUDECODE
edb-# ('begin 0 uuencode.txt\01215VAA="!I<R!T:&4@9&%T93\\ \012°\012end\012")
edb-# FROM DUAL;
uudecode
What is the date?
(1 row)

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 270

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.20UTL_FILE

The uTL FILE package provides the capability to read from, and write to files on the
operating system’s file system. Non-superusers must be granted EXECUTE privilege on
the uTL FILE package by a superuser before using any of the functions or procedures in
the package. For example the following command grants the privilege to user mary:

GRANT EXECUTE ON PACKAGE SYS.UTL FILE TO mary;

Also, the operating system username, enterprisedb, must have the appropriate read
and/or write permissions on the directories and files to be accessed using the UTL FILE
functions and procedures. If the required file permissions are not in place, an exception is
thrown in the uTL_FILE function or procedure.

A handle to the file to be written to, or read from is used to reference the file. The file
handle is defined by a public variable in the uTL, FILE package named,

UTL FILE.FILE TYPE. A variable of type FILE TYPE must be declared to receive the
file handle returned by calling the FopeN function. The file handle is then used for all
subsequent operations on the file.

References to directories on the file system are done using the directory name or alias
that is assigned to the directory using the CREATE DIRECTORY command. The
procedures and functions available in the uT., FILE package are listed in the following
table:

Function/Procedure Return Description
Type
FCLOSE (file IN OUT) n/a Closes the specified file identified by £i1e.
FCLOSE_ALL n/a Closes all open files.
FCOPY (location, filename, n/a Copies £ilename in the directory identified by
dest_dir,' dest_file [, start_line locationtofile, dest file, in directory,
[, end Iine] 1) -

dest_dir, starting from line, start line, to
line, end line.

FFLUSH (file) n/a Forces data in the buffer to be written to disk in
the file identified by file.

FOPEN (location, filename, FILE_TYPE |Opens file, £i1ename, in the directory identified

open mode [, max linesize]) by Iocation.

FREMOVE (location, filename) n/a Removes the specified file from the file system.

FRENAME (location, filename, n/a Renames the specified file.

dest dir, dest file [, overwrite

1)

GET_LINE (file, buffer OUT) n/a Reads a line of text into variable, bufrfer, from
the file identified by file.

IS_OPEN(file) BOOLEAN |Determines whether or not the given file is open.

NEW_LINE (file [, lines 1) n/a \Writes an end-of-line character sequence into the
file.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 271

Database Compatibility for Oracle® Developers
Built-in Package Guide

Function/Procedure Return Description
Type

PUT (file, buffer) n/a \Writes buffer to the given file. puT does not
write an end-of-line character sequence.

PUT_LINE (file, buffer) n/a \Writes buffer to the given file. An end-of-line
character sequence is added by the PUT LINE
procedure.

PUTF (file, format [, argl] [, n/a \Writes a formatted string to the given file. Up to

1) five substitution parameters, arg1,...arg5 may

be specified for replacement in format.

Advanced Server's implementation of UTL FILE is a partial implementation when
compared to Oracle's version. Only those functions and procedures listed in the table
above are supported.

UTL_FILE Exception Codes
If acall toauTrs FILE procedure or function raises an exception, you can use the

condition name to catch the exception. The UTL FILE package reports the following
exception codes compatible with Oracle databases:

Exception Code Condition name
-29283 invalid operation
-29285 write error
-29284 read error
-29282 invalid filehandle
-29287 invalid maxlinesize
-29281 invalid mode
-29280 invalid path
3.20.1 Setting File Permissions with utl_file.umask

When a uTL_FILE function or procedure creates a file, there are default file permissions
as shown by the following.

=Ejjo=—=s=s 1 enterprisedb enterprisedb 21 Jul 24 16:08 utlfile

Note that all permissions are denied on users belonging to the enterprisedb group as
well as all other users. Only the enterprisedb user has read and write permissions on
the created file.

If you wish to have a different set of file permissions on files created by the UTL FILE

functions and procedures, you can accomplish this by setting the ut1 file.umask
configuration parameter.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 272

Database Compatibility for Oracle® Developers
Built-in Package Guide

The utl file.umask parameter sets the file mode creation mask or simply, the mask,
in a manner similar to the Linux umask command. This is for usage only within the
Advanced Server UTL FILE package.

Note: The utl file.umask parameter is not supported on Windows systems.

The value specified for utl file.umask is a3 or 4-character octal string that would be
valid for the Linux umask command. The setting determines the permissions on files
created by the uTL FILE functions and procedures. (Refer to any information source
regarding Linux or Unix systems for information on file permissions and the usage of the
umask command.)

The following is an example of setting the file permissions with ut1 file.umask.

First, set up the directory in the file system to be used by the UTL FILE package. Be sure
the operating system account, enterprisedb Of postgres, Whichever is applicable,
can read and write in the directory.

mkdir /tmp/utldir
chmod 777 /tmp/utldir

The CREATE DIRECTORY command is issued in psql to create the directory database
object using the file system directory created in the preceding step.

CREATE DIRECTORY utldir AS '/tmp/utldir';

Setthe ut1l file.umask configuration parameter. The following setting allows the file
owner any permission. Group users and other users are permitted any permission except
for the execute permission.

SET utl file.umask TO '0011';

In the same session during which the ut1 file.umask parameter is set to the desired
value, run the uT, FILE functions and procedures.

DECLARE
v_utlfile UTL FILE.FILE TYPE;
v_directory VARCHARZ2 (50) := 'utldir';
v_filename VARCHAR2 (20) := 'utlfile';
BEGIN
v_utlfile := UTL FILE.FOPEN(v directory, v_filename, 'w');
UTL FILE.PUT LINE(v utlfile, 'Simple one-line file');
DBMS OUTPUT.PUT LINE ('Created file: ' || v _filename);
UTL_FILE.FCLOSE(v_utlfile);
END;

The permission settings on the resulting file show that group users and other users have
read and write permissions on the file as well as the file owner.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 273

Database Compatibility for Oracle® Developers
Built-in Package Guide

S pwd

/tmp/utldir

S 1s -1

total 4

-rw-rw-rw—- 1 enterprisedb enterprisedb 21 Jul 24 16:04 utlfile

This parameter can also be set on a per role basis with the ALTER ROLE command, on a

per database basis with the ALTER DATABASE command, or for the entire database server
instance by setting it in the postgresqgl.conf file.

3.20.2 FCLOSE

The FCLOSE procedure closes an open file.
FCLOSE (file IN OUT FILE TYPE)

Parameters

file

Variable of type FILE TYPE containing a file handle of the file to be closed.

3.20.3 FCLOSE_ALL

The FLCcLOSE ALL procedures closes all open files. The procedure executes successfully
even if there are no open files to close.

FCLOSE ALL

3.20.4 FCOPY

The Fcopy procedure copies text from one file to another.

FCOPY (location VARCHAR2, filename VARCHAR2,
dest_dir VARCHARZ, dest_file VARCHAR?2
[, start line PLS INTEGER [, end line PLS INTEGER]])

Parameters

location

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 274

Database Compatibility for Oracle® Developers
Built-in Package Guide

Directory name, as stored in pg _catalog.edb dir.dirname, Of the directory
containing the file to be copied.

filename
Name of the source file to be copied.
dest dir

Directory name, as stored in pg_catalog.edb dir.dirname, Of the directory
to which the file is to be copied.

dest file

Name of the destination file.
start line

Line number in the source file from which copying will begin. The default is 1.
end line

Line number of the last line in the source file to be copied. If omitted or null,
copying will go to the last line of the file.

Examples
The following makes a copy of a file, C: \TEMP\EMPDIR\empfile.csv, cOntaining a

comma-delimited list of employees from the emp table. The copy, empcopy.csv, is then
listed.

CREATE DIRECTORY empdir AS 'C:/TEMP/EMPDIR';

DECLARE
v_empfile UTL FILE.FILE TYPE;
v_src dir VARCHAR?Z (50) = 'empdir';
v_src_file VARCHAR2 (20) = 'empfile.csv';
v_dest dir VARCHAR?Z (50) = 'empdir';
v _dest file VARCHAR2 (20) := 'empcopy.csv';
vV_emprec VARCHAR2 (120) ;
v_count INTEGER := 0;
BEGIN
UTL FILE.FCOPY (v _src dir,v _src file,v dest dir,v dest file);
v_empfile := UTL FILE.FOPEN(v dest dir,v _dest file,'r');

DBMS OUTPUT.PUT LINE ('The following is the destination file, ''' ||
v _dest file || "'"'"");
LOOP
UTLiFILE.GETiLINE(viempfile,viemprec);
DBMS OUTPUT.PUT LINE (v_emprec);
v_count := v _count + 1;
END LOOP;
EXCEPTION

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 275

Database Compatibility for Oracle® Developers
Built-in Package Guide

WHEN NO DATA FOUND THEN
UTL FILE.FCLOSE (v_empfile);
DBMS OUTPUT.PUT LINE (v_count || ' records retrieved');
WHEN OTHERS THEN
DBMS OUTPUT.PUT LINE ('SQLERRM: ' || SQLERRM) ;
DBMSioUTPUT.PUTiLINE('SQLCODE: ' || SQLCODE) ;
END;

The following is the destination file, 'empcopy.csv'
7369, SMITH,CLERK, 7902,17-DEC-80,800,,20

7499, ALLEN, SALESMAN, 7698, 20-FEB-81,1600, 300, 30
7521, WARD, SALESMAN, 7698, 22-FEB-81,1250,500, 30
7566, JONES, MANAGER, 7839, 02-APR-81,2975,,20
7654,MARTIN, SALESMAN, 7698, 28-SEP-81,1250,1400, 30
7698, BLAKE, MANAGER, 7839, 01-MAY-81,2850,, 30
7782,CLARK, MANAGER, 7839, 09-JUN-81,2450,,10

7788, SCOTT, ANALYST, 7566, 19-APR-87,3000,,20

7839, KING, PRESIDENT, ,17-NOV-81,5000,,10

7844, TURNER, SALESMAN, 7698, 08-SEP-81,1500, 0, 30
7876,ADAMS, CLERK, 7788, 23-MAY-87,1100,,20

7900, JAMES, CLERK, 7698, 03-DEC-81, 950, , 30

7902, FORD, ANALYST, 7566, 03-DEC-81, 3000, ,20
7934,MILLER, CLERK, 7782, 23-JAN-82,1300,,10

14 records retrieved

3.20.5 FFLUSH

The FrLUSH procedure flushes unwritten data from the write buffer to the file.

FFLUSH(file FILE TYPE)
Parameters
file

Variable of type FILE TYPE containing a file handle.
Examples

Each line is flushed after the NEw L.INE procedure is called.

DECLARE
v_empfile UTL FILE.FILE TYPE;
v_directory VARCHAR?2 (50) := 'empdir';
v_filename VARCHARZ2 (20) := 'empfile.csv';

CURSOR emp cur IS SELECT * FROM emp ORDER BY empno;
BEGIN

v_empfile := UTL FILE.FOPEN(v directory,v filename, 'w');
FOR i IN emp cur LOOP

UTL FILE.PUT(v_empfile,i.empno) ;

UTL FILE.PUT (v_empfile,',');

UTL FILE.PUT (v _empfile,i.ename);

UTL FILE.PUT (v _empfile,','");

UTL FILE.PUT (v _empfile,i.job);

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

276

Database Compatibility for Oracle® Developers
Built-in Package Guide

UTL FILE.PUT(v_empfile,',");
UTL FILE.PUT (v _empfile,i.mgr);
UTL FILE.PUT(v_empfile,',");
UTL FILE.PUT (v _empfile,i.hiredate);
UTL FILE.PUT(v_empfile,',");
UTL FILE.PUT (v _empfile,i.sal);
UTL FILE.PUT(v_empfile,',");
UTL FILE.PUT (v _empfile,i.comm);
UTL FILE.PUT(v_empfile,',");
UTL FILE.PUT (v _empfile,i.deptno);
UTL FILE.NEW LINE (v_empfile) ;
UTL FILE.FFLUSH (v _empfile);
END LOOP;
DBMS OUTPUT.PUT LINE ('Created file: ' || v _filename);
UTL FILE.FCLOSE (v_empfile) g
END;

3.20.6 FOPEN

The FopeN function opens a file for 1/0.

filetype FILE TYPE FOPEN (location VARCHARZ,
filename VARCHARZ, open mode VARCHARZ2
[, max Iinesize BINARY INTEGER])

Parameters

location

Directory name, as stored in pg _catalog.edb dir.dirname, Of the directory
containing the file to be opened.

filename
Name of the file to be opened.
open _mode

Mode in which the file will be opened. Modes are: a - append to file; r - read
from file; w - write to file.

max linesize

Maximum size of a line in characters. In read mode, an exception is thrown if an
attempt is made to read a line exceeding max linesize. In write and append
modes, an exception is thrown if an attempt is made to write a line exceeding
max linesize. The end-of-line character(s) are not included in determining if
the maximum line size is exceeded. This behavior is not compatible with Oracle
databases; Oracle does count the end-of-line character(s).

