cDB

POSTGRES

Database Compatibility for Oracle®
Developer’s Guide

EDB Postgres™ Advanced Server 9.6
October 31, 2018

Database Compatibility for Oracle® Developer’'s Guide

by EnterpriseDB® Corporation
Copyright © 2007 - 2017 EnterpriseDB Corporation. All rights reserved.

EnterpriseDB Corporation, 34 Crosby Drive, Suite 100, Bedford, MA 01730, USA
T +1 7813573390 F +1978 589 5701 E info@enterprisedb.com www.enterprisedb.com

http://www.enterprisedb.com/

Database Compatibility for Oracle® Developers Guide

Table of Contents

O 115 (0T R0 (o3 o s NPT 9
1.1 WHAE"S INEW . ettt ettt ettt e e et enaae 10
1.2 Typographical Conventions Used in this GUIdecoeuviiiiiiiiiiiiiiei e 11
1.3 Configuration Parameters Compatible with Oracle Databasescccoveeviveiiineiiiniiineiinnnn, 12

1.3.1 €dD TEAWOO A dALE ...eeuniiiiiiii e e 13
1.3.2 edb_1edWOo0d TaW NAIMESuueiiiiiiiiiii ettt 13
1.3.3 edb_1edWOo0d SLHNESueiiiiiiiiiiii et e 14
1.3.4 €AD STME TEVEL EX.uuiiiiiiiie ittt et e e e 16
1.3.5 1) 1o S 1074 U OO PPT PR 17
1.4 About the Examples Used in this GUIdeoevuuiiiiiiiiiiiiiie e 18

(0] D R 170 o ¥ | DTSR 19

2.1 GELEING STATTEA .. evvneiiineeii et et e e et e et e et e et e e e e e et e e et e e et e e et e e ean e eaneean e eaneeaes 19

2.1.1 N F:11030) (S D R 1 721 o L <SPPI 20
2.1.1.1 Sample Database INStallationc.ccuuieiiiieiiineiit et e e e ee e e ee e e e eineeeaaaas 20
2.1.1.2 Sample Database DeSCTIPLIONc.ueiuniiiiineiieie ettt e e e e e e e e e e eieennas 20
2.1.2 Creating @ New Table........iiiniiii et 31
2.1.3 Populating a Table With ROWS.......couiiiiiiiie e 32
2.1.4 [0 1013 3 b Tear T U o) (< OTRPRPN 33
2.1.5 JOIns BetWeen Tablesc..ueiuiiiiiiiiiiii e 35
2.1.6 AgEregate FUNCHIONSiiuiiiie ettt e e e e e e ae e e et e aanaas 39
2.1.7 L0 PN 41
2.1.8 DIELEEIOMS vttt ettt ettt ettt et e e e e et et e e et e e e et e et 42
2.1.9 The SQL Lan@UAZEueevineiiieiiie ittt ettt et e e e e e e e e e eeaines 43
2.2 AQVANCEA COMOEPLS 1.uereieiiie ittt ettt et et et e e et e et e et e et e et e eaneeennes 44
2.2.1 VIS ettt ettt ettt ettt et e et et et et et et e et e et 44
2.2.2 FOT@IZN KOYS . ..uniiiiiiie it e e et 46
2.2.3 The ROWNUM Pseudo-Colummn.......c...viiiiiiniiiiiiiiiiiiciiiin e 47
2.2.4 N0 10) 11 141 PP 49
2.2.5 Hierarchi Cal QUETIESivuiiiiii ettt e e e e 51
2.2.5.1 Defining the Parent/Child RelationShipcc.ovviiiiiiiiieiiiiiieiiiiei e 52
2.2.5.2 Selecting the ROOt NOGESc.uiiuniiiiiiiiei et 52
2.2.5.3 Organization Tree in the Sample Application............ooieiiiiiiiiiiiiiiii e 52
2.2.54 NOGE LEVEL ..uciiiiiiiiiii e 54
2.2.5.5 Ordering the STDIINESuiiniiiiii e 55
2.2.5.6 Retrieving the Root Node with CONNECT _BY ROOT.......cccviiiiiiiiiiiiiiiiieiieieens 56
2.2.5.7 Retrieving a Path with SYS CONNECT BY PATH ...ccooiiiiiiiiiiiieec e 60
2.2.6 Multidimensional ANAlYSIS........iiueiuneiieieei e e et e e e aaas 62
2.2.6.1 ROLLUP EXEENSTOMN tuutiiitiiieeiit ettt ettt ettt et et e et e et e e e eaaneas 64
2.2.6.2 CUBE EXIENSION «..utiitiiiiiieiiieeii ettt ettt ettt e et e e e e 67
2.2.6.3 GROUPING SETS EXtENSION .. ctttuneiiiiieetiiieeeeiiieeeiieeeeeiieeeeetieeeeeieee e e eeannnens 71
2.2.6.4 GROUPING FUNCHON ..uueiiiiinetiiiiee et e et e e e e e et e e et e e e e e e e eanennes 77
2.2.6.5 GROUPING ID FUNCHOM .c.ouuuiiiiiiiiiiiiee it 80
2.3 Profile Manag@mentuueiiuneiiieiii et et ettt e e et e e eaas 83
2.3.1 Creating @ New Profileooouiiiiiiiiii e &4
2.3.1.1 Creating a Password FUNCHONcooiuuiiiiiiiiiiei e e e e 87
2.3.2 AREIING @ PIOTIIE ..uniiiiiiie e e e e 90
2.3.3 Dropping @ PTOTILE ..oovuniiieiie et e e e a e 91
2.3.4 Associating a Profile with an EXisting Rolec.ooiviiiiiiiiiiiiiiii e 92
2.3.5 Unlocking a Locked ACCOUNLiiuniiiiieie et 94
2.3.6 Creating a New Role Associated with a Profilecoooiiiiiiiiiiiii 96
2.3.7 Backing up Profile Management FUnCtionscooeoviiiiiiiiiiiiinii e 98
2.4 (0315000004 gl = 811 £ P 99

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 3

Database Compatibility for Oracle® Developers Guide

2.4.1 Default Optimization MOAESueiineiiiiieii e et e e eens 102
2.4.2 Access Method HINES ...ooouniiiiniiiiiiiii e 104
2.4.3 Speci fying @ JOIN OTACTouniiiiie e 108
2.4.4 Joining Relations HINESovuuiieiiiiii et eens 109
2.4.5 (o) o 1B 5 F s L PP P 112
2.4.6 Using the APPEND Optimizer HINt.........ooouiiiiiiiiii et 115
2.4.7 Parall elism HINEScoeuniiiiniiiiiiii et 116
2.4.8 ConTCtiNg HINES «..ueetiiiiieeii et 121
3 Stored Procedure LangUage.couuuiiiiiiiiniiie ittt 122
3.1 Basic SPL EIEMENLSuevuiniiiieiiie ittt ettt et eeas 122
3.1.1 CRATACEET S@E..eiiiiiiiiiii ettt ettt e e et eaa e e e 122
3.1.2 (08 NN T 1 13 117 1 PRSP 123
3.1.3 TAENEIFIOTS oot 123
3.1.4 QUALTTIETS Luuieii ittt et e 123
3.1.5 COMSTANES ettt ettt et et et et et et e e e et e e et et et e eenaee 124
3.1.6 User-Defined PL/SQL SUDLYPES ...evvnniiiniiiieeiiee et ettt et e et e een e e e e e eeieeaenes 125
3.2 N o D (0 210 PPN 128
3.2.1 SPL BIOCK StIUCKUTE ...ceuieiiieiii et 129
3.2.2 ANonymous BIOCKSoieiii e 132
323 Procedures O VETVIEWc.uuiiiiniiiieiii ettt e et e 133
3.2.3.1 Creating a PrOCEAUICuieiieiee et e e 133
3.2.3.2 Calling @ ProCeAUIE. ... vuniiei et 137
3.2.3.3 Deleting @ PrOCEAUIEuiieiiieiie ettt et e e e e e e e e e ane e 138
3.2.4 FUNCHONS OVEIVIBW .euiiiiiiiiie ettt ettt e e et e e 139
3.2.4.1 Creating @ FUNCHIOMuuiunieeie ettt e e e et e e e et e et e e e e e aaeannes 139
32,42 Calling @ FUNCHONceuuiiiiiiie ettt e e e e 144
3.2.4.3 Deleting @ FUNCHOM .. c.uuiiine ittt ettt e e e e e e eeias 145
3.2.5 Procedure and Function Parametersoveeuuviiiniiiiieiieiiin e 146
3.2.5.1 Positional vs. Named Parameter NOtationceuuueiiniiiieiiineiineiiieeiieeiieeiieeiinees 147
3.2.5.2 Parameter MOGES ... ccouuiuiiiiiiiiiiii e 149
3.2.5.3 Using Default Values in Parameterscc.veveuieiiineiiiniiieeiieeiieeiieeeieeiieeennans 151
3.2.6 Subprograms — Subprocedures and SUbfUNCLIONSuviivniiiiiiiieiiiie e, 152
3.2.6.1 Creating @ SUDPTOCEAUIEovvueiiiieiii et e e e et e e e e e e e et e et eeannaas 153
3.2.6.2 Creating a SUDTUNCHION «..vuniin i e e et 155
3.2.6.3 BIlock RelationShiPsc.ueeuniiniiiieiie e et 157
3.2.6.4 InvoKing SUDPIOZTAMSeuuiiniieiiieie e ettt e e e e eens 159
3.2.6.5 Using Forward Declarationsoceuviueiuiiniiiei e eens 166
3.2.6.6 Overloading SUDPTOGIAMSvuniiiiiie ettt e et et e e e e e enaean e 167
3.2.6.7 Accessing Subprogram Variablesc.c.eiuiiiniiiiiie e 171
3.2.7 Compilation Errors in Procedures and Functionscooiiiiiiiiniiiiiiiicec, 178
3.2.8 PrOGram SECUIILYovuiin ittt et e et e e e e e e et e e e e eens 180
3.2.8.1 EXECUTE Privilege ...ceuuuieiiiiieeeiiie ettt e e 180
3.2.8.2 Database Object Name ReSOIUtIONoeiiiiiiiiiiiiiiiiii e 181
3.2.8.3 Database Object PrIVIIEZEScccouuniiiiiiiiiiiiiiie e 182
3.2.8.4 Definer’s vs. Invokers Rightscccoooiiiiiiiiiiiiiiiiii e 182
3.2.8.5 Security EXAmMPIe....ccouuiiiiiiiiiiiie et 183
3.3 Variabl @ DeClarationsoveiiiuiiiiiiiineeii ettt 190
3.3.1 Declaring @ Variableeiuuiiiieiie et 190
3.3.2 Using %TYPE in Variable Declarations............oeiuuieiiiiiiiiiiieiineiinecin e, 192
3.3.3 Using %R OWTYPE in Record Declarationsoveeuneeiineiiineiieeiieeiieeeiieeeinneennn 195
3.3.4 User-Defined Record Types and Record Variablescoeevvviiiniiiiiiiiniiieiiieeiieeennn, 196
3.4 Basic Stat CIMENTSceuuneiii ittt e et 199
3.4.1 INULL Lottt et enaes 199
3.4.2 F TS P44 4 1S oL PR 199
343 SELECT INTO ..ottt et et e e e e e e eeeaa e 200
344 INSERT .ottt ettt et et enans 202

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 4

Database Compatibility for Oracle® Developers Guide

3.4.5 UPDATE ..ttt 204
3.4.6 D))) 2 PP 204
3.4.7 Using the RETURNING INTO ClaUSe......ccuuiiuiineiieieiie e ee et e e e e 205
3.4.8 Obtaining the Result STatusc.uiiiniiiiiiei e e e e eens 208
3.5 CONETOL STIUCTUTES ..ottt ettt et ettt e et e et et e et e et e e et eaaaeeens 209
3.5.1 TF STateMENt. .. ceuiineii i et 209
35,101 TE-THEN Lo e et e e e 209
3.5.1.2 IF-THEN-=ELSE ..ottt e e e 210
3.5.1.3 IF-THEN-ELSE IF ..ottt et e e e e 211
3.5.1.4 TF-THEN-ELSIF-ELSEouiiiiiiiit ettt e e e 212
3.5.2 RETURN StateM@NTueiiiiiieiiiiiee ittt et e e e et e e eeai e eenaes 214
3.5.3 GOT O SEALEIMIGALeevitiiiiteiii ettt e e e 215
3.5.4 CASE EXPIESSION .utitneiiiietii ettt et e et e e e et e et e e e e et e et e e e e et e e et e e et e et eeaneennes 217
3.5.4.1 Selector CASE EXPIESSION ..vuuutiuueiiieiiieeiiieeiieeiieetiieettieettieetiiee et ee et e eanaeeanaaeannans 217
3.5.42 Searched CASE EXPIeSSIONiuuuuiiiuiiineeiieeiieeiieetiieettieetiieetiieeeaneeaaneeanaeenneennns 218
3.5.5 CASE STAEIMIENLeeiiiiee ettt ettt e e e e s 220
3.5.5.1 Selector CASE Statementc..viiuuiiiiiiiiiiii et 220
3.5.5.2 Searched CASE Statementc.uvieuuiiiiiiiiiiii et 221
3.5.6 010 o 224
3.5.0. 1 LIOOP .ot 224
3.5.0.2 EXIT ittt e 224
3.5.6.3 CONTINUE ...ttt et e e e e eeeens 225
3.5.6.4 WHILE ..o et 225
3.5.6.5 FOR (INtEZEr VAITANT) ..vuuiiurineieneiieeietietie it eeai et et eeane et eataeaneeaneaneenesnaesneenaannees 226
3.5.7 Exception Handlingooueiiiiiiiiii e 228
3.5.8 User-defined EXCEPLIONS ...c...iiuuiiiiiiiieiie ettt et eaie s 230
3.5.9 PRAGMA EXCEPTION INIT ...uuiiiiiiiieiiie ittt 232
3.5.10 RAISE_APPLICATION ERRORcccuiiiiiiiiiiiiiiiei et 234
3.6 Transaction CONLIOLciiiiiiiiiiiii it e 236
3.6.1 COMMIT Lot 237
3.6.2 ROLLB ACK ..ottt et 238
3.7 Dynamic SQLiiuniiie ittt ettt e e aaas 242
3.8 SEALIC CUISOTS ...ttt ettt ettt ettt et e ettt e et e et e e et e e eaten s 245
3.8.1 DEClaTiNg @ CUISOT . .eneene ettt et et ettt e e et e e e e e e e eans 245
3.8.2 (03153 11T oo W 01 Y o) ST PR 245
3.8.3 Fetching ROWs From @ CUISOT ...ouuiiiiiiiee e 246
3.8.4 ClLOSINE @ CUISOT ..ttt ettt et et et e ettt et e e e et e et et e e et e et e e e e et e eaeeeneenns 247
3.8.5 Using %R OWTYPE With CUISOTSccuuviiiniiiieiiieiiieei e 249
3.8.6 CUISOT ATETIDULES ..ttt ettt ettt et e e e e et eeanee 250
3.8.6.1 YOISOPEN ..ottt ettt 250
3.8.60.2 YOFOUND ...ttt ettt et 250
3.8.6.3 YONOTFOUNDooiiiiiiiieeeii ettt e e e e e e e e eeaens 251
3.8.6.4 YOROWCOUNT ...ouiiiiieee ettt e et e e et e e e e et e e e e et e eeeeannns 253
3.8.6.5 Summary of Cursor States and Attributesooeeiiiiiiiiiiiiiiiiiiinei e, 254
3.8.7 CUISOT FOR LOOP 1.ttt e e 254
3.8.8 ParameteriZed CUISOIScouuuuniiiiiiee ittt et enaes 255
3.9 REF CURSORS and Cursor Variableseeieuuiiiiiiiineiiiinn e 257
3.9.1 REF CURSOR OVEIVIEWuneeiiiiieiiiiie ettt ettt ettt ettt eenaes 257
3.9.2 Declaring a Cursor Variableoeuuiiiiiiiieiiiee e e 257
3.9.2.1 Declaring a SYS REFCURSOR Cursor Variablec.ceeiviriiiniiiineiiieiiineiineeinnnns 257
3.9.2.2 Declaring a User Defined REF CURSOR Type Variablecceeeveiiieeiieeinneinnnnns 258
3.9.3 Opening a Cursor Variableoouiiniiiiiei e 258
3.9.4 Fetching Rows From a Cursor Variablecoooiiiiiiiiiiiiii e 259
3.9.5 Closing a CursOT Variablec.uiiuiiniie e 259
3.9.6 USAZE RESTIICLIONSitieiieii ittt et et e et e e et e e e e e e e eennas 260
3.9.7 251 11'0) K P 261

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 5

7

Database Compatibility for Oracle® Developers Guide

3.9.7.1 Retuming a REF CURSOR From a Functionc..ccooiiiiiiiiiiniiniiieece, 261
3.9.7.2 Modularizing Cursor OPErationsvieueiuneineineiiei et et ei et eteeaeeiaeaneenaeannees 262
3.9.8 Dynamic Queries With REF CURSORSoiouiiiiiiiiiii e 264

T L0 07011 (<5 10 4 L PSPPSR PPN 267
3.10.1 ASSOCIALIVE ATTAYS ..evvneitteneiineti et et etie e e ea e et e e e et e ee e an e ean e et eaeanaeaneeneaneesnaeneanneens 267
30102 NESEEA TaADLES . eeuueieieiiie et ettt 271

R (O B V¥ o 0 | S PPt 275
311 Collection MEthOMSueieieiiieii e ettt et e et e e e eeas 278
T 1 1 10 1 0] SO URTRN 278
3.11.2 DELETE ..ttt ettt e e e e e ea e 278
B3 B XIS T S e e et 280
3114 EXTEND oottt 280
3115 IR ST e e et 283
31100 L AS T e et 283

T I 5 1\ 0 1 PSPPI 284

T I T 2 PPN 284
31109 PRIOR oo e ettt 285
3.11.10 TRIM oot 285
3,12 Working With COIECHIONSuuitniieii et e e e e e eans 287
T 7 B BN 2)) 1 PSPPSR 287
3.12.2 Using the MULTISET UNION OpP@IratOr.......uceuueeuieneiineineiineineeieeieeineeieenaeineenannenns 287
3.12.3 Using the FORALL Stat@mentovuueiuiiieiieieeie et e e et e e e e e e e e e eens 289
3.12.4 Using the BULK COLLECT ClaUS ©......ueuuiiueitneiiiiiieiieeieiieeieeie e eieeieaeeeaeeneeeneenns 291
3.12.4.1 SELECT BULK COLLECT ...euuiiiiiiiieieiii et e e e 292
3.12.4.2 FETCH BULK COLLECT ...ttt et e e e 293
3.12.4.3 EXECUTE IMMEDIATE BULK COLLECTccuuiiiiiiiieeiiiiie e 295
3.12.4.4 RETURNING BULK COLLECT ..ottt 295

