

EDB Postgres™ Advanced Server Guide

EDB Postgres™ Advanced Server 12

February 25, 2021

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

2

EDB Postgres™ Advanced Server Guide
by EnterpriseDB® Corporation

Copyright © 2014 - 2021 EnterpriseDB Corporation

EnterpriseDB Corporation, 34 Crosby Drive, Suite 201, Bedford, MA 01730, USA

T +1 781 357 3390 F +1 978 467 1307 E info@enterprisedb.com www.enterprisedb.com

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

3

Table of Contents

1 Introduction ... 8

1.1 What’s New .. 10
1.2 Typographical Conventions Used in this Guide ... 12
1.3 Other Conventions Used in this Guide ... 12
1.4 About the Examples Used in this Guide ... 14

1.4.1 Sample Database Description ... 14

2 Enhanced Compatibility Features ... 23
2.1 Enabling Compatibility Features .. 24

2.2 Stored Procedural Language ... 24
2.3 Optimizer Hints ... 25
2.4 Data Dictionary Views .. 25
2.5 dblink_ora ... 26

2.6 Profile Management .. 26
2.7 Built-In Packages .. 27
2.8 Open Client Library .. 29

2.9 Utilities .. 30
2.10 ECPGPlus ... 32

2.11 Table Partitioning.. 33
3 Database Administration ... 34

3.1 Configuration Parameters ... 34

3.1.1 Setting Configuration Parameters ... 35

3.1.2 Summary of Configuration Parameters .. 38
3.1.3 Configuration Parameters by Functionality .. 57

3.1.3.1 Top Performance Related Parameters ... 58

3.1.3.2 Resource Usage / Memory .. 69
3.1.3.3 Resource Usage / EDB Resource Manager .. 71

3.1.3.4 Query Tuning .. 73
3.1.3.5 Query Tuning / Planner Method Configuration 73
3.1.3.6 Reporting and Logging / What to Log .. 75
3.1.3.7 Auditing Settings .. 77

3.1.3.8 Client Connection Defaults / Locale and Formatting 82
3.1.3.9 Client Connection Defaults / Statement Behavior 82
3.1.3.10 Client Connection Defaults / Other Defaults 85

3.1.3.11 Compatibility Options ... 87
3.1.3.12 Customized Options .. 96
3.1.3.13 Ungrouped... 106

3.2 Index Advisor.. 109

3.2.1 Index Advisor Components .. 111
3.2.2 Index Advisor Configuration .. 113
3.2.3 Using Index Advisor ... 115

3.2.3.1 Using the pg_advise_index Utility.. 115
3.2.3.2 Using Index Advisor at the psql Command Line................................ 117

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

4

3.2.4 Reviewing the Index Advisor Recommendations 119
3.2.4.1 Using the show_index_recommendations() Function 119
3.2.4.2 Querying the index_advisor_log Table ... 120
3.2.4.3 Querying the index_recommendations View 122

3.2.5 Limitations .. 124
3.3 SQL Profiler .. 125
3.4 pgsnmpd .. 128

3.4.1 Configuring pgsnmpd ... 128
3.4.2 Setting the Listener Address ... 129

3.4.3 Invoking pgsnmpd .. 129
3.4.4 Viewing pgsnmpd Help .. 130
3.4.5 Requesting Information from pgsnmpd .. 130

3.5 EDB Audit Logging .. 131
3.5.1 Audit Logging Configuration Parameters ... 131
3.5.2 Selecting SQL Statements to Audit .. 133

3.5.2.1 Data Definition Language and Data Control Language Statements ... 134
3.5.2.2 Data Manipulation Language Statements ... 140

3.5.3 Enabling Audit Logging ... 142
3.5.4 Audit Log File ... 146
3.5.5 Using Error Codes to Filter Audit Logs .. 151

3.5.6 Using Command Tags to Filter Audit Logs .. 152
3.5.7 Redacting Passwords from Audit Logs... 153

3.6 Unicode Collation Algorithm ... 154
3.6.1 Basic Unicode Collation Algorithm Concepts .. 155

3.6.2 International Components for Unicode ... 156
3.6.2.1 Locale Collations .. 156

3.6.2.2 Collation Attributes ... 157
3.6.3 Using a Collation .. 160

4 Security ... 164

4.1 Protecting Against SQL Injection Attacks .. 164
4.1.1 SQL/Protect Overview .. 165

4.1.1.1 Types of SQL Injection Attacks ... 165
4.1.1.2 Monitoring SQL Injection Attacks ... 166

4.1.2 Configuring SQL/Protect .. 169
4.1.2.1 Selecting Roles to Protect ... 171
4.1.2.2 Monitoring Protected Roles .. 173

4.1.3 Common Maintenance Operations ... 180

4.1.3.1 Adding a Role to the Protected Roles List .. 180
4.1.3.2 Removing a Role From the Protected Roles List 180
4.1.3.3 Setting the Types of Protection for a Role .. 181

4.1.3.4 Removing a Relation From the Protected Relations List 182
4.1.3.5 Deleting Statistics ... 182
4.1.3.6 Deleting Offending Queries .. 183
4.1.3.7 Disabling and Enabling Monitoring.. 184

4.1.4 Backing Up and Restoring a SQL/Protect Database 186
4.1.4.1 Object Identification Numbers in SQL/Protect Tables 186

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

5

4.1.4.2 Backing Up the Database .. 187
4.1.4.3 Restoring From the Backup Files ... 187

4.2 Virtual Private Database ... 192
4.3 sslutils ... 193

4.3.1 openssl_rsa_generate_key... 193
4.3.2 openssl_rsa_key_to_csr .. 193
4.3.3 openssl_csr_to_crt... 194
4.3.4 openssl_rsa_generate_crl .. 195

4.4 Data Redaction .. 196

4.4.1 CREATE REDACTION POLICY ... 197
4.4.2 ALTER REDACTION POLICY .. 202
4.4.3 DROP REDACTION POLICY .. 205

4.4.4 System Catalogs .. 207
4.4.4.1 edb_redaction_column .. 207
4.4.4.2 edb_redaction_policy .. 207

5 EDB Resource Manager ... 208
5.1 Creating and Managing Resource Groups .. 209

5.1.1 CREATE RESOURCE GROUP... 209
5.1.2 ALTER RESOURCE GROUP ... 210
5.1.3 DROP RESOURCE GROUP ... 212

5.1.4 Assigning a Process to a Resource Group .. 212
5.1.5 Removing a Process from a Resource Group ... 213

5.1.6 Monitoring Processes in Resource Groups ... 214
5.2 CPU Usage Throttling... 216

5.2.1 Setting the CPU Rate Limit for a Resource Group 216
5.2.2 Example – Single Process in a Single Group.. 217

5.2.3 Example – Multiple Processes in a Single Group 218
5.2.4 Example – Multiple Processes in Multiple Groups 220

5.3 Dirty Buffer Throttling ... 223

5.3.1 Setting the Dirty Rate Limit for a Resource Group 223
5.3.2 Example – Single Process in a Single Group.. 225

5.3.3 Example – Multiple Processes in a Single Group 226
5.3.4 Example – Multiple Processes in Multiple Groups 228

5.4 System Catalogs .. 232
5.4.1 edb_all_resource_groups .. 232
5.4.2 edb_resource_group .. 232

6 libpq C Library .. 233

6.1 Using libpq with EnterpriseDB SPL ... 233
6.2 REFCURSOR Support.. 233
6.3 Array Binding ... 240

6.3.1 PQBulkStart .. 240
6.3.2 PQexecBulk .. 240
6.3.3 PQBulkFinish .. 241
6.3.4 PQexecBulkPrepared .. 241
6.3.5 Example Code (Using PQBulkStart, PQexecBulk, PQBulkFinish) 242
6.3.6 Example Code (Using PQexecBulkPrepared) .. 243

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

6

7 Debugger ... 244
7.1 Configuring the Debugger .. 245
7.2 Starting the Debugger ... 246
7.3 The Debugger Window ... 248

7.4 Main Debugger Window... 250
7.4.1 The Program Body Panel .. 250
7.4.2 The Tabs Panel .. 251
7.4.3 The Stack Tab ... 254

7.5 Debugging a Program ... 256

7.5.1 Stepping Through the Code .. 256
7.5.2 Using Breakpoints ... 257
7.5.3 Setting a Global Breakpoint for In-Context Debugging 259

7.5.4 Exiting the Debugger .. 263
8 Performance Analysis and Tuning .. 264

8.1 Dynatune ... 264

8.1.1 edb_dynatune .. 264
8.1.2 edb_dynatune_profile ... 265

8.2 EDB Wait States ... 266
8.2.1 edb_wait_states_data .. 268
8.2.2 edb_wait_states_queries ... 270

8.2.3 edb_wait_states_sessions .. 271
8.2.4 edb_wait_states_samples .. 272

8.2.5 edb_wait_states_purge .. 274
9 EDB Clone Schema .. 276

9.1 Setup Process .. 278
9.1.1 Installing Extensions and PL/Perl ... 278

9.1.2 Setting Configuration Parameters ... 279
9.1.2.1 Performance Configuration Parameters .. 280
9.1.2.2 Status Logging .. 280

9.1.3 Installing EDB Clone Schema .. 281
9.1.4 Creating the Foreign Servers and User Mappings 281

9.1.4.1 Foreign Server and User Mapping for Local Cloning Functions 282
9.1.4.2 Foreign Server and User Mapping for Remote Cloning Functions 284

9.2 EDB Clone Schema Functions.. 286
9.2.1 localcopyschema ... 287
9.2.2 localcopyschema_nb ... 290
9.2.3 remotecopyschema .. 293

9.2.4 remotecopyschema_nb .. 297
9.2.5 process_status_from_log... 300
9.2.6 remove_log_file_and_job ... 301

10 Enhanced SQL and Other Miscellaneous Features ... 303
10.1 COMMENT .. 303
10.2 Output of Function version() .. 307
10.3 Logical Decoding on Standby ... 308

11 System Catalog Tables .. 309
11.1 edb_dir .. 309

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

7

11.2 edb_all_resource_groups .. 309
11.3 edb_policy ... 310
11.4 edb_profile .. 310
11.5 edb_redaction_column .. 311

11.6 edb_redaction_policy .. 312
11.7 edb_resource_group .. 312
11.8 edb_variable .. 313
11.9 pg_synonym .. 313
11.10 product_component_version ... 313

12 Advanced Server Keywords ... 315

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

8

1 Introduction

This guide describes the features of EDB Postgres Advanced Server (Advanced Server).

Advanced Server adds extended functionality to the open-source PostgreSQL database.

The extended functionality supports database administration, enhanced SQL capabilities,

database and application security, performance monitoring and analysis, and application

development utilities. This guide documents those features that are exclusive to

Advanced Server:

 Enhanced Compatibility Features. Chapter 2 provides an overview of

compatibility features supported by Advanced Server.

 Database Administration. Chapter 3 contains information about features and

tools that are helpful to the database administrator.

Index Advisor described in Section 3.2 helps to determine the additional indexes

needed on tables to improve application performance.

SQL Profiler described in Section 3.3 locates and diagnoses poorly running SQL

queries in applications.

pgsnmpd described in Section 3.4 is an SNMP agent that returns hierarchical

monitoring information regarding the current state of Advanced Server.

 Security. Chapter 4 contains information about security features supported by

Advanced Server.

SQL/Protect described in Section 4.1 provides protection against SQL injection

attacks.

Virtual Private Database described in Section 4.2 provides fine-grained, row

level access.

sslutils described in Section 4.3 provides SSL certificate generation functions.

Data redaction described in Section 4.4 provides protection against sensitive data

exposure.

 EDB Resource Manager. Chapter 5 contains information about the EDB

Resource Manager feature, which provides the capability to control system

resource usage by Advanced Server processes.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

9

Resource Groups described in Section 5.1 shows how to create and maintain the

groups on which resource limits can be defined.

CPU Usage Throttling described in Section 5.2 provides a method to control CPU

usage by Advanced Server processes.

Dirty Buffer Throttling described in Section 5.3 provides a method to control the

dirty rate of shared buffers by Advanced Server processes.

 The libpq C Library. The libpq C library described in Chapter 6 is the C

application programming interface (API) language for Advanced Server.

 The PL Debugger. The PL Debugger described in Chapter 7 is a graphically

oriented debugging tool for PL/pgSQL.

 Performance Analysis and Tuning. Chapter 8 contains the various tools for

analyzing and improving application and database server performance.

Dynatune described in Section 8.1 provides a quick and easy means for

configuring Advanced Server depending upon the type of application usage.

EDB wait states described in Section 8.2 provides a way to capture wait events

and other data for performance diagnosis.

 EDB Clone Schema. Chapter 9 contains information about the EDB Clone

Schema feature, which provides the capability to copy a schema and its database

objects within a single database or from one database to another database.

 Enhanced SQL and Other Miscellaneous Features. Chapter 10 contains

information on enhanced SQL functionality and other features that provide

additional flexibility and convenience.

 System Catalog Tables. Chapter 11 contains additional system catalog tables

added for Advanced Server specific database objects.

 Advanced Server Keywords. Chapter 12 contains information about the words

that Advanced Server recognizes as keywords.

For information about the features that are shared by Advanced Server and PostgreSQL,

see the PostgreSQL core documentation, available at:

https://www.postgresql.org/docs/12/static/index.html

https://www.postgresql.org/docs/12/static/index.html

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

10

1.1 What’s New

The following features have been changed in EDB Postgres Advanced Server 11 to create

Advanced Server 12:

 Advanced Server introduces COMPOUND TRIGGERS, which are stored as a PL

block that executes in response to a specified triggering event. For information,

see the Database Compatibility for Oracle Developer’s Guide.

 Advanced Server now supports new DATA DICTIONARY VIEWS that provide

information that is compatible with the Oracle data dictionary views. For

information, see the Database Compatibility for Oracle Developer's Reference

Guide.

 Advanced Server has added the LISTAGG function to support string aggregation

that concatenates data from multiple rows into a single row in an ordered manner.

For information, see the Database Compatibility for Oracle Developer's

Reference Guide.

 Advanced Server now supports CAST(MULTISET)function, allowing subquery

output to be CAST to a nested table type. For information, see the Database

Compatibility for Oracle Developer's Reference Guide.

 Advanced Server has added the MEDIAN function to calculate a median value

from the set of provided values. For information, see the Database Compatibility

for Oracle Developer's Reference Guide.

 Advanced Server has added the SYS_GUID function to generate and return a

globally unique identifier in the form of 16-bytes of RAW data. For information,

see the Database Compatibility for Oracle Developer's Reference Guide.

 Advanced Server now supports an Oracle-compatible SELECT UNIQUE clause in

addition to an existing SELECT DISTINCT clause. For information, see the

Database Compatibility for Oracle Developer's Reference Guide.

 Advanced Server has re-implemented default_with_rowids, which is used to

create a table that includes a ROWID column in the newly created table. For more

information, see Section 3.1.3.11.7.

 Advanced Server now supports logical decoding on the standby server, which

allows creating a logical replication slot on a standby, independently of a primary

server. For more information, see Section 10.3.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

11

 Advanced Server introduces INTERVAL PARTITIONING, which allows a

database to automatically create partitions of a specified interval as new data is

inserted into a table. For information, see the Database Compatibility for Oracle

Developer's Guide.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

12

1.2 Typographical Conventions Used in this Guide

Certain typographical conventions are used in this manual to clarify the meaning and

usage of various commands, statements, programs, examples, etc. This section provides a

summary of these conventions.

In the following descriptions a term refers to any word or group of words that may be

language keywords, user-supplied values, literals, etc. A term’s exact meaning depends

upon the context in which it is used.

 Italic font introduces a new term, typically, in the sentence that defines it for the

first time.

 Fixed-width (mono-spaced) font is used for terms that must be given

literally such as SQL commands, specific table and column names used in the

examples, programming language keywords, directory paths and file names,

parameter values, etc. For example postgresql.conf, SELECT * FROM emp;

 Italic fixed-width font is used for terms for which the user must

substitute values in actual usage. For example, DELETE FROM table_name;

 A vertical pipe | denotes a choice between the terms on either side of the pipe. A

vertical pipe is used to separate two or more alternative terms within square

brackets (optional choices) or braces (one mandatory choice).

 Square brackets [] denote that one or none of the enclosed term(s) may be

substituted. For example, [a | b], means choose one of “a” or “b” or neither

of the two.

 Braces {} denote that exactly one of the enclosed alternatives must be specified.

For example, { a | b }, means exactly one of “a” or “b” must be specified.

 Ellipses ... denote that the proceeding term may be repeated. For example, [a |

b] ... means that you may have the sequence, “b a a b a”.

1.3 Other Conventions Used in this Guide

The following is a list of other conventions used throughout this document.

 This guide applies to both Linux and Windows systems. Directory paths are

presented in the Linux format with forward slashes. When working on Windows

systems, start the directory path with the drive letter followed by a colon and

substitute back slashes for forward slashes.

 Some of the information in this document may apply interchangeably to the

PostgreSQL and EDB Postgres Advanced Server database systems. The term

Advanced Server is used to refer to EDB Postgres Advanced Server. The term

Postgres is used to generically refer to both PostgreSQL and Advanced Server.

When a distinction needs to be made between these two database systems, the

specific names, PostgreSQL or Advanced Server are used.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

13

 The installation directory path of the PostgreSQL or Advanced Server products is

referred to as POSTGRES_INSTALL_HOME. For PostgreSQL Linux installations,

this defaults to /opt/PostgreSQL/x.x for version 10 and earlier. For later

versions, use the PostgreSQL community packages. For Advanced Server Linux

installations accomplished using the interactive installer for version 10 and

earlier, this defaults to /opt/edb/asx.x. For Advanced Server Linux

installations accomplished using an RPM package, this defaults to

/usr/edb/asxx. For Advanced Server Windows installations, this defaults to

C:\Program Files\edb\asxx. The product version number is represented by

x.x or by xx for version 10 and later.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

14

1.4 About the Examples Used in this Guide

The examples in this guide are shown in the type and background illustrated below.

Examples and output from examples are shown in fixed-width, blue font on a

light blue background.

The examples use the sample tables, dept, emp, and jobhist, created and loaded when

Advanced Server is installed.

The tables and programs in the sample database can be re-created at any time by

executing the following script:

/usr/edb/asxx/share/pg-sample.sql

where xx is the Advanced Server version number.

In addition there is a script in the same directory containing the database objects created

using syntax compatible with Oracle databases. This script file is edb-sample.sql.

The script:

 Creates the sample tables and programs in the currently connected database.

 Grants all permissions on the tables to the PUBLIC group.

The tables and programs will be created in the first schema of the search path in which

the current user has permission to create tables and procedures. You can display the

search path by issuing the command:

SHOW SEARCH_PATH;

You can use PSQL commands to modify the search path.

1.4.1 Sample Database Description

The sample database represents employees in an organization. It contains three types of

records: employees, departments, and historical records of employees.

Each employee has an identification number, name, hire date, salary, and manager. Some

employees earn a commission in addition to their salary. All employee-related

information is stored in the emp table.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

15

The sample company is regionally diverse, so it tracks the locations of its departments.

Each company employee is assigned to a department. Each department is identified by a

unique department number and a short name. Each department is associated with one

location. All department-related information is stored in the dept table.

The company also tracks information about jobs held by the employees. Some employees

have been with the company for a long time and have held different positions, received

raises, switched departments, etc. When a change in employee status occurs, the company

records the end date of the former position. A new job record is added with the start date

and the new job title, department, salary, and the reason for the status change. All

employee history is maintained in the jobhist table.

The following is the pg-sample.sql script:

SET datestyle TO 'iso, dmy';

--

-- Script that creates the 'sample' tables, views

-- functions, triggers, etc.

--

-- Start new transaction - commit all or nothing

--

BEGIN;

--

-- Create and load tables used in the documentation examples.

--

-- Create the 'dept' table

--

CREATE TABLE dept (

 deptno NUMERIC(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,

 dname VARCHAR(14) CONSTRAINT dept_dname_uq UNIQUE,

 loc VARCHAR(13)

);

--

-- Create the 'emp' table

--

CREATE TABLE emp (

 empno NUMERIC(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,

 ename VARCHAR(10),

 job VARCHAR(9),

 mgr NUMERIC(4),

 hiredate DATE,

 sal NUMERIC(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),

 comm NUMERIC(7,2),

 deptno NUMERIC(2) CONSTRAINT emp_ref_dept_fk

 REFERENCES dept(deptno)

);

--

-- Create the 'jobhist' table

--

CREATE TABLE jobhist (

 empno NUMERIC(4) NOT NULL,

 startdate TIMESTAMP(0) NOT NULL,

 enddate TIMESTAMP(0),

 job VARCHAR(9),

 sal NUMERIC(7,2),

 comm NUMERIC(7,2),

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

16

 deptno NUMERIC(2),

 chgdesc VARCHAR(80),

 CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate),

 CONSTRAINT jobhist_ref_emp_fk FOREIGN KEY (empno)

 REFERENCES emp(empno) ON DELETE CASCADE,

 CONSTRAINT jobhist_ref_dept_fk FOREIGN KEY (deptno)

 REFERENCES dept (deptno) ON DELETE SET NULL,

 CONSTRAINT jobhist_date_chk CHECK (startdate <= enddate)

);

--

-- Create the 'salesemp' view

--

CREATE OR REPLACE VIEW salesemp AS

 SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job = 'SALESMAN';

--

-- Sequence to generate values for function 'new_empno'.

--

CREATE SEQUENCE next_empno START WITH 8000 INCREMENT BY 1;

--

-- Issue PUBLIC grants

--

--GRANT ALL ON emp TO PUBLIC;

--GRANT ALL ON dept TO PUBLIC;

--GRANT ALL ON jobhist TO PUBLIC;

--GRANT ALL ON salesemp TO PUBLIC;

--GRANT ALL ON next_empno TO PUBLIC;

--

-- Load the 'dept' table

--

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT INTO dept VALUES (20,'RESEARCH','DALLAS');

INSERT INTO dept VALUES (30,'SALES','CHICAGO');

INSERT INTO dept VALUES (40,'OPERATIONS','BOSTON');

--

-- Load the 'emp' table

--

INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);

INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-

81',1600,300,30);

INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'22-FEB-81',1250,500,30);

INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'02-APR-

81',2975,NULL,20);

INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'28-SEP-

81',1250,1400,30);

INSERT INTO emp VALUES (7698,'BLAKE','MANAGER',7839,'01-MAY-

81',2850,NULL,30);

INSERT INTO emp VALUES (7782,'CLARK','MANAGER',7839,'09-JUN-

81',2450,NULL,10);

INSERT INTO emp VALUES (7788,'SCOTT','ANALYST',7566,'19-APR-

87',3000,NULL,20);

INSERT INTO emp VALUES (7839,'KING','PRESIDENT',NULL,'17-NOV-

81',5000,NULL,10);

INSERT INTO emp VALUES (7844,'TURNER','SALESMAN',7698,'08-SEP-81',1500,0,30);

INSERT INTO emp VALUES (7876,'ADAMS','CLERK',7788,'23-MAY-87',1100,NULL,20);

INSERT INTO emp VALUES (7900,'JAMES','CLERK',7698,'03-DEC-81',950,NULL,30);

INSERT INTO emp VALUES (7902,'FORD','ANALYST',7566,'03-DEC-81',3000,NULL,20);

INSERT INTO emp VALUES (7934,'MILLER','CLERK',7782,'23-JAN-82',1300,NULL,10);

--

-- Load the 'jobhist' table

--

INSERT INTO jobhist VALUES (7369,'17-DEC-80',NULL,'CLERK',800,NULL,20,'New

Hire');

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

17

INSERT INTO jobhist VALUES (7499,'20-FEB-81',NULL,'SALESMAN',1600,300,30,'New

Hire');

INSERT INTO jobhist VALUES (7521,'22-FEB-81',NULL,'SALESMAN',1250,500,30,'New

Hire');

INSERT INTO jobhist VALUES (7566,'02-APR-81',NULL,'MANAGER',2975,NULL,20,'New

Hire');

INSERT INTO jobhist VALUES (7654,'28-SEP-

81',NULL,'SALESMAN',1250,1400,30,'New Hire');

INSERT INTO jobhist VALUES (7698,'01-MAY-81',NULL,'MANAGER',2850,NULL,30,'New

Hire');

INSERT INTO jobhist VALUES (7782,'09-JUN-81',NULL,'MANAGER',2450,NULL,10,'New

Hire');

INSERT INTO jobhist VALUES (7788,'19-APR-87','12-APR-

88','CLERK',1000,NULL,20,'New Hire');

INSERT INTO jobhist VALUES (7788,'13-APR-88','04-MAY-

89','CLERK',1040,NULL,20,'Raise');

INSERT INTO jobhist VALUES (7788,'05-MAY-

90',NULL,'ANALYST',3000,NULL,20,'Promoted to Analyst');

INSERT INTO jobhist VALUES (7839,'17-NOV-

81',NULL,'PRESIDENT',5000,NULL,10,'New Hire');

INSERT INTO jobhist VALUES (7844,'08-SEP-81',NULL,'SALESMAN',1500,0,30,'New

Hire');

INSERT INTO jobhist VALUES (7876,'23-MAY-87',NULL,'CLERK',1100,NULL,20,'New

Hire');

INSERT INTO jobhist VALUES (7900,'03-DEC-81','14-JAN-

83','CLERK',950,NULL,10,'New Hire');

INSERT INTO jobhist VALUES (7900,'15-JAN-

83',NULL,'CLERK',950,NULL,30,'Changed to Dept 30');

INSERT INTO jobhist VALUES (7902,'03-DEC-81',NULL,'ANALYST',3000,NULL,20,'New

Hire');

INSERT INTO jobhist VALUES (7934,'23-JAN-82',NULL,'CLERK',1300,NULL,10,'New

Hire');

--

-- Populate statistics table and view (pg_statistic/pg_stats)

--

ANALYZE dept;

ANALYZE emp;

ANALYZE jobhist;

--

-- Function that lists all employees' numbers and names

-- from the 'emp' table using a cursor.

--

CREATE OR REPLACE FUNCTION list_emp() RETURNS VOID

AS $$

DECLARE

 v_empno NUMERIC(4);

 v_ename VARCHAR(10);

 emp_cur CURSOR FOR

 SELECT empno, ename FROM emp ORDER BY empno;

BEGIN

 OPEN emp_cur;

 RAISE INFO 'EMPNO ENAME';

 RAISE INFO '----- -------';

 LOOP

 FETCH emp_cur INTO v_empno, v_ename;

 EXIT WHEN NOT FOUND;

 RAISE INFO '% %', v_empno, v_ename;

 END LOOP;

 CLOSE emp_cur;

 RETURN;

END;

$$ LANGUAGE 'plpgsql';

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

18

--

-- Function that selects an employee row given the employee

-- number and displays certain columns.

--

CREATE OR REPLACE FUNCTION select_emp (

 p_empno NUMERIC

) RETURNS VOID

AS $$

DECLARE

 v_ename emp.ename%TYPE;

 v_hiredate emp.hiredate%TYPE;

 v_sal emp.sal%TYPE;

 v_comm emp.comm%TYPE;

 v_dname dept.dname%TYPE;

 v_disp_date VARCHAR(10);

BEGIN

 SELECT INTO

 v_ename, v_hiredate, v_sal, v_comm, v_dname

 ename, hiredate, sal, COALESCE(comm, 0), dname

 FROM emp e, dept d

 WHERE empno = p_empno

 AND e.deptno = d.deptno;

 IF NOT FOUND THEN

 RAISE INFO 'Employee % not found', p_empno;

 RETURN;

 END IF;

 v_disp_date := TO_CHAR(v_hiredate, 'MM/DD/YYYY');

 RAISE INFO 'Number : %', p_empno;

 RAISE INFO 'Name : %', v_ename;

 RAISE INFO 'Hire Date : %', v_disp_date;

 RAISE INFO 'Salary : %', v_sal;

 RAISE INFO 'Commission: %', v_comm;

 RAISE INFO 'Department: %', v_dname;

 RETURN;

EXCEPTION

 WHEN OTHERS THEN

 RAISE INFO 'The following is SQLERRM : %', SQLERRM;

 RAISE INFO 'The following is SQLSTATE: %', SQLSTATE;

 RETURN;

END;

$$ LANGUAGE 'plpgsql';

--

-- A RECORD type used to format the return value of

-- function, 'emp_query'.

--

CREATE TYPE emp_query_type AS (

 empno NUMERIC,

 ename VARCHAR(10),

 job VARCHAR(9),

 hiredate DATE,

 sal NUMERIC

);

--

-- Function that queries the 'emp' table based on

-- department number and employee number or name. Returns

-- employee number and name as INOUT parameters and job,

-- hire date, and salary as OUT parameters. These are

-- returned in the form of a record defined by

-- RECORD type, 'emp_query_type'.

--

CREATE OR REPLACE FUNCTION emp_query (

 IN p_deptno NUMERIC,

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

19

 INOUT p_empno NUMERIC,

 INOUT p_ename VARCHAR,

 OUT p_job VARCHAR,

 OUT p_hiredate DATE,

 OUT p_sal NUMERIC

)

AS $$

BEGIN

 SELECT INTO

 p_empno, p_ename, p_job, p_hiredate, p_sal

 empno, ename, job, hiredate, sal

 FROM emp

 WHERE deptno = p_deptno

 AND (empno = p_empno

 OR ename = UPPER(p_ename));

END;

$$ LANGUAGE 'plpgsql';

--

-- Function to call 'emp_query_caller' with IN and INOUT

-- parameters. Displays the results received from INOUT and

-- OUT parameters.

--

CREATE OR REPLACE FUNCTION emp_query_caller() RETURNS VOID

AS $$

DECLARE

 v_deptno NUMERIC;

 v_empno NUMERIC;

 v_ename VARCHAR;

 v_rows INTEGER;

 r_emp_query EMP_QUERY_TYPE;

BEGIN

 v_deptno := 30;

 v_empno := 0;

 v_ename := 'Martin';

 r_emp_query := emp_query(v_deptno, v_empno, v_ename);

 RAISE INFO 'Department : %', v_deptno;

 RAISE INFO 'Employee No: %', (r_emp_query).empno;

 RAISE INFO 'Name : %', (r_emp_query).ename;

 RAISE INFO 'Job : %', (r_emp_query).job;

 RAISE INFO 'Hire Date : %', (r_emp_query).hiredate;

 RAISE INFO 'Salary : %', (r_emp_query).sal;

 RETURN;

EXCEPTION

 WHEN OTHERS THEN

 RAISE INFO 'The following is SQLERRM : %', SQLERRM;

 RAISE INFO 'The following is SQLSTATE: %', SQLSTATE;

 RETURN;

END;

$$ LANGUAGE 'plpgsql';

--

-- Function to compute yearly compensation based on semimonthly

-- salary.

--

CREATE OR REPLACE FUNCTION emp_comp (

 p_sal NUMERIC,

 p_comm NUMERIC

) RETURNS NUMERIC

AS $$

BEGIN

 RETURN (p_sal + COALESCE(p_comm, 0)) * 24;

END;

$$ LANGUAGE 'plpgsql';

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

20

--

-- Function that gets the next number from sequence, 'next_empno',

-- and ensures it is not already in use as an employee number.

--

CREATE OR REPLACE FUNCTION new_empno() RETURNS INTEGER

AS $$

DECLARE

 v_cnt INTEGER := 1;

 v_new_empno INTEGER;

BEGIN

 WHILE v_cnt > 0 LOOP

 SELECT INTO v_new_empno nextval('next_empno');

 SELECT INTO v_cnt COUNT(*) FROM emp WHERE empno = v_new_empno;

 END LOOP;

 RETURN v_new_empno;

END;

$$ LANGUAGE 'plpgsql';

--

-- Function that adds a new clerk to table 'emp'.

--

CREATE OR REPLACE FUNCTION hire_clerk (

 p_ename VARCHAR,

 p_deptno NUMERIC

) RETURNS NUMERIC

AS $$

DECLARE

 v_empno NUMERIC(4);

 v_ename VARCHAR(10);

 v_job VARCHAR(9);

 v_mgr NUMERIC(4);

 v_hiredate DATE;

 v_sal NUMERIC(7,2);

 v_comm NUMERIC(7,2);

 v_deptno NUMERIC(2);

BEGIN

 v_empno := new_empno();

 INSERT INTO emp VALUES (v_empno, p_ename, 'CLERK', 7782,

 CURRENT_DATE, 950.00, NULL, p_deptno);

 SELECT INTO

 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno

 empno, ename, job, mgr, hiredate, sal, comm, deptno

 FROM emp WHERE empno = v_empno;

 RAISE INFO 'Department : %', v_deptno;

 RAISE INFO 'Employee No: %', v_empno;

 RAISE INFO 'Name : %', v_ename;

 RAISE INFO 'Job : %', v_job;

 RAISE INFO 'Manager : %', v_mgr;

 RAISE INFO 'Hire Date : %', v_hiredate;

 RAISE INFO 'Salary : %', v_sal;

 RAISE INFO 'Commission : %', v_comm;

 RETURN v_empno;

EXCEPTION

 WHEN OTHERS THEN

 RAISE INFO 'The following is SQLERRM : %', SQLERRM;

 RAISE INFO 'The following is SQLSTATE: %', SQLSTATE;

 RETURN -1;

END;

$$ LANGUAGE 'plpgsql';

--

-- Function that adds a new salesman to table 'emp'.

--

CREATE OR REPLACE FUNCTION hire_salesman (

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

21

 p_ename VARCHAR,

 p_sal NUMERIC,

 p_comm NUMERIC

) RETURNS NUMERIC

AS $$

DECLARE

 v_empno NUMERIC(4);

 v_ename VARCHAR(10);

 v_job VARCHAR(9);

 v_mgr NUMERIC(4);

 v_hiredate DATE;

 v_sal NUMERIC(7,2);

 v_comm NUMERIC(7,2);

 v_deptno NUMERIC(2);

BEGIN

 v_empno := new_empno();

 INSERT INTO emp VALUES (v_empno, p_ename, 'SALESMAN', 7698,

 CURRENT_DATE, p_sal, p_comm, 30);

 SELECT INTO

 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno

 empno, ename, job, mgr, hiredate, sal, comm, deptno

 FROM emp WHERE empno = v_empno;

 RAISE INFO 'Department : %', v_deptno;

 RAISE INFO 'Employee No: %', v_empno;

 RAISE INFO 'Name : %', v_ename;

 RAISE INFO 'Job : %', v_job;

 RAISE INFO 'Manager : %', v_mgr;

 RAISE INFO 'Hire Date : %', v_hiredate;

 RAISE INFO 'Salary : %', v_sal;

 RAISE INFO 'Commission : %', v_comm;

 RETURN v_empno;

EXCEPTION

 WHEN OTHERS THEN

 RAISE INFO 'The following is SQLERRM : %', SQLERRM;

 RAISE INFO 'The following is SQLSTATE: %', SQLSTATE;

 RETURN -1;

END;

$$ LANGUAGE 'plpgsql';

--

-- Rule to INSERT into view 'salesemp'

--

CREATE OR REPLACE RULE salesemp_i AS ON INSERT TO salesemp

DO INSTEAD

 INSERT INTO emp VALUES (NEW.empno, NEW.ename, 'SALESMAN', 7698,

 NEW.hiredate, NEW.sal, NEW.comm, 30);

--

-- Rule to UPDATE view 'salesemp'

--

CREATE OR REPLACE RULE salesemp_u AS ON UPDATE TO salesemp

DO INSTEAD

 UPDATE emp SET empno = NEW.empno,

 ename = NEW.ename,

 hiredate = NEW.hiredate,

 sal = NEW.sal,

 comm = NEW.comm

 WHERE empno = OLD.empno;

--

-- Rule to DELETE from view 'salesemp'

--

CREATE OR REPLACE RULE salesemp_d AS ON DELETE TO salesemp

DO INSTEAD

 DELETE FROM emp WHERE empno = OLD.empno;

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

22

--

-- After statement-level trigger that displays a message after

-- an insert, update, or deletion to the 'emp' table. One message

-- per SQL command is displayed.

--

CREATE OR REPLACE FUNCTION user_audit_trig() RETURNS TRIGGER

AS $$

DECLARE

 v_action VARCHAR(24);

 v_text TEXT;

BEGIN

 IF TG_OP = 'INSERT' THEN

 v_action := ' added employee(s) on ';

 ELSIF TG_OP = 'UPDATE' THEN

 v_action := ' updated employee(s) on ';

 ELSIF TG_OP = 'DELETE' THEN

 v_action := ' deleted employee(s) on ';

 END IF;

 v_text := 'User ' || USER || v_action || CURRENT_DATE;

 RAISE INFO ' %', v_text;

 RETURN NULL;

END;

$$ LANGUAGE 'plpgsql';

CREATE TRIGGER user_audit_trig

 AFTER INSERT OR UPDATE OR DELETE ON emp

 FOR EACH STATEMENT EXECUTE PROCEDURE user_audit_trig();

--

-- Before row-level trigger that displays employee number and

-- salary of an employee that is about to be added, updated,

-- or deleted in the 'emp' table.

--

CREATE OR REPLACE FUNCTION emp_sal_trig() RETURNS TRIGGER

AS $$

DECLARE

 sal_diff NUMERIC(7,2);

BEGIN

 IF TG_OP = 'INSERT' THEN

 RAISE INFO 'Inserting employee %', NEW.empno;

 RAISE INFO '..New salary: %', NEW.sal;

 RETURN NEW;

 END IF;

 IF TG_OP = 'UPDATE' THEN

 sal_diff := NEW.sal - OLD.sal;

 RAISE INFO 'Updating employee %', OLD.empno;

 RAISE INFO '..Old salary: %', OLD.sal;

 RAISE INFO '..New salary: %', NEW.sal;

 RAISE INFO '..Raise : %', sal_diff;

 RETURN NEW;

 END IF;

 IF TG_OP = 'DELETE' THEN

 RAISE INFO 'Deleting employee %', OLD.empno;

 RAISE INFO '..Old salary: %', OLD.sal;

 RETURN OLD;

 END IF;

END;

$$ LANGUAGE 'plpgsql';

CREATE TRIGGER emp_sal_trig

 BEFORE DELETE OR INSERT OR UPDATE ON emp

 FOR EACH ROW EXECUTE PROCEDURE emp_sal_trig();

COMMIT;

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

23

2 Enhanced Compatibility Features

Advanced Server includes extended functionality that provides compatibility for syntax

supported by Oracle applications. Detailed information about all of the compatibility

features supported by Advanced Server is provided in the Database Compatibility for

Oracle Developers Guides; the information is broken into four guides:

 The Database Compatibility for Oracle Developers Guide provides an overview

of the compatible procedural language, profile management, partitioning syntax,

and sample applications supported by Advanced Server.

 The Database Compatibility for Oracle Developers Tools and Utilities Guide

provides information about the compatible tools supported by Advanced Server:

EDB*Plus, EDB*Loader, EDB*Wrap, and DRITA.

 The Database Compatibility for Oracle Developers Built-in Packages Guide

provides information about using the compatible syntax available in the built-in

packages.

 The Database Compatibility for Oracle Developers Reference Guide provides

reference information about using Advanced Server compatibility features,

including SQL syntax, compatible views and system tables, and data types.

Version-specific guides are available at:

https://www.enterprisedb.com/edb-docs

The following sections highlight some of the compatibility features supported by

Advanced Server.

https://www.enterprisedb.com/resources/product-documentation

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

24

2.1 Enabling Compatibility Features

There are several ways to install Advanced Server that will allow you to take advantage

of compatibility features:

 Use the INITDBOPTS variable (in the Advanced Server service configuration file)

to specify --redwood-like before initializing your cluster.

 When invoking initdb to initialize your cluster, include the --redwood-like

option.

For more information about the installation options supported by the Advanced Server

installers, please see the EDB Postgres Advanced Server Installation Guide, available

from the EDB website at:

https://www.enterprisedb.com/edb-docs

2.2 Stored Procedural Language

Advanced Server supports a highly productive procedural language that allows you to

write custom procedures, functions, triggers and packages. The procedural language:

 complements the SQL language and built-in packages.

 provides a seamless development and testing environment.

 allows you to create reusable code.

For information about using the Stored Procedural Language, see the Database

Compatibility for Oracle Developers Guide, available at:

https://www.enterprisedb.com/edb-docs

https://www.enterprisedb.com/resources/product-documentation
https://www.enterprisedb.com/resources/product-documentation

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

25

2.3 Optimizer Hints

When you invoke a DELETE, INSERT, SELECT, or UPDATE command, the server

generates a set of execution plans; after analyzing those execution plans, the server

selects a plan that will (generally) return the result set in the least amount of time. The

server's choice of plan is dependent upon several factors:

 The estimated execution cost of data handling operations.

 Parameter values assigned to parameters in the Query Tuning section of the

postgresql.conf file.

 Column statistics that have been gathered by the ANALYZE command.

As a rule, the query planner will select the least expensive plan. You can use an optimizer

hint to influence the server as it selects a query plan.

An optimizer hint is a directive (or multiple directives) embedded in a comment-like

syntax that immediately follows a DELETE, INSERT, SELECT or UPDATE command.

Keywords in the comment instruct the server to employ or avoid a specific plan when

producing the result set. For information about using optimizer hints, see the Database

Compatibility for Oracle Developers Guide, available at:

https://www.enterprisedb.com/edb-docs

2.4 Data Dictionary Views

Advanced Server includes a set of views that provide information about database objects

in a manner compatible with the Oracle data dictionary views. For detailed information

about the views available with Advanced Server, please see the Database Compatibility

for Oracle Developers Reference Guide, available at:

https://www.enterprisedb.com/edb-docs

https://www.enterprisedb.com/resources/product-documentation
https://www.enterprisedb.com/resources/product-documentation

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

26

2.5 dblink_ora

dblink_ora provides an OCI-based database link that allows you to SELECT, INSERT,

UPDATE or DELETE data stored on an Oracle system from within Advanced Server. For

detailed information about using dblink_ora, and the supported functions and

procedures, see the Database Compatibility for Oracle Developers Guide, available at:

https://www.enterprisedb.com/edb-docs

2.6 Profile Management

Advanced Server supports compatible SQL syntax for profile management. Profile

management commands allow a database superuser to create and manage named

profiles. Each profile defines rules for password management that augment password

and md5 authentication. The rules in a profile can:

 count failed login attempts

 lock an account due to excessive failed login attempts

 mark a password for expiration

 define a grace period after a password expiration

 define rules for password complexity

 define rules that limit password re-use

A profile is a named set of attributes that allow you to easily manage a group of roles that

share comparable authentication requirements. If password requirements change, you

can modify the profile to have the new requirements applied to each user that is

associated with that profile.

After creating the profile, you can associate the profile with one or more users. When a

user connects to the server, the server enforces the profile that is associated with their

login role. Profiles are shared by all databases within a cluster, but each cluster may have

multiple profiles. A single user with access to multiple databases will use the same

profile when connecting to each database within the cluster.

For information about using profile management commands, see the Database

Compatibility for Oracle Developers Guide, available at:

https://www.enterprisedb.com/edb-docs

https://www.enterprisedb.com/resources/product-documentation
https://www.enterprisedb.com/resources/product-documentation

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

27

2.7 Built-In Packages

Advanced Server supports a number of built-in packages that provide compatibility with

Oracle procedures and functions.

Package Name Description

DBMS_ALERT The DBMS_ALERT package provides the capability to register for, send,

and receive alerts.

DBMS_AQ The DBMS_AQ package provides message queueing and processing for

Advanced Server.

DBMS_AQADM The DBMS_AQADM package provides supporting procedures for

Advanced Queueing functionality.

DBMS_CRYPTO The DBMS_CRYPTO package provides functions and procedures that

allow you to encrypt or decrypt RAW, BLOB or CLOB data. You can also

use DBMS_CRYPTO functions to generate cryptographically strong

random values.

DBMS_JOB The DBMS_JOB package provides for the creation, scheduling, and

managing of jobs.

DBMS_LOB The DBMS_LOB package provides the capability to operate on large

objects.

DBMS_LOCK Advanced Server provides support for the DBMS_LOCK.SLEEP

procedure.

DBMS_MVIEW Use procedures in the DBMS_MVIEW package to manage and refresh

materialized views and their dependencies.

DBMS_OUTPUT The DBMS_OUTPUT package provides the capability to send messages to

a message buffer, or get messages from the message buffer.

DBMS_PIPE The DBMS_PIPE package provides the capability to send messages

through a pipe within or between sessions connected to the same database

cluster.

DBMS_PROFILER The DBMS_PROFILER package collects and stores performance

information about the PL/pgSQL and SPL statements that are executed

during a performance profiling session.

DBMS_RANDOM The DBMS_RANDOM package provides a number of methods to generate

random values. The procedures and functions available in the

DBMS_RANDOM package are listed in the following table.

DBMS_REDACT The DBMS_REDACT package enables the redacting or masking of data

that is returned by a query.

DBMS_RLS The DBMS_RLS package enables the implementation of Virtual Private

Database on certain Advanced Server database objects.

DBMS_SCHEDULER The DBMS_SCHEDULER package provides a way to create and manage

jobs, programs and job schedules.

DBMS_SESSION Advanced Server provides support for the DBMS_SESSION.SET_ROLE

procedure.

DBMS_SQL The DBMS_SQL package provides an application interface to the

EnterpriseDB dynamic SQL functionality.

DBMS_UTILITY The DBMS_UTILITY package provides various utility programs.

UTL_ENCODE The UTL_ENCODE package provides a way to encode and decode data.

UTL_FILE The UTL_FILE package provides the capability to read from, and write to

files on the operating system’s file system.

UTL_HTTP The UTL_HTTP package provides a way to use the HTTP or HTTPS

protocol to retrieve information found at an URL.

UTL_MAIL The UTL_MAIL package provides the capability to manage e-mail.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

28

UTL_RAW The UTL_RAW package allows you to manipulate or retrieve the length of

raw data types.

UTL_SMTP The UTL_SMTP package provides the capability to send e-mails over the

Simple Mail Transfer Protocol (SMTP).

UTL_URL The UTL_URL package provides a way to escape illegal and reserved

characters within an URL.

For detailed information about the procedures and functions available within each

package, please see the Database Compatibility for Oracle Developers Built-In Package

Guide, available at:

https://www.enterprisedb.com/edb-docs

https://www.enterprisedb.com/resources/product-documentation

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

29

2.8 Open Client Library

The Open Client Library provides application interoperability with the Oracle Call

Interface – an application that was formerly “locked in” can now work with either an

Advanced Server or an Oracle database with minimal to no changes to the application

code. The EnterpriseDB implementation of the Open Client Library is written in C.

The following diagram compares the Open Client Library and Oracle Call Interface

application stacks.

Figure 2.1 – The Open Client Library.

For detailed information about the functions supported by the Open Client Library, see

the EDB Postgres Advanced Server OCL Connector Guide, available at:

https://www.enterprisedb.com/edb-docs

https://www.enterprisedb.com/resources/product-documentation

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

30

2.9 Utilities

For detailed information about the compatible syntax supported by the utilities listed

below, see the Database Compatibility for Oracle Developers Tools and Utilities Guide,

available at:

https://www.enterprisedb.com/edb-docs

EDB*Plus

EDB*Plus is a utility program that provides a command line user interface to the

Advanced Server that will be familiar to Oracle developers and users. EDB*Plus accepts

SQL commands, SPL anonymous blocks, and EDB*Plus commands.

EDB*Plus allows you to:

 Query certain database objects

 Execute stored procedures

 Format output from SQL commands

 Execute batch scripts

 Execute OS commands

 Record output

For detailed information about EDB*Plus, please see the EDB*Plus User's Guide

available at:

https://www.enterprisedb.com/edb-docs/p/edbplus

EDB*Loader

EDB*Loader is a high-performance bulk data loader that provides an interface

compatible with Oracle databases for Advanced Server. The EDB*Loader command line

utility loads data from an input source, typically a file, into one or more tables using a

subset of the parameters offered by Oracle SQL*Loader.

EDB*Loader features include:

 Support for the Oracle SQL*Loader data loading methods - conventional path

load, direct path load, and parallel direct path load

 Oracle SQL*Loader compatible syntax for control file directives

 Input data with delimiter-separated or fixed-width fields

 Bad file for collecting rejected records

 Loading of multiple target tables

https://www.enterprisedb.com/resources/product-documentation
https://www.enterprisedb.com/edb-docs/p/edbplus

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

31

 Discard file for collecting records that do not meet the selection criteria of any

target table

 Log file for recording the EDB*Loader session and any error messages

 Data loading from standard input and remote loading

EDB*Wrap

The EDB*Wrap utility protects proprietary source code and programs (functions, stored

procedures, triggers, and packages) from unauthorized scrutiny. The EDB*Wrap

program translates a file that contains SPL or PL/pgSQL source code (the plaintext) into

a file that contains the same code in a form that is nearly impossible to read. Once you

have the obfuscated form of the code, you can send that code to Advanced Server and it

will store those programs in obfuscated form. While EDB*Wrap does obscure code,

table definitions are still exposed.

Everything you wrap is stored in obfuscated form. If you wrap an entire package, the

package body source, as well as the prototypes contained in the package header and the

functions and procedures contained in the package body are stored in obfuscated form.

Dynamic Runtime Instrumentation Tools Architecture (DRITA)

The Dynamic Runtime Instrumentation Tools Architecture (DRITA) allows a DBA to

query catalog views to determine the wait events that affect the performance of individual

sessions or the system as a whole. DRITA records the number of times each event occurs

as well as the time spent waiting; you can use this information to diagnose performance

problems. DRITA offers this functionality, while consuming minimal system resources.

DRITA compares snapshots to evaluate the performance of a system. A snapshot is a

saved set of system performance data at a given point in time. Each snapshot is identified

by a unique ID number; you can use snapshot ID numbers with DRITA reporting

functions to return system performance statistics.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

32

2.10 ECPGPlus

EnterpriseDB has enhanced ECPG (the PostgreSQL pre-compiler) to create ECPGPlus.

ECPGPlus allows you to include embedded SQL commands in C applications; when you

use ECPGPlus to compile an application that contains embedded SQL commands, the

SQL code is syntax-checked and translated into C.

ECPGPlus supports Pro*C syntax in C programs when connected to an Advanced Server

database. ECPGPlus supports:

 Oracle Dynamic SQL – Method 4 (ODS-M4)

 Pro*C compatible anonymous blocks

 A CALL statement compatible with Oracle databases

For information about using ECPGPlus, please see the EDB Postgres Advanced Server

ECPG Connector Guide, available from the EnterpriseDB website at:

https://www.enterprisedb.com/edb-docs

https://www.enterprisedb.com/resources/product-documentation

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

33

2.11 Table Partitioning

In a partitioned table, one logically large table is broken into smaller physical pieces.

Partitioning can provide several benefits:

 Query performance can be improved dramatically in certain situations,

particularly when most of the heavily accessed rows of the table are in a single

partition or a small number of partitions. Partitioning allows you to omit the

partition column from the front of an index, reducing index size and making it

more likely that the heavily used parts of the index fits in memory.

 When a query or update accesses a large percentage of a single partition,

performance may improve because the server will perform a sequential scan of

the partition instead of using an index and random access reads scattered across

the whole table.

 A bulk load (or unload) can be implemented by adding or removing partitions, if

you plan that requirement into the partitioning design. ALTER TABLE is far faster

than a bulk operation. It also entirely avoids the VACUUM overhead caused by a

bulk DELETE.

 Seldom-used data can be migrated to less-expensive (or slower) storage media.

Table partitioning is worthwhile only when a table would otherwise be very large. The

exact point at which a table will benefit from partitioning depends on the application; a

good rule of thumb is that the size of the table should exceed the physical memory of the

database server.

For information about database compatibility features supported by Advanced Server see

the Database Compatibility for Oracle Developer's Guide, available at:

https://www.enterprisedb.com/edb-docs

https://www.enterprisedb.com/resources/product-documentation

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

34

3 Database Administration

This chapter describes the features that aid in the management and administration of

Advanced Server databases.

3.1 Configuration Parameters

This section describes the database server configuration parameters of Advanced Server.

These parameters control various aspects of the database server’s behavior and

environment such as data file and log file locations, connection, authentication, and

security settings, resource allocation and consumption, archiving and replication settings,

error logging and statistics gathering, optimization and performance tuning, locale and

formatting settings, and so on.

Configuration parameters that apply only to Advanced Server are noted in Section 3.1.2.

Additional information about configuration parameters can be found in the PostgreSQL

Core Documentation available at:

https://www.postgresql.org/docs/12/static/runtime-config.html

https://www.postgresql.org/docs/12/static/runtime-config.html

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

35

3.1.1 Setting Configuration Parameters

This section provides an overview of how configuration parameters are specified and set.

Each configuration parameter is set using a name/value pair. Parameter names are case-

insensitive. The parameter name is typically separated from its value by an optional

equals sign (=).

The following is an example of some configuration parameter settings in the

postgresql.conf file:

This is a comment

log_connections = yes

log_destination = 'syslog'

search_path = '"$user", public'

shared_buffers = 128MB

Parameter values are specified as one of five types:

 Boolean. Acceptable values can be written as on, off, true, false, yes, no, 1,

0, or any unambiguous prefix of these.

 Integer. Number without a fractional part.

 Floating Point. Number with an optional fractional part separated by a decimal

point.

 String. Text value. Enclose in single quotes if the value is not a simple identifier

or number (that is, the value contains special characters such as spaces or other

punctuation marks).

 Enum. Specific set of string values. The allowed values can be found in the

system view pg_settings.enumvals. Enum values are case-insensitive.

Some settings specify a memory or time value. Each of these has an implicit unit, which

is kilobytes, blocks (typically 8 kilobytes), milliseconds, seconds, or minutes. Default

units can be found by referencing the system view pg_settings.unit. A different unit

can be specified explicitly.

Valid memory units are kB (kilobytes), MB (megabytes), and GB (gigabytes). Valid time

units are ms (milliseconds), s (seconds), min (minutes), h (hours), and d (days). The

multiplier for memory units is 1024.

The configuration parameter settings can be established in a number of different ways:

 There is a number of parameter settings that are established when the Advanced

Server database product is built. These are read-only parameters, and their values

cannot be changed. There are also a couple of parameters that are permanently set

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

36

for each database when the database is created. These parameters are read-only as

well and cannot be subsequently changed for the database.

 The initial settings for almost all configurable parameters across the entire

database cluster are listed in the configuration file, postgresql.conf. These

settings are put into effect upon database server start or restart. Some of these

initial parameter settings can be overridden as discussed in the following bullet

points. All configuration parameters have built-in default settings that are in effect

if not explicitly overridden.

 Configuration parameters in the postgresql.conf file are overridden when the

same parameters are included in the postgresql.auto.conf file. The ALTER

SYSTEM command is used to manage the configuration parameters in the

postgresql.auto.conf file.

 Parameter settings can be modified in the configuration file while the database

server is running. If the configuration file is then reloaded (meaning a SIGHUP

signal is issued), for certain parameter types, the changed parameters settings

immediately take effect. For some of these parameter types, the new settings are

available in a currently running session immediately after the reload. For other of

these parameter types, a new session must be started to use the new settings. And

yet for other parameter types, modified settings do not take effect until the

database server is stopped and restarted. See Section 18.1, “Setting Parameters” in

the PostgreSQL Core Documentation for information on how to reload the

configuration file.