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 277

Database Compatibility for Oracle® Developers
Built-in Package Guide

filetype

Variable of type FILE TYPE containing the file handle of the opened file.

3.20.7 FREMOVE

The FREMOVE procedure removes a file from the system.

FREMOVE (location VARCHAR2, filename VARCHAR?2)
An exception is thrown if the file to be removed does not exist.

Parameters

location

Directory name, as stored in pg_catalog.edb dir.dirname, Of the directory
containing the file to be removed.

filename
Name of the file to be removed.
Examples

The following removes file empfile.csv.

DECLARE
v_directory VARCHAR?Z (50) = 'empdir';
v_filename VARCHAR2 (20) = 'empfile.csv';
BEGIN
UTL FILE.FREMOVE (v _directory,v filename) ;
DBMS OUTPUT.PUT LINE ('Removed file: ' || v _filename);
EXCEPTION
WHEN OTHERS THEN
DBMS OUTPUT.PUT LINE ('SQLERRM: ' || SQLERRM) ;
DBMS OUTPUT.PUT LINE ('SQLCODE: ' || SQLCODE) ;

END;

Removed file: empfile.csv

3.20.8 FRENAME

The FRENAME procedure renames a given file. This effectively moves a file from one
location to another.

FRENAME (location VARCHARZ2, filename VARCHAR2,

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 278

Database Compatibility for Oracle® Developers
Built-in Package Guide

dest_dir VARCHAR2Z, dest_file VARCHAR2Z,
[overwrite BOOLEAN 1)

Parameters

location

Directory name, as stored in pg_catalog.edb dir.dirname, Of the directory
containing the file to be renamed.

filename
Name of the source file to be renamed.
dest dir

Directory name, as stored in pg _catalog.edb dir.dirname, Of the directory
to which the renamed file is to exist.

dest file
New name of the original file.

overwrite

Replaces any existing file named dest filein dest dir if setto TRUE,
otherwise an exception is thrown if set to FALSE. This is the default.

Examples

The following renames a file, C: \TEMP\EMPDIR\empfile.csv, cOntaining a comma-
delimited list of employees from the emp table. The renamed file,
C:\TEMP\NEWDIR\newemp.csv, is then listed.

CREATE DIRECTORY "newdir"™ AS 'C:/TEMP/NEWDIR';

DECLARE
v_empfile UTL FILE.FILE TYPE;
v_src dir VARCHARZ2 (50) = 'empdir';
v_src_file VARCHAR2 (20) = 'empfile.csv';
v_dest dir VARCHAR?2 (50) = 'newdir';
v _dest file VARCHARZ2 (50) = 'newemp.csv';
v_replace BOOLEAN := FALSE;
vV_emprec VARCHARZ2 (120) ;
v_count INTEGER := 0;

BEGIN

UTL FILE.FRENAME (v_src dir,v src file,v dest dir,
v _dest file,v replace);

v_empfile := UTL FILE.FOPEN(v dest dir,v _dest file,'r');

DBMS OUTPUT.PUT LINE ('The following is the renamed file, ''' ||
v _dest file || "'"'"");

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 279

Database Compatibility for Oracle® Developers
Built-in Package Guide

LOOP
UTLiFILE.GETALINE(viempfile,viemprec);
DBMS OUTPUT.PUT LINE (v_emprec) ;
v_count := v _count + 1;
END LOOP;
EXCEPTION
WHEN NO DATA FOUND THEN
UTL FILE.FCLOSE (v_empfile) ;
DBMS OUTPUT.PUT LINE (v _count || ' records retrieved');
WHEN OTHERS THEN
DBMS OUTPUT.PUT LINE ('SQLERRM: ' || SQLERRM) ;
DBMS OUTPUT.PUT LINE ("SQLCODE: ' || SQLCODE) ;
END;

The following is the renamed file, 'newemp.csv'

7369, SMITH,CLERK, 7902,17-DEC-80 00:00:00,800.00,,20

7499, ALLEN, SALESMAN, 7698, 20-FEB-81 00:00:00,1600.00,300.00, 30
7521, WARD, SALESMAN, 7698, 22-FEB-81 00:00:00,1250.00,500.00, 30
7566, JONES, MANAGER, 7839, 02-APR-81 00:00:00,2975.00,,20
7654,MARTIN, SALESMAN, 7698,28-SEP-81 00:00:00,1250.00,1400.00, 30
7698, BLAKE, MANAGER, 7839, 01-MAY-81 00:00:00,2850.00,,30
7782,CLARK, MANAGER, 7839, 09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST, 7566, 19-APR-87 00:00:00,3000.00,,20

7839, KING, PRESIDENT, ,17-NOV-81 00:00:00,5000.00,,10

7844, TURNER, SALESMAN, 7698, 08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS, CLERK, 7788,23-MAY-87 00:00:00,1100.00,,20

7900, JAMES, CLERK, 7698, 03-DEC-81 00:00:00, 950.00,, 30

7902, FORD, ANALYST, 7566, 03-DEC-81 00:00:00,3000.00,,20
7934,MILLER, CLERK, 7782,23-JAN-82 00:00:00,1300.00,,10

14 records retrieved

3.20.9 GET_LINE

The GET LINE procedure reads a line of text from a given file up to, but not including
the end-of-line terminator. A NO_DATA FOUND exception is thrown when there are no
more lines to read.

GET LINE (file FILE TYPE, buffer OUT VARCHAR2)

Parameters

file

Variable of type FILE TYPE containing the file handle of the opened file.

buffer

Variable to receive a line from the file.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 280

Database Compatibility for Oracle® Developers
Built-in Package Guide

Examples

The following anonymous block reads through and displays the records in file
empfile.csv.

DECLARE
viempfile UTL FILE.FILE TYPE;
v_directory VARCHAR2 (50) := 'empdir';
v_filename VARCHAR?2 (20) := 'empfile.csv';
vV_emprec VARCHAR?2 (120) ;
v_count INTEGER := 0;
BEGIN
v_empfile := UTL FILE.FOPEN(v directory,v filename, 'r');
LOOP

UTLiFILE.GETALINE(viempfile,viemprec);
DBMS OUTPUT.PUT LINE (v_emprec) ;
v_count := v count + 1;
END LOOP;
EXCEPTION
WHEN NO DATA FOUND THEN
UTL FILE.FCLOSE (v_empfile);

DBMS OUTPUT.PUT LINE('End of file ' || v_filename || ' - ' ||
v_count || ' records retrieved');
WHEN OTHERS THEN

DBMS OUTPUT.PUT LINE ('SQLERRM: ' || SQLERRM) ;
DBMS OUTPUT.PUT LINE ('SQLCODE: ' || SQLCODE) ;
END;

7369, SMITH, CLERK, 7902,17-DEC-80 00:00:00,800.00,,20

7499, ALLEN, SALESMAN, 7698, 20-FEB-81 00:00:00,1600.00,300.00, 30
7521, WARD, SALESMAN, 7698,22-FEB-81 00:00:00,1250.00,500.00, 30
7566, JONES, MANAGER, 7839, 02-APR-81 00:00:00,2975.00,,20
7654,MARTIN, SALESMAN, 7698,28-SEP-81 00:00:00,1250.00,1400.00, 30
7698, BLAKE, MANAGER, 7839, 01-MAY-81 00:00:00,2850.00,,30
7782,CLARK, MANAGER, 7839, 09-JUN-81 00:00:00,2450.00,,10

7788, SCOTT, ANALYST, 7566, 19-APR-87 00:00:00,3000.00,,20

7839, KING, PRESIDENT, ,17-NOV-81 00:00:00,5000.00,,10

7844, TURNER, SALESMAN, 7698, 08-SEP-81 00:00:00,1500.00,0.00, 30
7876,ADAMS, CLERK, 7788,23-MAY-87 00:00:00,1100.00,,20

7900, JAMES, CLERK, 7698, 03-DEC-81 00:00:00,950.00,,30

7902, FORD, ANALYST, 7566, 03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK, 7782, 23-JAN-82 00:00:00,1300.00,,10

End of file empfile.csv - 14 records retrieved

3.20.10 IS_OPEN

The Is opPEN function determines whether or not the given file is open.

status BOOLEAN IS OPEN(file FILE TYPE)

Parameters

file

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 281

Database Compatibility for Oracle® Developers
Built-in Package Guide

Variable of type FILE TYPE containing the file handle of the file to be tested.

status

TRUE if the given file is open, FALSE otherwise.

3.20.11 NEW_LINE

The NEwW_LINE procedure writes an end-of-line character sequence in the file.
NEW LINE (file FILE TYPE [, lines INTEGER])

Parameters

file

Variable of type FILE TYPE containing the file handle of the file to which end-
of-line character sequences are to be written.

lines
Number of end-of-line character sequences to be written. The default is one.
Examples

A file containing a double-spaced list of employee records is written.

DECLARE

v_empfile UTL FILE.FILE TYPE;

v _directory VARCHARZ2 (50) := 'empdir';

v_filename VARCHAR?2 (20) := 'empfile.csv';

CURSOR emp cur IS SELECT * FROM emp ORDER BY empno;
BEGIN

v_empfile := UTL FILE.FOPEN(v directory,v filename,'w');

FOR i IN emp cur LOOP
UTL FILE.PUT (v _empfile,i.empno) ;
UTL FILE.PUT(v_empfile,',");

UTL FILE.PUT (v _empfile,i.ename);
UTL FILE.PUT (v _empfile,','");

UTL FILE.PUT (v _empfile,i.job);

UTL FILE.PUT (v _empfile,',");

UTL FILE.PUT (v _empfile,i.mgr);

UTL FILE.PUT (v _empfile,',");

UTL FILE.PUT (v _empfile,i.hiredate);
UTL FILE.PUT (v _empfile,',");

UTL FILE.PUT (v _empfile,i.sal);

UTL FILE.PUT (v _empfile,',");

UTL FILE.PUT (v _empfile,i.comm);

UTL FILE.PUT (v _empfile,',");

UTL FILE.PUT (v _empfile,i.deptno);

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 282

Database Compatibility for Oracle® Developers
Built-in Package Guide

UTL_FILE.NEW LINE (v_empfile,2);

END LOOP;
DBMS OUTPUT.PUT LINE ('Created file: ' || v _filename);
UTL FILE.FCLOSE (v_empfile);

END;

Created file: empfile.csv

This file is then displayed:

C:\TEMP\EMPDIR>TYPE empfile.csv

7369, SMITH,CLERK, 7902,17-DEC-80 00:00:00,800.00,,20

7499, ALLEN, SALESMAN, 7698, 20-FEB-81 00:00:00,1600.00,300.00, 30
7521, WARD, SALESMAN, 7698, 22-FEB-81 00:00:00,1250.00,500.00, 30
7566, JONES, MANAGER, 7839, 02-APR-81 00:00:00,2975.00,,20
7654,MARTIN, SALESMAN, 7698, 28-SEP-81 00:00:00,1250.00,1400.00, 30
7698, BLAKE , MANAGER, 7839, 01-MAY-81 00:00:00,2850.00,,30
7782,CLARK, MANAGER, 7839, 09-JUN-81 00:00:00,2450.00,,10

7788, SCOTT, ANALYST, 7566, 19-APR-87 00:00:00,3000.00,,20

7839, KING, PRESIDENT, ,17-NOV-81 00:00:00,5000.00,,10

7844, TURNER, SALESMAN, 7698, 08-SEP-81 00:00:00,1500.00,0.00, 30
7876,ADAMS, CLERK, 7788, 23-MAY-87 00:00:00,1100.00,,20

7900, JAMES, CLERK, 7698, 03-DEC-81 00:00:00, 950.00,, 30

7902, FORD, ANALYST, 7566, 03-DEC-81 00:00:00,3000.00,,20

7934,MILLER, CLERK, 7782,23-JAN-82 00:00:00,1300.00,,10

3.20.12 PUT

The pPUT procedure writes a string to the given file. No end-of-line character sequence is
written at the end of the string. Use the NEW LINE procedure to add an end-of-line
character sequence.