3,13 Errors @nd MESSAZESceevuinniiiiiieeiiiii ettt ettt eaaas 298
8 00 PSP 299
4.1 OVETVI W ettt et ettt et ettt ettt e ettt e et et e et eat e et eniaeeees 299
4.2 TYPES OF TIIZEETS ..neeeeeieiee ittt ettt e ettt e et et et e e et e e ea e e et e e aan e e eaneeaneeees 300
4.3 (03 (L1001 T B 4] PSPPI PS 301
4.4 BN e Y o) PR PS 304
4.5 Transactions and EXCEPLIOTNIS ...c.uiuiinitiiieeie ettt e e e e e eans 306
4.6 Trig@er EXAMPLES ...euiiniiiii e et 306
4.6.1 Before Statement-Level Trigger. .. .oouueiuiiiiie e 306
4.6.2 After Statement-Level TrigZer.......oouniiuiiiiiiie e 307
4.6.3 Before ROW-LevVel Trigger.....ovuniiiieieiie ettt et e e e eens 308
4.6.4 Affer ROW-LeVel TTiIZOT ...uvuniiiiiiieie et e e e e 308

S To) S TP 311

(0 o) [Tw A % s Lo 1 16 B o) 1< 312
6.1 L F T (N o) F o O T o - PP 312
6.1.1 ABITIDULES ..ottt e ettt ettt e et e et e e et e et e e e e eaan e e enans 313
6.1.2 1Y (11 T T L PP 313
6.1.3 OVverloading Methodsoouuniiiiiii e 313
6.2 ODbject TYPE COMPOMEINLS ...eevueitieiiieeiiie ettt e et et e et e e et e et e et e et e e e e e et e e et e e et e e et eeaneees 314
6.2.1 Object Type Speci ication SYNTAXeevuiiineiiie ittt e ee et e et e eeanes 314
6.2.2 Object Type BOAY SYNTAX ..evvuniiiieiiieiiie ettt et e e e e e e e e et eeanes 318
6.3 Creating ObJECt TYPES «.vvuneiineiiiee it ee e ettt et et et et e et e e et e e et e e et e e et e e eaneeeaneeenneees 321
6.3.1 Member M ethOdSoouuuniiiiii e 321
6.3.2 StAtic MEtNOMS ...eiiiiiie i e 322
6.3.3 Constructor Methodsc..uiiiiiiiiiiii e 323
6.4 Creating Obj eCt INSTANCES ...evuiunii it et e e e e e e e eans 326
6.5 Referencing an ODJECEvuniiniie ittt 327
6.6 Dropping an OBJECt Ty Pe...ueun ittt 329
(031 W O TS s A 5 L) 1 PP 330

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 6

Database Compatibility for Oracle® Developers Guide

8 Oracle Catal O VIBWS ...euiineiieii ettt ettt et e et e e e et et e et e et et e e e e e e en e e ean 331
O T0OIS AN ULHIITIES. e eet ettt et ettt e e e et e e e eaa e 332
10 Table PartitiOnNINgueeeie ettt et et e e e et et e e 333
10.1 Selecting @ Partition TYPE «..euueunieeiiiei ettt e e e e e e e e e e e e eeans 334
10.2 Using Partition PIUNINGoouiiniii ettt e e e e e e e e e e aeeeens 335
10.2.1 Example - Partition Pruningcoiiiiiiiiiiii et e e e e e e e 339
10.3 Partitioning Comm ands Compatible with Oracle Databasesccceoeieveiieiieineiineinninnnnn. 342
10.3.1 CREATE TABLE...PARTITION BY ..ottt e 342
10.3.1.1 Example - PARTITION BY LIST .. oiiiiiiiiiiii et 346
10.3.1.2 Example - PARTITION BY RANGEcooiiiiiiiiiiiiei e 347
10.3.1.3 Example - PARTITION BY HASH ...t 348
10.3.1.4 Example - PARTITION BY RANGE, SUBPARTITION BY LISTccouune. 349
10.3.2 ALTER TABLE...ADD PARTITIONciiiiiiiiiiiiiiiiiis e 351
10.3.2.1 Example - Adding a Partition to a LIST Partitioned Tablecc....ccciiiiiiinnii. 353
10.3.2.2 Example - Adding a Partition to a RANGE Partitioned Tableccccooeeeeeniiin 354
10.3.3 ALTER TABLE... ADD SUBPARTITIONccootiiiiiiiiiiiiiiiiinieiiine e 356
10.3.3.1 Example - Adding a Subpartition to a LIST-RANGE Partitioned Table................. 357
10.3.3.2 Example - Adding a Subpartition to a RANGE-LIST Partitioned Table................. 359
10.3.4 ALTER TABLE...SPLIT PARTITIONcootiiiiiiiiiiiiiiiiiet e 361
10.3.4.1 Example - Splitting a LIST Partitionccoceoviiiiiiiiiiiiiine e 363
10.3.4.2 Example - Splitting a RANGE Partition............ccooeiiiiiiiiiniiiieieeeeeeee 365
10.3.5 ALTER TABLE...SPLIT SUBPARTITIONccoouiiiiiiiiiiaiiiiiieeiiiee e 368
10.3.5.1 Example - Splitting a LIST Subpartitionccoeeiiiieiiniiiiieiieeeeee e 370
10.3.5.2 Example - Splitting a RANGE Subpartition.............coeuiiiiiiiiiiiniiiiiiiieceeeaneenn 372
10.3.6 ALTER TABLE... EXCHANGE PARTITIONoiiiiiiiiiiiiiiieeiiise e 376
10.3.6.1 Example - Exchanging a Table for a Partitionc.ociviiiiiiiiiiniiinies 378
10.3.7 ALTER TABLE... MOVE PARTITIONc.oooiiiiiiiiiiiiiiieiiiin e 381
10.3.7.1 Example - Moving a Partition to a Different Tablespace...........cccoeevuiiiiieiiineennnne. 382
10.3.8 ALTER TABLE... RENAME PARTITIONccooiiiiiiiiiiiiiiiiiniiiine e 384
10.3.8.1 Example - Renaming a Partitionco.oveiuiiiineiiniiii e eeii e ee i ee s 385
10.3.9 DROP TABLEooiiiiiiiiiii ettt et 386
10.3.10 ALTER TABLE... DROP PARTITIONcoiiiiiiiiiiiiiiiniiiiiini e 387
10.3.10.1 Example - Deleting a Partition...........couuveiiiiiiineiiieiin e e e e e e 387
10.3.11 ALTER TABLE... DROP SUBPARTITION.....c..itiiiiiiiiiiiiiniiiiiiecii e 389
10.3.11.1 Example - Deleting a Subpartitioncoooeiiiiiiiiiii e 389
10.3.12 TRUNCATE TABLE ...ttt 391
10.3.12.1 Example - Emptying a Tableccoiiiiiiiiiiiii e 391
10.3.13 ALTER TABLE... TRUNCATE PARTITIONccitiiiiiiiiiiiieeiiie e 394
10.3.13.1 Example - Emptying a Partitionoooiiiiiiiniiiiie e 394
10.3.14 ALTER TABLE... TRUNCATE SUBPARTITIONcociiiiiiiiiiiiiieiiieee e 397
10.3.14.1 Example - Emptying a Subpartition...........c..viuuiiiieiiiiieieie e 397

10.4 Handling Stray Values in a LIST or RANGE Partitioned Tablecccoeviiiiiiiniieininn. 400
10.5 Specifying Multiple Partitioning Keys in a RANGE Partitioned Table.............c......ccooeeeeen. 404
10.6 Retrieving Information about a Partitioned Tablec..oeeuiviiiiiiiiiiiiiiiiiie e 406
10.6.1 Table Partitioning Views - Referencecocoiiiiiiiiiiiiiiniii e 407
10.6.1.1 ALL PART TABLESot 407
10.6.1.2 ALL TAB PARTITIONS ..ottt 408
10.6.1.3 ALL TAB SUBPARTITIONSttt 409
10.6.1.4 ALL PART KEY COLUMNS ...ttt 410
10.6.1.5 ALL SUBPART KEY COLUMNS ...ttt 410

11 ECPGPIUS . e e 411
12 1610 U1 415 o) - P 412
12.1 dblink ora Functions and ProCeduresocouiiuiiiniiiiiieie et 413
12.1.1 dblinK_ 0@ COMMECL() .uvnneineeineiieei et e e e et et e et e e e e e e e e e e eae e e eans 413
|0 B« o) § 1 01 Qo) - Y 1 R] (P 414
12.1.3 dblink 0ra_ diSCOMMECE() «.vvueeneiieeineiie e et et e e et e e e e e e e e e e e e e eens 414

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 7

Database Compatibility for Oracle® Developers Guide

12.1.4 dblink 0ra 1€COTA() «evuirrniineiineiiee e
12.1.5 dblink _ora_ call()oeumeieeiiiii e
12.1.6 dblink 0@ €XEC() +euuevninneiniineiiee et e et e et e e et e e e e e e
12.1.7 dBlINK 0T COPY()rnnrrnrnneineeineiiaeieeie it et e et et e e e et e e e e eaeeena

12.2 Calling dblink ora FUNCHONSvvniiiiiiieiii e
13 System Catalog Tablesoevuiieiieiieie e
14 ACKNOWICAZEMENLS ...eeuiiieiiei et e e e

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

Database Compatibility for Oracle® Developers Guide

1 Introduction

Database Compatibility for Oracle means thatan applicationruns in an Oracle
environmentas wellas in the EDB Postgres Advanced Server (Advanced Server)
environment with minimal or no changes to the application code. Developingan
application thatis compatible with Oracle databases in the Advanced Server requires
special attention to which features are used in the construction ofthe application. For
example, developinga compatible application means choosing compatible:

Systemand built-in functions foruse in SQL statements and procedural logic.
Stored Procedure Language (SPL) when creating database server-side application
logic for stored procedures, functions, triggers, and packages.

Data types that are compatible with Oracle databases

SQL statements thatare compatible with Oracle SQL

Systemcatalog views thatare compatible with Oracle’s data dictionary

Fordetailed information aboutthe compatible SQL syntax, data types,and views, please
see the Database Compatibility for Oracle Developers Reference Guide.

The compatibility offered by the procedures and functions that are part ofthe Built-in

packagesis documented in the Database Compatibility for Oracle Developers Built-in
Packages Guide.

For information aboutusing the compatible tools and utilities (EDB*Plus, EDB*Loader,
DRITA, and EDB*Wrap) that are included with an Advanced Server installation, please
see the Database Compatibility for Oracle Developers Tools and Utilities Guide.

Forapplications written using the Oracle Call Interface (OCI), EnterpriseDB’s Open
Client Library (OCL) provides interoperability with these applications. Fordetailed
information about usingthe Open Client Library, pleasesee the EDB Postgres Advanced

Server OCI Connector Guide.

Advanced Server contains arich set of features thatenables development of database
applications for either PostgreSQL or Oracle. For more information aboutall of the
features of Advanced Server, please consult the user documentationavailable at the
EnterpriseDB website.

Advanced Server documentation is available at:

http://www.enterprisedb.com/products -services-training/products/documentation

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 9

http://www.enterprisedb.com/products-services-training/products/documentation

Database Compatibility for Oracle® Developers Guide
1.1 What’s New

The following database compatibility for Oracle features have beenaddedto Advanced
Server 9.5 to create Advanced Server 9.6:

e Advanced Servernow supports subprograms (thatis, nested subprocedures and
subfunctions), which are declared and used within SPL programs suchas
procedures, functions, anonymous blocks, triggers, packages, and object type
body methods. For more information, see Section 3.2.6.

e Advanced Servernow supports the PARALLEL clausein the CREATE FUNCTION
command for enabling parallel sequential scans. For more information, see
section 3.2.4.1.

e Advanced Servernow supports the PARALLEL clausein the CREATE PROCEDURE

command for enabling parallel sequential scans. For more information, see
3.2.3.1.

e Advanced Servernow supports the PARALLEL andNO PARALLEL optimizer hints
for parallelscans. Formore information, see Section 2.4.7.

e Advanced Servernow supports the REFERENCING OLD AS old NEW AS new
clause when creating a trigger. For more information, see section4.3.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 10

Database Compatibility for Oracle® Developers Guide

1.2 Typographical Conventions Used in this Guide

Certain typographical conventions are used in this manual to clarify the meaning and

usage of various commands, statements, programs, examples, etc. This section provides a
summary ofthese conventions.

In the following descriptions a term refers to any word or group of words which may be
languagekeywords, user-supplied values, literals, etc. A term’s exact meaning depends
upon thecontext in which it is used.

e Jtalic font introduces anew term, typically, in the sentencethatdefines it forthe
first time.

e Fixed-width (mono-spaced) fontis used forterms thatmustbe given
literally such as SQL commands, specific table and column names used in the
examples, programming language keywords, etc. Forexample, SELECT * FROM
emp;

® Ttalic fixed-width fontis used forterms for which the usermust
substitute values in actual usage. Forexample, DELETE FROM table name;

e A vertical pipe | denotes a choice betweenthe terms oneitherside ofthe pipe. A
vertical pipe is used to separate two or more alternative terms within square
brackets (optional choices) or braces (one mandatory choice).

e Square brackets []denote thatone ornoneofthe enclosed term(s) may be
substituted. Forexample, [2 | b], means chooseone of*“a” or“b” orneither
of the two.

e Braces {} denote that exactly one ofthe enclosed alternatives must be specified.
Forexample, { a | b }, means exactlyoneof“a” or“b” mustbe specified.

e Ellipses ... denote thatthe proceeding termmay be repeated. Forexample, [a |
b 1 ... meansthatyoumay havethesequence,“b a a b a”.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 11

Database Compatibility for Oracle® Developers Guide

1.3 Configuration Parameters Compatible with Oracle
Databases

EDB Postgres Advanced Server supports the development and execution of applications
compatible with PostgreSQL and Oracle. Some systembehaviors can bealtered toact in
a more PostgreSQL orin a more Oracle compliant manner; these behaviors are controlled
by configuration parameters. Modifying the parameters in the postgresqgl . conf file

changes the behavior forall databases in the cluster, while auseror group can seT the
parameter value on thecommand line, effectingonly their session. These parameters are:

e edb redwood date—Controls whetherornotatime componentis storedin
DATE columns. For behavior compatible with Oracle databases, set
edb redwood dateto TRUE.See Section_1.3.1.

e ecdb redwood raw names— Controls whether database object names appear in
uppercase or lowercase letters when viewed fromOracle systemcatalogs. For
behavior compatible with Oracle databases,edb redwood raw names is setto
its default value of FALSE. To view database objectnames as they are actually
stored in the PostgreSQL systemcatalogs,set edb redwood raw names to
TRUE. See Section 1.3.2.

e edb redwood strings—EquatesNULL to an emptystring for purposes of
string concatenation operations. For behavior compatible with Oracle databases,
setedb redwood stringsto TRUE.See Section1.3.3.

e edb stmt level tx—Isolates automaticrollbackofan aborted SQLcommand
to statement levelrollback only — theentire, current transaction is not
automatically rolled backas is the case for default PostgreSQLbehavior. For
behavior compatible with Oracle databases,setedb stmt level txto TRUE;
however, use only when absolutely necessary. See Section 1.3.4.

e oracle home—Point Advanced Serverto the correct Oracle installation
directory. See Section 1.3.5.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 12

Database Compatibility for Oracle® Developers Guide

1.3.1 edb_redwood_date

When DATE appears as the data typeofa column in the commands, it is translated to
TIMESTAMP (0) atthe time the table definition is stored in the databaseifthe
configurationparameteredb redwood_date is setto TRUE. Thus, a time component
will also be stored in the column along with the date. This is consistent with Oracle’s
DATE datatype.

Ifedb redwood dateissetto FALSE the column’sdatatypeina CREATE TABLE or
ALTER TABLE command remains as a native PostgreSQL DATE data type and is stored as

such in the database. The PostgreSQL DATE data typestores only thedate without a time
component in the column.

Regardless ofthe settingofedb redwood date,whenDATE appearsas a datatype in
any other context such as the data typeofa variable in an SPL declaration section, orthe
data type ofa formal parameterin an SPL procedure or SPL function, orthe return type

of an SPL function, it is always internally translatedto a TIMESTAMP (0) andthus, can
handle a time component if present.

See the Database Compatibility for Oracle Developers Reference Guide for more
information about date/time data types.

1.3.2 edb_redwood _raw_names

When edb redwood raw names is setto its default value of FALSE, database object
names such as table names, column names, trigger names, programnaimes, user names,
etc. appear in uppercase letters when viewed fromOracle catalogs (fora complete list of
supported catalog views, see the Database Compatibility for Oracle Developers

Reference Guide). In addition, quotation marks enclosenames that were created with
enclosing quotation marks.

Whenedb redwood raw names is setto TRUE, the database object names are
displayed exactly as they are stored in the PostgreSQL systemcatalogs when viewed
from the Oracle catalogs. Thus, names created withoutenclosing quotation marks appear

in lowercase as expected in PostgreSQL. Names created with enclosing quotation marks
appear exactly as they were created, but without the quotation marks.

Forexample, the following username is created, and then a session is started with that
user.

CREATE USER reduser IDENTIFIED BY password;

edb=# \c - reduser

Password for user reduser:

You are now connected to database "edb" as user "reduser".

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 13

Database Compatibility for Oracle® Developers Guide

When connected to the database as reduser, thefollowing tables are created.