 The SQL commands ALTER DATABASE, ALTER ROLE, or ALTER ROLE IN

DATABASE can be used to modify certain parameter settings. The modified

parameter settings take effect for new sessions after the command is executed.

ALTER DATABASE affects new sessions connecting to the specified database.

ALTER ROLE affects new sessions started by the specified role. ALTER ROLE IN

DATABASE affects new sessions started by the specified role connecting to the

specified database. Parameter settings established by these SQL commands

remain in effect indefinitely, across database server restarts, overriding settings

established by the methods discussed in the second and third bullet points.

Parameter settings established using the ALTER DATABASE, ALTER ROLE, or

ALTER ROLE IN DATABASE commands can only be changed by: a) re-issuing

these commands with a different parameter value, or b) issuing these commands

using either of the SET parameter TO DEFAULT clause or the RESET

parameter clause. These clauses change the parameter back to using the setting

established by the methods set forth in the prior bullet points. See Section I, “SQL

Commands” of Chapter VI “Reference” in the PostgreSQL Core Documentation

for the exact syntax of these SQL commands.

 Changes can be made for certain parameter settings for the duration of individual

sessions using the PGOPTIONS environment variable or by using the SET

command within the EDB-PSQL or PSQL command line terminal programs.

Parameter settings made in this manner override settings established using any of

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

37

the methods described by the second, third, and fourth bullet points, but only for

the duration of the session.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

38

3.1.2 Summary of Configuration Parameters

This section contains a summary table listing all Advanced Server configuration

parameters along with a number of key attributes of the parameters.

These attributes are described by the following columns of the summary table:

 Parameter. Configuration parameter name.

 Scope of Effect. Scope of effect of the configuration parameter setting. ‘Cluster’

– Setting affects the entire database cluster (that is, all databases managed by the

database server instance). ‘Database’ – Setting can vary by database and is

established when the database is created. Applies to a small number of parameters

related to locale settings. ‘Session’ – Setting can vary down to the granularity of

individual sessions. In other words, different settings can be made for the

following entities whereby the latter settings in this list override prior ones: a) the

entire database cluster, b) specific databases in the database cluster, c) specific

roles, d) specific roles when connected to specific databases, e) a specific session.

 When Takes Effect. When a changed parameter setting takes effect. ‘Preset’ –

Established when the Advanced Server product is built or a particular database is

created. This is a read-only parameter and cannot be changed. ‘Restart’ –

Database server must be restarted. ‘Reload’ – Configuration file must be reloaded

(or the database server can be restarted). ‘Immediate’ – Immediately effective in a

session if the PGOPTIONS environment variable or the SET command is used to

change the setting in the current session. Effective in new sessions if ALTER

DATABASE, ALTER ROLE, or ALTER ROLE IN DATABASE commands are used

to change the setting.

 Authorized User. Type of operating system account or database role that must be

used to put the parameter setting into effect. ‘EPAS service account’ – EDB

Postgres Advanced Server service account (enterprisedb for an installation

compatible with Oracle databases, postgres for a PostgreSQL compatible mode

installation). ‘Superuser’ – Database role with superuser privileges. ‘User’ – Any

database role with permissions on the affected database object (the database or

role to be altered with the ALTER command). ‘n/a’ – Parameter setting cannot be

changed by any user.

 Description. Brief description of the configuration parameter.

 EPAS Only. ‘X’ – Configuration parameter is applicable to EDB Postgres

Advanced Server only. No entry in this column indicates the configuration

parameter applies to PostgreSQL as well.

Note: There are a number of parameters that should never be altered. These are

designated as “Note: For internal use only” in the Description column.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

39

Table 3-1 - Summary of Configuration Parameters

Parameter
Scope of

Effect

When

Takes

Effect

Authorized

User
Description

EPAS

Only

allow_system_table_mods Cluster Restart EPAS

service

account

Allows modifications of the

structure of system tables.

application_name Session Immediate User Sets the application name to

be reported in statistics and

logs.

archive_command Cluster Reload EPAS

service

account

Sets the shell command that

will be called to archive a

WAL file.

archive_mode Cluster Restart EPAS

service

account

Allows archiving of WAL

files using

archive_command.

archive_timeout Cluster Reload EPAS

service

account

Forces a switch to the next

xlog file if a new file has not

been started within N seconds.

array_nulls Session Immediate User Enable input of NULL

elements in arrays.

authentication_timeout Cluster Reload EPAS

service

account

Sets the maximum allowed

time to complete client

authentication.

autovacuum Cluster Reload EPAS

service

account

Starts the autovacuum

subprocess.

autovacuum_analyze_scale

_factor
Cluster Reload EPAS

service

account

Number of tuple inserts,

updates or deletes prior to

analyze as a fraction of

reltuples.

autovacuum_analyze_thres

hold
Cluster Reload EPAS

service

account

Minimum number of tuple

inserts, updates or deletes

prior to analyze.

autovacuum_freeze_max_ag

e
Cluster Restart EPAS

service

account

Age at which to autovacuum a

table to prevent transaction ID

wraparound.

autovacuum_max_workers Cluster Restart EPAS

service

account

Sets the maximum number of

simultaneously running

autovacuum worker processes.

autovacuum_multixact_fre

eze_max_age
Cluster Restart EPAS

service

account

Multixact age at which to

autovacuum a table to prevent

multixact wraparound.

autovacuum_naptime Cluster Reload EPAS

service

account

Time to sleep between

autovacuum runs.

autovacuum_vacuum_cost_d

elay
Cluster Reload EPAS

service

Vacuum cost delay in

milliseconds, for autovacuum.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

40

Parameter
Scope of

Effect

When

Takes

Effect

Authorized

User
Description

EPAS

Only

account

autovacuum_vacuum_cost_l

imit
Cluster Reload EPAS

service

account

Vacuum cost amount available

before napping, for

autovacuum.

autovacuum_vacuum_scale_

factor
Cluster Reload EPAS

service

account

Number of tuple updates or

deletes prior to vacuum as a

fraction of reltuples.

autovacuum_vacuum_thresh

old
Cluster Reload EPAS

service

account

Minimum number of tuple

updates or deletes prior to

vacuum.

autovacuum_work_mem Cluster Reload EPAS

service

account

Sets the maximum memory to

be used by each autovacuum

worker process.

backslash_quote Session Immediate User Sets whether "\'" is allowed

in string literals.

bgwriter_delay Cluster Reload EPAS

service

account

Background writer sleep time

between rounds.

bgwriter_lru_maxpages Cluster Reload EPAS

service

account

Background writer maximum

number of LRU pages to flush

per round.

bgwriter_lru_multiplier Cluster Reload EPAS

service

account

Multiple of the average buffer

usage to free per round.

block_size Cluster Preset n/a Shows the size of a disk block.

bonjour Cluster Restart EPAS

service

account

Enables advertising the server

via Bonjour.

bonjour_name Cluster Restart EPAS

service

account

Sets the Bonjour service name.

bytea_output Session Immediate User Sets the output format for

bytea.

check_function_bodies Session Immediate User Check function bodies during

CREATE FUNCTION.

checkpoint_completion_ta

rget
Cluster Reload EPAS

service

account

Time spent flushing dirty

buffers during checkpoint, as

fraction of checkpoint interval.

checkpoint_timeout Cluster Reload EPAS

service

account

Sets the maximum time

between automatic WAL

checkpoints.

checkpoint_warning Cluster Reload EPAS

service

account

Enables warnings if

checkpoint segments are filled

more frequently than this.

client_encoding Session Immediate User Sets the client's character set

encoding.

client_min_messages Session Immediate User Sets the message levels that

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

41

Parameter
Scope of

Effect

When

Takes

Effect

Authorized

User
Description

EPAS

Only

are sent to the client.

commit_delay Session Immediate Superuser Sets the delay in microseconds

between transaction commit

and flushing WAL to disk.

commit_siblings Session Immediate User Sets the minimum concurrent

open transactions before

performing commit_delay.

config_file Cluster Restart EPAS

service

account

Sets the server's main

configuration file.

constraint_exclusion Session Immediate User Enables the planner to use

constraints to optimize

queries.

cpu_index_tuple_cost Session Immediate User Sets the planner's estimate of

the cost of processing each

index entry during an index

scan.

cpu_operator_cost Session Immediate User Sets the planner's estimate of

the cost of processing each

operator or function call.

cpu_tuple_cost Session Immediate User Sets the planner's estimate of

the cost of processing each

tuple (row).

cursor_tuple_fraction Session Immediate User Sets the planner's estimate of

the fraction of a cursor's rows

that will be retrieved.

custom_variable_classes Cluster Reload EPAS

service

account

Deprecated in Advanced

Server 9.2.

X

data_checksums Cluster Preset n/a Shows whether data

checksums are turned on for

this cluster.

data_directory Cluster Restart EPAS

service

account

Sets the server's data directory.

datestyle Session Immediate User Sets the display format for

date and time values.

db_dialect Session Immediate User Sets the precedence of built-in

namespaces.

X

dbms_alert.max_alerts Cluster Restart EPAS

service

account

Sets maximum number of

alerts.

X

dbms_pipe.total_message_

buffer
Cluster Restart EPAS

service

account

Specifies the total size of the

buffer used for the

DBMS_PIPE package.

X

db_user_namespace Cluster Reload EPAS

service

account

Enables per-database user

names.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

42

Parameter
Scope of

Effect

When

Takes

Effect

Authorized

User
Description

EPAS

Only

deadlock_timeout Session Immediate Superuser Sets the time to wait on a lock

before checking for deadlock.

debug_assertions Cluster Preset n/a Turns on various assertion

checks. (Not supported in

EPAS builds.)

debug_pretty_print Session Immediate User Indents parse and plan tree

displays.

debug_print_parse Session Immediate User Logs each query's parse tree.

debug_print_plan Session Immediate User Logs each query's execution

plan.

debug_print_rewritten Session Immediate User Logs each query's rewritten

parse tree.

default_heap_fillfactor Session Immediate User Create new tables with this

heap fillfactor by default.

X

default_statistics_targe

t
Session Immediate User Sets the default statistics

target.

default_tablespace Session Immediate User Sets the default tablespace to

create tables and indexes in.

default_text_search_conf

ig
Session Immediate User Sets default text search

configuration.

default_transaction_defe

rrable
Session Immediate User Sets the default deferrable

status of new transactions.

default_transaction_isol

ation
Session Immediate User Sets the transaction isolation

level of each new transaction.

default_transaction_read

_only
Session Immediate User Sets the default read-only

status of new transactions.

default_with_oids Session Immediate User Create new tables with OIDs

by default.

default_with_rowids Session Immediate User Create new tables with

ROWID support (ROWIDs

with indexes) by default.

X

dynamic_library_path Session Immediate Superuser Sets the path for dynamically

loadable modules.

dynamic_shared_memory_ty

pe
Cluster Restart EPAS

service

account

Selects the dynamic shared

memory implementation used.

edb_audit Cluster Reload EPAS

service

account

Enable EDB Auditing to

create audit reports in XML or

CSV format.

X

edb_audit_connect Cluster Reload EPAS

service

account

Audits each successful

connection.

X

edb_audit_destination Cluster Reload EPAS

service

account

Sets edb_audit_directory

or syslog as the destination

directory for audit files. The

syslog setting is only valid for

a Linux system.

X

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

43

Parameter
Scope of

Effect

When

Takes

Effect

Authorized

User
Description

EPAS

Only

edb_audit_directory Cluster Reload EPAS

service

account

Sets the destination directory

for audit files.

X

edb_audit_disconnect Cluster Reload EPAS

service

account

Audits end of a session. X

edb_audit_filename Cluster Reload EPAS

service

account

Sets the file name pattern for

audit files.

X

edb_audit_rotation_day Cluster Reload EPAS

service

account

Automatic rotation of log files

based on day of week.

X

edb_audit_rotation_secon

ds
Cluster Reload EPAS

service

account

Automatic log file rotation

will occur after N seconds.

X

edb_audit_rotation_size Cluster Reload EPAS

service

account

Automatic log file rotation

will occur after N Megabytes.

X

edb_audit_statement Cluster Reload EPAS

service

account

Sets the type of statements to

audit.

X

edb_audit_tag Session Immediate User Specify a tag to be included in

the audit log.

X

edb_connectby_order Session Immediate User Sort results of CONNECT BY

queries with no ORDER BY to

depth-first order. Note: For

internal use only.

X

edb_custom_plan_tries Session Immediate User Specifies the number of

custom execution plans

considered by the planner

before the planner selects a

generic execution plan.

X

edb_data_redaction Session Immediate User Enable data redaction. X

edb_dynatune Cluster Restart EPAS

service

account

Sets the edb utilization

percentage.

X

edb_dynatune_profile Cluster Restart EPAS

service

account

Sets the workload profile for

dynatune.

X

edb_enable_pruning Session Immediate User Enables the planner to early-

prune partitioned tables.

X

edb_log_every_bulk_value Session Immediate Superuser Sets the statements logged for

bulk processing.

X

edb_max_resource_groups Cluster Restart EPAS

service

account

Specifies the maximum

number of resource groups for

simultaneous use.

X

edb_max_spins_per_delay Cluster Restart EPAS

service

Specifies the number of times

a session will spin while

X

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

44

Parameter
Scope of

Effect

When

Takes

Effect

Authorized

User
Description

EPAS

Only

account waiting for a lock.

edb_redwood_date Session Immediate User Determines whether DATE

should behave like a

TIMESTAMP or not.

X

edb_redwood_greatest_lea

st
Session Immediate User Determines how GREATEST

and LEAST functions should

handle NULL parameters.

X

edb_redwood_raw_names Session Immediate User Return the unmodified name

stored in the PostgreSQL

system catalogs from

Redwood interfaces.

X

edb_redwood_strings Session Immediate User Treat NULL as an empty

string when concatenated with

a text value.

X

edb_resource_group Session Immediate User Specifies the resource group to

be used by the current process.

X

edb_sql_protect.enabled Cluster Reload EPAS

service

account

Defines whether SQL/Protect

should track queries or not.

X

edb_sql_protect.level Cluster Reload EPAS

service

account

Defines the behavior of

SQL/Protect when an event is

found.

X

edb_sql_protect.max_prot

ected_relations
Cluster Restart EPAS

service

account

Sets the maximum number of

relations protected by

SQL/Protect per role.

X

edb_sql_protect.max_prot

ected_roles
Cluster Restart EPAS

service

account

Sets the maximum number of

roles protected by

SQL/Protect.

X

edb_sql_protect.max_quer

ies_to_save
Cluster Restart EPAS

service

account

Sets the maximum number of

offending queries to save by

SQL/Protect.

X

edb_stmt_level_tx Session Immediate User Allows continuing on errors

instead of requiring a

transaction abort.

X

edb_wait_states.director

y
Cluster Restart EPAS

service

account

The EDB wait states logs are

stored in this directory.

X

edb_wait_states.retentio

n_period
Cluster Reload EPAS

service

account

EDB wait state log files will

be automatically deleted after

retention period.

X

edb_wait_states.sampling

_interval
Cluster Reload EPAS

service

account

The interval between two EDB

wait state sampling cycles.

X

edbldr.empty_csv_field Session Immediate Superuser Specifies how EDB*Loader

handles empty strings.

X

effective_cache_size Session Immediate User Sets the planner's assumption

about the size of the disk

cache.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

45

Parameter
Scope of

Effect

When

Takes

Effect

Authorized

User
Description

EPAS

Only

effective_io_concurrency Session Immediate User Number of simultaneous

requests that can be handled

efficiently by the disk

subsystem.

enable_bitmapscan Session Immediate User Enables the planner's use of

bitmap-scan plans.

enable_hashagg Session Immediate User Enables the planner's use of

hashed aggregation plans.

enable_hashjoin Session Immediate User Enables the planner's use of

hash join plans.

enable_hints Session Immediate User Enable optimizer hints in SQL

statements.

X

enable_indexonlyscan Session Immediate User Enables the planner’s use of

index-only-scan plans.

enable_indexscan Session Immediate User Enables the planner's use of

index-scan plans.

enable_material Session Immediate User Enables the planner's use of

materialization.

enable_mergejoin Session Immediate User Enables the planner's use of

merge join plans.

enable_nestloop Session Immediate User Enables the planner's use of

nested-loop join plans.

enable_seqscan Session Immediate User Enables the planner's use of

sequential-scan plans.

enable_sort Session Immediate User Enables the planner's use of

explicit sort steps.

enable_tidscan Session Immediate User Enables the planner's use of

TID scan plans.

escape_string_warning Session Immediate User Warn about backslash escapes

in ordinary string literals.

event_source Cluster Restart EPAS

service

account

Sets the application name used

to identify PostgreSQL

messages in the event log.

exit_on_error Session Immediate User Terminate session on any

error.

external_pid_file Cluster Restart EPAS

service

account

Writes the postmaster PID to

the specified file.

extra_float_digits Session Immediate User Sets the number of digits

displayed for floating-point

values.

from_collapse_limit Session Immediate User Sets the FROM-list size

beyond which subqueries are

not collapsed.

fsync Cluster Reload EPAS

service

account

Forces synchronization of

updates to disk.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

46

Parameter
Scope of

Effect

When

Takes

Effect

Authorized

User
Description

EPAS

Only

full_page_writes Cluster Reload EPAS

service

account

Writes full pages to WAL

when first modified after a

checkpoint.

geqo Session Immediate User Enables genetic query

optimization.

geqo_effort Session Immediate User GEQO: effort is used to set the

default for other GEQO

parameters.

geqo_generations Session Immediate User GEQO: number of iterations

of the algorithm.

geqo_pool_size Session Immediate User GEQO: number of individuals

in the population.

geqo_seed Session Immediate User GEQO: seed for random path

selection.

geqo_selection_bias Session Immediate User GEQO: selective pressure

within the population.

geqo_threshold Session Immediate User Sets the threshold of FROM

items beyond which GEQO is

used.

gin_fuzzy_search_limit Session Immediate User Sets the maximum allowed

result for exact search by GIN.

hba_file Cluster Restart EPAS

service

account

Sets the server's "hba"

configuration file.

hot_standby Cluster Restart EPAS

service

account

Allows connections and

queries during recovery.

hot_standby_feedback Cluster Reload EPAS

service

account

Allows feedback from a hot

standby to the primary that

will avoid query conflicts.

huge_pages Cluster Restart EPAS

service

account

Use of huge pages on Linux.

icu_short_form Database Preset n/a Shows the ICU collation order

configuration.

X

ident_file Cluster Restart EPAS

service

account

Sets the server's "ident"

configuration file.

ignore_checksum_failure Session Immediate Superuser Continues processing after a

checksum failure.

ignore_system_indexes Cluster/

Session

Reload/

Immediate

EPAS

service

account/

User

Disables reading from system

indexes. (Can also be set with

PGOPTIONS at session start.)

index_advisor.enabled Session Immediate User Enable Index Advisor plugin. X

integer_datetimes Cluster Preset n/a Datetimes are integer based.

intervalStyle Session Immediate User Sets the display format for

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

47

Parameter
Scope of

Effect

When

Takes

Effect

Authorized

User
Description

EPAS

Only

interval values.

join_collapse_limit Session Immediate User Sets the FROM-list size beyond

which JOIN constructs are not

flattened.

krb_caseins_users Cluster Reload EPAS

service

account

Sets whether Kerberos and

GSSAPI user names should be

treated as case-insensitive.

krb_server_keyfile Cluster Reload EPAS

service

account

Sets the location of the

Kerberos server key file.

lc_collate Database Preset n/a Shows the collation order

locale.

lc_ctype Database Preset n/a Shows the character

classification and case

conversion locale.

lc_messages Session Immediate Superuser Sets the language in which

messages are displayed.

lc_monetary Session Immediate User Sets the locale for formatting

monetary amounts.

lc_numeric Session Immediate User Sets the locale for formatting

numbers.

lc_time Session Immediate User Sets the locale for formatting

date and time values.

listen_addresses Cluster Restart EPAS

service

account

Sets the host name or IP

address(es) to listen to.

local_preload_libraries Cluster/

Session

Reload/

Immediate

EPAS

service

account/

User

Lists shared libraries to

preload into each backend.

(Can also be set with

PGOPTIONS at session start.)

lock_timeout Session Immediate User Sets the maximum time

allowed that a statement may

wait for a lock.

lo_compat_privileges Session Immediate Superuser Enables backward

compatibility mode for

privilege checks on large

objects.

log_autovacuum_min_durat

ion
Cluster Reload EPAS

service

account

Sets the minimum execution

time above which autovacuum

actions will be logged.

log_checkpoints Cluster Reload EPAS

service

account

Logs each checkpoint.

log_connections Cluster/

Session

Reload/

Immediate

EPAS

service

account/

User

Logs each successful

connection. (Can also be set

with PGOPTIONS at session

start.)

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

48

Parameter
Scope of

Effect

When

Takes

Effect

Authorized

User
Description

EPAS

Only

log_destination Cluster Reload EPAS

service

account

Sets the destination for server

log output.

log_directory Cluster Reload EPAS

service

account

Sets the destination directory

for log files.

log_disconnections Cluster/

Session

Reload/

Immediate

EPAS

service

account/

User

Logs end of a session,

including duration. (Can also

be set with PGOPTIONS at

session start.)

log_duration Session Immediate Superuser Logs the duration of each

completed SQL statement.

log_error_verbosity Session Immediate Superuser Sets the verbosity of logged

messages.

log_executor_stats Session Immediate Superuser Writes executor performance

statistics to the server log.

log_file_mode Cluster Reload EPAS

service

account

Sets the file permissions for

log files.

log_filename Cluster Reload EPAS

service

account

Sets the file name pattern for

log files.

log_hostname Cluster Reload EPAS

service

account

Logs the host name in the

connection logs.

log_line_prefix Cluster Reload EPAS

service

account

Controls information prefixed

to each log line.

log_lock_waits Session Immediate Superuser Logs long lock waits.

log_min_duration_stateme

nt
Session Immediate Superuser Sets the minimum execution

time above which statements

will be logged.

log_min_error_statement Session Immediate Superuser Causes all statements

generating error at or above

this level to be logged.

log_min_messages Session Immediate Superuser Sets the message levels that

are logged.

log_parser_stats Session Immediate Superuser Writes parser performance

statistics to the server log.

log_planner_stats Session Immediate Superuser Writes planner performance

statistics to the server log.

log_rotation_age Cluster Reload EPAS

service

account

Automatic log file rotation

will occur after N minutes.

log_rotation_size Cluster Reload EPAS

service

account

Automatic log file rotation

will occur after N kilobytes.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

49

Parameter
Scope of

Effect

When

Takes

Effect

Authorized

User
Description

EPAS

Only

log_statement Session Immediate Superuser Sets the type of statements

logged.

log_statement_stats Session Immediate Superuser Writes cumulative

performance statistics to the

server log.

log_temp_files Session Immediate Superuser Log the use of temporary files

larger than this number of

kilobytes.

log_timezone Cluster Reload EPAS

service

account

Sets the time zone to use in

log messages.

log_truncate_on_rotation Cluster Reload EPAS

service

account

Truncate existing log files of

same name during log

rotation.

logging_collector Cluster Restart EPAS

service

account

Start a subprocess to capture

stderr output and/or csvlogs

into log files.

maintenance_work_mem Session Immediate User Sets the maximum memory to

be used for maintenance

operations.

max_connections Cluster Restart EPAS

service

account

Sets the maximum number of

concurrent connections.

max_files_per_process Cluster Restart EPAS

service

account

Sets the maximum number of

simultaneously open files for

each server process.

max_function_args Cluster Preset n/a Shows the maximum number

of function arguments.

max_identifier_length Cluster Preset n/a Shows the maximum identifier

length.

max_index_keys Cluster Preset n/a Shows the maximum number

of index keys.

max_locks_per_transactio

n
Cluster Restart EPAS

service

account

Sets the maximum number of

locks per transaction.

max_pred_locks_per_trans

action
Cluster Restart EPAS

service

account

Sets the maximum number of

predicate locks per transaction.

max_prepared_transaction

s
Cluster Restart EPAS

service

account

Sets the maximum number of

simultaneously prepared

transactions.

max_replication_slots Cluster Restart EPAS

service

account

Sets the maximum number of

simultaneously defined

replication slots.

max_stack_depth Session Immediate Superuser Sets the maximum stack

depth, in kilobytes.

max_standby_archive_dela

y
Cluster Reload EPAS Sets the maximum delay

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

50

Parameter
Scope of

Effect

When

Takes

Effect

Authorized

User
Description

EPAS

Only

service

account

before canceling queries when

a hot standby server is

processing archived WAL

data.

max_standby_streaming_de

lay
Cluster Reload EPAS

service

account

Sets the maximum delay

before canceling queries when

a hot standby server is

processing streamed WAL

data.

max_wal_senders Cluster Restart EPAS

service

account

Sets the maximum number of

simultaneously running WAL

sender processes.

max_wal_size Cluster Reload EPAS

service

account

Sets the maximum size to

which the WAL will grow

between automatic WAL

checkpoints. The default is

1GB.

max_worker_processes Cluster Restart EPAS

service

account

Maximum number of

concurrent worker processes.

min_wal_size Cluster Reload EPAS

service

account

Sets the threshold at which

WAL logs will be recycled

rather than removed. The

default is 80 MB.

nls_length_semantics Session Immediate Superuser Sets the semantics to use for

char, varchar, varchar2 and

long columns.

X

odbc_lib_path Cluster Restart EPAS

service

account

Sets the path for ODBC

library.

X

optimizer_mode Session Immediate User Default optimizer mode. X

oracle_home Cluster Restart EPAS

service

account

Sets the path for the Oracle

home directory.

X

password_encryption Session Immediate User Encrypt passwords.

pg_prewarm.autoprewarm Cluster Restart EPAS

service

account

Enables the autoprewarm

background worker.

X

pg_prewarm.autoprewarm_i

nterval
Cluster Reload EPAS

service

account

Sets the minimum number of

seconds after which

autoprewarm dumps

shared buffers.

X

port Cluster Restart EPAS

service

account

Sets the TCP port on which

the server listens.

post_auth_delay Cluster/

Session

Reload/

Immediate

EPAS

service

account/

Waits N seconds on

connection startup after

authentication. (Can also be

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

51

Parameter
Scope of

Effect

When

Takes

Effect

Authorized

User
Description

EPAS

Only

User set with PGOPTIONS at session

start.)

pre_auth_delay Cluster Reload EPAS

service

account

Waits N seconds on

connection startup before

authentication.

qreplace_function Session Immediate Superuser The function to be used by

Query Replace feature. Note:

For internal use only.

X

query_rewrite_enabled Session Immediate User Child table scans will be

skipped if their constraints

guarantee that no rows match

the query.

X

query_rewrite_integrity Session Immediate Superuser Sets the degree to which query

rewriting must be enforced.

X

quote_all_identifiers Session Immediate User When generating SQL

fragments, quote all

identifiers.

random_page_cost Session Immediate User Sets the planner's estimate of

the cost of a nonsequentially

fetched disk page.

restart_after_crash Cluster Reload EPAS

service

account

Reinitialize server after

backend crash.

search_path Session Immediate User Sets the schema search order

for names that are not schema-

qualified.

segment_size Cluster Preset n/a Shows the number of pages

per disk file.

seq_page_cost Session Immediate User Sets the planner's estimate of

the cost of a sequentially

fetched disk page.

server_encoding Database Preset n/a Sets the server (database)

character set encoding.

server_version Cluster Preset n/a Shows the server version.

server_version_num Cluster Preset n/a Shows the server version as an

integer.

session_preload_librarie

s
Session Immediate

but only at

connection

start

Superuser Lists shared libraries to

preload into each backend.

session_replication_role Session Immediate Superuser Sets the session's behavior for

triggers and rewrite rules.

shared_buffers Cluster Restart EPAS

service

account

Sets the number of shared

memory buffers used by the

server.

shared_preload_libraries Cluster Restart EPAS

service

Lists shared libraries to

preload into server.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

52

Parameter
Scope of

Effect

When

Takes

Effect

Authorized

User
Description

EPAS

Only

account

sql_inheritance Session Immediate User Causes subtables to be

included by default in various

commands.

ssl Cluster Restart EPAS

service

account

Enables SSL connections.

ssl_ca_file Cluster Restart EPAS

service

account

Location of the SSL certificate

authority file.

ssl_cert_file Cluster Restart EPAS

service

account

Location of the SSL server

certificate file.

ssl_ciphers Cluster Restart EPAS

service

account

Sets the list of allowed SSL

ciphers.

ssl_crl_file Cluster Restart EPAS

service

account

Location of the SSL certificate

revocation list file.

ssl_ecdh_curve Cluster Restart EPAS

service

account

Sets the curve to use for

ECDH.

ssl_key_file Cluster Restart EPAS

service

account

Location of the SSL server

private key file.

ssl_prefer_server_cipher

s
Cluster Restart EPAS

service

account

Give priority to server

ciphersuite order.

ssl_renegotiation_limit Session Immediate User Set the amount of traffic to

send and receive before

renegotiating the encryption

keys.

standard_conforming_stri

ngs
Session Immediate User Causes '...' strings to treat

backslashes literally.

statement_timeout Session Immediate User Sets the maximum allowed

duration of any statement.

stats_temp_directory Cluster Reload EPAS

service

account

Writes temporary statistics

files to the specified directory.

superuser_reserved_conne

ctions
Cluster Restart EPAS

service

account

Sets the number of connection

slots reserved for superusers.

synchronize_seqscans Session Immediate User Enable synchronized

sequential scans.

synchronous_commit Session Immediate User Sets immediate fsync at

commit.

synchronous_standby_name

s
Cluster Reload EPAS List of names of potential

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

53

Parameter
Scope of

Effect

When

Takes

Effect

Authorized

User
Description

EPAS

Only

service

account

synchronous standbys.

syslog_facility Cluster Reload EPAS

service

account

Sets the syslog "facility" to be

used when syslog enabled.

syslog_ident Cluster Reload EPAS

service

account

Sets the program name used to

identify PostgreSQL messages

in syslog.

tcp_keepalives_count Session Immediate User Maximum number of TCP

keepalive retransmits.

tcp_keepalives_idle Session Immediate User Time between issuing TCP

keepalives.

tcp_keepalives_interval Session Immediate User Time between TCP keepalive

retransmits.

temp_buffers Session Immediate User Sets the maximum number of

temporary buffers used by

each session.

temp_file_limit Session Immediate Superuser Limits the total size of all

temporary files used by each

session.

temp_tablespaces Session Immediate User Sets the tablespace(s) to use

for temporary tables and sort

files.

timed_statistics Session Immediate User Enables the recording of timed

statistics.

X

timezone Session Immediate User Sets the time zone for

displaying and interpreting

time stamps.

timezone_abbreviations Session Immediate User Selects a file of time zone

abbreviations.

trace_hints Session Immediate User Emit debug info about hints

being honored.

X

trace_notify Session Immediate User Generates debugging output

for LISTEN and NOTIFY.

trace_recovery_messages Cluster Reload EPAS

service

account

Enables logging of recovery-

related debugging information.

trace_sort Session Immediate User Emit information about

resource usage in sorting.

track_activities Session Immediate Superuser Collects information about

executing commands.

track_activity_query_siz

e
Cluster Restart EPAS

service

account

Sets the size reserved for
pg_stat_activity.curren

t_query, in bytes.

track_counts Session Immediate Superuser Collects statistics on database

activity.

track_functions Session Immediate Superuser Collects function-level

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

54

Parameter
Scope of

Effect

When

Takes

Effect

Authorized

User
Description

EPAS

Only

statistics on database activity.

track_io_timing Session Immediate Superuser Collects timing statistics for

database I/O activity.

transaction_deferrable Session Immediate User Whether to defer a read-only

serializable transaction until it

can be executed with no

possible serialization failures.

transaction_isolation Session Immediate User Sets the current transaction's

isolation level.

transaction_read_only Session Immediate User Sets the current transaction's

read-only status.

transform_null_equals Session Immediate User Treats "expr=NULL" as "expr

IS NULL".

unix_socket_directories Cluster Restart EPAS

service

account

Sets the directory where the

Unix-domain socket will be

created.

unix_socket_group Cluster Restart EPAS

service

account

Sets the owning group of the

Unix-domain socket.

unix_socket_permissions Cluster Restart EPAS

service

account

Sets the access permissions of

the Unix-domain socket.

update_process_title Session Immediate Superuser Updates the process title to

show the active SQL

command.

utl_encode.uudecode_redw

ood
Session Immediate User Allows decoding of Oracle-

created uuencoded data.

X

utl_file.umask Session Immediate User Umask used for files created

through the UTL_FILE

package.

X

vacuum_cost_delay Session Immediate User Vacuum cost delay in

milliseconds.

vacuum_cost_limit Session Immediate User Vacuum cost amount available

before napping.

vacuum_cost_page_dirty Session Immediate User Vacuum cost for a page dirtied

by vacuum.

vacuum_cost_page_hit Session Immediate User Vacuum cost for a page found

in the buffer cache.

vacuum_cost_page_miss Session Immediate User Vacuum cost for a page not

found in the buffer cache.

vacuum_defer_cleanup_age Cluster Reload EPAS

service

account

Number of transactions by

which VACUUM and HOT

cleanup should be deferred, if

any.

vacuum_freeze_min_age Session Immediate User Minimum age at which

VACUUM should freeze a

table row.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

55

Parameter
Scope of

Effect

When

Takes

Effect

Authorized

User
Description

EPAS

Only

vacuum_freeze_table_age Session Immediate User Age at which VACUUM

should scan whole table to

freeze tuples.

vacuum_multixact_freeze_

min_age
Session Immediate User Minimum age at which

VACUUM should freeze a

MultiXactId in a table row.

vacuum_multixact_freeze_

table_age
Session Immediate User Multixact age at which

VACUUM should scan whole

table to freeze tuples.

wal_block_size Cluster Preset n/a Shows the block size in the

write ahead log.

wal_buffers Cluster Restart EPAS

service

account

Sets the number of disk-page

buffers in shared memory for

WAL.

wal_keep_segments Cluster Reload EPAS

service

account

Sets the number of WAL files

held for standby servers.

wal_level Cluster Restart EPAS

service

account

Set the level of information

written to the WAL.

wal_log_hints Cluster Restart EPAS

service

account

Writes full pages to WAL

when first modified after a

checkpoint, even for non-

critical modifications.

wal_receiver_status_inte

rval
Cluster Reload EPAS

service

account

Sets the maximum interval

between WAL receiver status

reports to the primary.

wal_receiver_timeout Cluster Reload EPAS

service

account

Sets the maximum wait time

to receive data from the

primary.

wal_segment_size Cluster Preset n/a Shows the number of pages

per write ahead log segment.

wal_sender_timeout Cluster Reload EPAS

service

account

Sets the maximum time to

wait for WAL replication.

wal_sync_method Cluster Reload EPAS

service

account

Selects the method used for

forcing WAL updates to disk.

wal_writer_delay Cluster Reload EPAS

service

account

WAL writer sleep time

between WAL flushes.

work_mem Session Immediate User Sets the maximum memory to

be used for query workspaces.

xloginsert_locks Cluster Restart EPAS

service

account

Sets the number of locks used

for concurrent xlog insertions.

xmlbinary Session Immediate User Sets how binary values are to

be encoded in XML.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

56

Parameter
Scope of

Effect

When

Takes

Effect

Authorized

User
Description

EPAS

Only

xmloption Session Immediate User Sets whether XML data in

implicit parsing and

serialization operations is to be

considered as documents or

content fragments.

zero_damaged_pages Session Immediate Superuser Continues processing past

damaged page headers.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

57

3.1.3 Configuration Parameters by Functionality

This section provides more detail for certain groups of configuration parameters.

The section heading for each parameter is followed by a list of attributes:

 Parameter Type. Type of values the parameter can accept. See Section 3.1.1 for

a discussion of parameter type values.

 Default Value. Default setting if a value is not explicitly set in the configuration

file.

 Range. Permitted range of values.

 Minimum Scope of Effect. Smallest scope for which a distinct setting can be

made. Generally, the minimal scope of a distinct setting is either the entire cluster

(the setting is the same for all databases and sessions thereof, in the cluster), or

per session (the setting may vary by role, database, or individual session). (This

attribute has the same meaning as the “Scope of Effect” column in the table of

Section 3.1.2.)

 When Value Changes Take Effect. Least invasive action required to activate a

change to a parameter’s value. All parameter setting changes made in the

configuration file can be put into effect with a restart of the database server;

however certain parameters require a database server restart. Some parameter

setting changes can be put into effect with a reload of the configuration file

without stopping the database server. Finally, other parameter setting changes can

be put into effect with some client side action whose result is immediate. (This

attribute has the same meaning as the “When Takes Effect” column in the table of

Section 3.1.2.)

 Required Authorization to Activate. The type of user authorization to activate a

change to a parameter’s setting. If a database server restart or a configuration file

reload is required, then the user must be a EPAS service account

(enterprisedb or postgres depending upon the Advanced Server

compatibility installation mode). This attribute has the same meaning as the

“Authorized User” column in the table of Section 3.1.2.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

58

3.1.3.1 Top Performance Related Parameters

This section discusses the configuration parameters that have the most immediate impact

on performance.

3.1.3.1.1 shared_buffers

Parameter Type: Integer

Default Value: 32MB

Range: 128kB to system dependent

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: EPAS service account

Sets the amount of memory the database server uses for shared memory buffers. The

default is typically 32 megabytes (32MB), but might be less if your kernel settings will not

support it (as determined during initdb). This setting must be at least 128 kilobytes.

(Non-default values of BLCKSZ change the minimum.) However, settings significantly

higher than the minimum are usually needed for good performance.

If you have a dedicated database server with 1GB or more of RAM, a reasonable starting

value for shared_buffers is 25% of the memory in your system. There are some

workloads where even large settings for shared_buffers are effective, but because

Advanced Server also relies on the operating system cache, it is unlikely that an

allocation of more than 40% of RAM to shared_buffers will work better than a

smaller amount.

On systems with less than 1GB of RAM, a smaller percentage of RAM is appropriate, so

as to leave adequate space for the operating system (15% of memory is more typical in

these situations). Also, on Windows, large values for shared_buffers aren't as

effective. You may find better results keeping the setting relatively low and using the

operating system cache more instead. The useful range for shared_buffers on

Windows systems is generally from 64MB to 512MB.

Increasing this parameter might cause Advanced Server to request more System V shared

memory than your operating system's default configuration allows. See Section 17.4.1,

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

59

“Shared Memory and Semaphores” in the PostgreSQL Core Documentation for

information on how to adjust those parameters, if necessary.

3.1.3.1.2 work_mem

Parameter Type: Integer

Default Value: 1MB

Range: 64kB to 2097151kB

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Specifies the amount of memory to be used by internal sort operations and hash tables

before writing to temporary disk files. The value defaults to one megabyte (1MB). Note

that for a complex query, several sort or hash operations might be running in parallel;

each operation will be allowed to use as much memory as this value specifies before it

starts to write data into temporary files. Also, several running sessions could be doing

such operations concurrently. Therefore, the total memory used could be many times the

value of work_mem; it is necessary to keep this fact in mind when choosing the value.

Sort operations are used for ORDER BY, DISTINCT, and merge joins. Hash tables are

used in hash joins, hash-based aggregation, and hash-based processing of IN subqueries.

Reasonable values are typically between 4MB and 64MB, depending on the size of your

machine, how many concurrent connections you expect (determined by

max_connections), and the complexity of your queries.

3.1.3.1.3 maintenance_work_mem

Parameter Type: Integer

Default Value: 16MB

Range: 1024kB to 2097151kB

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

60

Specifies the maximum amount of memory to be used by maintenance operations, such

as VACUUM, CREATE INDEX, and ALTER TABLE ADD FOREIGN KEY. It defaults to 16

megabytes (16MB). Since only one of these operations can be executed at a time by a

database session, and an installation normally doesn't have many of them running

concurrently, it's safe to set this value significantly larger than work_mem. Larger settings

might improve performance for vacuuming and for restoring database dumps.

Note that when autovacuum runs, up to autovacuum_max_workers times this memory

may be allocated, so be careful not to set the default value too high.

A good rule of thumb is to set this to about 5% of system memory, but not more than

about 512MB. Larger values won't necessarily improve performance.

3.1.3.1.4 wal_buffers

Parameter Type: Integer

Default Value: 64kB

Range: 32kB to system dependent

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: EPAS service account

The amount of memory used in shared memory for WAL data. The default is 64

kilobytes (64kB). The setting need only be large enough to hold the amount of WAL data

generated by one typical transaction, since the data is written out to disk at every

transaction commit.

Increasing this parameter might cause Advanced Server to request more System V shared

memory than your operating system's default configuration allows. See Section 17.4.1,

“Shared Memory and Semaphores” in the PostgreSQL Core Documentation for

information on how to adjust those parameters, if necessary.

Although even this very small setting does not always cause a problem, there are

situations where it can result in extra fsync calls, and degrade overall system

throughput. Increasing this value to 1MB or so can alleviate this problem. On very busy

systems, an even higher value may be needed, up to a maximum of about 16MB. Like

shared_buffers, this parameter increases Advanced Server’s initial shared memory

allocation, so if increasing it causes an Advanced Server start failure, you will need to

increase the operating system limit.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

61

3.1.3.1.5 checkpoint_segments

Now deprecated; this parameter is not supported by Advanced Server.

3.1.3.1.6 checkpoint_completion_target

Parameter Type: Floating point

Default Value: 0.5

Range: 0 to 1

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

Specifies the target of checkpoint completion as a fraction of total time between

checkpoints. This spreads out the checkpoint writes while the system starts working

towards the next checkpoint.

The default of 0.5 means aim to finish the checkpoint writes when 50% of the next

checkpoint is ready. A value of 0.9 means aim to finish the checkpoint writes when 90%

of the next checkpoint is done, thus throttling the checkpoint writes over a larger amount

of time and avoiding spikes of performance bottlenecking.

3.1.3.1.7 checkpoint_timeout

Parameter Type: Integer

Default Value: 5min

Range: 30s to 3600s

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

Maximum time between automatic WAL checkpoints, in seconds. The default is five

minutes (5min). Increasing this parameter can increase the amount of time needed for

crash recovery.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

62

Increasing checkpoint_timeout to a larger value, such as 15 minutes, can reduce the

I/O load on your system, especially when using large values for shared_buffers.

The downside of making the aforementioned adjustments to the checkpoint parameters is

that your system will use a modest amount of additional disk space, and will take longer

to recover in the event of a crash. However, for most users, this is a small price to pay for

a significant performance improvement.

3.1.3.1.8 max_wal_size

Parameter Type: Integer

Default Value: 1 GB

Range: 2 to 2147483647

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

max_wal_size specifies the maximum size that the WAL will reach between automatic

WAL checkpoints. This is a soft limit; WAL size can exceed max_wal_size under

special circumstances (when under a heavy load, a failing archive_command, or a high

wal_keep_segments setting).

Increasing this parameter can increase the amount of time needed for crash recovery. This

parameter can only be set in the postgresql.conf file or on the server command line.

3.1.3.1.9 min_wal_size

Parameter Type: Integer

Default Value: 80 MB

Range: 2 to 2147483647

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

63

If WAL disk usage stays below the value specified by min_wal_size, old WAL files

are recycled for future use at a checkpoint, rather than removed. This ensures that

enough WAL space is reserved to handle spikes in WAL usage (like when running large

batch jobs). This parameter can only be set in the postgresql.conf file or on the server

command line.

3.1.3.1.10 bgwriter_delay

Parameter Type: Integer

Default Value: 200ms

Range: 10ms to 10000ms

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

Specifies the delay between activity rounds for the background writer. In each round the

writer issues writes for some number of dirty buffers (controllable by the

bgwriter_lru_maxpages and bgwriter_lru_multiplier parameters). It then

sleeps for bgwriter_delay milliseconds, and repeats.

The default value is 200 milliseconds (200ms). Note that on many systems, the effective

resolution of sleep delays is 10 milliseconds; setting bgwriter_delay to a value that is

not a multiple of 10 might have the same results as setting it to the next higher multiple of

10.

Typically, when tuning bgwriter_delay, it should be reduced from its default value.

This parameter is rarely increased, except perhaps to save on power consumption on a

system with very low utilization.

3.1.3.1.11 seq_page_cost

Parameter Type: Floating point

Default Value: 1

Range: 0 to 1.79769e+308

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

64

Required Authorization to Activate: Session user

Sets the planner's estimate of the cost of a disk page fetch that is part of a series of

sequential fetches. The default is 1.0. This value can be overridden for a particular

tablespace by setting the tablespace parameter of the same name. (Refer to the ALTER

TABLESPACE command in the PostgreSQL Core Documentation.)

The default value assumes very little caching, so it's frequently a good idea to reduce it.

Even if your database is significantly larger than physical memory, you might want to try

setting this parameter to less than 1 (rather than its default value of 1) to see whether you

get better query plans that way. If your database fits entirely within memory, you can

lower this value much more, perhaps to 0.1.

3.1.3.1.12 random_page_cost

Parameter Type: Floating point

Default Value: 4

Range: 0 to 1.79769e+308

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Sets the planner's estimate of the cost of a non-sequentially-fetched disk page. The

default is 4.0. This value can be overridden for a particular tablespace by setting the

tablespace parameter of the same name. (Refer to the ALTER TABLESPACE command in

the PostgreSQL Core Documentation.)

Reducing this value relative to seq_page_cost will cause the system to prefer index

scans; raising it will make index scans look relatively more expensive. You can raise or

lower both values together to change the importance of disk I/O costs relative to CPU

costs, which are described by the cpu_tuple_cost and cpu_index_tuple_cost

parameters.

The default value assumes very little caching, so it's frequently a good idea to reduce it.

Even if your database is significantly larger than physical memory, you might want to try

setting this parameter to 2 (rather than its default of 4) to see whether you get better query

plans that way. If your database fits entirely within memory, you can lower this value

much more, perhaps to 0.1.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

65

Although the system will let you do so, never set random_page_cost less than

seq_page_cost. However, setting them equal (or very close to equal) makes sense if

the database fits mostly or entirely within memory, since in that case there is no penalty

for touching pages out of sequence. Also, in a heavily-cached database you should lower

both values relative to the CPU parameters, since the cost of fetching a page already in

RAM is much smaller than it would normally be.

3.1.3.1.13 effective_cache_size

Parameter Type: Integer

Default Value: 128MB

Range: 8kB to 17179869176kB

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Sets the planner's assumption about the effective size of the disk cache that is available to

a single query. This is factored into estimates of the cost of using an index; a higher value

makes it more likely index scans will be used, a lower value makes it more likely

sequential scans will be used. When setting this parameter you should consider both

Advanced Server’s shared buffers and the portion of the kernel's disk cache that will be

used for Advanced Server data files. Also, take into account the expected number of

concurrent queries on different tables, since they will have to share the available space.

This parameter has no effect on the size of shared memory allocated by Advanced Server,

nor does it reserve kernel disk cache; it is used only for estimation purposes. The default

is 128 megabytes (128MB).

If this parameter is set too low, the planner may decide not to use an index even when it

would be beneficial to do so. Setting effective_cache_size to 50% of physical

memory is a normal, conservative setting. A more aggressive setting would be

approximately 75% of physical memory.

3.1.3.1.14 synchronous_commit

Parameter Type: Boolean

Default Value: true

Range: {true | false}

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

66

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Specifies whether transaction commit will wait for WAL records to be written to disk

before the command returns a "success" indication to the client. The default, and safe,

setting is on. When off, there can be a delay between when success is reported to the

client and when the transaction is really guaranteed to be safe against a server crash. (The

maximum delay is three times wal_writer_delay.)

Unlike fsync, setting this parameter to off does not create any risk of database

inconsistency: an operating system or database crash might result in some recent

allegedly-committed transactions being lost, but the database state will be just the same

as if those transactions had been aborted cleanly.

So, turning synchronous_commit off can be a useful alternative when performance is

more important than exact certainty about the durability of a transaction. See Section

29.3, Asynchronous Commit in the PostgreSQL Core Documentation for information.

This parameter can be changed at any time; the behavior for any one transaction is

determined by the setting in effect when it commits. It is therefore possible, and useful, to

have some transactions commit synchronously and others asynchronously. For example,

to make a single multistatement transaction commit asynchronously when the default is

the opposite, issue SET LOCAL synchronous_commit TO OFF within the

transaction.

3.1.3.1.15 edb_max_spins_per_delay

Parameter Type: Integer

Default Value: 1000

Range: 10 to 1000

Minimum Scope of Effect: Per cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: EPAS service account

Use edb_max_spins_per_delay to specify the maximum number of times that a

session will 'spin' while waiting for a spin-lock. If a lock is not acquired, the session will

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

67

sleep. If you do not specify an alternative value for edb_max_spins_per_delay, the

server will enforce the default value of 1000.

This may be useful for systems that use NUMA (non-uniform memory access)

architecture.

3.1.3.1.16 pg_prewarm.autoprewarm

Parameter Type: Boolean

Default Value: true

Range: {true | false}

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: EPAS service account

This parameter controls whether or not the database server should run autoprewarm,

which is a background worker process that automatically dumps shared buffers to disk

before a shutdown. It then prewarms the shared buffers the next time the server is started,

meaning it loads blocks from the disk back into the buffer pool.

The advantage is that it shortens the warm up times after the server has been restarted by

loading the data that has been dumped to disk before shutdown.

If pg_prewarm.autoprewarm is set to on, the autoprewarm worker is enabled. If the

parameter is set to off, autoprewarm is disabled. The parameter is on by default.

Before autoprewarm can be used, you must add $libdir/pg_prewarm to the

libraries listed in the shared_preload_libraries configuration parameter of the

postgresql.conf file as shown by the following example:

shared_preload_libraries =

'$libdir/dbms_pipe,$libdir/edb_gen,$libdir/dbms_aq,$libdir/pg_prewarm'

After modifying the shared_preload_libraries parameter, restart the database

server after which the autoprewarm background worker is launched immediately after

the server has reached a consistent state.

The autoprewarm process will start loading blocks that were previously recorded in

$PGDATA/autoprewarm.blocks until there is no free buffer space left in the buffer

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

68

pool. In this manner, any new blocks that were loaded either by the recovery process or

by the querying clients, are not replaced.

Once the autoprewarm process has finished loading buffers from disk, it will

periodically dump shared buffers to disk at the interval specified by the

pg_prewarm.autoprewarm_interval parameter (see Section 3.1.3.1.17). Upon the

next server restart, the autoprewarm process will prewarm shared buffers with the

blocks that were last dumped to disk.

3.1.3.1.17 pg_prewarm.autoprewarm_interval

Parameter Type: Integer

Default Value: 300s

Range: 0s to 2147483s

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

This is the minimum number of seconds after which the autoprewarm background

worker dumps shared buffers to disk. The default is 300 seconds. If set to 0, shared

buffers are not dumped at regular intervals, but only when the server is shut down.

See Section 3.1.3.1.16 for information on the autoprewarm background worker.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

69

3.1.3.2 Resource Usage / Memory

The configuration parameters in this section control resource usage pertaining to

memory.

3.1.3.2.1 edb_dynatune

Parameter Type: Integer

Default Value: 0

Range: 0 to 100

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: EPAS service account

Determines how much of the host system’s resources are to be used by the database

server based upon the host machine’s total available resources and the intended usage of

the host machine.

When Advanced Server is initially installed, the edb_dynatune parameter is set in

accordance with the selected usage of the host machine on which it was installed (i.e.,

development machine, mixed use machine, or dedicated server). For most purposes, there

is no need for the database administrator to adjust the various configuration parameters in

the postgresql.conf file in order to improve performance.

The edb_dynatune parameter can be set to any integer value between 0 and 100,

inclusive. A value of 0, turns off the dynamic tuning feature thereby leaving the database

server resource usage totally under the control of the other configuration parameters in

the postgresql.conf file.

A low non-zero, value (e.g., 1 - 33) dedicates the least amount of the host machine’s

resources to the database server. This setting would be used for a development machine

where many other applications are being used.

A value in the range of 34 - 66 dedicates a moderate amount of resources to the database

server. This setting might be used for a dedicated application server that may have a fixed

number of other applications running on the same machine as Advanced Server.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

70

The highest values (e.g., 67 - 100) dedicate most of the server’s resources to the database

server. This setting would be used for a host machine that is totally dedicated to running

Advanced Server.

Once a value of edb_dynatune is selected, database server performance can be further

fine-tuned by adjusting the other configuration parameters in the postgresql.conf

file. Any adjusted setting overrides the corresponding value chosen by edb_dynatune.

You can change the value of a parameter by un-commenting the configuration parameter,

specifying the desired value, and restarting the database server.

3.1.3.2.2 edb_dynatune_profile

Parameter Type: Enum

Default Value: oltp

Range: {oltp | reporting | mixed}

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: EPAS service account

This parameter is used to control tuning aspects based upon the expected workload

profile on the database server.

The following are the possible values:

 oltp. Recommended when the database server is processing heavy online

transaction processing workloads.

 reporting. Recommended for database servers used for heavy data reporting.

 mixed. Recommended for servers that provide a mix of transaction processing

and data reporting.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

71

3.1.3.3 Resource Usage / EDB Resource Manager

The configuration parameters in this section control resource usage through EDB

Resource Manager.

3.1.3.3.1 edb_max_resource_groups

Parameter Type: Integer

Default Value: 16

Range: 0 to 65536

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: EPAS service account

This parameter controls the maximum number of resource groups that can be used

simultaneously by EDB Resource Manager. More resource groups can be created than

the value specified by edb_max_resource_groups, however, the number of resource

groups in active use by processes in these groups cannot exceed this value.

Parameter edb_max_resource_groups should be set comfortably larger than the

number of groups you expect to maintain so as not to run out.

3.1.3.3.2 edb_resource_group

Parameter Type: String

Default Value: none

Range: n/a

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

72

Set the edb_resource_group parameter to the name of the resource group to which

the current session is to be controlled by EDB Resource Manager according to the

group’s resource type settings.

If the parameter is not set, then the current session does not utilize EDB Resource

Manager.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

73

3.1.3.4 Query Tuning

This section describes the configuration parameters used for optimizer hints.

3.1.3.4.1 enable_hints

Parameter Type: Boolean

Default Value: true

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Optimizer hints embedded in SQL commands are utilized when enable_hints is on.

Optimizer hints are ignored when this parameter is off.

3.1.3.5 Query Tuning / Planner Method Configuration

This section describes the configuration parameters used for planner method

configuration.

3.1.3.5.1 edb_enable_pruning

Parameter Type: Boolean

Default Value: true

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

When set to TRUE, edb_enable_pruning allows the query planner to early-prune

partitioned tables. Early-pruning means that the query planner can “prune” (i.e., ignore)

partitions that would not be searched in a query before generating query plans. This helps

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

74

improve performance time as it eliminates the generation of query plans of partitions that

would not be searched.

Conversely, late-pruning means that the query planner prunes partitions after generating

query plans for each partition. (The constraint_exclusion configuration parameter

controls late-pruning.)

The ability to early-prune depends upon the nature of the query in the WHERE clause.

Early-pruning can be utilized in only simple queries with constraints of the type WHERE

column = literal (e.g., WHERE deptno = 10).