PUT (file FILE TYPE, buffer { DATE | NUMBER | TIMESTAMP |
VARCHAR2 })

Parameters

file

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 283

Database Compatibility for Oracle® Developers
Built-in Package Guide

Variable of type FILE TYPE containing the file handle of the file to which the
given string is to be written.

buffer
Text to be written to the specified file.
Examples

The following example uses the puT procedure to create a comma-delimited file of
employees from the emp table.

DECLARE

v_empfile UTL FILE.FILE TYPE;

v_directory VARCHARZ2 (50) := 'empdir';

v_filename VARCHARZ2 (20) := 'empfile.csv';

CURSOR emp cur IS SELECT * FROM emp ORDER BY empno;
BEGIN

v_empfile := UTL FILE.FOPEN (v directory,v filename,'w');

FOR i IN emp cur LOOP
UTL FILE.PUT (v _empfile,i.empno);
UTL FILE.PUT(v_empfile,',");

UTL FILE.PUT (v _empfile,i.ename);
UTL FILE.PUT(v_empfile,',");

UTL FILE.PUT (v _empfile,i.job);

UTL FILE.PUT(v_empfile,',");

UTL FILE.PUT(v_empfile,i.mgr);

UTL FILE.PUT (v _empfile,',');

UTL FILE.PUT(v_empfile,i.hiredate);
UTL FILE.PUT(v_empfile,',');

UTL FILE.PUT(v_empfile,i.sal);

UTL FILE.PUT(v_empfile,',');

UTL FILE.PUT(v_empfile,i.comm) ;

UTL FILE.PUT(v_empfile,',');

UTL FILE.PUT(v_empfile,i.deptno);
UTL FILE.NEW LINE (v _empfile);

END LOOP;
DBMS OUTPUT.PUT LINE ('Created file: ' || v_filename);
UTL_FILE.FCLOSE(v_empfile);

END;

Created file: empfile.csv

The following is the contents of empfile.csv created above:

C:\TEMP\EMPDIR>TYPE empfile.csv

7369, SMITH, CLERK, 7902,17-DEC-80 00:00:00,800.00,,20

7499, ALLEN, SALESMAN, 7698, 20-FEB-81 00:00:00,1600.00,300.00, 30
7521, WARD, SALESMAN, 7698, 22-FEB-81 00:00:00,1250.00,500.00, 30
7566, JONES, MANAGER, 7839, 02-APR-81 00:00:00,2975.00,,20
7654,MARTIN, SALESMAN, 7698, 28-SEP-81 00:00:00,1250.00,1400.00, 30
7698, BLAKE , MANAGER, 7839, 01-MAY-81 00:00:00,2850.00,,30
7782,CLARK, MANAGER, 7839, 09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT, ANALYST, 7566, 19-APR-87 00:00:00,3000.00,,20

7839, KING, PRESIDENT, ,17-NOV-81 00:00:00,5000.00,,10

7844, TURNER, SALESMAN, 7698, 08-SEP-81 00:00:00,1500.00,0.00, 30

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 284

Database Compatibility for Oracle® Developers
Built-in Package Guide

7876,ADAMS, CLERK, 7788, 23-MAY-87 00:00:00,1100.00,,20
7900, JAMES, CLERK, 7698, 03-DEC-81 00:00:00, 950.00,, 30
7902, FORD, ANALYST, 7566, 03-DEC-81 00:00:00,3000.00,,20
7934,MILLER, CLERK, 7782,23-JAN-82 00:00:00,1300.00,,10

3.20.13 PUT_LINE

The pUT LINE procedure writes a single line to the given file including an end-of-line
character sequence.

PUT LINE (file FILE TYPE,
buffer {DATE |NUMBER|TIMESTAMP |VARCHARZ2})

Parameters
file

Variable of type FILE TYPE containing the file handle of the file to which the
given line is to be written.

buffer
Text to be written to the specified file.
Examples

The following example uses the PUT LINE procedure to create a comma-delimited file of
employees from the emp table.

DECLARE
v_empfile UTL FILE.FILE TYPE;
v _directory VARCHARZ2 (50) := 'empdir';
v_filename VARCHAR?2 (20) := 'empfile.csv';
vV_emprec VARCHARZ2 (120) ;
CURSOR emp cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
v_empfile := UTL FILE.FOPEN(v directory,v filename, 'w');
FOR i IN emp cur LOOP
v_emprec := i.empno || ',' || i.ename || ',"' || di.job || '," ||
NVL (LTRIM(TO CHAR (i.mgr, '9999")),'') || ',' || i.hiredate ||
vl di.sal | ', L
NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),") [l '," || i.deptno;
UTLiFILE.PUTALINE(viempfile,viemprec);
END LOOP;
DBMS OUTPUT.PUT LINE ('Created file: ' || v _filename);

UTL FILE.FCLOSE (v_empfile);
END;

The following is the contents of empfile.csv created above:

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 285

Database Compatibility for Oracle® Developers
Built-in Package Guide

C:\TEMP\EMPDIR>TYPE empfile.csv

7369, SMITH,CLERK, 7902,17-DEC-80 00:00:00,800.00,,20

7499, ALLEN, SALESMAN, 7698, 20-FEB-81 00:00:00,1600.00,300.00, 30
7521, WARD, SALESMAN, 7698, 22-FEB-81 00:00:00,1250.00,500.00, 30
7566, JONES, MANAGER, 7839, 02-APR-81 00:00:00,2975.00,,20
7654,MARTIN, SALESMAN, 7698, 28-SEP-81 00:00:00,1250.00,1400.00, 30
7698, BLAKE , MANAGER, 7839, 01-MAY-81 00:00:00,2850.00,,30
7782,CLARK, MANAGER, 7839, 09-JUN-81 00:00:00,2450.00,,10

7788, SCOTT, ANALYST, 7566, 19-APR-87 00:00:00,3000.00,,20

7839, KING, PRESIDENT, ,17-NOV-81 00:00:00,5000.00,,10

7844, TURNER, SALESMAN, 7698, 08-SEP-81 00:00:00,1500.00,0.00, 30
7876,ADAMS, CLERK, 7788, 23-MAY-87 00:00:00,1100.00,,20

7900, JAMES, CLERK, 7698, 03-DEC-81 00:00:00, 950.00,, 30

7902, FORD, ANALYST, 7566, 03-DEC-81 00:00:00,3000.00,,20
7934,MILLER, CLERK, 7782,23-JAN-82 00:00:00,1300.00,,10

3.20.14 PUTF

The pUTF procedure writes a formatted string to the given file.

PUTF (file FILE TYPE, format VARCHARZ [, argl VARCHARZ]
, .. 1)

Parameters
file

Variable of type FILE TYPE containing the file handle of the file to which the
formatted line is to be written.

format

String to format the text written to the file. The special character sequence, $s, is
substituted by the value of arg. The special character sequence, \n, indicates a
new line. Note, however, in Advanced Server, a new line character must be
specified with two consecutive backslashes instead of one - \\n. This
characteristic is not compatible with Oracle databases.

argl
Up to five arguments, arg1,...arg5, to be substituted in the format string for each

occurrence of %s. The first arg is substituted for the first occurrence of s, the
second arg is substituted for the second occurrence of %s, etc.

Examples

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 286

Database Compatibility for Oracle® Developers
Built-in Package Guide

The following anonymous block produces formatted output containing data from the emp
table. Note the use of the E literal syntax and double backslashes for the new line
character sequence in the format string which are not compatible with Oracle databases.

DECLARE
viempfile UTL FILE.FILE TYPE;
v_directory VARCHAR2 (50) := 'empdir';
v_filename VARCHAR2 (20) := 'empfile.csv';
v_format VARCHAR?2 (200) ;
CURSOR emp cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
v_format := E'%s %s, %s\\nSalary: $%s Commission: $%s\\n\\n';
v_empfile := UTL FILE.FOPEN(v directory,v filename, 'w');

FOR i IN emp cur LOOP
UTL FILE.PUTF (v_empfile,v format,i.empno,i.ename,i.job,i.sal,
NVL (i.comm, 0)) ;

END LOOP;
DBMS OUTPUT.PUT LINE ('Created file: ' || v _filename);
UTL FILE.FCLOSE (v_empfile);
EXCEPTION
WHEN OTHERS THEN
DBMS OUTPUT.PUT LINE ('SQLERRM: ' || SQLERRM) ;
DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE) ;

END;

Created file: empfile.csv

The following is the contents of empfile.csv created above:

C:\TEMP\EMPDIR>TYPE empfile.csv

7369 SMITH, CLERK

Salary: $800.00 Commission: $0

7499 ALLEN, SALESMAN

Salary: $1600.00 Commission: $300.00
7521 WARD, SALESMAN

Salary: $1250.00 Commission: $500.00
7566 JONES, MANAGER

Salary: $2975.00 Commission: $0

7654 MARTIN, SALESMAN

Salary: $1250.00 Commission: $1400.00
7698 BLAKE, MANAGER

Salary: $2850.00 Commission: $0

7782 CLARK, MANAGER

Salary: $2450.00 Commission: $0

7788 SCOTT, ANALYST

Salary: $3000.00 Commission: $0

7839 KING, PRESIDENT

Salary: $5000.00 Commission: $0

7844 TURNER, SALESMAN

Salary: $1500.00 Commission: $0.00
7876 ADAMS, CLERK

Salary: $1100.00 Commission: $0

7900 JAMES, CLERK

Salary: $950.00 Commission: $0

7902 FORD, ANALYST

Salary: $3000.00 Commission: $0

7934 MILLER, CLERK

Salary: $1300.00 Commission: $0

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 287

3.21UTL_HTTP

Database Compatibility for Oracle® Developers

Built-in Package Guide

The uTL_HTTP package provides a way to use the HTTP or HTTPS protocol to retrieve
information found at an URL. Advanced Server supports the following functions and

procedures:

Function/Procedure

Return Type

Description

BEGINiREQUEST(url, method,
http version)

UTL HTTP.REQ

Initiates a new HTTP request.

Ends an HTTP request before allowing it to

END REQUEST (r IN OUT) n/a
~ complete.

END RESPONSE (r IN OUT) n/a Ends the HTTP response.

GET BODY CHARSET VARCHAR? Returns the default character set of the body
- - of future HTTP requests.

GET BODY CHARSET (charset OUT) n/a Returns the default character set of the body
- - of future HTTP requests.

GET FOLLOW REDIRECT (max redirects Current setting for the maximum number of
- - — n/a L

OUT) redirections allowed.

GET HEADER(r IN OUT, n, name OUT, n/a Returns the nth header of the HTTP

value OUT) response.

GET HEADER BY NAME (r IN OUT, n/a Returns the HTTP response header for the

name, value OUT, n) specified name.

GET HEADER COUNT (r TN OUT) InTEGEr |Returns the number of HTTP response

headers.

GET RESPONSE (r IN OUT)

UTL HTTP.RESP

Returns the HTTP response.

GET RESPONSE ERROR CHECK (enable

Returns whether or not response error check

OUT) n/a is set.
GET TRANSFER TIMEOUT (timeout OUT) n/a Returns the transfer timeout setting for
- - HTTP requests.

READ LINE (r IN OUT, data OUT, Returns the HTTP response body in text
- n/a : '

remove_crlf) form until the end of line.

READ RAW(r IN OUT, data OUT, len) n/a Returns the HTT_P response body in binary
- form for a specified number of bytes.

READ TEXT (r IN OUT, data OUT, Returns the HT TP response body in text
- n/a .

len) form for a specified number of characters.

REQUEST (url) VARCHAR2 [Returns the content of a web page.

UTL_HTTP. [Returns a table of 2000-byte segments

REQUEST PIECES (url, max pieces)

HTML PIECES

retrieved from an URL.

Sets the default character set of the body of

SET BODY CHARSET (charset) n/a

- - future HT TP requests.
SET FOLLOW REDIRECT (max redirects n/a Sets the maximum number of times to
) follow the redirect instruction.

Sets the maximum number of times to

SET FOLLOW REDIRECT (r IN OUT, . . .