CREATE TABLE all lower (col INTEGER) ;
CREATE TABLE ALL UPPER (COL INTEGER) ;
CREATE TABLE "Mixed Case" ("Col" INTEGER);

When viewed fromthe Oracle catalog, USER_TABLES,withedb redwood raw names
set to the default value FALSE, the names appear in uppercase exceptforthe
Mixed Casename,which appearsas created and also with enclosing quotation marks.

edb=> SELECT * FROM USER TABLES;

schema name | table name | tablespace name | status | temporary
seossssossss o e sssoce oo oo fos s oo os s oo oo seoofesosssso e s oo s ssse oS
REDUSER | ALL LOWER | | VALID | N

REDUSER | ALL UPPER | | VALID | N

REDUSER | "Mixed Case" | | VALID | N

(3 rows)

When viewedwith edb redwood raw names setto TRUE, the names appear in

lowercase except forthe Mixed Case name, which appears as created, but now without
the enclosing quotation marks.

edb=> SET edb redwood raw names TO true;

SET

edb=> SELECT * FROM USER TABLES;

schema name | table name | tablespace name | status | temporary
e e e et e Rt
reduser | all lower | | VALID | N

reduser | all upper | | VALID | N

reduser | Mixgd7Case | | VALID | N

(3 rows)

These names now match the case when viewed fromthe PostgreSQLpg tables
catalog.

edb=> SELECT schemaname, tablename, tableowner FROM pg tables WHERE

tableowner = 'reduser';

schemaname | tablename | tableowner
reduser | all lower | reduser
reduser | all:upper | reduser
reduser | Mixed_Case | reduser

(3 rows)

1.3.3 edb_redwood_strings

In Oracle, when a string is concatenated with a null variable or null column, the result is
the original string; however, in PostgreSQL concatenation ofa string with a null variable
or nullcolumn gives anullresult. [fthe edb redwood strings parameteris setto
TRUE, the aforementioned concatenation operationresults in the original stringas done

by Oracle.If edb redwood stringsissetto FALSE,the native PostgreSQL behavior
is maintained.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 14

Database Compatibility for Oracle® Developers Guide

The following example illustrates the difference.

The sample application introduced in the next section contains a table of employees. This
table has a column named comm thatis null formost employees. The following query is
run with edb redwood stringsetto FALSE. The concatenation ofanull column with

non-empty strings produces a finalresult of null, so only employees that havea
commission appear in the query result. The outputline forall otheremployees is null.

SET edb redwood strings TO off;

SELECT RPAD(ename, 10) || " ' || TO CHAR(sal, '99,999.99") [| " ' ||
TO_CHAR (comm, '99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

EMPLOYEE COMPENSATION

ALLEN 1,600.00 300.00
WARD 1,250.00 500.00
MART IN 1,250.00 1,400.00
TURNER 1,500.00 .00
(14 rows)

The following is the same query executedwhenedb redwood strings is setto TRUE.
Here, the value ofanull column is treated as an empty string. The concatenation ofan

empty string with a non-empty string produces thenon-empty string. This result is
consistent with the results produced by Oracle forthe same query.

SET edb redwood strings TO on;

SELECT RPAD(ename,10) || ' ' || TO CHAR(sal,'99,999.99') || ' ' ||
TO CHAR (comm, '99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

EMPLOYEE COMPENSATION

SMITH 800.00

ALLEN 1,600.00 300.00
WARD 1,250.00 500.00
JONE S 2,975.00

MARTIN 1,250.00 1,400.00
BLAKE 2,850.00

CLARK 2,450.00

SCOTT 3,000.00

KING 5,000.00

TURNER 1,500.00 .00
ADAMS 1,100.00

JAME S 950.00

FORD 3,000.00

MILLER 1,300.00

(14 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

15

Database Compatibility for Oracle® Developers Guide
1.34 edb_stmt_level_tx

In Oracle, when a runtime error occurs in a SQL command, all the updates on the
database caused by that single command are rolled back. This is called statementlevel
transactionisolation. Forexample, if asingle upDATE command successfully updates
five rows, but an attempt to update a sixth row results in an exception, theupdates toall
six rows made by this UpDATE command are rolled back. The effects ofprior SQL
commands thathave not yetbeen committed orrolled back are pending untila coMM1T
or ROLLBACK command is executed.

In PostgreSQL, if an exception occurs while executinga SQL command, all the updates
on the database since thestart ofthe transaction are rolled back. In addition, the

transactionis left in an aborted state and eithera COMMIT OrROLLBACK command must
be issuedbefore another transaction can be started.

Ifedb stmt level txissetto TRUE,then an exception willnotautomatically roll
back prioruncommitted databaseupdates, emulating the Oracle behavior. If

edb stmt level txissettoFALSE,thenanexceptionwill roll backuncommitted
database updates.

Note: Useedb stmt level txsetto TRUE only when absolutely necessary, as this
may causeanegative performance impact.

The following example run in PSQL showsthatwhenedb stmt level txisFALSE,
the abort ofthe second INSERT command alsorolls back thefirst INSERT command.
Note that in PSQL, the command \set AUTOCOMMIT off mustbeissued, otherwise
every statement commits automatically defeating the purpose ofthis demonstration ofthe
effectofedb stmt level tx.

\set AUTOCOMMIT off
SET edb stmt level tx TO off;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);
INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);
ERROR: insert or update on table "emp" violates foreign key constraint

"emp ref dept fk"

DETAIL: Key (deptno)=(0) is not present in table "dept".

COMMIT;
SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno

ceomooodteccccccadtcs oo o aa =

(0 rows)

In the following example, with edb stmt level txsetto TRUE,the first INSERT
command has notbeenrolled back aftertheerror on the second INSERT command. At
this point, thefirst INSERT command can either be committed orrolled back.

\set AUTOCOMMIT off

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 16

Database Compatibility for Oracle® Developers Guide

SET edb stmt level tx TO on;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);

INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);

ERROR: insert or update on table "emp" violates foreign key constraint
"emp ref dept fk"

DETAIL: Key (deptno)=(0) is not present in table "dept".

SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno

_______+_______+ ________
9001 | JONES | 40

(1 row)

COMMIT;

A roLLBACK command could havebeenissued instead ofthe coMmM1 T command in
which case the insert of employee number 9001 would have beenrolled back as well.

1.3.5 oracle_home

Before creating a link to an Oracle server, youmust direct Advanced Server to the correct

Oracle home directory. Setthe LD LIBRARY PATH environmentvariable onLinux(or
pATH on Windows) to the 11b directory ofthe Oracle client installation directory.

For Windows only, you caninstead set the valueofthe oracle home configuration
parameterin the postgresqgl.conf file. The value specified in the oracle home
configuration parameter will override the Windows PATH environment variable.

The LD LIBRARY PATHenvironment variable on Linux(PATH environment variable or

oracle home configurationparameter on Windows) mustbe setproperly each time you
start Advanced Server.

For Windows only: Tosetthe oracle home configuration parameterin the
postgresqgl.conf file, edit the file, adding the following line:

oracle home = 'lIib directory'

Substitute thename ofthe Windows directory that contains oci.d11 for
1lib directory.

Aftersettingtheoracle home configuration parameter, you mustrestart the server for
the changes to take effect. Restart theserver fromthe Windows Services console.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 17

Database Compatibility for Oracle® Developers Guide
1.4 About the Examples Used in this Guide

The examples shown in this guideare illustrated usingthe PSQL program. The prompt

that normally appears when using PSQL is omitted in these examples to provide extra
clarity for the point being demonstrated.

Examples and output from examples are shown in fixed-width, blue font on a
light blue background.

Also notethe following points:

e During installationofthe EDB Postgres Advanced Server the selection for
configuration and defaults compatible with Oracle databases must be chosen in
order to reproducethe same results as theexamples shown in this guide. A default

compatible configuration can beverified by issuing the following commands in
PSQL and obtaining the same results as shownbelow.

SHOW edb redwood date;

edb redwood date

on
SHOW datestyle;
DateStyle

Redwood, DMY
SHOW edb redwood strings;
edb redwood strings

on

e Theexamples use the sample tables, dept,emp,and jobhist, createdand
loaded when Advanced Serveris installed. The emp table is installed with triggers
that must be disabled in order to reproduce the same results as shown in this

guide. Log onto Advanced Server as the enterprisedb superuser and disable
the triggers by issuing the following command.

ALTER TABLE emp DISABLE TRIGGER USER;

The triggers onthe emp table canlater be re-activated with the following
command.

ALTER TABLE emp ENABLE TRIGGER USER;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 18

Database Compatibility for Oracle® Developers Guide

2 SQL Tutorial

This section is an introductionto the SQL language for those new to relational database
management systems. Basic operations such as creating, populating, querying, and
updating tables are discussed along with examples.

More advanced concepts such as view, foreign keys, and transactions are discussed as
well.

2.1 Getting Started

Advanced Server is a relational database management system (RDBMS). That means it
is a systemformanaging data stored in relations. A relation is essentially a mathematical
term for a table. The notion of storing datain tables is so commonplacetodaythatlt
might seeminherently obvious, but there are a number of other ways of organizing

databases. Files and directories on Unix-like operating systems forman example ofa
hierarchical database. A more modern developmentis the object-oriented database.

Each table is a named collection of rows. Each row ofa given table has the same set of
named col/umns,and each column is ofa specific data type. Whereas columns have a
fixed orderin each row, it is important to rememberthat SQLdoes notguarantee the
order ofthe rows within the table in any way (although they can be explicitly sorted for
display).

Tables are grouped into databases,and a collection of databases managed by a single
Advanced Server instance constitutes a database cluster.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 19

Database Compatibility for Oracle® Developers Guide

2.11 Sample Database

Throughoutthis documentation we will be working with a sample databaseto help
explain some basic to advanced level database concepts.

2.1.1.1 Sample Database Installation

When Advanced Serveris installed a sample database named, edb, is automatically

created. This sample database contains thetables and programs used throughoutthis
document.

The tables and programs in the sample database can bere-created at any time by

executing the script, edb-sample. sql,located in the samples subdirectory ofthe
Advanced Server home directory.

This script does the following:

e Creates the sample tables and programs in the currently connected database
e Grants all permissions onthe tables to the PUBLIC group

The tables and programs will be created in the first schema of the search path in which

the current user has permission to createtables and procedures. You can display the
search path by issuing the command:

SHOW SEARCH PATH;

Altering the searchpath canbe done using commands in PSQL.

2.1.1.2 Sample Database Description
The sample databaserepresents employees in an organization.

It contains three types ofrecords: employees, departments, and historical records of
employees.

Each employee has anidentification number, name, hire date, salary, and manager. Some
employees earna commission in additionto theirsalary. Allemployee-related
mformation is stored in the emp table.

The sample company is regionally diverse, so the databasekeeps track of the location of

the departments. Each company employeeis assignedto a department. Each department
is identified by a unique departmentnumber and a shortname. Each department is

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 20

Database Compatibility for Oracle® Developers Guide

associated with one location. Alldepartment-related informationis storedin the dept
table.

The company also tracks information about jobs held by the employees. Some employees
have been with the company fora long time and have held different positions, received
raises, switched departments, etc. Whena changein employee status occurs, the conpany
records theend date ofthe former position. A new job recordis added with the start date
and the new job title, department, salary, and thereason for the status change. All
employee history is maintained in the jobhist table.

The following is an entity relationship diagramofthe sample database tables.

Figure 1 Sample Database Tables

deptno

dept

dname
loc

emp jg\ ji jobhist

empno I

OT empno
startdate

ename
job enddate
mgr job
hiredate sal
sal comm
comm deptno
deptno chgdesc

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 21

Database Compatibility for Oracle® Developers

The following is the edb-sample.sql script.

-— Script that creates the 'sample' tables, views, procedures,
-- functions, triggers, etc.

-—- Start new transaction - commit all or nothing

BEGIN;
/

-— Create and load tables used in the documentation examples.

-— Create the 'dept' table

CREATE TABLE dept (

deptno NUMBER (2) NOT NULL CONSTRAINT deptipk PRIMARY KEY,
dname VARCHARZ2 (14) CONSTRAINT dept dname ug UNIQUE,
loc VARCHARZ (13)

-— Create the 'emp' table

CREATE TABLE emp (

empno NUMBER (4) NOT NULL CONSTRAINT emp pk PRIMARY KEY,
ename VARCHARZ2 (10),

job VARCHAR? (9),

mgr NUMBER (4) ,

hiredate DATE,

sal NUMBER (7, 2) CONSTRAINT emp sal ck CHECK (sal > 0),
comm NUMBER (7, 2) ,

deptno NUMBER (2) CONSTRAINT emp ref dept fk

REFERENCES dept (deptno)

-— Create the 'jobhist' table

CREATE TABLE jobhist (

empno NUMBER (4) NOT NULL,
startdate DATE NOT NULL,
enddate DATE,

job VARCHAR? (9),

sal NUMBER (7, 2) ,

comm NUMBER (7, 2) ,

deptno NUMBER (2) ,

chgdesc VARCHARZ2 (80),

CONSTRAINT jobhist pk PRIMARY KEY (empno, startdate),

CONSTRAINT jobhist ref emp fk FOREIGN KEY (empno)
REFERENCES emp (empno) ON DELETE CASCADE,

CONSTRAINT jobhist ref dept fk FOREIGN KEY (deptno)
REFERENCES dept (deptno) ON DELETE SET NULL,

CONSTRAINT jobhist date chk CHECK (startdate <= enddate)

-- Create the 'salesemp' view

CREATE OR REPLACE VIEW salesemp AS
SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job =

-- Sequence to generate values for function 'new_ empno'.

CREATE SEQUENCE next empno START WITH 8000 INCREMENT BY 1;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

Guide

'SALESMAN' ;

22

Database Compatibility for Oracle® Developers Guide

-- Issue PUBLIC grants

GRANT ALL ON emp TO PUBLIC;

GRANT ALL ON dept TO PUBLIC;

GRANT ALL ON jobhist TO PUBLIC;
GRANT ALL ON salesemp TO PUBLIC;
GRANT ALL ON next empno TO PUBLIC;

-— Load the 'dept' table

INSERT INTO dept VALUES (10, '"ACCOUNTING','NEW YORK') ;
INSERT INTO dept VALUES (20, 'RESEARCH', 'DALLAS');
INSERT INTO dept VALUES (30, 'SALES', 'CHICAGO');
INSERT INTO dept VALUES (40, 'OPERATIONS','BOSTON') ;

-— Load the 'emp' table

INSERT INTO emp VALUES (7369, 'SMITH', 'CLERK', 7902, '17-DEC-80"',800,NULL, 20) ;
INSERT INTO emp VALUES (7499, 'ALLEN', 'SALESMAN',7698, '20-FEB-
81',1600,300,30) ;

INSERT INTO emp VALUES (7521, 'WARD', 'SALESMAN', 7698, '22-FEB-81',1250,500,30) ;
INSERT INTO emp VALUES (7566, 'JONES', 'MANAGER', 7839, '02-APR-
81',2975,NULL,20);

INSERT INTO emp VALUES (7654, 'MARTIN','SALESMAN', 7698,'28-SEP-
81',1250,1400,30);

INSERT INTO emp VALUES (7698, 'BLAKE', '"MANAGER', 7839, '01-MAY-
81',2850,NULL,30);

INSERT INTO emp VALUES (7782, 'CLARK', 'MANAGER', 7839, '09-JUN-
81',2450,NULL,10);

INSERT INTO emp VALUES (7788, 'SCOTT', 'ANALYST', 7566, '19-APR-
87',3000,NULL,20);

INSERT INTO emp VALUES (7839, 'KING', 'PRESIDENT',NULL, '17-NOV-
81',5000,NULL,10);

INSERT INTO emp VALUES (7844, 'TURNER','SALESMAN',7698,'08-SEP-81',1500,0,30) ;
INSERT INTO emp VALUES (7876, 'ADAMS', 'CLERK', 7788, '23-MAY-87"',1100,NULL,20);
INSERT INTO emp VALUES (7900, 'JAMES', 'CLERK', 7698, '03-DEC-81"',950,NULL, 30) ;
INSERT INTO emp VALUES (7902, 'FORD', 'ANALYST',7566,'03-DEC-81"',3000,NULL, 20) ;
INSERT INTO emp VALUES (7934, 'MILLER','CLERK',7782,'23-JAN-82"',1300,NULL,10) ;

-— Load the 'jobhist' table

INSERT INTO jobhist VALUES (7369,'17-DEC-80',NULL, 'CLERK', 800,NULL,20,'New

Hire');
INSERT INTO jobhist VALUES (7499,'20-FEB-81',NULL, 'SALESMAN', 1600, 300,30, 'New
Hire');
INSERT INTO jobhist VALUES (7521,'22-FEB-81',NULL, 'SALESMAN', 1250,500,30, 'New
Hire');
INSERT INTO jobhist VALUES (7566,'02-APR-81',NULL, 'MANAGER', 2975, NULL,20, 'New
Hire');

INSERT INTO jobhist VALUES (7654,'28-SEP-
81',NULL,'SALESMAN',1250,1400,30,'New Hire');
INSERT INTO jobhist VALUES (7698,'01-MAY-81',NULL, '"MANAGER', 2850, NULL,30, 'New

Hire');
INSERT INTO jobhist VALUES (7782,'09-JUN-81',NULL, '"MANAGER',2450,NULL,10, 'New
Hire');

INSERT INTO jobhist VALUES (7788,'19-APR-87', '12-APR-
88', '"CLERK', 1000,NULL,20, 'New Hire') ;

INSERT INTO jobhist VALUES (7788,'13-APR-88', '04-MAY-
89', '"CLERK', 1040,NULL,20, 'Raise"');

INSERT INTO jobhist VALUES (7788,'05-MAY-

90',NULL, 'ANALYST',3000,NULL, 20, 'Promoted to Analyst');

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 23

Database Compatibility for Oracle® Developers Guide

INSERT INTO jobhist VALUES (7839,'17-NOV-
81',NULL, ' PRESIDENT', 5000, NULL, 10, 'New Hire') ;
INSERT INTO jobhist VALUES (7844,'08-SEP-81',NULL, 'SALESMAN', 1500, 0,30, 'New

Hire');
INSERT INTO jobhist VALUES (7876,'23-MAY-87',NULL, 'CLERK', 1100, NULL, 20, 'New
Hire');

INSERT INTO jobhist VALUES (7900,'03-DEC-81', '14-JAN-

83', '"CLERK', 950, NULL, 10, 'New Hire');

INSERT INTO jobhist VALUES (7900,'15-JAN-

83',NULL, 'CLERK',950,NULL, 30, 'Changed to Dept 30');

INSERT INTO jobhist VALUES (7902,'03-DEC-81',NULL, 'ANALYST',3000,NULL,20, 'New

Hire');
INSERT INTO jobhist VALUES (7934,'23-JAN-82',NULL, 'CLERK', 1300, NULL, 10, 'New
Hire');

-- Populate statistics table and view (pg statistic/pg stats)
ANALYZE dept;
ANALYZE emp;
ANALYZE jobhist;
-— Procedure that lists all employees' numbers and names
-— from the 'emp' table using a cursor.
CREATE OR REPLACE PROCEDURE list emp
IS
vV_empno NUMBER (4) ;
vV ename VARCHAR2 (10) ;
CURSOR emp cur IS
SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
OPEN emp cur;
DBMS OUTPUT.PUT LINE ('EMPNO ENAME ') ;
DBMS OUTPUT.PUT LINE ('----- cee——e=1)) g
LOOP
FETCH emp cur INTO v empno, Vv ename;
EXIT WHEN emp cur%NOTFOUND;
DBMS OUTPUT.PUT LINE (v_empno || ' ' || v_ename);
END LOOP;
CLOSE emp cur;
END;

-—- Procedure that selects an employee row given the employee
-— number and displays certain columns.