Early-pruning is not used for more complex queries such as WHERE column =

expression (e.g., WHERE deptno = 10 + 5).

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

75

3.1.3.6 Reporting and Logging / What to Log

The configuration parameters in this section control reporting and logging.

3.1.3.6.1 trace_hints

Parameter Type: Boolean

Default Value: false

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Use with the optimizer hints feature to provide more detailed information regarding

whether or not a hint was used by the planner. Set the client_min_messages and

trace_hints configuration parameters as follows:

SET client_min_messages TO info;

SET trace_hints TO true;

The SELECT command with the NO_INDEX hint shown below illustrates the additional

information produced when the aforementioned configuration parameters are set.

EXPLAIN SELECT /*+ NO_INDEX(accounts accounts_pkey) */ * FROM accounts WHERE

aid = 100;

INFO: [HINTS] Index Scan of [accounts].[accounts_pkey] rejected because of

NO_INDEX hint.

INFO: [HINTS] Bitmap Heap Scan of [accounts].[accounts_pkey] rejected

because of NO_INDEX hint.

 QUERY PLAN

 Seq Scan on accounts (cost=0.00..14461.10 rows=1 width=97)

 Filter: (aid = 100)

(2 rows)

3.1.3.6.2 edb_log_every_bulk_value

Parameter Type: Boolean

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

76

Default Value: false

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Superuser

Bulk processing logs the resulting statements into both the Advanced Server log file and

the EDB Audit log file. However, logging each and every statement in bulk processing is

costly. This can be controlled by the edb_log_every_bulk_value configuration

parameter. When set to true, each and every statement in bulk processing is logged.

When set to false, a log message is recorded once per bulk processing. In addition, the

duration is emitted once per bulk processing. Default is set to false.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

77

3.1.3.7 Auditing Settings

This section describes configuration parameters used by the Advanced Server database

auditing feature.

3.1.3.7.1 edb_audit

Parameter Type: Enum

Default Value: none

Range: {none | csv | xml}

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

Enables or disables database auditing. The values xml or csv will enable database

auditing. These values represent the file format in which auditing information will be

captured. none will disable database auditing and is also the default.

3.1.3.7.2 edb_audit_directory

Parameter Type: String

Default Value: edb_audit

Range: n/a

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

Specifies the directory where the audit log files will be created. The path of the directory

can be absolute or relative to the Advanced Server data directory.

3.1.3.7.3 edb_audit_filename

Parameter Type: String

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

78

Default Value: audit-%Y%m%d_%H%M%S

Range: n/a

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

Specifies the file name of the audit file where the auditing information will be stored. The

default file name will be audit-%Y%m%d_%H%M%S. The escape sequences, %Y, %m etc.,

will be replaced by the appropriate current values according to the system date and time.

3.1.3.7.4 edb_audit_rotation_day

Parameter Type: String

Default Value: every

Range: {none | every | sun | mon | tue | wed | thu | fri | sat} ...

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

Specifies the day of the week on which to rotate the audit files. Valid values are sun,

mon, tue, wed, thu, fri, sat, every, and none. To disable rotation, set the value to

none. To rotate the file every day, set the edb_audit_rotation_day value to every.

To rotate the file on a specific day of the week, set the value to the desired day of the

week.

3.1.3.7.5 edb_audit_rotation_size

Parameter Type: Integer

Default Value: 0MB

Range: 0MB to 5000MB

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

79

Required Authorization to Activate: EPAS service account

Specifies a file size threshold in megabytes when file rotation will be forced to occur. The

default value is 0MB. If the parameter is commented out or set to 0, rotation of the file on

a size basis will not occur.

3.1.3.7.6 edb_audit_rotation_seconds

Parameter Type: Integer

Default Value: 0s

Range: 0s to 2147483647s

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

Specifies the rotation time in seconds when a new log file should be created. To disable

this feature, set this parameter to 0.

3.1.3.7.7 edb_audit_connect

Parameter Type: Enum

Default Value: failed

Range: {none | failed | all}

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

Enables auditing of database connection attempts by users. To disable auditing of all

connection attempts, set edb_audit_connect to none. To audit all failed connection

attempts, set the value to failed. To audit all connection attempts, set the value to all.

3.1.3.7.8 edb_audit_disconnect

Parameter Type: Enum

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

80

Default Value: none

Range: {none | all}

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

Enables auditing of database disconnections by connected users. To enable auditing of

disconnections, set the value to all. To disable, set the value to none.

3.1.3.7.9 edb_audit_statement

Parameter Type: String

Default Value: ddl, error

Range: {none | ddl | dml | insert | update | delete | truncate | select | error |

create | drop | alter | grant | revoke | rollback | all} ...

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

This configuration parameter is used to specify auditing of different categories of SQL

statements as well as those statements related to specific SQL commands. To log errors,

set the parameter value to error. To audit all DDL statements such as CREATE TABLE,

ALTER TABLE, etc., set the parameter value to ddl. To audit specific types of DDL

statements, the parameter values can include those specific SQL commands (create,

drop, or alter). In addition, the object type may be specified following the command

such as create table, create view, drop role, etc. All modification statements

such as INSERT, UPDATE, DELETE or TRUNCATE can be audited by setting

edb_audit_statement to dml. To audit specific types of DML statements, the

parameter values can include the specific SQL commands, insert, update, delete, or

truncate. Include parameter values select, grant, revoke, or rollback to audit

statements regarding those SQL commands. Setting the value to all will audit every

statement while none disables this feature.

3.1.3.7.10 edb_audit_tag

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

81

Parameter Type: String

Default Value: none

Minimum Scope of Effect: Session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: User

Use edb_audit_tag to specify a string value that will be included in the audit log when

the edb_audit parameter is set to csv or xml.

3.1.3.7.11 edb_audit_destination

Parameter Type: Enum

Default Value: file

Range: {file | syslog}

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

Specifies whether the audit log information is to be recorded in the directory as given by

the edb_audit_directory parameter or to the directory and file managed by the

syslog process. Set to file to use the directory specified by edb_audit_directory

(the default setting).

Set to syslog to use the syslog process and its location as configured in the

/etc/syslog.conf file. The syslog setting is valid only for Advanced Server

running on a Linux host, and is not supported on Windows systems. Note: In recent

Linux versions, syslog has been replaced by rsyslog and the configuration file is in

/etc/rsyslog.conf.

3.1.3.7.12 edb_log_every_bulk_value

For information on edb_log_every_bulk_value, see Section 3.1.3.6.2.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

82

3.1.3.8 Client Connection Defaults / Locale and Formatting

This section describes configuration parameters affecting locale and formatting.

3.1.3.8.1 icu_short_form

Parameter Type: String

Default Value: none

Range: n/a

Minimum Scope of Effect: Database

When Value Changes Take Effect: n/a

Required Authorization to Activate: n/a

The configuration parameter icu_short_form is a parameter containing the default

ICU short form name assigned to a database or to the Advanced Server instance. See

Section 3.6 for general information about the ICU short form and the Unicode Collation

Algorithm.

This configuration parameter is set either when the CREATE DATABASE command is

used with the ICU_SHORT_FORM parameter in which case the specified short form name

is set and appears in the icu_short_form configuration parameter when connected to

this database, or when an Advanced Server instance is created with the initdb

command used with the --icu_short_form option in which case the specified short

form name is set and appears in the icu_short_form configuration parameter when

connected to a database in that Advanced Server instance, and the database does not

override it with its own ICU_SHORT_FORM parameter with a different short form.

Once established in the manner described, the icu_short_form configuration

parameter cannot be changed.

3.1.3.9 Client Connection Defaults / Statement Behavior

This section describes configuration parameters affecting statement behavior.

3.1.3.9.1 default_heap_fillfactor

Parameter Type: Integer

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

83

Default Value: 100

Range: 10 to 100

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Sets the fillfactor for a table when the FILLFACTOR storage parameter is omitted from a

CREATE TABLE command.

The fillfactor for a table is a percentage between 10 and 100. 100 (complete packing) is

the default. When a smaller fillfactor is specified, INSERT operations pack table pages

only to the indicated percentage; the remaining space on each page is reserved for

updating rows on that page. This gives UPDATE a chance to place the updated copy of a

row on the same page as the original, which is more efficient than placing it on a different

page. For a table whose entries are never updated, complete packing is the best choice,

but in heavily updated tables smaller fillfactors are appropriate.

3.1.3.9.2 edb_data_redaction

Parameter Type: Boolean

Default Value: true

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Data redaction is the support of policies to limit the exposure of certain sensitive data to

certain users by altering the displayed information.

The default setting is TRUE so the data redaction is applied to all users except for

superusers and the table owner:

 Superusers and table owner bypass data redaction.

 All other users get the redaction policy applied and see the reformatted data.

If the parameter is disabled by setting it to FALSE, then the following occurs:

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

84

 Superusers and table owner still bypass data redaction.

 All other users will get an error.

For information on data redaction, see Section 4.4.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

85

3.1.3.10 Client Connection Defaults / Other Defaults

The parameters in this section set other miscellaneous client connection defaults.

3.1.3.10.1 oracle_home

Parameter Type: String

Default Value: none

Range: n/a

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: EPAS service account

Before creating an Oracle Call Interface (OCI) database link to an Oracle server, you

must direct Advanced Server to the correct Oracle home directory. Set the

LD_LIBRARY_PATH environment variable on Linux (or PATH on Windows) to the lib

directory of the Oracle client installation directory.

For Windows only, you can instead set the value of the oracle_home configuration

parameter in the postgresql.conf file. The value specified in the oracle_home

configuration parameter will override the Windows PATH environment variable.

The LD_LIBRARY_PATH environment variable on Linux (PATH environment variable or

oracle_home configuration parameter on Windows) must be set properly each time you

start Advanced Server.

For Windows only: To set the oracle_home configuration parameter in the

postgresql.conf file, edit the file, adding the following line:

oracle_home = 'lib_directory'

Substitute the name of the Windows directory that contains oci.dll for

lib_directory.

After setting the oracle_home configuration parameter, you must restart the server for

the changes to take effect. Restart the server from the Windows Services console.

3.1.3.10.2 odbc_lib_path

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

86

Parameter Type: String

Default Value: none

Range: n/a

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: EPAS service account

If you will be using an ODBC driver manager, and if it is installed in a non-standard

location, you specify the location by setting the odbc_lib_path configuration

parameter in the postgresql.conf file:

odbc_lib_path = 'complete_path_to_libodbc.so'

The configuration file must include the complete pathname to the driver manager shared

library (typically libodbc.so).

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

87

3.1.3.11 Compatibility Options

The configuration parameters described in this section control various database

compatibility features.

3.1.3.11.1 edb_redwood_date

Parameter Type: Boolean

Default Value: false

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

When DATE appears as the data type of a column in the commands, it is translated to

TIMESTAMP at the time the table definition is stored in the database if the configuration

parameter edb_redwood_date is set to TRUE. Thus, a time component will also be

stored in the column along with the date.

If edb_redwood_date is set to FALSE the column’s data type in a CREATE TABLE or

ALTER TABLE command remains as a native PostgreSQL DATE data type and is stored as

such in the database. The PostgreSQL DATE data type stores only the date without a time

component in the column.

Regardless of the setting of edb_redwood_date, when DATE appears as a data type in

any other context such as the data type of a variable in an SPL declaration section, or the

data type of a formal parameter in an SPL procedure or SPL function, or the return type

of an SPL function, it is always internally translated to a TIMESTAMP and thus, can

handle a time component if present.

3.1.3.11.2 edb_redwood_greatest_least

Parameter Type: Boolean

Default Value: true

Range: {true | false}

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

88

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

The GREATEST function returns the parameter with the greatest value from its list of

parameters. The LEAST function returns the parameter with the least value from its list of

parameters.

When edb_redwood_greatest_least is set to TRUE, the GREATEST and LEAST

functions return null when at least one of the parameters is null.

SET edb_redwood_greatest_least TO on;

SELECT GREATEST(1, 2, NULL, 3);

greatest

(1 row)

When edb_redwood_greatest_least is set to FALSE, null parameters are ignored

except when all parameters are null in which case null is returned by the functions.

SET edb_redwood_greatest_least TO off;

SELECT GREATEST(1, 2, NULL, 3);

greatest

 3

(1 row)

SELECT GREATEST(NULL, NULL, NULL);

greatest

(1 row)

3.1.3.11.3 edb_redwood_raw_names

Parameter Type: Boolean

Default Value: false

Range: {true | false}

Minimum Scope of Effect: Per session

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

89

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

When edb_redwood_raw_names is set to its default value of FALSE, database object

names such as table names, column names, trigger names, program names, user names,

etc. appear in uppercase letters when viewed from Redwood catalogs (that is, system

catalogs prefixed by ALL_, DBA_, or USER_). In addition, quotation marks enclose names

that were created with enclosing quotation marks.

When edb_redwood_raw_names is set to TRUE, the database object names are

displayed exactly as they are stored in the PostgreSQL system catalogs when viewed

from the Redwood catalogs. Thus, names created without enclosing quotation marks

appear in lowercase as expected in PostgreSQL. Names created with enclosing quotation

marks appear exactly as they were created, but without the quotation marks.

For example, the following user name is created, and then a session is started with that

user.

CREATE USER reduser IDENTIFIED BY password;

edb=# \c - reduser

Password for user reduser:

You are now connected to database "edb" as user "reduser".

When connected to the database as reduser, the following tables are created.

CREATE TABLE all_lower (col INTEGER);

CREATE TABLE ALL_UPPER (COL INTEGER);

CREATE TABLE "Mixed_Case" ("Col" INTEGER);

When viewed from the Redwood catalog, USER_TABLES, with

edb_redwood_raw_names set to the default value FALSE, the names appear in

uppercase except for the Mixed_Case name, which appears as created and also with

enclosing quotation marks.

edb=> SELECT * FROM USER_TABLES;

 schema_name | table_name | tablespace_name | status | temporary

-------------+--------------+-----------------+--------+-----------

 REDUSER | ALL_LOWER | | VALID | N

 REDUSER | ALL_UPPER | | VALID | N

 REDUSER | "Mixed_Case" | | VALID | N

(3 rows)

When viewed with edb_redwood_raw_names set to TRUE, the names appear in

lowercase except for the Mixed_Case name, which appears as created, but now without

the enclosing quotation marks.

edb=> SET edb_redwood_raw_names TO true;

SET

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

90

edb=> SELECT * FROM USER_TABLES;

 schema_name | table_name | tablespace_name | status | temporary

-------------+------------+-----------------+--------+-----------

 reduser | all_lower | | VALID | N

 reduser | all_upper | | VALID | N

 reduser | Mixed_Case | | VALID | N

(3 rows)

These names now match the case when viewed from the PostgreSQL pg_tables

catalog.

edb=> SELECT schemaname, tablename, tableowner FROM pg_tables WHERE

tableowner = 'reduser';

 schemaname | tablename | tableowner

------------+------------+------------

 reduser | all_lower | reduser

 reduser | all_upper | reduser

 reduser | Mixed_Case | reduser

(3 rows)

3.1.3.11.4 edb_redwood_strings

Parameter Type: Boolean

Default Value: false

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

If the edb_redwood_strings parameter is set to TRUE, when a string is concatenated

with a null variable or null column, the result is the original string. If

edb_redwood_strings is set to FALSE, the native PostgreSQL behavior is maintained,

which is the concatenation of a string with a null variable or null column gives a null

result.

The following example illustrates the difference.

The sample application contains a table of employees. This table has a column named

comm that is null for most employees. The following query is run with

edb_redwood_string set to FALSE. The concatenation of a null column with non-

empty strings produces a final result of null, so only employees that have a commission

appear in the query result. The output line for all other employees is null.

SET edb_redwood_strings TO off;

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

91

SELECT RPAD(ename,10) || ' ' || TO_CHAR(sal,'99,999.99') || ' ' ||

TO_CHAR(comm,'99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

 EMPLOYEE COMPENSATION

 ALLEN 1,600.00 300.00

 WARD 1,250.00 500.00

 MARTIN 1,250.00 1,400.00

 TURNER 1,500.00 .00

(14 rows)

The following is the same query executed when edb_redwood_strings is set to TRUE.

Here, the value of a null column is treated as an empty string. The concatenation of an

empty string with a non-empty string produces the non-empty string.

SET edb_redwood_strings TO on;

SELECT RPAD(ename,10) || ' ' || TO_CHAR(sal,'99,999.99') || ' ' ||

TO_CHAR(comm,'99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

 EMPLOYEE COMPENSATION

 SMITH 800.00

 ALLEN 1,600.00 300.00

 WARD 1,250.00 500.00

 JONES 2,975.00

 MARTIN 1,250.00 1,400.00

 BLAKE 2,850.00

 CLARK 2,450.00

 SCOTT 3,000.00

 KING 5,000.00

 TURNER 1,500.00 .00

 ADAMS 1,100.00

 JAMES 950.00

 FORD 3,000.00

 MILLER 1,300.00

(14 rows)

3.1.3.11.5 edb_stmt_level_tx

Parameter Type: Boolean

Default Value: false

Range: {true | false}

Minimum Scope of Effect: Per session

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

92

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

The term statement level transaction isolation describes the behavior whereby when a

runtime error occurs in a SQL command, all the updates on the database caused by that

single command are rolled back. For example, if a single UPDATE command successfully

updates five rows, but an attempt to update a sixth row results in an exception, the

updates to all six rows made by this UPDATE command are rolled back. The effects of

prior SQL commands that have not yet been committed or rolled back are pending until a

COMMIT or ROLLBACK command is executed.

In Advanced Server, if an exception occurs while executing a SQL command, all the

updates on the database since the start of the transaction are rolled back. In addition, the

transaction is left in an aborted state and either a COMMIT or ROLLBACK command must

be issued before another transaction can be started.

If edb_stmt_level_tx is set to TRUE, then an exception will not automatically roll

back prior uncommitted database updates. If edb_stmt_level_tx is set to FALSE, then

an exception will roll back uncommitted database updates.

Note: Use edb_stmt_level_tx set to TRUE only when absolutely necessary, as this

may cause a negative performance impact.

The following example run in PSQL shows that when edb_stmt_level_tx is FALSE,

the abort of the second INSERT command also rolls back the first INSERT command.

Note that in PSQL, the command \set AUTOCOMMIT off must be issued, otherwise

every statement commits automatically defeating the purpose of this demonstration of the

effect of edb_stmt_level_tx.

\set AUTOCOMMIT off

SET edb_stmt_level_tx TO off;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);

INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);

ERROR: insert or update on table "emp" violates foreign key constraint

"emp_ref_dept_fk"

DETAIL: Key (deptno)=(0) is not present in table "dept".

COMMIT;

SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno

-------+-------+--------

(0 rows)

In the following example, with edb_stmt_level_tx set to TRUE, the first INSERT

command has not been rolled back after the error on the second INSERT command. At

this point, the first INSERT command can either be committed or rolled back.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

93

\set AUTOCOMMIT off

SET edb_stmt_level_tx TO on;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);

INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);

ERROR: insert or update on table "emp" violates foreign key constraint

"emp_ref_dept_fk"

DETAIL: Key (deptno)=(0) is not present in table "dept"

SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno

-------+-------+--------

 9001 | JONES | 40

(1 row)

COMMIT;

A ROLLBACK command could have been issued instead of the COMMIT command in

which case the insert of employee number 9001 would have been rolled back as well.

3.1.3.11.6 db_dialect

Parameter Type: Enum

Default Value: postgres

Range: {postgres | redwood}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

In addition to the native PostgreSQL system catalog, pg_catalog, Advanced Server

contains an extended catalog view. This is the sys catalog for the expanded catalog view.

The db_dialect parameter controls the order in which these catalogs are searched for

name resolution.

When set to postgres, the namespace precedence is pg_catalog then sys, giving the

PostgreSQL catalog the highest precedence. When set to redwood, the namespace

precedence is sys then pg_catalog, giving the expanded catalog views the highest

precedence.

3.1.3.11.7 default_with_rowids

Parameter Type: Boolean

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

94

Default Value: false

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

When set to on, CREATE TABLE includes a ROWID column in newly created tables,

which can then be referenced in SQL commands. In earlier versions of Advanced Server

ROWIDs were mapped to OIDs, but from Advanced Server version 12 onwards the

ROWID is an auto-incrementing value based on a sequence that starts with 1 and

assigned to each row of a table created with ROWIDs option. By default, a unique index is

created on a ROWID column.

The ALTER and DROP operations are restricted on a ROWID column.

To restore a database with ROWIDs from Advanced Server 11 or an earlier version, you

must perform the following:

 pg_dump: If a table includes OIDs then specify --convert-oids-to-rowids

to dump a database. Otherwise, ignore the OIDs to continue table creation on

Advanced Server version 12 onwards.

 pg_upgrade: Errors out. But if a table includes OIDs or ROWIDs, then you must

perform the following steps:

1. Take a dump of the tables by specifying --convert-oids-to-rowids

option.

2. Drop the tables and then perform the upgrade.

3. Restore the dump after the upgrade is successful into a new cluster that

contains the dumped tables into a target database.

3.1.3.11.8 optimizer_mode

Parameter Type: Enum

Default Value: choose

Range: {choose | ALL_ROWS | FIRST_ROWS | FIRST_ROWS_10 | FIRST_ROWS_100 |

FIRST_ROWS_1000}

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

95

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Sets the default optimization mode for analyzing optimizer hints.

The following table shows the possible values:

Table 3-2 - Optimizer Modes

Hint Description

ALL_ROWS Optimizes for retrieval of all rows of the result set.

CHOOSE
Does no default optimization based on assumed number of rows to be retrieved

from the result set. This is the default.

FIRST_ROWS Optimizes for retrieval of only the first row of the result set.

FIRST_ROWS_10 Optimizes for retrieval of the first 10 rows of the results set.

FIRST_ROWS_100 Optimizes for retrieval of the first 100 rows of the result set.

FIRST_ROWS_1000 Optimizes for retrieval of the first 1000 rows of the result set.

These optimization modes are based upon the assumption that the client submitting the

SQL command is interested in viewing only the first “n” rows of the result set and will

then abandon the remainder of the result set. Resources allocated to the query are

adjusted as such.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

96

3.1.3.12 Customized Options

In previous releases of Advanced Server, the custom_variable_classes was

required by those parameters not normally known to be added by add-on modules (such

as procedural languages).

3.1.3.12.1 custom_variable_classes

The custom_variable_classes parameter is deprecated in Advanced Server 9.2;

parameters that previously depended on this parameter no longer require its support.

3.1.3.12.2 dbms_alert.max_alerts

Parameter Type: Integer

Default Value: 100

Range: 0 to 500

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: EPAS service account

Specifies the maximum number of concurrent alerts allowed on a system using the

DBMS_ALERTS package.

3.1.3.12.3 dbms_pipe.total_message_buffer

Parameter Type: Integer

Default Value: 30 Kb

Range: 30 Kb to 256 Kb

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: EPAS service account

Specifies the total size of the buffer used for the DBMS_PIPE package.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

97

3.1.3.12.4 index_advisor.enabled

Parameter Type: Boolean

Default Value: true

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Provides the capability to temporarily suspend Index Advisor in an EDB-PSQL or PSQL

session. The Index Advisor plugin, index_advisor, must be loaded in the EDB-PSQL

or PSQL session in order to use the index_advisor.enabled configuration

parameter.

The Index Advisor plugin can be loaded as shown by the following example:

$ psql -d edb -U enterprisedb

Password for user enterprisedb:

psql (12.0.0)

Type "help" for help.

edb=# LOAD 'index_advisor';

LOAD

Use the SET command to change the parameter setting to control whether or not Index

Advisor generates an alternative query plan as shown by the following example:

edb=# SET index_advisor.enabled TO off;

SET

edb=# EXPLAIN SELECT * FROM t WHERE a < 10000;

 QUERY PLAN

 Seq Scan on t (cost=0.00..1693.00 rows=9864 width=8)

 Filter: (a < 10000)

(2 rows)

edb=# SET index_advisor.enabled TO on;

SET

edb=# EXPLAIN SELECT * FROM t WHERE a < 10000;

 QUERY PLAN

 Seq Scan on t (cost=0.00..1693.00 rows=9864 width=8)

 Filter: (a < 10000)

 Result (cost=0.00..327.88 rows=9864 width=8)

 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text

 -> Index Scan using "<hypothetical-index>:1" on t (cost=0.00..327.88

rows=9864 width=8)

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

98

 Index Cond: (a < 10000)

(6 rows)

3.1.3.12.5 edb_sql_protect.enabled

Parameter Type: Boolean

Default Value: false

Range: {true | false}

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

Controls whether or not SQL/Protect is actively monitoring protected roles by analyzing

SQL statements issued by those roles and reacting according to the setting of

edb_sql_protect.level. When you are ready to begin monitoring with SQL/Protect

set this parameter to on.

3.1.3.12.6 edb_sql_protect.level

Parameter Type: Enum

Default Value: passive

Range: {learn | passive | active}

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

Sets the action taken by SQL/Protect when a SQL statement is issued by a protected role.

The edb_sql_protect.level configuration parameter can be set to one of the

following values to use either learn mode, passive mode, or active mode:

 learn. Tracks the activities of protected roles and records the relations used by the

roles. This is used when initially configuring SQL/Protect so the expected

behaviors of the protected applications are learned.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

99

 passive. Issues warnings if protected roles are breaking the defined rules, but does

not stop any SQL statements from executing. This is the next step after

SQL/Protect has learned the expected behavior of the protected roles. This

essentially behaves in intrusion detection mode and can be run in production

when properly monitored.

 active. Stops all invalid statements for a protected role. This behaves as a SQL

firewall preventing dangerous queries from running. This is particularly effective

against early penetration testing when the attacker is trying to determine the

vulnerability point and the type of database behind the application. Not only does

SQL/Protect close those vulnerability points, but it tracks the blocked queries

allowing administrators to be alerted before the attacker finds an alternate method

of penetrating the system.

If you are using SQL/Protect for the first time, set edb_sql_protect.level to

learn.

3.1.3.12.7 edb_sql_protect.max_protected_relations

Parameter Type: Integer

Default Value: 1024

Range: 1 to 2147483647

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: EPAS service account

Sets the maximum number of relations that can be protected per role. Please note the

total number of protected relations for the server will be the number of protected relations

times the number of protected roles. Every protected relation consumes space in shared

memory. The space for the maximum possible protected relations is reserved during

database server startup.

If the server is started when edb_sql_protect.max_protected_relations is set

to a value outside of the valid range (for example, a value of 2,147,483,648), then a

warning message is logged in the database server log file:

2014-07-18 16:04:12 EDT WARNING: invalid value for parameter

"edb_sql_protect.max_protected_relations": "2147483648"

2014-07-18 16:04:12 EDT HINT: Value exceeds integer range.

The database server starts successfully, but with

edb_sql_protect.max_protected_relations set to the default value of 1024.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

100

Though the upper range for the parameter is listed as the maximum value for an integer

data type, the practical setting depends on how much shared memory is available and the

parameter value used during database server startup.

As long as the space required can be reserved in shared memory, the value will be

acceptable. If the value is such that the space in shared memory cannot be reserved, the

database server startup fails with an error message such as the following:

2014-07-18 15:22:17 EDT FATAL: could not map anonymous shared memory: Cannot

allocate memory

2014-07-18 15:22:17 EDT HINT: This error usually means that PostgreSQL's

request for a shared memory segment exceeded available memory, swap space or

huge pages. To reduce the request size (currently 2070118400 bytes), reduce

PostgreSQL's shared memory usage, perhaps by reducing shared_buffers or

max_connections.

In such cases, reduce the parameter value until the database server can be started

successfully.

3.1.3.12.8 edb_sql_protect.max_protected_roles

Parameter Type: Integer

Default Value: 64

Range: 1 to 2147483647

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: EPAS service account

Sets the maximum number of roles that can be protected.

Every protected role consumes space in shared memory. Please note that the server will

reserve space for the number of protected roles times the number of protected relations

(edb_sql_protect.max_protected_relations). The space for the maximum

possible protected roles is reserved during database server startup.

If the database server is started when edb_sql_protect.max_protected_roles is

set to a value outside of the valid range (for example, a value of 2,147,483,648), then a

warning message is logged in the database server log file:

2014-07-18 16:04:12 EDT WARNING: invalid value for parameter

"edb_sql_protect.max_protected_roles": "2147483648"

2014-07-18 16:04:12 EDT HINT: Value exceeds integer range.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

101

The database server starts successfully, but with

edb_sql_protect.max_protected_roles set to the default value of 64.

Though the upper range for the parameter is listed as the maximum value for an integer

data type, the practical setting depends on how much shared memory is available and the

parameter value used during database server startup.

As long as the space required can be reserved in shared memory, the value will be

acceptable. If the value is such that the space in shared memory cannot be reserved, the

database server startup fails with an error message such as the following:

2014-07-18 15:22:17 EDT FATAL: could not map anonymous shared memory: Cannot

allocate memory

2014-07-18 15:22:17 EDT HINT: This error usually means that PostgreSQL's

request for a shared memory segment exceeded available memory, swap space or

huge pages. To reduce the request size (currently 2070118400 bytes), reduce

PostgreSQL's shared memory usage, perhaps by reducing shared_buffers or

max_connections.

In such cases, reduce the parameter value until the database server can be started

successfully.

3.1.3.12.9 edb_sql_protect.max_queries_to_save

Parameter Type: Integer

Default Value: 5000

Range: 100 to 2147483647

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: EPAS service account

Sets the maximum number of offending queries to save in view

edb_sql_protect_queries.

Every query that is saved consumes space in shared memory. The space for the maximum

possible queries that can be saved is reserved during database server startup.

If the database server is started when edb_sql_protect.max_queries_to_save is

set to a value outside of the valid range (for example, a value of 10), then a warning

message is logged in the database server log file:

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

102

2014-07-18 13:05:31 EDT WARNING: 10 is outside the valid range for parameter

"edb_sql_protect.max_queries_to_save" (100 .. 2147483647)

The database server starts successfully, but with

edb_sql_protect.max_queries_to_save set to the default value of 5000.

Though the upper range for the parameter is listed as the maximum value for an integer

data type, the practical setting depends on how much shared memory is available and the

parameter value used during database server startup.

As long as the space required can be reserved in shared memory, the value will be

acceptable. If the value is such that the space in shared memory cannot be reserved, the

database server startup fails with an error message such as the following:

2014-07-18 15:22:17 EDT FATAL: could not map anonymous shared memory: Cannot

allocate memory

2014-07-18 15:22:17 EDT HINT: This error usually means that PostgreSQL's

request for a shared memory segment exceeded available memory, swap space or

huge pages. To reduce the request size (currently 2070118400 bytes), reduce

PostgreSQL's shared memory usage, perhaps by reducing shared_buffers or

max_connections.

In such cases, reduce the parameter value until the database server can be started

successfully.

3.1.3.12.10 edb_wait_states.directory

Parameter Type: String

Default Value: edb_wait_states

Range: n/a

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Restart

Required Authorization to Activate: EPAS service account

Sets the directory path where the EDB wait states log files are stored. The specified path

should be a full, absolute path and not a relative path. However, the default setting is

edb_wait_states, which makes $PGDATA/edb_wait_states the default directory

location. See Section 8.2 for information on EDB wait states.

3.1.3.12.11 edb_wait_states.retention_period

Parameter Type: Integer

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

103

Default Value: 604800s

Range: 86400s to 2147483647s

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

Sets the period of time after which the log files for EDB wait states will be deleted. The

default is 604800 seconds, which is 7 days. See Section 8.2 for information on EDB wait

states.

3.1.3.12.12 edb_wait_states.sampling_interval

Parameter Type: Integer

Default Value: 1s

Range: 1s to 2147483647s

Minimum Scope of Effect: Cluster

When Value Changes Take Effect: Reload

Required Authorization to Activate: EPAS service account

Sets the timing interval between two sampling cycles for EDB wait states. The default

setting is 1 second. See Section 8.2 for information on EDB wait states.

3.1.3.12.13 edbldr.empty_csv_field

Parameter Type: Enum

Default Value: NULL

Range: {NULL | empty_string | pgsql}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

104

Use the edbldr.empty_csv_field parameter to specify how EDB*Loader will treat

an empty string. The valid values for the edbldr.empty_csv_field parameter are:

Parameter Setting EDB*Loader Behavior
NULL An empty field is treated as NULL.
empty_string An empty field is treated as a string of length zero.
pgsql An empty field is treated as a NULL if it does not contain quotes and as an empty

string if it contains quotes.

For more information about the edbldr.empty_csv_field parameter in

EDB*Loader, see the Database Compatibility for Oracle Developers Tools and Utilities

Guide at the EnterpriseDB website:

https://www.enterprisedb.com/edb-docs

3.1.3.12.14 utl_encode.uudecode_redwood

Parameter Type: Boolean

Default Value: false

Range: {true | false}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

When set to TRUE, Advanced Server’s UTL_ENCODE.UUDECODE function can decode

uuencoded data that was created by the Oracle implementation of the

UTL_ENCODE.UUENCODE function.

When set to the default setting of FALSE, Advanced Server’s UTL_ENCODE.UUDECODE

function can decode uuencoded data created by Advanced Server’s

UTL_ENCODE.UUENCODE function.

3.1.3.12.15 utl_file.umask

Parameter Type: String

Default Value: 0077

https://www.enterprisedb.com/resources/product-documentation

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

105

Range: Octal digits for umask settings

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

The utl_file.umask parameter sets the file mode creation mask or simply, the mask,

in a manner similar to the Linux umask command. This is for usage only within the

Advanced Server UTL_FILE package.

Note: The utl_file.umask parameter is not supported on Windows systems.

The value specified for utl_file.umask is a 3 or 4-character octal string that would be

valid for the Linux umask command. The setting determines the permissions on files

created by the UTL_FILE functions and procedures. (Refer to any information source

regarding Linux or Unix systems for information on file permissions and the usage of the

umask command.)

The following shows the results of the default utl_file.umask setting of 0077. Note

that all permissions are denied on users belonging to the enterprisedb group as well

as all other users. Only user enterprisedb has read and write permissions on the file.

-rw------- 1 enterprisedb enterprisedb 21 Jul 24 16:08 utlfile

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

106

3.1.3.13 Ungrouped

Configuration parameters in this section apply to Advanced Server only and are for a

specific, limited purpose.

3.1.3.13.1 nls_length_semantics

Parameter Type: Enum

Default Value: byte

Range: {byte | char}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Superuser

This parameter has no effect in Advanced Server.

For example, the form of the ALTER SESSION command is accepted in Advanced Server

without throwing a syntax error, but does not alter the session environment:

ALTER SESSION SET nls_length_semantics = char;

Note: Since the setting of this parameter has no effect on the server environment, it does

not appear in the system view pg_settings.

3.1.3.13.2 query_rewrite_enabled

Parameter Type: Enum

Default Value: false

Range: {true | false | force}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

107

This parameter has no effect in Advanced Server.

For example, the following form of the ALTER SESSION command is accepted in

Advanced Server without throwing a syntax error, but does not alter the session

environment:

ALTER SESSION SET query_rewrite_enabled = force;

Note: Since the setting of this parameter has no effect on the server environment, it does

not appear in the system view pg_settings.

3.1.3.13.3 query_rewrite_integrity

Parameter Type: Enum

Default Value: enforced

Range: {enforced | trusted | stale_tolerated}

Minimum Scope of Effect: Per session

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Superuser

This parameter has no effect in Advanced Server.

For example, the following form of the ALTER SESSION command is accepted in

Advanced Server without throwing a syntax error, but does not alter the session

environment:

ALTER SESSION SET query_rewrite_integrity = stale_tolerated;

Note: Since the setting of this parameter has no effect on the server environment, it does

not appear in the system view pg_settings.

3.1.3.13.4 timed_statistics

Parameter Type: Boolean

Default Value: true

Range: {true | false}

Minimum Scope of Effect: Per session

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

108

When Value Changes Take Effect: Immediate

Required Authorization to Activate: Session user

Controls the collection of timing data for the Dynamic Runtime Instrumentation Tools

Architecture (DRITA) feature. When set to on, timing data is collected.

Note: When Advanced Server is installed, the postgresql.conf file contains an

explicit entry setting timed_statistics to off. If this entry is commented out letting

timed_statistics to default, and the configuration file is reloaded, timed statistics

collection would be turned on.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

109

3.2 Index Advisor

The Index Advisor utility helps determine which columns you should index to improve

performance in a given workload. Index Advisor considers B-tree (single-column or

composite) index types, and does not identify other index types (GIN, GiST, Hash) that

may improve performance. Index Advisor is installed with EDB Postgres Advanced

Server.

Index Advisor works with Advanced Server's query planner by creating hypothetical

indexes that the query planner uses to calculate execution costs as if such indexes were

available. Index Advisor identifies the indexes by analyzing SQL queries supplied in the

workload.

There are three ways to use Index Advisor to analyze SQL queries:

 Invoke the Index Advisor utility program, supplying a text file containing the

SQL queries that you wish to analyze; Index Advisor will generate a text file with

CREATE INDEX statements for the recommended indexes.

 Provide queries at the EDB-PSQL command line that you want Index Advisor to

analyze.

 Access Index Advisor through the Postgres Enterprise Manager client. When

accessed via the PEM client, Index Advisor works with SQL Profiler, providing

indexing recommendations on code captured in SQL traces. For more

information about using SQL Profiler and Index Advisor with PEM, please see

the PEM Getting Started Guide available from the EnterpriseDB website at:

https://www.enterprisedb.com/edb-docs

Index Advisor will attempt to make indexing recommendations on INSERT, UPDATE,

DELETE and SELECT statements. When invoking Index Advisor, you supply the

workload in the form of a set of queries (if you are providing the command in an SQL

file) or an EXPLAIN statement (if you are specifying the SQL statement at the psql

command line). Index Advisor displays the query plan and estimated execution cost for

the supplied query, but does not actually execute the query.

During the analysis, Index Advisor compares the query execution costs with and without

hypothetical indexes. If the execution cost using a hypothetical index is less than the

execution cost without it, both plans are reported in the EXPLAIN statement output,

metrics that quantify the improvement are calculated, and Index Advisor generates the

CREATE INDEX statement needed to create the index.

If no hypothetical index can be found that reduces the execution cost, Index Advisor

displays only the original query plan output of the EXPLAIN statement.

https://www.enterprisedb.com/resources/product-documentation

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

110

Index Advisor does not actually create indexes on the tables. Use the CREATE INDEX

statements supplied by Index Advisor to add any recommended indexes to your tables.

A script supplied with Advanced Server creates the table in which Index Advisor stores

the indexing recommendations generated by the analysis; the script also creates a

function and a view of the table to simplify the retrieval and interpretation of the results.

If you choose to forego running the script, Index Advisor will log recommendations in a

temporary table that is available only for the duration of the Index Advisor session.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

111

3.2.1 Index Advisor Components

The Index Advisor shared library interacts with the query planner to make indexing

recommendations. On Windows, the Advanced Server installer creates the following

shared library in the libdir subdirectory of your Advanced Server home directory. For

Linux, install the edb-asxx-server-indexadvisor RPM package where xx is the

Advanced Server version number.

On Linux:

index_advisor.so

On Windows:

index_advisor.dll

Please note that libraries in the libdir directory can only be loaded by a superuser. A

database administrator can allow a non-superuser to use Index Advisor by manually

copying the Index Advisor file from the libdir directory into the libdir/plugins

directory (under your Advanced Server home directory). Only a trusted non-superuser

should be allowed access to the plugin; this is an unsafe practice in a production

environment.

The installer also creates the Index Advisor utility program and setup script:

pg_advise_index

pg_advise_index is a utility program that reads a user-supplied input file

containing SQL queries and produces a text file containing CREATE INDEX

statements that can be used to create the indexes recommended by the Index

Advisor. The pg_advise_index program is located in the bin subdirectory of

the Advanced Server home directory.

index_advisor.sql

index_advisor.sql is a script that creates a permanent Index Advisor log

table along with a function and view to facilitate reporting of recommendations

from the log table. The script is located in the share/contrib subdirectory of

the Advanced Server directory.

The index_advisor.sql script creates the index_advisor_log table, the

show_index_recommendations() function and the index_recommendations

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

112

view. These database objects must be created in a schema that is accessible by, and

included in the search path of the role that will invoke Index Advisor.

index_advisor_log

Index Advisor logs indexing recommendations in the index_advisor_log

table. If Index Advisor does not find the index_advisor_log table in the

user's search path, Index Advisor will store any indexing recommendations in a

temporary table of the same name. The temporary table exists only for the

duration of the current session.

show_index_recommendations()

show_index_recommendations() is a PL/pgSQL function that interprets and

displays the recommendations made during a specific Index Advisor session (as

identified by its backend process ID).

index_recommendations

Index Advisor creates the index_recommendations view based on information

stored in the index_advisor_log table during a query analysis. The view

produces output in the same format as the show_index_recommendations()

function, but contains Index Advisor recommendations for all stored sessions,

while the result set returned by the show_index_recommendations()

function are limited to a specified session.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

113

3.2.2 Index Advisor Configuration

Index Advisor does not require any configuration to generate recommendations that are

available only for the duration of the current session; to store the results of multiple

sessions, you must create the index_advisor_log table (where Advanced Server will

store Index Advisor recommendations). To create the index_advisor_log table , you

must run the index_advisor.sql script.

When selecting a storage schema for the Index Advisor table, function and view, keep in

mind that all users that invoke Index Advisor (and query the result set) must have USAGE

privileges on the schema. The schema must be in the search path of all users that are

interacting with the Index Advisor.

1. Place the selected schema at the start of your search_path parameter. For

example, if your search path is currently:

search_path=public, accounting

and you want the Index Advisor objects to be created in a schema named

advisor, use the command:
SET search_path = advisor, public, accounting;

2. Run the index_advisor.sql script to create the database objects. If you

are running the psql client, you can use the command:

\i full_pathname/index_advisor.sql

Specify the pathname to the index_advisor.sql script in place of

full_pathname.

3. Grant privileges on the index_advisor_log table to all Index Advisor

users; this step is not necessary if the Index Advisor user is a superuser, or the

owner of these database objects.

 Grant SELECT and INSERT privileges on the index_advisor_log table

to allow a user to invoke Index Advisor.

 Grant DELETE privileges on the index_advisor_log table to allow the

specified user to delete the table contents.

 Grant SELECT privilege on the index_recommendations view.

The following example demonstrates the creation of the Index Advisor database objects

in a schema named ia, which will then be accessible to an Index Advisor user with user

name ia_user:

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

114

$ edb-psql -d edb -U enterprisedb

psql.bin (12.0.0, server 12.0.0)

Type "help" for help.

edb=# CREATE SCHEMA ia;

CREATE SCHEMA

edb=# SET search_path TO ia;

SET

edb=# \i /usr/edb/as12/share/contrib/index_advisor.sql

CREATE TABLE

CREATE INDEX

CREATE INDEX

CREATE FUNCTION

CREATE FUNCTION

CREATE VIEW

edb=# GRANT USAGE ON SCHEMA ia TO ia_user;

GRANT

edb=# GRANT SELECT, INSERT, DELETE ON index_advisor_log TO ia_user;

GRANT

edb=# GRANT SELECT ON index_recommendations TO ia_user;

GRANT

While using Index Advisor, the specified schema (ia) must be included in ia_user's

search_path parameter.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

115

3.2.3 Using Index Advisor

When you invoke Index Advisor, you must supply a workload; the workload is either a

query (specified at the command line), or a file that contains a set of queries (executed by

the pg_advise_index() function). After analyzing the workload, Index Advisor will

either store the result set in a temporary table, or in a permanent table. You can review

the indexing recommendations generated by Index Advisor and use the CREATE INDEX

statements generated by Index Advisor to create the recommended indexes.

Note: You should not run Index Advisor in read-only transactions.

The following examples assume that superuser enterprisedb is the Index Advisor

user, and the Index Advisor database objects have been created in a schema in the

search_path of superuser enterprisedb.

The examples in the following sections use the table created with the statement shown

below:

CREATE TABLE t(a INT, b INT);

INSERT INTO t SELECT s, 99999 - s FROM generate_series(0,99999) AS s;

ANALYZE t;

The resulting table contains the following rows:

 a | b

-------+-------

 0 | 99999

 1 | 99998

 2 | 99997

 3 | 99996

 .

 .

 .

 99997 | 2

 99998 | 1

 99999 | 0

3.2.3.1 Using the pg_advise_index Utility

When invoking the pg_advise_index utility, you must include the name of a file that

contains the queries that will be executed by pg_advise_index; the queries may be on

the same line, or on separate lines, but each query must be terminated by a semicolon.

Queries within the file should not begin with the EXPLAIN keyword.

The following example shows the contents of a sample workload.sql file:

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

116

SELECT * FROM t WHERE a = 500;

SELECT * FROM t WHERE b < 1000;

Run the pg_advise_index program as shown in the code sample below:

$ pg_advise_index -d edb -h localhost -U enterprisedb -s 100M -o advisory.sql

workload.sql

poolsize = 102400 KB

load workload from file 'workload.sql'

Analyzing queries .. done.

size = 2184 KB, benefit = 1684.720000

size = 2184 KB, benefit = 1655.520000

/* 1. t(a): size=2184 KB, benefit=1684.72 */

/* 2. t(b): size=2184 KB, benefit=1655.52 */

/* Total size = 4368KB */

In the code sample, the -d, -h, and -U options are psql connection options.

-s

-s is an optional parameter that limits the maximum size of the indexes

recommended by Index Advisor. If Index Advisor does not return a result set, -s

may be set too low.

-o

The recommended indexes are written to the file specified after the -o option.

The information displayed by the pg_advise_index program is logged in the

index_advisor_log table. In response to the command shown in the example, Index

Advisor writes the following CREATE INDEX statements to the advisory.sql output

file

create index idx_t_1 on t (a);

create index idx_t_2 on t (b);

You can create the recommended indexes at the psql command line with the CREATE

INDEX statements in the file, or create the indexes by executing the advisory.sql

script.

$ edb-psql -d edb -h localhost -U enterprisedb -e -f advisory.sql

create index idx_t_1 on t (a);

CREATE INDEX

create index idx_t_2 on t (b);

CREATE INDEX

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

117

3.2.3.2 Using Index Advisor at the psql Command Line

You can use Index Advisor to analyze SQL statements entered at the edb-psql (or psql)

command line; the following steps detail loading the Index Advisor plugin and using

Index Advisor:

1. Connect to the server with the edb-psql command line utility, and load the Index

Advisor plugin:

$ edb-psql -d edb -U enterprisedb

…

edb=# LOAD 'index_advisor';

LOAD

2. Use the edb-psql command line to invoke each SQL command that you would like

Index Advisor to analyze. Index Advisor stores any recommendations for the queries

in the index_advisor_log table. If the index_advisor_log table does not exist

in the user's search_path, a temporary table is created with the same name. This

temporary table exists only for the duration of the user's session.

After loading the Index Advisor plugin, Index Advisor will analyze all SQL statements

and log any indexing recommendations for the duration of the session.

If you would like Index Advisor to analyze a query (and make indexing

recommendations) without actually executing the query, preface the SQL

statement with the EXPLAIN keyword.

If you do not preface the statement with the EXPLAIN keyword, Index Advisor

will analyze the statement while the statement executes, writing the indexing

recommendations to the index_advisor_log table for later review.

In the example that follows, the EXPLAIN statement displays the normal query plan,

followed by the query plan of the same query, if the query were using the recommended

hypothetical index:

edb=# EXPLAIN SELECT * FROM t WHERE a < 10000;

 QUERY PLAN

Seq Scan on t (cost=0.00..1693.00 rows=10105 width=8)

 Filter: (a < 10000)

Result (cost=0.00..337.10 rows=10105 width=8)

 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text

 -> Index Scan using "<hypothetical-index>:1" on t

 (cost=0.00..337.10 rows=10105 width=8)

 Index Cond: (a < 10000)

(6 rows)

edb=# EXPLAIN SELECT * FROM t WHERE a = 100;

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

118

 QUERY PLAN

Seq Scan on t (cost=0.00..1693.00 rows=1 width=8)

 Filter: (a = 100)

Result (cost=0.00..8.28 rows=1 width=8)

 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text

 -> Index Scan using "<hypothetical-index>:3" on t

 (cost=0.00..8.28 rows=1 width=8)

 Index Cond: (a = 100)

(6 rows)

After loading the Index Advisor plugin, the default value of index_advisor.enabled

is on. The Index Advisor plugin must be loaded to use a SET or SHOW command to

display the current value of index_advisor.enabled.

You can use the index_advisor.enabled parameter to temporarily disable Index

Advisor without interrupting the psql session:

edb=# SET index_advisor.enabled TO off;

SET

To enable Index Advisor, set the parameter to on:

 edb=# SET index_advisor.enabled TO on;

 SET

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

119

3.2.4 Reviewing the Index Advisor Recommendations

There are several ways to review the index recommendations generated by Index

Advisor. You can:

 Query the index_advisor_log table.

 Run the show_index_recommendations function.

 Query the index_recommendations view.

3.2.4.1 Using the show_index_recommendations() Function

To review the recommendations of the Index Advisor utility using the

show_index_recommendations() function, call the function, specifying the process

ID of the session:

SELECT show_index_recommendations(pid);

Where pid is the process ID of the current session. If you do not know the process ID of

your current session, passing a value of NULL will also return a result set for the current

session.

The following code fragment shows an example of a row in a result set:

edb=# SELECT show_index_recommendations(null);

 show_index_recommendations

 create index idx_t_a on t(a);/* size: 2184 KB, benefit: 3040.62,

 gain: 1.39222666981456 */

(1 row)

In the example, create index idx_t_a on t(a) is the SQL statement needed to create

the index suggested by Index Advisor. Each row in the result set shows:

 The command required to create the recommended index.

 The maximum estimated size of the index.

 The calculated benefit of using the index.

 The estimated gain that will result from implementing the index.

You can display the results of all Index Advisor sessions from the following view:

SELECT * FROM index_recommendations;

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

120

3.2.4.2 Querying the index_advisor_log Table

Index Advisor stores indexing recommendations in a table named

index_advisor_log. Each row in the index_advisor_log table contains the result

of a query where Index Advisor determines it can recommend a hypothetical index to

reduce the execution cost of that query.

Column Type Description
reloid oid OID of the base table for the index
relname name Name of the base table for the index
attrs integer[] Recommended index columns (identified by column number)
benefit real Calculated benefit of the index for this query
index_size integer Estimated index size in disk-pages
backend_pid integer Process ID of the process generating this recommendation
timestamp timestamp Date/Time when the recommendation was generated

You can query the index_advisor_log table at the psql command line. The following

example shows the index_advisor_log table entries resulting from two Index

Advisor sessions. Each session contains two queries, and can be identified (in the table

below) by a different backend_pid value. For each session, Index Advisor generated

two index recommendations.

 edb=# SELECT * FROM index_advisor_log;

 reloid | relname | attrs | benefit | index_size | backend_pid |

timestamp

 --------+---------+-------+---------+------------+-------------+-----------

 16651 | t | {1} | 1684.72 | 2184 | 3442 | 22-MAR-11

16:44:32.712638 -04:00

 16651 | t | {2} | 1655.52 | 2184 | 3442 | 22-MAR-11

16:44:32.759436 -04:00

 16651 | t | {1} | 1355.9 | 2184 | 3506 | 22-MAR-11

16:48:28.317016 -04:00

 16651 | t | {1} | 1684.72 | 2184 | 3506 | 22-MAR-11

16:51:45.927906 -04:00

 (4 rows)

Index Advisor added the first two rows to the table after analyzing the following two

queries executed by the pg_advise_index utility:

 SELECT * FROM t WHERE a = 500;

 SELECT * FROM t WHERE b < 1000;

The value of 3442 in column backend_pid identifies these results as coming from the

session with process ID 3442.

The value of 1 in column attrs in the first row indicates that the hypothetical index is

on the first column of the table (column a of table t).

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

121

The value of 2 in column attrs in the second row indicates that the hypothetical index

is on the second column of the table (column b of table t).

Index Advisor added the last two rows to the table after analyzing the following two

queries (executed at the psql command line):

 edb=# EXPLAIN SELECT * FROM t WHERE a < 10000;

 QUERY PLAN

 --

 Seq Scan on t (cost=0.00..1693.00 rows=10105 width=8)

 Filter: (a < 10000)

 Result (cost=0.00..337.10 rows=10105 width=8)

 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text

 -> Index Scan using "<hypothetical-index>:1" on t (cost=0.00..337.10

rows=10105 width=8)

 Index Cond: (a < 10000)

 (6 rows)

 edb=# EXPLAIN SELECT * FROM t WHERE a = 100;

 QUERY PLAN

 --

 Seq Scan on t (cost=0.00..1693.00 rows=1 width=8)

 Filter: (a = 100)

 Result (cost=0.00..8.28 rows=1 width=8)

 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text

 -> Index Scan using "<hypothetical-index>:3" on t (cost=0.00..8.28

rows=1 width=8)

 Index Cond: (a = 100)

 (6 rows)

The values in the benefit column of the index_advisor_log table are calculated using

the following formula:

benefit = (normal execution cost) - (execution cost with hypothetical
index)

The value of the benefit column for the last row of the index_advisor_log table

(shown in the example) is calculated using the query plan for the following SQL

statement:

EXPLAIN SELECT * FROM t WHERE a = 100;

The execution costs of the different execution plans are evaluated and compared:

benefit = (Seq Scan on t cost) - (Index Scan using

<hypothetical-index>)

and the benefit is added to the table:

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

122

benefit = 1693.00 - 8.28

benefit = 1684.72

You can delete rows from the index_advisor_log table when you no longer have the

need to review the results of the queries stored in the row.

3.2.4.3 Querying the index_recommendations View

The index_recommendations view contains the calculated metrics and the CREATE

INDEX statements to create the recommended indexes for all sessions whose results are

currently in the index_advisor_log table. You can display the results of all stored

Index Advisor sessions by querying the index_recommendations view as shown

below:

SELECT * FROM index_recommendations;

Using the example shown in the previous section (Querying the index_advisor_log

Table), the index_recommendations view displays the following:

 edb=# SELECT * FROM index_recommendations;

 backend_pid | show_index_recommendations

 -------------+---

 3442 | create index idx_t_a on t(a);/* size: 2184 KB, benefit:

1684.72, gain: 0.771392654586624 */

 3442 | create index idx_t_b on t(b);/* size: 2184 KB, benefit:

1655.52, gain: 0.758021539820856 */

 3506 | create index idx_t_a on t(a);/* size: 2184 KB, benefit:

3040.62, gain: 1.39222666981456 */

 (3 rows)

Within each session, the results of all queries that benefit from the same recommended

index are combined to produce one set of metrics per recommended index, reflected in

the fields named benefit and gain.