- = n/a follow the redirect instruction for an
max redirects) e e -

- individual request.
SET HEADER(r IN OUT, name, value) n/a Sets the HTTP request header.
SET_RESPONSE_ERROR CHECK (enable) n/a Determines whether or not HTTP 4xx and

5xx status codes are to be treated as errors.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

288

Database Compatibility for Oracle® Developers
Built-in Package Guide

Function/Procedure Return Type Description
SET TRANSFER TIMEOUT (timeout) n/a Sets the default, transfer timeout value for
- - HTTP requests.
SET_ TRANSFER TIMEOUT (r IN OUT, n/a Sets the transfer timeout value for an
timeout) individual HTTP request.
\Writes CRLF terminated data to the HTTP
WRITE LINE(r IN OUT, dat .
- (r ata) n/a request body in TEXT form.
\Writes data to the HTTP request body in
WRITE RAW(r IN OUT, data) n/a BINARY form.
\Writes data to the HTTP request body in
WRITE TEXT (r IN OUT, data) n/a TEXT form.

Advanced Server's implementation of UTL HTTP is a partial implementation when
compared to Oracle's version. Only those functions and procedures listed in the table
above are supported.

Please Note:

In Advanced Server, an HTTP 4xx Of HTTP 5xx response produces a database error; in
Oracle, this is configurable but FALSE by default.

In Advanced Server, the UTL HTTP text interfaces expect the downloaded data to be in
the database encoding. All currently-available interfaces are text interfaces. In Oracle,
the encoding is detected from HTTP headers; in the absence of the header, the default is
configurable and defaults to 1s0-8859-1.

Advanced Server ignores all cookies it receives.
The uTL HTTP exceptions that can be raised in Oracle are not recognized by Advanced
Server. In addition, the error codes returned by Advanced Server are not the same as

those returned by Oracle.

There are various public constants available with uTL_HTTP. These are listed in the
following tables.

The following table contains uTL HTTP public constants defining HTTP versions and
port assignments.

HTTP VERSIONS

HTTP VERSION 1 0 CONSTANT VARCHAR2 (64) := 'HTTP/1.0';

HTTP VERSION 1 1 CONSTANT VARCHAR2 (64) := 'HTTP/1.1';
STANDARD PORT ASSIGNMENTS

DEFAULT HTTP PORT CONSTANT INTEGER := 80;

DEFAULT HTTPS PORT CONSTANT INTEGER := 443;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 289

Database Compatibility for Oracle® Developers
Built-in Package Guide

The following table contains uTL HTTP public status code constants.

IXX INFORMATIONAL

HTTP CONTINUE CONSTANT INTEGER := 100;
HTTP SWITCHING PROTOCOLS CONSTANT INTEGER := 101;
HTTP PROCESSING CONSTANT INTEGER := 102;
2XX SUCCESS
HTTP OK CONSTANT INTEGER := 200;
HTTP CREATED CONSTANT INTEGER := 201;
HTTP ACCEPTED CONSTANT INTEGER := 202;
HTTP NON AUTHORITATIVE INFO CONSTANT INTEGER := 203;
HTTP NO CONTENT CONSTANT INTEGER := 204;
HTTP RESET CONTENT CONSTANT INTEGER := 205;
HTTP PARTIAL CONTENT CONSTANT INTEGER := 206;
HTTP MULTI STATUS CONSTANT INTEGER := 207;
HTTP ALREADY REPORTED CONSTANT INTEGER := 208;
HTTP IM USED CONSTANT INTEGER := 226;
3XX REDIRECTION
HTTP MULTIPLE CHOICES CONSTANT INTEGER := 300;
HTTP MOVED PERMANENTLY CONSTANT INTEGER := 301;
HTTP FOUND CONSTANT INTEGER := 302;
HTTP SEE OTHER CONSTANT INTEGER := 303;
HTTP NOT MODIFIED CONSTANT INTEGER := 304;
HTTP USE PROXY CONSTANT INTEGER := 305;
HTTP SWITCH PROXY CONSTANT INTEGER := 306;
HTTP TEMPORARY REDIRECT CONSTANT INTEGER := 307;
HTTP PERMANENT REDIRECT CONSTANT INTEGER := 308;
4XX CLIENT ERROR
HTTP BAD REQUEST CONSTANT INTEGER := 400;
HTTP UNAUTHORIZED CONSTANT INTEGER := 401;
HTTP PAYMENT REQUIRED CONSTANT INTEGER := 402;
HTTP FORBIDDEN CONSTANT INTEGER := 403;
HTTP NOT FOUND CONSTANT INTEGER := 404;
HTTP METHOD NOT ALLOWED CONSTANT INTEGER := 405;
HTTP NOT ACCEPTABLE CONSTANT INTEGER := 406;
HTTP PROXY AUTH REQUIRED CONSTANT INTEGER := 407;
HTTP REQUEST TIME OUT CONSTANT INTEGER := 408;
HTTP CONFLICT CONSTANT INTEGER := 4009;
HTTP GONE CONSTANT INTEGER := 410;
HTTP LENGTH REQUIRED CONSTANT INTEGER := 411;
HTTP PRECONDITION FAILED CONSTANT INTEGER := 412;
HTTP REQUEST ENTITY TOO LARGE CONSTANT INTEGER := 413;
HTTP REQUEST URI TOO LARGE CONSTANT INTEGER := 414;
HTTP UNSUPPORTED MEDIA TYPE CONSTANT INTEGER := 415;
HTTP REQ RANGE NOT SATISFIABLE CONSTANT INTEGER := 416;
HTTP EXPECTATION FAILED CONSTANT INTEGER := 417;
HTTP I AM A TEAPOT CONSTANT INTEGER := 418;
HTTP AUTHENTICATION TIME OUT CONSTANT INTEGER := 419;
HTTP ENHANCE YOUR CALM CONSTANT INTEGER := 420;
HTTP UNPROCESSABLE ENTITY CONSTANT INTEGER := 422;
HTTP LOCKED CONSTANT INTEGER := 423;
HTTP FAILED DEPENDENCY CONSTANT INTEGER := 424;
HTTP UNORDERED COLLECTION CONSTANT INTEGER := 425;
HTTP UPGRADE REQUIRED CONSTANT INTEGER := 426;
HTTP PRECONDITION REQUIRED CONSTANT INTEGER := 428;
HTTP TOO MANY REQUESTS CONSTANT INTEGER := 429;
HTTP REQUEST HEADER FIELDS TOO LARGE CONSTANT INTEGER := 431;
HTTP NO RESPONSE CONSTANT INTEGER := 444;
HTTP RETRY WITH CONSTANT INTEGER := 449;
Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 290

Database Compatibility for Oracle® Developers
Built-in Package Guide

HTTP BLOCKED BY WINDOWS PARENTAL CONTROLS CONSTANT INTEGER := 450;
HTTP REDIRECT CONSTANT INTEGER := 451;
HTTP REQUEST HEADER TOO LARGE CONSTANT INTEGER := 494;
HTTP CERT ERROR CONSTANT INTEGER := 495;
HTTP NO CERT CONSTANT INTEGER := 496;
HTTP HTTP TO HTTPS CONSTANT INTEGER := 497;
HTTP CLIENT CLOSED REQUEST CONSTANT INTEGER := 499;
SXX SERVER ERROR
HTTP INTERNAL SERVER ERROR CONSTANT INTEGER := 500;
HTTP NOT IMPLEMENTED CONSTANT INTEGER := 501;
HTTP BAD GATEWAY CONSTANT INTEGER := 502;
HTTP SERVICE UNAVAILABLE CONSTANT INTEGER := 503;
HTTP GATEWAY TIME OUT CONSTANT INTEGER := 504;
HTTP VERSION NOT SUPPORTED CONSTANT INTEGER := 505;
HTTP VARIANT ALSO NEGOTIATES CONSTANT INTEGER := 506;
HTTP INSUFFICIENT STORAGE CONSTANT INTEGER := 507;
HTTP LOOP DETECTED CONSTANT INTEGER := 508;
HTTP BANDWIDTH LIMIT EXCEEDED CONSTANT INTEGER := 509;
HTTP NOT EXTENDED CONSTANT INTEGER := 510;
HTTP NETWORK AUTHENTICATION REQUIRED CONSTANT INTEGER := 511;
HTTP NETWORK READ TIME OUT ERROR CONSTANT INTEGER := 598;
HTTP NETWORK CONNECT TIME OUT ERROR CONSTANT INTEGER := 599;
3.21.1 HTML_PIECES

The uTL HTTP package declares a type named HTML, PIECES, which is a table of type
VARCHAR2 (2000) indexed by BINARY INTEGER. A value of this type is returned by
the REQUEST PIECES function.

TYPE html pieces IS TABLE OF VARCHARZ2 (2000) INDEX BY BINARY INTEGER;

3.21.2 REQ

The rEQ record type holds information about each HTTP request.

TYPE req IS RECORD (

url VARCHAR2 (32767) , -— URL to be accessed
method VARCHAR?Z2 (64) , -— HTTP method
http version VARCHAR?Z2 (64) , -— HTTP version
private hndl INTEGER -- Holds handle for this request
)i
3.21.3 RESP

The rREsSP record type holds information about the response from each HTTP request.
TYPE resp IS RECORD (

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 291

Database Compatibility for Oracle® Developers
Built-in Package Guide

status code INTEGER, -— HTTP status code
reason_phrase VARCHARZ2 (256) , -— HTTP response reason phrase
http version VARCHARZ2 (64) , -— HTTP version

private hndl INTEGER -- Holds handle for this response

3.214 BEGIN_REQUEST

The BEGIN REQUEST function initiates a new HTTP request. A network connection is
established to the web server with the specified URL. The signature is:

BEGIN REQUEST (url IN VARCHARZ, method IN VARCHARZ DEFAULT
'GET ', http version IN VARCHARZ DEFAULT NULL) RETURN
UTL HTTP.REQ

The BEGIN REQUEST function returns a record of type UTL HTTP.REQ.
Parameters
url
url is the Uniform Resource Locator from which uTz_=#TTP will return content.

method

method is the HTTP method to be used. The default is GET.

http version

http version isthe HTTP protocol version sending the request. The specified
values should be either HTTP/1.0 or HTTP/1. 1. The default is null in which
case the latest HTTP protocol version supported by the uTL, HTTP package is
used which is 1.1.

3.21.5 END_REQUEST

The END REQUEST procedure terminates an HTTP request. Use the END REQUEST
procedure to terminate an HT TP request without completing it and waiting for the
response. The normal process is to begin the request, get the response, then close the
response. The signature is:

END REQUEST (r IN OUT UTL_ HTTP.REQ)

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 292

Database Compatibility for Oracle® Developers
Built-in Package Guide

Parameters

ris the HTTP request record.

3.21.6 END_RESPONSE
The END RESPONSE procedure terminates the HTTP response. The END RESPONSE

procedure completes the HTTP request and response. This is the normal method to end
the request and response process. The signature is:

END RESPONSE (r IN OUT UTL HTTP.RESP)

Parameters

ris the HTTP response record.

3.21.7 GET_BODY_CHARSET

The GET BODY CHARSET program is available in the form of both a procedure and a
function. A call to GET BODY CHARSET returns the default character set of the body of
future HTTP requests.

The procedure signature is:

GET BODY CHARSET (charset OUT VARCHARZ2)

The function signature is:

GET BODY CHARSET () RETURN VARCHAR2
This function returns a VARCHAR?2 value.

Parameters

charset

charset is the character set of the body.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 293

Database Compatibility for Oracle® Developers
Built-in Package Guide

Examples

The following is an example of the GET BoDY CHARSET function.

edb=# SELECT UTL HTTP.GET BODY CHARSET () FROM DUAL;
get body charset

IS0-8859-1
(1 row)

3.21.8 GET_FOLLOW_REDIRECT

The GET FOLLOW REDIRECT procedure returns the current setting for the maximum
number of redirections allowed. The signature is:

GET FOLLOW REDIRECT (max redirects OUT INTEGER)

Parameters

max redirects

max_redirects IS maximum number of redirections allowed.

3.21.9 GET_HEADER

The GET HEADER procedure returns the nth header of the HTTP response. The signature
is:

GET HEADER (r IN OUT UTL HTTP.RESP, n INTEGER, name OUT
VARCHAR2, value OUT VARCHARZ2)

Parameters

ris the HTTP response record.

n is the nth header of the HTTP response record to retrieve.

name

name IS the name of the response header.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 294

Database Compatibility for Oracle® Developers

value
value Is the value of the response header.