CREATE OR REPLACE PROCEDURE select emp (

p_empno IN NUMBER
)
IS
v_ename emp . ename $TYPE ;
v hiredate emp . hiredate%TYPE;
v:sal emp.sal%TYPE;
v comm emp .comm3TYPE;
v:dname dept .dname$TYPE;
v_disp date VARCHARZ2 (10) ;
BEGIN

SELECT ename, hiredate, sal, NVL (comm, 0), dname
INTO v_ename, v_hiredate, v _sal, v_comm, v_dname
FROM emp e, dept d
WHERE empno = p empno

AND e.deptno = d.deptno;
v _disp date := TO CHAR(v_hiredate, 'MM/DD/YYYY');

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 24

DBMS_OUTPUT .
DBMS_OUTPUT .
DBMS OUTPUT.
DBMS OUTPUT.
DBMS OUTPUT.
DBMS OUTPUT.

EXCEPTION
WHEN NO DATA FOU

DBMS OUTPUT.
WHEN OTHERS THEN

PUT
PUT
PUT
PUT
PUT
PUT

DBMS_OUTPUT.
DBMS_OUTPUT.
DBMS_OUTPUT.
DBMS_OUTPUT.

END;

/

Procedure that g
department numbe
employee number
hire date, and s

CREATE OR REPLACE PR

p_deptno
p_empno
p_ename
p_job
p hiredate
p:sal
)
S
BEGIN
SELECT empno, en
INTO p_ empno
FROM emp
WHERE deptno
AND (empno
OR ename
END;
/

Procedure to cal
parameters. Dis
OUT parameters.
CREATE OR REPLACE PR
1S
v_deptno
vV _empno
v:ename
v_job
v_hiredate
v:sal
BEGIN
v_deptno
vV_empno 0;
vV _ename 'Mar
eﬁpiquery(vidept

= 30;

DBMS_OUTPUT.PUT
DBMS_OUTPUT . PUT
DBMS OUTPUT.PUT
DBMS_OUTPUT . PUT
DBMS OUTPUT.PUT

Copyright © 2007 -2017 Ente

Database Compatibility for Oracle® Developers

LINE ('Number : " || p empno);

LINE ('Name : ' || v ename);

LINE ("Hire Date : ' || v:dispidate),

LINE ('Salary : ' || v sal);

LINE ('"Commission: ' || vicomm),

LINE ('Department: ' || v dname);

ND THEN

PUT LINE ('Employee ' || p empno || ' not found');

'The following is SQLERRM:') ;
SQLERRM) ;
'The following is SQLCODE:') ;
SQLCODE) ;

PUT LINE (
PUT LINE (
PUT_LINE (
PUT LINE (

ueries the 'emp' table based on
r and employee number or name.
and name as IN OUT parameters
alary as OUT parameters.

Returns
and job,

OCEDURE emp query (
IN NUMBER,

IN OUT NUMBER,

IN OUT VARCHARZ2,
ouT VARCHARZ,
OouT DATE,

OuT NUMBER

ame, job, hiredate, sal

, P_ename, p job, p hiredate, p sal
= p_deptno

p_empno

UPPER (p_ename)) ;

1 '"emp query caller' with IN and IN OUT
plays the results received from IN OUT and

OCEDURE emp query caller

NUMBER (2) ;
NUMBER (4) ;
VARCHAR2 (10) ;
VARCHAR? (9) ;

DATE;

NUMBER ;

tlmV g

no, Vv_empno, v_ename, Vv_job, v _hiredate, v sal);
LINE ('Department : ' || v_deptno);

LINE ('Employee No: ' || v empno) ;

LINE ('Name : ' || v_ename);

LINE ('Job : " || v job);

LINE ('Hire Date : ' || v:hiredate),

rpriseDB Corporation. All rights reserved.

Guide

25

Database Compatibility for Oracle® Developers
DBMSioUTPUT.PUTiLINE('Salary R Visal);
EXCEPTION
WHEN TOO MANY ROWS THEN
DBMS OUTPUT.PUT LINE ('More than one employee was selected');
WHEN NO DATA FOUND THEN
DBMS OUTPUT.PUT LINE ('No employees were selected') ;
END;
/
-— Function to compute yearly compensation based on semimonthly
-- salary.
CREATE OR REPLACE FUNCTION emp comp (
p_sal NUMBER,
p comm NUMBER
) RETURN NUMBER
IS
BEGIN
RETURN (p_sal + NVL(p comm, 0)) * 24;
END;
/
-- Function that gets the next number from sequence, 'next empno',
-- and ensures it is not already in use as an employee number.
CREATE OR REPLACE FUNCTION new empno RETURN NUMBER
Is B
v _cnt INTEGER := 1;
v:new_empno NUMBER ;
BEGIN
WHILE v cnt > 0 LOOP
SELECT next empno.nextval INTO v _new empno FROM dual;
SELECT COUNT (*) INTO v cnt FROM emp WHERE empno = v _new empno;
END LOOP; B -
RETURN v_new _empno;
END;
/
-— EDB-SPL function that adds a new clerk to table 'emp'. This function

-- uses package 'emp admin'.

CREATE OR REPLACE FUNCTION hire clerk (

p_ename VARCHARZ2,
p deptno NUMBER
) RETURN NUMBER
IS
vV _empno NUMBER (4) ;
v:ename VARCHAR2 (10) ;
v _job VARCHAR2 (9) ;
v_mgr NUMBER (4) ;
v_hiredate DATE;
v sal NUMBER (7, 2) ;
v_comm NUMBER (7, 2) ;
v_deptno NUMBER (2) ;
BEGIN
V_empno := new_empno;

INSERT INTO emp VALUES (v empno, p ename, 'CLERK', 7782,
TRUNC (SYSDATE), 950.00, NULL, p deptno);
SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno INTO
v empno, v ename, v job, v mgr, v hiredate, v sal, v comm, v dept
FROM emp WHERE empng = vieﬁpno; - B B B
DBMS OUTPUT.PUT LINE ('Department : ' || v deptno);
DBMS OUTPUT.PUT LINE ('Employee No: ' || v_empno) ;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

Guide

no

26

Database Compatibility for Oracle® Developers Guide
DBMS OUTPUT.PUT LINE ('Name : " || v ename);
DBMS OUTPUT.PUT LINE ('Job : ' || v job);
DBMS OUTPUT.PUT LINE ('Manager : ' || v_mgr);
DBMS OUTPUT.PUT LINE ('Hire Date : ' || v_hiredate);
DBMS OUTPUT.PUT LINE ('Salary : ' || v_sal);
DBMS OUTPUT.PUT LINE ('Commission : ' || v_comm);

RETURN v_empno;
EXCEPTION
WHEN OTHERS THEN

DBMS OUTPUT.PUT LINE ('The following is SQLERRM:') ;
DBMS OUTPUT.PUT LINE (SQLERRM) ;
DBMS OUTPUT.PUT LINE ('The following is SQLCODE:') ;
DBMS OUTPUT.PUT LINE (SQLCODE) ;
RETURN -1;

END;

/

to table

CREATE OR REPLACE FUNCTION hire salesman (

PostgreSQL PL/pgSQL function that adds a new salesman
'emp'.

p_ename VARCHAR,
p sal NUMERIC,
p_comm NUMERIC
) RETURNS NUMERIC
AS $$
DECLARE
vV _empno NUMERIC(4);
v_ename VARCHAR (10) ;
v_job VARCHAR(9) ;
vV _mgr NUMERIC(4);
v:hiredate DATE;
v sal NUMERIC(7,2) ;
v_comm NUMERIC(7,2) ;
v_deptno NUMERIC(2);
BEGIN
vV_empno := new_empno () ;
INSERT INTO emp VALUES (v_empno, p ename, 'SALESMAN', 7698,
CURRENT DATE, p sal, p comm, 30);
SELECT INTO
v empno, v ename, v job, v mgr, v hiredate, v sal, v comm, v deptno
eﬁpno, enaﬁe, job, agr, hizedate,isal, comm, aeptno N N
FROM emp WHERE empno = v_empno;
RAISE INFO 'Department %', v deptno;
RAISE INFO 'Employee No: %', v:empno;
RAISE INFO 'Name : %', v_ename;
RAISE INFO 'Job %', v _job;
RAISE INFO 'Manager s, v:mgr;
RAISE INFO 'Hire Date %', v hiredate;
RAISE INFO 'Salary %', v _sal;
RAISE INFO 'Commission %', v_comm;
RETURN v empno;
EXCEPTION
WHEN OTHERS THEN
RAISE INFO 'The following is SQLERRM: ';
RAISE INFO '$', SQLERRM;
RAISE INFO 'The following is SQLSTATE:';
RAISE INFO '%', SQLSTATE;
RETURN -1;
END;
$$ LANGUAGE 'plpgsql';
/
Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 27

Database Compatibility for Oracle® Developers Guide

-— Rule to INSERT into view 'salesemp'

CREATE OR REPLACE RULE salesemp i AS ON INSERT TO salesemp
DO INSTEAD
INSERT INTO emp VALUES (NEW.empno, NEW.ename, 'SALESMAN', 7698,
NEW.hiredate, NEW.sal, NEW.comm, 30);

-— Rule to UPDATE view 'salesemp'

CREATE OR REPLACE RULE salesemp u AS ON UPDATE TO salesemp

DO INSTEAD
UPDATE emp SET empno = NEW.empno,
ename = NEW.ename,
hiredate = NEW.hiredate,
sal = NEW.sal,
comm = NEW.comm

WHERE empno = OLD.empno;

-- Rule to DELETE from view 'salesemp'

CREATE OR REPLACE RULE salesemp d AS ON DELETE TO salesemp
DO INSTEAD
DELETE FROM emp WHERE empno = OLD.empno;

-- After statement-level trigger that displays a message after
-- an insert, update, or deletion to the 'emp' table. One message
-— per SQL command is displayed.

CREATE OR REPLACE TRIGGER user audit trig
AFTER INSERT OR UPDATE OR DELETE ON emp

DECLARE
v_action VARCHAR2 (24) ;
BEGIN
IF INSERTING THEN
v_action := ' added employee(s) on ';
ELSIF UPDATING THEN
v_action := ' updated employee(s) on ';
ELSIF DELETING THEN
v_action := ' deleted employee(s) on ';
END IF;

DBMS OUTPUT.PUT LINE ('User ' |
TO CHAR (SYSDATE, 'YYYY-MM-DD')) ;
END;

USER || v_action ||

-— Before row-level trigger that displays employee number and
-— salary of an employee that is about to be added, updated,
-— or deleted in the 'emp' table.
CREATE OR REPLACE TRIGGER emp sal trig

BEFORE DELETE OR INSERT OR UPDATE ON emp

FOR EACH ROW

DECLARE
sal diff NUMBER;
BEGIN
IF INSERTING THEN
DBMS OUTPUT.PUT LINE ('Inserting employee ' || :NEW.empno) ;
DBMS OUTPUT.PUT LINE ('..New salary: ' || :NEW.sal);
END IF;
IF UPDATING THEN
sal diff := :NEW.sal - :O0LD.sal;
DBMS OUTPUT.PUT LINE ('Updating employee ' || :0LD.empno);
DBMS OUTPUT.PUT LINE ('..0ld salary: ' || :0LD.sal);

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 28

Database Compatibility for Oracle® Developers Guide

DBMS OUTPUT.PUT LINE('..New salary: ' || :NEW.sal);
DBMS OUTPUT.PUT LINE('..Raise : " || sal diff);
END IF; B B
IF DELETING THEN
DBMS_OUTPUT.PUT_LINE('Deleting employee ' || :0LD.empno);
DBMS OUTPUT.PUT LINE('..Old salary: ' || :0LD.sal);
END IF;
END;
/

-- Package specification for the 'emp admin' package.

CREATE OR REPLACE PACKAGE emp admin
Is
FUNCTION get dept name (
p deptno " NUMBER
) RETURN VARCHARZ;
FUNCTION update emp sal (
p_empno NUMBER,
p raise NUMBER
) RETURN NUMBER;
PROCEDURE hire emp (

p empno NUMBER,
p:ename VARCHARZ,
p_Jjob VARCHAR2,
p sal NUMBER,
p:hiredate DATE,

p comm NUMBER,

p mgr NUMBER,
p_deptno NUMBER

) i
PROCEDURE fire emp (
p_empno NUMBER
) i
END emp admin;
/

-- Package body for the 'emp admin' package.

CREATE OR REPLACE PACKAGE BODY emp admin
IS

-- Function that queries the 'dept' table based on the department
-- number and returns the corresponding department name.

FUNCTION get dept name (

p deptno IN NUMBER
) RETURN VARCHAR2
IS
v_dname VARCHAR?Z2 (14) ;
BEGIN
SELECT dname INTO v _dname FROM dept WHERE deptno = p_ deptno;
RETURN v_dname;
EXCEPTION
WHEN NO DATA FOUND THEN
DBMS OUTPUT.PUT LINE ('Invalid department number ' || p deptno) ;
RETURN '';

-- Function that updates an employee's salary based on the

-- employee number and salary increment/decrement passed

-- as IN parameters. Upon successful completion the function
-- returns the new updated salary.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 29

END;

Database Compatibility for Oracle® Developers Guide

FUNCTION update emp sal (

p_empno IN NUMBER,
p raise IN NUMBER
) RETURN NUMBER
IS
v sal NUMBER := O0;
BEGIN
SELECT sal INTO v_sal FROM emp WHERE empno = p_ empno;
v _sal := v sal + p raise;
UPDATE emp_SET sal = v_sal WHERE empno = p_empno;
RETURN v sal;
EXCEPTION
WHEN NO_ DATA FOUND THEN
DBMS OUTPUT.PUT LINE ('Employee ' || p_empno || ' not found');
RETURN -1;
WHEN OTHERS THEN
DBMS OUTPUT.PUT LINE ('The following is SQLERRM:') ;
DBMS_OUTPUT .PUT LINE (SQLERRM) ;
DBMS OUTPUT.PUT LINE ('The following is SQLCODE:"') ;
DBMS_OUTPUT . PUT LINE (SQLCODE) ;
RETURN -1;
END;
-- Procedure that inserts a new employee record into the 'emp' table.
PROCEDURE hire emp (
p empno NUMBER,
p:ename VARCHAR?2,
p_job VARCHAR2,
p sal NUMBER,
p hiredate DATE,
p comm NUMBER,
p mgr NUMBER,
p_deptno NUMBER
)
AS
BEGIN
INSERT INTO emp (empno, ename, job, sal, hiredate, comm, mgr, deptno)
VALUES (p_empno, p_ename, p job, p sal,
p_hiredate, p comm, p mgr, p_deptno);
END;

Procedure that deletes an employee record from the

on the employee

PROCEDURE fire emp

)
AS

P _empno

BEGIN

END;

COMMIT;

DELETE FROM emp

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

'emp' table based

number.

(
NUMBER

WHERE empno = p empno;

30

Database Compatibility for Oracle® Developers Guide

2.1.2 Creatinga New Table

A newtable is created by specifying thetable name, along with all column names and
theirtypes. The following is a simplified version ofthe emp sample table with just the
minimal information neededto define a table.

CREATE TABLE emp (

empno NUMBER (4) ,
ename VARCHAR2 (10) ,
job VARCHAR2 (9) ,
mgr NUMBER (4) ,
hiredate DATE,

sal NUMBER (7, 2) ,
comm NUMBER (7, 2) ,
deptno NUMBER (2)

)

You can enter this into PSQL with line breaks. PSQL will recognize thatthe commandis
not terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) may be used freely in SQL commands. That
means you cantype thecommand aligned differently thanthe above, oreven allon one
line. Two dashes ("--") introduce comments. Whatever follows themis ignored upto the
end ofthe line. SQL is case insensitiveaboutkey words and identifiers, except when
identifiers are double-quoted to preserve the case (not doneabove).

VARCHAR?2 (10) specifies a data type thatcan storearbitrary character stringsupto 10
characters in length. NUMBER (7, 2) is a fixed point number with precision 7 and scale 2.
NUMBER (4) 1s an integer number with precision 4 and scale 0.

Advanced Server supports theusual SQL data types INTEGER, SMALLINT, NUMBER,

REAL, DOUBLE PRECISION,CHAR, VARCHAR2,DATE, and TIMESTAMP as wellas
various synonyms forthesetypes.

If youdon’tneed a table any longer or want to recreate it differently youcanremove it
using the following command:

DROP TABLE tablename;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 31

Database Compatibility for Oracle® Developers Guide

2.1.3 Populating a Table With Rows

The INSERT statement is used to populatea table with rows:

INSERT INTO emp VALUES (7369, 'SMITH', 'CLERK',7902,'17-DEC-80',800,NULL,20) ;

Note that all data types use rather obvious input formats. Constants thatare not simple
numeric values usually must be surrounded by single quotes ('), as in the example. The

DATE type is actually quite flexible in what it accepts, butfor this tutorial we will stick to
the unambiguous format shown here.

The syntaxusedso farrequires you to remember the order ofthe columns. An alternative
syntaxallows you to list the columns explicitly:

INSERT INTO emp (empno,ename, job,mgr, hiredate, sal, comm,deptno)
VALUES (7499,'ALLEN','SALESMAN', 7698,'20-FEB-81',1600,300,30) ;

You can list the columns in a different order if you wish oreven omit some columns, e.g,
if the commission is unknown:

INSERT INTO emp (empno,ename, job,mgr, hiredate, sal, deptno)
VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,20) ;

Many developers consider explicitly listing the columns better style thanrelying onthe
order implicitly.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 32

Database Compatibility for Oracle® Developers Guide

2.14 Queryinga Table

To retrieve data froma table, the table is queried. An SQL SELECT statement is used to
do this. The statementis dividedinto a selectlist (the part that lists the columns to be
returned), a table list (the part thatlists the tables fromwhich to retrieve the data), andan
optional qualification (the partthatspecifies anyrestrictions). The following query lists
all columns ofallemployees in the table in no particular order.