The formulas for the fields are as follows:

size = MAX(index size of all queries)

benefit = SUM(benefit of each query)

gain = SUM(benefit of each query) / MAX(index size of all

queries)

So for example, using the following query results from the process with a backend_pid

of 3506:

 reloid | relname | attrs | benefit | index_size | backend_pid |

timestamp

 --------+---------+-------+---------+------------+-------------+-----------

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

123

 16651 | t | {1} | 1355.9 | 2184 | 3506 | 22-MAR-11

16:48:28.317016 -04:00

 16651 | t | {1} | 1684.72 | 2184 | 3506 | 22-MAR-11

16:51:45.927906 -04:00

The metrics displayed from the index_recommendations view for backend_pid

3506 are:

 backend_pid | show_index_recommendations

 -------------+---

 3506 | create index idx_t_a on t(a);/* size: 2184 KB, benefit:

3040.62, gain: 1.39222666981456 */

The metrics from the view are calculated as follows:

benefit = (benefit from 1st query) + (benefit from 2nd query)

benefit = 1355.9 + 1684.72

benefit = 3040.62

and

gain = ((benefit from 1st query) + (benefit from 2nd query))

/ MAX(index size of all queries)

gain = (1355.9 + 1684.72) / MAX(2184, 2184)

gain = 3040.62 / 2184

gain = 1.39223

The gain metric is useful when comparing the relative advantage of the different

recommended indexes derived during a given session. The larger the gain value, the

better the cost effectiveness derived from the index weighed against the possible disk

space consumption of the index.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

124

3.2.5 Limitations

Index Advisor does not consider Index Only scans; it does consider Index scans when

making recommendations.

Index Advisor ignores any computations found in the WHERE clause. Effectively, the

index field in the recommendations will not be any kind of expression; the field will be a

simple column name.

Index Advisor does not consider inheritance when recommending hypothetical indexes.

If a query references a parent table, Index Advisor does not make any index

recommendations on child tables.

Restoration of a pg_dump backup file that includes the index_advisor_log table or

any tables for which indexing recommendations were made and stored in the

index_advisor_log table, may result in "broken links" between the

index_advisor_log table and the restored tables referenced by rows in the

index_advisor_log table because of changes in object identifiers (OIDs).

If it is necessary to display the recommendations made prior to the backup, you can

replace the old OIDs in the reloid column of the index_advisor_log table with the

new OIDs of the referenced tables using the SQL UPDATE statement:

UPDATE index_advisor_log SET reloid = new_oid WHERE reloid =

old_oid;

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

125

3.3 SQL Profiler

Inefficient SQL code is one of, if not the leading cause of database performance

problems. The challenge for database administrators and developers is locating and then

optimizing this code in large, complex systems.

SQL Profiler helps you locate and optimize poorly running SQL code.

Specific features and benefits of SQL Profiler include the following:

 On-Demand Traces. You can capture SQL traces at any time by manually

setting up your parameters and starting the trace.

 Scheduled Traces. For inconvenient times, you can also specify your trace

parameters and schedule them to run at some later time.

 Save Traces. Execute your traces and save them for later review.

 Trace Filters. Selectively filter SQL captures by database and by user, or capture

every SQL statement sent by all users against all databases.

 Trace Output Analyzer. A graphical table lets you quickly sort and filter queries

by duration or statement, and a graphical or text based EXPLAIN plan lays out

your query paths and joins.

 Index Advisor Integration. Once you have found your slow queries and

optimized them, you can also let the Index Advisor recommend the creation of

underlying table indices to further improve performance.

The following describes the installation process.

Step 1: Install SQL Profiler

SQL Profiler is installed by the Advanced Server installer on Windows or from the edb-

asxx-server-sqlprofiler RPM package on Linux where xx is the Advanced

Server version number.

Step 2: Add the SQL Profiler library

Modify the postgresql.conf parameter file for the instance to include the SQL

Profiler library in the shared_preload_libraries configuration parameter.

For Linux installations, the parameter value should include:

$libdir/sql-profiler

On Windows, the parameter value should include:

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

126

$libdir\sql-profiler.dll

Step 3: Create the functions used by SQL Profiler

The SQL Profiler installation program places a SQL script (named sql-

profiler.sql) in:

On Linux:

/usr/edb/as12/share/contrib/

On Windows:

C:\Program Files\edb\as12\share\contrib\

Use the psql command line interface to run the sql-profiler.sql script in the

database specified as the Maintenance Database on the server you wish to profile. If you

are using Advanced Server, the default maintenance database is named edb. If you are

using a PostgreSQL instance, the default maintenance database is named postgres.

The following command uses the psql command line to invoke the sql-

profiler.sql script on a Linux system:

$ /usr/edb/as12/bin/psql -U user_name database_name <

/usr/edb/as12/share/contrib/sql-profiler.sql

Step 4: Stop and restart the server for the changes to take effect.

After configuring SQL Profiler, it is ready to use with all databases that reside on the

server. You can take advantage of SQL Profiler functionality with EDB Postgres

Enterprise Manager; for more information about Postgres Enterprise Manager, visit the

EnterpriseDB website at:

https://www.enterprisedb.com/edb-docs

Troubleshooting

If (after performing an upgrade to a newer version of SQL Profiler) you encounter an

error that contains the following text:

An error has occurred:

ERROR: function return row and query-specified return row do not match.

DETAIL: Returned row contains 11 attributes, but the query expects 10.

https://www.enterprisedb.com/resources/product-documentation

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

127

To correct this error, you must replace the existing query set with a new query set. First,

uninstall SQL Profiler by invoking the uninstall-sql-profiler.sql script, and

then reinstall SQL Profiler by invoking the sql-profiler.sql script.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

128

3.4 pgsnmpd

pgsnmpd is an SNMP agent that can return hierarchical information about the current

state of Advanced Server on a Linux system. pgsnmpd is distributed and installed using

the edb-asxx-pgsnmpd RPM package where xx is the Advanced Server version

number. The pgsnmpd agent can operate as a stand-alone SNMP agent, as a pass-through

sub-agent, or as an AgentX sub-agent.

After installing Advanced Server, you will need to update the LD_LIBRARY_PATH

variable. Use the command:

$ export LD_LIBRARY_PATH=/usr/edb/as12/lib:$LD_LIBRARY_PATH

This command does not persistently alter the value of LD_LIBRARY_PATH. Consult the

documentation for your distribution of Linux for information about persistently setting

the value of LD_LIBRARY_PATH.

The examples that follow demonstrate the simplest usage of pgsnmpd, implementing

read only access. pgsnmpd is based on the net-snmp library; for more information about

net-snmp, visit:

http://net-snmp.sourceforge.net/

3.4.1 Configuring pgsnmpd

The pgsnmpd configuration file is named snmpd.conf. For information about the

directives that you can specify in the configuration file, please review the snmpd.conf

man page (man snmpd.conf).

You can create the configuration file by hand, or you can use the snmpconf perl script to

create the configuration file. The perl script is distributed with net-snmp package.

net-snmp is an open-source package available from:

http://www.net-snmp.org/

To use the snmpconf configuration file wizard, download and install net-snmp. When the

installation completes, open a command line and enter:

snmpconf

http://net-snmp.sourceforge.net/
http://www.net-snmp.org/

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

129

When the configuration file wizard opens, it may prompt you to read in an existing

configuration file. Enter none to generate a new configuration file (not based on a

previously existing configuration file).

snmpconf is a menu-driven wizard. Select menu item 1: snmpd.conf to start the

configuration wizard. As you select each top-level menu option displayed by snmpconf,

the wizard walks through a series of questions, prompting you for information required to

build the configuration file. When you have provided information in each of the category

relevant to your system, enter Finished to generate a configuration file named

snmpd.conf. Copy the file to:

/usr/edb/as12/share/

3.4.2 Setting the Listener Address

By default, pgsnmpd listens on port 161. If the listener port is already being used by

another service, you may receive the following error:

Error opening specified endpoint "udp:161".

You can specify an alternate listener port by adding the following line to your

snmpd.conf file:

agentaddress $host_address:2000

The example instructs pgsnmpd to listen on UDP port 2000, where $host_address is

the IP address of the server (e.g., 127.0.0.1).

3.4.3 Invoking pgsnmpd

Ensure that an instance of Advanced Server is up and running (pgsnmpd will connect to

this server). Open a command line and assume superuser privileges, before invoking

pgsnmpd with a command that takes the following form:

POSTGRES_INSTALL_HOME/bin/pgsnmpd -b

 -c POSTGRES_INSTALL_HOME/share/snmpd.conf

 -C "user=enterprisedb dbname=edb password=safe_password

 port=5444"

Where POSTGRES_INSTALL_HOME specifies the Advanced Server installation directory.

Include the -b option to specify that pgsnmpd should run in the background.

Include the -c option, specifying the path and name of the pgsnmpd configuration file.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

130

Include connection information for your installation of Advanced Server (in the form of a

libpq connection string) after the -C option.

3.4.4 Viewing pgsnmpd Help

Include the --help option when invoking the pgsnmpd utility to view other pgsnmpd

command line options:

pgsnmpd --help

 Version PGSQL-SNMP-Ver1.0

 usage: pgsnmpd [-s] [-b] [-c FILE] [-x address] [-g] [-C "Connect String"]

 -s : run as AgentX sub-agent of an existing snmpd process

 -b : run in the background

 -c : configuration file name

 -g : use syslog

 -C : libpq connection string

 -x : address:port of a network interface

 -V : display version strings

3.4.5 Requesting Information from pgsnmpd

You can use net-snmp commands to query the pgsnmpd service. For example:

snmpgetnext -v 2c -c public localhost

.1.3.6.1.4.1.5432.1.4.2.1.1.0

In the above example:

-v 2c option instructs the snmpgetnext client to send the request in SNMP

version 2c format.

-c public specifies the community name.

localhost indicates the host machine running the pgsnmpd server.

.1.3.6.1.4.1.5432.1.4.2.1.1.0 is the identity of the requested object. To

see a list of all databases, increment the last digit by one (e.g. .1.1, .1.2, .1.3 etc.).

The encodings required to query any given object are defined in the MIB (Management

Information Base). An SNMP client can monitor a variety of servers; the server type

determines the information exposed by a given server. Each SNMP server describes the

exposed data in the form of a MIB (Management information base). By default, pgsnmpd

searches for MIB's in the following locations:

/usr/share/snmp/mibs

$HOME/.snmp/mibs

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

131

3.5 EDB Audit Logging

Advanced Server allows database and security administrators, auditors, and operators to

track and analyze database activities using the EDB Audit Logging functionality. EDB

Audit Logging generates audit log files, which contains all of the relevant information.

The audit logs can be configured to record information such as:

 When a role establishes a connection to an Advanced Server database

 What database objects a role creates, modifies, or deletes when connected to

Advanced Server

 When any failed authentication attempts occur

The parameters specified in the configuration files, postgresql.conf or

postgresql.auto.conf, control the information included in the audit logs.

3.5.1 Audit Logging Configuration Parameters

Use the following configuration parameters to control database auditing. See Section

3.1.2 to determine if a change to the configuration parameter takes effect immediately, or

if the configuration needs to be reloaded, or if the database server needs to be restarted.

edb_audit

Enables or disables database auditing. The values xml or csv will enable

database auditing. These values represent the file format in which auditing

information will be captured. none will disable database auditing and is also the

default.

edb_audit_directory

Specifies the directory where the log files will be created. The path of the

directory can be relative or absolute to the data folder. The default is the

PGDATA/edb_audit directory.

edb_audit_filename

Specifies the file name of the audit file where the auditing information will be

stored. The default file name will be audit-%Y%m%d_%H%M%S. The escape

sequences, %Y, %m etc., will be replaced by the appropriate current values

according to the system date and time.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

132

edb_audit_rotation_day

Specifies the day of the week on which to rotate the audit files. Valid values are

sun, mon, tue, wed, thu, fri, sat, every, and none. To disable rotation, set

the value to none. To rotate the file every day, set the

edb_audit_rotation_day value to every. To rotate the file on a specific day

of the week, set the value to the desired day of the week. every is the default

value.

edb_audit_rotation_size

Specifies a file size threshold in megabytes when file rotation will be forced to

occur. The default value is 0 MB. If the parameter is commented out or set to 0,

rotation of the file on a size basis will not occur.

edb_audit_rotation_seconds

Specifies the rotation time in seconds when a new log file should be created. To

disable this feature, set this parameter to 0, which is the default.

edb_audit_connect

Enables auditing of database connection attempts by users. To disable auditing of

all connection attempts, set edb_audit_connect to none. To audit all failed

connection attempts, set the value to failed, which is the default. To audit all

connection attempts, set the value to all.

edb_audit_disconnect

Enables auditing of database disconnections by connected users. To enable

auditing of disconnections, set the value to all. To disable, set the value to none,

which is the default.

edb_audit_statement

This configuration parameter is used to specify auditing of different categories of

SQL statements. Various combinations of the following values may be specified:

none, dml, insert, update, delete, truncate, select, error, rollback,

ddl, create, drop, alter, grant, revoke, and all. The default is ddl and

error. See Section 3.5.2 for information regarding the setting of this parameter.

edb_audit_tag

Use this configuration parameter to specify a string value that will be included in

the audit log file for each entry as a tracking tag.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

133

edb_log_every_bulk_value

Bulk processing logs the resulting statements into both the Advanced Server log

file and the EDB Audit log file. However, logging each and every statement in

bulk processing is costly. This can be controlled by the

edb_log_every_bulk_value configuration parameter. When set to true,

each and every statement in bulk processing is logged. When set to false, a log

message is recorded once per bulk processing. In addition, the duration is emitted

once per bulk processing. Default is false.

edb_audit_destination

Specifies whether the audit log information is to be recorded in the directory as

given by the edb_audit_directory parameter or to the directory and file

managed by the syslog process. Set to file to use the directory specified by

edb_audit_directory, which is the default setting.

Set to syslog to use the syslog process and its location as configured in the

/etc/syslog.conf file. The syslog setting is valid for Advanced Server

running on a Linux host and is not supported on Windows systems. Note: In

recent Linux versions, syslog has been replaced by rsyslog and the configuration

file is in /etc/rsyslog.conf.

The following section describes selection of specific SQL statements for auditing using

the edb_audit_statement parameter.

3.5.2 Selecting SQL Statements to Audit

The edb_audit_statement permits inclusion of one or more, comma-separated values

to control which SQL statements are to be audited. The following is the general format:

edb_audit_statement = 'value_1[, value_2]...'

The comma-separated values may include or omit space characters following the comma.

The values can be specified in any combination of lowercase or uppercase letters.

The basic parameter values are the following:

 all – Results in the auditing and logging of every statement including any error

messages on statements.

 none – Disables all auditing and logging. A value of none overrides any other

value included in the list.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

134

 ddl – Results in the auditing of all data definition language (DDL) statements

(CREATE, ALTER, and DROP) as well as GRANT and REVOKE data control language

(DCL) statements.

 dml – Results in the auditing of all data manipulation language (DML) statements

(INSERT, UPDATE, DELETE, and TRUNCATE).

 select – Results in the auditing of SELECT statements.

 rollback – Results in the auditing of ROLLBACK statements.

 error – Results in the logging of all error messages that occur. Unless the error

value is included, no error messages are logged regarding any errors that occur on

SQL statements related to any of the other preceding parameter values except

when all is used.

Section 3.5.2.1 describes additional parameter values for selecting particular DDL or

DCL statements for auditing.

Section 3.5.2.2 describes additional parameter values for selecting particular DML

statements for auditing.

If an unsupported value is included in the edb_audit_statement parameter, then an

error occurs when applying the setting to the database server. See the database server log

file for the error such as in the following example where create materialized vw

results in the error. (The correct value is create materialized view.)

2017-07-16 11:20:39 EDT LOG: invalid value for parameter "edb_audit_statement": "create

materialized vw, create sequence, grant"

2017-07-16 11:20:39 EDT FATAL: configuration file "/var/lib/edb/as12/data/postgresql.conf"

contains errors

The following sections describe the values for the SQL language types DDL, DCL, and

DML.

3.5.2.1 Data Definition Language and Data Control Language

Statements

This section describes values that can be included in the edb_audit_statement

parameter to audit DDL and DCL statements.

The following general rules apply:

 If the edb_audit_statement parameter includes either ddl or all, then all

DDL statements are audited. In addition, the DCL statements GRANT and REVOKE

are audited as well.

 If the edb_audit_statement is set to none, then no DDL nor DCL statements

are audited.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

135

 Specific types of DDL and DCL statements can be chosen for auditing by

including a combination of values within the edb_audit_statement

parameter.

Use the following syntax to specify an edb_audit_statement parameter value for

DDL statements:

{ create | alter | drop } [object_type]

object_type is any of the following:

ACCESS METHOD

AGGREGATE

CAST

COLLATION

CONVERSION

DATABASE

EVENT TRIGGER

EXTENSION

FOREIGN TABLE

FUNCTION

INDEX

LANGUAGE

LARGE OBJECT

MATERIALIZED VIEW

OPERATOR

OPERATOR CLASS

OPERATOR FAMILY

POLICY

PUBLICATION

ROLE

RULE

SCHEMA

SEQUENCE

SERVER

SUBSCRIPTION

TABLE

TABLESPACE

TEXT SEARCH CONFIGURATION

TEXT SEARCH DICTIONARY

TEXT SEARCH PARSER

TEXT SEARCH TEMPLATE

TRANSFORM

TRIGGER

TYPE

USER MAPPING

VIEW

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

136

Descriptions of object types as used in SQL commands can be found in the PostgreSQL

core documentation available at:

https://www.postgresql.org/docs/12/static/sql-commands.html

If object_type is omitted from the parameter value, then all of the specified command

statements (either create, alter, or drop) are audited.

Use the following syntax to specify an edb_audit_statement parameter value for

DCL statements:

{ grant | revoke }

The following are some DDL and DCL examples.

Example 1

The following is an example where edb_audit_connect and

edb_audit_statement are set with the following non-default values:

edb_audit_connect = 'all'

edb_audit_statement = 'create, alter, error'

Thus, only SQL statements invoked by the CREATE and ALTER commands are audited.

Error messages are also included in the audit log.

The database session that occurs is the following:

$ psql edb enterprisedb

Password for user enterprisedb:

psql.bin (12.0.0)

Type "help" for help.

edb=# SHOW edb_audit_connect;

 edb_audit_connect

 all

(1 row)

edb=# SHOW edb_audit_statement;

 edb_audit_statement

 create, alter, error

(1 row)

edb=# CREATE ROLE adminuser;

CREATE ROLE

edb=# ALTER ROLE adminuser WITH LOGIN, SUPERUSER, PASSWORD 'password';

ERROR: syntax error at or near ","

LINE 1: ALTER ROLE adminuser WITH LOGIN, SUPERUSER, PASSWORD 'passwo...

 ^

edb=# ALTER ROLE adminuser WITH LOGIN SUPERUSER PASSWORD 'password';

ALTER ROLE

edb=# CREATE DATABASE auditdb;

CREATE DATABASE

https://www.postgresql.org/docs/12/static/sql-commands.html

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

137

edb=# ALTER DATABASE auditdb OWNER TO adminuser;

ALTER DATABASE

edb=# \c auditdb adminuser

Password for user adminuser:

You are now connected to database "auditdb" as user "adminuser".

auditdb=# CREATE SCHEMA edb;

CREATE SCHEMA

auditdb=# SET search_path TO edb;

SET

auditdb=# CREATE TABLE department (

auditdb(# deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,

auditdb(# dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,

auditdb(# loc VARCHAR2(13)

auditdb(#);

CREATE TABLE

auditdb=# DROP TABLE department;

DROP TABLE

auditdb=# CREATE TABLE dept (

auditdb(# deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,

auditdb(# dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,

auditdb(# loc VARCHAR2(13)

auditdb(#);

CREATE TABLE

The resulting audit log file contains the following.

Each audit log entry has been split and displayed across multiple lines, and a blank line

has been inserted between the audit log entries for more clarity in the appearance of the

results.

2017-07-16 12:59:42.125 EDT,"enterprisedb","edb",3356,"[local]",

596b9b7e.d1c,1,"authentication",2017-07-16 12:59:42 EDT,6/2,0,AUDIT,00000,

"connection authorized: user=enterprisedb database=edb",,,,,,,,,"","",""

2017-07-16 12:59:42.125 EDT,"enterprisedb","edb",3356,"[local]",

596b9b7e.d1c,2,"idle",2017-07-16 12:59:42 EDT,6/6,0,AUDIT,00000,

"statement: CREATE ROLE adminuser;",,,,,,,,,"psql.bin","CREATE ROLE",""

2017-07-16 13:00:28.469 EDT,"enterprisedb","edb",3356,"[local]",

596b9b7e.d1c,3,"idle",2017-07-16 12:59:42 EDT,6/7,0,ERROR,42601,

"syntax error at or near "",""",,,,,,

"ALTER ROLE adminuser WITH LOGIN, SUPERUSER, PASSWORD 'password';",32,,"psql.bin","",""

2017-07-16 13:00:28.469 EDT,"enterprisedb","edb",3356,"[local]",

596b9b7e.d1c,4,"idle",2017-07-16 12:59:42 EDT,6/8,0,AUDIT,00000,

"statement: ALTER ROLE adminuser WITH LOGIN SUPERUSER PASSWORD 'password';",,,,,,,,,

"psql.bin","ALTER ROLE",""

2017-07-16 13:00:28.469 EDT,"enterprisedb","edb",3356,"[local]",

596b9b7e.d1c,5,"idle",2017-07-16 12:59:42 EDT,6/9,0,AUDIT,00000,

"statement: CREATE DATABASE auditdb;",,,,,,,,,"psql.bin","CREATE DATABASE",""

2017-07-16 13:00:28.469 EDT,"enterprisedb","edb",3356,"[local]",

596b9b7e.d1c,6,"idle",2017-07-16 12:59:42 EDT,6/10,0,AUDIT,00000,

"statement: ALTER DATABASE auditdb OWNER TO adminuser;",,,,,,,,,"psql.bin","ALTER DATABASE",""

2017-07-16 13:01:13.735 EDT,"adminuser","auditdb",3377,"[local]",

596b9bd9.d31,1,"authentication",2017-07-16 13:01:13 EDT,4/15,0,AUDIT,00000,

"connection authorized: user=adminuser database=auditdb",,,,,,,,,"","",""

2017-07-16 13:01:13.735 EDT,"adminuser","auditdb",3377,"[local]",

596b9bd9.d31,2,"idle",2017-07-16 13:01:13 EDT,4/17,0,AUDIT,00000,

"statement: CREATE SCHEMA edb;",,,,,,,,,"psql.bin","CREATE SCHEMA",""

2017-07-16 13:01:13.735 EDT,"adminuser","auditdb",3377,"[local]",

596b9bd9.d31,3,"idle",2017-07-16 13:01:13 EDT,4/19,0,AUDIT,00000,

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

138

"statement: CREATE TABLE department (

 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,

 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,

 loc VARCHAR2(13)

);",,,,,,,,,"psql.bin","CREATE TABLE",""

2017-07-16 13:01:13.735 EDT,"adminuser","auditdb",3377,"[local]",

596b9bd9.d31,4,"idle",2017-07-16 13:01:13 EDT,4/21,0,AUDIT,00000,

"statement: CREATE TABLE dept (

 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,

 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,

 loc VARCHAR2(13)

);",,,,,,,,,"psql.bin","CREATE TABLE",""

The CREATE and ALTER statements for the adminuser role and auditdb database are

audited. The error for the ALTER ROLE adminuser statement is also logged since error

is included in the edb_audit_statement parameter.

Similarly, the CREATE statements for schema edb and tables department and dept are

audited.

Note that the DROP TABLE department statement is not in the audit log since there is

no edb_audit_statement setting that would result in the auditing of successfully

processed DROP statements such as ddl, all, or drop.

Example 2

The following is an example where edb_audit_connect and

edb_audit_statement are set with the following non-default values:

edb_audit_connect = 'all'

edb_audit_statement = create view,create materialized view,create sequence,grant'

Thus, only SQL statements invoked by the CREATE VIEW , CREATE MATERIALIZED

VIEW, CREATE SEQUENCE and GRANT commands are audited.

The database session that occurs is the following:

$ psql auditdb adminuser

Password for user adminuser:

psql.bin (12.0.0)

Type "help" for help.

auditdb=# SHOW edb_audit_connect;

 edb_audit_connect

 all

(1 row)

auditdb=# SHOW edb_audit_statement;

 edb_audit_statement

--

 create view,create materialized view,create sequence,grant

(1 row)

auditdb=# SET search_path TO edb;

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

139

SET

auditdb=# CREATE TABLE emp (

auditdb(# empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,

auditdb(# ename VARCHAR2(10),

auditdb(# job VARCHAR2(9),

auditdb(# mgr NUMBER(4),

auditdb(# hiredate DATE,

auditdb(# sal NUMBER(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),

auditdb(# comm NUMBER(7,2),

auditdb(# deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk

auditdb(# REFERENCES dept(deptno)

auditdb(#);

CREATE TABLE

auditdb=# CREATE VIEW salesemp AS

auditdb-# SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job = 'SALESMAN';

CREATE VIEW

auditdb=# CREATE MATERIALIZED VIEW managers AS

auditdb-# SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job = 'MANAGER';

SELECT 0

auditdb=# CREATE SEQUENCE next_empno START WITH 8000 INCREMENT BY 1;

CREATE SEQUENCE

auditdb=# GRANT ALL ON dept TO PUBLIC;

GRANT

auditdb=# GRANT ALL ON emp TO PUBLIC;

GRANT

The resulting audit log file contains the following.

Each audit log entry has been split and displayed across multiple lines, and a blank line

has been inserted between the audit log entries for more clarity in the appearance of the

results.

2017-07-16 13:20:09.836 EDT,"adminuser","auditdb",4143,"[local]",

596ba049.102f,1,"authentication",2017-07-16 13:20:09 EDT,4/10,0,AUDIT,00000,

"connection authorized: user=adminuser database=auditdb",,,,,,,,,"","",""

2017-07-16 13:20:09.836 EDT,"adminuser","auditdb",4143,"[local]",

596ba049.102f,2,"idle",2017-07-16 13:20:09 EDT,4/16,0,AUDIT,00000,

"statement: CREATE VIEW salesemp AS

 SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job =

'SALESMAN';",,,,,,,,,"psql.bin","CREATE VIEW",""

2017-07-16 13:20:09.836 EDT,"adminuser","auditdb",4143,"[local]",

596ba049.102f,3,"idle",2017-07-16 13:20:09 EDT,4/17,0,AUDIT,00000,

"statement: CREATE MATERIALIZED VIEW managers AS

 SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job =

'MANAGER';",,,,,,,,,"psql.bin","CREATE MATERIALIZED VIEW",""

2017-07-16 13:20:09.836 EDT,"adminuser","auditdb",4143,"[local]",

596ba049.102f,4,"idle",2017-07-16 13:20:09 EDT,4/18,0,AUDIT,00000,

"statement: CREATE SEQUENCE next_empno START WITH 8000 INCREMENT BY

1;",,,,,,,,,"psql.bin","CREATE SEQUENCE",""

2017-07-16 13:20:09.836 EDT,"adminuser","auditdb",4143,"[local]",

596ba049.102f,5,"idle",2017-07-16 13:20:09 EDT,4/19,0,AUDIT,00000,

"statement: GRANT ALL ON dept TO PUBLIC;",,,,,,,,,"psql.bin","GRANT",""

2017-07-16 13:20:09.836 EDT,"adminuser","auditdb",4143,"[local]",

596ba049.102f,6,"idle",2017-07-16 13:20:09 EDT,4/20,0,AUDIT,00000,

"statement: GRANT ALL ON emp TO PUBLIC;",,,,,,,,,"psql.bin","GRANT",""

The CREATE VIEW and CREATE MATERIALIZED VIEW statements are audited. Note

that the prior CREATE TABLE emp statement is not audited since none of the values

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

140

create, create table, ddl, nor all are included in the edb_audit_statement

parameter.

The CREATE SEQUENCE and GRANT statements are audited since those values are

included in the edb_audit_statement parameter.

3.5.2.2 Data Manipulation Language Statements

This section describes the values that can be included in the edb_audit_statement

parameter to audit DML statements.

The following general rules apply:

 If the edb_audit_statement parameter includes either dml or all, then all

DML statements are audited.

 If the edb_audit_statement is set to none, then no DML statements are

audited.

 Specific types of DML statements can be chosen for auditing by including a

combination of values within the edb_audit_statement parameter.

Use the following syntax to specify an edb_audit_statement parameter value for

SQL INSERT, UPDATE, DELETE, or TRUNCATE statements:

{ insert | update | delete | truncate }

Example

The following is an example where edb_audit_connect and

edb_audit_statement are set with the following non-default values:

edb_audit_connect = 'all'

edb_audit_statement = 'UPDATE, DELETE, error'

Thus, only SQL statements invoked by the UPDATE and DELETE commands are audited.

All errors are also included in the audit log (even errors not related to the UPDATE and

DELETE commands).

The database session that occurs is the following:

$ psql auditdb adminuser

Password for user adminuser:

psql.bin (12.0.0)

Type "help" for help.

auditdb=# SHOW edb_audit_connect;

 edb_audit_connect

 all

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

141

(1 row)

auditdb=# SHOW edb_audit_statement;

 edb_audit_statement

 UPDATE, DELETE, error

(1 row)

auditdb=# SET search_path TO edb;

SET

auditdb=# INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

auditdb=# INSERT INTO dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

auditdb=# INSERT INTO dept VALUES (30,'SALES','CHICAGO');

INSERT 0 1

auditdb=# INSERT INTO dept VALUES (40,'OPERATIONS','BOSTON');

INSERT 0 1

auditdb=# INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);

INSERT 0 1

auditdb=# INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-81',1600,300,30);

INSERT 0 1

auditdb=# INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'22-FEB-81',1250,500,30);

INSERT 0 1

 .

 .

 .

auditdb=# INSERT INTO emp VALUES (7934,'MILLER','CLERK',7782,'23-JAN-82',1300,NULL,10);

INSERT 0 1

auditdb=# UPDATE dept SET loc = 'BEDFORD' WHERE deptno = 40;

UPDATE 1

auditdb=# SELECT * FROM dept;

 deptno | dname | loc

--------+------------+----------

 10 | ACCOUNTING | NEW YORK

 20 | RESEARCH | DALLAS

 30 | SALES | CHICAGO

 40 | OPERATIONS | BEDFORD

(4 rows)

auditdb=# DELETE FROM emp WHERE deptno = 10;

DELETE 3

auditdb=# TRUNCATE employee;

ERROR: relation "employee" does not exist

auditdb=# TRUNCATE emp;

TRUNCATE TABLE

auditdb=# \q

The resulting audit log file contains the following.

Each audit log entry has been split and displayed across multiple lines, and a blank line

has been inserted between the audit log entries for more clarity in the appearance of the

results.

2017-07-16 13:43:26.638 EDT,"adminuser","auditdb",4574,"[local]",

596ba5be.11de,1,"authentication",2017-07-16 13:43:26 EDT,4/11,0,AUDIT,00000,

"connection authorized: user=adminuser database=auditdb",,,,,,,,,"","",""

2017-07-16 13:43:26.638 EDT,"adminuser","auditdb",4574,"[local]",

596ba5be.11de,2,"idle",2017-07-16 13:43:26 EDT,4/34,0,AUDIT,00000,

"statement: UPDATE dept SET loc = 'BEDFORD' WHERE deptno = 40;",,,,,,,,,"psql.bin","UPDATE",""

2017-07-16 13:43:26.638 EDT,"adminuser","auditdb",4574,"[local]",

596ba5be.11de,3,"idle",2017-07-16 13:43:26 EDT,4/36,0,AUDIT,00000,

"statement: DELETE FROM emp WHERE deptno = 10;",,,,,,,,,"psql.bin","DELETE",""

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

142

2017-07-16 13:45:46.999 EDT,"adminuser","auditdb",4574,"[local]",

596ba5be.11de,4,"TRUNCATE TABLE",2017-07-16 13:43:26 EDT,4/37,0,ERROR,42P01,

"relation ""employee"" does not exist",,,,,,"TRUNCATE employee;",,,"psql.bin","",""

2017-07-16 13:46:26.362 EDT,,,4491,,596ba59c.118b,1,,2017-07-16 13:42:52 EDT,,0,LOG,00000,

"database system is shut down",,,,,,,,,"","",""

The UPDATE dept and DELETE FROM emp statements are audited. Note that all of the

prior INSERT statements are not audited since none of the values insert, dml, nor all

are included in the edb_audit_statement parameter.

The SELECT * FROM dept statement is not audited as well since neither select nor

all is included in the edb_audit_statement parameter.

Since error is specified in the edb_audit_statement parameter, but not the

truncate value, the error on the TRUNCATE employee statement is logged in the audit

file, but not the successful TRUNCATE emp statement.

3.5.3 Enabling Audit Logging

The following steps describe how to configure Advanced Server to log all connections,

disconnections, DDL statements, DCL statements, DML statements, and any statements

resulting in an error.

1. Enable auditing by the setting the edb_audit parameter to xml or csv.

2. Set the file rotation day when the new file will be created by setting the

parameter edb_audit_rotation_day to the desired value.

3. To audit all connections, set the parameter, edb_audit_connect, to all.

4. To audit all disconnections, set the parameter, edb_audit_disconnect, to

all.

5. To audit DDL, DCL, DML and other statements, set the parameter,

edb_audit_statement according to the instructions in Section 3.5.2.

The setting of the edb_audit_statement parameter in the configuration file affects

the entire database cluster.

The type of statements that are audited as controlled by the edb_audit_statement

parameter can be further refined according to the database in use as well as the database

role running the session:

 The edb_audit_statement parameter can be set as an attribute of a specified

database with the ALTER DATABASE dbname SET edb_audit_statement

command. This setting overrides the edb_audit_statement parameter in the

configuration file for statements executed when connected to database dbname.

 The edb_audit_statement parameter can be set as an attribute of a specified

role with the ALTER ROLE rolename SET edb_audit_statement

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

143

command. This setting overrides the edb_audit_statement parameter in the

configuration file as well as any setting assigned to the database by the previously

described ALTER DATABASE command when the specified role is running the

current session.

 The edb_audit_statement parameter can be set as an attribute of a specified

role when using a specified database with the ALTER ROLE rolename IN

DATABASE dbname SET edb_audit_statement command. This setting

overrides the edb_audit_statement parameter in the configuration file as well

as any setting assigned to the database by the previously described ALTER

DATABASE command as well as any setting assigned to the role with the ALTER

ROLE command without the IN DATABASE clause as previously described.

The following are examples of this technique.

The database cluster is established with edb_audit_statement set to all as shown in

its postgresql.conf file:

edb_audit_statement = 'all' # Statement type to be audited:

 # none, dml, insert, update, delete, truncate,

 # select, error, rollback, ddl, create, drop,

 # alter, grant, revoke, all

A database and role are established with the following settings for the

edb_audit_statement parameter:

 Database auditdb with ddl, insert, update, and delete

 Role admin with select and truncate

 Role admin in database auditdb with create table, insert, and update

Creation and alteration of the database and role are shown by the following:

$ psql edb enterprisedb

Password for user enterprisedb:

psql.bin (12.0.0)

Type "help" for help.

edb=# SHOW edb_audit_statement;

 edb_audit_statement

 all

(1 row)

edb=# CREATE DATABASE auditdb;

CREATE DATABASE

edb=# ALTER DATABASE auditdb SET edb_audit_statement TO 'ddl, insert, update, delete';

ALTER DATABASE

edb=# CREATE ROLE admin WITH LOGIN SUPERUSER PASSWORD 'password';

CREATE ROLE

edb=# ALTER ROLE admin SET edb_audit_statement TO 'select, truncate';

ALTER ROLE

edb=# ALTER ROLE admin IN DATABASE auditdb SET edb_audit_statement TO 'create table, insert,

update';

ALTER ROLE

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

144

The following demonstrates the changes made and the resulting audit log file for three

cases.

Case 1: Changes made in database auditdb by role enterprisedb. Only ddl,

insert, update, and delete statements are audited:

$ psql auditdb enterprisedb

Password for user enterprisedb:

psql.bin (12.0.0)

Type "help" for help.

auditdb=# SHOW edb_audit_statement;

 edb_audit_statement

 ddl, insert, update, delete

(1 row)

auditdb=# CREATE TABLE audit_tbl (f1 INTEGER PRIMARY KEY, f2 TEXT);

CREATE TABLE

auditdb=# INSERT INTO audit_tbl VALUES (1, 'Row 1');

INSERT 0 1

auditdb=# UPDATE audit_tbl SET f2 = 'Row A' WHERE f1 = 1;

UPDATE 1

auditdb=# SELECT * FROM audit_tbl; <== Should not be audited

 f1 | f2

----+-------

 1 | Row A

(1 row)

auditdb=# TRUNCATE audit_tbl; <== Should not be audited

TRUNCATE TABLE

The following audit log file shows entries only for the CREATE TABLE, INSERT INTO

audit_tbl, and UPDATE audit_tbl statements. The SELECT * FROM audit_tbl

and TRUNCATE audit_tbl statements were not audited.

Each audit log entry has been split and displayed across multiple lines, and a blank line

has been inserted between the audit log entries for more clarity in the appearance of the

results.

2017-07-13 15:26:17.426 EDT,"enterprisedb","auditdb",4024,"[local]",

5967c947.fb8,1,"idle",2017-07-13 15:25:59 EDT,7/4,0,AUDIT,00000,

"statement: CREATE TABLE audit_tbl (f1 INTEGER PRIMARY KEY, f2 TEXT);",,,,,,,,,

"psql.bin","CREATE TABLE",""

2017-07-13 15:26:17.426 EDT,"enterprisedb","auditdb",4024,"[local]",

5967c947.fb8,2,"idle",2017-07-13 15:25:59 EDT,7/5,0,AUDIT,00000,

"statement: INSERT INTO audit_tbl VALUES (1, 'Row 1');",,,,,,,,,"psql.bin","INSERT",""

2017-07-13 15:26:17.426 EDT,"enterprisedb","auditdb",4024,"[local]",

5967c947.fb8,3,"idle",2017-07-13 15:25:59 EDT,7/6,0,AUDIT,00000,

"statement: UPDATE audit_tbl SET f2 = 'Row A' WHERE f1 = 1;",,,,,,,,,"psql.bin","UPDATE",""

Case 2: Changes made in database edb by role admin. Only select and truncate

statements are audited:

$ psql edb admin

Password for user admin:

psql.bin (12.0.0)

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

145

Type "help" for help.

edb=# SHOW edb_audit_statement;

 edb_audit_statement

 select, truncate

(1 row)

edb=# CREATE TABLE edb_tbl (f1 INTEGER PRIMARY KEY, f2 TEXT) <== Should not be audited

CREATE TABLE

edb=# INSERT INTO edb_tbl VALUES (1, 'Row 1'); <== Should not be audited

INSERT 0 1

edb=# SELECT * FROM edb_tbl;

 f1 | f2

----+-------

 1 | Row 1

(1 row)

edb=# TRUNCATE edb_tbl;

TRUNCATE TABLE

Continuation of the audit log file now appears as follows. The last two entries

representing the second case show only the SELECT * FROM edb_tbl and TRUNCATE

edb_tbl statements. The CREATE TABLE edb_tbl and INSERT INTO edb_tbl

statements were not audited.

2017-07-13 15:26:17.426 EDT,"enterprisedb","auditdb",4024,"[local]",

5967c947.fb8,1,"idle",2017-07-13 15:25:59 EDT,7/4,0,AUDIT,00000,

"statement: CREATE TABLE audit_tbl (f1 INTEGER PRIMARY KEY, f2 TEXT);",,,,,,,,,

"psql.bin","CREATE TABLE",""

2017-07-13 15:26:17.426 EDT,"enterprisedb","auditdb",4024,"[local]",

5967c947.fb8,2,"idle",2017-07-13 15:25:59 EDT,7/5,0,AUDIT,00000,

"statement: INSERT INTO audit_tbl VALUES (1, 'Row 1');",,,,,,,,,"psql.bin","INSERT",""

2017-07-13 15:26:17.426 EDT,"enterprisedb","auditdb",4024,"[local]",

5967c947.fb8,3,"idle",2017-07-13 15:25:59 EDT,7/6,0,AUDIT,00000,

"statement: UPDATE audit_tbl SET f2 = 'Row A' WHERE f1 = 1;",,,,,,,,,"psql.bin","UPDATE",""

2017-07-13 15:29:45.616 EDT,"admin","edb",4047,"[local]",

5967ca05.fcf,1,"idle",2017-07-13 15:29:09 EDT,4/33,0,AUDIT,00000,

"statement: SELECT * FROM edb_tbl;",,,,,,,,,"psql.bin","SELECT",""

2017-07-13 15:29:45.616 EDT,"admin","edb",4047,"[local]",

5967ca05.fcf,2,"idle",2017-07-13 15:29:09 EDT,4/34,0,AUDIT,00000,

"statement: TRUNCATE edb_tbl;",,,,,,,,,"psql.bin","TRUNCATE TABLE",""

Case 3: Changes made in database auditdb by role admin. Only create table,

insert, and update statements are audited:

$ psql auditdb admin

Password for user admin:

psql.bin (12.0.0)

Type "help" for help.

auditdb=# SHOW edb_audit_statement;

 edb_audit_statement

 create table, insert, update

(1 row)

auditdb=# CREATE TABLE audit_tbl_2 (f1 INTEGER PRIMARY KEY, f2 TEXT);

CREATE TABLE

auditdb=# INSERT INTO audit_tbl_2 VALUES (1, 'Row 1');

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

146

INSERT 0 1

auditdb=# SELECT * FROM audit_tbl_2; <== Should not be audited

 f1 | f2

----+-------

 1 | Row 1

(1 row)

auditdb=# TRUNCATE audit_tbl_2; <== Should not be audited

TRUNCATE TABLE

Continuation of the audit log file now appears as follows. The next to last two entries

representing the third case show only CREATE TABLE audit_tbl_2 and INSERT

INTO audit_tbl_2 statements. The SELECT * FROM audit_tbl_2 and TRUNCATE

audit_tbl_2 statements were not audited.

2017-07-13 15:26:17.426 EDT,"enterprisedb","auditdb",4024,"[local]",

5967c947.fb8,1,"idle",2017-07-13 15:25:59 EDT,7/4,0,AUDIT,00000,

"statement: CREATE TABLE audit_tbl (f1 INTEGER PRIMARY KEY, f2 TEXT);",,,,,,,,,

"psql.bin","CREATE TABLE",""

2017-07-13 15:26:17.426 EDT,"enterprisedb","auditdb",4024,"[local]",

5967c947.fb8,2,"idle",2017-07-13 15:25:59 EDT,7/5,0,AUDIT,00000,

"statement: INSERT INTO audit_tbl VALUES (1, 'Row 1');",,,,,,,,,"psql.bin","INSERT",""

2017-07-13 15:26:17.426 EDT,"enterprisedb","auditdb",4024,"[local]",

5967c947.fb8,3,"idle",2017-07-13 15:25:59 EDT,7/6,0,AUDIT,00000,

"statement: UPDATE audit_tbl SET f2 = 'Row A' WHERE f1 = 1;",,,,,,,,,"psql.bin","UPDATE",""

2017-07-13 15:29:45.616 EDT,"admin","edb",4047,"[local]",

5967ca05.fcf,1,"idle",2017-07-13 15:29:09 EDT,4/33,0,AUDIT,00000,

"statement: SELECT * FROM edb_tbl;",,,,,,,,,"psql.bin","SELECT",""

2017-07-13 15:29:45.616 EDT,"admin","edb",4047,"[local]",

5967ca05.fcf,2,"idle",2017-07-13 15:29:09 EDT,4/34,0,AUDIT,00000,

"statement: TRUNCATE edb_tbl;",,,,,,,,,"psql.bin","TRUNCATE TABLE",""

2017-07-13 15:35:45.309 EDT,"admin","auditdb",4085,"[local]",

5967cb81.ff5,1,"idle",2017-07-13 15:35:29 EDT,4/72,0,AUDIT,00000,

"statement: CREATE TABLE audit_tbl_2 (f1 INTEGER PRIMARY KEY, f2 TEXT);",,,,,,,,,

"psql.bin","CREATE TABLE",""

2017-07-13 15:35:45.309 EDT,"admin","auditdb",4085,"[local]",

5967cb81.ff5,2,"idle",2017-07-13 15:35:29 EDT,4/73,0,AUDIT,00000,

"statement: INSERT INTO audit_tbl_2 VALUES (1, 'Row 1');",,,,,,,,,"psql.bin","INSERT",""

2017-07-13 15:38:42.028 EDT,,,3942,,5967c934.f66,1,,2017-07-13 15:25:40

EDT,,0,LOG,00000,"database system is shut down",,,,,,,,,"","",""

3.5.4 Audit Log File

The audit log file can be generated in either CSV or XML format depending upon the

setting of the edb_audit configuration parameter. The XML format contains less

information than the CSV format.

The information in the audit log is based on the logging performed by PostgreSQL as

described in Section 19.8.4 “Using CSV-Format Log Output” within Section 19.8 “Error

Reporting and Logging” in the PostgreSQL core documentation, available at:

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

147

https://www.postgresql.org/docs/12/static/runtime-config-logging.html

The following table lists the fields in the order they appear in the CSV audit log format.

The table contains the following information:

 Field. Name of the field as shown in the sample table definition in the

PostgreSQL documentation as previously referenced.

 XML Element/Attribute. For the XML format, name of the XML element and

its attribute (if used), referencing the value. Note: n/a indicates that there is no

XML representation for this field.

 Data Type. Data type of the field as given by the PostgreSQL sample table

definition.

 Description. Description of the field. For certain fields, no output is generated in

the audit log as those fields are not supported by auditing. Those fields are

indicated by “Not supported”.

The fields with the Description of “Not supported” appear as consecutive commas

(,,) in the CSV format.

Table 3-3 - Audit Log Fields

Field XML Element/Attribute Data Type Description
log_time event/time timestamp

with time

zone

Log date/time of the

statement.

user_name event/user text Database user who executed

the statement.
database_name event/database text Database in which the

statement was executed.
process_id event/process_id integer Operating system process ID

in which the statement was

executed.
connection_from event/remote_host text Host and port location from

where the statement was

executed.
session_id event/session_id text Session ID in which the

statement was executed.
session_line_num n/a bigint Order of the statement within

the session.
process_status n/a text Processing status.
session_start_time n/a timestamp

with time

zone

Date/time when the session

was started.

virtual_transaction_id n/a text Virtual transaction ID of the

statement.
transaction_id event/transaction_id bigint Regular transaction ID of the

statement.
error_severity message text Statement severity. Values

are AUDIT for audited

statements and ERROR for any

resulting error messages.

https://www.postgresql.org/docs/12/static/runtime-config-logging.html

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

148

Field XML Element/Attribute Data Type Description
sql_state_code n/a text SQL state code returned for

the statement.
message message text The SQL statement that was

attempted for execution.
detail n/a text Error message detail. (Not

supported)
hint n/a text Hint (Not supported)
internal_query n/a text Internal query that led to the

error, if any. (Not supported)
internal_query_pos n/a integer Character count of the error

position, therein. (Not

supported)
context n/a text Error context. (Not

supported)
query n/a text User query that led to the

error. (For errors only)
query_pos n/a integer Character count of the error

position, therein. (For errors

only)
location n/a text Location of the error in the

PostgreSQL source code.

(Not supported)
application_name n/a text Name of the application from

which the statement was

executed. (for example,

psql.bin).
command_tag event/command_tag text SQL command of the

statement.
audit_tag event/audit_tag text Value specified by the

audit_tag parameter in the

configuration file.

The following examples are generated in the CSV and XML formats.

The non-default audit settings in the postgresql.conf file are as follows:

edb_audit = 'csv'

edb_audit_connect = 'all'

edb_audit_disconnect = 'all'

edb_audit_statement = 'ddl, dml, select, error'

edb_audit_tag = 'edbaudit'

The edb_audit parameter is changed to xml when generating the XML format.

The audited session is the following:

$ psql edb enterprisedb

Password for user enterprisedb:

psql.bin (12.0.0)

Type "help" for help.

edb=# CREATE SCHEMA edb;

CREATE SCHEMA

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

149

edb=# SET search_path TO edb;

SET

edb=# CREATE TABLE dept (

edb(# deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,

edb(# dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,

edb(# loc VARCHAR2(13)

edb(#);

CREATE TABLE

edb=# INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

edb=# UPDATE department SET loc = 'BOSTON' WHERE deptno = 10;

ERROR: relation "department" does not exist

LINE 1: UPDATE department SET loc = 'BOSTON' WHERE deptno = 10;

 ^

edb=# UPDATE dept SET loc = 'BOSTON' WHERE deptno = 10;

UPDATE 1

edb=# SELECT * FROM dept;

 deptno | dname | loc

--------+------------+--------

 10 | ACCOUNTING | BOSTON

(1 row)

edb=# \q

CSV Audit Log File

The following is the CSV format of the audit log file.

Each audit log entry has been split and displayed across multiple lines, and a blank line

has been inserted between the audit log entries for more clarity in the appearance of the

results.

2017-07-17 13:28:44.235 EDT,"enterprisedb","edb",4068,"[local]",

596cf3cc.fe4,1,"authentication",2017-07-17 13:28:44 EDT,6/2,0,AUDIT,00000,

"connection authorized: user=enterprisedb database=edb",,,,,,,,,"","","edbaudit"

2017-07-17 13:28:44.235 EDT,"enterprisedb","edb",4068,"[local]",

596cf3cc.fe4,2,"idle",2017-07-17 13:28:44 EDT,6/4,0,AUDIT,00000,

"statement: CREATE SCHEMA edb;",,,,,,,,,"psql.bin","CREATE SCHEMA","edbaudit"

2017-07-17 13:28:44.235 EDT,"enterprisedb","edb",4068,"[local]",

596cf3cc.fe4,3,"idle",2017-07-17 13:28:44 EDT,6/6,0,AUDIT,00000,

"statement: CREATE TABLE dept (

 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,

 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,

 loc VARCHAR2(13)

);",,,,,,,,,"psql.bin","CREATE TABLE","edbaudit"

2017-07-17 13:28:44.235 EDT,"enterprisedb","edb",4068,"[local]",

596cf3cc.fe4,4,"idle",2017-07-17 13:28:44 EDT,6/7,0,AUDIT,00000,

"statement: INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');",,,,,,,,,

"psql.bin","INSERT","edbaudit"

2017-07-17 13:28:44.235 EDT,"enterprisedb","edb",4068,"[local]",

596cf3cc.fe4,5,"idle",2017-07-17 13:28:44 EDT,6/8,0,AUDIT,00000,

"statement: UPDATE department SET loc = 'BOSTON' WHERE deptno = 10;",,,,,,,,,

"psql.bin","UPDATE","edbaudit"

2017-07-17 13:29:59.833 EDT,"enterprisedb","edb",4068,"[local]",

596cf3cc.fe4,6,"UPDATE",2017-07-17 13:28:44 EDT,6/8,0,ERROR,42P01,

"relation ""department"" does not exist",,,,,,

"UPDATE department SET loc = 'BOSTON' WHERE deptno = 10;",8,,"psql.bin","","edbaudit"

2017-07-17 13:29:59.833 EDT,"enterprisedb","edb",4068,"[local]",

596cf3cc.fe4,7,"idle",2017-07-17 13:28:44 EDT,6/9,0,AUDIT,00000,

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

150

"statement: UPDATE dept SET loc = 'BOSTON' WHERE deptno = 10;",,,,,,,,,

"psql.bin","UPDATE","edbaudit"

2017-07-17 13:29:59.833 EDT,"enterprisedb","edb",4068,"[local]",

596cf3cc.fe4,8,"idle",2017-07-17 13:28:44 EDT,6/10,0,AUDIT,00000,

"statement: SELECT * FROM dept;",,,,,,,,,"psql.bin","SELECT","edbaudit"

2017-07-17 13:29:59.833 EDT,"enterprisedb","edb",4068,"[local]",

596cf3cc.fe4,9,"idle",2017-07-17 13:28:44 EDT,,0,AUDIT,00000,

"disconnection: session time: 0:02:01.511 user=enterprisedb database=edb

host=[local]",,,,,,,,,"psql.bin","SELECT","edbaudit"

2017-07-17 13:30:53.617 EDT,,,3987,,596cf3b3.f93,1,,2017-07-17 13:28:19 EDT,,0,LOG,00000,

"database system is shut down",,,,,,,,,"","","edbaudit"

XML Audit Log File

The following is the XML format of the audit log file. The output has been formatted for

more clarity in the appearance in the example.

<event user="enterprisedb" database="edb" remote_host="[local]"

 session_id="596cf5b7.12a8" process_id="4776" time="2017-07-17 13:36:55 EDT"

 transaction_id="0" type="connect" audit_tag="edbaudit">

 <message>AUDIT: connection authorized: user=enterprisedb database=edb</message>

</event>

<event user="enterprisedb" database="edb" remote_host="[local]"

 session_id="596cf5b7.12a8" process_id="4776" time="2017-07-17 13:37:02 EDT"

 transaction_id="0" type="create" command_tag="CREATE SCHEMA" audit_tag="edbaudit">

 <message>AUDIT: statement: CREATE SCHEMA edb;</message>

</event>

<event user="enterprisedb" database="edb" remote_host="[local]"

 session_id="596cf5b7.12a8" process_id="4776" time="2017-07-17 13:37:19 EDT"

 transaction_id="0" type="create" command_tag="CREATE TABLE" audit_tag="edbaudit">

 <message>AUDIT: statement: CREATE TABLE dept (

 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,

 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,

 loc VARCHAR2(13));

 </message>

</event>

<event user="enterprisedb" database="edb" remote_host="[local]"

 session_id="596cf5b7.12a8" process_id="4776" time="2017-07-17 13:37:29 EDT"

 transaction_id="0" type="insert" command_tag="INSERT" audit_tag="edbaudit">

 <message>AUDIT: statement: INSERT INTO dept VALUES

 (10,'ACCOUNTING','NEW YORK');

 </message>

</event>

<event user="enterprisedb" database="edb" remote_host="[local]"

 session_id="596cf5b7.12a8" process_id="4776" time="2017-07-17 13:37:40 EDT"

 transaction_id="0" type="update" command_tag="UPDATE" audit_tag="edbaudit">

 <message>AUDIT: statement: UPDATE department SET

 loc = 'BOSTON' WHERE deptno = 10;

 </message>

</event>

<event user="enterprisedb" database="edb" remote_host="[local]"

 session_id="596cf5b7.12a8" process_id="4776" time="2017-07-17 13:37:40 EDT"

 transaction_id="0" type="error" audit_tag="edbaudit">

 <message>ERROR: relation "department" does not exist at character 8

 </message>

</event>

<event user="enterprisedb" database="edb" remote_host="[local]"

 session_id="596cf5b7.12a8" process_id="4776" time="2017-07-17 13:37:51 EDT"

 transaction_id="0" type="update" command_tag="UPDATE" audit_tag="edbaudit">

 <message>AUDIT: statement: UPDATE dept SET loc = 'BOSTON' WHERE deptno = 10;

 </message>

</event>

<event user="enterprisedb" database="edb" remote_host="[local]"

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

151

 session_id="596cf5b7.12a8" process_id="4776" time="2017-07-17 13:37:59 EDT"

 transaction_id="0" type="select" command_tag="SELECT" audit_tag="edbaudit">

 <message>AUDIT: statement: SELECT * FROM dept;</message>

</event>

<event user="enterprisedb" database="edb" remote_host="[local]"

 session_id="596cf5b7.12a8" process_id="4776" time="2017-07-17 13:38:01 EDT"

 transaction_id="0" type="disconnect" command_tag="SELECT" audit_tag="edbaudit">

 <message>AUDIT: disconnection: session time: 0:01:05.814

 user=enterprisedb database=edb host=[local]

 </message>

</event>

<event process_id="4696" time="2017-07-17 13:38:08 EDT"

 transaction_id="0" type="shutdown" audit_tag="edbaudit">

 <message>LOG: database system is shut down</message>

</event>

3.5.5 Using Error Codes to Filter Audit Logs

Advanced Server includes an extension that you can use to exclude log file entries that

include a user-specified error code from the Advanced Server log files. To filter audit log

entries, you must first enable the extension by modifying the postgresql.conf file,

adding the following value to the values specified in the shared_preload_libraries

parameter:

$libdir/edb_filter_log

Then, use the edb_filter_log.errcodes parameter to specify any error codes you

wish to omit from the log files:

edb_filter_log.errcode = 'error_code'

Where error_code specifies one or more error codes that you wish to omit from the log

file. Provide multiple error codes in a comma-delimited list.