Examples

Built-in Package Guide

The following example retrieves the header count, then the headers.

DECLARE
v_req UTL_HTTP.REQ;
V_resp UTL HTTP.RESP;
vV_name VARCHAR?2 (30) ;
v_value VARCHARZ2 (200) ;
v_header cnt INTEGER;

BEGIN

-- Initiate request and get response

v_req := UTL HTTP.BEGIN REQUEST ('www.enterprisedb.com');
v_resp := UTL HTTP.GET RESPONSE (v_req) ;

-—- Get header count

v_header cnt := UTL HTTP.GET HEADER COUNT (v_resp) ;

DBMS OUTPUT.PUT LINE ('Header Count: ' || v_header cnt);

-—- Get all headers

FOR 1 IN 1 .. v _header cnt LOOP
UTL HTTP.GET HEADER(v_resp, i, v_name, v_value);
DBMS OUTPUT.PUT LINE(v name || ': ' || v value);
END LOOP;

-- Terminate request
UTL HTTP.END RESPONSE (v_resp) ;
END;

The following is the output from the example.

Header Count: 23

Age: 570

Cache-Control: must-revalidate

Content-Type: text/html; charset=utf-8

Date: Wed, 30 Apr 2015 14:57:52 GMT

ETag: "aab02f2bd2d696eed817ca89ef4lldda"
Expires: Sun, 19 Nov 1978 05:00:00 GMT
Last-Modified: Wed, 30 Apr 2015 14:15:49 GMT
RTSS: 1-1307-3

Server: Apache/2.2.3 (Red Hat)

Set-Cookie: SESS2771d0952de2ala84d322a262e0cl73c=jnluljletmdi5gg4lh8hakvs0l;
expires=Fri, 23-May-2015 18:21:43 GMT; path=/; domain=.enterprisedb.com

Vary: Accept-Encoding

Via: 1.1 varnish

X-EDB-Backend: ec

X-EDB-Cache: HIT
X-EDB-Cache-Address: 10.31.162.212
X-EDB-Cache-Server: ip-10-31-162-212
X-EDB-Cache-TTL: 600.000

X-EDB-Cacheable: MAYBE: The user has a cookie of some sort. Maybe it's double

choc-chip!
X-EDB-Do-GZIP: false
X-Powered-By: PHP/5.2.17

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved.

295

Database Compatibility for Oracle® Developers
Built-in Package Guide

X-Varnish: 484508634 484506789
transfer-encoding: chunked
Connection: keep-alive

3.21.10 GET_HEADER_BY_NAME

The GET HEADER BY NAME procedure returns the header of the HTTP response
according to the specified name. The signature is:

GET HEADER BY NAME (r IN OUT UTL HTTP.RESP, name VARCHARZ,
value OUT VARCHAR2, n INTEGER DEFAULT 1)

Parameters

ris the HTTP response record.

name

name IS the name of the response header to retrieve.

value

value is the value of the response header.

n is the nth header of the HTTP response record to retrieve according to the
values specified by name. The default is 1.

Examples

The following example retrieves the header for Content-Type.

DECLARE
v_req UTL HTTP.REQ;
V_resp UTL HTTP.RESP;
V_name VARCHAR2 (30) := 'Content-Type';
v_value VARCHAR?2 (200) ;

BEGIN
v_req := UTL HTTP.BEGIN REQUEST ('www.enterprisedb.com');
v_resp := UTL HTTP.GET RESPONSE (v_req);
UTL HTTP.GET HEADER BY NAME (v_resp, Vv _name, v_value);
DBMS OUTPUT.PUT LINE (v name || ': ' || v_value);
UTL_HTTP.END_RESPONSE(v_resp);

END;

Content-Type: text/html; charset=utf-8

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 296

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.21.11 GET_HEADER_COUNT

The GET HEADER COUNT function returns the number of HTTP response headers. The
signature is:

GET HEADER COUNT (r IN OUT UTL HTTP.RESP) RETURN INTEGER
This function returns an INTEGER Vvalue.

Parameters

risthe HTTP response record.

3.21.12 GET_RESPONSE

The GET RESPONSE function sends the network request and returns any HTTP response.
The signature is:

GET RESPONSE (r IN OUT UTL HTTP.REQ) RETURN UTL HTTP.RESP
This function returns a UTL_HTTP.RESP record.

Parameters

ris the HTTP request record.

3.21.13 GET_RESPONSE_ERROR_CHECK

The GET RESPONSE ERROR CHECK procedure returns whether or not response error
check is set. The signature is:

GET RESPONSE ERROR CHECK (enable OUT BOOLEAN)

Parameters

enable

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 297

Database Compatibility for Oracle® Developers
Built-in Package Guide

enable returns TRUE if response error check is set, otherwise it returns FALSE.

3.21.14 GET_TRANSFER_TIMEOUT

The GET TRANSFER TIMEOUT procedure returns the current, default transfer timeout
setting for HTTP requests. The signature is:

GET TRANSFER TIMEOUT (timeout OUT INTEGER)
Parameters
timeout

timeout is the transfer timeout setting in seconds.

3.21.15 READ_LINE
The READ LINE procedure returns the data from the HTTP response body in text form

until the end of line is reached. A cr character, a LF character, a CR LF sequence, or the
end of the response body constitutes the end of line. The signature is:

READ_LINE(r IN OUT UTL_HTTP.RESP, data OUT VARCHARZ,
remove crlf BOOLEAN DEFAULT FALSE)

Parameters

risthe HTTP response record.
data

data Is the response body in text form.
remove crlf

Set remove crlfto TRUE to remove new line characters, otherwise set to
FALSE. The default is FALSE.

Examples

The following example retrieves and displays the body of the specified website.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 298

Database Compatibility for Oracle® Developers
Built-in Package Guide

DECLARE
v_req UTL HTTP.REQ;
v_resp UTL_HTTP.RESP;
v_value VARCHARZ2 (1024) ;
BEGIN
v_req := UTL HTTP.BEGIN REQUEST ('http://www.enterprisedb.com');
v_resp := UTL_HTTP.GET RESPONSE (v_req) ;
LOOP

UTL HTTP.READ LINE (v_resp, v _value, TRUE);
DBMS OUTPUT.PUT LINE (v_value);
END LOOP;
EXCEPTION
WHEN OTHERS THEN
UTLiHTTP.ENDiRESPONSE(viresp);
END;

The following is the output.

<!DOCTYPE html PUBLIC "-//W3C//DID XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en" dir="1ltr">

Ll== HEAD -—>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<title>EnterpriseDB | The Postgres Database Company</title>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="keywords" content="postgres, postgresqgl, postgresgl installer,
mysqgl migration, open source database, training, replication" />
<meta name="description" content="The leader in open source database
products, services, support, training and expertise based on PostgreSQL. Free
downloads, documentation, and tutorials." />
<meta name="abstract" content="The Enterprise PostgreSQL Company" />
<link rel="EditURI" type="application/rsd+xml" title="RSD"
href="http://www.enterprisedb.com/blogapi/rsd" />
<link rel="alternate" type="application/rss+xml" title="EnterpriseDB RSS"
href="http://www.enterprisedb.com/rss.xml" />
<link rel="shortcut icon"
href="/sites/all/themes/edb pixelcrayons/favicon.ico" type="image/x-icon" />
<link type="text/css" rel="stylesheet" media="all"
href="/sites/default/files/css/css_dblladabaelaed6b79a2c3c52def4754.css" />
<!--[if IE 61>
<link type="text/css" rel="stylesheet" media="all"
href="/sites/all/themes/oho basic/css/ie6.css?g" />
<!lendif]-->
<!--[if IE 71>
<link type="text/css" rel="stylesheet" media="all"
href="/sites/all/themes/oho basic/css/ie7.css?g" />
<!lendif]-->
<script type="text/javascript"
src="/sites/default/files/js/js_74d97b1176812e2£d6e43d62503a5204.js"></script
>
<script type="text/javascript">
<!-=//==><![CDATA[//><!--

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 299

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.21.16 READ_RAW

The READ RAW procedure returns the data from the HTTP response body in binary form.
The number of bytes returned is specified by the 1en parameter. The signature is:

READ RAW(r IN OUT UTL HTTP.RESP, data OUT RAW, Ien INTEGER)

Parameters

risthe HTTP response record.

data

data IS the response body in binary form.
len

Set 1en to the number of bytes of data to be returned.
Examples

The following example retrieves and displays the first 150 bytes in binary form.

DECLARE
v_req UTL_HTTP.REQ;
V_resp UTL_HTTP.RESP;
v_data RAW;
BEGIN
v_req := UTLiHTTP.BEGINiREQUEST('http://www.enterprisedb.com');
v_resp := UTL HTTP.GET RESPONSE (v _req);

UTL_HTTP.READ RAW(v_resp, v_data, 150);
DBMS_OUTPUT.PUT LINE (v_data);
UTL_HTTP.END RESPONSE (v_resp) ;

END;

The following is the output from the example.

\x3c21444£43545950452068746d6c205055424c494320222d2£2£5733432£2£4454442058485
44d4c20312e30205374726963742£2£454e220d0a202022687474703a2£2£7777772e77332e6£
72672£54522£7868746d6c312£4454442£7868746d6c312d7374726963742e647464223e0d0a3
c68746d6c20786d6c6e733d22687474703a2£2£7777772e77332e6£72672£313939392F

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 300

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.21.17 READ_TEXT

The READ TEXT procedure returns the data from the HTTP response body in text form.
The maximum number of characters returned is specified by the 1en parameter. The
signature is:

READ TEXT (r IN OUT UTL HTTP.RESP, data OUT VARCHARZ, len
INTEGER)

Parameters

ris the HTTP response record.

data

data is the response body in text form.
len

Set 1en to the maximum number of characters to be returned.
Examples

The following example retrieves the first 150 characters.

DECLARE
v_req UTL_HTTP.REQ;
v_resp UTL_HTTP.RESP;
v_data VARCHARZ2 (150) ;
BEGIN
v_req := UTL HTTP.BEGIN REQUEST ('http://www.enterprisedb.com');
v_resp := UTL HTTP.GET RESPONSE (v_req) ;

UTL_HTTP.READ TEXT (v _resp, v_data, 150);
DBMS_OUTPUT.PUT LINE (v_data);
UTL_HTTP.END RESPONSE (v_resp) ;

END;

The following is the output.

<!DOCTYPE html PUBLIC "-//W3C//DID XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 301

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.21.18 REQUEST

The rREQUEST function returns the first 2000 bytes retrieved from a user-specified URL.
The signature is:

REQUEST (url IN VARCHAR2) RETURN VARCHAR2
If the data found at the given URL is longer than 2000 bytes, the remainder will be
discarded. If the data found at the given URL is shorter than 2000 bytes, the result will
be shorter than 2000 bytes.
Parameters
url

url is the Uniform Resource Locator from which uTz_=HTTP will return content.

Example

The following command returns the first 2000 bytes retrieved from the EnterpriseDB
website:

SELECT UTL HTTP.REQUEST ('http://www.enterprisedb.com/') FROM DUAL;

3.21.19 REQUEST_PIECES

The REQUEST PIECES function returns a table of 2000-byte segments retrieved from an
URL. The signature is:

REQUEST PIECES (url IN VARCHARZ, max pieces NUMBER IN
DEFAULT 32767) RETURN UTL HTTP.HTML PIECES

Parameters
url

url is the Uniform Resource Locator from which uTt,_HTTP will return content.
max pieces

max_pieces specifies the maximum number of 2000-byte segments that the
REQUEST_ PIECES function will return. If max pieces specifies more units
than are available at the specified ur1, the final unit will contain fewer bytes.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 302

Database Compatibility for Oracle® Developers
Built-in Package Guide

Example

The following example returns the first four 2000 byte segments retrieved from the
EnterpriseDB website:

DECLARE
result UTL HTTP. HTMLiPIECES;
BEGIN
result := UTL HTTP.REQUEST PIECES('http://www.enterprisedb.com/', 4);
END;

3.21.20 SET_BODY_CHARSET

The SET_BODY CHARSET procedure sets the default character set of the body of future
HTTP requests. The signature is:

SET BODY CHARSET (charset VARCHAR2 DEFAULT NULL)
Parameters

charset

charset is the character set of the body of future requests. The default is null in
which case the database character set is assumed.