SELECT * FROM emp;

Here, “*” in the select list means all columns. The following is the output fromthis
query.
empno | ename | job | mgr | hiredate | sal | comm | deptno
——————— Bt e e e et sttt L e
7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30
7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30
7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10
7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(14 rows)

You may specify any arbitrary expressionin the select list. Forexample, you can do:

SELECT ename, sal, sal * 24 AS yearly salary, deptno FROM emp;

ename | sal | yearly salary | deptno
e e e it
SMITH | 800.00 | 19200.00 | 20
ALLEN | 1600.00 | 38400.00 | 30
WARD | 1250.00 | 30000.00 | 30
JONES | 2975.00 | 71400.00 | 20
MARTIN | 1250.00 | 30000.00 | 30
BLAKE | 2850.00 | 68400.00 | 30
CLARK | 2450.00 | 58800.00 | 10
SCOTT | 3000.00 | 72000.00 | 20
KING | 5000.00 | 120000.00 | 10
TURNER | 1500.00 | 36000.00 | 30
ADAMS | 1100.00 | 26400.00 | 20
JAMES | 950.00 | 22800.00 | 30
FORD | 3000.00 | 72000.00 | 20
MILLER | 1300.00 | 31200.00 | 10
(14 rows)

Notice howthe as clause is used to re-label the output column. (The as clauseis
optional.)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 33

Database Compatibility for Oracle® Developers Guide

A query can be qualified by addinga wHERE clause that specifies whichrows are wanted.
The wHERE clause contains a Boolean (truth value) expression, and only rows for which
the Boolean expression is true are returned. Theusual Boolean operators (AND, OR, and

NoT) are allowed in the qualification. Forexample, the following retrieves theemployees
in department 20 with salaries over $1000.00:

SELECT ename, sal, deptno FROM emp WHERE deptno = 20 AND sal > 1000;

ename | sal | deptno
JONES | 2975.00 | 20
SCOTT | 3000.00 | 20
ADAMS | 1100.00 | 20
FORD | 3000.00 | 20
(4 rows)

You can requestthatthe results ofa query be returned in sorted order:

SELECT ename, sal, deptno FROM emp ORDER BY ename;

ename | sal | deptno
ADAMS | 1100.00 | 20
ALLEN | 1600.00 | 30
BLAKE | 2850.00 | 30
CLARK | 2450.00 | 10
FORD | 3000.00 | 20
JAME S | 950.00 | 30
JONE S | 2975.00 | 20
KING | 5000.00 | 10
MARTIN | 1250.00 | 30
MILLER | 1300.00 | 10
SCOTT | 3000.00 | 20
SMITH | 800.00 | 20
TURNER | 1500.00 | 30
WARD | 1250.00 | 30
(14 rows)

You can requestthatduplicate rows be removed fromthe result ofa query:

SELECT DISTINCT job FROM emp;

job
ANALYST
CLERK
MANAGER
PRESIDENT
SALESMAN
(5 rows)

The following section shows how to obtain rows frommore than onetablein asingle
query.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 34

Database Compatibility for Oracle® Developers Guide

2.1.5 Joins Between Tables

Thus far, our queries have only accessed onetable at a time. Queries can access multip le
tables at once, oraccess the same table in sucha way that multiple rows ofthe table are
being processed at the same time. A query that accesses multiple rows ofthe same or
different tables at one time is called a join query. Forexample, say you wish to list all the
employee records together with the name and location ofthe associated department. To
do that, we need to compare the deptno column ofeach row ofthe emp table with the

deptno column ofall rows in the dept table, and select the pairs of rows where these
values match. This would be accomplished by the following query:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM emp, dept
WHERE emp.deptno = dept.deptno;

ename | sal | deptno | dname | loc
B e i
MILLER | 1300.00 | 10 | ACCOUNTING | NEW YORK
CLARK | 2450.00 | 10 | ACCOUNTING | NEW YORK
KING | 5000.00 | 10 | ACCOUNTING | NEW YORK
SCOTT | 3000.00 | 20 | RESEARCH | DALLAS
JONE S | 2975.00 | 20 | RESEARCH | DALLAS
SMITH | 800.00 | 20 | RESEARCH | DALLAS
ADAMS | 1100.00 | 20 | RESEARCH | DALLAS
FORD | 3000.00 | 20 | RESEARCH | DALLAS
WARD | 1250.00 | 30 | SALES | CHICAGO
TURNER | 1500.00 | 30 | SALES | CHICAGO
ALLEN | 1600.00 | 30 | SALES | CHICAGO
BLAKE | 2850.00 | 30 | SALES | CHICAGO
MARTIN | 1250.00 | 30 | SALES | CHICAGO
JAME S | 950.00 | 30 | SALES | CHICAGO
(14 rows)

Observe two things aboutthe result set:

» Thereis no result row for department 40. This is because there is no matching
entry in the emp table for department40, so the join ignores theunmatched rows
in the dept table. Shortly we will see how this can be fixed.

=]t is more desirable to list the output columns qualified by table name rather than
using * orleaving out the qualification as follows:

SELECT ename, sal, dept.deptno, dname, loc FROM emp, dept WHERE emp.deptno =
dept .deptno;

Since all the columns had different names (except for deptno which thereforemust be
qualified), the parser automatically found outwhich table theybelongto, butit is good
style to fully qualify column names in join queries:

Join queries ofthe kind seen thus far can also be written in this alternative form:

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 35

Database Compatibility for Oracle® Developers Guide

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM emp INNER
JOIN dept ON emp.deptno = dept.deptno;

This syntaxis not as commonly used as the one above, but we show it here to help you
understand the following topics.

You will notice that in allthe aboveresults for joins no employees were returned that
belongedto department 40 and as a consequence, therecord for department 40 never
appears. Now we will figure out how we can get the department 40 record in the results
despite the fact that there are no matching employees. What we want the query to do is to
scan the dept table and for each row to find the matching emp row. If no matching row
is found we want some “empty” values to be substituted forthe emp table’s columns.

This kind of query is called an outer join. (The joins we have seenso farare inner joins.)
The command looks like this:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM dept LEFT
OUTER JOIN emp ON emp.deptno dept.deptno;

ename | sal | deptno | dname | loc
e e s s
MILLER | 1300.00 | 10 | ACCOUNTING | NEW YORK
CLARK | 2450.00 | 10 | ACCOUNTING | NEW YORK
KING | 5000.00 | 10 | ACCOUNTING | NEW YORK
SCOTT | 3000.00 | 20 | RESEARCH | DALLAS
JONE S | 2975.00 | 20 | RESEARCH | DALLAS
SMITH | 800.00 | 20 | RESEARCH | DALLAS
ADAMS | 1100.00 | 20 | RESEARCH | DALLAS
FORD | 3000.00 | 20 | RESEARCH | DALLAS
WARD | 1250.00 | 30 | SALES | CHICAGO
TURNER | 1500.00 | 30 | SALES | CHICAGO
ALLEN | 1600.00 | 30 | SALES | CHICAGO
BLAKE | 2850.00 | 30 | SALES | CHICAGO
MARTIN | 1250.00 | 30 | SALES | CHICAGO
JAME S | 950.00 | 30 | SALES | CHICAGO

[\ 40 | OPERATIONS | BOSTON
(15 rows)

This query is called a leff outer join because the table mentioned on theleft ofthe join
operator will have each ofits rows in the outputat leastonce, whereas the table on the
right will only have those rows outputthatmatch some row ofthe left table. Whena left -

table row is selected for which there is no right-table match, empty (NULL) values are
substituted for the right-table columns.

An alternativesyntaxforan outerjoin is to use theouter join operator, “(+)”, in the join
conditionwithin the wHERE clause. The outer join operator is placed after the column
name of the table for which null values should be substituted forunmatched rows. So for
all the rows in the dept table thathaveno matchingrows in the emp table, Advanced

Serverreturns null forany select list expressions containing columns of emp. Hence the
above example could be rewrittenas:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM dept, emp
WHERE emp.deptno (+) = dept.deptno;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 36

Database Compatibility for Oracle® Developers

ename | sal | deptno | dname | loc
e e e it
MILLER | 1300.00 | 10 | ACCOUNTING | NEW YORK
CLARK | 2450.00 | 10 | ACCOUNTING | NEW YORK
KING | 5000.00 | 10 | ACCOUNTING | NEW YORK
SCOTT | 3000.00 | 20 | RESEARCH | DALLAS
JONES | 2975.00 | 20 | RESEARCH | DALLAS
SMITH | 800.00 | 20 | RESEARCH | DALLAS
ADAMS | 1100.00 | 20 | RESEARCH | DALLAS
FORD | 3000.00 | 20 | RESEARCH | DALLAS
WARD | 1250.00 | 30 | SALES | CHICAGO
TURNER | 1500.00 | 30 | SALES | CHICAGO
ALLEN | 1600.00 | 30 | SALES | CHICAGO
BLAKE | 2850.00 | 30 | SALES | CHICAGO
MARTIN | 1250.00 | 30 | SALES | CHICAGO
JAMES | 950.00 | 30 | SALES | CHICAGO

[\ 40 | OPERATIONS | BOSTON
(15 rows)

Guide

We can also join a table againstitself. This is called a selfjoin. As an example, suppose

we wish to find the name ofeach employeealong with the name ofthatemployee’s

manager. So we need to compare themgr column ofeach emp row to the empno column

of all other emp rows.

SELECT el.ename

| ' works for ' || e2.ename AS "Employees and their

Managers" FROM emp el, emp e2 WHERE el.mgr = e2.empno;

Employees and their Managers
FORD works for JONES
SCOTT works for JONES
WARD works for BLAKE
TURNER works for BLAKE
MARTIN works for BLAKE
JAMES works for BLAKE
ALLEN works for BLAKE
MILLER works for CLARK
ADAMS works for SCOTT
CLARK works for KING
BLAKE works for KING
JONES works for KING
SMITH works for FORD
(13 rows)

Here, the emp table has been re-labeled as e 1 to represent the employee row in the select

list and in the join condition,and alsoas e2 to representthe matching employee row
acting as manager in the select list and in the join condition. These kinds ofaliases canbe

used in other queries to save some typing, for example:

SELECT e.ename, e.mgr, d.deptno, d.dname, d.loc FROM emp e,

e.deptno = d.deptno;

ename | mgr | deptno | dname | loc
P e
MILLER | 7782 | 10 | ACCOUNTING | NEW YORK
CLARK | 7839 | 10 | ACCOUNTING | NEW YORK
KING | | 10 | ACCOUNTING | NEW YORK
SCOTT | 7566 | 20 | RESEARCH | DALLAS

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

dept d WHERE

37

Database Compatibility for Oracle® Developers Guide

JONE S | 7839 | 20 | RESEARCH | DALLAS
SMITH | 7902 | 20 | RESEARCH | DALLAS
ADAMS | 7788 | 20 | RESEARCH | DALLAS
FORD | 7566 | 20 | RESEARCH | DALLAS
WARD | 7698 | 30 | SALES | CHICAGO
TURNER | 7698 | 30 | SALES | CHICAGO
ALLEN | 7698 | 30 | SALES | CHICAGO
BLAKE | 7839 | 30 | SALES | CHICAGO
MARTIN | 7698 | 30 | SALES | CHICAGO
JAME S | 7698 | 30 | SALES | CHICAGO
(14 rows)

This style ofabbreviating will be encountered quite frequently.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 38

Database Compatibility for Oracle® Developers Guide

2.1.6 Aggregate Functions

Like most otherrelational database products, Advanced Server supports aggregate
functions. An aggregate function computes a single result frommultiple input rows. For
example, there are aggregates to compute the COUNT, SUM, AVG (average), MAX
(maximum), and MIN (minimum) overaset ofrows.

As an example, the highest and lowest salaries canbe found with the following query:

SELECT MAX (sal) highest salary, MIN(sal) lowest salary FROM emp;

highest salary | lowest salary

B e e e

5000.00 | 800 .00
(1 row)

If we wanted to find the employee with the largest salary, we may be tempted to try:

SELECT ename FROM emp WHERE sal = MAX (sal);

ERROR: aggregates not allowed in WHERE clause

This does notwork because theaggregate function, MAX, cannotbe usedin the WHERE
clause. This restriction exists because the WHERE clause determines therows that will go
into the aggregationstage soit has to be evaluated before aggregate functions are

computed. However, the query can be restated to accomplish the intended result by using
a subquery:

SELECT ename FROM emp WHERE sal = (SELECT MAX (sal) FROM emp) ;

ename

KING
(1 row)

The subquery is an independent computation thatobtains its ownresult separately from
the outer query.

Aggregates are also very useful in combination with the GRoup BY clause. Forexample,
the following query gets thehighestsalary in each department.

SELECT deptno, MAX (sal) FROM emp GROUP BY deptno;

deptno | max

e e T

10 | 5000.00

20 | 3000.00

30 | 2850.00
(3 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 39

Database Compatibility for Oracle® Developers Guide

This query produces oneoutputrow per department. Each aggregate result is computed
overthe rows matching that department. These grouped rows can be filtered using the
HAVING clause.

SELECT deptno, MAX (sal) FROM emp GROUP BY deptno HAVING AVG(sal) > 2000;

deptno | max

e e e e e =

10 | 5000.00
20 | 3000.00
(2 rows)

This query gives the same results for only those departments that have anaveragesalary
greater than 2000.

Finally, the following query takes into account only thehighest paid employees who are
analysts in each department.

SELECT deptno, MAX (sal) FROM emp WHERE job = 'ANALYST' GROUP BY deptno HAVING
AVG(sal) > 2000;

deptno | max

el e e = =

20 | 3000.00
(1 row)

There is a subtle distinctionbetweenthe wHERE and HAVING clauses. The wHERE clause
filters out rows before grouping occurs and aggregate functions are applied. The HaAVING
clause applies filters on the results after rows have been grouped and aggregate functions
have been computed foreach group.

So in the previous example, only employees who are analysts are considered. Fromthis
subset, the employees are grouped by department and only those groups where the
average salary ofanalysts in the group is greater than 2000 are in the final result. This is

true of only the group for department 20 and the maximum analyst salary in department
20 is 3000.00.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 40

Database Compatibility for Oracle® Developers Guide

2.1.7 Updates

The column values of existing rows canbe changedusingthe UpDATE command. For
example, the following sequence of commands shows the before and afterresults of
giving everyone who is amanagera 10% raise:

SELECT ename, sal FROM emp WHERE job = 'MANAGER';

ename | sal

S T T

JONES | 2975.00

BLAKE | 2850.00

CLARK | 2450.00

(3 rows)

UPDATE emp SET sal = sal * 1.1 WHERE job = 'MANAGER';
SELECT ename, sal FROM emp WHERE job = 'MANAGER';
ename | sal

oo oo dtee e s e = e

JONES | 3272.50

BLAKE | 3135.00
CLARK | 2695.00
(3 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 41

Database Compatibility for Oracle® Developers Guide

2.1.8 Deletions

Rows can be removed fromatable usingthe DELETE command. Forexample, the
following sequence of commands shows the before and after results of deletingall
employees in department 20.

SELECT ename, deptno FROM emp;

ename | deptno
________+________
SMITH | 20
ALLEN | 30
WARD | 30
JONE S | 20
MARTIN | 30
BLAKE | 30
CLARK | 10
SCOTT | 20
KING | 10
TURNER | 30
ADAMS | 20
JAME S | 30
FORD | 20
MILLER | 10
(14 rows)

DELETE FROM emp WHERE deptno = 20;

SELECT ename, deptno FROM emp;

ename | deptno
________+________
ALLEN | 30
WARD | 30
MARTIN | 30
BLAKE | 30
CLARK | 10
KING | 10
TURNER | 30
JAME S | 30
MILLER | 10
(9 rows)

Be extremely careful of giving a DELETE command without a wHERE clause such as the
following:

DELETE FROM tablename;

This statement will remove all rows from the given table, leaving it completely empty.
The systemwill not request confirmation before doing this.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 42

Database Compatibility for Oracle® Developers Guide
2.19 The SQL Language

Advanced Server supports SQL language that is compatible with Oracle syntaxas well as

syntaxand commands for extended functionality (functionality that does not pro vide
database compatibility for Oracle or support Oracle-styled applications).

The Reference Guide that supports the Database Compatibility for Oracle Developer's
Guide provides detailed information about:

e Compatible SQL syntaxand language elements
e Datatypes
e Supported SQL command syntax

To review a copy ofthe Reference Guide, visit the Advanced Server websiteat:

http://www.enterprisedb.com/products -services-training/products/documentation

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 43

http://www.enterprisedb.com/products-services-training/products/documentation

Database Compatibility for Oracle® Developers Guide

2.2 Advanced Concepts
The previous section discussed the basics ofusing SQL to store and access your data in

Advanced Server. This section discusses more advanced SQL features that may simplify
management and prevent loss or corruption of your data.

2.21 Views

Considerthe following SELECT command.

SELECT ename, sal, sal * 24 AS yearly salary, deptno FROM emp;

ename | sal | yearly salary | deptno
e e e et
SMITH | 800.00 | 19200.00 | 20
ALLEN | 1600.00 | 38400.00 | 30
WARD | 1250.00 | 30000.00 | 30
JONES | 2975.00 | 71400.00 | 20
MARTIN | 1250.00 | 30000.00 | 30
BLAKE | 2850.00 | 68400.00 | 30
CLARK | 2450.00 | 58800.00 | 10
SCOTT | 3000.00 | 72000.00 | 20
KING | 5000.00 | 120000.00 | 10
TURNER | 1500.00 | 36000.00 | 30
ADAMS | 1100.00 | 26400.00 | 20
JAMES | 950.00 | 22800.00 | 30
FORD | 3000.00 | 72000.00 | 20
MILLER | 1300.00 | 31200.00 | 10
(14 rows)

Ifthis is a query thatis used repeatedly, a shorthand method ofreusing this query without
re-typing theentire SELECT command each time is to create a view as shownbelow.

CREATE VIEW employee pay AS SELECT ename, sal, sal * 24 AS yearly salary,
deptno FROM emp;

The viewname, employee pay,cannow be usedlike an ordinary table name to
performthe query.