For example, if edb_filter_log is enabled, and edb_filter_log.errcode is set to

'23505,23502,22012', any log entries that return one of the following SQLSTATE

errors:

23505 (for violating a unique constraint)

23502 (for violating a not-null constraint)

22012 (for dividing by zero)

will be omitted from the log file.

For a complete list of the error codes supported by Advanced Server audit log filtering,

please see the core documentation at:

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

152

https://www.postgresql.org/docs/12/static/errcodes-appendix.html

3.5.6 Using Command Tags to Filter Audit Logs

Each entry in the log file except for those displaying an error message contains a

command tag, which is the SQL command executed for that particular log entry.

The command tag makes it possible to use subsequent tools to scan the log file to find

entries related to a particular SQL command.

The following is an example in XML form. The output has been formatted for easier

appearance in the example.

The command tag is displayed as the command_tag attribute of the event element with

values CREATE ROLE, ALTER ROLE, and DROP ROLE in the example.

<event user="enterprisedb" database="edb" remote_host="[local]"

 session_id="595e8537.10f1" process_id="4337" time="2017-07-06 14:45:18 EDT"

 transaction_id="0" type="create"

 command_tag="CREATE ROLE">

 <message>AUDIT: statement: CREATE ROLE newuser WITH LOGIN;</message>

</event>

<event user="enterprisedb" database="edb" remote_host="[local]"

 session_id="595e8537.10f1" process_id="4337" time="2017-07-06 14:45:31 EDT"

 transaction_id="0" type="error">

 <message>ERROR: unrecognized role option "super" at character 25

 STATEMENT: ALTER ROLE newuser WITH SUPER USER;</message>

</event>

<event user="enterprisedb" database="edb" remote_host="[local]"

 session_id="595e8537.10f1" process_id="4337" time="2017-07-06 14:45:38 EDT"

 transaction_id="0" type="alter" command_tag="ALTER ROLE">

 <message>AUDIT: statement: ALTER ROLE newuser WITH SUPERUSER;</message>

</event>

<event user="enterprisedb" database="edb" remote_host="[local]"

 session_id="595e8537.10f1" process_id="4337" time="2017-07-06 14:45:46 EDT"

 transaction_id="0" type="drop" command_tag="DROP ROLE">

 <message>AUDIT: statement: DROP ROLE newuser;</message>

</event>

The following is the same example in CSV form. The command tag is the next to last

column of each entry. (The last column appears empty as "", which would be the value

provided by the edb_audit_tag parameter.)

Each audit log entry has been split and displayed across multiple lines, and a blank line

has been inserted between the audit log entries for more clarity in the appearance of the

results.

2017-07-06 14:47:22.294 EDT,"enterprisedb","edb",4720,"[local]",

595e85b2.1270,1,"idle",2017-07-06 14:47:14 EDT,6/4,0,AUDIT,00000,

"statement: CREATE ROLE newuser WITH LOGIN;",,,,,,,,,"psql.bin","CREATE ROLE",""

2017-07-06 14:47:29.694 EDT,"enterprisedb","edb",4720,"[local]",

595e85b2.1270,2,"idle",2017-07-06 14:47:14 EDT,6/5,0,ERROR,42601,

https://www.postgresql.org/docs/12/static/errcodes-appendix.html

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

153

"unrecognized role option ""super""",,,,,,"ALTER ROLE newuser WITH SUPER USER;",25,,

"psql.bin","",""

2017-07-06 14:47:29.694 EDT,"enterprisedb","edb",4720,"[local]",

595e85b2.1270,3,"idle",2017-07-06 14:47:14 EDT,6/6,0,AUDIT,00000,

"statement: ALTER ROLE newuser WITH SUPERUSER;",,,,,,,,,"psql.bin","ALTER ROLE",""

2017-07-06 14:47:29.694 EDT,"enterprisedb","edb",4720,"[local]",

595e85b2.1270,4,"idle",2017-07-06 14:47:14 EDT,6/7,0,AUDIT,00000,

"statement: DROP ROLE newuser;",,,,,,,,,"psql.bin","DROP ROLE",""

3.5.7 Redacting Passwords from Audit Logs

You can use the edb_filter_log.redact_password_commands extension to instruct

the server to redact stored passwords from the log file. Note that the module only

recognizes the following syntax:

{CREATE|ALTER} {USER|ROLE|GROUP} identifier { [WITH] [ENCRYPTED]

PASSWORD 'nonempty_string_literal' | IDENTIFIED BY {

'nonempty_string_literal' | bareword } } [REPLACE {

'nonempty_string_literal' | bareword }]

When such a statement is logged by log_statement, the server will redact the old and

new passwords to 'x'. For example, the command:

ALTER USER carol PASSWORD '1safepwd' REPLACE 'old_pwd';

Will be added to log files as:

statement: ALTER USER carol PASSWORD 'x' REPLACE 'x';

When a statement that includes a redacted password is logged, the server redacts the

statement text. When the statement is logged as context for some other message, the

server omits the statement from the context.

To enable password redaction, you must first enable the extension by modifying the

postgresql.conf file, adding the following value to the values specified in the

shared_preload_libraries parameter:

$libdir/edb_filter_log

Then, set edb_filter_log.redact_password_commands to true:

edb_filter_log.redact_password_commands = true

After modifying the postgresql.conf file, you must restart the server for the changes

to take effect.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

154

3.6 Unicode Collation Algorithm

The Unicode Collation Algorithm (UCA) is a specification (Unicode Technical Report

#10) that defines a customizable method of collating and comparing Unicode data.

Collation means how data is sorted as with a SELECT … ORDER BY clause. Comparison

is relevant for searches that use ranges with less than, greater than, or equal to operators.

Customizability is an important factor for various reasons such as the following.

 Unicode supports a vast number of languages. Letters that may be common to

several languages may be expected to collate in different orders depending upon

the language.

 Characters that appear with letters in certain languages such as accents or umlauts

have an impact on the expected collation depending upon the language.

 In some languages, combinations of several consecutive characters should be

treated as a single character with regards to its collation sequence.

 There may be certain preferences as to the collation of letters according to case.

For example, should the lowercase form of a letter collate before the uppercase

form of the same letter or vice versa.

 There may be preferences as to whether punctuation marks such as underscore

characters, hyphens, or space characters should be considered in the collating

sequence or should they simply be ignored as if they did not exist in the string.

Given all of these variations with the vast number of languages supported by Unicode,

there is a necessity for a method to select the specific criteria for determining a collating

sequence. This is what the Unicode Collation Algorithm defines.

Note: In addition, another advantage for using ICU collations (the implementation of the

Unicode Collation Algorithm) is for performance. Sorting tasks, including B-tree index

creation, can complete in less than half the time it takes with a non-ICU collation. The

exact performance gain depends on your operating system version, the language of your

text data, and other factors.

The following sections provide a brief, simplified explanation of the Unified Collation

Algorithm concepts. As the algorithm and its usage are quite complex with numerous

variations, refer to the official documents cited in these sections for complete details.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

155

3.6.1 Basic Unicode Collation Algorithm Concepts

The official information for the Unicode Collation Algorithm is specified in Unicode

Technical Report #10, which can be found on The Unicode Consortium website at:

http://www.unicode.org/reports/tr10/

The ICU – International Components for Unicode also provides much useful information.

An explanation of the collation concepts can be found on their website located at:

http://userguide.icu-project.org/collation/concepts

The basic concept behind the Unicode Collation Algorithm is the use of multilevel

comparison. This means that a number of levels are defined, which are listed as level 1

through level 5 in the following bullet points. Each level defines a type of comparison.

Strings are first compared using the primary level, also called level 1.

If the order can be determined based on the primary level, then the algorithm is done. If

the order cannot be determined based on the primary level, then the secondary level, level

2, is applied. If the order can be determined based on the secondary level, then the

algorithm is done, otherwise the tertiary level is applied, and so on. There is typically, a

final tie-breaking level to determine the order if it cannot be resolved by the prior levels.

 Level 1 – Primary Level for Base Characters. The order of basic characters

such as letters and digits determines the difference such as A < B.

 Level 2 – Secondary Level for Accents. If there are no primary level differences,

then the presence or absence of accents and other such characters determine the

order such as a < á.

 Level 3 – Tertiary Level for Case. If there are no primary level or secondary

level differences, then a difference in case determines the order such as a < A.

 Level 4 – Quaternary Level for Punctuation. If there are no primary,

secondary, or tertiary level differences, then the presence or absence of white

space characters, control characters, and punctuation determine the order such as

-A < A.

 Level 5 – Identical Level for Tie-Breaking. If there are no primary, secondary,

tertiary, or quaternary level differences, then some other difference such as the

code point values determines the order.

http://www.unicode.org/reports/tr10/
http://userguide.icu-project.org/collation/concepts

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

156

3.6.2 International Components for Unicode

The Unicode Collation Algorithm is implemented by open source software provided by

the International Components for Unicode (ICU). The software is a set of C/C++ and

Java libraries.

When Advanced Server is used to create a collation that invokes the ICU components to

produce the collation, the result is referred to as an ICU collation.

3.6.2.1 Locale Collations

When creating a collation for a locale, a predefined ICU short form name for the given

locale is typically provided.

An ICU short form is a method of specifying collation attributes, which are the

properties of a collation. Section 3.6.2.2 provides additional information on collation

attributes.

There are predefined ICU short forms for locales. The ICU short form for a locale

incorporates the collation attribute settings typically used for the given locale. This

simplifies the collation creation process by eliminating the need to specify the entire list

of collation attributes for that locale.

The system catalog pg_catalog.pg_icu_collate_names contains a list of the

names of the ICU short forms for locales. The ICU short form name is listed in column

icu_short_form.

edb=# SELECT icu_short_form, valid_locale FROM pg_icu_collate_names ORDER BY

valid_locale;

 icu_short_form | valid_locale

----------------+--------------

 LAF | af

 LAR | ar

 LAS | as

 LAZ | az

 LBE | be

 LBG | bg

 LBN | bn

 LBS | bs

 LBS_ZCYRL | bs_Cyrl

 LROOT | ca

 LROOT | chr

 LCS | cs

 LCY | cy

 LDA | da

 LROOT | de

 LROOT | dz

 LEE | ee

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

157

 LEL | el

 LROOT | en

 LROOT | en_US

 LEN_RUS_VPOSIX | en_US_POSIX

 LEO | eo

 LES | es

 LET | et

 LFA | fa

 LFA_RAF | fa_AF

 .

 .

 .

If needed, the default characteristics of an ICU short form for a given locale can be

overridden by specifying the collation attributes to override that property. This is

discussed in the next section.

3.6.2.2 Collation Attributes

When creating an ICU collation, the desired characteristics of the collation must be

specified. As discussed in Section 3.6.2.1, this can typically be done with an ICU short

form for the desired locale. However, if more specific information is required, the

specification of the collation properties can be done by using collation attributes.

Collation attributes define the rules of how characters are to be compared for determining

the collation sequence of text strings. As Unicode covers a vast set of languages in

numerous variations according to country, territory and culture, these collation attributes

are quite complex.

For the complete, precise meaning and usage of collation attributes, see Section 14

“Collator Naming Scheme” on the ICU – International Components for Unicode website

at:

http://userguide.icu-project.org/collation/concepts

The following is a brief summary of the collation attributes and how they are specified

using the ICU short form method

Each collation attribute is represented by an uppercase letter, which are listed in the

following bullet points. The possible valid values for each attribute are given by codes

shown within the parentheses. Some codes have general meanings for all attributes. X

means to set the attribute off. O means to set the attribute on. D means to set the attribute

to its default value.

 A – Alternate (N, S, D). Handles treatment of variable characters such as white

spaces, punctuation marks, and symbols. When set to non-ignorable (N),

differences in variable characters are treated with the same importance as

differences in letters. When set to shifted (S), then differences in variable

http://userguide.icu-project.org/collation/concepts

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

158

characters are of minor importance (that is, the variable character is ignored when

comparing base characters).

 C – Case First (X, L, U, D). Controls whether a lowercase letter sorts before the

same uppercase letter (L), or the uppercase letter sorts before the same lowercase

letter (U). Off (X) is typically specified when lowercase first (L) is desired.

 E – Case Level (X, O, D). Set in combination with the Strength attribute, the

Case Level attribute is used when accents are to be ignored, but not case.

 F – French Collation (X, O, D). When set to on, secondary differences (presence

of accents) are sorted from the back of the string as done in the French Canadian

locale.

 H – Hiragana Quaternary (X, O, D). Introduces an additional level to

distinguish between the Hiragana and Katakana characters for compatibility with

the JIS X 4061 collation of Japanese character strings.

 N – Normalization Checking (X, O, D). Controls whether or not text is

thoroughly normalized for comparison. Normalization deals with the issue of

canonical equivalence of text whereby different code point sequences represent

the same character, which then present issues when sorting or comparing such

characters. Languages such as Arabic, ancient Greek, Hebrew, Hindi, Thai, or

Vietnamese should be used with Normalization Checking set to on.

 S – Strength (1, 2, 3, 4, I, D). Maximum collation level used for comparison.

Influences whether accents or case are taken into account when collating or

comparing strings. Each number represents a level. A setting of I represents

identical strength (that is, level 5).

 T – Variable Top (hexadecimal digits). Applicable only when the Alternate

attribute is not set to non-ignorable (N). The hexadecimal digits specify the

highest character sequence that is to be considered ignorable. For example, if

white space is to be ignorable, but visible variable characters are not to be

ignorable, then Variable Top set to 0020 would be specified along with the

Alternate attribute set to S and the Strength attribute set to 3. (The space character

is hexadecimal 0020. Other non-visible variable characters such as backspace,

tab, line feed, carriage return, etc. have values less than 0020. All visible

punctuation marks have values greater than 0020.)

A set of collation attributes and their values is represented by a text string consisting of

the collation attribute letter concatenated with the desired attribute value. Each

attribute/value pair is joined to the next pair with an underscore character as shown by the

following example.

AN_CX_EX_FX_HX_NO_S3

Collation attributes can be specified along with a locale’s ICU short form name to

override those default attribute settings of the locale.

The following is an example where the ICU short form named LROOT is modified with a

number of other collation attribute/value pairs.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

159

AN_CX_EX_LROOT_NO_S3

In the preceding example, the Alternate attribute (A) is set to non-ignorable (N). The Case

First attribute (C) is set to off (X). The Case Level attribute (E) is set to off (X). The

Normalization attribute (N) is set to on (O). The Strength attribute (S) is set to the tertiary

level 3. LROOT is the ICU short form to which these other attributes are applying

modifications.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

160

3.6.3 Using a Collation

A newly defined ICU collation can be used anywhere the COLLATION

"collation_name" clause can be used in a SQL command such as in the column

specifications of the CREATE TABLE command or appended to an expression in the

ORDER BY clause of a SELECT command.

The following are some examples of the creation and usage of ICU collations based on

the English language in the United States (en_US.UTF8).

In these examples, ICU collations are created with the following characteristics.

Collation icu_collate_lowercase forces the lowercase form of a letter to sort before

its uppercase counterpart (CL).

Collation icu_collate_uppercase forces the uppercase form of a letter to sort before

its lowercase counterpart (CU).

Collation icu_collate_ignore_punct causes variable characters (white space and

punctuation marks) to be ignored during sorting (AS).

Collation icu_collate_ignore_white_sp causes white space and other non-visible

variable characters to be ignored during sorting, but visible variable characters

(punctuation marks) are not ignored (AS, T0020).

CREATE COLLATION icu_collate_lowercase (

 LOCALE = 'en_US.UTF8',

 ICU_SHORT_FORM = 'AN_CL_EX_NX_LROOT'

);

CREATE COLLATION icu_collate_uppercase (

 LOCALE = 'en_US.UTF8',

 ICU_SHORT_FORM = 'AN_CU_EX_NX_LROOT'

);

CREATE COLLATION icu_collate_ignore_punct (

 LOCALE = 'en_US.UTF8',

 ICU_SHORT_FORM = 'AS_CX_EX_NX_LROOT_L3'

);

CREATE COLLATION icu_collate_ignore_white_sp (

 LOCALE = 'en_US.UTF8',

 ICU_SHORT_FORM = 'AS_CX_EX_NX_LROOT_L3_T0020'

);

Note: When creating collations, ICU may generate notice and warning messages when

attributes are given to modify the LROOT collation.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

161

The following psql command lists the collations.

edb=# \dO

 List of collations

 Schema | Name | Collate | Ctype | ICU

--------------+-----------------------------+------------+------------+-----------------------

 enterprisedb | icu_collate_ignore_punct | en_US.UTF8 | en_US.UTF8 | AS_CX_EX_NX_LROOT_L3

 enterprisedb | icu_collate_ignore_white_sp | en_US.UTF8 | en_US.UTF8 |

AS_CX_EX_NX_LROOT_L3_T0020

 enterprisedb | icu_collate_lowercase | en_US.UTF8 | en_US.UTF8 | AN_CL_EX_NX_LROOT

 enterprisedb | icu_collate_uppercase | en_US.UTF8 | en_US.UTF8 | AN_CU_EX_NX_LROOT

(4 rows)

The following table is created and populated.

CREATE TABLE collate_tbl (

 id INTEGER,

 c2 VARCHAR(2)

);

INSERT INTO collate_tbl VALUES (1, 'A');

INSERT INTO collate_tbl VALUES (2, 'B');

INSERT INTO collate_tbl VALUES (3, 'C');

INSERT INTO collate_tbl VALUES (4, 'a');

INSERT INTO collate_tbl VALUES (5, 'b');

INSERT INTO collate_tbl VALUES (6, 'c');

INSERT INTO collate_tbl VALUES (7, '1');

INSERT INTO collate_tbl VALUES (8, '2');

INSERT INTO collate_tbl VALUES (9, '.B');

INSERT INTO collate_tbl VALUES (10, '-B');

INSERT INTO collate_tbl VALUES (11, ' B');

The following query sorts on column c2 using the default collation. Note that variable

characters (white space and punctuation marks) with id column values of 9, 10, and 11

are ignored and sort with the letter B.

edb=# SELECT * FROM collate_tbl ORDER BY c2;

 id | c2

----+----

 7 | 1

 8 | 2

 4 | a

 1 | A

 5 | b

 2 | B

 11 | B

 10 | -B

 9 | .B

 6 | c

 3 | C

(11 rows)

The following query sorts on column c2 using collation icu_collate_lowercase,

which forces the lowercase form of a letter to sort before the uppercase form of the same

base letter. Also note that the AN attribute forces variable characters to be included in the

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

162

sort order at the same level when comparing base characters so rows with id values of 9,

10, and 11 appear at the beginning of the sort list before all letters and numbers.

edb=# SELECT * FROM collate_tbl ORDER BY c2 COLLATE "icu_collate_lowercase";

 id | c2

----+----

 11 | B

 10 | -B

 9 | .B

 7 | 1

 8 | 2

 4 | a

 1 | A

 5 | b

 2 | B

 6 | c

 3 | C

(11 rows)

The following query sorts on column c2 using collation icu_collate_uppercase,

which forces the uppercase form of a letter to sort before the lowercase form of the same

base letter.

edb=# SELECT * FROM collate_tbl ORDER BY c2 COLLATE "icu_collate_uppercase";

 id | c2

----+----

 11 | B

 10 | -B

 9 | .B

 7 | 1

 8 | 2

 1 | A

 4 | a

 2 | B

 5 | b

 3 | C

 6 | c

(11 rows)

The following query sorts on column c2 using collation

icu_collate_ignore_punct, which causes variable characters to be ignored so rows

with id values of 9, 10, and 11 sort with the letter B as that is the character immediately

following the ignored variable character.

edb=# SELECT * FROM collate_tbl ORDER BY c2 COLLATE

"icu_collate_ignore_punct";

 id | c2

----+----

 7 | 1

 8 | 2

 4 | a

 1 | A

 5 | b

 11 | B

 2 | B

 9 | .B

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

163

 10 | -B

 6 | c

 3 | C

(11 rows)

The following query sorts on column c2 using collation

icu_collate_ignore_white_sp. The AS and T0020 attributes of the collation cause

variable characters with code points less than or equal to hexadecimal 0020 to be ignored

while variable characters with code points greater than hexadecimal 0020 are included in

the sort.

The row with id value of 11, which starts with a space character (hexadecimal 0020)

sorts with the letter B. The rows with id values of 9 and 10, which start with visible

punctuation marks greater than hexadecimal 0020, appear at the beginning of the sort list

as these particular variable characters are included in the sort order at the same level

when comparing base characters.

edb=# SELECT * FROM collate_tbl ORDER BY c2 COLLATE

"icu_collate_ignore_white_sp";

 id | c2

----+----

 10 | -B

 9 | .B

 7 | 1

 8 | 2

 4 | a

 1 | A

 5 | b

 11 | B

 2 | B

 6 | c

 3 | C

(11 rows)

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

164

4 Security

The chapter describes various features providing for added security.

4.1 Protecting Against SQL Injection Attacks

Advanced Server provides protection against SQL injection attacks. A SQL injection

attack is an attempt to compromise a database by running SQL statements whose results

provide clues to the attacker as to the content, structure, or security of that database.

Preventing a SQL injection attack is normally the responsibility of the application

developer. The database administrator typically has little or no control over the potential

threat. The difficulty for database administrators is that the application must have access

to the data to function properly.

SQL/Protect is a module that allows a database administrator to protect a database from

SQL injection attacks. SQL/Protect provides a layer of security in addition to the normal

database security policies by examining incoming queries for common SQL injection

profiles.

SQL/Protect gives the control back to the database administrator by alerting the

administrator to potentially dangerous queries and by blocking these queries.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

165

4.1.1 SQL/Protect Overview

This section contains an introduction to the different types of SQL injection attacks and

describes how SQL/Protect guards against them.

4.1.1.1 Types of SQL Injection Attacks

There are a number of different techniques used to perpetrate SQL injection attacks. Each

technique is characterized by a certain signature. SQL/Protect examines queries for the

following signatures:

Unauthorized Relations

While Advanced Server allows administrators to restrict access to relations (tables,

views, etc.), many administrators do not perform this tedious task. SQL/Protect provides

a learn mode that tracks the relations a user accesses.

This allows administrators to examine the workload of an application, and for

SQL/Protect to learn which relations an application should be allowed to access for a

given user or group of users in a role.

When SQL/Protect is switched to either passive or active mode, the incoming queries are

checked against the list of learned relations.

Utility Commands

A common technique used in SQL injection attacks is to run utility commands, which are

typically SQL Data Definition Language (DDL) statements. An example is creating a

user-defined function that has the ability to access other system resources.

SQL/Protect can block the running of all utility commands, which are not normally

needed during standard application processing.

SQL Tautology

The most frequent technique used in SQL injection attacks is issuing a tautological

WHERE clause condition (that is, using a condition that is always true).

The following is an example:

WHERE password = 'x' OR 'x'='x'

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

166

Attackers will usually start identifying security weaknesses using this technique.

SQL/Protect can block queries that use a tautological conditional clause.

Unbounded DML Statements

A dangerous action taken during SQL injection attacks is the running of unbounded DML

statements. These are UPDATE and DELETE statements with no WHERE clause. For

example, an attacker may update all users’ passwords to a known value or initiate a

denial of service attack by deleting all of the data in a key table.

4.1.1.2 Monitoring SQL Injection Attacks

This section describes how SQL/Protect monitors and reports on SQL injection attacks.

4.1.1.2.1 Protected Roles

Monitoring for SQL injection attacks involves analyzing SQL statements originating in

database sessions where the current user of the session is a protected role. A protected

role is an Advanced Server user or group that the database administrator has chosen to

monitor using SQL/Protect. (In Advanced Server, users and groups are collectively

referred to as roles.)

Each protected role can be customized for the types of SQL injection attacks for which it

is to be monitored, thus providing different levels of protection by role and significantly

reducing the user maintenance load for DBAs.

Note: A role with the superuser privilege cannot be made a protected role. If a protected

non-superuser role is subsequently altered to become a superuser, certain behaviors are

exhibited whenever an attempt is made by that superuser to issue any command:

 A warning message is issued by SQL/Protect on every command issued by the

protected superuser.

 The statistic in column superusers of edb_sql_protect_stats is

incremented with every command issued by the protected superuser. See Section

4.1.1.2.2 for information on the edb_sql_protect_stats view.

 When SQL/Protect is in active mode, all commands issued by the protected

superuser are prevented from running.

A protected role that has the superuser privilege should either be altered so that it is no

longer a superuser, or it should be reverted back to an unprotected role.

4.1.1.2.2 Attack Attempt Statistics

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

167

Each usage of a command by a protected role that is considered an attack by SQL/Protect

is recorded. Statistics are collected by type of SQL injection attack as discussed in

Section 4.1.1.1.

These statistics are accessible from view edb_sql_protect_stats that can be easily

monitored to identify the start of a potential attack.

The columns in edb_sql_protect_stats monitor the following:

 username. Name of the protected role.

 superusers. Number of SQL statements issued when the protected role is a

superuser. In effect, any SQL statement issued by a protected superuser increases

this statistic. See Section 4.1.1.2.1 for information on protected superusers.

 relations. Number of SQL statements issued referencing relations that were not

learned by a protected role. (That is, relations that are not in a role’s protected

relations list.)

 commands. Number of DDL statements issued by a protected role.

 tautology. Number of SQL statements issued by a protected role that contained a

tautological condition.

 dml. Number of UPDATE and DELETE statements issued by a protected role that

did not contain a WHERE clause.

This gives database administrators the opportunity to react proactively in preventing theft

of valuable data or other malicious actions.

If a role is protected in more than one database, the role’s statistics for attacks in each

database are maintained separately and are viewable only when connected to the

respective database.

Note: SQL/Protect statistics are maintained in memory while the database server is

running. When the database server is shut down, the statistics are saved to a binary file

named edb_sqlprotect.stat in the data/global subdirectory of the Advanced

Server home directory.

4.1.1.2.3 Attack Attempt Queries

Each usage of a command by a protected role that is considered an attack by SQL/Protect

is recorded in view edb_sql_protect_queries.

View edb_sql_protect_queries contains the following columns:

 username. Database user name of the attacker used to log into the database

server.

 ip_address. IP address of the machine from which the attack was initiated.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

168

 port. Port number from which the attack originated.

 machine_name. Name of the machine, if known, from which the attack

originated.

 date_time. Date and time at which the query was received by the database server.

The time is stored to the precision of a minute.

 query. The query string sent by the attacker.

The maximum number of offending queries that are saved in

edb_sql_protect_queries is controlled by configuration parameter

edb_sql_protect.max_queries_to_save.

If a role is protected in more than one database, the role’s queries for attacks in each

database are maintained separately and are viewable only when connected to the

respective database.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

169

4.1.2 Configuring SQL/Protect

The library file (sqlprotect.so on Linux, sqlprotect.dll on Windows) necessary

to run SQL/Protect should be installed in the lib subdirectory of your Advanced Server

home directory. For Windows, this should be done by the Advanced Server installer. For

Linux, install the edb-asxx-server-sqlprotect RPM package where xx is the

Advanced Server version number.

You will also need the SQL script file sqlprotect.sql located in the

share/contrib subdirectory of your Advanced Server home directory.

You must configure the database server to use SQL/Protect, and you must configure each

database that you want SQL/Protect to monitor:

 The database server configuration file, postgresql.conf, must be modified by

adding and enabling configuration parameters used by SQL/Protect.

 Database objects used by SQL/Protect must be installed in each database that you

want SQL/Protect to monitor.

Step 1: Edit the following configuration parameters in the postgresql.conf file

located in the data subdirectory of your Advanced Server home directory.

 shared_preload_libraries. Add $libdir/sqlprotect to the list of libraries.

 edb_sql_protect.enabled. Controls whether or not SQL/Protect is actively

monitoring protected roles by analyzing SQL statements issued by those roles and

reacting according to the setting of edb_sql_protect.level. When you are

ready to begin monitoring with SQL/Protect set this parameter to on. If this

parameter is omitted, the default is off.

 edb_sql_protect.level. Sets the action taken by SQL/Protect when a SQL

statement is issued by a protected role. If this parameter is omitted, the default

behavior is passive. Initially, set this parameter to learn. See Section 4.1.2.1.2

for further explanation of this parameter.

 edb_sql_protect.max_protected_roles. Sets the maximum number of roles that

can be protected. If this parameter is omitted, the default setting is 64. See

Section 3.1.3.12.8 for information on the maximum range of this parameter.

 edb_sql_protect.max_protected_relations. Sets the maximum number of

relations that can be protected per role. If this parameter is omitted, the default

setting is 1024.

Please note the total number of protected relations for the server will be the

number of protected relations times the number of protected roles. Every

protected relation consumes space in shared memory. The space for the maximum

possible protected relations is reserved during database server startup.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

170

See Section 3.1.3.12.7 for information about the maximum range of this

parameter.

 edb_sql_protect.max_queries_to_save. Sets the maximum number of offending

queries to save in the edb_sql_protect_queries view. If this parameter is

omitted, the default setting is 5000. If the number of offending queries reaches

the limit, additional queries are not saved in the view, but are accessible in the

database server log file. Note: The minimum valid value for this parameter is

100. If a value less than 100 is specified, the database server starts using the

default setting of 5000. A warning message is recorded in the database server log

file. See Section 3.1.3.12.9 for information on the maximum range of this

parameter.

The following example shows the settings of these parameters in the postgresql.conf

file:

shared_preload_libraries = '$libdir/dbms_pipe,$libdir/edb_gen,$libdir/sqlprotect'

 # (change requires restart)

 .

 .

 .

edb_sql_protect.enabled = off

edb_sql_protect.level = learn

edb_sql_protect.max_protected_roles = 64

edb_sql_protect.max_protected_relations = 1024

edb_sql_protect.max_queries_to_save = 5000

Step 2: Restart the database server after you have modified the postgresql.conf file.

On Linux: Invoke the Advanced Server service script with the restart option:

On a Redhat or CentOS 7.x installation, use the command:

systemctl restart edb-as-12

On Windows: Use the Windows Services applet to restart the service named edb-as-

12.

Step 3: For each database that you want to protect from SQL injection attacks, connect to

the database as a superuser (either enterprisedb or postgres, depending upon your

installation options) and run the script sqlprotect.sql located in the

share/contrib subdirectory of your Advanced Server home directory. The script

creates the SQL/Protect database objects in a schema named sqlprotect.

The following example shows this process to set up protection for a database named edb:

$ /usr/edb/as12/bin/psql -d edb -U enterprisedb

Password for user enterprisedb:

psql.bin (12.0.0, server 12.0.0)

Type "help" for help.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

171

edb=# \i /usr/edb/as12/share/contrib/sqlprotect.sql

CREATE SCHEMA

GRANT

SET

CREATE TABLE

GRANT

CREATE TABLE

GRANT

CREATE FUNCTION

CREATE FUNCTION

CREATE FUNCTION

CREATE FUNCTION

CREATE FUNCTION

CREATE FUNCTION

CREATE FUNCTION

DO

CREATE FUNCTION

CREATE FUNCTION

DO

CREATE VIEW

GRANT

DO

CREATE VIEW

GRANT

CREATE VIEW

GRANT

CREATE FUNCTION

CREATE FUNCTION

SET

4.1.2.1 Selecting Roles to Protect

After the SQL/Protect database objects have been created in a database, you select the

roles for which SQL queries are to be monitored for protection, and the level of

protection.

4.1.2.1.1 Setting the Protected Roles List

For each database that you want to protect, you must determine the roles you want to

monitor and then add those roles to the protected roles list of that database.

Step 1: Connect as a superuser to a database that you wish to protect using either psql or

Postgres Enterprise Manager Client.

$ /usr/edb/as12/bin/psql -d edb -U enterprisedb

Password for user enterprisedb:

psql.bin (12.0.0, server 12.0.0)

Type "help" for help.

edb=#

Step 2: Since the SQL/Protect tables, functions, and views are built under the

sqlprotect schema, use the SET search_path command to include the

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

172

sqlprotect schema in your search path. This eliminates the need to schema-qualify

any operation or query involving SQL/Protect database objects.

edb=# SET search_path TO sqlprotect;

SET

Step 3: Each role that you wish to protect must be added to the protected roles list. This

list is maintained in the table edb_sql_protect.

To add a role, use the function protect_role('rolename').

The following example protects a role named appuser.

edb=# SELECT protect_role('appuser');

 protect_role

(1 row)

You can list the roles that have been added to the protected roles list by issuing the

following query:

edb=# SELECT * FROM edb_sql_protect;

 dbid | roleid | protect_relations | allow_utility_cmds | allow_tautology | allow_empty_dml

-------+--------+-------------------+--------------------+-----------------+-----------------

 13917 | 16671 | t | f | f | f

(1 row)

A view is also provided that gives the same information using the object names instead of

the Object Identification numbers (OIDs).

edb=# \x

Expanded display is on.

edb=# SELECT * FROM list_protected_users;

-[RECORD 1]------+--------

dbname | edb

username | appuser

protect_relations | t

allow_utility_cmds | f

allow_tautology | f

allow_empty_dml | f

4.1.2.1.2 Setting the Protection Level

Configuration parameter edb_sql_protect.level sets the protection level, which

defines the behavior of SQL/Protect when a protected role issues a SQL statement. The

defined behavior applies to all roles in the protected roles lists of all databases

configured with SQL/Protect in the database server.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

173

In the postgresql.conf file the edb_sql_protect.level configuration parameter

can be set to one of the following values to use either learn mode, passive mode, or active

mode:

 learn. Tracks the activities of protected roles and records the relations used by the

roles. This is used when initially configuring SQL/Protect so the expected

behaviors of the protected applications are learned.

 passive. Issues warnings if protected roles are breaking the defined rules, but does

not stop any SQL statements from executing. This is the next step after

SQL/Protect has learned the expected behavior of the protected roles. This

essentially behaves in intrusion detection mode and can be run in production

when properly monitored.

 active. Stops all invalid statements for a protected role. This behaves as a SQL

firewall preventing dangerous queries from running. This is particularly effective

against early penetration testing when the attacker is trying to determine the

vulnerability point and the type of database behind the application. Not only does

SQL/Protect close those vulnerability points, but it tracks the blocked queries

allowing administrators to be alerted before the attacker finds an alternate method

of penetrating the system.

If the edb_sql_protect.level parameter is not set or is omitted from the

configuration file, the default behavior of SQL/Protect is passive.

If you are using SQL/Protect for the first time, set edb_sql_protect.level to

learn.

4.1.2.2 Monitoring Protected Roles

Once you have configured SQL/Protect in a database, added roles to the protected roles

list, and set the desired protection level, you can then activate SQL/Protect in one of learn

mode, passive mode, or active mode. You can then start running your applications.

With a new SQL/Protect installation, the first step is to determine the relations that

protected roles should be permitted to access during normal operation. Learn mode

allows a role to run applications during which time SQL/Protect is recording the relations

that are accessed. These are added to the role’s protected relations list stored in table

edb_sql_protect_rel.

Monitoring for protection against attack begins when SQL/Protect is run in passive or

active mode. In passive and active modes, the role is permitted to access the relations in

its protected relations list as these were determined to be the relations the role should be

able to access during typical usage.

However, if a role attempts to access a relation that is not in its protected relations list, a

WARNING or ERROR severity level message is returned by SQL/Protect. The role’s

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

174

attempted action on the relation may or may not be carried out depending upon whether

the mode is passive or active.

4.1.2.2.1 Learn Mode

Step 1: To activate SQL/Protect in learn mode, set the following parameters in the

postgresql.conf file as shown below:

edb_sql_protect.enabled = on

edb_sql_protect.level = learn

Step 2: Reload the postgresql.conf file.

Choose Expert Configuration, then Reload Configuration from the Advanced Server

application menu.

Note: For an alternative method of reloading the configuration file, use the

pg_reload_conf function. Be sure you are connected to a database as a superuser and

execute function pg_reload_conf as shown by the following example:

edb=# SELECT pg_reload_conf();

 pg_reload_conf

 t

(1 row)

Step 3: Allow the protected roles to run their applications.

As an example the following queries are issued in the psql application by protected role

appuser:

edb=> SELECT * FROM dept;

NOTICE: SQLPROTECT: Learned relation: 16384

 deptno | dname | loc

--------+------------+----------

 10 | ACCOUNTING | NEW YORK

 20 | RESEARCH | DALLAS

 30 | SALES | CHICAGO

 40 | OPERATIONS | BOSTON

(4 rows)

edb=> SELECT empno, ename, job FROM emp WHERE deptno = 10;

NOTICE: SQLPROTECT: Learned relation: 16391

 empno | ename | job

-------+--------+-----------

 7782 | CLARK | MANAGER

 7839 | KING | PRESIDENT

 7934 | MILLER | CLERK

(3 rows)

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

175

SQL/Protect generates a NOTICE severity level message indicating the relation has been

added to the role’s protected relations list.

In SQL/Protect learn mode, SQL statements that are cause for suspicion are not prevented

from executing, but a message is issued to alert the user to potentially dangerous

statements as shown by the following example:

edb=> CREATE TABLE appuser_tab (f1 INTEGER);

NOTICE: SQLPROTECT: This command type is illegal for this user

CREATE TABLE

edb=> DELETE FROM appuser_tab;

NOTICE: SQLPROTECT: Learned relation: 16672

NOTICE: SQLPROTECT: Illegal Query: empty DML

DELETE 0

Step 4: As a protected role runs applications, the SQL/Protect tables can be queried to

observe the addition of relations to the role’s protected relations list.

Connect as a superuser to the database you are monitoring and set the search path to

include the sqlprotect schema.

edb=# SET search_path TO sqlprotect;

SET

Query the edb_sql_protect_rel table to see the relations added to the protected

relations list:

edb=# SELECT * FROM edb_sql_protect_rel;

 dbid | roleid | relid

-------+--------+-------

 13917 | 16671 | 16384

 13917 | 16671 | 16391

 13917 | 16671 | 16672

(3 rows)

The view list_protected_rels is provided that gives more comprehensive

information along with the object names instead of the OIDs.

edb=# SELECT * FROM list_protected_rels;

 Database | Protected User | Schema | Name | Type | Owner

----------+----------------+--------+-------------+-------+--------------

 edb | appuser | public | dept | Table | enterprisedb

 edb | appuser | public | emp | Table | enterprisedb

 edb | appuser | public | appuser_tab | Table | appuser

(3 rows)

4.1.2.2.2 Passive Mode

Once you have determined that a role’s applications have accessed all relations they will

need, you can now change the protection level so that SQL/Protect can actively monitor

the incoming SQL queries and protect against SQL injection attacks.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

176

Passive mode is the less restrictive of the two protection modes, passive and active.

Step 1: To activate SQL/Protect in passive mode, set the following parameters in the

postgresql.conf file as shown below:

edb_sql_protect.enabled = on

edb_sql_protect.level = passive

Step 2: Reload the configuration file as shown in Step 2 of Section 4.1.2.2.1.

Now SQL/Protect is in passive mode. For relations that have been learned such as the

dept and emp tables of the prior examples, SQL statements are permitted with no special

notification to the client by SQL/Protect as shown by the following queries run by user

appuser:

edb=> SELECT * FROM dept;

 deptno | dname | loc

--------+------------+----------

 10 | ACCOUNTING | NEW YORK

 20 | RESEARCH | DALLAS

 30 | SALES | CHICAGO

 40 | OPERATIONS | BOSTON

(4 rows)

edb=> SELECT empno, ename, job FROM emp WHERE deptno = 10;

 empno | ename | job

-------+--------+-----------

 7782 | CLARK | MANAGER

 7839 | KING | PRESIDENT

 7934 | MILLER | CLERK

(3 rows)

SQL/Protect does not prevent any SQL statement from executing, but issues a message of

WARNING severity level for SQL statements executed against relations that were not

learned, or for SQL statements that contain a prohibited signature as shown in the

following example:

edb=> CREATE TABLE appuser_tab_2 (f1 INTEGER);

WARNING: SQLPROTECT: This command type is illegal for this user

CREATE TABLE

edb=> INSERT INTO appuser_tab_2 VALUES (1);

WARNING: SQLPROTECT: Illegal Query: relations

INSERT 0 1

edb=> INSERT INTO appuser_tab_2 VALUES (2);

WARNING: SQLPROTECT: Illegal Query: relations

INSERT 0 1

edb=> SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';

WARNING: SQLPROTECT: Illegal Query: relations

WARNING: SQLPROTECT: Illegal Query: tautology

 f1

 1

 2

(2 rows)

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

177

Step 3: Monitor the statistics for suspicious activity.

By querying the view edb_sql_protect_stats, you can see the number of times

SQL statements were executed that referenced relations that were not in a role’s protected

relations list, or contained SQL injection attack signatures. See Section 4.1.1.2.2 for more

information on view edb_sql_protect_stats.

The following is a query on edb_sql_protect_stats:

edb=# SET search_path TO sqlprotect;

SET

edb=# SELECT * FROM edb_sql_protect_stats;

 username | superusers | relations | commands | tautology | dml

----------+------------+-----------+----------+-----------+-----

 appuser | 0 | 3 | 1 | 1 | 0

(1 row)

Step 4: View information on specific attacks.

By querying the view edb_sql_protect_queries, you can see the SQL statements

that were executed that referenced relations that were not in a role’s protected relations

list, or contained SQL injection attack signatures. See Section 4.1.1.2.3 for more

information on view edb_sql_protect_queries.

The following is a query on edb_sql_protect_queries:

edb=# SELECT * FROM edb_sql_protect_queries;

-[RECORD 1]+---

 username | appuser

 ip_address |

 port |

 machine_name |

 date_time | 20-JUN-14 13:21:00 -04:00

 query | INSERT INTO appuser_tab_2 VALUES (1);

-[RECORD 2]+---

 username | appuser

 ip_address |

 port |

 machine_name |

 date_time | 20-JUN-14 13:21:00 -04:00

 query | CREATE TABLE appuser_tab_2 (f1 INTEGER);

-[RECORD 3]+---

 username | appuser

 ip_address |

 port |

 machine_name |

 date_time | 20-JUN-14 13:22:00 -04:00

 query | INSERT INTO appuser_tab_2 VALUES (2);

-[RECORD 4]+---

 username | appuser

 ip_address |

 port |

 machine_name |

 date_time | 20-JUN-14 13:22:00 -04:00

 query | SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

178

Note: The ip_address and port columns do not return any information if the attack

originated on the same host as the database server using the Unix-domain socket (that is,

pg_hba.conf connection type local).

4.1.2.2.3 Active Mode

In active mode, disallowed SQL statements are prevented from executing. Also, the

message issued by SQL/Protect has a higher severity level of ERROR instead of WARNING.

Step 1: To activate SQL/Protect in active mode, set the following parameters in the

postgresql.conf file as shown below:

edb_sql_protect.enabled = on

edb_sql_protect.level = active

Step 2: Reload the configuration file as shown in Step 2 of Section 4.1.2.2.1.

The following example illustrates SQL statements similar to those given in the examples

of Step 2 in Section 4.1.2.2.2, but executed by user appuser when

edb_sql_protect.level is set to active:

edb=> CREATE TABLE appuser_tab_3 (f1 INTEGER);

ERROR: SQLPROTECT: This command type is illegal for this user

edb=> INSERT INTO appuser_tab_2 VALUES (1);

ERROR: SQLPROTECT: Illegal Query: relations

edb=> SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';

ERROR: SQLPROTECT: Illegal Query: relations

The following shows the resulting statistics:

edb=# SELECT * FROM sqlprotect.edb_sql_protect_stats;

 username | superusers | relations | commands | tautology | dml

----------+------------+-----------+----------+-----------+-----

 appuser | 0 | 5 | 2 | 1 | 0

(1 row)

The following is a query on edb_sql_protect_queries:

edb=# SELECT * FROM sqlprotect.edb_sql_protect_queries;

-[RECORD 1]+---

 username | appuser

 ip_address |

 port |

 machine_name |

 date_time | 20-JUN-14 13:21:00 -04:00

 query | CREATE TABLE appuser_tab_2 (f1 INTEGER);

-[RECORD 2]+---

 username | appuser

 ip_address |

 port |

 machine_name |

 date_time | 20-JUN-14 13:22:00 -04:00

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

179

 query | INSERT INTO appuser_tab_2 VALUES (2);

-[RECORD 3]+---

 username | appuser

 ip_address | 192.168.2.6

 port | 50098

 machine_name |

 date_time | 20-JUN-14 13:39:00 -04:00

 query | CREATE TABLE appuser_tab_3 (f1 INTEGER);

-[RECORD 4]+---

 username | appuser

 ip_address | 192.168.2.6

 port | 50098

 machine_name |

 date_time | 20-JUN-14 13:39:00 -04:00

 query | INSERT INTO appuser_tab_2 VALUES (1);

-[RECORD 5]+---

 username | appuser

 ip_address | 192.168.2.6

 port | 50098

 machine_name |

 date_time | 20-JUN-14 13:39:00 -04:00

 query | SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

180

4.1.3 Common Maintenance Operations

The following describes how to perform other common operations.

You must be connected as a superuser to perform these operations and have included

schema sqlprotect in your search path.

4.1.3.1 Adding a Role to the Protected Roles List

To add a role to the protected roles list run protect_role('rolename').

protect_role('rolename')

This is shown by the following example:

edb=# SELECT protect_role('newuser');

 protect_role

(1 row)

4.1.3.2 Removing a Role From the Protected Roles List

To remove a role from the protected roles list use either of the following functions:

unprotect_role('rolename')

unprotect_role(roleoid)

Note: The variation of the function using the OID is useful if you remove the role using

the DROP ROLE or DROP USER SQL statement before removing the role from the

protected roles list. If a query on a SQL/Protect relation returns a value such as unknown

(OID=16458) for the user name, use the unprotect_role(roleoid) form of the

function to remove the entry for the deleted role from the protected roles list.

Removing a role using these functions also removes the role’s protected relations list.

The statistics for a role that has been removed are not deleted until you use the

drop_stats function as described in Section 4.1.3.5.

The offending queries for a role that has been removed are not deleted until you use the

drop_queries function as described in Section 4.1.3.6.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

181

The following is an example of the unprotect_role function:

edb=# SELECT unprotect_role('newuser');

 unprotect_role

(1 row)

Alternatively, the role could be removed by giving its OID of 16693:

edb=# SELECT unprotect_role(16693);

 unprotect_role

(1 row)

4.1.3.3 Setting the Types of Protection for a Role

You can change whether or not a role is protected from a certain type of SQL injection

attack.

Change the Boolean value for the column in edb_sql_protect corresponding to the

type of SQL injection attack for which protection of a role is to be disabled or enabled.

Be sure to qualify the following columns in your WHERE clause of the statement that

updates edb_sql_protect:

 dbid. OID of the database for which you are making the change

 roleid. OID of the role for which you are changing the Boolean settings

For example, to allow a given role to issue utility commands, update the

allow_utility_cmds column as follows:

UPDATE edb_sql_protect SET allow_utility_cmds = TRUE WHERE dbid = 13917 AND

roleid = 16671;

You can verify the change was made by querying edb_sql_protect or

list_protected_users. In the following query note that column

allow_utility_cmds now contains t.

edb=# SELECT dbid, roleid, allow_utility_cmds FROM edb_sql_protect;

 dbid | roleid | allow_utility_cmds

-------+--------+--------------------

 13917 | 16671 | t

(1 row)

The updated rules take effect on new sessions started by the role since the change was

made.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

182

4.1.3.4 Removing a Relation From the Protected Relations List

If SQL/Protect has learned that a given relation is accessible for a given role, you can

subsequently remove that relation from the role’s protected relations list.

Delete its entry from the edb_sql_protect_rel table using any of the following

functions:

unprotect_rel('rolename', 'relname')

unprotect_rel('rolename', 'schema', 'relname')

unprotect_rel(roleoid, reloid)

If the relation given by relname is not in your current search path, specify the relation’s

schema using the second function format.

The third function format allows you to specify the OIDs of the role and relation,

respectively, instead of their text names.

The following example illustrates the removal of the public.emp relation from the

protected relations list of the role appuser.

edb=# SELECT unprotect_rel('appuser', 'public', 'emp');

 unprotect_rel

(1 row)

The following query shows there is no longer an entry for the emp relation.

edb=# SELECT * FROM list_protected_rels;

 Database | Protected User | Schema | Name | Type | Owner

----------+----------------+--------+-------------+-------+--------------

 edb | appuser | public | dept | Table | enterprisedb

 edb | appuser | public | appuser_tab | Table | appuser

(2 rows)

SQL/Protect will now issue a warning or completely block access (depending upon the

setting of edb_sql_protect.level) whenever the role attempts to utilize that

relation.

4.1.3.5 Deleting Statistics

You can delete statistics from view edb_sql_protect_stats using either of the two

following functions:

drop_stats('rolename')

drop_stats(roleoid)

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

183

Note: The variation of the function using the OID is useful if you remove the role using

the DROP ROLE or DROP USER SQL statement before deleting the role’s statistics using

drop_stats('rolename'). If a query on edb_sql_protect_stats returns a value

such as unknown (OID=16458) for the user name, use the drop_stats(roleoid)

form of the function to remove the deleted role’s statistics from

edb_sql_protect_stats.

The following is an example of the drop_stats function:

edb=# SELECT drop_stats('appuser');

 drop_stats

(1 row)

edb=# SELECT * FROM edb_sql_protect_stats;

 username | superusers | relations | commands | tautology | dml

----------+------------+-----------+----------+-----------+-----

(0 rows)

The following is an example of using the drop_stats(roleoid) form of the function

when a role is dropped before deleting its statistics:

edb=# SELECT * FROM edb_sql_protect_stats;

 username | superusers | relations | commands | tautology | dml

---------------------+------------+-----------+----------+-----------+-----

 unknown (OID=16693) | 0 | 5 | 3 | 1 | 0

 appuser | 0 | 5 | 2 | 1 | 0

(2 rows)

edb=# SELECT drop_stats(16693);

 drop_stats

(1 row)

edb=# SELECT * FROM edb_sql_protect_stats;

 username | superusers | relations | commands | tautology | dml

----------+------------+-----------+----------+-----------+-----

 appuser | 0 | 5 | 2 | 1 | 0

(1 row)

4.1.3.6 Deleting Offending Queries

You can delete offending queries from view edb_sql_protect_queries using either

of the two following functions:

drop_queries('rolename')

drop_queries(roleoid)

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

184

Note: The variation of the function using the OID is useful if you remove the role using

the DROP ROLE or DROP USER SQL statement before deleting the role’s offending

queries using drop_queries('rolename'). If a query on

edb_sql_protect_queries returns a value such as unknown (OID=16454) for the

user name, use the drop_queries(roleoid) form of the function to remove the

deleted role’s offending queries from edb_sql_protect_queries.

The following is an example of the drop_queries function:

edb=# SELECT drop_queries('appuser');

 drop_queries

 5

(1 row)

edb=# SELECT * FROM edb_sql_protect_queries;

 username | ip_address | port | machine_name | date_time | query

----------+------------+------+--------------+-----------+-------

(0 rows)

The following is an example of using the drop_queries(roleoid) form of the

function when a role is dropped before deleting its queries:

edb=# SELECT username, query FROM edb_sql_protect_queries;

 username | query

---------------------+--

 unknown (OID=16454) | CREATE TABLE appuser_tab_2 (f1 INTEGER);

 unknown (OID=16454) | INSERT INTO appuser_tab_2 VALUES (2);

 unknown (OID=16454) | CREATE TABLE appuser_tab_3 (f1 INTEGER);

 unknown (OID=16454) | INSERT INTO appuser_tab_2 VALUES (1);

 unknown (OID=16454) | SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';

(5 rows)

edb=# SELECT drop_queries(16454);

 drop_queries

 5

(1 row)

edb=# SELECT * FROM edb_sql_protect_queries;

 username | ip_address | port | machine_name | date_time | query

----------+------------+------+--------------+-----------+-------

(0 rows)

4.1.3.7 Disabling and Enabling Monitoring

If you wish to turn off SQL/Protect monitoring once you have enabled it, perform the

following steps:

Step 1: Set the configuration parameter edb_sql_protect.enabled to off in the

postgresql.conf file.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

185

The entry for edb_sql_protect.enabled should look like the following:

edb_sql_protect.enabled = off

Step 2: Reload the configuration file as shown in Step 2 of Section 4.1.2.2.1.

To re-enable SQL/Protect monitoring perform the following steps:

Step 1: Set the configuration parameter edb_sql_protect.enabled to on in the

postgresql.conf file.

The entry for edb_sql_protect.enabled should look like the following:

edb_sql_protect.enabled = on

Step 2: Reload the configuration file as shown in Step 2 of Section 4.1.2.2.1.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

186

4.1.4 Backing Up and Restoring a SQL/Protect Database

Backing up a database that is configured with SQL/Protect, and then restoring the backup

file to a new database require additional considerations to what is normally associated

with backup and restore procedures. This is primarily due to the use of Object

Identification numbers (OIDs) in the SQL/Protect tables as explained in this section.

Note: This section is applicable if your backup and restore procedures result in the re-

creation of database objects in the new database with new OIDs such as is the case when

using the pg_dump backup program.

If you are backing up your Advanced Server database server by simply using the

operating system’s copy utility to create a binary image of the Advanced Server data files

(file system backup method), then this section does not apply.

4.1.4.1 Object Identification Numbers in SQL/Protect Tables

SQL/Protect uses two tables, edb_sql_protect and edb_sql_protect_rel, to store

information on database objects such as databases, roles, and relations. References to

these database objects in these tables are done using the objects’ OIDs, and not the

objects’ text names. The OID is a numeric data type used by Advanced Server to

uniquely identify each database object.

When a database object is created, Advanced Server assigns an OID to the object, which

is then used whenever a reference is needed to the object in the database catalogs. If you

create the same database object in two databases, such as a table with the same CREATE

TABLE statement, each table is assigned a different OID in each database.

In a backup and restore operation that results in the re-creation of the backed up database

objects, the restored objects end up with different OIDs in the new database than what

they were assigned in the original database. As a result, the OIDs referencing databases,

roles, and relations stored in the edb_sql_protect and edb_sql_protect_rel

tables are no longer valid when these tables are simply dumped to a backup file and then

restored to a new database.

The following sections describe two functions, export_sqlprotect and

import_sqlprotect, that are used specifically for backing up and restoring

SQL/Protect tables in order to ensure the OIDs in the SQL/Protect tables reference the

correct database objects after the SQL/Protect tables are restored.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

187

4.1.4.2 Backing Up the Database

The following are the steps to back up a database that has been configured with

SQL/Protect.