3.21.21 SET_FOLLOW_REDIRECT

The SET FOLLOW REDIRECT procedure sets the maximum number of times the HTTP
redirect instruction is to be followed in the response to this request or future requests.
This procedures has two signatures:

SET FOLLOW REDIRECT (max redirects IN INTEGER DEFAULT 3)

and

SET FOLLOW REDIRECT (r IN OUT UTL HTTP.REQ, max redirects IN
INTEGER DEFAULT 3)

Use the second form to change the maximum number of redirections for an individual
request that a request inherits from the session default settings.

Parameters

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 303

Database Compatibility for Oracle® Developers
Built-in Package Guide

ris the HTTP request record.

max redirects

max_redirects is maximum number of redirections allowed. Set to O to disable
redirections. The default is 3.

3.21.22 SET_HEADER

The sET HEADER procedure sets the HT TP request header. The signature is:

SET HEADER (r IN OUT UTL HTTP.REQ, name IN VARCHARZ, value
IN VARCHAR2Z DEFAULT NULL)

Parameters

ris the HTTP request record.

name
name IS the name of the request header.
value

value is the value of the request header. The default is null.

3.21.23 SET_RESPONSE_ERROR_CHECK
The SET RESPONSE ERROR CHECK procedure determines whether or not HTTP 4xx
and 5xx status codes returned by the GET rREsPONSE function should be interpreted as
errors. The signature is:

SET RESPONSE ERROR CHECK (enable IN BOOLEAN DEFAULT FALSE)
Parameters

enable

Set enableto TRUE if HTTP 4xx and 5xx status codes are to be treated as errors,
otherwise set to FALSE. The default is FALSE.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 304

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.21.24 SET_TRANSFER_TIMEOUT

The SET TRANSFER TIMEOUT procedure sets the default, transfer timeout setting for
waiting for a response from an HTTP request. This procedure has two signatures:

SET TRANSFER TIMEOUT (timeout IN INTEGER DEFAULT 60)
and

SET TRANSFER TIMEOUT (r IN OUT UTL HTTP.REQ, timeout IN
INTEGER DEFAULT 60)

Use the second form to change the transfer timeout setting for an individual request that a
request inherits from the session default settings.

Parameters

ris the HTTP request record.

timeout

timeout is the transfer timeout setting in seconds for HTTP requests. The default
is 60 seconds.

3.21.25 WRITE_LINE

The wRITE LINE procedure writes data to the HTTP request body in text form; the text
is terminated with a CRLF character pair. The signature is:

WRITE LINE (r IN OUT UTL HTTP.REQ, data IN VARCHARZ2)

Parameters

ris the HTTP request record.

data

data Is the request body in TExT form.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 305

Database Compatibility for Oracle® Developers
Built-in Package Guide

Example

The following example writes data (Account balance $500.00) in text form to the
request body to be sent using the HTTP posT method. The data is sent to a hypothetical
web application (post . php) that accepts and processes data.

DECLARE
v_req UTL_HTTP.REQ;
V_resp UTL HTTP.RESP;
BEGIN
v_req := UTL HTTP.BEGIN REQUEST ('http://www.example.com/post.php',
'POST"'") ;
UTL HTTP.SET HEADER(v_req, 'Content-Length', '23');
UTL HTTP.WRITE LINE(v_req, 'Account balance $500.00');
v_resp := UTL HTTP.GET RESPONSE (v_req);
DBMS OUTPUT.PUT LINE ('Status Code: ' || v _resp.status code);
DBMS OUTPUT.PUT LINE ('Reason Phrase: ' || v _resp.reason phrase);
UTL HTTP.END RESPONSE (v_resp) ;
END;

Assuming the web application successfully processed the posT method, the following
output would be displayed:

Status Code: 200
Reason Phrase: OK

3.21.26 WRITE_RAW

The wRITE Raw procedure writes data to the HTTP request body in binary form. The
signature is:

WRITE RAW(r IN OUT UTL HTTP.REQ, data IN RAW)

Parameters

ris the HTTP request record.
data
data Is the request body in binary form.
Example
The following example writes data in binary form to the request body to be sent using the

HTTP posT method to a hypothetical web application that accepts and processes such
data.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 306

Database Compatibility for Oracle® Developers
Built-in Package Guide

DECLARE
vV_req UTL HTTP.REQ;
v_resp UTL,_HTTP.RESP;
BEGIN
v_req := UTL HTTP.BEGIN REQUEST ('http://www.example.com/post.php',
'POST"'") ;

UTL HTTP.SET HEADER(v_req, 'Content-Length', '23'");
UTL HTTP.WRITE RAW (v req, HEXTORAW
('54657374696e6720504£5354206d6574686£6420696220485454502072657175657374")) ;

v_resp := UTL HTTP.GET RESPONSE (v_req);
DBMS OUTPUT.PUT LINE ('Status Code: ' || v _resp.status code);
DBMS OUTPUT.PUT LINE ('Reason Phrase: ' || v_resp.reason phrase);
UTL HTTP.END RESPONSE (v_resp) ;

END;

The text string shown in the HEXTORAW function is the hexadecimal translation of the text
Testing POST method in HTTP request.

Assuming the web application successfully processed the posT method, the following
output would be displayed:

Status Code: 200
Reason Phrase: OK

3.21.27 WRITE_TEXT

The wRITE TEXT procedure writes data to the HTTP request body in text form. The
signature is:

WRITE TEXT (r IN OUT UTL HTTP.REQ, data IN VARCHARZ2)

Parameters

ris the HTTP request record.

data
data Is the request body in text form.
Example

The following example writes data (Account balance $500.00) in text form to the
request body to be sent using the HTTP posT method. The data is sent to a hypothetical
web application (post . php) that accepts and processes data.

DECLARE
v_req UTL HTTP.REQ;

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 307

Database Compatibility for Oracle® Developers
Built-in Package Guide

v_resp UTL_HTTP.RESP;
BEGIN
v_req := UTL HTTP.BEGIN REQUEST ('http://www.example.com/post.php',
'POST') ;

END;

UTL HTTP.SET HEADER(v_req, 'Content-Length', '23'");
UTL HTTP.WRITE TEXT (v _req, 'Account balance $500.00'");

v_resp := UTL HTTP.GET RESPONSE (v_req) ;
DBMS OUTPUT.PUT LINE ('Status Code: ' || v _resp.status code);
DBMS OUTPUT.PUT LINE ('Reason Phrase: ' || v_resp.reason phrase);

UTL HTTP.END RESPONSE (v_resp);

Assuming the web application successfully processed the posT method, the following

output

would be displayed:

Status Code: 200
Reason Phrase: OK

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 308

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.22UTL_MAIL

The uTL MAIL package provides the capability to manage e-mail. Advanced Server
supports the following procedures:

Function/Procedure Return Description
Type

SEND (sender, recipients, cc, bcc, n/a Packages and sends an e-mail to an SMTP server.
subject, message [, mime type [,
priority 11])

SEND_ATTACH_RAW (sender, n/a Same as the sEND procedure, but with BYTEA or

recipients, cc, bcc, subject, large object attachments.
message, mime type, priority,

attachment [, att inline [,
att mime type [, att filename

111)

SEND_ATTACH_VARCHAR?2 (sender, n/a Same as the SEND procedure, but with VARCHAR?2
recipients, cc, bcc, subject, attachments.

message, mime type, priority,
attachment [, att inline [,
att mime type [, att filename

111)

Note: An administrator must grant execute privileges to each user or group before they
can use this package.

3.22.1 SEND

The SEND procedure provides the capability to send an e-mail to an SMTP server.

SEND (sender VARCHAR2, recipients VARCHAR2, cc VARCHARZ,
bcc VARCHAR2, subject VARCHAR2, message VARCHAR2
[, mime type VARCHARZ [, priority PLS INTEGER]])

Parameters

sender

E-mail address of the sender.

recipients

Comma-separated e-mail addresses of the recipients.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 309

Database Compatibility for Oracle® Developers
Built-in Package Guide

ccC
Comma-separated e-mail addresses of copy recipients.
bcc
Comma-separated e-mail addresses of blind copy recipients.
subject
Subject line of the e-mail.
message
Body of the e-mail.
mime type
Mime type of the message. The default is text/plain; charset=us-ascii.
priority
Priority of the e-mail The default is 3.
Examples

The following anonymous block sends a simple e-mail message.

DECLARE
v_sender VARCHARZ2 (30) ;
v_recipients VARCHAR?Z (60) ;
v_subj VARCHARZ2 (20) ;
vV_msg VARCHAR?2 (200) ;
BEGIN
v_sender := 'Jsmith@enterprisedb.com';
v_recipients := 'ajones@enterprisedb.com,rrogers@enterprisedb.com';
v_subj := 'Holiday Party';
v _msg := 'This year''s party is scheduled for Friday, Dec. 21 at ' ||

'6:00 PM. Please RSVP by Dec. 15th.';
UTL MAIL.SEND(v_sender,v recipients,NULL,NULL,v subj,v msg);
END;

3.22.2 SEND_ATTACH_RAW
The SEND ATTACH RAW procedure provides the capability to send an e-mail to an SMTP

server with an attachment containing either BYTEA data or a large object (identified by
the large object's 01D). The call to SEND ATTACH RAW can be written in two ways:

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 310

Database Compatibility for Oracle® Developers
Built-in Package Guide

SEND ATTACH RAW (sender VARCHARZ, recipients VARCHARZ2,

cc VARCHAR2, bcc VARCHAR2, subject VARCHAR2, message
VARCHAR2,

mime type VARCHARZ, priority PLS INTEGER,

attachment BYTEA[, att inline BOOLEAN

[, att mime type VARCHAR2[, att filename VARCHAR2]1]])

SEND ATTACH RAW (sender VARCHARZ, recipients VARCHAR2Z2,
cc VARCHAR2, bcc VARCHAR2, subject VARCHAR2, message
VARCHARZ,
mime type VARCHARZ2, priority PLS INTEGER, attachment OID
[, att inline BOOLEAN [, att mime type VARCHAR2Z
[, att filename VARCHARZ]]])

Parameters
sender
E-mail address of the sender.
recipients
Comma-separated e-mail addresses of the recipients.
cc
Comma-separated e-mail addresses of copy recipients.
bcc
Comma-separated e-mail addresses of blind copy recipients.
subject
Subject line of the e-mail.
message
Body of the e-mail.
mime type
Mime type of the message. The default is text/plain; charset=us-ascii.
priority

Priority of the e-mail. The default is 3.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 311

Database Compatibility for Oracle® Developers
Built-in Package Guide

attachment
The attachment.
att inline

If set to TRUE, then the attachment is viewable inline, FALSE otherwise. The
default is TRUE.

att mime type
Mime type of the attachment. The default is application/octet.
att filename

The file name containing the attachment. The default is NULL.

3.22.3 SEND_ATTACH_VARCHAR?2

The SEND ATTACH VARCHAR2 procedure provides the capability to send an e-mail to an
SMTP server with a text attachment.

SEND ATTACH VARCHARZ (sender VARCHARZ, recipients VARCHAR2Z,
cc VARCHAR2, bcc VARCHAR2, subject VARCHAR2, message
VARCHAR2, mime type VARCHARZ, priority PLS INTEGER,
attachment VARCHARZ [, att inline BOOLEAN [, att mime type
VARCHARZ2 [, att filename VARCHARZ]]])

Parameters
sender

E-mail address of the sender.
recipients

Comma-separated e-mail addresses of the recipients.
cc

Comma-separated e-mail addresses of copy recipients.
bcc

Comma-separated e-mail addresses of blind copy recipients.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 312

Database Compatibility for Oracle® Developers
Built-in Package Guide

subject

Subject line of the e-mail.
message

Body of the e-mail.
mime type

Mime type of the message. The default is text/plain; charset=us-ascii.
priority

Priority of the e-mail The default is 3.
attachment

The VARCHAR2 attachment.
att inline

If set to TRUE, then the attachment is viewable inline, FALSE otherwise. The
default is TRUE.

att mime type

Mime type of the attachment. The default is text/plain; charset=us-
ascii.

att filename

The file name containing the attachment. The default is NULL.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 313

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.23 UTL_RAW

The uTL RAW package allows you to manipulate or retrieve the length of raw data types.

Note: An administrator must grant execute privileges to each user or group before they
can use this package.