SELECT * FROM employee pay;

ename | sal | yearly salary | deptno
e e b T e e
SMITH | 800.00 | 19200.00 | 20
ALLEN | 1600.00 | 38400.00 | 30
WARD | 1250.00 | 30000.00 | 30
JONES | 2975.00 | 71400.00 | 20
MARTIN | 1250.00 | 30000.00 | 30
BLAKE | 2850.00 | 68400.00 | 30
CLARK | 2450.00 | 58800.00 | 10
SCOTT | 3000.00 | 72000.00 | 20
KING | 5000.00 | 120000.00 | 10
TURNER | 1500.00 | 36000.00 | 30
ADAMS | 1100.00 | 26400.00 | 20
JAMES | 950.00 | 22800.00 | 30
FORD | 3000.00 | 72000.00 | 20

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 44

Database Compatibility for Oracle® Developers Guide
MILLER | 1300.00 | 31200.00 | 10

(14 rows)

Making liberaluse of views is a key aspectofgood SQL database design. Views provide

a consistent interface thatencapsulate details ofthe structure of your tables which may
changeas yourapplication evolves.

Views can beusedin almost any placearealtable can be used. Building views upon
other views is not uncommon.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 45

Database Compatibility for Oracle® Developers Guide

2.2.2 Foreign Keys

Supposeyouwant to make sure allemployees belongto a valid department. This is called
maintaining the referential integrity of your data. In simplistic database s ystems this
would be implemented (if at all) by first looking at the dept table to checkifa matching
record exists, and then inserting or rejecting the new employee record. This approach has
a number ofproblems andis very inconvenient. Advanced Server can make it easier for
you.

A modified version ofthe emp table presented in Section 2.1.2 is shown in this section

with the addition ofa foreign key constraint. Themodified emp table looks like the
following:

CREATE TABLE emp (

empno NUMBER (4) NOT NULL CONSTRAINT emp pk PRIMARY KEY,
ename VARCHARZ (10),

job VARCHAR2 (9) ,

mgr NUMBER (4) ,

hiredate DATE,

sal NUMBER (7, 2) ,

comm NUMBER (7, 2) ,

deptno NUMBER (2) CONSTRAINT emp ref dept fk

REFERENCES dept (deptno)
) 7

If an attempt is made to issue the following TNSERT command in the sample emp table,
the foreign key constraint,emp ref dept fk,ensuresthat department50 exists in the
dept table. Since it does not, the command is rejected.

INSERT INTO emp VALUES (8000, 'JONES', 'CLERK', 7902, '17-AUG-07',1200,NULL,50);

ERROR: insert or update on table "emp" violates foreign key constraint
"emp ref dept fk"
DETAIL: Key (deptno)=(50) is not present in table "dept".

The behavior of foreign keys can be finely tuned to yourapplication. Making correct use

of foreign keys will definitely improve the quality of your database applications, so you
are strongly encouraged to learn more about them.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 46

Database Compatibility for Oracle® Developers Guide

2.2.3 The ROWNUM Pseudo-Column

ROWNUM is a pseudo-column thatis assigned an incremental, uniqueinteger value for
each rowbased on the order the rows were retrieved froma query. Therefore, the first
row retrieved will have RowNUM 0of 1; the second row will have RowNUM 0of 2 and so on.

This feature can beused to limit the number ofrows retrievedby a query. This is
demonstrated in the following example:

SELECT empno, ename, Jjob FROM emp WHERE ROWNUM < 5;

empno | ename | job
_______+_______+ __________
7369 | SMITH | CLERK
7499 | ALLEN | SALESMAN
7521 | WARD | SALESMAN
7566 | JONES | MANAGER
(4 rows)

The rowNUM value is assigned to each row before any sorting ofthe result set takes place.
Thus, the result setis returned in the order givenby the ORDER BY clause, but the

ROWNUM values may not necessarily be in ascending order as shownin the following
example:

SELECT ROWNUM, empno, ename, job FROM emp WHERE ROWNUM < 5 ORDER BY ename;

rownum | empno | ename | job
———————— R e e
2 | 7499 | ALLEN | SALESMAN
4 | 7566 | JONES | MANAGER
1 | 7369 | SMITH | CLERK
3 | 7521 | WARD | SALESMAN
(4 rows)

The following example shows how a sequencenumber can be added to every row in the

jobhist table. First anew column named, seqno, is added tothe table andthen seqno
1S setto ROWNUM in the UPDATE command.

ALTER TABLE jobhist ADD segno NUMBER (3) ;
UPDATE jobhist SET segno = ROWNUM;

The following SELECT command shows the new segno values.

SELECT segno, empno, TO CHAR (startdate, 'DD-MON-YY') AS start, job FROM
jobhist;

seqno | empno | start | job
e R e
1 | 7369 | 17-DEC-80 | CLERK
2 | 7499 | 20-FEB-81 | SALESMAN
3 | 7521 | 22-FEB-81 | SALESMAN
4 | 7566 | 02-APR-81 | MANAGER

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 47

Database Compatibility for Oracle® Developers Guide

5 | 7654 | 28-SEP-81 | SALESMAN
6 | 7698 | 01-MAY-81 | MANAGER
7 7782 | 09-JUN-81 | MANAGER
8 | 7788 | 19-APR-87 | CLERK
9 | 7788 | 13-APR-88 | CLERK
10 | 7788 | 05-MAY-90 | ANALYST
11 | 7839 | 17-NOV-81 | PRESIDENT
12 | 7844 | 08-SEP-81 | SALESMAN
13 | 7876 | 23-MAY-87 | CLERK
14 | 7900 | 03-DEC-81 | CLERK
15 | 7900 | 15-JAN-83 | CLERK
16 | 7902 | 03-DEC-81 | ANALYST
17 | 7934 | 23-JAN-82 | CLERK
(17 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 48

Database Compatibility for Oracle® Developers Guide

2.24 Synonyms

A synonym s an identifier that can beused toreference another database objectin a SQL
statement. A synonymis usefulin cases wherea databaseobject would normally require

full qualification by schema name to be properly referenced in a SQL statement. A
synonymdefined for that object simplifies thereference to a single, unqualified name.

Advanced Server supports synonyms for:

tables

Views

materialized views

sequences

procedures

functions

types

objects thatare accessible through a databaselink
e othersynonyms

Neitherthe referenced schema orreferenced objectmust exist at the time that you create
the synonym; a synonymmay referto a non-existent object orschema. A synonymwill

become invalid if you drop the referenced objector schema. You must explicitly drop a
synonymto remove it.

As with any other schema object, Advanced Server uses the search path to resolve
unqualified synonymnames. Ifyouhavetwo synonyms with the same name, an
unqualified reference toa synonymwill resolve to the first synonymwith the given name
in the searchpath. Ifpublicisin yoursearchpath, youcanreferto a synonymin that

schema without qualifying thatname.
When Advanced Server executes an SQL command, the privileges ofthe current user are
checked against the synonym’s underlying database object; ifthe userdoes not havethe
proper permissions for that object, the SQL command will fail.
Deleting a Synonym
To delete a synonym, usethe command, brop syNONYM. The syntaxis:

DROP [PUBLIC] SYNONYM [schema.] syn name

Parameters:

syn name

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 49

Database Compatibility for Oracle® Developers Guide

syn_nameis the name ofthe synonym. A synonymname must be unique within
a schema.

schema

schema specifies the name ofthe schema in which the synonymresides.

Like any other object thatcan be schema-qualified, you may havetwo synonyms with the
same name in your search path. To disambiguatethe name ofthe synonymthat you are
dropping, includea schemaname. Unlessasynonymis schema qualified in the DrOP

syNONYM command, Advanced Server deletes the first instance ofthe synonymit finds in
yoursearchpath.

You can optionally include the PuBL I C clause to drop a synonymthat resides in the
publicschema. Compatible with Oracle databases, the DROP PUBLIC SYNONYM
command drops a synonymthat resides in the pub1ic schema:

DROP PUBLIC SYNONYM syn name;

The following example drops the synonym, personnel:

DROP SYNONYM personnel;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 50

Database Compatibility for Oracle® Developers Guide

2.2.5 Hierarchical Queries

A hierarchical query is atypeofquery thatreturns therows ofthe result setin a
hierarchical order based upon data forming a parent-child relationship. A hierarchy is
typically represented by an inverted tree structure. Thetree is comprised of
interconnected nodes. Each node may be connected to none, one, or multiple child nodes.
Each node is connected to one parentnode except for the top node which has no parent.
This node is the root node. Each tree has exactly one rootnode. Nodes that don’thave
any children are called /eafnodes. A tree always has at least one leafnode -e.g., the

trivial case where the treeis comprised ofa single node. In this case it is both therootand
the leaf.

In a hierarchical query therows ofthe result setrepresentthe nodes of one or more trees.

Note: Itis possible that a single, givenrow may appear in more than onetree and thus
appear more than once in the result set.

The hierarchicalrelationship in a query is described by the coNNECT BY clause which
forms the basis ofthe order in which rows are returned in the result set. The context of

where the coNNECT BY clause andits associated optional clauses appearin the SELECT
command is shown below.

SELECT select 1list FROM table expression [WHERE ...]
[START WITH start expression |
CONNECT BY { PRIOR parent expr = child expr |

child expr = PRIOR parent expr }

[ORDER SIBLINGS BY columnl [ASC | DESC]
[, column2 [ASC | DESC]]

[GROUP BY ...]

[HAVING ...]

[other ...]

select 1listisoneormore expressionsthat comprise thefields ofthe result set.
table expressionisoneormore tables orviews fromwhich the rows ofthe result set
originate. ot heris any additional legal SELECT command clauses. The clauses pertinent

to hierarchical queries, START WITH, CONNECT BY, and ORDER SIBLINGS BY are
described in the following sections.

Note: At this time, Advanced Server does not support the use of AND (or other operators)
in the CONNECT BY clause.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 51

Database Compatibility for Oracle® Developers Guide
2.2.5.1 Defining the Parent/Child Relationship

Forany given row, its parentand its children are determined by the coNNECT BY clause.
The coNNECT BY clause must consist oftwo expressions compared with the equals (=)
operator. In addition, one ofthese two expressions must be preceded by the keyword,
PRIOR.

Forany given row, to determine its children:

1. Evaluate parent expronthe givenrow

2. Evaluate child expronanyotherrowresulting fromthe evaluation of
table expression

3. Ifparent expr = child expr,thenthisrowis achild node ofthe given
parent row

4. Repeattheprocess forallremaining rows in table expression.Allrows that
satisfy the equationin step 3 are the children nodes ofthe given parent row.

Note: The evaluation process to determine if arow is a child node occurs on every row
returned by table expressionbeforethe wHERE clause is applied to
table expression.

By iteratively repeating this process treating each child node foundin the prior steps asa
parent, an inverted tree ofnodes is constructed. The process is complete when the final
setofchild nodes hasnochildrenoftheirown -these are theleafnodes.

A sELECT command that includesa CONNECT BY clause typically includes the START
wITH clause. The START WwITH clause determines the rows thatare to be the rootnodes -
1.e., the rows thatare the initial parent nodes upon which the algorithmdescribed
previously is to be applied. This is furtherexplained in the following section.

2.2.5.2 Selecting the Root Nodes

The sTART wITH clauseis usedto determine therow(s)selected by

table expressionthataretobeusedas therootnodes. Allrows selectedby

table expressionwhere start expressionevaluatesto true become arootnode
of atree. Thus, the numberofpotential trees in the result setis equal to the number of

rootnodes. As a consequence, ifthe START WITH clauseis omitted, theneveryrow
returned by table expressionisarootofits own tree.

2.2.5.3 Organization Tree in the Sample Application

Considerthe emp table ofthe sample application. Therows ofthe emp table forma
hierarchy based uponthemgr column which contains theemployee number ofthe
employee’s manager. Each employee has at most, onemanager. KING is the president of
the companyso hehas no manager, therefore KING’s mgr column is null. Also,itis

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 52

Database Compatibility for Oracle® Developers Guide

possible foran employeeto act as a manager for more than oneemployee. This
relationship forms a typical, tree-structured, hierarchical organization chart as illustrated
below.

TE3I9
EING
FEEG TeIB 782
JONES ELAKE CLAFE
778 FETE 7493 TEEL TeE4 7844 7300 7934
ECOTT FORD ALLEN WARD MARTIN TURNER JAMES MILLER

Figure 2 Employee Organiztion Hierarchy

To form a hierarchical query based upon this relationship, the SELECT command includes
the clause, CONNECT BY PRIOR empno = mgr.Forexample, given the company
president, K ING, with employee number 7839, any employee whose mgr column is 7839
reports directly to KING which is true for JONES, BLAKE, and CLARK (these are thechild
nodes of KING). Similarly, for employee, JONES, any other employee with mgr column
equalto 7566 is a child node of JONES - theseare scoTT and FORD in this example.

The top ofthe organization chart is KING so there is onerootnode in this tree. The
START WITH mgr IS NULL clauseselectsonly KNG as the initial root node.

The complete SELECT command is shownbelow.

SELECT ename, empno, mgr

FROM emp

START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr;

The rows in the query output traverse each branch fromthe root toleafmoving in a top -
to-bottom, left-to-right order. Below is the output fromthis query.

ename | empno | mgr
KING | 7839 |

JONE S | 7566 | 7839
SCOTT | 7788 | 7566

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 53

Database Compatibility for Oracle® Developers Guide

ADAMS | 7876 | 7788
FORD | 7902 | 7566
SMITH | 7369 | 7902
BLAKE | 7698 | 7839
ALLEN | 7499 | 7698
WARD | 7521 | 7698
MARTIN | 7654 | 7698
TURNER | 7844 | 7698
JAME S | 7900 | 7698
CLARK | 7782 | 7839
MILLER | 7934 | 7782
(14 rows)

2.2.54 Node Level

LEVEL is a pseudo-column that canbe used wherever a column can appear in the SELECT
command. Foreach row in the result set, LEVEL returns a non-zero integer value

designating the depthin the hierarchy ofthe node represented by thisrow. The LEVEL for
rootnodes is 1. The LEVEL fordirect children ofroot nodesis 2,and so on.

The following query is a modification ofthe previous query with theadditionofthe

LEVEL pseudo-column. In addition, using the LEVEL value, theemployee names are
indented to further emphasize the depthin the hierarchy ofeachrow.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr
FROM emp START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr;

The output fromthis query follows.

level | employee | empno | mgr

e Bt
1 | KING | 7839 |
2 | JONE S | 7566 | 7839
3 | SCOTT | 7788 | 7566
4 | ADAMS | 7876 | 7788
3 | FORD | 7902 | 7566
4 | SMITH | 7369 | 7902
2 | BLAKE | 7698 | 7839
3 | ALLEN | 7499 | 7698
3 | WARD | 7521 | 7698
3 | MARTIN | 7654 | 7698
3 | TURNER | 7844 | 7698
3 | JAMES | 7900 | 7698
2 | CLARK | 7782 | 7839
3 | MILLER | 7934 | 7782

(14 rows)

Nodes that sharea common parentandare at the same levelare called sib/ings. For
example in the above output, employees ALLEN, WARD, MARTIN, TURNER, and JAMES are

siblings since they are all at level three with parent, BLAKE. JONES, BLAKE, and CLARK
are siblings since they are at leveltwo and KING is their common parent.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 54

Database Compatibility for Oracle® Developers Guide
2.2.5.5 Ordering the Siblings

Theresult setcan be ordered sothe siblings appear in ascending or descending order by

selected column value(s) usingthe ORDER STBLINGS BY clause. This is a special case
ofthe ORDER BY clause thatcan be used only with hierarchical queries.

The previous query is further modified with the addition of ORDER SIBLINGS BY
ename ASC.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr
FROM emp START WITH mgr IS NULL

CONNECT BY PRIOR empno = mgr

ORDER SIBLINGS BY ename ASC;

The output fromthe prior query is now modified so thesiblings appear in ascending
orderby name. Siblings BLAKE, CLARK, and JONES are now alphabetically arranged

underKING. Siblings ALLEN, JAMES,MARTIN, TURNER, and WARD are alphabetically
arranged under BLAKE, and soon.

level | employee | empno | mgr

s A b e T
1 | KING \ 7839 |
2 | BLAKE | 7698 | 7839
3 | ALLEN | 7499 | 7698
3 | JAMES | 7900 | 7698
3 | MARTIN | 7654 | 7698
3 TURNER | 7844 | 7698
3 | WARD | 7521 | 7698
2 | CLARK | 7782 | 7839
3 | MILLER | 7934 | 7782
2 | JONE S | 7566 | 7839
3 | FORD | 7902 | 7566
4 | SMITH | 7369 | 7902
3 | SCOTT | 7788 | 7566
4 | ADAMS | 7876 | 7788

(14 rows)

This finalexample adds thewHERE clause and starts with three rootnodes. A fter the node
tree is constructed, the wHERE clause filters out rows in the tree to formthe result set.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr
FROM emp WHERE mgr IN (7839, 7782, 7902, 7788)

START WITH ename IN ('BLAKE', 'CLARK', 'JONES')

CONNECT BY PRIOR empno = mgr

ORDER SIBLINGS BY ename ASC;

The output fromthe query shows threeroot nodes (level one) - BLAKE, CLARK, and
JONES. In addition, rows that donotsatisfy thewHERE clausehave been eliminated from
the output.

level | employee | empno | mgr

i e i sttt e

1 | BLAKE | 7698 | 7839

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 55

Database Compatibility for Oracle® Developers Guide

1 | CLARK | 7782 | 7839

2 | MILLER | 7934 | 7782

1 | JONES | 7566 | 7839

3 | SMITH | 7369 | 7902

3 | ADAMS | 7876 | 7788
(6 rows)

2.2.5.6 Retrieving the Root Node with CONNECT_BY_ROOT

CONNECT BY ROOT is aunary operator thatcan be used to qualify a column in orderto

return the column’s value ofthe row considered to be the rootnode in relation to the
current row.

Note: A unary operator operates on a single operand, which in the case of
CONNECT BY ROOT,is the column name following the coNNECT BY ROOT keyword.

In the context ofthe SELECT list,the CONNECT BY ROOT operatoris shownby the
following.

SELECT [... ,] CONNECT BY ROOT column [, ...]
FROM table expression

The following are some points to noteaboutthe CONNECT BY ROOT operator.

e TheCcoNNECT BY ROOT operatorcan be usedin the SELECT list, the WHERE
clause, the GROUP BY clause,the HAVING clause, the ORDER BY clause, and the
ORDER SIBLINGS BY clauseaslongas the SELECT command is fora
hierarchical query.

e TheCcONNECT BY ROOT operatorcannot be used in the CONNECT BY clause or
the sTART wiTH clause ofthe hierarchical query.

e [tis possibletoapply CONNECT BY ROOT to an expression involving a column,
but to do so, theexpression mustbe enclosed within parentheses.