Step 1: Create a backup file using pg_dump.

The following example shows a plain-text backup file named /tmp/edb.dmp created

from database edb using the pg_dump utility program:

$ cd /usr/edb/as12/bin

$./pg_dump -U enterprisedb -Fp -f /tmp/edb.dmp edb

Password:

$

Step 2: Connect to the database as a superuser and export the SQL/Protect data using the

export_sqlprotect('sqlprotect_file') function where sqlprotect_file is

the fully qualified path to a file where the SQL/Protect data is to be saved.

The enterprisedb operating system account (postgres if you installed Advanced

Server in PostgreSQL compatibility mode) must have read and write access to the

directory specified in sqlprotect_file.

edb=# SELECT sqlprotect.export_sqlprotect('/tmp/sqlprotect.dmp');

 export_sqlprotect

(1 row)

The files /tmp/edb.dmp and /tmp/sqlprotect.dmp comprise your total database

backup.

4.1.4.3 Restoring From the Backup Files

Step 1: Restore the backup file to the new database.

The following example uses the psql utility program to restore the plain-text backup file

/tmp/edb.dmp to a newly created database named newdb:

$ /usr/edb/as12/bin/psql -d newdb -U enterprisedb -f /tmp/edb.dmp

Password for user enterprisedb:

SET

SET

SET

SET

SET

COMMENT

CREATE SCHEMA

 .

 .

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

188

 .

Step 2: Connect to the new database as a superuser and delete all rows from the

edb_sql_protect_rel table.

This step removes any existing rows in the edb_sql_protect_rel table that were

backed up from the original database. These rows do not contain the correct OIDs

relative to the database where the backup file has been restored.

$ /usr/edb/as12/bin/psql -d newdb -U enterprisedb

Password for user enterprisedb:

psql.bin (12.0.0, server 12.0.0)

Type "help" for help.

newdb=# DELETE FROM sqlprotect.edb_sql_protect_rel;

DELETE 2

Step 3: Delete all rows from the edb_sql_protect table.

This step removes any existing rows in the edb_sql_protect table that were backed

up from the original database. These rows do not contain the correct OIDs relative to the

database where the backup file has been restored.

newdb=# DELETE FROM sqlprotect.edb_sql_protect;

DELETE 1

Step 4: Delete any statistics that may exist for the database.

This step removes any existing statistics that may exist for the database to which you are

restoring the backup. The following query displays any existing statistics:

newdb=# SELECT * FROM sqlprotect.edb_sql_protect_stats;

 username | superusers | relations | commands | tautology | dml

----------+------------+-----------+----------+-----------+-----

(0 rows)

For each row that appears in the preceding query, use the drop_stats function

specifying the role name of the entry.

For example, if a row appeared with appuser in the username column, issue the

following command to remove it:

newdb=# SELECT sqlprotect.drop_stats('appuser');

 drop_stats

(1 row)

Step 5: Delete any offending queries that may exist for the database.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

189

This step removes any existing queries that may exist for the database to which you are

restoring the backup. The following query displays any existing queries:

edb=# SELECT * FROM sqlprotect.edb_sql_protect_queries;

 username | ip_address | port | machine_name | date_time | query

----------+------------+------+--------------+-----------+-------

(0 rows)

For each row that appears in the preceding query, use the drop_queries function

specifying the role name of the entry.

For example, if a row appeared with appuser in the username column, issue the

following command to remove it:

edb=# SELECT sqlprotect.drop_queries('appuser');

 drop_queries

(1 row)

Step 6: Make sure the role names that were protected by SQL/Protect in the original

database exist in the database server where the new database resides.

If the original and new databases reside in the same database server, then nothing needs

to be done assuming you have not deleted any of these roles from the database server.

Step 7: Run the function import_sqlprotect('sqlprotect_file') where

sqlprotect_file is the fully qualified path to the file you created in Step 2 of Section

4.1.4.2.

newdb=# SELECT sqlprotect.import_sqlprotect('/tmp/sqlprotect.dmp');

 import_sqlprotect

(1 row)

Tables edb_sql_protect and edb_sql_protect_rel are now populated with

entries containing the OIDs of the database objects as assigned in the new database. The

statistics view edb_sql_protect_stats also now displays the statistics imported

from the original database.

The SQL/Protect tables and statistics are now properly restored for this database. This is

verified by the following queries on the Advanced Server system catalogs:

newdb=# SELECT datname, oid FROM pg_database;

 datname | oid

-----------+-------

 template1 | 1

 template0 | 13909

 edb | 13917

 newdb | 16679

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

190

(4 rows)

newdb=# SELECT rolname, oid FROM pg_roles;

 rolname | oid

--------------+-------

 enterprisedb | 10

 appuser | 16671

 newuser | 16678

(3 rows)

newdb=# SELECT relname, oid FROM pg_class WHERE relname IN ('dept','emp','appuser_tab');

 relname | oid

-------------+-------

 appuser_tab | 16803

 dept | 16809

 emp | 16812

(3 rows)

newdb=# SELECT * FROM sqlprotect.edb_sql_protect;

 dbid | roleid | protect_relations | allow_utility_cmds | allow_tautology | allow_empty_dml

-------+--------+-------------------+--------------------+-----------------+-----------------

 16679 | 16671 | t | t | f | f

(1 row)

newdb=# SELECT * FROM sqlprotect.edb_sql_protect_rel;

 dbid | roleid | relid

-------+--------+-------

 16679 | 16671 | 16809

 16679 | 16671 | 16803

(2 rows)

newdb=# SELECT * FROM sqlprotect.edb_sql_protect_stats;

 username | superusers | relations | commands | tautology | dml

----------+------------+-----------+----------+-----------+-----

 appuser | 0 | 5 | 2 | 1 | 0

(1 row)

newedb=# \x

Expanded display is on.

nwedb=# SELECT * FROM sqlprotect.edb_sql_protect_queries;

-[RECORD 1]+---

 username | appuser

 ip_address |

 port |

 machine_name |

 date_time | 20-JUN-14 13:21:00 -04:00

 query | CREATE TABLE appuser_tab_2 (f1 INTEGER);

-[RECORD 2]+---

 username | appuser

 ip_address |

 port |

 machine_name |

 date_time | 20-JUN-14 13:22:00 -04:00

 query | INSERT INTO appuser_tab_2 VALUES (2);

-[RECORD 3]+---

 username | appuser

 ip_address | 192.168.2.6

 port | 50098

 machine_name |

 date_time | 20-JUN-14 13:39:00 -04:00

 query | CREATE TABLE appuser_tab_3 (f1 INTEGER);

-[RECORD 4]+---

 username | appuser

 ip_address | 192.168.2.6

 port | 50098

 machine_name |

 date_time | 20-JUN-14 13:39:00 -04:00

 query | INSERT INTO appuser_tab_2 VALUES (1);

-[RECORD 5]+---

 username | appuser

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

191

 ip_address | 192.168.2.6

 port | 50098

 machine_name |

 date_time | 20-JUN-14 13:39:00 -04:00

 query | SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';

Note the following about the columns in tables edb_sql_protect and

edb_sql_protect_rel:

 dbid. Matches the value in the oid column from pg_database for newdb

 roleid. Matches the value in the oid column from pg_roles for appuser

Also note that in table edb_sql_protect_rel, the values in the relid column match

the values in the oid column of pg_class for relations dept and appuser_tab.

Step 8: Verify that the SQL/Protect configuration parameters are set as desired in the

postgresql.conf file for the database server running the new database. Restart the

database server or reload the configuration file as appropriate.

You can now monitor the database using SQL/Protect.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

192

4.2 Virtual Private Database

Virtual Private Database is a type of fine-grained access control using security policies.

Fine-grained access control in Virtual Private Database means that access to data can be

controlled down to specific rows as defined by the security policy.

The rules that encode a security policy are defined in a policy function, which is an SPL

function with certain input parameters and return value. The security policy is the named

association of the policy function to a particular database object, typically a table.

Note: In Advanced Server, the policy function can be written in any language supported

by Advanced Server such as SQL and PL/pgSQL in addition to SPL.

Note: The database objects currently supported by Advanced Server Virtual Private

Database are tables. Policies cannot be applied to views or synonyms.

The advantages of using Virtual Private Database are the following:

 Provides a fine-grained level of security. Database object level privileges given by

the GRANT command determine access privileges to the entire instance of a

database object, while Virtual Private Database provides access control for the

individual rows of a database object instance.

 A different security policy can be applied depending upon the type of SQL

command (INSERT, UPDATE, DELETE, or SELECT).

 The security policy can vary dynamically for each applicable SQL command

affecting the database object depending upon factors such as the session user of

the application accessing the database object.

 Invocation of the security policy is transparent to all applications that access the

database object and thus, individual applications do not have to be modified to

apply the security policy.

 Once a security policy is enabled, it is not possible for any application (including

new applications) to circumvent the security policy except by the system privilege

noted by the following.

 Even superusers cannot circumvent the security policy except by the system

privilege noted by the following.

Note: The only way security policies can be circumvented is if the EXEMPT ACCESS

POLICY system privilege has been granted to a user. The EXEMPT ACCESS POLICY

privilege should be granted with extreme care as a user with this privilege is exempted

from all policies in the database.

The DBMS_RLS package provides procedures to create policies, remove policies, enable

policies, and disable policies.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

193

4.3 sslutils

sslutils is a Postgres extension that provides SSL certificate generation functions to

Advanced Server for use by the EDB Postgres Enterprise Manager server. sslutils is

installed by using the edb-asxx-server-sslutils RPM package where xx is the

Advanced Server version number.

The sslutils package provides the functions shown in the following sections.

In these sections, each parameter in the function’s parameter list is described by

parameter n under the Parameters subsection where n refers to the nth ordinal

position (for example, first, second, third, etc.) within the function’s parameter list.

4.3.1 openssl_rsa_generate_key

The openssl_rsa_generate_key function generates an RSA private key. The

function signature is:

openssl_rsa_generate_key(integer) RETURNS text

When invoking the function, pass the number of bits as an integer value; the function

returns the generated key.

4.3.2 openssl_rsa_key_to_csr

The openssl_rsa_key_to_csr function generates a certificate signing request (CSR).

The signature is:

openssl_rsa_key_to_csr(text, text, text, text, text, text,

text) RETURNS text

The function generates and returns the certificate signing request.

Parameters

parameter 1

The name of the RSA key file.

parameter 2

The common name (e.g., agentN) of the agent that will use the signing request.

parameter 3

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

194

The name of the country in which the server resides.

parameter 4

The name of the state in which the server resides.

parameter 5

The location (city) within the state in which the server resides.

parameter 6

The name of the organization unit requesting the certificate.

parameter 7

The email address of the user requesting the certificate.

4.3.3 openssl_csr_to_crt

The openssl_csr_to_crt function generates a self-signed certificate or a certificate

authority certificate. The signature is:

openssl_csr_to_crt(text, text, text) RETURNS text

The function returns the self-signed certificate or certificate authority certificate.

Parameters

parameter 1

The name of the certificate signing the request.

parameter 2

The path to the certificate authority certificate, or NULL if generating a certificate

authority certificate.

parameter 3

The path to the certificate authority’s private key or (if argument 2 is NULL) the

path to a private key.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

195

4.3.4 openssl_rsa_generate_crl

The openssl_rsa_generate_crl function generates a default certificate revocation

list. The signature is:

openssl_rsa_generate_crl(text, text) RETURNS text

The function returns the certificate revocation list.

Parameters

parameter 1

The path to the certificate authority certificate.

parameter 2

The path to the certificate authority private key.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

196

4.4 Data Redaction

Data redaction is a technique that limits sensitive data exposure by dynamically changing

data as it is displayed for certain users.

For example, a social security number (SSN) is stored as 021-23-9567. Privileged users

can see the full SSN, while other users only see the last four digits xxx-xx-9567.

Data redaction is implemented by defining a function for each field to which redaction is

to be applied. The function returns the value that should be displayed to the users subject

to the data redaction.

So for example, for the SSN field, the redaction function would return xxx-xx-9567 for

an input SSN of 021-23-9567.

For a salary field, a redaction function would always return $0.00 regardless of the input

salary value.

These functions are then incorporated into a redaction policy by using the CREATE

REDACTION POLICY command. This command specifies the table on which the policy

applies, the table columns to be affected by the specified redaction functions, expressions

to determine which session users are to be affected, and other options.

The edb_data_redaction parameter in the postgresql.conf file then determines

whether or not data redaction is to be applied.

By default, the parameter is enabled so the redaction policy is in effect and the following

occurs:

 Superusers and the table owner bypass data redaction and see the original data.

 All other users get the redaction policy applied and see the reformatted data.

If the parameter is disabled by having it set to FALSE during the session, then the

following occurs:

 Superusers and the table owner bypass data redaction and see the original data.

 All other users get will get an error.

A redaction policy can be changed by using the ALTER REDACTION POLICY command,

or it can be eliminated using the DROP REDACTION POLICY command.

The redaction policy commands are described in more detail in the subsequent sections.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

197

4.4.1 CREATE REDACTION POLICY

CREATE REDACTION POLICY defines a new data redaction policy for a table.

Synopsis

CREATE REDACTION POLICY name ON table_name

 [FOR (expression)]

 [ADD [COLUMN] column_name USING funcname_clause

 [WITH OPTIONS ([redaction_option]

 [, redaction_option])

]

] [, ...]

where redaction_option is:

{ SCOPE scope_value |

 EXCEPTION exception_value }

Description

The CREATE REDACTION POLICY command defines a new column-level security

policy for a table by redacting column data using redaction function. A newly created

data redaction policy will be enabled by default. The policy can be disabled using ALTER

REDACTION POLICY ... DISABLE.

FOR (expression)

This form adds a redaction policy expression.

ADD [COLUMN]

This optional form adds a column of the table to the data redaction policy. The

USING specifies a redaction function expression. Multiple ADD [COLUMN]

form can be used, if you want to add multiple columns of the table to the data

redaction policy being created. The optional WITH OPTIONS (...) clause

specifies a scope and/or an exception to the data redaction policy to be applied. If

the scope and/or exception are not specified, the default values for scope and

exception will be query and none respectively.

Parameters

name

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

198

The name of the data redaction policy to be created. This must be distinct from

the name of any other existing data redaction policy for the table.

table_name

The name (optionally schema-qualified) of the table the data redaction policy

applies to.

expression

The data redaction policy expression. No redaction will be applied if this

expression evaluates to false.

column_name

Name of the existing column of the table on which the data redaction policy being

created.

funcname_clause

The data redaction function which decides how to compute the redacted column

value. Return type of the redaction function should be same as the column type on

which data redaction policy being added.

scope_value

The scope identified the query part where redaction to be applied for the column.

Scope value could be query, top_tlist or top_tlist_or_error. If the

scope is query then, the redaction applied on the column irrespective of where it

appears in the query. If the scope is top_tlist then, the redaction applied on the

column only when it appears in the query’s top target list. If the scope is

top_tlist_or_error the behavior will be same as the top_tlist, but throws

an errors when the column appears anywhere else in the query.

exception_value

The exception identified the query part where redaction to be exempted.

Exception value could be none, equal or leakproof. If exception is none then

there is no exemption. If exception is equal, then the column is not redacted

when used in an equality test. If exception is leakproof, the column will is not

redacted when a leakproof function is applied to it.

Notes:

You must be the owner of a table to create or change data redaction policies for it.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

199

The superuser and the table owner are exempt from the data redaction policy.

Examples

Below is an example of how this feature can be used in production environments. Create

the components for a data redaction policy on employees table:

CREATE TABLE employees (

 id integer GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,

 name varchar(40) NOT NULL,

 ssn varchar(11) NOT NULL,

 phone varchar(10),

 birthday date,

 salary money,

 email varchar(100)

);

-- Insert some data

INSERT INTO employees (name, ssn, phone, birthday, salary, email)

VALUES

('Sally Sample', '020-78-9345', '5081234567', '1961-02-02', 51234.34,

'sally.sample@enterprisedb.com'),

('Jane Doe', '123-33-9345', '6171234567', '1963-02-14', 62500.00, 'jane.doe@gmail.com'),

('Bill Foo', '123-89-9345', '9781234567','1963-02-14', 45350, 'william.foe@hotmail.com');

-- Create a user hr who can see all the data in employees

CREATE USER hr;

-- Create a normal user

CREATE USER alice;

GRANT ALL ON employees TO hr, alice;

-- Create redaction function in which actual redaction logic resides

CREATE OR REPLACE FUNCTION redact_ssn (ssn varchar(11)) RETURN varchar(11) IS

BEGIN

 /* replaces 020-12-9876 with xxx-xx-9876 */

 return overlay (ssn placing 'xxx-xx' from 1) ;

END;

CREATE OR REPLACE FUNCTION redact_salary () RETURN money IS BEGIN return 0::money; END;

Now create a data redaction policy on employees to redact column ssn which should

be accessible in equality condition and salary with default scope and exception. The

redaction policy will be exempt for the hr user.

CREATE REDACTION POLICY redact_policy_personal_info ON employees FOR (session_user != 'hr')

ADD COLUMN ssn USING redact_ssn(ssn) WITH OPTIONS (SCOPE query, EXCEPTION equal),

ADD COLUMN salary USING redact_salary();

The visible data for the hr user will be:

-- hr can view all columns data

edb=# \c edb hr

edb=> SELECT * FROM employees;

 id | name | ssn | phone | birthday | salary | email

----+--------------+-------------+------------+--------------------+------------+-------------

 1 | Sally Sample | 020-78-9345 | 5081234567 | 02-FEB-61 00:00:00 | $51,234.34 |

sally.sample@enterprisedb.com

 2 | Jane Doe | 123-33-9345 | 6171234567 | 14-FEB-63 00:00:00 | $62,500.00 |

jane.doe@gmail.com

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

200

 3 | Bill Foo | 123-89-9345 | 9781234567 | 14-FEB-63 00:00:00 | $45,350.00 |

william.foe@hotmail.com

(3 rows)

The visible data for the normal user alice will be:

-- Normal user cannot see salary and ssn number.

edb=> \c edb alice

edb=> SELECT * FROM employees;

id | name | ssn | phone | birthday | salary | email

----+--------------+-------------+------------+--------------------+--------+-----------------

 1 | Sally Sample | xxx-xx-9345 | 5081234567 | 02-FEB-61 00:00:00 | $0.00 |

sally.sample@enterprisedb.com

 2 | Jane Doe | xxx-xx-9345 | 6171234567 | 14-FEB-63 00:00:00 | $0.00 |

jane.doe@gmail.com

 3 | Bill Foo | xxx-xx-9345 | 9781234567 | 14-FEB-63 00:00:00 | $0.00 |

william.foe@hotmail.com

(3 rows)

But ssn data is accessible when it used for equality check due to exception_value

setting.

-- Get ssn number starting from 123

edb=> SELECT * FROM employees WHERE substring(ssn from 0 for 4) = '123';

 id | name | ssn | phone | birthday | salary | email

----+----------+-------------+------------+--------------------+--------+---------------------

 2 | Jane Doe | xxx-xx-9345 | 6171234567 | 14-FEB-63 00:00:00 | $0.00 | jane.doe@gmail.com

 3 | Bill Foo | xxx-xx-9345 | 9781234567 | 14-FEB-63 00:00:00 | $0.00 |

william.foe@hotmail.com

(2 rows)

Caveats

1. The data redaction policy created on inheritance hierarchies will not be cascaded.

For example, if the data redaction policy is created for a parent, it will not be

applied to the child table, which inherits it and vice versa. Someone who has

access to these child tables can see the non-redacted data. For information about

inheritance hierarchies, see Section 5.9 in the PostgreSQL Core Documentation

available at:

https://www.postgresql.org/docs/12/static/ddl-inherit.html

2. If the superuser or the table owner has created any materialized view on the table

and has provided the access rights GRANT SELECT on the table and the

materialized view to any non-superuser, then the non-superuser will be able to

access the non-redacted data through the materialized view.

3. The objects accessed in the redaction function body should be schema qualified

otherwise pg_dump might fail.

Compatibility

https://www.postgresql.org/docs/12/static/ddl-inherit.html

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

201

CREATE REDACTION POLICY is an EnterpriseDB extension.

See Also

ALTER REDACTION POLICY, DROP REDACTION POLICY

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

202

4.4.2 ALTER REDACTION POLICY

ALTER REDACTION POLICY changes the definition of data redaction policy for a table.

Synopsis

ALTER REDACTION POLICY name ON table_name RENAME TO new_name

ALTER REDACTION POLICY name ON table_name FOR (expression)

ALTER REDACTION POLICY name ON table_name { ENABLE | DISABLE}

ALTER REDACTION POLICY name ON table_name

 ADD [COLUMN] column_name USING funcname_clause

 [WITH OPTIONS ([redaction_option]

 [, redaction_option])

]

ALTER REDACTION POLICY name ON table_name

 MODIFY [COLUMN] column_name

 {

 [USING funcname_clause]

 |

 [WITH OPTIONS ([redaction_option]

 [, redaction_option])

]

 }

ALTER REDACTION POLICY name ON table_name

 DROP [COLUMN] column_name

where redaction_option is:

{ SCOPE scope_value |

 EXCEPTION exception_value }

Description

ALTER REDACTION POLICY changes the definition of an existing data redaction policy.

To use ALTER REDACTION POLICY, you must own the table that the data redaction

policy applies to.

FOR (expression)

This form adds or replaces the data redaction policy expression.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

203

ENABLE

Enables the previously disabled data redaction policy for a table.

DISABLE

Disables the data redaction policy for a table.

ADD [COLUMN]

This form adds a column of the table to the existing redaction policy. See

CREATE REDACTION POLICY for the details.

MODIFY [COLUMN]

This form modifies the data redaction policy on the column of the table. You can

update the redaction function clause and/or the redaction options for the column.

The USING clause specifies the redaction function expression to be updated and

the WITH OPTIONS (...) clause specifies the scope and/or the exception.

For more details on the redaction function clause, the redaction scope and the

redaction exception, see CREATE REDACTION POLICY.

DROP [COLUMN]

This form removes the column of the table from the data redaction policy.

Parameters

name

The name of an existing data redaction policy to alter.

table_name

The name (optionally schema-qualified) of the table that the data redaction policy

is on.

new_name

The new name for the data redaction policy. This must be distinct from the name

of any other existing data redaction policy for the table.

expression

The data redaction policy expression.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

204

column_name

Name of existing column of the table on which the data redaction policy being

altered or dropped.

funcname_clause

The data redaction function expression for the column. See CREATE

REDACTION POLICY for details.

scope_value

The scope identified the query part where redaction to be applied for the column.

See CREATE REDACTION POLICY for the details.

exception_value

The exception identified the query part where redaction to be exempted. See

CREATE REDACTION POLICY for the details.

Examples

Update data redaction policy called redact_policy_personal_info on the table

named employees:

ALTER REDACTION POLICY redact_policy_personal_info ON employees

FOR (session_user != 'hr' AND session_user != 'manager');

And to update data redaction function for the column ssn in the same policy:

ALTER REDACTION POLICY redact_policy_personal_info ON employees

MODIFY COLUMN ssn USING redact_ssn_new(ssn);

Compatibility

ALTER REDACTION POLICY is an EnterpriseDB extension.

See Also

CREATE REDACTION POLICY, DROP REDACTION POLICY

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

205

4.4.3 DROP REDACTION POLICY

DROP REDACTION POLICY removes a data redaction policy from a table.

Synopsis

DROP REDACTION POLICY [IF EXISTS] name ON table_name

 [CASCADE | RESTRICT]

Description

DROP REDACTION POLICY removes the specified data redaction policy from the table.

To use DROP REDACTION POLICY, you must own the table that the redaction policy

applies to.

Parameters

IF EXISTS

Do not throw an error if the data redaction policy does not exist. A notice is

issued in this case.

name

The name of the data redaction policy to drop.

table_name

The name (optionally schema-qualified) of the table that the data redaction policy

is on.

CASCADE
RESTRICT

These keywords do not have any effect, since there are no dependencies on the

data redaction policies.

Examples

To drop the data redaction policy called redact_policy_personal_info on the table

named employees:

DROP REDACTION POLICY redact_policy_personal_info ON employees;

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

206

Compatibilities

DROP REDACTION POLICY is an EnterpriseDB extension.

See Also

CREATE REDACTION POLICY, ALTER REDACTION POLICY

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

207

4.4.4 System Catalogs

This section describes the system catalogs that store the redaction policy information.

4.4.4.1 edb_redaction_column

The catalog edb_redaction_column stores information of data redaction policy

attached to the columns of the table.

Column Type References Description
oid oid Row identifier (hidden attribute;

must be explicitly selected)
rdpolicyid oid edb_redaction_policy.oid The data redaction policy applies

to the described column
rdrelid oid pg_class.oid The table that the described

column belongs to
rdattnum int2 pg_attribute.attnum The number of the described

column
rdscope int2 The redaction scope: 1 = query, 2

= top_tlist, 4 = top_tlist_or_error
rdexception int2 The redaction exception: 8 = none,

16 = equal, 32 = leakproof
rdfuncexpr pg_node_tree Data redaction function expression

Note: The described column will be redacted if the redaction policy

edb_redaction_column.rdpolicyid on the table is enabled and the redaction

policy expression edb_redaction_policy.rdexpr evaluates to true.

4.4.4.2 edb_redaction_policy

The catalog edb_redaction_policy stores information of the redaction policies for

tables.

Column Type References Description
oid oid Row identifier (hidden attribute; must be explicitly

selected)
rdname name The name of the data redaction policy
rdrelid oid pg_class.oid The table to which the data redaction policy

applies
rdenable boolean Is the data redaction policy enabled?
rdexpr pg_node_tree The data redaction policy expression

Note: The data redaction policy applies for the table if it is enabled and the expression

ever evaluated true.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

208

5 EDB Resource Manager

EDB Resource Manager is an Advanced Server feature that provides the capability to

control the usage of operating system resources used by Advanced Server processes.

This capability allows you to protect the system from processes that may uncontrollably

overuse and monopolize certain system resources.

The following are some key points about using EDB Resource Manager.

 The basic component of EDB Resource Manager is a resource group. A resource

group is a named, global group, available to all databases in an Advanced Server

instance, on which various resource usage limits can be defined. Advanced Server

processes that are assigned as members of a given resource group are then

controlled by EDB Resource Manager so that the aggregate resource usage of all

processes in the group is kept near the limits defined on the group.

 Data definition language commands are used to create, alter, and drop resource

groups. These commands can only be used by a database user with superuser

privileges.

 The desired, aggregate consumption level of all processes belonging to a resource

group is defined by resource type parameters. There are different resource type

parameters for the different types of system resources currently supported by

EDB Resource Manager.

 Multiple resource groups can be created, each with different settings for its

resource type parameters, thus defining different consumption levels for each

resource group.

 EDB Resource Manager throttles processes in a resource group to keep resource

consumption near the limits defined by the resource type parameters. If there are

multiple resource type parameters with defined settings in a resource group, the

actual resource consumption may be significantly lower for certain resource types

than their defined resource type parameter settings. This is because EDB

Resource Manager throttles processes attempting to keep all resources with

defined resource type settings within their defined limits.

 The definition of available resource groups and their resource type settings are

stored in a shared global system catalog. Thus, resource groups can be utilized by

all databases in a given Advanced Server instance.

 The edb_max_resource_groups configuration parameter sets the maximum

number of resource groups that can be active simultaneously with running

processes. The default setting is 16 resource groups. Changes to this parameter

take effect on database server restart.

 Use the SET edb_resource_group TO group_name command to assign the

current process to a specified resource group. Use the RESET

edb_resource_group command or SET edb_resource_group TO

DEFAULT to remove the current process from a resource group.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

209

 A default resource group can be assigned to a role using the ALTER ROLE ...

SET command, or to a database by the ALTER DATABASE ... SET command.

The entire database server instance can be assigned a default resource group by

setting the parameter in the postgresql.conf file.

 In order to include resource groups in a backup file of the database server

instance, use the pg_dumpall backup utility with default settings (That is, do not

specify any of the --globals-only, --roles-only, or --tablespaces-

only options.)

5.1 Creating and Managing Resource Groups

The data definition language commands described in this section provide for the creation

and management of resource groups.

5.1.1 CREATE RESOURCE GROUP

Use the CREATE RESOURCE GROUP command to create a new resource group.

CREATE RESOURCE GROUP group_name;

Description

The CREATE RESOURCE GROUP command creates a resource group with the specified

name. Resource limits can then be defined on the group with the ALTER RESOURCE

GROUP command. The resource group is accessible from all databases in the Advanced

Server instance.

To use the CREATE RESOURCE GROUP command you must have superuser privileges.

Parameters

group_name

The name of the resource group.

Example

The following example results in the creation of three resource groups named resgrp_a,

resgrp_b, and resgrp_c.

edb=# CREATE RESOURCE GROUP resgrp_a;

CREATE RESOURCE GROUP

edb=# CREATE RESOURCE GROUP resgrp_b;

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

210

CREATE RESOURCE GROUP

edb=# CREATE RESOURCE GROUP resgrp_c;

CREATE RESOURCE GROUP

The following query shows the entries for the resource groups in the

edb_resource_group catalog.

edb=# SELECT * FROM edb_resource_group;

 rgrpname | rgrpcpuratelimit | rgrpdirtyratelimit

----------+------------------+--------------------

 resgrp_a | 0 | 0

 resgrp_b | 0 | 0

 resgrp_c | 0 | 0

(3 rows)

5.1.2 ALTER RESOURCE GROUP

Use the ALTER RESOURCE GROUP command to change the attributes of an existing

resource group. The command syntax comes in three forms.

The first form renames the resource group:

ALTER RESOURCE GROUP group_name RENAME TO new_name;

The second form assigns a resource type to the resource group:

ALTER RESOURCE GROUP group_name SET

 resource_type { TO | = } { value | DEFAULT };

The third form resets the assignment of a resource type to its default within the group:

ALTER RESOURCE GROUP group_name RESET resource_type;

Description

The ALTER RESOURCE GROUP command changes certain attributes of an existing

resource group.

The first form with the RENAME TO clause assigns a new name to an existing resource

group.

The second form with the SET resource_type TO clause either assigns the specified

literal value to a resource type, or resets the resource type when DEFAULT is specified.

Resetting or setting a resource type to DEFAULT means that the resource group has no

defined limit on that resource type.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

211

The third form with the RESET resource_type clause resets the resource type for the

group as described previously.

To use the ALTER RESOURCE GROUP command you must have superuser privileges.

Parameters

group_name

The name of the resource group to be altered.

new_name

The new name to be assigned to the resource group.

resource_type

The resource type parameter specifying the type of resource to which a usage

value is to be set.

value | DEFAULT

When value is specified, the literal value to be assigned to resource_type.

When DEFAULT is specified, the assignment of resource_type is reset for the

resource group.

Example

The following are examples of the ALTER RESOURCE GROUP command.

edb=# ALTER RESOURCE GROUP resgrp_a RENAME TO newgrp;

ALTER RESOURCE GROUP

edb=# ALTER RESOURCE GROUP resgrp_b SET cpu_rate_limit = .5;

ALTER RESOURCE GROUP

edb=# ALTER RESOURCE GROUP resgrp_b SET dirty_rate_limit = 6144;

ALTER RESOURCE GROUP

edb=# ALTER RESOURCE GROUP resgrp_c RESET cpu_rate_limit;

ALTER RESOURCE GROUP

The following query shows the results of the ALTER RESOURCE GROUP commands to

the entries in the edb_resource_group catalog.

edb=# SELECT * FROM edb_resource_group;

 rgrpname | rgrpcpuratelimit | rgrpdirtyratelimit

----------+------------------+--------------------

 newgrp | 0 | 0

 resgrp_b | 0.5 | 6144

 resgrp_c | 0 | 0

(3 rows)

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

212

5.1.3 DROP RESOURCE GROUP

Use the DROP RESOURCE GROUP command to remove a resource group.

DROP RESOURCE GROUP [IF EXISTS] group_name;

Description

The DROP RESOURCE GROUP command removes a resource group with the specified

name.

To use the DROP RESOURCE GROUP command you must have superuser privileges.

Parameters

group_name

The name of the resource group to be removed.

IF EXISTS

Do not throw an error if the resource group does not exist. A notice is issued in

this case.

Example

The following example removes resource group newgrp.

edb=# DROP RESOURCE GROUP newgrp;

DROP RESOURCE GROUP

5.1.4 Assigning a Process to a Resource Group

Use the SET edb_resource_group TO group_name command to assign the current

process to a specified resource group as shown by the following.

edb=# SET edb_resource_group TO resgrp_b;

SET

edb=# SHOW edb_resource_group;

 edb_resource_group

 resgrp_b

(1 row)

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

213

The resource type settings of the group immediately take effect on the current process. If

the command is used to change the resource group assigned to the current process, the

resource type settings of the newly assigned group immediately take effect.

Processes can be included by default in a resource group by assigning a default resource

group to roles, databases, or an entire database server instance.

A default resource group can be assigned to a role using the ALTER ROLE ... SET

command. For more information about the ALTER ROLE command, please refer to the

PostgreSQL core documentation available at:

https://www.postgresql.org/docs/12/static/sql-alterrole.html

A default resource group can be assigned to a database by the ALTER DATABASE ...

SET command. For more information about the ALTER DATABASE command, please

refer to the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/12/static/sql-alterdatabase.html

The entire database server instance can be assigned a default resource group by setting

the edb_resource_group configuration parameter in the postgresql.conf file as

shown by the following.

- EDB Resource Manager -

#edb_max_resource_groups = 16 # 0-65536 (change requires restart)

edb_resource_group = 'resgrp_b'

A change to edb_resource_group in the postgresql.conf file requires a

configuration file reload before it takes effect on the database server instance.

5.1.5 Removing a Process from a Resource Group

Set edb_resource_group to DEFAULT or use RESET edb_resource_group to

remove the current process from a resource group as shown by the following.

edb=# SET edb_resource_group TO DEFAULT;

SET

edb=# SHOW edb_resource_group;

 edb_resource_group

(1 row)

For removing a default resource group from a role, use the ALTER ROLE ... RESET

form of the ALTER ROLE command.

https://www.postgresql.org/docs/12/static/sql-alterrole.html
https://www.postgresql.org/docs/12/static/sql-alterdatabase.html

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

214

For removing a default resource group from a database, use the ALTER DATABASE ...

RESET form of the ALTER DATABASE command.

For removing a default resource group from the database server instance, set the

edb_resource_group configuration parameter to an empty string in the

postgresql.conf file and reload the configuration file.

5.1.6 Monitoring Processes in Resource Groups

After resource groups have been created, the number of processes actively using these

resource groups can be obtained from the view edb_all_resource_groups.

The columns in edb_all_resource_groups are the following:

 group_name. Name of the resource group.

 active_processes. Number of active processes in the resource group.

 cpu_rate_limit. The value of the CPU rate limit resource type assigned to the

resource group.

 per_process_cpu_rate_limit. The CPU rate limit applicable to an individual,

active process in the resource group.

 dirty_rate_limit. The value of the dirty rate limit resource type assigned to the

resource group.

 per_process_dirty_rate_limit. The dirty rate limit applicable to an individual,

active process in the resource group.

Note: Columns per_process_cpu_rate_limit and

per_process_dirty_rate_limit do not show the actual resource consumption used

by the processes, but indicate how EDB Resource Manager sets the resource limit for an

individual process based upon the number of active processes in the resource group.

The following shows edb_all_resource_groups when resource group resgrp_a

contains no active processes, resource group resgrp_b contains two active processes,

and resource group resgrp_c contains one active process.

edb=# SELECT * FROM edb_all_resource_groups ORDER BY group_name;

-[RECORD 1]----------------+------------------

 group_name | resgrp_a

 active_processes | 0

 cpu_rate_limit | 0.5

 per_process_cpu_rate_limit |

 dirty_rate_limit | 12288

 per_process_dirty_rate_limit |

-[RECORD 2]----------------+------------------

 group_name | resgrp_b

 active_processes | 2

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

215

 cpu_rate_limit | 0.4

 per_process_cpu_rate_limit | 0.195694289022895

 dirty_rate_limit | 6144

 per_process_dirty_rate_limit | 3785.92924684337

-[RECORD 3]----------------+------------------

 group_name | resgrp_c

 active_processes | 1

 cpu_rate_limit | 0.3

 per_process_cpu_rate_limit | 0.292342129631091

 dirty_rate_limit | 3072

 per_process_dirty_rate_limit | 3072

The CPU rate limit and dirty rate limit settings that are assigned to these resource groups

are as follows.

edb=# SELECT * FROM edb_resource_group;

 rgrpname | rgrpcpuratelimit | rgrpdirtyratelimit

----------+------------------+--------------------

 resgrp_a | 0.5 | 12288

 resgrp_b | 0.4 | 6144

 resgrp_c | 0.3 | 3072

(3 rows)

In the edb_all_resource_groups view, note that the

per_process_cpu_rate_limit and per_process_dirty_rate_limit values are

roughly the corresponding CPU rate limit and dirty rate limit divided by the number of

active processes.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

216

5.2 CPU Usage Throttling

CPU usage of a resource group is controlled by setting the cpu_rate_limit resource

type parameter.

Set the cpu_rate_limit parameter to the fraction of CPU time over wall-clock time to

which the combined, simultaneous CPU usage of all processes in the group should not

exceed. Thus, the value assigned to cpu_rate_limit should typically be less than or

equal to 1.

The valid range of the cpu_rate_limit parameter is 0 to 1.67772e+07. A setting of 0

means no CPU rate limit has been set for the resource group.

When multiplied by 100, the cpu_rate_limit can also be interpreted as the CPU usage

percentage for a resource group.

EDB Resource Manager utilizes CPU throttling to keep the aggregate CPU usage of all

processes in the group within the limit specified by the cpu_rate_limit parameter. A

process in the group may be interrupted and put into sleep mode for a short interval of

time to maintain the defined limit. When and how such interruptions occur is defined by a

proprietary algorithm used by EDB Resource Manager.

5.2.1 Setting the CPU Rate Limit for a Resource Group

The ALTER RESOURCE GROUP command with the SET cpu_rate_limit clause is

used to set the CPU rate limit for a resource group.

In the following example the CPU usage limit is set to 50% for resgrp_a, 40% for

resgrp_b and 30% for resgrp_c. This means that the combined CPU usage of all

processes assigned to resgrp_a is maintained at approximately 50%. Similarly, for all

processes in resgrp_b, the combined CPU usage is kept to approximately 40%, etc.

edb=# ALTER RESOURCE GROUP resgrp_a SET cpu_rate_limit TO .5;

ALTER RESOURCE GROUP

edb=# ALTER RESOURCE GROUP resgrp_b SET cpu_rate_limit TO .4;

ALTER RESOURCE GROUP

edb=# ALTER RESOURCE GROUP resgrp_c SET cpu_rate_limit TO .3;

ALTER RESOURCE GROUP

The following query shows the settings of cpu_rate_limit in the catalog.

edb=# SELECT rgrpname, rgrpcpuratelimit FROM edb_resource_group;

 rgrpname | rgrpcpuratelimit

----------+------------------

 resgrp_a | 0.5

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

217

 resgrp_b | 0.4

 resgrp_c | 0.3

(3 rows)

Changing the cpu_rate_limit of a resource group not only affects new processes that

are assigned to the group, but any currently running processes that are members of the

group are immediately affected by the change. That is, if the cpu_rate_limit is

changed from .5 to .3, currently running processes in the group would be throttled

downward so that the aggregate group CPU usage would be near 30% instead of 50%.

To illustrate the effect of setting the CPU rate limit for resource groups, the following

examples use a CPU-intensive calculation of 20000 factorial (multiplication of 20000 *

19999 * 19998, etc.) performed by the query SELECT 20000!; run in the psql

command line utility.

The resource groups with the CPU rate limit settings shown in the previous query are

used in these examples.

5.2.2 Example – Single Process in a Single Group

The following shows that the current process is set to use resource group resgrp_b. The

factorial calculation is then started.

edb=# SET edb_resource_group TO resgrp_b;

SET

edb=# SHOW edb_resource_group;

 edb_resource_group

 resgrp_b

(1 row)

edb=# SELECT 20000!;

In a second session, the Linux top command is used to display the CPU usage as shown

under the %CPU column. The following is a snapshot at an arbitrary point in time as the

top command output periodically changes.

$ top

top - 16:37:03 up 4:15, 7 users, load average: 0.49, 0.20, 0.38

Tasks: 202 total, 1 running, 201 sleeping, 0 stopped, 0 zombie

Cpu(s): 42.7%us, 2.3%sy, 0.0%ni, 55.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0

Mem: 1025624k total, 791160k used, 234464k free, 23400k buffers

Swap: 103420k total, 13404k used, 90016k free, 373504k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

28915 enterpri 20 0 195m 5900 4212 S 39.9 0.6 3:36.98 edb-postgres

 1033 root 20 0 171m 77m 2960 S 1.0 7.8 3:43.96 Xorg

 3040 user 20 0 278m 22m 14m S 1.0 2.2 3:41.72 knotify4

 .

 .

 .

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

218

The psql session performing the factorial calculation is shown by the row where edb-

postgres appears under the COMMAND column. The CPU usage of the session shown

under the %CPU column shows 39.9, which is close to the 40% CPU limit set for resource

group resgrp_b.

By contrast, if the psql session is removed from the resource group and the factorial

calculation is performed again, the CPU usage is much higher.

edb=# SET edb_resource_group TO DEFAULT;

SET

edb=# SHOW edb_resource_group;

 edb_resource_group

(1 row)

edb=# SELECT 20000!;

Under the %CPU column for edb-postgres, the CPU usage is now 93.6, which is

significantly higher than the 39.9 when the process was part of the resource group.

$ top

top - 16:43:03 up 4:21, 7 users, load average: 0.66, 0.33, 0.37

Tasks: 202 total, 5 running, 197 sleeping, 0 stopped, 0 zombie

Cpu(s): 96.7%us, 3.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0

Mem: 1025624k total, 791228k used, 234396k free, 23560k buffers

Swap: 103420k total, 13404k used, 90016k free, 373508k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

28915 enterpri 20 0 195m 5900 4212 R 93.6 0.6 5:01.56 edb-postgres

 1033 root 20 0 171m 77m 2960 S 1.0 7.8 3:48.15 Xorg

 2907 user 20 0 98.7m 11m 9100 S 0.3 1.2 0:46.51 vmware-user-lo

 .

 .

 .

5.2.3 Example – Multiple Processes in a Single Group

As stated previously, the CPU rate limit applies to the aggregate of all processes in the

resource group. This concept is illustrated in the following example.

The factorial calculation is performed simultaneously in two separate psql sessions,

each of which has been added to resource group resgrp_b that has cpu_rate_limit

set to .4 (CPU usage of 40%).

Session 1:

edb=# SET edb_resource_group TO resgrp_b;

SET

edb=# SHOW edb_resource_group;

 edb_resource_group

 resgrp_b

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

219

(1 row)

edb=# SELECT 20000!;

Session 2:

edb=# SET edb_resource_group TO resgrp_b;

SET

edb=# SHOW edb_resource_group;

 edb_resource_group

 resgrp_b

(1 row)

edb=# SELECT 20000!;

A third session monitors the CPU usage.

$ top

top - 16:53:03 up 4:31, 7 users, load average: 0.31, 0.19, 0.27

Tasks: 202 total, 1 running, 201 sleeping, 0 stopped, 0 zombie

Cpu(s): 41.2%us, 3.0%sy, 0.0%ni, 55.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0

Mem: 1025624k total, 792020k used, 233604k free, 23844k buffers

Swap: 103420k total, 13404k used, 90016k free, 373508k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

29857 enterpri 20 0 195m 4708 3312 S 19.9 0.5 0:57.35 edb-postgres

28915 enterpri 20 0 195m 5900 4212 S 19.6 0.6 5:35.49 edb-postgres

 3040 user 20 0 278m 22m 14m S 1.0 2.2 3:54.99 knotify4

 1033 root 20 0 171m 78m 2960 S 0.3 7.8 3:55.71 Xorg

 .

 .

 .

There are now two processes named edb-postgres with %CPU values of 19.9 and 19.6,

whose sum is close to the 40% CPU usage set for resource group resgrp_b.

The following command sequence displays the sum of all edb-postgres processes

sampled over half second time intervals. This shows how the total CPU usage of the

processes in the resource group changes over time as EDB Resource Manager throttles

the processes to keep the total resource group CPU usage near 40%.

$ while [[1 -eq 1]]; do top -d0.5 -b -n2 | grep edb-postgres | awk '{ SUM

+= $9} END { print SUM / 2 }'; done

37.2

39.1

38.9

38.3

44.7

39.2

42.5

39.1

39.2

39.2

41

42.85

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

220

46.1

 .

 .

 .

5.2.4 Example – Multiple Processes in Multiple Groups

In this example, two additional psql sessions are used along with the previous two

sessions. The third and fourth sessions perform the same factorial calculation within

resource group resgrp_c with a cpu_rate_limit of .3 (30% CPU usage).

Session 3:

edb=# SET edb_resource_group TO resgrp_c;

SET

edb=# SHOW edb_resource_group;

 edb_resource_group

 resgrp_c

(1 row)

edb=# SELECT 20000!;

Session 4:

edb=# SET edb_resource_group TO resgrp_c;

SET

edb=# SHOW edb_resource_group;

 edb_resource_group

 resgrp_c

(1 row)

edb=# SELECT 20000!;

The top command displays the following output.

$ top

top - 17:45:09 up 5:23, 8 users, load average: 0.47, 0.17, 0.26

Tasks: 203 total, 4 running, 199 sleeping, 0 stopped, 0 zombie

Cpu(s): 70.2%us, 0.0%sy, 0.0%ni, 29.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0

Mem: 1025624k total, 806140k used, 219484k free, 25296k buffers

Swap: 103420k total, 13404k used, 90016k free, 374092k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

29857 enterpri 20 0 195m 4820 3324 S 19.9 0.5 4:25.02 edb-postgres

28915 enterpri 20 0 195m 5900 4212 R 19.6 0.6 9:07.50 edb-postgres

29023 enterpri 20 0 195m 4744 3248 R 16.3 0.5 4:01.73 edb-postgres

11019 enterpri 20 0 195m 4120 2764 R 15.3 0.4 0:04.92 edb-postgres

 2907 user 20 0 98.7m 12m 9112 S 1.3 1.2 0:56.54 vmware-user-lo

 3040 user 20 0 278m 22m 14m S 1.3 2.2 4:38.73 knotify4

The two resource groups in use have CPU usage limits of 40% and 30%. The sum of the

%CPU column for the first two edb-postgres processes is 39.5 (approximately 40%,

which is the limit for resgrp_b) and the sum of the %CPU column for the third and

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

221

fourth edb-postgres processes is 31.6 (approximately 30%, which is the limit for

resgrp_c).

The sum of the CPU usage limits of the two resource groups to which these processes

belong is 70%. The following output shows that the sum of the four processes borders

around 70%.

$ while [[1 -eq 1]]; do top -d0.5 -b -n2 | grep edb-postgres | awk '{ SUM

+= $9} END { print SUM / 2 }'; done

61.8

76.4

72.6

69.55

64.55

79.95

68.55

71.25

74.85

62

74.85

76.9

72.4

65.9

74.9

68.25

By contrast, if three sessions are processing where two sessions remain in resgrp_b, but

the third session does not belong to any resource group, the top command shows the

following output.

$ top

top - 17:24:55 up 5:03, 7 users, load average: 1.00, 0.41, 0.38

Tasks: 199 total, 3 running, 196 sleeping, 0 stopped, 0 zombie

Cpu(s): 99.7%us, 0.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0

Mem: 1025624k total, 797692k used, 227932k free, 24724k buffers

Swap: 103420k total, 13404k used, 90016k free, 374068k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

29023 enterpri 20 0 195m 4744 3248 R 58.6 0.5 2:53.75 edb-postgres

28915 enterpri 20 0 195m 5900 4212 S 18.9 0.6 7:58.45 edb-postgres

29857 enterpri 20 0 195m 4820 3324 S 18.9 0.5 3:14.85 edb-postgres

 1033 root 20 0 174m 81m 2960 S 1.7 8.2 4:26.50 Xorg

 3040 user 20 0 278m 22m 14m S 1.0 2.2 4:21.20 knotify4

The second and third edb-postgres processes belonging to the resource group where

the CPU usage is limited to 40%, have a total CPU usage of 37.8. However, the first

edb-postgres process has a 58.6% CPU usage as it is not within a resource group, and

basically utilizes the remaining, available CPU resources on the system.

Likewise, the following output shows the sum of all three sessions is around 95% since

one of the sessions has no set limit on its CPU usage.

$ while [[1 -eq 1]]; do top -d0.5 -b -n2 | grep edb-postgres | awk '{ SUM

+= $9} END { print SUM / 2 }'; done

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

222

96

90.35

92.55

96.4

94.1

90.7

95.7

95.45

93.65

87.95

96.75

94.25

95.45

97.35

92.9

96.05

96.25

94.95

 .

 .

 .

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

223

5.3 Dirty Buffer Throttling

Writing to shared buffers is controlled by setting the dirty_rate_limit resource type

parameter.

Set the dirty_rate_limit parameter to the number of kilobytes per second for the

combined rate at which all the processes in the group should write to or “dirty” the shared

buffers. An example setting would be 3072 kilobytes per seconds.

The valid range of the dirty_rate_limit parameter is 0 to 1.67772e+07. A setting of

0 means no dirty rate limit has been set for the resource group.

EDB Resource Manager utilizes dirty buffer throttling to keep the aggregate, shared

buffer writing rate of all processes in the group near the limit specified by the

dirty_rate_limit parameter. A process in the group may be interrupted and put into

sleep mode for a short interval of time to maintain the defined limit. When and how such

interruptions occur is defined by a proprietary algorithm used by EDB Resource

Manager.

5.3.1 Setting the Dirty Rate Limit for a Resource Group

The ALTER RESOURCE GROUP command with the SET dirty_rate_limit clause is

used to set the dirty rate limit for a resource group.

In the following example the dirty rate limit is set to 12288 kilobytes per second for

resgrp_a, 6144 kilobytes per second for resgrp_b and 3072 kilobytes per second for

resgrp_c. This means that the combined writing rate to the shared buffer of all

processes assigned to resgrp_a is maintained at approximately 12288 kilobytes per

second. Similarly, for all processes in resgrp_b, the combined writing rate to the shared

buffer is kept to approximately 6144 kilobytes per second, etc.

edb=# ALTER RESOURCE GROUP resgrp_a SET dirty_rate_limit TO 12288;

ALTER RESOURCE GROUP

edb=# ALTER RESOURCE GROUP resgrp_b SET dirty_rate_limit TO 6144;

ALTER RESOURCE GROUP

edb=# ALTER RESOURCE GROUP resgrp_c SET dirty_rate_limit TO 3072;

ALTER RESOURCE GROUP

The following query shows the settings of dirty_rate_limit in the catalog.

edb=# SELECT rgrpname, rgrpdirtyratelimit FROM edb_resource_group;

 rgrpname | rgrpdirtyratelimit

----------+--------------------

 resgrp_a | 12288

 resgrp_b | 6144

 resgrp_c | 3072

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

224

(3 rows)

Changing the dirty_rate_limit of a resource group not only affects new processes

that are assigned to the group, but any currently running processes that are members of

the group are immediately affected by the change. That is, if the dirty_rate_limit is

changed from 12288 to 3072, currently running processes in the group would be throttled

downward so that the aggregate group dirty rate would be near 3072 kilobytes per second

instead of 12288 kilobytes per second.

To illustrate the effect of setting the dirty rate limit for resource groups, the following

examples use the following table for intensive I/O operations.

CREATE TABLE t1 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);

The FILLFACTOR = 10 clause results in INSERT commands packing rows up to only

10% per page. This results in a larger sampling of dirty shared blocks for the purpose of

these examples.

The pg_stat_statements module is used to display the number of shared buffer

blocks that are dirtied by a SQL command and the amount of time the command took to

execute. This provides the information to calculate the actual kilobytes per second

writing rate for the SQL command, and thus compare it to the dirty rate limit set for a

resource group.

In order to use the pg_stat_statements module, perform the following steps.

Step 1: In the postgresql.conf file, add $libdir/pg_stat_statements to the

shared_preload_libraries configuration parameter as shown by the following.

shared_preload_libraries = '$libdir/dbms_pipe,$libdir/edb_gen,$libdir/pg_stat_statements'

Step 2: Restart the database server.

Step 3: Use the CREATE EXTENSION command to complete the creation of the

pg_stat_statements module.

edb=# CREATE EXTENSION pg_stat_statements SCHEMA public;

CREATE EXTENSION

The pg_stat_statements_reset() function is used to clear out the

pg_stat_statements view for clarity of each example.

The resource groups with the dirty rate limit settings shown in the previous query are

used in these examples.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

225

5.3.2 Example – Single Process in a Single Group

The following sequence of commands shows the creation of table t1. The current process

is set to use resource group resgrp_b. The pg_stat_statements view is cleared out

by running the pg_stat_statements_reset() function.

Finally, the INSERT command generates a series of integers from 1 to 10,000 to populate

the table, and dirty approximately 10,000 blocks.

edb=# CREATE TABLE t1 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);

CREATE TABLE

edb=# SET edb_resource_group TO resgrp_b;

SET

edb=# SHOW edb_resource_group;

 edb_resource_group

 resgrp_b

(1 row)

edb=# SELECT pg_stat_statements_reset();

 pg_stat_statements_reset

(1 row)

edb=# INSERT INTO t1 VALUES (generate_series (1,10000), 'aaa');

INSERT 0 10000

The following shows the results from the INSERT command.

edb=# SELECT query, rows, total_time, shared_blks_dirtied FROM

pg_stat_statements;

-[RECORD 1]-------+--

 query | INSERT INTO t1 VALUES (generate_series (?,?), ?);

 rows | 10000

 total_time | 13496.184

 shared_blks_dirtied | 10003

The actual dirty rate is calculated as follows.

 The number of blocks dirtied per millisecond (ms) is 10003 blocks / 13496.184

ms, which yields 0.74117247 blocks per millisecond.

 Multiply the result by 1000 to give the number of shared blocks dirtied per second

(1 second = 1000 ms), which yields 741.17247 blocks per second.

 Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1

block = 8.192 kilobytes), which yields approximately 6072 kilobytes per second.

Note that the actual dirty rate of 6072 kilobytes per second is close to the dirty rate limit

for the resource group, which is 6144 kilobytes per second.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

226

By contrast, if the steps are repeated again without the process belonging to any resource

group, the dirty buffer rate is much higher.

edb=# CREATE TABLE t1 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);

CREATE TABLE

edb=# SHOW edb_resource_group;

 edb_resource_group

(1 row)

edb=# SELECT pg_stat_statements_reset();

 pg_stat_statements_reset

(1 row)

edb=# INSERT INTO t1 VALUES (generate_series (1,10000), 'aaa');

INSERT 0 10000

The following shows the results from the INSERT command without the usage of a

resource group.

edb=# SELECT query, rows, total_time, shared_blks_dirtied FROM

pg_stat_statements;

-[RECORD 1]-------+--

 query | INSERT INTO t1 VALUES (generate_series (?,?), ?);

 rows | 10000

 total_time | 2432.165

 shared_blks_dirtied | 10003

First, note the total time was only 2432.165 milliseconds as compared to 13496.184

milliseconds when a resource group with a dirty rate limit set to 6144 kilobytes per

second was used.