Function/Procedure Function or | Return Type Description
Procedure

CAST_TO_RAW(c IN VARCHAR2) Function RAW Converts a VARCHAR? string to a Raw value.
CAST_TO_VARCHAR2 (r IN RAW) Function VARCHARZ [Converts a RAW value to a VARCHAR? string.
CONCAT (r1 IN RAW, rZ IN RAW, Function RAW Concatenate multiple rRaw values into a
r3 IN RAW,..) single rRaw value.
CONVERT (r IN RAW, to_charset Function RAW Converts encoded data from one encoding
IN VARCHARZ2, from charset IN to another, and returns the result as a Raw
[VARCHAR2 value
LENGTH (r IN RAW) Function NUMBER |Returns the length of a rRaw value.
SUBSTR (r IN RAW, pos IN Function RAW Returns a portion of a raw value.
INTEGER, len IN INTEGER)

Advanced Server's implementation of UTL_Raw is a partial implementation when
compared to Oracle's version. Only those functions and procedures listed in the table
above are supported.

3.23.1 CAST_TO_RAW

The casT_TO_RAW function converts a VARCHAR?2 string to a RAw value. The signature
Is:

CAST TO RAW (c VARCHARZ2)

The function returns a rRaw value if you pass a non-NULL value; if you pass a NULL value,
the function will return NULL.

Parameters

The varcHAR?2 value that will be converted to rRaW.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 314

Database Compatibility for Oracle® Developers
Built-in Package Guide

Example

The following example uses the cAST TO RaAwW function to convert a VARCHAR? string to
a Raw value:

DECLARE
v VARCHARZ;
r RAW;
BEGIN
v := 'Accounts';
dbms output.put line (v);
r := UTL RAW.CAST TO RAW (v);
dbms output.put line(r):;
END;

The result set includes the content of the original string and the converted rRAw value:

Accounts
\x4163636f756e7473

3.23.2 CAST_TO_VARCHAR2

The cAST _TO VARCHAR2 function converts RaW data to VARCHAR?2 data. The signature
Is:

CAST TO VARCHARZ (r RAW)

The function returns a vARCHAR? value if you pass a non-NULL value; if you pass a NULL
value, the function will return NULL.

Parameters

The raw value that will be converted to a vARCHAR? value.

Example

The following example uses the CAST TO VARCHAR2 function to convert a Raw value to
a VARCHAR? string:

DECLARE
r RAW;
v VARCHAR2;
BEGIN
r := '\x4163636£756e7473"
dbms output.put line (v);
v := UTL RAW.CAST TO VARCHAR2 (r);
dbms output.put line(r);

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 315

Database Compatibility for Oracle® Developers
Built-in Package Guide

END;

The result set includes the content of the original string and the converted rRaw value:

\x4163636f756e7473
Accounts

3.23.3 CONCAT

The concaT function concatenates multiple raw values into a single Raw value. The
signature is:

CONCAT (r1 RAW, r2 RAW, r3 RAW,..)
The function returns a raw value. Unlike the Oracle implementation, the Advanced
Server implementation is a variadic function, and does not place a restriction on the
number of values that can be concatenated.
Parameters
rl, r2, r3,..

The raw values that concAT will concatenate.

Example

The following example uses the concaT function to concatenate multiple raw values into
a single raw value:

SELECT UTL_RAW.CAST_TO_VARCHAR2(UTL_RAW.CONCAT('\X61', '"\x62', '\x63')) FROM
DUAL;
concat

The result (the concatenated values) is then converted to VARCHAR?2 format by the
CAST_TO_VARCHAR2 function.

3.23.4 CONVERT

The conveRT function converts a string from one encoding to another encoding and
returns the result as a RawW value. The signature is:

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 316

Database Compatibility for Oracle® Developers
Built-in Package Guide

CONVERT (r RAW, to charset VARCHARZ, from charset VARCHARZ)
The function returns a RAW value.

Parameters

The raw value that will be converted.

to charset
The name of the encoding to which r will be converted.
from_charset

The name of the encoding from which r will be converted.
Example

The following example uses the UTL. RAW.CAST TO RaW function to convert a
VARCHAR? string (Accounts) to a raw value, and then convert the value from UTF8 to
LATIN7, and then from LATIN7 to UTF8:

DECLARE
r RAW;
v VARCHAR2;

BEGIN
v:= '"Accounts';
dbms output.put line (v);
r:= UTL RAW.CAST TO RAW (V) ;
dbms output.put line(r);

r:= UTL RAW.CONVERT (r, 'UTF8', 'LATIN7');
dbms output.put line(r);
r:= UTL RAW.CONVERT (r, 'LATIN7', 'UTF8');

dbms output.put line(r);

The example returns the varCHAR? value, the raw value, and the converted values:

Accounts

\x4163636f756e7473
\x4163636f756e7473
\x4163636f756e7473

3.23.5 LENGTH

The LENGTH function returns the length of a rRaw value. The signature is:

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 317

Database Compatibility for Oracle® Developers
Built-in Package Guide

LENGTH (r RAW)
The function returns a Raw value.

Parameters

The raw value that LENGTH will evaluate.
Example

The following example uses the LENGTH function to return the length of a rRaw value:

SELECT UTL RAW.LENGTH (UTL RAW.CAST TO RAW('Accounts')) FROM DUAL;
length

The following example uses the LENGTH function to return the length of a Raw value that
includes multi-byte characters:

SELECT UTL_RAW.LENGTH (UTL RAW.CAST TO RAW ('JRINKM ")) ;

3.23.6 SUBSTR

The suBsTR function returns a substring of a rRaw value. The signature is:

SUBSTR (r RAW, pos INTEGER, len INTEGER)
This function returns a Raw value.

Parameters

The raw value from which the substring will be returned.

pos

The position within the raw value of the first byte of the returned substring.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 318

Database Compatibility for Oracle® Developers
Built-in Package Guide

e |If posis 0or 1, the substring begins at the first byte of the rRaw value.

e If pos is greater than one, the substring begins at the first byte specified
by pos. For example, if pos is 3, the substring begins at the third byte of
the value.

e If pos is negative, the substring begins at pos bytes from the end of the
source value. For example, if pos is -3, the substring begins at the third
byte from the end of the value.

len

The maximum number of bytes that will be returned.

Example

The following example uses the suBSTR function to select a substring that begins 3 bytes
from the start of a Raw value:

SELECT UTLiRAW.SUBSTR(UTLiRAW.CASTiToiRAW('Accounts'), 3, 5) FROM DUAL;
substr

The following example uses the SUBSTR function to select a substring that starts 5 bytes
from the end of a rRaw value:

SELECT UTL_RAW.SUBSTR(UTL_RAW.CAST_TO_RAW('Accounts'), -5 , 3) FROM DUAL;
substr

oun
(1 row)

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 319

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.24 UTL_SMTP

The uTL smTP package provides the capability to send e-mails over the Simple Mail
Transfer Protocol (SMTP).

Note: An administrator must grant execute privileges to each user or group before they
can use this package.

Function/Procedure Function or | Return Type Description
Procedure

CLOSE_DATA (c IN OUT) Procedure n/a Ends an e-mail message.

JC?MMAND (c IN OUT, cmd [, arg Both REPLY Execute an SMTP command.

COMMAND_REPLIES (¢ IN OUT, cmd Function REPLIES |Execute an SMTP command where multiple

[, arg 1) reply lines are expected.

DATA (¢ IN OUT, body VARCHAR2) Procedure n/a Specify the body of an e-mail message.

EHLO (¢ IN OUT, domain) Procedure n/a Perform initial handshaking with an SMTP
server and return extended information.

HELO (¢ IN OUT, domain) Procedure n/a Perform initial handshaking with an SMTP
server

HELP (c IN OUT [, command]) Function REPLIES [Send the HELP command.

MAIL (c IN OUT, sender [, Procedure n/a Start a mail transaction.

parameters 1)

NOOP (¢ IN OUT) Both REPLY Send the null command.

OPEN_ CONNECTION (host [, port Function CONNECTION [Open a connection.

[, tx timeout 1])

OPEN_DATA (c IN OUT) Both REPLY [Send the pATA command.

QUIT (c IN OUT) Procedure n/a Terminate the SMTP session and
disconnect.

RCPT (c IN OUT, recipient [, Procedure n/a Specify the recipient of an e-mail message.

parameters 1)

RSET (c IN OUT) Procedure n/a Terminate the current mail transaction.

VRFY (¢ IN OUT, recipient) Function REPLY \Validate an e-mail address.

WRITE_DATA (c IN OUT, data) Procedure n/a \Write a portion of the e-mail message.

Advanced Server's implementation of uTL sSMTP is a partial implementation when
compared to Oracle's version. Only those functions and procedures listed in the table
above are supported.

The following table lists the public variables available in the Tz sMTP package.

Public Variables Data Type Value Description
connection RECORD Description of an SMTP connection.
reply RECORD SMTP reply line.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 320

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.241 CONNECTION

The cCONNECTION record type provides a description of an SMTP connection.

TYPE connection IS RECORD (

host VARCHAR?2 (255) ,
port PLS INTEGER,
tx_timeout PLS_ INTEGER
)i
3.24.2 REPLY/REPLIES

The REPLY record type provides a description of an SMTP reply line. REPLIES is a table
of multiple SMTP reply lines.

TYPE reply IS RECORD (
code INTEGER,
text VARCHAR2 (508)
)
TYPE replies IS TABLE OF reply INDEX BY BINARY INTEGER;

3.24.3 CLOSE_DATA

The cLOSE DATA procedure terminates an e-mail message by sending the following
sequence:

<CR><LF>.<CR><LF>
This is a single period at the beginning of a line.
CLOSE_DATA (c IN OUT CONNECTION)

Parameters

The SMTP connection to be closed.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 321

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.244 COMMAND

The coMMAND procedure provides the capability to execute an SMTP command. If you
are expecting multiple reply lines, use COMMAND REPLIES.

reply REPLY COMMAND (¢ IN OUT CONNECTION, cmd VARCHAR2Z
[, arg VARCHAR2])

COMMAND (¢ IN OUT CONNECTION, cmd VARCHAR2 [, arg VARCHARZ2
1)

Parameters

The SMTP connection to which the command is to be sent.

cmd
The SMTP command to be processed.
arg
An argument to the SMTP command. The default is null.
reply
SMTP reply to the command. If SMTP returns multiple replies, only the last one
is returned in reply.
See Section 3.24.2 for a description of REPLY and REPLIES.
3.245 COMMAND_REPLIES

The comMaND REPLIES function processes an SMTP command that returns multiple
reply lines. Use comManD if only a single reply line is expected.

replies REPLIES COMMAND (¢ IN OUT CONNECTION, cmd VARCHAR2
[, arg VARCHARZ 1])

Parameters

The SMTP connection to which the command is to be sent.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 322

Database Compatibility for Oracle® Developers
Built-in Package Guide

cmd

The SMTP command to be processed.
arg

An argument to the SMTP command. The default is null.
replies

SMTP reply lines to the command. See Section 3.24.2 for a description of REPLY
and REPLIES.

3.24.6 DATA

The DATA procedure provides the capability to specify the body of the e-mail message.
The message is terminated with a <CR><LF>.<CR><LF> Sequence.

DATA (¢ IN OUT CONNECTION, body VARCHAR2)

Parameters

The SMTP connection to which the command is to be sent.
body

Body of the e-mail message to be sent.

3.24.7 EHLO

The £HLO procedure performs initial handshaking with the SMTP server after
establishing the connection. The EHL.O procedure allows the client to identify itself to the
SMTP server according to RFC 821. RFC 1869 specifies the format of the information
returned in the server’s reply. The HELO procedure performs the equivalent
functionality, but returns less information about the server.

EHLO (¢ IN OUT CONNECTION, domain VARCHARZ)

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 323

Database Compatibility for Oracle® Developers
Built-in Package Guide

Parameters

The connection to the SMTP server over which to perform handshaking.

domain

Domain name of the sending host.

3.24.8 HELO

The HELO procedure performs initial handshaking with the SMTP server after
establishing the connection. The HELO procedure allows the client to identify itself to the
SMTP server according to RFC 821. The EHLO procedure performs the equivalent
functionality, but returns more information about the server.

HELO (¢ IN OUT, domain VARCHAR?2)

Parameters

The connection to the SMTP server over which to perform handshaking.
domain

Domain name of the sending host.

3.24.9 HELP

The HELP function provides the capability to send the HEL.P command to the SMTP
server.

replies REPLIES HELP (c IN OUT CONNECTION [, command
VARCHAR2 1)

Parameters

The SMTP connection to which the command is to be sent.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 324

Database Compatibility for Oracle® Developers
Built-in Package Guide

command
Command on which help is requested.
replies

SMTP reply lines to the command. See Section 3.24.2 for a description of REPLY
and REPLIES.