The following query shows the useofthe CONNECT BY ROOT operator to return the
employee numberand employee name ofthe rootnode foreach employee listed in the
result set based on trees starting with employees BLAKE, CLARK, and JONES.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT BY ROOT empno "mgr empno',

CONNECT BY ROOT ename "mgr ename"

FROM emp

START WITH ename IN ('BLAKE', 'CLARK', 'JONES')

CONNECT BY PRIOR empno = mgr

ORDER SIBLINGS BY ename ASC;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 56

Database Compatibility for Oracle® Developers Guide

Note that the output fromthe query shows thatall of the root nodes in columns mgr

empno andmgr ename are one ofthe employees, BLAKE, CLARK, Or JONES, listed in the
START WITH clause.

level | employee | empno | mgr | mgr empno | mgr ename
et e b
1 | BLAKE | 7698 | 7839 | 7698 | BLAKE
2 | ALLEN | 7499 | 7698 | 7698 | BLAKE
2 | JAME S | 7900 | 7698 | 7698 | BLAKE
2 | MARTIN | 7654 | 7698 | 7698 | BLAKE
2 | TURNER | 7844 | 7698 | 7698 | BLAKE
2 | WARD | 7521 | 7698 | 7698 | BLAKE
1 | CLARK | 7782 | 7839 | 7782 | CLARK
2 | MILLER | 7934 | 7782 | 7782 | CLARK
1 | JONES | 7566 | 7839 | 7566 | JONES
2 | FORD | 7902 | 7566 | 7566 | JONES
3 | SMITH | 7369 | 7902 | 7566 | JONES
2 | SCOTT | 7788 | 7566 | 7566 | JONES
3 | ADAMS | 7876 | 7788 | 7566 | JONES
(13 rows)

The following is a similar query, but producing only onetree starting with thesingle, top-
level, employee where themgr column is null.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT BY ROOT empno "mgr empno",

CONNECT BY ROOT ename "mgr ename"

FROM emp START WITH mgr IS NULL

CONNECT BY PRIOR empno = mgr

ORDER SIBLINGS BY ename ASC;

In the following output, all ofthe root nodes in columns mgr empno andmgr ename
indicate KING as the rootforthis particular query.

level | employee | empno | mgr | mgr empno | mgr ename
e e o e
1 | KING | 7839 | \ 7839 | KING
2 | BLAKE | 7698 | 7839 | 7839 | KING
3 | ALLEN | 7499 | 7698 | 7839 | KING
3 | JAMES | 7900 | 7698 | 7839 | KING
3 | MARTIN | 7654 | 7698 | 7839 | KING
3 | TURNER | 7844 | 7698 | 7839 | KING
3 | WARD | 7521 | 7698 | 7839 | KING
2 | CLARK | 7782 | 7839 | 7839 | KING
3 | MILLER | 7934 | 7782 | 7839 | KING
2 | JONE S | 7566 | 7839 | 7839 | KING
3 | FORD | 7902 | 7566 | 7839 | KING
4 | SMITH | 7369 | 7902 | 7839 | KING
3 | SCOTT | 7788 | 7566 | 7839 | KING
4 | ADAMS | 7876 | 7788 | 7839 | KING
(14 rows)

By contrast, the following example omits the START wITH clause therebyresultingin
fourteen trees.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT BY ROOT empno "mgr empno",

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 57

Database Compatibility for Oracle® Developers Guide

CONNECT BY ROOT ename "mgr ename"
FROM emp

CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The following is the output fromthe query. Each node appears at least onceas aroot

node underthemgr empnoandmgr ename columns since eventhe leafnodes formthe
top oftheirown trees.

level | employee | empno | mgr | mgr empno | mgr ename
messoosfossssosses s e oo se s e s ssss s oo se s s o oo s e se o ==
1 | ADAMS | 7876 | 7788 | 7876 | ADAMS
1 | ALLEN | 7499 | 7698 | 7499 | ALLEN
1 | BLAKE | 7698 | 7839 | 7698 | BLAKE
2 | ALLEN | 7499 | 7698 | 7698 | BLAKE
2 | JAME S | 7900 | 7698 | 7698 | BLAKE
2 | MARTIN | 7654 | 7698 | 7698 | BLAKE
2 | TURNER | 7844 | 7698 | 7698 | BLAKE
2 | WARD | 7521 | 7698 | 7698 | BLAKE
1 | CLARK | 7782 | 7839 | 7782 | CLARK
2 | MILLER | 7934 | 7782 | 7782 | CLARK
1 | FORD | 7902 | 7566 | 7902 | FORD
2 | SMITH | 7369 | 7902 | 7902 | FORD
1 | JAMES | 7900 | 7698 | 7900 | JAMES
1 | JONES | 7566 | 7839 | 7566 | JONES
2 | FORD | 7902 | 7566 | 7566 | JONES
3 | SMITH | 7369 | 7902 | 7566 | JONES
2 | SCOTT | 7788 | 7566 | 7566 | JONES
3 | ADAMS | 7876 | 7788 | 7566 | JONES
1 | KING | 7839 | | 7839 | KING
2 | BLAKE | 7698 | 7839 | 7839 | KING
3 | ALLEN | 7499 | 7698 | 7839 | KING
3 | JAMES | 7900 | 7698 | 7839 | KING
3 | MARTIN | 7654 | 7698 | 7839 | KING
3 | TURNER | 7844 | 7698 | 7839 | KING
3 | WARD | 7521 | 7698 | 7839 | KING
2 | CLARK | 7782 | 7839 | 7839 | KING
3 | MILLER | 7934 | 7782 | 7839 | KING
2 | JONE S | 7566 | 7839 | 7839 | KING
3 | FORD | 7902 | 7566 | 7839 | KING
4 | SMITH | 7369 | 7902 | 7839 | KING
3 | SCOTT | 7788 | 7566 | 7839 | KING
4 | ADAMS | 7876 | 7788 | 7839 | KING
1 | MARTIN | 7654 | 7698 | 7654 | MARTIN
1 | MILLER | 7934 | 7782 | 7934 | MILLER
1 | SCOTT | 7788 | 7566 | 7788 | SCOTT
2 | ADAMS | 7876 | 7788 | 7788 | SCOTT
1 | SMITH | 7369 | 7902 | 7369 | SMITH
1 | TURNER | 7844 | 7698 | 7844 | TURNER
1 | WARD | 7521 | 7698 | 7521 | WARD
(39 rows)

The following illustrates theunary operator effect of CONNECT BY ROOT.Asshown in
this example, when applied to an expression that is not enclosed in parentheses, the
CONNECT_ BY ROOT operator affects only the term, ename, immediately following it.
The subsequentconcatenationof | | ' manages ' || enameis notpartofthe
CONNECT BY ROOT operation, hence thesecond occurrence of ename results in the

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 58

Database Compatibility for Oracle® Developers Guide

value ofthe currently processed row while the first occurrence of ename results in the
value from the root node.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT BY ROOT ename || ' manages ' || ename "top mgr/employee"
FROM emp

START WITH ename IN ('BLAKE', 'CLARK', "JONES')
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The following is the output fromthe query. Note the values producedunder the top
mgr/employee column.

level | employee | empno | mgr | top mgr/employee

B e e e e s it e
1 | BLAKE | 7698 | 7839 | BLAKE manages BLAKE
2 ALLEN | 7499 | 7698 | BLAKE manages ALLEN
2 JAME S | 7900 | 7698 | BLAKE manages JAMES
2 MARTIN | 7654 | 7698 | BLAKE manages MARTIN
2 | TURNER | 7844 | 7698 | BLAKE manages TURNER
2 | WARD | 7521 | 7698 | BLAKE manages WARD
1 | CLARK | 7782 | 7839 | CLARK manages CLARK
2 | MILLER | 7934 | 7782 | CLARK manages MILLER
1 | JONES | 7566 | 7839 | JONES manages JONES
2 | FORD | 7902 | 7566 | JONES manages FORD
3 | SMITH | 7369 | 7902 | JONES manages SMITH
2 | SCOTT | 7788 | 7566 | JONES manages SCOTT
3 | ADAMS | 7876 | 7788 | JONES manages ADAMS

(13 rows)

The following example uses the CONNECT BY ROOT operator on an expression enclosed
in parentheses.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT BY ROOT ('Manager ' || ename || ' is emp # ' || empno)

"top mgr/empno"

FROM emp

START WITH ename IN ('BLAKE', 'CLARK', '"JONES')
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The following is the outputofthe query. Note that the values ofboth ename and empno

are affected by the CONNECT BY ROOT operatorand as aresult, return the values from
the root node as shownunderthe top mgr/empno column.

level | employee | empno | mgr | top mgr/empno

e e e B e et et
1 | BLAKE | 7698 | 7839 | Manager BLAKE is emp # 7698
2 | ALLEN | 7499 | 7698 | Manager BLAKE is emp # 7698
2 JAME S | 7900 | 7698 | Manager BLAKE is emp # 7698
2 MARTIN | 7654 | 7698 | Manager BLAKE is emp # 7698
2 TURNER | 7844 | 7698 | Manager BLAKE is emp # 7698
2 | WARD | 7521 | 7698 | Manager BLAKE is emp # 7698
1 | CLARK | 7782 | 7839 | Manager CLARK is emp # 7782
2 | MILLER | 7934 | 7782 | Manager CLARK is emp # 7782
1 | JONES | 7566 | 7839 | Manager JONES is emp # 7566
2 | FORD | 7902 | 7566 | Manager JONES is emp # 7566

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 59

Database Compatibility for Oracle® Developers Guide

3 SMITH | 7369 | 7902 | Manager JONES is emp # 7566

2 SCOTT | 7788 | 7566 | Manager JONES is emp # 7566

3 | ADAMS | 7876 | 7788 | Manager JONES is emp # 7566
(13 rows)

2.2.5.7 Retrieving a Path with SYS_ CONNECT BY PATH

SYS CONNECT BY PATHIs afunction thatworks within a hierarchical query to retrieve
the column values ofa specified column that occur between the currentnode and theroot
node. The signature ofthe function is:

SYS CONNECT BY PATH (column, delimiter)
The function takes two arguments:

columnis the name ofa column that resides within a table specified in the
hierarchical query thatis calling the function.

delimiteristhevarchar valuethat separates eachentry in the specified
column.

The following example returns a list of employee names, and their managers; ifthe
manager has a manager, that name is appended to the result:

edb=# SELECT level, ename , SYS CONNECT BY PATH (ename, '/') managers
FROM emp
CONNECT BY PRIOR empno = mgr
START WITH mgr IS NULL
ORDER BY level, ename, managers;

level | ename | managers

1 | KING | /KING

2 | BLAKE | /KING/BLAKE

2 | CLARK | /KING/CLARK

2 | JONES | /KING/JONES

3 | ALLEN | /KING/BLAKE/ALLEN

3 | FORD | /KING/JONES/FORD

3 | JAMES | /KING/BLAKE/JAMES

3 | MARTIN | /KING/BLAKE/MARTIN

3 | MILLER | /KING/CLARK/MILLER

3 | SCOTT | /KING/JONES/SCOTT

3 | TURNER | /KING/BLAKE/TURNER

3 | WARD | /KING/BLAKE/WARD

4 | ADAMS | /KING/JONES/SCOTT/ADAMS

4 | SMITH | /KING/JONES/FORD/SMITH
(14 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 60

Database Compatibility for Oracle® Developers Guide
Within the result set:

e Thelevel column displaysthe numberoflevels that the query returned.
e Theename column displays the employee name.
e Themanagers column contains thehierarchical list of managers.

The Advanced Server implementation of SYs CONNECT BY PATH doesnotsupportuse
of:

® SYS CONNECT BY PATHInside CONNECT BY PATH
e SYS CONNECT BY PATH insideSYS CONNECT BY PATH

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 61

Database Compatibility for Oracle® Developers Guide

2.2.6 Multidimensional Analysis

Multidimensional analysis refers to the process commonly used in data warehousing
applications of examining data using various combinations of dimensions. Dimensions
are categories used to classify datasuch as time, geography, a company’s departments,
productlines,andso forth. The results associated with a particular set of dimensions are

called facts. Facts are typically figures associated with productsales, profits, volumes,
counts, etc.

In orderto obtain these facts accordingto a set of dimensions in a relational database
system, SQL aggregation is typically used. SOL aggregation basically means datais

groupedaccording to certain criteria (dimensions) and the result set consists of
aggregates of facts such as counts, sums, and averages of the data in each group.

The GrouP BY clause ofthe SQL sELECT command supports the following extensions
that simplify the process of producing aggregate results.

e ROLLUP extension
e CUBE extension
e GROUPING SETS extension

In addition, the GROUPING functionandthe GROUPING 1D functioncanbe usedin the

SELECT list orthe HAVING clause to aid with the interpretation ofthe results when these
extensions are used.

Note: The sample dept and emp tables are used extensively in this discussion to provide
usage examples. The following changes were applied to these tables to provide more
informative results.

UPDATE dept SET loc = 'BOSTON' WHERE deptno = 20;

INSERT INTO emp (empno,ename, job,deptno) VALUES (9001,'SMITH','CLERK',40) ;
INSERT INTO emp (empno,ename, job,deptno) VALUES (9002,'JONES','ANALYST',40);
INSERT INTO emp (empno,ename, job,deptno) VALUES (9003, 'ROGERS', '"MANAGER', 40) ;

The following rows froma join of the emp and dept tables are used:

SELECT loc, dname, job, empno FROM emp e, dept d
WHERE e.deptno = d.deptno
ORDER BY 1, 2, 3, 4;

loc | dname | job | empno
b e e
BOSTON | OPERATIONS | ANALYST | 9002
BOSTON | OPERATIONS | CLERK | 9001
BOS TON | OPERATIONS | MANAGER | 9003
BOS TON | RESEARCH | ANALYST | 7788
BOSTON | RESEARCH | ANALYST | 7902
BOSTON | RESEARCH | CLERK | 7369

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 62

Database Compatibility for Oracle® Developers Guide

BOSTON | RESEARCH | CLERK | 7876
BOSTON | RESEARCH | MANAGER | 7566
CHICAGO | SALES | CLERK | 7900
CHICAGO | SALES | MANAGER | 7698
CHICAGO | SALES | SALESMAN | 7499
CHICAGO | SALES | SALESMAN | 7521
CHICAGO | SALES | SALESMAN | 7654
CHICAGO | SALES | SALESMAN | 7844
NEW YORK | ACCOUNTING | CLERK | 7934
NEW YORK | ACCOUNTING | MANAGER | 7782
NEW YORK | ACCOUNTING | PRESIDENT | 7839
(17 rows)

The 1oc,dname, and job columns are used for the dimensions ofthe SQL aggregations
used in the examples. The resulting facts ofthe aggregations are thenumber of
employees obtained byusingthe counT (*) function.

A basic query grouping the 1oc,dname, and job columns is givenby the following.

SELECT loc, dname, job, COUNT (*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno

GROUP BY loc, dname, job

ORDER BY 1, 2, 3;

The rows ofthis result set using the basic GRoupr BY clause without extensions are
referred to as the baseaggregaterows.

loc | dname | job | employees
B i B et e it
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
(12 rows)

The rROLLUP and CUBE extensions add to the baseaggregate rows by providing additional
levels of subtotals to the result set.

The GROUPING SETS extension provides the ability to combine different types of
groupings into a single result set.

The GrouPING and GROUPING 1D functions aid in the interpretation ofthe result set.

The additions provided by these extensions are discussed in more detail in the subsequent
sections.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 63

Database Compatibility for Oracle® Developers Guide

2.2.6.1 ROLLUP Extension

The rROLLUP extension produces a hierarchical set of groups with subtotals for each
hierarchical group as well as a grand total. The order ofthe hierarchyis determined by

the order ofthe expressions givenin the ROLLUP expression list. The top ofthe hierarchy
is the leftmost itemin the list. Each successive itemproceeding to the right moves down
the hierarchy with therightmostitembeing the lowest level.

The syntaxfora single ROLLUP is as follows:

ROLLUP ({ expr 1 | (expr la [, expr 1b] ...) 1}
[, expr 2 | (expr 2a [, expr 2b '] ...) 1 ...)

Each expr is an expression thatdetermines the grouping ofthe result set. Ifenclosed
within parenthesisas (expr 1a, expr 1b, ...) thenthecombinationofvalues

retumed by expr 1aand expr 1bdefinesasingle groupinglevelofthe hierarchy.

The base level ofaggregates returned in the result setis for each unique combination of
values returned by the expression list.

In addition, a subtotal is returned for the first itemin the list (expr 1 or the combination

of (expr 1a, expr 1b, ...),whicheverisspecified)foreachuniquevalue. A
subtotal is returned for the second itemin the list (expr 2 or the combination of (
expr 2a, expr 2b, ...),whicheveris specified)foreach uniquevalue, within each

groupingofthe firstitemand so on. Finally a grand total is returned for the entire result
set.

Forthe subtotalrows, nullis returned for the items across which thesubtotal is taken.

The roLLUP extension specified within the context of the GROUP BY clause is shownby
the following:

SELECT select list FROM ...
GROUP BY [... ,] ROLLUP (expression list) [, ...]

The items specified in select 1istmustalsoappearinthe ROLLUP
expression 1ist;orthey mustbeaggregate functionssuchas COUNT, SUM,AVG,MIN,

or MAX; orthey must be constants or functions whose return values are independent ofthe
individualrows in the group (for example, the sYSDATE function).

The GrRoUP BY clause may specify multiple ROLLUP extensions as well as multiple
occurrences ofother GROUP BY extensions and individual expressions.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 64

Database Compatibility for Oracle® Developers Guide

The orDER BY clause shouldbe usedif you want the output to display in a hierarchical
or othermeaningful structure. There is no guarantee on theorder ofthe result set ifno
ORDER BY clause is specified.

The numberofgrouping levels ortotals is n + 1 where nrepresents thenumber ofitems
in the ROLLUP expressionlist. A parenthesized list counts as oneitem.

The following query produces a rollup based on a hierarchy of columns 1oc,dname,
then job.