The actual dirty rate without the use of a resource group is calculated as follows.

 The number of blocks dirtied per millisecond (ms) is 10003 blocks / 2432.165 ms,

which yields 4.112797 blocks per millisecond.

 Multiply the result by 1000 to give the number of shared blocks dirtied per second

(1 second = 1000 ms), which yields 4112.797 blocks per second.

 Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1

block = 8.192 kilobytes), which yields approximately 33692 kilobytes per second.

Note that the actual dirty rate of 33692 kilobytes per second is significantly higher than

when the resource group with a dirty rate limit of 6144 kilobytes per second was used.

5.3.3 Example – Multiple Processes in a Single Group

As stated previously, the dirty rate limit applies to the aggregate of all processes in the

resource group. This concept is illustrated in the following example.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

227

For this example the inserts are performed simultaneously on two different tables in two

separate psql sessions, each of which has been added to resource group resgrp_b that

has a dirty_rate_limit set to 6144 kilobytes per second.

Session 1:

edb=# CREATE TABLE t1 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);

CREATE TABLE

edb=# SET edb_resource_group TO resgrp_b;

SET

edb=# SHOW edb_resource_group;

 edb_resource_group

 resgrp_b

(1 row)

edb=# INSERT INTO t1 VALUES (generate_series (1,10000), 'aaa');

INSERT 0 10000

Session 2:

edb=# CREATE TABLE t2 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);

CREATE TABLE

edb=# SET edb_resource_group TO resgrp_b;

SET

edb=# SHOW edb_resource_group;

 edb_resource_group

 resgrp_b

(1 row)

edb=# SELECT pg_stat_statements_reset();

 pg_stat_statements_reset

(1 row)

edb=# INSERT INTO t2 VALUES (generate_series (1,10000), 'aaa');

INSERT 0 10000

Note: The INSERT commands in session 1 and session 2 were started after the SELECT

pg_stat_statements_reset() command in session 2 was run.

The following shows the results from the INSERT commands in the two sessions.

RECORD 3 shows the results from session 1. RECORD 2 shows the results from session 2.

edb=# SELECT query, rows, total_time, shared_blks_dirtied FROM

pg_stat_statements;

-[RECORD 1]-------+--

 query | SELECT pg_stat_statements_reset();

 rows | 1

 total_time | 0.43

 shared_blks_dirtied | 0

-[RECORD 2]-------+--

 query | INSERT INTO t2 VALUES (generate_series (?,?), ?);

 rows | 10000

 total_time | 30591.551

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

228

 shared_blks_dirtied | 10003

-[RECORD 3]-------+--

 query | INSERT INTO t1 VALUES (generate_series (?,?), ?);

 rows | 10000

 total_time | 33215.334

 shared_blks_dirtied | 10003

First, note the total time was 33215.334 milliseconds for session 1 and 30591.551

milliseconds for session 2. When only one session was active in the same resource group

as shown in the first example, the time was 13496.184 milliseconds. Thus more active

processes in the resource group result in a slower dirty rate for each active process in the

group. This is shown in the following calculations.

The actual dirty rate for session 1 is calculated as follows.

 The number of blocks dirtied per millisecond (ms) is 10003 blocks / 33215.334

ms, which yields 0.30115609 blocks per millisecond.

 Multiply the result by 1000 to give the number of shared blocks dirtied per second

(1 second = 1000 ms), which yields 301.15609 blocks per second.

 Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1

block = 8.192 kilobytes), which yields approximately 2467 kilobytes per second.

The actual dirty rate for session 2 is calculated as follows.

 The number of blocks dirtied per millisecond (ms) is 10003 blocks / 30591.551

ms, which yields 0.32698571 blocks per millisecond.

 Multiply the result by 1000 to give the number of shared blocks dirtied per second

(1 second = 1000 ms), which yields 326.98571 blocks per second.

 Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1

block = 8.192 kilobytes), which yields approximately 2679 kilobytes per second.

The combined dirty rate from session 1 (2467 kilobytes per second) and from session 2

(2679 kilobytes per second) yields 5146 kilobytes per second, which is below the set

dirty rate limit of the resource group (6144 kilobytes per seconds).

5.3.4 Example – Multiple Processes in Multiple Groups

In this example, two additional psql sessions are used along with the previous two

sessions. The third and fourth sessions perform the same INSERT command in resource

group resgrp_c with a dirty_rate_limit of 3072 kilobytes per second.

Sessions 1 and 2 are repeated as illustrated in the prior example using resource group

resgrp_b. with a dirty_rate_limit of 6144 kilobytes per second.

Session 3:

edb=# CREATE TABLE t3 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

229

CREATE TABLE

edb=# SET edb_resource_group TO resgrp_c;

SET

edb=# SHOW edb_resource_group;

 edb_resource_group

resgrp_c

(1 row)

edb=# INSERT INTO t3 VALUES (generate_series (1,10000), 'aaa');

INSERT 0 10000

Session 4:

edb=# CREATE TABLE t4 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);

CREATE TABLE

edb=# SET edb_resource_group TO resgrp_c;

SET

edb=# SHOW edb_resource_group;

 edb_resource_group

 resgrp_c

(1 row)

edb=# SELECT pg_stat_statements_reset();

 pg_stat_statements_reset

(1 row)

edb=# INSERT INTO t4 VALUES (generate_series (1,10000), 'aaa');

INSERT 0 10000

Note: The INSERT commands in all four sessions were started after the SELECT

pg_stat_statements_reset() command in session 4 was run.

The following shows the results from the INSERT commands in the four sessions.

RECORD 3 shows the results from session 1. RECORD 2 shows the results from session 2.

RECORD 4 shows the results from session 3. RECORD 5 shows the results from session 4.

edb=# SELECT query, rows, total_time, shared_blks_dirtied FROM

pg_stat_statements;

-[RECORD 1]-------+--

 query | SELECT pg_stat_statements_reset();

 rows | 1

 total_time | 0.467

 shared_blks_dirtied | 0

-[RECORD 2]-------+--

 query | INSERT INTO t2 VALUES (generate_series (?,?), ?);

 rows | 10000

 total_time | 31343.458

 shared_blks_dirtied | 10003

-[RECORD 3]-------+--

 query | INSERT INTO t1 VALUES (generate_series (?,?), ?);

 rows | 10000

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

230

 total_time | 28407.435

 shared_blks_dirtied | 10003

-[RECORD 4]-------+--

 query | INSERT INTO t3 VALUES (generate_series (?,?), ?);

 rows | 10000

 total_time | 52727.846

 shared_blks_dirtied | 10003

-[RECORD 5]-------+--

 query | INSERT INTO t4 VALUES (generate_series (?,?), ?);

 rows | 10000

 total_time | 56063.697

 shared_blks_dirtied | 10003

First note that the times of session 1 (28407.435) and session 2 (31343.458) are close to

each other as they are both in the same resource group with dirty_rate_limit set to

6144, as compared to the times of session 3 (52727.846) and session 4 (56063.697),

which are in the resource group with dirty_rate_limit set to 3072. The latter group

has a slower dirty rate limit so the expected processing time is longer as is the case for

sessions 3 and 4.

The actual dirty rate for session 1 is calculated as follows.

 The number of blocks dirtied per millisecond (ms) is 10003 blocks / 28407.435

ms, which yields 0.35212612 blocks per millisecond.

 Multiply the result by 1000 to give the number of shared blocks dirtied per second

(1 second = 1000 ms), which yields 352.12612 blocks per second.

 Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1

block = 8.192 kilobytes), which yields approximately 2885 kilobytes per second.

The actual dirty rate for session 2 is calculated as follows.

 The number of blocks dirtied per millisecond (ms) is 10003 blocks / 31343.458

ms, which yields 0.31914156 blocks per millisecond.

 Multiply the result by 1000 to give the number of shared blocks dirtied per second

(1 second = 1000 ms), which yields 319.14156 blocks per second.

 Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1

block = 8.192 kilobytes), which yields approximately 2614 kilobytes per second.

The combined dirty rate from session 1 (2885 kilobytes per second) and from session 2

(2614 kilobytes per second) yields 5499 kilobytes per second, which is near the set dirty

rate limit of the resource group (6144 kilobytes per seconds).

The actual dirty rate for session 3 is calculated as follows.

 The number of blocks dirtied per millisecond (ms) is 10003 blocks / 52727.846

ms, which yields 0.18971001 blocks per millisecond.

 Multiply the result by 1000 to give the number of shared blocks dirtied per second

(1 second = 1000 ms), which yields 189.71001 blocks per second.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

231

 Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1

block = 8.192 kilobytes), which yields approximately 1554 kilobytes per second.

The actual dirty rate for session 4 is calculated as follows.

 The number of blocks dirtied per millisecond (ms) is 10003 blocks / 56063.697

ms, which yields 0.17842205 blocks per millisecond.

 Multiply the result by 1000 to give the number of shared blocks dirtied per second

(1 second = 1000 ms), which yields 178.42205 blocks per second.

 Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1

block = 8.192 kilobytes), which yields approximately 1462 kilobytes per second.

The combined dirty rate from session 3 (1554 kilobytes per second) and from session 4

(1462 kilobytes per second) yields 3016 kilobytes per second, which is near the set dirty

rate limit of the resource group (3072 kilobytes per seconds).

Thus, this demonstrates how EDB Resource Manager keeps the aggregate dirty rate of

the active processes in its groups close to the dirty rate limit set for each group.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

232

5.4 System Catalogs

This section describes the system catalogs that store the resource group information used

by EDB Resource Manager.

5.4.1 edb_all_resource_groups

The following table lists the information available in the edb_all_resource_groups

catalog:

Column Type Description
 group_name name The name of the resource group.
 active_processes integer Number of currently active processes in the

resource group.
 cpu_rate_limit float8 Maximum CPU rate limit for the resource

group. 0 means no limit.
 per_process_cpu_rate_limit float8 Maximum CPU rate limit per currently active

process in the resource group.
 dirty_rate_limit float8 Maximum dirty rate limit for a resource

group. 0 means no limit.
 per_process_dirty_rate_limit float8 Maximum dirty rate limit per currently active

process in the resource group.

5.4.2 edb_resource_group

The following table lists the information available in the edb_resource_group

catalog:

Column Type Description
 rgrpname name The name of the resource group.
 rgrpcpuratelimit float8 Maximum CPU rate limit for a resource

group. 0 means no limit.
 rgrpdirtyratelimit float8 Maximum dirty rate limit for a resource group.

0 means no limit.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

233

6 libpq C Library

libpq is the C application programmer’s interface to Advanced Server. libpq is a set of

library functions that allow client programs to pass queries to the Advanced Server and to

receive the results of these queries.

libpq is also the underlying engine for several other EnterpriseDB application interfaces

including those written for C++, Perl, Python, Tcl and ECPG. So some aspects of libpq’s

behavior will be important to the user if one of those packages is used.

Client programs that use libpq must include the header file libpq-fe.h and must link

with the libpq library.

6.1 Using libpq with EnterpriseDB SPL

The EnterpriseDB SPL language can be used with the libpq interface library, providing

support for:

 Procedures, functions, packages

 Prepared statements

 REFCURSORs

 Static cursors

 structs and typedefs

 Arrays

 DML and DDL operations

 IN/OUT/IN OUT parameters

6.2 REFCURSOR Support

In earlier releases, Advanced Server provided support for REFCURSORs through the

following libpq functions; these functions should now be considered deprecated:

 PQCursorResult()

 PQgetCursorResult()

 PQnCursor()

You may now use PQexec() and PQgetvalue() to retrieve a REFCURSOR returned by

an SPL (or PL/pgSQL) function. A REFCURSOR is returned in the form of a null-

terminated string indicating the name of the cursor. Once you have the name of the

cursor, you can execute one or more FETCH statements to retrieve the values exposed

through the cursor.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

234

Please note that the samples that follow do not include error-handling code that would be

required in a real-world client application.

Returning a Single REFCURSOR

The following example shows an SPL function that returns a value of type REFCURSOR:

CREATE OR REPLACE FUNCTION getEmployees(p_deptno NUMERIC)

RETURN REFCURSOR AS

 result REFCURSOR;

BEGIN

 OPEN result FOR SELECT * FROM emp WHERE deptno = p_deptno;

 RETURN result;

END;

This function expects a single parameter, p_deptno, and returns a REFCURSOR that

holds the result set for the SELECT query shown in the OPEN statement. The OPEN

statement executes the query and stores the result set in a cursor. The server constructs a

name for that cursor and stores the name in a variable (named result). The function

then returns the name of the cursor to the caller.

To call this function from a C client using libpq, you can use PQexec() and

PQgetvalue():

#include <stdio.h>

#include <stdlib.h>

#include "libpq-fe.h"

static void fetchAllRows(PGconn *conn,

 const char *cursorName,

 const char *description);

static void fail(PGconn *conn, const char *msg);

int

main(int argc, char *argv[])

{

 PGconn *conn = PQconnectdb(argv[1]);

 PGresult *result;

 if (PQstatus(conn) != CONNECTION_OK)

 fail(conn, PQerrorMessage(conn));

 result = PQexec(conn, "BEGIN TRANSACTION");

 if (PQresultStatus(result) != PGRES_COMMAND_OK)

 fail(conn, PQerrorMessage(conn));

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

235

 PQclear(result);

 result = PQexec(conn, "SELECT * FROM getEmployees(10)");

 if (PQresultStatus(result) != PGRES_TUPLES_OK)

 fail(conn, PQerrorMessage(conn));

 fetchAllRows(conn, PQgetvalue(result, 0, 0), "employees");

 PQclear(result);

 PQexec(conn, "COMMIT");

 PQfinish(conn);

 exit(0);

}

static void

fetchAllRows(PGconn *conn,

 const char *cursorName,

 const char *description)

{

 size_t commandLength = strlen("FETCH ALL FROM ") +
 strlen(cursorName) + 3;

 char *commandText = malloc(commandLength);

 PGresult *result;

 int row;

 sprintf(commandText, "FETCH ALL FROM \"%s\"", cursorName);

 result = PQexec(conn, commandText);

 if (PQresultStatus(result) != PGRES_TUPLES_OK)

 fail(conn, PQerrorMessage(conn));

 printf("-- %s --\n", description);

 for (row = 0; row < PQntuples(result); row++)

 {

 const char *delimiter = "\t";

 int col;

 for (col = 0; col < PQnfields(result); col++)

 {

 printf("%s%s", delimiter, PQgetvalue(result, row, col));
 delimiter = ",";

 }

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

236

 printf("\n");

 }

 PQclear(result);

 free(commandText);

}

static void

fail(PGconn *conn, const char *msg)

{

 fprintf(stderr, "%s\n", msg);

 if (conn != NULL)

 PQfinish(conn);

 exit(-1);

}

The code sample contains a line of code that calls the getEmployees() function, and

returns a result set that contains all of the employees in department 10:

result = PQexec(conn, "SELECT * FROM getEmployees(10)");

The PQexec() function returns a result set handle to the C program. The result set will

contain exactly one value; that value is the name of the cursor as returned by

getEmployees().

Once you have the name of the cursor, you can use the SQL FETCH statement to retrieve

the rows in that cursor. The function fetchAllRows() builds a FETCH ALL statement,

executes that statement, and then prints the result set of the FETCH ALL statement.

The output of this program is shown below:

-- employees --

 7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10

 7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10

 7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

Returning Multiple REFCURSORs

The next example returns two REFCURSORs:

 The first REFCURSOR contains the name of a cursor (employees) that contains

all employees who work in a department within the range specified by the caller.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

237

 The second REFCURSOR contains the name of a cursor (departments) that

contains all of the departments in the range specified by the caller.

In this example, instead of returning a single REFCURSOR, the function returns a SETOF

REFCURSOR (which means 0 or more REFCURSORS). One other important difference is

that the libpq program should not expect a single REFCURSOR in the result set, but should

expect two rows, each of which will contain a single value (the first row contains the

name of the employees cursor, and the second row contains the name of the

departments cursor).

CREATE OR REPLACE FUNCTION getEmpsAndDepts(p_min NUMERIC,

 p_max NUMERIC)

RETURN SETOF REFCURSOR AS

 employees REFCURSOR;

 departments REFCURSOR;

BEGIN

 OPEN employees FOR

 SELECT * FROM emp WHERE deptno BETWEEN p_min AND p_max;

 RETURN NEXT employees;

 OPEN departments FOR

 SELECT * FROM dept WHERE deptno BETWEEN p_min AND p_max;

 RETURN NEXT departments;

END;

As in the previous example, you can use PQexec() and PQgetvalue() to call the SPL

function:

#include <stdio.h>

#include <stdlib.h>

#include "libpq-fe.h"

static void fetchAllRows(PGconn *conn,

 const char *cursorName,

 const char *description);

static void fail(PGconn *conn, const char *msg);

int

main(int argc, char *argv[])

{

 PGconn *conn = PQconnectdb(argv[1]);

 PGresult *result;

 if (PQstatus(conn) != CONNECTION_OK)

 fail(conn, PQerrorMessage(conn));

 result = PQexec(conn, "BEGIN TRANSACTION");

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

238

 if (PQresultStatus(result) != PGRES_COMMAND_OK)

 fail(conn, PQerrorMessage(conn));

 PQclear(result);

 result = PQexec(conn, "SELECT * FROM getEmpsAndDepts(20, 30)");

 if (PQresultStatus(result) != PGRES_TUPLES_OK)

 fail(conn, PQerrorMessage(conn));

 fetchAllRows(conn, PQgetvalue(result, 0, 0), "employees");

 fetchAllRows(conn, PQgetvalue(result, 1, 0), "departments");

 PQclear(result);

 PQexec(conn, "COMMIT");

 PQfinish(conn);

 exit(0);

}

static void

fetchAllRows(PGconn *conn,

 const char *cursorName,

 const char *description)

{

 size_t commandLength = strlen("FETCH ALL FROM ") +

 strlen(cursorName) + 3;

 char *commandText = malloc(commandLength);

 PGresult *result;

 int row;

 sprintf(commandText, "FETCH ALL FROM \"%s\"", cursorName);

 result = PQexec(conn, commandText);

 if (PQresultStatus(result) != PGRES_TUPLES_OK)

 fail(conn, PQerrorMessage(conn));

 printf("-- %s --\n", description);

 for (row = 0; row < PQntuples(result); row++)

 {

 const char *delimiter = "\t";

 int col;

 for (col = 0; col < PQnfields(result); col++)

 {

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

239

 printf("%s%s", delimiter, PQgetvalue(result, row, col));

 delimiter = ",";

 }

 printf("\n");

 }

 PQclear(result);

 free(commandText);

}

static void

fail(PGconn *conn, const char *msg)

{

 fprintf(stderr, "%s\n", msg);

 if (conn != NULL)

 PQfinish(conn);

 exit(-1);

}

If you call getEmpsAndDepts(20, 30), the server will return a cursor that contains all

employees who work in department 20 or 30, and a second cursor containing the

description of departments 20 and 30.

-- employees --

 7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20

 7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30

 7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30

 7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20

 7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30

 7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30

 7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20

 7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30

 7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20

 7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30

 7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20

-- departments --

 20,RESEARCH,DALLAS

 30,SALES,CHICAGO

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

240

6.3 Array Binding

Advanced Server's array binding functionality allows you to send an array of data across

the network in a single round-trip. When the back end receives the bulk data, it can use

the data to perform insert or update operations.

Perform bulk operations with a prepared statement; use the following function to prepare

the statement:

PGresult *PQprepare(PGconn *conn,

 const char *stmtName,

 const char *query,

 int nParams,

 const Oid *paramTypes);

Details of PQprepare() can be found in the prepared statement section.

The following functions can be used to perform bulk operations:

 PQBulkStart (see Section 6.3.1)

 PQexecBulk (see Section 6.3.2)

 PQBulkFinish (see Section 6.3.3)

 PQexecBulkPrepared (see Section 6.3.4)

6.3.1 PQBulkStart

PQBulkStart() initializes bulk operations on the server. You must call this function

before sending bulk data to the server. PQBulkStart() initializes the prepared

statement specified in stmtName to receive data in a format specified by paramFmts.

API Definition

PGresult * PQBulkStart(PGconn *conn,

 const char * Stmt_Name,

 unsigned int nCol,

 const int *paramFmts);

6.3.2 PQexecBulk

PQexecBulk() is used to supply data (paramValues) for a statement that was

previously initialized for bulk operation using PQBulkStart().

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

241

This function can be used more than once after PQBulkStart() to send multiple blocks

of data. See the example for more details.

API Definition

PGresult *PQexecBulk(PGconn *conn,

 unsigned int nRows,

 const char *const * paramValues,

 const int *paramLengths);

6.3.3 PQBulkFinish

This function completes the current bulk operation. You can use the prepared statement

again without re-preparing it.

API Definition

PGresult *PQBulkFinish(PGconn *conn);

6.3.4 PQexecBulkPrepared

Alternatively, you can use the PQexecBulkPrepared() function to perform a bulk

operation with a single function call. PQexecBulkPrepared() sends a request to

execute a prepared statement with the given parameters, and waits for the result. This

function combines the functionality of PQbulkStart(), PQexecBulk(), and

PQBulkFinish(). When using this function, you are not required to initialize or

terminate the bulk operation; this function starts the bulk operation, passes the data to the

server, and terminates the bulk operation.

Specify a previously prepared statement in the place of stmtName. Commands that will

be used repeatedly will be parsed and planned just once, rather than each time they are

executed.

API Definition

PGresult *PQexecBulkPrepared(PGconn *conn,

 const char *stmtName,

 unsigned int nCols,

 unsigned int nRows,

 const char *const *paramValues,

 const int *paramLengths,

 const int *paramFormats);

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

242

6.3.5 Example Code (Using PQBulkStart, PQexecBulk, PQBulkFinish)

The following example uses PGBulkStart, PQexecBulk, and PQBulkFinish.

void InsertDataUsingBulkStyle(PGconn *conn)

{

 PGresult *res;

 Oid paramTypes[2];

 char *paramVals[5][2];

 int paramLens[5][2];

 int paramFmts[2];

 int i;

 int a[5] = { 10, 20, 30, 40, 50 };

 char b[5][10] = { "Test_1", "Test_2", "Test_3", "Test_4",

"Test_5" };

 paramTypes[0] = 23;

 paramTypes[1] = 1043;

 res = PQprepare(conn, "stmt_1", "INSERT INTO testtable1 values($1, $2

)", 2, paramTypes);

 PQclear(res);

 paramFmts[0] = 1; /* Binary format */

 paramFmts[1] = 0;

 for(i = 0; i < 5; i++)

 {

 a[i] = htonl(a[i]);

 paramVals[i][0] = &(a[i]);

 paramVals[i][1] = b[i];

 paramLens[i][0] = 4;

 paramLens[i][1] = strlen(b[i]);

 }

 res = PQBulkStart(conn, "stmt_1", 2, paramFmts);

 PQclear(res);

 printf("< -- PQBulkStart -- >\n");

 res = PQexecBulk(conn, 5, (const char *const *)paramVals, (const int

*)paramLens);

 PQclear(res);

 printf("< -- PQexecBulk -- >\n");

 res = PQexecBulk(conn, 5, (const char *const *)paramVals, (const int

*)paramLens);

 PQclear(res);

 printf("< -- PQexecBulk -- >\n");

 res = PQBulkFinish(conn);

 PQclear(res);

 printf("< -- PQBulkFinish -- >\n");

}

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

243

6.3.6 Example Code (Using PQexecBulkPrepared)

The following example uses PQexecBulkPrepared.

void InsertDataUsingBulkStyleCombinedVersion(PGconn *conn)

{

 PGresult *res;

 Oid paramTypes[2];

 char *paramVals[5][2];

 int paramLens[5][2];

 int paramFmts[2];

 int i;

 int a[5] = { 10, 20, 30, 40, 50 };

 char b[5][10] = { "Test_1", "Test_2", "Test_3", "Test_4",

"Test_5" };

 paramTypes[0] = 23;

 paramTypes[1] = 1043;

 res = PQprepare(conn, "stmt_2", "INSERT INTO testtable1 values($1, $2

)", 2, paramTypes);

 PQclear(res);

 paramFmts[0] = 1; /* Binary format */

 paramFmts[1] = 0;

 for(i = 0; i < 5; i++)

 {

 a[i] = htonl(a[i]);

 paramVals[i][0] = &(a[i]);

 paramVals[i][1] = b[i];

 paramLens[i][0] = 4;

 paramLens[i][1] = strlen(b[i]);

 }

res = PQexecBulkPrepared(conn, "stmt_2", 2, 5, (const char *const

*)paramVals,(const int *)paramLens, (const int *)paramFmts);

 PQclear(res);

}

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

244

7 Debugger

The Debugger gives developers and DBAs the ability to test and debug server-side

programs using a graphical, dynamic environment. The types of programs that can be

debugged are SPL stored procedures, functions, triggers, and packages as well as

PL/pgSQL functions and triggers.

The Debugger is integrated with and invoked from pgAdmin 4. On Linux, the edb-

asxx-server-pldebugger RPM package where xx is the Advanced Server version

number, must be installed as well. Information about pgAdmin 4 is available at:

https://www.pgadmin.org/

There are two basic ways the Debugger can be used to test programs:

 Standalone Debugging. The Debugger is used to start the program to be tested.

You supply any input parameter values required by the program and you can

immediately observe and step through the code of the program. Standalone

debugging is the typical method used for new programs and for initial problem

investigation.

 In-Context Debugging. The program to be tested is initiated by an application

other than the Debugger. You first set a global breakpoint on the program to be

tested. The application that makes the first call to the program encounters the

global breakpoint. The application suspends execution at which point the

Debugger takes control of the called program. You can then observe and step

through the code of the called program as it runs within the context of the calling

application. After you have completely stepped through the code of the called

program in the Debugger, the suspended application resumes execution. In-

context debugging is useful if it is difficult to reproduce a problem using

standalone debugging due to complex interaction with the calling application.

The debugging tools and operations are the same whether using standalone or in-context

debugging. The difference is in how the program to be debugged is invoked.

The following sections discuss the features and functionality of the Debugger using the

standalone debugging method. The directions for starting the Debugger for in-context

debugging are discussed in Section 7.5.3.

https://www.pgadmin.org/

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

245

7.1 Configuring the Debugger

Before using the Debugger, edit the postgresql.conf file (located in the data

subdirectory of your Advanced Server home directory), adding

$libdir/plugin_debugger to the libraries listed in the

shared_preload_libraries configuration parameter:

shared_preload_libraries = '$libdir/dbms_pipe,$libdir/edb_gen,$libdir/plugin_debugger'

After modifying the shared_preload_libraries parameter, you must restart the

database server.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

246

7.2 Starting the Debugger

Use pgAdmin 4 to access the Debugger for standalone debugging. To open the

Debugger, highlight the name of the stored procedure or function you wish to debug in

the pgAdmin 4 Browser panel. Then, navigate through the Object menu to the

Debugging menu and select Debug from the submenu.

Figure 7.1 - Starting the Debugger from the Object menu

You can also right-click on the name of the stored procedure or function in the pgAdmin

4 Browser, and select Debugging, and the Debug from the context menu.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

247

Figure 7.2 - Starting the Debugger from the object’s context menu

Note that triggers cannot be debugged using standalone debugging. Triggers must be

debugged using in-context debugging. See Section 7.5.3 for information on setting a

global breakpoint for in-context debugging.

To debug a package, highlight the specific procedure or function under the package node

of the package you wish to debug and follow the same directions as for stored procedures

and functions.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

248

7.3 The Debugger Window

You can use the Debugger window to pass parameter values when you are standalone-

debugging a program that expects parameters. When you start the debugger, the

Debugger window opens automatically to display any IN or IN OUT parameters

expected by the program. If the program declares no IN or IN OUT parameters, the

Debugger window does not open.

Figure 7.3 - The Debugger window

Use the fields on the Debugger window to provide a value for each parameter:

 The Name field contains the formal parameter name.

 The Type field contains the parameter data type.

 Check the Null? checkbox to indicate that the parameter is a NULL value.

 Check the Expression? checkbox if the Value field contains an expression.

 The Value field contains the parameter value that will be passed to the program.

 Check the Use Default? checkbox to indicate that the program should use the

value in the Default Value field.

 The Default Value field contains the default value of the parameter.

Press the Tab key to select the next parameter in the list for data entry, or click on a

Value field to select the parameter for data entry.

If you are debugging a procedure or function that is a member of a package that has an

initialization section, check the Debug Package Initializer check box to instruct the

Debugger to step into the package initialization section, allowing you to debug the

initialization section code before debugging the procedure or function. If you do not

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

249

select the check box, the Debugger executes the package initialization section without

allowing you to see or step through the individual lines of code as they are executed.

After entering the desired parameter values, click the Debug button to start the debugging

process. Click the Cancel button to terminate the Debugger.

Note: The Debugger window does not open during in-context debugging. Instead, the

application calling the program to be debugged must supply any required input parameter

values.

When you have completed a full debugging cycle by stepping through the program code,

the Debugger window re-opens, allowing you to enter new parameter values and repeat

the debugging cycle, or end the debugging session.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

250

7.4 Main Debugger Window

The Main Debugger window contains two panels:

 The top Program Body panel displays the program source code.

 The bottom Tabs panel provides a set of tabs for different information.

Use the Tool Bar icons located at the top panel to access debugging functions.

Figure 7.4 - The Main Debugger window

The two panels are described in the following sections.

7.4.1 The Program Body Panel

The Program Body panel displays the source code of the program that is being

debugged.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

251

Figure 7.5 - The Program Body

Figure 7.5 shows that the Debugger is about to execute the SELECT statement. The blue

indicator in the program body highlights the next statement to execute.

7.4.2 The Tabs Panel

You can use the bottom Tabs panel to view or modify parameter values or local

variables, or to view messages generated by RAISE INFO and function results.

The following is the information displayed by the tabs in the panel:

 The Parameters tab displays the current parameter values.

 The Local variables tab displays the value of any variables declared within

the program.

 The Messages tab displays any results returned by the program as it executes.

 The Results tab displays program results (if applicable) such as the value from

the RETURN statement of a function.

 The Stack tab has functionality described in Section 7.4.3.

The following figures show the results from the various tabs.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

252

Figure 7.6 – The Parameters tab

Figure 7.7 – The Local variables tab

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

253

Figure 7.8 – The Messages tab

Figure 7.9 – The Results tab

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

254

7.4.3 The Stack Tab

The Stack tab displays a list of programs that are currently on the call stack (programs

that have been invoked, but which have not yet completed). When a program is called,

the name of the program is added to the top of the list displayed in the Stack tab. When

the program ends, its name is removed from the list.

The Stack tab also displays information about program calls. The information includes:

 The location of the call within the program

 The call arguments

 The name of the program being called

Reviewing the call stack can help you trace the course of execution through a series of

nested programs.

Figure 7.10 – A debugged program calling a subprogram

Figure 7.10 shows that emp_query_caller is about to call a subprogram named

emp_query. emp_query_caller is currently at the top of the call stack.

After the call to emp_query executes, emp_query is displayed at the top of the Stack

tab, and its code is displayed in the Program Body panel as shown in Figure 7.11.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

255

Figure 7.11 - Debugging the called subprogram

Upon completion of execution of the subprogram, control returns to the calling program

(emp_query_caller), now displayed at the top of the Stack tab as shown in Figure

7.12.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

256

Figure 7.12 – Control returns from debugged subprogram

7.5 Debugging a Program

You can perform the following operations to debug a program:

 Step through the program one line at a time

 Execute the program until you reach a breakpoint

 View and change local variable values within the program

7.5.1 Stepping Through the Code

Use the tool bar icons to step through a program with the Debugger:

Figure 7.13 - The Tool bar icons

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

257

The icons serve the following purposes:

 Step into. Click the Step into icon to execute the currently highlighted line of

code.

 Step over. Click the Step over icon to execute a line of code, stepping over any

sub-functions invoked by the code. The sub-function executes, but is not

debugged unless it contains a breakpoint.

 Continue/Start. Click the Continue/Start icon to execute the highlighted

code, and continue until the program encounters a breakpoint or completes.

 Stop. Click the Stop icon to halt the execution of a program.

7.5.2 Using Breakpoints

As the Debugger executes a program, it pauses whenever it reaches a breakpoint. When

the Debugger pauses, you can observe or change local variables, or navigate to an entry

in the call stack to observe variables or set other breakpoints. The next step into, step

over, or continue operation forces the debugger to resume execution with the next line of

code following the breakpoint. There are two types of breakpoints:

Local Breakpoint - A local breakpoint can be set at any executable line of code within a

program. The Debugger pauses execution when it reaches a line where a local breakpoint

has been set.

Global Breakpoint - A global breakpoint will trigger when any session reaches that

breakpoint. Set a global breakpoint if you want to perform in-context debugging of a

program. When a global breakpoint is set on a program, the debugging session that set

the global breakpoint waits until that program is invoked in another session. A global

breakpoint can only be set by a superuser.

To create a local breakpoint, left-click within the grey shaded margin to the left of the

line of code where you want the local breakpoint set. Where you click in the grey shaded

margin should be close to the right side of the margin as in the spot where the breakpoint

dot is shown on source code line 12 in Figure 7.14.

When created, the Debugger displays a dark dot in the margin, indicating a breakpoint

has been set at the selected line of code.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

258

Figure 7.14 - Set a breakpoint by clicking in left-hand margin

You can set as many local breakpoints as desired. Local breakpoints remain in effect for

the duration of a debugging session until they are removed.

Removing a Local Breakpoint

To remove a local breakpoint, left-click the mouse on the breakpoint dot in the grey

shaded margin of the Program Body panel. The dot disappears, indicating that the

breakpoint has been removed.

You can remove all of the breakpoints from the program that currently appears in the

Program Body frame by clicking the Clear all breakpoints icon.

Figure 7.15 – Clear all breakpoints icon

Note: When you perform any of the preceding actions, only the breakpoints in the

program that currently appears in the Program Body panel are removed. Breakpoints in

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

259

called subprograms or breakpoints in programs that call the program currently appearing

in the Program Body panel are not removed.

7.5.3 Setting a Global Breakpoint for In-Context Debugging

To set a global breakpoint for in-context debugging, highlight the stored procedure,

function, or trigger on which you wish to set the breakpoint in the Browser panel.

Navigate through the Object menu to select Debugging, and then Set Breakpoint.

Figure 7.16 - Setting a global breakpoint from the Object menu

Alternatively, you can right-click on the name of the stored procedure, function, or

trigger on which you wish to set a global breakpoint and select Debugging, then Set

Breakpoint from the context menu as shown by the following.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

260

Figure 7.17 - Setting a global breakpoint from the object's context menu

To set a global breakpoint on a trigger, expand the table node that contains the trigger,

highlight the specific trigger you wish to debug, and follow the same directions as for

stored procedures and functions.

To set a global breakpoint in a package, highlight the specific procedure or function

under the package node of the package you wish to debug and follow the same directions

as for stored procedures and functions.

After you choose Set Breakpoint, the Debugger window opens and waits for an

application to call the program to be debugged.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

261

Figure 7.18 - Waiting for invocation of program to be debugged

The PSQL client invokes the select_emp function (on which a global breakpoint has

been set).

$ psql edb enterprisedb

psql.bin (12.0.0, server 12.0.0)

Type "help" for help.

edb=# SELECT select_emp(7900);

The select_emp function does not complete until you step through the program in the

Debugger.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

262

Figure 7.19 - Program on which a global breakpoint has been set

You can now debug the program using any of the previously discussed operations such as

step into, step over, and continue, or set local breakpoints. When you have stepped

through execution of the program, the calling application (PSQL) regains control and the

select_emp function completes execution and its output is displayed.

$ psql edb enterprisedb

psql.bin (12.0.0, server 12.0.0)

Type "help" for help.

edb=# SELECT select_emp(7900);

INFO: Number : 7900

INFO: Name : JAMES

INFO: Hire Date : 12/03/1981

INFO: Salary : 950.00

INFO: Commission: 0.00

INFO: Department: SALES

 select_emp

(1 row)

At this point, you can end the Debugger session as shown in Section 7.5.4. If you do not

end the Debugger session, the next application that invokes the program will encounter

the global breakpoint and the debugging cycle will begin again.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

263

7.5.4 Exiting the Debugger

To end a Debugger session and exit the Debugger, click on the close icon (x) located in

the upper-right corner to close the tab.

Figure 7.20 - Exiting from the Debugger

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

264

8 Performance Analysis and Tuning

Advanced Server provides various tools for performance analysis and tuning. These

features are described in this section.

8.1 Dynatune

Advanced Server supports dynamic tuning of the database server to make the optimal

usage of the system resources available on the host machine on which it is installed. The

two parameters that control this functionality are located in the postgresql.conf file.

These parameters are:

 edb_dynatune

 edb_dynatune_profile

8.1.1 edb_dynatune

edb_dynatune determines how much of the host system's resources are to be used by

the database server based upon the host machine's total available resources and the

intended usage of the host machine.

When Advanced Server is initially installed, the edb_dynatune parameter is set in

accordance with the selected usage of the host machine on which it was installed - i.e.,

development machine, mixed use machine, or dedicated server. For most purposes, there

is no need for the database administrator to adjust the various configuration parameters in

the postgresql.conf file in order to improve performance.

You can change the value of the edb_dynatune parameter after the initial installation of

Advanced Server by editing the postgresql.conf file. The postmaster must be

restarted in order for the new configuration to take effect.

The edb_dynatune parameter can be set to any integer value between 0 and 100,

inclusive. A value of 0, turns off the dynamic tuning feature thereby leaving the database

server resource usage totally under the control of the other configuration parameters in

the postgresql.conf file.

A low non-zero, value (e.g., 1 - 33) dedicates the least amount of the host machine's

resources to the database server. This setting would be used for a development machine

where many other applications are being used.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

265

A value in the range of 34 - 66 dedicates a moderate amount of resources to the database

server. This setting might be used for a dedicated application server that may have a fixed

number of other applications running on the same machine as Advanced Server.

The highest values (e.g., 67 - 100) dedicate most of the server's resources to the database

server. This setting would be used for a host machine that is totally dedicated to running

Advanced Server.

Once a value of edb_dynatune is selected, database server performance can be further

fine-tuned by adjusting the other configuration parameters in the postgresql.conf

file. Any adjusted setting overrides the corresponding value chosen by edb_dynatune.

You can change the value of a parameter by un-commenting the configuration parameter,

specifying the desired value, and restarting the database server.

8.1.2 edb_dynatune_profile

The edb_dynatune_profile parameter is used to control tuning aspects based upon

the expected workload profile on the database server. This parameter takes effect upon

startup of the database server.

The possible values for edb_dynatune_profile are:

Value Usage

oltp
Recommended when the database server is processing heavy online transaction

processing workloads.
reporting Recommended for database servers used for heavy data reporting.

mixed
Recommended for servers that provide a mix of transaction processing and data

reporting.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

266

8.2 EDB Wait States

The EDB wait states contrib module contains two main components.

EDB Wait States Background Worker (EWSBW)

When the wait states background worker is registered as one of the shared preload

libraries, EWSBW probes each of the running sessions at regular intervals.

For every session it collects information such as the database to which it is connected, the

logged in user of the session, the query running in that session, and the wait events on

which it is waiting.

This information is saved in a set of files in a user-configurable path and directory folder

given by the edb_wait_states.directory parameter to be added to the

postgresql.conf file. The specified path must be a full, absolute path and not a

relative path.

The following describes the installation process on a Linux system.

Step 1: EDB wait states is installed with the edb-asxx-server-edb-modules RPM

package where xx is the Advanced Server version number.

Step 2: To launch the worker, it must be registered in the postgresql.conf file using

the shared_preload_libraries parameter, for example:

shared_preload_libraries = '$libdir/edb_wait_states'

Step 3: Restart the database server. After a successful restart, the background worker

begins collecting data.

Step 4: To review the data, create the following extension:

CREATE EXTENSION edb_wait_states;

Step 5: To terminate the EDB wait states worker, remove

$libdir/edb_wait_states from the shared_preload_libraries parameter and

restart the database server.

The following describes the installation process on a Windows system.

Step 1: EDB wait states module is installed with the EDB Modules installer by invoking

StackBuilder Plus utility. Follow the onscreen instructions to complete the installation of

the EDB Modules.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

267

Step 2: To register the worker, modify the postgresql.conf file to include the wait

states library in the shared_preload_libraries configuration parameter. The

parameter value must include:

shared_preload_libraries = '$libdir/edb_wait_states.dll'

The EDB wait states installation places the edb_wait_states.dll library file in the

following path:

C:\Program Files\edb\as12\lib\

Step 3: Restart the database server for the changes to take effect. After a successful

restart, the background worker gets started and starts collecting the data.

Step 4: To view the data, create the following extension:

CREATE EXTENSION edb_wait_states;

The installer places the edb_wait_states.control file in the following path:

C:\Program Files\edb\as12\share\extension

Terminating the Wait States Worker

To terminate the EDB wait states worker, use the DROP EXTENSION command to drop

the edb_wait_states extension; then modify the postgresql.conf file, removing

$libdir/edb_wait_states.dll from the shared_preload_libraries

parameter. Restart the database server after modifying the postgresql.conf file to apply

your changes.

The Wait States Interface

The interface includes the functions listed in the following sections. Each of these

functions has common input and output parameters. Those parameters are as follows:

 start_ts and end_ts (IN). Together these specify the time interval and the data

within which is to be read. If only start_ts is specified, the data starting from

start_ts is output. If only end_ts is provided, data up to end_ts is output. If

none of those are provided, all the data is output. Every function outputs different

data. The output of each function will be explained below.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

268

 query_id (OUT). Identifies a normalized query. It is internal hash code computed

from the query.

 session_id (OUT). Identifies a session.

 ref_start_ts and ref_end_ts (OUT). Provide the timestamps of a file containing

a particular data point. A data point may be a wait event sample record or a query

record or a session record.

The syntax of each function is given in the following sections.

Note: The examples shown in the following sections are based on the following three

queries executed on four different sessions connected to different databases using

different users, simultaneously:

SELECT schemaname FROM pg_tables, pg_sleep(15) WHERE schemaname <> 'pg_catalog'; /* ran on 2

sessions */

SELECT tablename FROM pg_tables, pg_sleep(10) WHERE schemaname <> 'pg_catalog';

SELECT tablename, schemaname FROM pg_tables, pg_sleep(10) WHERE schemaname <> 'pg_catalog';

8.2.1 edb_wait_states_data

This function is used to read the data collected by EWSBW.

edb_wait_states_data(

 IN start_ts timestamptz default '-infinity'::timestamptz,

 IN end_ts timestamptz default 'infinity'::timestamptz,

 OUT session_id int4,

 OUT dbname text,

 OUT username text,

 OUT query text,

 OUT query_start_time timestamptz,

 OUT sample_time timestamptz,

 OUT wait_event_type text,

 OUT wait_event text

)

This function can be used to find out the following:

The queries running in the given duration (defined by start_ts and end_ts) in all the

sessions, and the wait events, if any, they were waiting on. For example:

SELECT query, session_id, wait_event_type, wait_event

 FROM edb_wait_states_data(start_ts, end_ts);

The progress of a session within a given duration (that is, the queries run in a session

(session_id = 100000) and the wait events the queries waited on). For example:

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

269

SELECT query, wait_event_type, wait_event

 FROM edb_wait_states_data(start_ts, end_ts)

 WHERE session_id = 100000;

The duration for which the samples are available. For example:

SELECT min(sample_time), max(sample_time)

 FROM edb_wait_states_data();

Parameters

In addition to the common parameters described previously, each row of the output gives

the following:

dbname

The session's database

username

The session's logged in user

query

The query running in the session

query_start_time

The time when .the query started

sample_time

The time when wait event data was collected

wait_event_type

The type of wait event the session (backend) is waiting on

wait_event

The wait event the session (backend) is waiting on

Example

The following is a sample output from the edb_wait_states_data() function.

edb=# SELECT * FROM edb_wait_states_data();

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

270

-[RECORD 1]----+---

session_id | 4398

dbname | edb

username | enterprisedb

query | SELECT schemaname FROM pg_tables, pg_sleep($1) WHERE schemaname <> $2

query_start_time | 17-AUG-18 11:56:05.271962 -04:00

sample_time | 17-AUG-18 11:56:19.700236 -04:00

wait_event_type | Timeout

wait_event | PgSleep

-[RECORD 2]----+---

session_id | 4398

dbname | edb

username | enterprisedb

query | SELECT schemaname FROM pg_tables, pg_sleep($1) WHERE schemaname <> $2

query_start_time | 17-AUG-18 11:56:05.271962 -04:00

sample_time | 17-AUG-18 11:56:18.699938 -04:00

wait_event_type | Timeout

wait_event | PgSleep

-[RECORD 3]----+---

session_id | 4398

dbname | edb

username | enterprisedb

query | SELECT schemaname FROM pg_tables, pg_sleep($1) WHERE schemaname <> $2

query_start_time | 17-AUG-18 11:56:05.271962 -04:00

sample_time | 17-AUG-18 11:56:17.700253 -04:00

wait_event_type | Timeout

wait_event | PgSleep

 .

 .

 .

8.2.2 edb_wait_states_queries

This function gives information about the queries sampled by EWSBW.

edb_wait_states_queries(

 IN start_ts timestamptz default '-infinity'::timestamptz,

 IN end_ts timestamptz default 'infinity'::timestamptz,

 OUT query_id int8,

 OUT query text,

 OUT ref_start_ts timestamptz

 OUT ref_end_ts timestamptz

)

A new queries file is created periodically and thus, there can be multiple query files

generated corresponding to specific intervals.

This function returns all the queries in query files that overlap with the given time

interval. A query as shown below, gives all the queries in query files that contained

queries sampled between start_ts and end_ts.

In other words, the function may output queries that did not run in the given interval. To

exactly know that the user should use edb_wait_states_data().

SELECT query FROM edb_wait_states_queries(start_ts, end_ts);

Parameters

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

271

In addition to the common parameters described previously, each row of the output gives

the following:

query

Normalized query text

Example

The following is a sample output from the edb_wait_states_queries() function.

edb=# SELECT * FROM edb_wait_states_queries();

-[RECORD 1]+---

query_id | 4292540138852956818

query | SELECT schemaname FROM pg_tables, pg_sleep($1) WHERE schemaname <> $2

ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00

ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00

-[RECORD 2]+---

query_id | 3754591102365859187

query | SELECT tablename FROM pg_tables, pg_sleep($1) WHERE schemaname <> $2

ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00

ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00

-[RECORD 3]+---

query_id | 349089096300352897

query | SELECT tablename, schemaname FROM pg_tables, pg_sleep($1) WHERE schemaname <>

$2

ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00

ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00

8.2.3 edb_wait_states_sessions

This function gives information about the sessions sampled by EWSBW.

edb_wait_states_sessions(

 IN start_ts timestamptz default '-infinity'::timestamptz,

 IN end_ts timestamptz default 'infinity'::timestamptz,

 OUT session_id int4,

 OUT dbname text,

 OUT username text,

 OUT ref_start_ts timestamptz

 OUT ref_end_ts timestamptz

)

This function can be used to identify the databases that were connected and/or which

users started those sessions. For example:

SELECT dbname, username, session_id

 FROM edb_wait_states_sessions();

Similar to edb_wait_states_queries(), this function outputs all the sessions logged

in session files that contain sessions sampled within the given interval and not necessarily

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

272

only the sessions sampled within the given interval. To identify that one should use

edb_wait_states_data().

Parameters

In addition to the common parameters described previously, each row of the output gives

the following:

dbname

The database to which the session is connected

username

Login user of the session

Example

The following is a sample output from the edb_wait_states_sessions() function.

edb=# SELECT * FROM edb_wait_states_sessions();

-[RECORD 1]+---------------------------------

session_id | 4340

dbname | edb

username | enterprisedb

ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00

ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00

-[RECORD 2]+---------------------------------

session_id | 4398

dbname | edb

username | enterprisedb

ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00

ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00

-[RECORD 3]+---------------------------------

session_id | 4410

dbname | db1

username | user1

ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00

ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00

-[RECORD 4]+---------------------------------

session_id | 4422

dbname | db2

username | user2

ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00

ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00

8.2.4 edb_wait_states_samples

This function gives information about wait events sampled by EWSBW.

edb_wait_states_samples(

 IN start_ts timestamptz default '-infinity'::timestamptz,

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

273

 IN end_ts timestamptz default 'infinity'::timestamptz,

 OUT query_id int8,

 OUT session_id int4,

 OUT query_start_time timestamptz,

 OUT sample_time timestamptz,

 OUT wait_event_type text,

 OUT wait_event text

)

Usually, a user would not be required to call this function directly.

Parameters

In addition to the common parameters described previously, each row of the output gives

the following:

query_start_time

The time when the query started in this session

sample_time

The time when wait event data was collected

wait_event_type

The type of wait event on which the session is waiting

wait_event

The wait event on which the session (backend) is waiting

Example

The following is a sample output from the edb_wait_states_samples() function.

edb=# SELECT * FROM edb_wait_states_samples();

-[RECORD 1]----+---------------------------------

query_id | 4292540138852956818

session_id | 4340

query_start_time | 17-AUG-18 11:56:00.39421 -04:00

sample_time | 17-AUG-18 11:56:00.699934 -04:00

wait_event_type | Timeout

wait_event | PgSleep

-[RECORD 2]----+---------------------------------

query_id | 4292540138852956818

session_id | 4340

query_start_time | 17-AUG-18 11:56:00.39421 -04:00

sample_time | 17-AUG-18 11:56:01.699003 -04:00

wait_event_type | Timeout

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

274

wait_event | PgSleep

-[RECORD 3]----+---------------------------------

query_id | 4292540138852956818

session_id | 4340

query_start_time | 17-AUG-18 11:56:00.39421 -04:00

sample_time | 17-AUG-18 11:56:02.70001 -04:00

wait_event_type | Timeout

wait_event | PgSleep

-[RECORD 4]----+---------------------------------

query_id | 4292540138852956818

session_id | 4340

query_start_time | 17-AUG-18 11:56:00.39421 -04:00

sample_time | 17-AUG-18 11:56:03.700081 -04:00

wait_event_type | Timeout

wait_event | PgSleep

 .

 .

 .

8.2.5 edb_wait_states_purge

The function deletes all the sampled data files (queries, sessions and wait event samples)

that were created after start_ts and aged (rotated) before end_ts.

edb_wait_states_purge(

 IN start_ts timestamptz default '-infinity'::timestamptz,

 IN end_ts timestamptz default 'infinity'::timestamptz

)

Usually a user does not need to run this function. The backend should purge those

according to the retention age, but in case, that doesn't happen for some reason, this

function may be used.

In order to know the duration for which the samples have been retained, use

edb_wait_states_data() as explained in the previous examples of that function.

Example

The $PGDATA/edb_wait_states directory before running

edb_wait_states_purge():

[root@localhost data]# pwd

/var/lib/edb/as12/data

[root@localhost data]# ls -l edb_wait_states

total 12

-rw------- 1 enterprisedb ... 253 Aug 17 11:56 edb_ws_queries_587836358698793_587922758698793

-rw------- 1 enterprisedb ... 1600 Aug 17 11:56 edb_ws_samples_587836358698793_587839958698793

-rw------- 1 enterprisedb ... 94 Aug 17 11:56

edb_ws_sessions_587836358698793_587922758698793

The $PGDATA/edb_wait_states directory after running

edb_wait_states_purge():

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

275

edb=# SELECT * FROM edb_wait_states_purge();

 edb_wait_states_purge

(1 row)

[root@localhost data]# pwd

/var/lib/edb/as12/data

[root@localhost data]# ls -l edb_wait_states

total 0

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

276

9 EDB Clone Schema

EDB Clone Schema is an extension module for Advanced Server that allows you to copy

a schema and its database objects from a local or remote database (the source database) to

a receiving database (the target database).

The source and target databases can be the same physical database, or different databases

within the same database cluster, or separate databases running under different database

clusters on separate database server hosts.

Use the following functions with EDB Clone Schema:

 localcopyschema. This function makes a copy of a schema and its database

objects from a source database back into the same database (the target), but with a

different schema name than the original. Use this function when the original

source schema and the resulting copy are to reside within the same database. See

Section 9.2.1 for information on the localcopyschema function.

 localcopyschema_nb. This function performs the same purpose as

localcopyschema, but as a background job, thus freeing up the terminal from

which the function was initiated. This is referred to as a non-blocking function.

See Section 9.2.2 for information on the localcopyschema_nb function.

 remotecopyschema. This function makes a copy of a schema and its database

objects from a source database to a different target database. Use this function

when the original source schema and the resulting copy are to reside in two,

separate databases. The separate databases can reside in the same, or in different

Advanced Server database clusters. See Section 9.2.3 for information on the

remotecopyschema function.

 remotecopyschema_nb. This function performs the same purpose as

remotecopyschema, but as a background job, thus freeing up the terminal from

which the function was initiated. This is referred to as a non-blocking function.

See Section 9.2.4 for information on the remotecopyschema_nb function.

 process_status_from_log. This function displays the status of the cloning

functions. The information is obtained from a log file that must be specified when

a cloning function is invoked. See Section 9.2.5 for information on the

process_status_from_log function.

 remove_log_file_and_job. This function deletes the log file created by a cloning

function. This function can also be used to delete a job created by the non-

blocking form of the function. See Section 9.2.6 for information on the

remove_log_file_and_job function.

The database objects that can be cloned from one schema to another are the following:

 Data types

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

277

 Tables including partitioned tables, but not foreign tables

 Indexes.

 Constraints

 Sequences

 View definitions

 Materialized views

 Private synonyms

 Table triggers, but not event triggers

 Rules

 Functions

 Procedures

 Packages

 Comments for all supported object types

 Access control lists (ACLs) for all supported object types

The following database objects cannot cloned:

 Large objects (Postgres LOBs and BFILEs)

 Logical replication attributes for a table

 Database links

 Foreign data wrappers

 Foreign tables

 Event triggers

 Extensions (For cloning objects that rely on extensions, see the third bullet point

in the following limitations list.)

 Row level security

 Policies

 Operator class

In addition, the following limitations apply:

 EDB Clone Schema is supported on Advanced Server only when a dialect of

Compatible with Oracle is specified on the Advanced Server Dialect

dialog during installation, or when the --redwood-like keywords are included

during a text mode installation or cluster initialization.

 The source code within functions, procedures, triggers, packages, etc., are not

modified after being copied to the target schema. If such programs contain coded

references to objects with schema names, the programs may fail upon invocation

in the target schema if such schema names are no longer consistent within the

target schema.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

278

 Cross schema object dependencies are not resolved. If an object in the target

schema depends upon an object in another schema, this dependency is not

resolved by the cloning functions.

 For remote cloning, if an object in the source schema is dependent upon an

extension, then this extension must be created in the public schema of the

remote database before invoking the remote cloning function.

 At most, 16 copy jobs can run in parallel to clone schemas, whereas each job can

have at most 16 worker processes to copy table data in parallel.

 Queries being run by background workers cannot be cancelled.

The following section describes how to set up EDB Clone Schema on the databases.

9.1 Setup Process

Several extensions along with the PL/Perl language must be installed on any database to

be used as the source or target database by an EDB Clone Schema function.