3.24.10 MAIL

The MATL procedure initiates a mail transaction.

MAIL (c IN OUT CONNECTION, sender VARCHAR2
[, parameters VARCHARZ 1)

Parameters

Connection to SMTP server on which to start a mail transaction.
sender
The sender’s e-mail address.

parameters

Mail command parameters in the format, key=value as defined in RFC 18609.

3.24.11 NOOP

The noop function/procedure sends the null command to the SMTP server. The NoOP has
no effect upon the server except to obtain a successful response.

reply REPLY NOOP (c IN OUT CONNECTION)

NOOP (¢ IN OUT CONNECTION)

Parameters

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 325

Database Compatibility for Oracle® Developers
Built-in Package Guide

The SMTP connection on which to send the command.
reply

SMTP reply to the command. If SMTP returns multiple replies, only the last one
is returned in reply. See Section 3.24.2 for a description of REPLY and
REPLIES.

3.24.12 OPEN_CONNECTION

The OPEN_CONNECTION functions open a connection to an SMTP server.

c CONNECTION OPEN CONNECTION (host VARCHARZ [, port
PLS INTEGER [, tx timeout PLS INTEGER DEFAULT NULL]])

Parameters
host
Name of the SMTP server.
port
Port number on which the SMTP server is listening. The default is 25.
tx timeout

Time out value in seconds. Do not wait is indicated by specifying 0. Wait
indefinitely is indicated by setting timeout to null. The default is null.

Connection handle returned by the SMTP server.

3.24.13 OPEN_DATA

The oPEN_DATA procedure sends the bATA command to the SMTP server.
OPEN_DATA (c IN OUT CONNECTION)

Parameters

c

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 326

Database Compatibility for Oracle® Developers
Built-in Package Guide

SMTP connection on which to send the command.

3.24.14 QUIT

The Qu1T procedure closes the session with an SMTP server.

QUIT (c IN OUT CONNECTION)

Parameters

SMTP connection to be terminated.

3.24.15 RCPT

The rRCPT procedure provides the e-mail address of the recipient. To schedule multiple
recipients, invoke RCcpT multiple times.

RCPT (¢ IN OUT CONNECTION, recipient VARCHAR2
[, parameters VARCHAR2])

Parameters

Connection to SMTP server on which to add a recipient.
recipient
The recipient’s e-mail address.

parameters

Mail command parameters in the format, key=value as defined in RFC 1869.

3.24.16 RSET

The rRSET procedure provides the capability to terminate the current mail transaction.
RSET (c IN OUT CONNECTION)

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 327

Database Compatibility for Oracle® Developers
Built-in Package Guide

Parameters

SMTP connection on which to cancel the mail transaction.

3.24.17 VRFY

The VRFY function provides the capability to validate and verify the recipient’s e-mail
address. If valid, the recipient’s full name and fully qualified mailbox is returned.

reply REPLY VRFY (c IN OUT CONNECTION, recipient VARCHAR2)

Parameters

The SMTP connection on which to verify the e-mail address.
recipient
The recipient’s e-mail address to be verified.
reply
SMTP reply to the command. If SMTP returns multiple replies, only the last one

is returned in reply. See Section 3.24.2 for a description of REPLY and
REPLIES.

3.24.18 WRITE_DATA

The wRITE DATA procedure provides the capability to add vARCHAR? data to an e-mail
message. The WRITE DATA procedure may be repetitively called to add data.

WRITE DATA (c IN OUT CONNECTION, data VARCHARZ2)

Parameters

The SMTP connection on which to add data.

data

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 328

Database Compatibility for Oracle® Developers
Built-in Package Guide

Data to be added to the e-mail message. The data must conform to the RFC 822
specification.

3.24.19 Comprehensive Example

The following procedure constructs and sends a text e-mail message using the UTL sSMTP
package.

CREATE OR REPLACE PROCEDURE send mail (
p_sender VARCHARZ2,
p_recipient VARCHARZ,
p_subj VARCHARZ,
p_msg VARCHARZ2,
p_mailhost VARCHAR2

v_conn UTL_SMTP.CONNECTION;
v_crlf CONSTANT VARCHAR2 (2)
v_port CONSTANT PLS_INTEGER 5
BEGIN
v_conn := UTL SMTP.OPEN CONNECTION (p mailhost,v port);
UTL SMTP.HELO (v_conn,p mailhost);
UTL SMTP.MAIL (v _conn,p sender) ;
(
(

CHR (13) || CHR(10);
25;

UTL_SMTP.RCPT (v_conn,p recipient);
UTL_SMTP.DATA v_conn, SUBSTR (

'Date: ' || TO CHAR(SYSDATE,

'Dy, DD Mon YYYY HH24:MI:SS') || v crlf

|| 'From: ' || p_sender || v _crlf
| 'To: ' || p_recipient crlf
| 'Subject: ' || p_subj crlf
| p_msg
1, 32767));

UTL SMTP.QUIT (v_conn) ;
END;

\ [l v_
| || v_
|
14

EXEC send mail ('asmith@enterprisedb.com', 'pjones@enterprisedb.com', 'Holiday
Party', 'Are you planning to attend?', 'smtp.enterprisedb.com');

The following example uses the OPEN_DATA, WRITE DATA, and CLOSE DATA
procedures instead of the DATA procedure.

CREATE OR REPLACE PROCEDURE send mail 2 (

p_sender VARCHAR2,
p_recipient VARCHARZ2,
p_subj VARCHARZ2,
p_msg VARCHARZ,
p_mailhost VARCHAR2
)
IS
Vv_conn UTL SMTP.CONNECTION;
v _crlf CONSTANT VARCHAR2 (2) = CHR(13) || CHR(10);
v_port CONSTANT PLS INTEGER := 25;
BEGIN
v_conn := UTL SMTP.OPEN CONNECTION (p mailhost,v port);

UTL SMTP.HELO (v_conn,p mailhost);
UTL SMTP.MAIL(v_conn,p_ sender);

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 329

Database Compatibility for Oracle® Developers
Built-in Package Guide

UTL SMTP.RCPT (v_conn,p_recipient);
UTL SMTP.OPEN DATA (v_conn) ;

UTL SMTP.WRITE DATA(v_conn, 'From: ' || p sender || v _crlf);
UTL SMTP.WRITE DATA(v conn,'To: ' || p recipient || v _crlf);
UTL SMTP.WRITE DATA(v_conn, 'Subject: ' || p subj || v _crlf);
UTL SMTP.WRITE DATA(v_conn,v_crlf || p msg);

UTL_SMTP.CLOSE DATA (v_conn) ;

UTL SMTP.QUIT (v_conn) ;
END;

EXEC send mail 2 ('asmith@enterprisedb.com', 'pjones@enterprisedb.com', 'Holiday
Party', 'Are you planning to attend?', 'smtp.enterprisedb.com');

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 330

Database Compatibility for Oracle® Developers
Built-in Package Guide

3.25UTL_URL

The UTL_URL package provides a way to escape illegal and reserved characters within an
URL.

Function/Procedure Return Type Description
ESCAPE (url, VARCHARZ |Use the ESCAPE function to escape any
escape_reserved chars, illegal and reserved characters in a URL.
url charset)
UNESCAPE (url, url_charset) VARCHARZ |The uNESCAPE function to convert an URL
to it's original form.

The uTL_URL package will return the BAD URL exception if the call to a function
includes an incorrectly-formed URL.

3.25.1 ESCAPE

Use the EscaPE function to escape illegal and reserved characters within an URL. The
signature is:

ESCAPE (url VARCHARZ, escape reserved chars BOOLEAN,
url charset VARCHAR2)

Reserved characters are replaced with a percent sign, followed by the two-digit hex code
of the ascii value for the escaped character.

Parameters
url

url specifies the Uniform Resource Locator that uTz.,_URL will escape.
escape reserved chars

escape reserved chars IS aBOOLEAN value that instructs the ESCAPE
function to escape reserved characters as well as illegal characters:

o |If escaped reserved _chars IS FALSE, ESCAPE will escape only the
illegal characters in the specified URL.

o |If escape_reserved_chars is TRUE, ESCAPE Will escape both the
illegal characters and the reserved characters in the specified URL.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 331

Database Compatibility for Oracle® Developers
Built-in Package Guide

By default, escape reserved chars iS FALSE.

Within an URL, legal characters are:

Uppercase A through Z | Lowercase a through z 0 through 9
asterisk (*) exclamation point (1) hyphen (-)

left parenthesis (() period (.) right parenthesis ())
single-quote (') tilde (~) underscore ()

Some characters are legal in some parts of an URL, while illegal in others; to
review comprehensive rules about illegal characters, please refer to RFC 2396.
Some examples of characters that are considered illegal in any part of an URL are:

Illegal Character
a blank space () %20
curly braces ({ or }) $7b and %7d
hash mark (#) ©23

Escape Sequence

The escaPpe function considers the following characters to be reserved, and will
escape them if escape_reserved_chars is Set to TRUE:

Reserved Character Escape Sequence
ampersand (&) $5C
at sign (@) 525
colon (:) %3a
comma (,) s2¢
dollar sign (s) 524
equal sign (=) 53d
plus sign (+) 52b
question mark (?) 53f
semi-colon (;) 53b
slash (/) s2f

url charset

url_charset specifies a character set to which a given character will be
converted before it is escaped. If url_charset IS NULL, the character will not
be converted. The default value of url_charset is 150-8859-1.

Examples

The following anonymous block uses the EscAPE function to escape the blank spaces in
the URL:

DECLARE
result varchar2 (400) ;
BEGIN
result := UTL URL.ESCAPE ('http://www.example.com/Using the ESCAPE

function.html');

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 332

Database Compatibility for Oracle® Developers
Built-in Package Guide

DBMS OUTPUT.PUT LINE (result);
END;

The resulting (escaped) URL is:

http://www.example.com/Using%20the$20ESCAPE$20function.html

If you include a value of TRUE for the escape_reserved chars parameter when
invoking the function:

DECLARE
result varchar2 (400) ;
BEGIN
result := UTL URL.ESCAPE ('http://www.example.com/Using the ESCAPE

function.html', TRUE) ;
DBMSioUTPUT.PUTiLINE(result);
END;

The EscapE function escapes the reserved characters as well as the illegal characters in
the URL:

http%3A%2F%$2Fwww.example.com$2FUsing%$20the%20ESCAPES20function.html

3.25.2 UNESCAPE

The uNEscAPE function removes escape characters added to an URL by the ESCAPE
function, converting the URL to it's original form.

The signature is:
UNESCAPE (url VARCHARZ, url charset VARCHAR2)
Parameters
url
url specifies the Uniform Resource Locator that uTz._URL will unescape.
url_charset
After unescaping a character, the character is assumed to be in url charset
encoding, and will be converted from that encoding to database encoding before
being returned. If url_charset is NULL, the character will not be converted.

The default value of uri_charset iS 1S0O-8859-1.

Examples

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 333

Database Compatibility for Oracle® Developers
Built-in Package Guide

The following anonymous block uses the EscaPE function to escape the blank spaces in
the URL:

DECLARE

result varchar2 (400);
BEGIN

result :=
UTL URL.UNESCAPE ('http://www.example.com/Using%20the%$20UNESCAPE$20function.ht
ml');

DBMS OUTPUT.PUT LINE (result);
END;

The resulting (unescaped) URL is:

http://www.example.com/Using the UNESCAPE function.html

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 334

Database Compatibility for Oracle® Developers
Built-in Package Guide

4 Acknowledgements

The PostgreSQL 8.3, 8.4, 9.0, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 10, 11, and 12 Documentation
provided the baseline for the portions of this guide that are common to PostgreSQL, and
is hereby acknowledged:

Portions of this EnterpriseDB Software and Documentation may utilize the following
copyrighted material, the use of which is hereby acknowledged.

PostgreSQL Documentation, Database Management System

PostgreSQL is Copyright © 1996-2019 by the PostgreSQL Global Development Group
and is distributed under the terms of the license of the University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose, without fee, and without a written agreement is hereby granted, provided
that the above copyright notice and this paragraph and the following two paragraphs
appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
PROVIDED HEREUNDER IS ON AN "AS-1S" BASIS, AND THE UNIVERSITY OF
CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

Copyright © 2007 - 2020 EnterpriseDB Corporation. All rights reserved. 335