In addition, some configuration parameters in the postgresql.conf file of the

database servers may benefit from some modification.

The following is the setup instructions for these requirements.

9.1.1 Installing Extensions and PL/Perl

The following describes the steps to install the required extensions and the PL/Perl

language.

These steps must be performed on any database to be used as the source or target

database by an EDB Clone Schema function.

Step 1: The following extensions must be installed on the database:

 postgres_fdw

 dblink

 adminpack

 pgagent

Ensure that pgAgent is installed before creating the pgagent extension. On Linux, you

can use the edb-asxx-pgagent RPM package where xx is the Advanced Server

version number to install pgAgent. On Windows, use StackBuilder Plus to download and

install pgAgent.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

279

The previously listed extensions can be installed by the following commands if they do

not already exist:

CREATE EXTENSION postgres_fdw SCHEMA public;

CREATE EXTENSION dblink SCHEMA public;

CREATE EXTENSION adminpack;

CREATE EXTENSION pgagent;

For more information about using the CREATE EXTENSION command, see the

PostgreSQL core documentation at:

https://www.postgresql.org/docs/12/static/sql-createextension.html

Step 2: Modify the postgresql.conf file.

Modify the postgresql.conf file by adding $libdir/parallel_clone to the

shared_preload_libraries configuration parameter as shown by the following

example:

shared_preload_libraries = '$libdir/dbms_pipe,$libdir/dbms_aq,$libdir/parallel_clone'

Step 3: The Perl Procedural Language (PL/Perl) must be installed on the database and the

CREATE TRUSTED LANGUAGE plperl command must be run. For Linux, install

PL/Perl using the edb-asxx-server-plperl RPM package where xx is the Advanced

Server version number. For Windows, use the EDB Postgres Language Pack. For

information on EDB Language Pack, see the EDB Postgres Language Pack Guide

available at:

https://www.enterprisedb.com/edb-docs

Step 4: Connect to the database as a superuser and run the following command:

CREATE TRUSTED LANGUAGE plperl;

For more information about using the CREATE LANGUAGE command, see the

PostgreSQL core documentation at:

https://www.postgresql.org/docs/12/static/sql-createlanguage.html

9.1.2 Setting Configuration Parameters

The following sections describe certain configuration parameters that may need to be

altered in the postgresql.conf file.

https://www.postgresql.org/docs/12/static/sql-createextension.html
https://www.enterprisedb.com/resources/product-documentation
https://www.postgresql.org/docs/12/static/sql-createlanguage.html

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

280

9.1.2.1 Performance Configuration Parameters

You may need to tune the system for copying a large schema as part of one transaction.

Tuning of configuration parameters is for the source database server referenced in a

cloning function.

The configuration parameters in the postgresql.conf file that may need to be tuned

include the following:

 work_mem. Specifies the amount of memory to be used by internal sort

operations and hash tables before writing to temporary disk files.

 maintenance_work_mem. Specifies the maximum amount of memory to be used

by maintenance operations, such as VACUUM, CREATE INDEX, and ALTER

TABLE ADD FOREIGN KEY.

 max_worker_processes. Sets the maximum number of background processes

that the system can support.

 checkpoint_timeout. Maximum time between automatic WAL checkpoints, in

seconds.

 checkpoint_completion_target. Specifies the target of checkpoint completion, as

a fraction of total time between checkpoints.

 checkpoint_flush_after. Whenever more than checkpoint_flush_after

bytes have been written while performing a checkpoint, attempt to force the OS

to issue these writes to the underlying storage.

 max_wal_size. Maximum size to let the WAL grow to between automatic WAL

checkpoints.

 max_locks_per_transaction. This parameter controls the average number of

object locks allocated for each transaction; individual transactions can lock more

objects as long as the locks of all transactions fit in the lock table.

For information about the configuration parameters, see the PostgreSQL core

documentation at:

https://www.postgresql.org/docs/12/static/runtime-config.html

9.1.2.2 Status Logging

Status logging by the cloning functions creates log files in the directory specified by the

log_directory parameter in the postgresql.conf file for the database server to

which you are connected when invoking the cloning function.

The default location is PGDATA/log as shown by the following:

https://www.postgresql.org/docs/12/static/runtime-config.html

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

281

#log_directory = 'log' # directory where log files are written,

 # can be absolute or relative to PGDATA

This directory must exist prior to running a cloning function.

The name of the log file is determined by what you specify in the parameter list when

invoking the cloning function.

To display the status from a log file, use the process_status_from_log function as

described in Section 9.2.5.

To delete a log file, use the remove_log_file_and_job function as described in

Section 9.2.6, or simply navigate to the log directory and delete it manually.

9.1.3 Installing EDB Clone Schema

The following are the directions for installing EDB Clone Schema.

These steps must be performed on any database to be used as the source or target

database by an EDB Clone Schema function.

Step 1: If you had previously installed an older version of the edb_cloneschema

extension, then you must run the following command:

DROP EXTENSION parallel_clone CASCADE;

This command also drops the edb_cloneschema extension.

Step 2: Install the extensions using the following commands:

CREATE EXTENSION parallel_clone SCHEMA public;

CREATE EXTENSION edb_cloneschema;

Make sure you create the parallel_clone extension before creating the

edb_cloneschema extension.

9.1.4 Creating the Foreign Servers and User Mappings

When using one of the local cloning functions, localcopyschema or

localcopyschema_nb, one of the required parameters includes a single, foreign server

for identifying the database server along with its database that is the source and the

receiver of the cloned schema.

When using one of the remote cloning functions, remotecopyschema or

remotecopyschema_nb, two of the required parameters include two foreign servers.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

282

The foreign server specified as the first parameter identifies the source database server

along with its database that is the provider of the cloned schema. The foreign server

specified as the second parameter identifies the target database server along with its

database that is the receiver of the cloned schema.

For each foreign server, a user mapping must be created. When a selected database

superuser invokes a cloning function, that database superuser who invokes the function

must have been mapped to a database user name and password that has access to the

foreign server that is specified as a parameter in the cloning function.

For general information about foreign data, foreign servers, and user mappings, see the

PostgreSQL core documentation at:

https://www.postgresql.org/docs/12/static/ddl-foreign-data.html

The following two sections describe how these foreign servers and user mappings are

defined.

9.1.4.1 Foreign Server and User Mapping for Local Cloning Functions

For the localcopyschema and localcopyschema_nb functions, the source and target

schemas are both within the same database of the same database server. Thus, only one

foreign server must be defined and specified for these functions. This foreign server is

also referred to as the local server.

This server is referred to as the local server because this server is the one to which you

must be connected when invoking the localcopyschema or localcopyschema_nb

function.

The user mapping defines the connection and authentication information for the foreign

server.

This foreign server and user mapping must be created within the database of the

local server in which the cloning is to occur.

The database user for whom the user mapping is defined must be a superuser and

the user connected to the local server when invoking an EDB Clone Schema

function.

The following example creates the foreign server for the database containing the schema

to be cloned, and to receive the cloned schema as well.

CREATE SERVER local_server FOREIGN DATA WRAPPER postgres_fdw

 OPTIONS(

 host 'localhost',

https://www.postgresql.org/docs/12/static/ddl-foreign-data.html

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

283

 port '5444',

 dbname 'edb'

);

For more information about using the CREATE SERVER command, see the PostgreSQL

core documentation at:

https://www.postgresql.org/docs/12/static/sql-createserver.html

The user mapping for this server is the following:

CREATE USER MAPPING FOR enterprisedb SERVER local_server

 OPTIONS (

 user 'enterprisedb',

 password 'password'

);

For more information about using the CREATE USER MAPPING command, see the

PostgreSQL core documentation at:

https://www.postgresql.org/docs/12/static/sql-createusermapping.html

The following psql commands show the foreign server and user mapping:

edb=# \des+

List of foreign servers

-[RECORD 1]--------+--

Name | local_server

Owner | enterprisedb

Foreign-data wrapper | postgres_fdw

Access privileges |

Type |

Version |

FDW options | (host 'localhost', port '5444', dbname 'edb')

Description |

edb=# \deu+

 List of user mappings

 Server | User name | FDW options

--------------+--------------+--

 local_server | enterprisedb | ("user" 'enterprisedb', password 'password')

(1 row)

When database superuser enterprisedb invokes a cloning function, the database user

enterprisedb with its password is used to connect to local_server on the

localhost with port 5444 to database edb.

In this case, the mapped database user, enterprisedb, and the database user,

enterprisedb, used to connect to the local edb database happen to be the same,

identical database user, but that is not an absolute requirement.

https://www.postgresql.org/docs/12/static/sql-createserver.html
https://www.postgresql.org/docs/12/static/sql-createusermapping.html

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

284

For specific usage of these foreign server and user mapping examples, see the example

given in Section 9.2.1.

9.1.4.2 Foreign Server and User Mapping for Remote Cloning

Functions

For the remotecopyschema and remotecopyschema_nb functions, the source and

target schemas are in different databases of either the same or different database servers.

Thus, two foreign servers must be defined and specified for these functions.

The foreign server defining the originating database server and its database containing the

source schema to be cloned is referred to as the source server or the remote server.

The foreign server defining the database server and its database to receive the schema to

be cloned is referred to as the target server or the local server.

The target server is also referred to as the local server because this server is the one to

which you must be connected when invoking the remotecopyschema or

remotecopyschema_nb function.

The user mappings define the connection and authentication information for the foreign

servers.

All of these foreign servers and user mappings must be created within the target

database of the target/local server.

The database user for whom the user mappings are defined must be a superuser

and the user connected to the local server when invoking an EDB Clone Schema

function.

The following example creates the foreign server for the local, target database that is to

receive the cloned schema.

CREATE SERVER tgt_server FOREIGN DATA WRAPPER postgres_fdw

 OPTIONS(

 host 'localhost',

 port '5444',

 dbname 'tgtdb'

);

The user mapping for this server is the following:

CREATE USER MAPPING FOR enterprisedb SERVER tgt_server

 OPTIONS (

 user 'tgtuser',

 password 'tgtpassword'

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

285

);

The following example creates the foreign server for the remote, source database that is

to be the source for the cloned schema.

CREATE SERVER src_server FOREIGN DATA WRAPPER postgres_fdw

 OPTIONS(

 host '192.168.2.28',

 port '5444',

 dbname 'srcdb'

);

The user mapping for this server is the following:

CREATE USER MAPPING FOR enterprisedb SERVER src_server

 OPTIONS (

 user 'srcuser',

 password 'srcpassword'

);

The following psql commands show the foreign servers and user mappings:

tgtdb=# \des+

List of foreign servers

-[RECORD 1]--------+---

Name | src_server

Owner | tgtuser

Foreign-data wrapper | postgres_fdw

Access privileges |

Type |

Version |

FDW options | (host '192.168.2.28', port '5444', dbname 'srcdb')

Description |

-[RECORD 2]--------+---

Name | tgt_server

Owner | tgtuser

Foreign-data wrapper | postgres_fdw

Access privileges |

Type |

Version |

FDW options | (host 'localhost', port '5444', dbname 'tgtdb')

Description |

tgtdb=# \deu+

 List of user mappings

 Server | User name | FDW options

------------+--------------+--

 src_server | enterprisedb | ("user" 'srcuser', password 'srcpassword')

 tgt_server | enterprisedb | ("user" 'tgtuser', password 'tgtpassword')

(2 rows)

When database superuser enterprisedb invokes a cloning function, the database user

tgtuser with password tgtpassword is used to connect to tgt_server on the

localhost with port 5444 to database tgtdb.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

286

In addition, database user srcuser with password srcpassword connects to

src_server on host 192.168.2.28 with port 5444 to database srcdb.

Note: Be sure the pg_hba.conf file of the database server running the source database

srcdb has an appropriate entry permitting connection from the target server location

(address 192.168.2.27 in the following example) connecting with the database user

srcuser that was included in the user mapping for the foreign server src_server

defining the source server and database.

TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only

local all all md5

IPv4 local connections:

host srcdb srcuser 192.168.2.27/32 md5

For specific usage of these foreign server and user mapping examples, see the example

given in Section 9.2.3.

9.2 EDB Clone Schema Functions

The EDB Clone Schema functions are created in the edb_util schema when the

parallel_clone and edb_cloneschema extensions are installed.

Verify the following conditions before using an EDB Clone Schema function:

 You are connected to the target or local database as the database superuser

defined in the CREATE USER MAPPING command for the foreign server of the

target or local database. See Section 9.1.4.1 for information on the user mapping

for the localcopyschema or localcopyschema_nb function. See Section

9.1.4.2 for information on the user mapping for the remotecopyschema or

remotecopyschema_nb function.

 The edb_util schema is in the search path, or the cloning function is to be

invoked with the edb_util prefix.

 The target schema does not exist in the target database.

 When using the remote copy functions, if the on_tblspace parameter is to be

set to true, then the target database cluster contains all tablespaces that are

referenced by objects in the source schema, otherwise creation of the DDL

statements for those database objects will fail in the target schema. This causes a

failure of the cloning process.

 When using the remote copy functions, if the copy_acls parameter is to be set

to true, then all roles that have GRANT privileges on objects in the source schema

exist in the target database cluster, otherwise granting of privileges to those roles

will fail in the target schema. This causes a failure of the cloning process.

 pgAgent is running against the target database if the non-blocking form of the

function is to be used.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

287

For information about pgAgent, see the following section of the pgAdmin documentation

available at:

https://www.pgadmin.org/docs/pgadmin4/dev/pgagent.html

Note that pgAgent is provided as a component with Advanced Server.

9.2.1 localcopyschema

The localcopyschema function copies a schema and its database objects within a local

database specified within the source_fdw foreign server from the source schema to the

specified target schema within the same database.

localcopyschema(

 source_fdw TEXT,

 source_schema TEXT,

 target_schema TEXT,

 log_filename TEXT

 [, on_tblspace BOOLEAN

 [, verbose_on BOOLEAN

 [, copy_acls BOOLEAN

 [, worker_count INTEGER]]]]

)

A BOOLEAN value is returned by the function. If the function succeeds, then true is

returned. If the function fails, then false is returned.

The source_fdw, source_schema, target_schema, and log_filename are

required parameters while all other parameters are optional.

Parameters

source_fdw

Name of the foreign server managed by the postgres_fdw foreign data wrapper

from which database objects are to be cloned.

source_schema

Name of the schema from which database objects are to be cloned.

target_schema

Name of the schema into which database objects are to be cloned from the source

schema.

https://www.pgadmin.org/docs/pgadmin4/dev/pgagent.html

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

288

log_filename

Name of the log file in which information from the function is recorded. The log

file is created under the directory specified by the log_directory configuration

parameter in the postgresql.conf file.

on_tblspace

BOOLEAN value to specify whether or not database objects are to be created within

their tablespaces. If false is specified, then the TABLESPACE clause is not

included in the applicable CREATE DDL statement when added to the target

schema. If true is specified, then the TABLESPACE clause is included in the

CREATE DDL statement when added to the target schema. If the on_tblspace

parameter is omitted, the default value is false.

verbose_on

BOOLEAN value to specify whether or not the DDLs are to be printed in

log_filename when creating objects in the target schema. If false is

specified, then DDLs are not printed. If true is specified, then DDLs are printed.

If omitted, the default value is false.

copy_acls

BOOLEAN value to specify whether or not the access control list (ACL) is to be

included while creating objects in the target schema. The access control list is the

set of GRANT privilege statements. If false is specified, then the access control

list is not included for the target schema. If true is specified, then the access

control list is included for the target schema. If the copy_acls parameter is

omitted, the default value is false.

worker_count

Number of background workers to perform the clone in parallel. If omitted, the

default value is 1.

Example

The following example shows the cloning of schema edb containing a set of database

objects to target schema edbcopy, both within database edb as defined by

local_server.

The example is for the following environment:

 Host on which the database server is running: localhost

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

289

 Port of the database server: 5444

 Database source/target of the clone: edb

 Foreign server (local_server) and user mapping (see Section 9.1.4.1) with the

information of the preceding bullet points

 Source schema: edb

 Target schema: edbcopy

 Database superuser to invoke localcopyschema: enterprisedb

Before invoking the function, the connection is made by database user enterprisedb

to database edb.

edb=# SET search_path TO "$user",public,edb_util;

SET

edb=# SHOW search_path;

 search_path

 "$user", public, edb_util

(1 row)

edb=# SELECT localcopyschema ('local_server','edb','edbcopy','clone_edb_edbcopy');

 localcopyschema

 t

(1 row)

The following displays the logging status using the process_status_from_log

function:

edb=# SELECT process_status_from_log('clone_edb_edbcopy');

 process_status_from_log

--

--

 (FINISH,"2017-06-29 11:07:36.830783-04",3855,INFO,"STAGE: FINAL","successfully cloned

schema")

(1 row)

After the clone has completed, the following shows some of the database objects copied

to the edbcopy schema:

edb=# SET search_path TO edbcopy;

SET

edb=# \dt+

 List of relations

 Schema | Name | Type | Owner | Size | Description

---------+---------+-------+--------------+------------+-------------

 edbcopy | dept | table | enterprisedb | 8192 bytes |

 edbcopy | emp | table | enterprisedb | 8192 bytes |

 edbcopy | jobhist | table | enterprisedb | 8192 bytes |

(3 rows)

edb=# \dv

 List of relations

 Schema | Name | Type | Owner

---------+----------+------+--------------

 edbcopy | salesemp | view | enterprisedb

(1 row)

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

290

edb=# \di

 List of relations

 Schema | Name | Type | Owner | Table

---------+---------------+-------+--------------+---------

 edbcopy | dept_dname_uq | index | enterprisedb | dept

 edbcopy | dept_pk | index | enterprisedb | dept

 edbcopy | emp_pk | index | enterprisedb | emp

 edbcopy | jobhist_pk | index | enterprisedb | jobhist

(4 rows)

edb=# \ds

 List of relations

 Schema | Name | Type | Owner

---------+------------+----------+--------------

 edbcopy | next_empno | sequence | enterprisedb

(1 row)

edb=# SELECT DISTINCT schema_name, name, type FROM user_source WHERE

schema_name = 'EDBCOPY' ORDER BY type, name;

 schema_name | name | type

-------------+--------------------------------+--------------

 EDBCOPY | EMP_COMP | FUNCTION

 EDBCOPY | HIRE_CLERK | FUNCTION

 EDBCOPY | HIRE_SALESMAN | FUNCTION

 EDBCOPY | NEW_EMPNO | FUNCTION

 EDBCOPY | EMP_ADMIN | PACKAGE

 EDBCOPY | EMP_ADMIN | PACKAGE BODY

 EDBCOPY | EMP_QUERY | PROCEDURE

 EDBCOPY | EMP_QUERY_CALLER | PROCEDURE

 EDBCOPY | LIST_EMP | PROCEDURE

 EDBCOPY | SELECT_EMP | PROCEDURE

 EDBCOPY | EMP_SAL_TRIG | TRIGGER

 EDBCOPY | "RI_ConstraintTrigger_a_19991" | TRIGGER

 EDBCOPY | "RI_ConstraintTrigger_a_19992" | TRIGGER

 EDBCOPY | "RI_ConstraintTrigger_a_19999" | TRIGGER

 EDBCOPY | "RI_ConstraintTrigger_a_20000" | TRIGGER

 EDBCOPY | "RI_ConstraintTrigger_a_20004" | TRIGGER

 EDBCOPY | "RI_ConstraintTrigger_a_20005" | TRIGGER

 EDBCOPY | "RI_ConstraintTrigger_c_19993" | TRIGGER

 EDBCOPY | "RI_ConstraintTrigger_c_19994" | TRIGGER

 EDBCOPY | "RI_ConstraintTrigger_c_20001" | TRIGGER

 EDBCOPY | "RI_ConstraintTrigger_c_20002" | TRIGGER

 EDBCOPY | "RI_ConstraintTrigger_c_20006" | TRIGGER

 EDBCOPY | "RI_ConstraintTrigger_c_20007" | TRIGGER

 EDBCOPY | USER_AUDIT_TRIG | TRIGGER

(24 rows)

9.2.2 localcopyschema_nb

The localcopyschema_nb function copies a schema and its database objects within a

local database specified within the source_fdw foreign server from the source schema

to the specified target schema within the same database, but in a non-blocking manner as

a job submitted to pgAgent.

localcopyschema_nb(

 source_fdw TEXT,

 source TEXT,

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

291

 target TEXT,

 log_filename TEXT

 [, on_tblspace BOOLEAN

 [, verbose_on BOOLEAN

 [, copy_acls BOOLEAN

 [, worker_count INTEGER]]]]

)

An INTEGER value job ID is returned by the function for the job submitted to pgAgent. If

the function fails, then null is returned.

The source_fdw, source, target, and log_filename are required parameters while

all other parameters are optional.

After completion of the pgAgent job, remove the job with the

remove_log_file_and_job function (see Section 9.2.6).

Parameters

source_fdw

Name of the foreign server managed by the postgres_fdw foreign data wrapper

from which database objects are to be cloned.

source

Name of the schema from which database objects are to be cloned.

target

Name of the schema into which database objects are to be cloned from the source

schema.

log_filename

Name of the log file in which information from the function is recorded. The log

file is created under the directory specified by the log_directory configuration

parameter in the postgresql.conf file.

on_tblspace

BOOLEAN value to specify whether or not database objects are to be created within

their tablespaces. If false is specified, then the TABLESPACE clause is not

included in the applicable CREATE DDL statement when added to the target

schema. If true is specified, then the TABLESPACE clause is included in the

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

292

CREATE DDL statement when added to the target schema. If the on_tblspace

parameter is omitted, the default value is false.

verbose_on

BOOLEAN value to specify whether or not the DDLs are to be printed in

log_filename when creating objects in the target schema. If false is

specified, then DDLs are not printed. If true is specified, then DDLs are printed.

If omitted, the default value is false.

copy_acls

BOOLEAN value to specify whether or not the access control list (ACL) is to be

included while creating objects in the target schema. The access control list is the

set of GRANT privilege statements. If false is specified, then the access control

list is not included for the target schema. If true is specified, then the access

control list is included for the target schema. If the copy_acls parameter is

omitted, the default value is false.

worker_count

Number of background workers to perform the clone in parallel. If omitted, the

default value is 1.

Example

The same cloning operation is performed as the example in Section 9.2.1, but using the

non-blocking function localcopyschema_nb.

The following command can be used to observe if pgAgent is running on the appropriate

local database:

[root@localhost ~]# ps -ef | grep pgagent

root 4518 1 0 11:35 pts/1 00:00:00 pgagent -s /tmp/pgagent_edb_log

hostaddr=127.0.0.1 port=5444 dbname=edb user=enterprisedb password=password

root 4525 4399 0 11:35 pts/1 00:00:00 grep --color=auto pgagent

If pgAgent is not running, it can be started as shown by the following. The pgagent

program file is located in the bin subdirectory of the Advanced Server installation

directory.

[root@localhost bin]# ./pgagent -l 2 -s /tmp/pgagent_edb_log hostaddr=127.0.0.1 port=5444

dbname=edb user=enterprisedb password=password

Note: the pgagent -l 2 option starts pgAgent in DEBUG mode, which logs continuous

debugging information into the log file specified with the -s option. Use a lower value

for the -l option, or omit it entirely to record less information.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

293

The localcopyschema_nb function returns the job ID shown as 4 in the example.

edb=# SELECT edb_util.localcopyschema_nb ('local_server','edb','edbcopy','clone_edb_edbcopy');

 localcopyschema_nb

 4

(1 row)

The following displays the job status:

edb=# SELECT edb_util.process_status_from_log('clone_edb_edbcopy');

 process_status_from_log

--

 (FINISH,"29-JUN-17 11:39:11.620093 -04:00",4618,INFO,"STAGE: FINAL","successfully cloned

schema")

(1 row)

The following removes the pgAgent job:

edb=# SELECT edb_util.remove_log_file_and_job (4);

 remove_log_file_and_job

 t

(1 row)

9.2.3 remotecopyschema

The remotecopyschema function copies a schema and its database objects from a

source schema in the remote source database specified within the source_fdw foreign

server to a target schema in the local target database specified within the target_fdw

foreign server.

remotecopyschema(

 source_fdw TEXT,

 target_fdw TEXT,

 source_schema TEXT,

 target_schema TEXT,

 log_filename TEXT

 [, on_tblspace BOOLEAN

 [, verbose_on BOOLEAN

 [, copy_acls BOOLEAN

 [, worker_count INTEGER]]]]

)

A BOOLEAN value is returned by the function. If the function succeeds, then true is

returned. If the function fails, then false is returned.

The source_fdw, target_fdw, source_schema, target_schema, and

log_filename are required parameters while all other parameters are optional.

Parameters

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

294

source_fdw

Name of the foreign server managed by the postgres_fdw foreign data wrapper

from which database objects are to be cloned.

target_fdw

Name of the foreign server managed by the postgres_fdw foreign data wrapper

to which database objects are to be cloned.

source_schema

Name of the schema from which database objects are to be cloned.

target_schema

Name of the schema into which database objects are to be cloned from the source

schema.

log_filename

Name of the log file in which information from the function is recorded. The log

file is created under the directory specified by the log_directory configuration

parameter in the postgresql.conf file.

on_tblspace

BOOLEAN value to specify whether or not database objects are to be created within

their tablespaces. If false is specified, then the TABLESPACE clause is not

included in the applicable CREATE DDL statement when added to the target

schema. If true is specified, then the TABLESPACE clause is included in the

CREATE DDL statement when added to the target schema. If the on_tblspace

parameter is omitted, the default value is false.

Note: If true is specified and a database object has a TABLESPACE clause, but

that tablespace does not exist in the target database cluster, then the cloning

function fails.

verbose_on

BOOLEAN value to specify whether or not the DDLs are to be printed in

log_filename when creating objects in the target schema. If false is

specified, then DDLs are not printed. If true is specified, then DDLs are printed.

If omitted, the default value is false.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

295

copy_acls

BOOLEAN value to specify whether or not the access control list (ACL) is to be

included while creating objects in the target schema. The access control list is the

set of GRANT privilege statements. If false is specified, then the access control

list is not included for the target schema. If true is specified, then the access

control list is included for the target schema. If the copy_acls parameter is

omitted, the default value is false.

Note: If true is specified and a role with GRANT privilege does not exist in the

target database cluster, then the cloning function fails.

worker_count

Number of background workers to perform the clone in parallel. If omitted, the

default value is 1.

Example

The following example shows the cloning of schema srcschema within database srcdb

as defined by src_server to target schema tgtschema within database tgtdb as

defined by tgt_server.

The source server environment:

 Host on which the source database server is running: 192.168.2.28

 Port of the source database server: 5444

 Database source of the clone: srcdb

 Foreign server (src_server) and user mapping (see Section 9.1.4.2) with the

information of the preceding bullet points

 Source schema: srcschema

The target server environment:

 Host on which the target database server is running: localhost

 Port of the target database server: 5444

 Database target of the clone: tgtdb

 Foreign server (tgt_server) and user mapping (see Section 9.1.4.2) with the

information of the preceding bullet points

 Target schema: tgtschema

 Database superuser to invoke remotecopyschema: enterprisedb

Before invoking the function, the connection is made by database user enterprisedb

to database tgtdb. A worker_count of 4 is specified for this function.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

296

tgtdb=# SELECT edb_util.remotecopyschema

('src_server','tgt_server','srcschema','tgtschema','clone_rmt_src_tgt',worker_count => 4);

 remotecopyschema

 t

(1 row)

The following displays the status from the log file during various points in the cloning

process:

tgtdb=# SELECT edb_util.process_status_from_log('clone_rmt_src_tgt');

 process_status_from_log

--

 (RUNNING,"28-JUN-17 13:18:05.299953 -04:00",4021,INFO,"STAGE: DATA-COPY","[0][0] successfully

copied data in [tgtschema.pgbench_tellers]

")

(1 row)

tgtdb=# SELECT edb_util.process_status_from_log('clone_rmt_src_tgt');

 process_status_from_log

--

 (RUNNING,"28-JUN-17 13:18:06.634364 -04:00",4022,INFO,"STAGE: DATA-COPY","[0][1] successfully

copied data in [tgtschema.pgbench_history]

")

(1 row)

tgtdb=# SELECT edb_util.process_status_from_log('clone_rmt_src_tgt');

 process_status_from_log

--

--

 (RUNNING,"28-JUN-17 13:18:10.550393 -04:00",4039,INFO,"STAGE: POST-DATA","CREATE PRIMARY KEY

CONSTRAINT pgbench_tellers_pkey successful"

)

(1 row)

tgtdb=# SELECT edb_util.process_status_from_log('clone_rmt_src_tgt');

 process_status_from_log

--

 (FINISH,"28-JUN-17 13:18:12.019627 -04:00",4039,INFO,"STAGE: FINAL","successfully clone

schema into tgtschema")

(1 row)

The following shows the cloned tables:

tgtdb=# \dt+

 List of relations

 Schema | Name | Type | Owner | Size | Description

-----------+------------------+-------+--------------+------------+-------------

 tgtschema | pgbench_accounts | table | enterprisedb | 256 MB |

 tgtschema | pgbench_branches | table | enterprisedb | 8192 bytes |

 tgtschema | pgbench_history | table | enterprisedb | 25 MB |

 tgtschema | pgbench_tellers | table | enterprisedb | 16 kB |

(4 rows)

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

297

When the remotecopyschema function was invoked, four background workers were

specified.

The following portion of the log file clone_rmt_src_tgt shows the status of the

parallel data copying operation using four background workers:

Wed Jun 28 13:18:05.232949 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0] table count [4]

Wed Jun 28 13:18:05.233321 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0][0] worker started to

copy data

Wed Jun 28 13:18:05.233640 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0][1] worker started to

copy data

Wed Jun 28 13:18:05.233919 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0][2] worker started to

copy data

Wed Jun 28 13:18:05.234231 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0][3] worker started to

copy data

Wed Jun 28 13:18:05.298174 2017 EDT: [4024] INFO: [STAGE: DATA-COPY] [0][3] successfully

copied data in [tgtschema.pgbench_branches]

Wed Jun 28 13:18:05.299913 2017 EDT: [4021] INFO: [STAGE: DATA-COPY] [0][0] successfully

copied data in [tgtschema.pgbench_tellers]

Wed Jun 28 13:18:06.634310 2017 EDT: [4022] INFO: [STAGE: DATA-COPY] [0][1] successfully

copied data in [tgtschema.pgbench_history]

Wed Jun 28 13:18:10.477333 2017 EDT: [4023] INFO: [STAGE: DATA-COPY] [0][2] successfully

copied data in [tgtschema.pgbench_accounts]

Wed Jun 28 13:18:10.477609 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0] all workers finished

[4]

Wed Jun 28 13:18:10.477654 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0] copy done [4] tables

Wed Jun 28 13:18:10.493938 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] successfully copied data

into tgtschema

Note that the DATA-COPY log message includes two, square bracket numbers (for

example, [0][3]).

The first number is the job index whereas the second number is the worker index. The

worker index values range from 0 to 3 for the four background workers.

In case two clone schema jobs are running in parallel, the first log file will have 0 as the

job index whereas the second will have 1 as the job index.

9.2.4 remotecopyschema_nb

The remotecopyschema_nb function copies a schema and its database objects from a

source schema in the remote source database specified within the source_fdw foreign

server to a target schema in the local target database specified within the target_fdw

foreign server, but in a non-blocking manner as a job submitted to pgAgent.

remotecopyschema_nb(

 source_fdw TEXT,

 target_fdw TEXT,

 source TEXT,

 target TEXT,

 log_filename TEXT

 [, on_tblspace BOOLEAN

 [, verbose_on BOOLEAN

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

298

 [, copy_acls BOOLEAN

 [, worker_count INTEGER]]]]

)

An INTEGER value job ID is returned by the function for the job submitted to pgAgent. If

the function fails, then null is returned.

The source_fdw, target_fdw, source, target, and log_filename are required

parameters while all other parameters are optional.

After completion of the pgAgent job, remove the job with the

remove_log_file_and_job function (see Section 9.2.6).

Parameters

source_fdw

Name of the foreign server managed by the postgres_fdw foreign data wrapper

from which database objects are to be cloned.

target_fdw

Name of the foreign server managed by the postgres_fdw foreign data wrapper

to which database objects are to be cloned.

source

Name of the schema from which database objects are to be cloned.

target

Name of the schema into which database objects are to be cloned from the source

schema.

log_filename

Name of the log file in which information from the function is recorded. The log

file is created under the directory specified by the log_directory configuration

parameter in the postgresql.conf file.

on_tblspace

BOOLEAN value to specify whether or not database objects are to be created within

their tablespaces. If false is specified, then the TABLESPACE clause is not

included in the applicable CREATE DDL statement when added to the target

schema. If true is specified, then the TABLESPACE clause is included in the

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

299

CREATE DDL statement when added to the target schema. If the on_tblspace

parameter is omitted, the default value is false.

Note: If true is specified and a database object has a TABLESPACE clause, but

that tablespace does not exist in the target database cluster, then the cloning

function fails.

verbose_on

BOOLEAN value to specify whether or not the DDLs are to be printed in

log_filename when creating objects in the target schema. If false is

specified, then DDLs are not printed. If true is specified, then DDLs are printed.

If omitted, the default value is false.

copy_acls

BOOLEAN value to specify whether or not the access control list (ACL) is to be

included while creating objects in the target schema. The access control list is the

set of GRANT privilege statements. If false is specified, then the access control

list is not included for the target schema. If true is specified, then the access

control list is included for the target schema. If the copy_acls parameter is

omitted, the default value is false.

Note: If true is specified and a role with GRANT privilege does not exist in the

target database cluster, then the cloning function fails.

worker_count

Number of background workers to perform the clone in parallel. If omitted, the

default value is 1.

Example

The same cloning operation is performed as the example in Section 9.2.3, but using the

non-blocking function remotecopyschema_nb.

The following command starts pgAgent on the target database tgtdb. The pgagent

program file is located in the bin subdirectory of the Advanced Server installation

directory.

[root@localhost bin]# ./pgagent -l 1 -s /tmp/pgagent_tgtdb_log hostaddr=127.0.0.1 port=5444

user=enterprisedb dbname=tgtdb password=password

The remotecopyschema_nb function returns the job ID shown as 2 in the example.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

300

tgtdb=# SELECT edb_util.remotecopyschema_nb

('src_server','tgt_server','srcschema','tgtschema','clone_rmt_src_tgt',worker_count => 4);

 remotecopyschema_nb

 2

(1 row)

The completed status of the job is shown by the following:

tgtdb=# SELECT edb_util.process_status_from_log('clone_rmt_src_tgt');

 process_status_from_log

--

 (FINISH,"29-JUN-17 13:16:00.100284 -04:00",3849,INFO,"STAGE: FINAL","successfully clone

schema into tgtschema")

(1 row)

The following removes the log file and the pgAgent job:

tgtdb=# SELECT edb_util.remove_log_file_and_job ('clone_rmt_src_tgt',2);

 remove_log_file_and_job

 t

(1 row)

9.2.5 process_status_from_log

The process_status_from_log function provides the status of a cloning function

from its log file.

process_status_from_log (

 log_file TEXT

)

The function returns the following fields from the log file:

Table 9-1 - Clone Schema Log File

Field Name Description

status Displays either STARTING, RUNNING, FINISH, or FAILED.

execution_time When the command was executed. Displayed in timestamp format.

pid Session process ID in which clone schema is getting called.

level Displays either INFO, ERROR, or SUCCESSFUL.

stage
Displays either STARTUP, INITIAL, DDL-COLLECTION, PRE-DATA,

DATA-COPY, POST-DATA, or FINAL.

message Information respective to each command or failure.

Parameters

log_file

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

301

Name of the log file recording the cloning of a schema as specified when the

cloning function was invoked.

Example

The following shows usage of the process_status_from_log function:

edb=# SELECT edb_util.process_status_from_log('clone_edb_edbcopy');

 process_status_from_log

--

 (FINISH,"26-JUN-17 11:57:03.214458 -04:00",3691,INFO,"STAGE: FINAL","successfully cloned

schema")

(1 row)

9.2.6 remove_log_file_and_job

The remove_log_file_and_job function performs cleanup tasks by removing the log

files created by the schema cloning functions and the jobs created by the non-blocking

functions.

remove_log_file_and_job (

 { log_file TEXT |

 job_id INTEGER |

 log_file TEXT, job_id INTEGER

 }

)

Values for any or both of the two parameters may be specified when invoking the

remove_log_file_and_job function:

 If only log_file is specified, then the function will only remove the log file.

 If only job_id is specified, then the function will only remove the job.

 If both are specified, then the function will remove the log file and the job.

Parameters

log_file

Name of the log file to be removed.

job_id

Job ID of the job to be removed.

Example

The following examples removes only the log file, given the log filename.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

302

edb=# SELECT edb_util.remove_log_file_and_job ('clone_edb_edbcopy');

 remove_log_file_and_job

 t

(1 row)

The following example removes only the job, given the job ID.

edb=# SELECT edb_util.remove_log_file_and_job (3);

 remove_log_file_and_job

 t

(1 row)

The following example removes the log file and the job, given both values:

tgtdb=# SELECT edb_util.remove_log_file_and_job ('clone_rmt_src_tgt',2);

 remove_log_file_and_job

 t

(1 row)

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

303

10 Enhanced SQL and Other
Miscellaneous Features

Advanced Server includes enhanced SQL functionality and various other features that

provide additional flexibility and convenience. This chapter discusses some of these

additions.

10.1 COMMENT

In addition to commenting on objects supported by the PostgreSQL COMMENT command,

Advanced Server supports comments on additional object types. The complete supported

syntax is:

COMMENT ON

{

 AGGREGATE aggregate_name (aggregate_signature) |

 CAST (source_type AS target_type) |

 COLLATION object_name |

 COLUMN relation_name.column_name |

 CONSTRAINT constraint_name ON table_name |

 CONSTRAINT constraint_name ON DOMAIN domain_name |

 CONVERSION object_name |

 DATABASE object_name |

 DOMAIN object_name |

 EXTENSION object_name |

 EVENT TRIGGER object_name |

 FOREIGN DATA WRAPPER object_name |

 FOREIGN TABLE object_name |

 FUNCTION func_name ([[argmode] [argname] argtype [, ...]])|
 INDEX object_name |

 LARGE OBJECT large_object_oid |

 MATERIALIZED VIEW object_name |

 OPERATOR operator_name (left_type, right_type) |

 OPERATOR CLASS object_name USING index_method |

 OPERATOR FAMILY object_name USING index_method |

 PACKAGE object_name

 POLICY policy_name ON table_name |

 [PROCEDURAL] LANGUAGE object_name |

 PROCEDURE proc_name [([[argmode] [argname] argtype [, ...]])]
 PUBLIC SYNONYM object_name

 ROLE object_name |

 RULE rule_name ON table_name |

 SCHEMA object_name |

 SEQUENCE object_name |

 SERVER object_name |

 TABLE object_name |

 TABLESPACE object_name |

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

304

 TEXT SEARCH CONFIGURATION object_name |

 TEXT SEARCH DICTIONARY object_name |

 TEXT SEARCH PARSER object_name |

 TEXT SEARCH TEMPLATE object_name |

 TRANSFORM FOR type_name LANGUAGE lang_name |

 TRIGGER trigger_name ON table_name |

 TYPE object_name |

 VIEW object_name

} IS 'text'

where aggregate_signature is:

* |

[argmode] [argname] argtype [, ...] |

[[argmode] [argname] argtype [, ...]]

ORDER BY [argmode] [argname] argtype [, ...]

Parameters

object_name

The name of the object on which you are commenting.

AGGREGATE aggregate_name (aggregate_signature)

Include the AGGREGATE clause to create a comment about an aggregate.

aggregate_name specifies the name of an aggregate, and

aggregate_signature specifies the associated signature in one of the

following forms:

* |

[argmode] [argname] argtype [, ...] |

[[argmode] [argname] argtype [, ...]]

ORDER BY [argmode] [argname] argtype [, ...]

Where argmode is the mode of a function, procedure, or aggregate argument;

argmode may be IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN.

argname is the name of an aggregate argument.

argtype is the data type of an aggregate argument.

CAST (source_type AS target_type)

Include the CAST clause to create a comment about a cast. When creating a

comment about a cast, source_type specifies the source data type of the cast,

and target_type specifies the target data type of the cast.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

305

COLUMN relation_name.column_name

Include the COLUMN clause to create a comment about a column. column_name

specifies name of the column to which the comment applies. relation_name is

the table, view, composite type, or foreign table in which a column resides.

CONSTRAINT constraint_name ON table_name

CONSTRAINT constraint_name ON DOMAIN domain_name

Include the CONSTRAINT clause to add a comment about a constraint. When

creating a comment about a constraint, constraint_name specifies the name of

the constraint; table_name or domain_name specifies the name of the table or

domain on which the constraint is defined.

FUNCTION func_name ([[argmode] [argname] argtype [, ...]])

Include the FUNCTION clause to add a comment about a function. func_name

specifies the name of the function. argmode specifies the mode of the function;

argmode may be IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN.

argname specifies the name of a function, procedure, or aggregate argument.

argtype specifies the data type of a function, procedure, or aggregate argument.

large_object_oid

large_object_oid is the system-assigned OID of the large object about which

you are commenting.

OPERATOR operator_name (left_type, right_type)

Include the OPERATOR clause to add a comment about an operator.

operator_name specifies the (optionally schema-qualified) name of an operator

on which you are commenting. left_type and right_type are the

(optionally schema-qualified) data type(s) of the operator's arguments.

OPERATOR CLASS object_name USING index_method

Include the OPERATOR CLASS clause to add a comment about an operator class.

object_name specifies the (optionally schema-qualified) name of an operator on

which you are commenting. index_method specifies the associated index

method of the operator class.

OPERATOR FAMILY object_name USING index_method

Include the OPERATOR FAMILY clause to add a comment about an operator

family. object_name specifies the (optionally schema-qualified) name of an

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

306

operator family on which you are commenting. index_method specifies the

associated index method of the operator family.

POLICY policy_name ON table_name

Include the POLICY clause to add a comment about a policy. policy_name

specifies the name of the policy, and table_name specifies the table that the

policy is associated with.

PROCEDURE proc_name [([[argmode] [argname] argtype [, ...]])]

Include the PROCEDURE clause to add a comment about a procedure. proc_name

specifies the name of the procedure. argmode specifies the mode of the

procedure; argmode may be IN, OUT, INOUT, or VARIADIC. If omitted, the

default is IN. argname specifies the name of a function, procedure, or aggregate

argument. argtype specifies the data type of a function, procedure, or aggregate

argument.

RULE rule_name ON table_name

Include the RULE clause to specify a COMMENT on a rule. rule_name specifies

the name of the rule, and table_name specifies the name of the table on which

the rule is defined.

TRANSFORM FOR type_name LANGUAGE lang_name |

Include the TRANSFORM FOR clause to specify a COMMENT on a TRANSFORM.

type_name specifies the name of the data type of the transform and lang_name

specifies the name of the language of the transform.

TRIGGER trigger_name ON table_name

Include the TRIGGER clause to specify a COMMENT on a trigger. trigger_name

specifies the name of the trigger, and table_name specifies the name of the table

on which the trigger is defined.

text

The comment, written as a string literal; or NULL to drop the comment.

Notes:

Names of tables, aggregates, collations, conversions, domains, foreign tables, functions,

indexes, operators, operator classes, operator families, packages, procedures, sequences,

text search objects, types, and views can be schema-qualified.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

307

Example:

The following example adds a comment to a table named new_emp:

COMMENT ON TABLE new_emp IS 'This table contains information about new

employees.';

For more information about using the COMMENT command, please see the PostgreSQL

core documentation at:

https://www.postgresql.org/docs/12/static/sql-comment.html

10.2 Output of Function version()

The text string output of the version() function displays the name of the product, its

version, and the host system on which it has been installed.

For Advanced Server, the version() output is in a format similar to the PostgreSQL

community version in that the first text word is PostgreSQL instead of EnterpriseDB as

in Advanced Server version 10 and earlier.

The general format of the version() output is the following:

PostgreSQL $PG_VERSION_EXT (EnterpriseDB Advanced Server $PG_VERSION) on $host

So for the current Advanced Server the version string appears as follows:

edb@45032=#select version();

version

--

PostgreSQL 12.0 (EnterpriseDB Advanced Server 12.0.0) on x86_64-pc-linux-gnu, compiled by gcc

(GCC) 4.8.5 20150623 (Red Hat 4.8.5-11), 64-bit

(1 row)

In contrast, for Advanced Server 10, the version string was the following:

edb=# select version();

 version

--

 EnterpriseDB 10.4.9 on x86_64-pc-linux-gnu, compiled by gcc (GCC) 4.4.7 20120313 (Red Hat

4.4.7-18), 64-bit

(1 row)

https://www.postgresql.org/docs/12/static/sql-comment.html

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

308

10.3 Logical Decoding on Standby

Logical decoding on a standby server allows you to create a logical replication slot on a

standby server that can respond to API operations such as get, peek, advance, etc..

For more information about the LOGICAL DECODING, please refer to the PostgreSQL

core documentation available at:

https://www.postgresql.org/docs/12/logicaldecoding-explanation.html

For a logical slot on a standby server to work, the hot_standby_feedback parameter

must be set to ON on the standby. The hot_standby_feedback parameter prevents

VACCUM from removing recently-dead rows that are required by an existing logical

replication slot on the standby server. If a slot conflict occurs on the standby, the slots

will be dropped.

For logical decoding on a standby to work, wal_level must be set to logical on both

the primary and standby server. If wal_level is set to a value other than logical, then

slots are not created. If you set wal_level to a value other than logical on primary

and if there are existing logical slots on standby, such slots are dropped and new slots

cannot be created.

When transactions are written to the primary server, the activity will trigger the creation

of a logical slot on the standby server. If a primary server is idle, creating a logical slot

on a standby server may take noticeable time.

For more information about functions that support replication and logical decoding

example, please refer to the PostgreSQL documentation available at:

https://www.postgresql.org/docs/12/functions-admin.html#FUNCTIONS-

REPLICATION

https://www.postgresql.org/docs/12/logicaldecoding-example.html

https://www.postgresql.org/docs/12/logicaldecoding-explanation.html
https://www.postgresql.org/docs/12/functions-admin.html#FUNCTIONS-REPLICATION
https://www.postgresql.org/docs/12/functions-admin.html#FUNCTIONS-REPLICATION
https://www.postgresql.org/docs/12/logicaldecoding-example.html

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

309

11 System Catalog Tables

The following system catalog tables contain definitions of database objects. The layout

of the system tables is subject to change; if you are writing an application that depends on

information stored in the system tables, it would be prudent to use an existing catalog

view, or create a catalog view to isolate the application from changes to the system table.

11.1 edb_dir

The edb_dir table contains one row for each alias that points to a directory created with

the CREATE DIRECTORY command. A directory is an alias for a pathname that allows a

user limited access to the host file system.

You can use a directory to fence a user into a specific directory tree within the file

system. For example, the UTL_FILE package offers functions that permit a user to read

and write files and directories in the host file system, but only allows access to paths that

the database administrator has granted access to via a CREATE DIRECTORY command.

Column Type Modifiers Description
dirname "name" not null The name of the alias.
dirowner oid not null The OID of the user that owns the alias.
dirpath text The directory name to which access is granted.
diracl aclitem[] The access control list that determines which users

may access the alias.

11.2 edb_all_resource_groups

The edb_all_resource_groups table contains one row for each resource group

created with the CREATE RESOURCE GROUP command and displays the number of

active processes in each resource group.

Column Type Modifiers Description
group_name "name" The name of the resource group.
active_processes integer Number of currently active processes in

the resource group.
cpu_rate_limit float8 Maximum CPU rate limit for the

resource group. 0 means no limit.
per_process_cpu_rate_li

mit

float8 Maximum CPU rate limit per currently

active process in the resource group.
dirty_rate_limit float8 Maximum dirty rate limit for a resource

group. 0 means no limit.
per_process_dirty_rate_

limit

float8 Maximum dirty rate limit per currently

active process in the resource group.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

310

11.3 edb_policy

The edb_policy table contains one row for each policy.

Column Type Modifiers Description
policyname name not null The policy name.
policygroup oid not null Currently unused.
policyobject oid not null The OID of the table secured by this policy

(the object_schema plus the object_name).
policykind char not null The kind of object secured by this policy:

'r' for a table

'v' for a view

= for a synonym

Currently always 'r'.
policyproc oid not null The OID of the policy function

(function_schema plus policy_function).
policyinsert boolean not null True if the policy is enforced by INSERT

statements.
policyselect boolean not null True if the policy is enforced by SELECT

statements.
policydelete boolean not null True if the policy is enforced by DELETE

statements.
policyupdate boolean not null True if the policy is enforced by UPDATE

statements.
policyindex boolean not null Currently unused.
policyenabled boolean not null True if the policy is enabled.
policyupdatecheck boolean not null True if rows updated by an UPDATE

statement must satisfy the policy.
policystatic boolean not null Currently unused.
policytype integer not null Currently unused.
policyopts integer not null Currently unused.
policyseccols int2vector not null The column numbers for columns listed in

sec_relevant_cols.

11.4 edb_profile

The edb_profile table stores information about the available profiles. edb_profiles

is shared across all databases within a cluster.

Column Type References Description
oid oid Row identifier (hidden attribute;

must be explicitly selected).
prfname name The name of the profile.
prffailedloginattempts integer The number of failed login attempts

allowed by the profile. -1 indicates

that the value from the default

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

311

Column Type References Description
profile should be used. -2 indicates

no limit on failed login attempts.
prfpasswordlocktime integer The password lock time associated

with the profile (in seconds). -1

indicates that the value from the

default profile should be used. -2

indicates that the account should be

locked permanently.
prfpasswordlifetime integer The password life time associated

with the profile (in seconds). -1

indicates that the value from the

default profile should be used. -2

indicates that the password never

expires.
prfpasswordgracetime integer The password grace time associated

with the profile (in seconds). -1

indicates that the value from the

default profile should be used. -2

indicates that the password never

expires.
prfpasswordreusetime integer The number of seconds that a user

must wait before reusing a

password. -1 indicates that the

value from the default profile

should be used. -2 indicates that the

old passwords can never be reused.
prfpasswordreusemax integer The number of password changes

that have to occur before a

password can be reused. -1

indicates that the value from the

default profile should be used. -2

indicates that the old passwords can

never be reused.
prfpasswordverifyfuncdb oid pg_database.oid The OID of the database in which

the password verify function exists.
prfpasswordverifyfunc oid pg_proc.oid The OID of the password verify

function associated with the profile.

11.5 edb_redaction_column

The catalog edb_redaction_column stores information of data redaction policy

attached to the columns of the table.

Column Type References Description
oid oid Row identifier (hidden attribute;

must be explicitly selected)
rdpolicyid oid edb_redaction_policy.oid The data redaction policy applies

to the described column
rdrelid oid pg_class.oid The table that the described

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

312

Column Type References Description

column belongs to
rdattnum int2 pg_attribute.attnum The number of the described

column
rdscope int2 The redaction scope: 1 = query, 2

= top_tlist, 4 = top_tlist_or_error
rdexception int2 The redaction exception: 8 = none,

16 = equal, 32 = leakproof
rdfuncexpr pg_node_tree Data redaction function expression

Note: The described column will be redacted if the redaction policy

edb_redaction_column.rdpolicyid on the table is enabled and the redaction

policy expression edb_redaction_policy.rdexpr evaluates to true.

11.6 edb_redaction_policy

The catalog edb_redaction_policy stores information of the redaction policies for

tables.

Column Type References Description
oid oid Row identifier (hidden attribute; must be explicitly

selected)
rdname name The name of the data redaction policy
rdrelid oid pg_class.oid The table to which the data redaction policy

applies
rdenable boolean Is the data redaction policy enabled?
rdexpr pg_node_tree The data redaction policy expression

Note: The data redaction policy applies for the table if it is enabled and the expression

ever evaluated true.

11.7 edb_resource_group

The edb_resource_group table contains one row for each resource group created with

the CREATE RESOURCE GROUP command.

Column Type Modifiers Description
rgrpname "name" not null The name of the resource group.
rgrpcpuratelimit float8 not null Maximum CPU rate limit for a resource

group. 0 means no limit.
rgrpdirtyratelimit float8 not null Maximum dirty rate limit for a resource

group. 0 means no limit.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

313

11.8 edb_variable

The edb_variable table contains one row for each package level variable (each

variable declared within a package).

Column Type Modifiers Description
varname "name" not null The name of the variable.
varpackage oid not null The OID of the pg_namespace row that stores the

package.
vartype oid not null The OID of the pg_type row that defines the type of

the variable.
varaccess "char" not null + if the variable is visible outside of the package.

- if the variable is only visible within the package.

Note: Public variables are declared within the

package header; private variables are declared

within the package body.
varsrc text Contains the source of the variable declaration,

including any default value expressions for the

variable.
varseq smallint not null The order in which the variable was declared in the

package.

11.9 pg_synonym

The pg_synonym table contains one row for each synonym created with the CREATE

SYNONYM command or CREATE PUBLIC SYNONYM command.

Column Type Modifiers Description
synname "name" not null The name of the synonym.
synnamespace oid not null Replaces synowner. Contains the OID of the

pg_namespace row where the synonym is stored
synowner oid not null The OID of the user that owns the synonym.
synobjschema "name" not null The schema in which the referenced object is

defined.
synobjname "name" not null The name of the referenced object.
synlink text The (optional) name of the database link in which

the referenced object is defined.

11.10 product_component_version

The product_component_version table contains information about feature

compatibility; an application can query this table at installation or run time to verify that

features used by the application are available with this deployment.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

314

Column Type Description
product character varying (74) The name of the product.
version character varying (74) The version number of the product.
status character varying (74) The status of the release.

EDB Postgres Advanced Server Guide

Copyright © 2014 - 2021 EnterpriseDB Corporation. All rights reserved.

315

12 Advanced Server Keywords

A keyword is a word that is recognized by the Advanced Server parser as having a

special meaning or association. You can use the pg_get_keywords() function to

retrieve an up-to-date list of the Advanced Server keywords:

acctg=#

acctg=# SELECT * FROM pg_get_keywords();

 word | catcode | catdesc

---------------------+---------+---------------------------------

 abort | U | unreserved

 absolute | U | unreserved

 access | U | unreserved

...

pg_get_keywords returns a table containing the keywords recognized by Advanced

Server:

 The word column displays the keyword.

 The catcode column displays a category code.

 The catdesc column displays a brief description of the category to which the

keyword belongs.

Note that any character can be used in an identifier if the name is enclosed in double

quotes. You can selectively query the pg_get_keywords() function to retrieve an up-

to-date list of the Advanced Server keywords that belong to a specific category:

SELECT * FROM pg_get_keywords() WHERE catcode = 'code';

Where code is:

R - The word is reserved. Reserved keywords may never be used as an identifier;

they are reserved for use by the server.

U - The word is unreserved. Unreserved words are used internally in some

contexts, but may be used as a name for a database object.

T - The word is used internally, but may be used as a name for a function or type.

C - The word is used internally, and may not be used as a name for a function or

type.

For more information about Advanced Server identifiers and keywords, please refer to

the PostgreSQL core documentation at:

https://www.postgresql.org/docs/12/static/sql-syntax-lexical.html

https://www.postgresql.org/docs/12/static/sql-syntax-lexical.html