SELECT loc, dname, job, COUNT (*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno

GROUP BY ROLLUP (loc, dname, 3job)

ORDER BY 1, 2, 3;

The following is the result ofthe query. There is a count ofthe number of employees for
each unique combination of 1oc,dname, and §ob, as well as subtotals for each unique

combination of 1oc and dname, foreach uniquevalue of 1oc, and a grand total
displayed on the lastline.

loc | dname | job | employees
e e B e
BOS TON | OPERATIONS | ANALYST | 1
BOS TON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | OPERATIONS | | 3
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
BOSTON | RESEARCH | | 5
BOSTON \ \ | 8
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
CHICAGO | SALES | | 6
CHICAGO | | | 6
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
NEW YORK | ACCOUNTING | | 3
NEW YORK | | | 3
I \ \ 17

(20 rows)

The following query shows the effectofcombiningitems in the ROLLUP list within
parenthesis.

SELECT loc, dname, job, COUNT (*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno

GROUP BY ROLLUP (loc, (dname, job))

ORDER BY 1, 2, 3;

In the output, note that there are no subtotals for 1oc and dname combinations as in the
priorexample.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 65

Database Compatibility for Oracle® Developers Guide

loc | dname | job | employees
e et B it
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
BOSTON \ \ | 8
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
CHICAGO | | | 6
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
NEW YORK | \ | 3
I I \ 17

(16 rows)

If the first two columns in the ROLLUP list are enclosed in parenthesis, the subtotal levels
differ as well.

SELECT loc, dname, job, COUNT (*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno

GROUP BY ROLLUP ((loc, dname), job)

ORDER BY 1, 2, 3;

Nowthere is a subtotal for each unique 1 oc and dname combination, butnone for unique
values of 1oc.

loc | dname | job | employees
e e e b
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | OPERATIONS | | 3
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
BOSTON | RESEARCH | | 5
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
CHICAGO | SALES | | 6
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
NEW YORK | ACCOUNTING | | 3
| I \ 17
(17 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 66

Database Compatibility for Oracle® Developers Guide

2.2.6.2 CUBE Extension

The cUBE extension is similarto the ROLLUP extension. However, unlike RoLL.UP, which
produces groupings and results in a hierarchy based ona left to right listing of items in

the ROLLUP expressionlist,a CUBE produces groupings and subtotals based onevery

permutationofall items in the CUBE expressionlist. Thus, theresult setcontains more
rows than a ROLLUP performed on thesame expression list.

The syntaxfora single CUBE is as follows:

CUBE ({ expr 1 | (expr la [, expr 1b] ...) }
[, expr 2 | (expr 2a [, expr 2b '] ...) 1 ...)

Each expr is an expression thatdetermines the grouping ofthe result set. Ifenclosed

within parenthesisas (expr 1a, expr 1b, ...) thenthecombinationofvalues
retumed by expr laand expr 1bdefinesasingle group.

The base level ofaggregates returned in the result setis for each unique combination of
values returned by the expression list.

In addition, a subtotal is returned for the first itemin the list (expr 1 or the combination

of (expr 1a, expr 1b, ...),whicheveris specified)foreachuniquevalue. A
subtotal is returned for the second itemin the list (expr 2 or the combination of (
expr 2a, expr 2b, ...),whicheveris specified)foreach uniquevalue. A subtotal

is also returned for each unique combination ofthe first itemand the second item.
Similarly, if thereis a third item, a subtotalis returned for each uniquevalue ofthe third
item, each unique value ofthe third itemand first itemcombination, eachuniquevalueof
the third itemand second itemcombination, and each unique value ofthe third item,

second item, and first itemcombination. Finally a grand total is returned for the entire
result set.

Forthe subtotalrows, nullis returned for the items across which the subtotal is taken.

The cuBE extension specified within the context ofthe GRouP BY clause is shownby the
following:

SELECT select list FROM ...
GROUP BY [... ,] CUBE (expression list) [, ...]

The items specified in select 1istmustalsoappearinthe CUBE expression 1ist;

or they must beaggregate functions such as COUNT, SUM, AVG, MIN, Or MAX; or they must
be constants or functions whose return values are independentofthe individual rows in
the group (forexample, the sYSDATE function).

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 67

Database Compatibility for Oracle® Developers Guide

The GrROUP BY clause may specify multiple CUBE extensions as wellas multiple
occurrences ofother GROUP BY extensions and individual expressions.

The orDER BY clause shouldbe usedif you want the output to display in a meaningful

structure. There is no guarantee on the order ofthe result setifno orRDER BY clauseis
specified.

The number of grouping levels ortotals is 2 raised to the power of n where n represents
the number ofitems in the CUBE expression list. A parenthesized list counts as one item.

The following query produces a cubebased on permutations of columns 1oc,dname, and
job.

SELECT loc, dname, job, COUNT (*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno

GROUP BY CUBE (loc, dname, job)

ORDER BY 1, 2, 3;

The following is the result ofthe query. There is a count ofthe number of employees for
each combination of 1oc, dname,and job, as well as subtotals for each combination of
loc and dname, foreach combination of 1oc and job, foreach combinationof dname
and 5 ob, for each unique value of 1 oc, foreach uniquevalueof dname, foreach unique
value of job, and a grand total displayed on thelast line.

loc | dname | job | employees
et
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | OPERATIONS | | 3
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
BOSTON | RESEARCH | | 5
BOSTON | | ANALYST | 3
BOSTON | | CLERK | 3
BOSTON | | MANAGER | 2
BOSTON | | | 8
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
CHICAGO | SALES | | 6
CHICAGO | | CLERK | 1
CHICAGO | | MANAGER | 1
CHICAGO | | SALESMAN | 4
CHICAGO | \ | 6
NEW YORK | ACCOUNTING | CLERK \ 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
NEW YORK | ACCOUNTING | | 3
NEW YORK | | CLERK | 1
NEW YORK | | MANAGER | 1
NEW YORK | | PRESIDENT | 1
NEW YORK | \ | 3
| ACCOUNTING | CLERK | 1

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 68

Database Compatibility for Oracle® Developers Guide

| ACCOUNTING | MANAGER | 1
| ACCOUNTING | PRESIDENT | 1
| ACCOUNTING | | 3
| OPERATIONS | ANALYST [1
| OPERATIONS | CLERK [1
| OPERATIONS | MANAGER [1
| OPERATIONS | [3
| RESEARCH | ANALYST [2
| RESEARCH | CLERK | 2
| RESEARCH | MANAGER | 1
| RESEARCH | \ 5
| SALES | CLERK [1
| SALES | MANAGER [1
| SALES | SALESMAN | 4
| SALES | \ 6
| | ANALYST [3
| | CLERK | 5
| | MANAGER | 4
| | PRESIDENT | 1
| | SALESMAN | 4
| I \ 17

(50 rows)

The following query shows the effectofcombiningitems in the cUBE list within
parenthesis.

SELECT loc, dname, job, COUNT (*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno

GROUP BY CUBE (loc, (dname, job))

ORDER BY 1, 2, 3;

In the output note thatthere are no subtotals for permutations involving 1oc and dname
combinations, 1oc and j ob combinations, or for dname by itself, or for §ob by itself.

loc | dname | job | employees
e et s Tt e
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
BOSTON \ \ | 8
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
CHICAGO | | | [
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
NEW YORK | \ | 3
| ACCOUNTING | CLERK | 1

| ACCOUNTING | MANAGER | 1

| ACCOUNTING | PRESIDENT | 1

| OPERATIONS | ANALYST \ 1

| OPERATIONS | CLERK | 1

| OPERATIONS | MANAGER \ 1

| RESEARCH | ANALYST | 2

| RESEARCH | CLERK | 2

| RESEARCH | MANAGER | 1

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 69

Database Compatibility for Oracle® Developers Guide

| SALES | CLERK | 1
| SALES | MANAGER | 1
| SALES | SALESMAN | 4
I | \ 17

(28 rows)

The following query shows another variation whereby the first expression is specified
outsideofthe CUBE extension.

SELECT loc, dname, job, COUNT (*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno

GROUP BY loc, CUBE (dname, job)

ORDER BY 1, 2, 3;

In this output, the permutations are performed for dname and j ob within each grouping
of loc.

loc | dname | job | employees
e et B it
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | OPERATIONS | | 3
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
BOSTON | RESEARCH | | 5
BOSTON | | ANALYST | 3
BOSTON | | CLERK | 3
BOSTON | | MANAGER [2
BOSTON | | | 8
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
CHICAGO | SALES | | 6
CHICAGO | | CLERK | 1
CHICAGO | | MANAGER | 1
CHICAGO | | SALESMAN | 4
CHICAGO | | | 6
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
NEW YORK | ACCOUNTING | | 3
NEW YORK | | CLERK | 1
NEW YORK | | MANAGER | 1
NEW YORK | | PRESIDENT | 1
NEW YORK | | | 3
(28 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 70

Database Compatibility for Oracle® Developers Guide

2.2.6.3 GROUPING SETS Extension

Theuse ofthe GROUPING SETS extension within the GROUP BY clause provides a
means to produceoneresult setthatis actually the concatenation of multiple results sets

based upon different groupings. In other words,a UNTON ALL operationis performed
combining the result sets of multiple groupings into one result set.

Note thata unIoN ALL operation, andtherefore the GROUPING SETS extension,do not
eliminate duplicate rows fromthe result sets thatare being combined together.

The syntaxfora single GROUPING SETS extension is as follows:

GROUPING SETS (
{ expr 1 | (expr la [, expr 1b] ...) |
ROLLUP (expr list) | CUBE (expr Iist)
| R PR I

A GROUPING SETS extension cancontain any combination ofoneor more comma-

separated expressions, lists of expressions enclosed within parenthesis, ROLLUP
extensions, and CUBE extensions.

The GROUPING SETS extension is specified within the context ofthe GRoUP BY clause
as shownby thefollowing:

SELECT select list FROM
GROUP BY [... ,] GROUPING SETS (expression list) [, ...]

Theitems specified in select 1istmustalsoappearinthe GROUPING SETS
expression 1ist;orthey mustbeaggregate functionssuchas COUNT, SUM,AVG,MIN,

or MAX; orthey must be constants or functions whose return values are independent ofthe
individual rows in the group (forexample, the sYsSDATE function).

The GrRoUP BY clause may specify multiple GROUPING SETS extensions as wellas
multiple occurrences ofother GRouP By extensions and individual expressions.

The orDER BY clause shouldbe usedifyou want the output to display in a meaningful

structure. There is no guarantee on the order ofthe result setifno ORDER BY clauseis
specified.

The following query produces a unionof groups given by columns 1oc,dname,and job.

SELECT loc, dname, job, COUNT (*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno

GROUP BY GROUPING SETS (loc, dname, job)

ORDER BY 1, 2, 3;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 71

Database Compatibility for Oracle® Developers Guide

Theresultis as follows:

loc | dname | job | employees
e b T et
BOSTON \ \ | 8
CHICAGO | \ \ 6
NEW YORK | \ | 3
| ACCOUNTING | [3
| OPERATIONS | [3
| RESEARCH | \ 5
| SALES | \ 6
| | ANALYST [3
| | CLERK | 5
| | MANAGER [4
| | PRESIDENT | 1
| | SALESMAN | 4

(12 rows)

This is equivalent to the following query, which employs the use ofthe unton ALL
operator.

SELECT loc AS "loc", NULL AS "dname", NULL AS "job", COUNT (*) AS "employees"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY loc
UNION ALL
SELECT NULL, dname, NULL, COUNT (*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY dname
UNION ALL
SELECT NULL, NULL, job, COUNT (*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY job
ORDER BY 1, 2, 3;

The output fromthe uNION ALL query is the same as the GROUPING SETS output.

loc | dname | job | employees
B it ettt
BOSTON | | | 8
CHICAGO | \ | 6
NEW YORK | | | 3
| ACCOUNTING | | 3
| OPERATIONS | | 3
| RESEARCH | | 5
| SALES \ \ 6
| | ANALYST | 3
| | CLERK | 5
| | MANAGER \ 4
| | PRESIDENT | 1
| | SALESMAN | 4
(12 rows)

The following example shows how various types of GROUP BY extensions canbe used
together within a GROUPING SETS expression list.

SELECT loc, dname, job, COUNT (*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 72

Database Compatibility for Oracle® Developers Guide

GROUP BY GROUPING SETS (loc, ROLLUP (dname, job), CUBE (job, loc))
ORDER BY 1, 2, 3;

The following is the output fromthis query.

loc | dname | job | employees
B it B
BOSTON \ | ANALYST | 3
BOSTON \ | CLERK | 3
BOS TON \ | MANAGER \ 2
BOSTON | \ | 8
BOS TON \ \ | 8
CHICAGO | | CLERK | 1
CHICAGO | | MANAGER | 1
CHICAGO | | SALESMAN | 4
CHICAGO | \ \ 6
CHICAGO | \ | 6
NEW YORK | | CLERK | 1
NEW YORK | | MANAGER | 1
NEW YORK | | PRESIDENT | 1
NEW YORK | \ \ 3
NEW YORK | \ | 3
| ACCOUNTING | CLERK \ 1
| ACCOUNTING | MANAGER \ 1
| ACCOUNTING | PRESIDENT | 1
| ACCOUNTING | \ 3
| OPERATIONS | ANALYST \ 1
| OPERATIONS | CLERK \ 1
| OPERATIONS | MANAGER \ 1
| OPERATIONS | \ 3
| RESEARCH | ANALYST \ 2
| RESEARCH | CLERK | 2
| RESEARCH | MANAGER | 1
| RESEARCH y \ 5
| SALES | CLERK \ 1
| SALES | MANAGER \ 1
| SALES | SALESMAN | 4
| SALES | | 6
| | ANALYST \ 3
| | CLERK \ 5
| | MANAGER \ 4
| | PRESIDENT | 1
| | SALESMAN | 4
| | \ 17
| | \ 17

(38 rows)

The output is basically a concatenation ofthe result sets that would be produced

individually fromGROUP BY loc, GROUP BY ROLLUP (dname, job),and GROUP
BY CUBE (job, loc).Theseindividual queriesare shownby the following.

SELECT loc, NULL AS "dname'", NULL AS "job", COUNT (*) AS "employees"
FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY 1loc

ORDER BY 1;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 73

Database Compatibility for Oracle® Developers Guide

The following is the result set fromthe GROUP BY loc clause.

loc | dname | job | employees
B e e
BOSTON | | \ 8
CHICAGO | | | 6
NEW YORK | | | 3
(3 rows)

The following query uses the GROUP BY ROLLUP (dname, job) clause.

SELECT NULL AS "loc", dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno

GROUP BY ROLLUP (dname, job)

ORDER BY 2, 3;

The following is the result set fromthe GROUP BY ROLLUP (dname, job) clause.

loc | dname | job | employees

i et e ittt T
| ACCOUNTING | CLERK | 1
| ACCOUNTING | MANAGER | 1
| ACCOUNTING | PRESIDENT | 1
| ACCOUNTING | | 3
| OPERATIONS | ANALYST | 1
| OPERATIONS | CLERK | 1
| OPERATIONS | MANAGER | 1
| OPERATIONS | | 3
| RESEARCH | ANALYST | 2
| RESEARCH | CLERK \ 2
| RESEARCH | MANAGER | 1
| RESEARCH \ \ 5
| SALES | CLERK | 1
| SALES | MANAGER | 1
| SALES | SALESMAN | 4
| SALES | | 6
\ \ \ 17

(17 rows)

The following query uses the GROUP BY CUBE (job, loc) clause.

SELECT loc, NULL AS "dname", job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno

GROUP BY CUBE (job, loc)

ORDER BY 1, 3;

The following is the result set fromthe GROUP BY CUBE (job, loc) clause.

loc | dname | job | employees
i e e e
BOSTON | | ANALYST | 3
BOSTON | | CLERK | 3
BOSTON \ | MANAGER \ 2
BOSTON | | | 8
CHICAGO | | CLERK | 1
CHICAGO | | MANAGER | 1
CHICAGO | | SALESMAN | 4
CHICAGO | | | 6

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 74

Database Compatibility for Oracle® Developers Guide

NEW YORK | | CLERK \ 1
NEW YORK | | MANAGER | 1
NEW YORK | | PRESIDENT | 1
NEW YORK | \ | 3
| | ANALYST \ 3
| | CLERK | 5
| | MANAGER \ 4
| | PRESIDENT | 1
| | SALESMAN | 4
| | \ 17
(18 rows)

If the previous three queries are combined with the unTON ALL operator, a concatenation
of the three results sets is produced.

SELECT loc AS "loc", NULL AS "dname", NULL AS "job", COUNT (*) AS "employees"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY loc
UNION ALL
SELECT NULL, dname, job, count(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (dname, job)
UNION ALL
SELECT loc, NULL, job, count(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (job, loc)
ORDER BY 1, 2, 3;

The following is the output, which is the same as whenthe GROUP BY GROUPING SETS
(loc, ROLLUP (dname, job), CUBE (job, loc)) clauseisused.

loc | dname | job | employees
b ——
BOSTON \ | ANALYST | 3
BOS TON \ | CLERK \ 3
BOS TON \ | MANAGER | 2
BOSTON \ \ | 8
BOSTON \ \ | 8
CHICAGO | | CLERK | 1
CHICAGO | | MANAGER | 1
CHICAGO | | SALESMAN | 4
CHICAGO | \ | 6
CHICAGO | \ | 6
NEW YORK | | CLERK | 1
NEW YORK | | MANAGER | 1
NEW YORK | | PRESIDENT | 1
NEW YORK | \ | 3
NEW YORK | \ | 3
| ACCOUNTING | CLERK [1

| ACCOUNTING | MANAGER [1

| ACCOUNTING | PRESIDENT | 1

| ACCOUNTING | \ 3

| OPERATIONS | ANALYST [1

| OPERATIONS | CLERK [1

| OPERATIONS | MANAGER | 1

| OPERATIONS | \ 3

| RESEARCH | ANALYST | 2

| RESEARCH | CLERK \ 2

| RESEARCH | MANAGER \ 1

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 75

Database Compatibility for Oracle® Developers Guide

| RESEARCH [\ 5
| SALES | CLERK \ 1
| SALES | MANAGER \ 1
| SALES | SALESMAN | 4
| SALES \ \ 6
| | ANALYST \ 3
| | CLERK \ 5
| | MANAGER \ 4
| | PRESIDENT | 1
| | SALESMAN | 4
| | \ 17
| | \ 17

(38 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 76

Database Compatibility for Oracle® Developers Guide

2.2.6.4 GROUPING Function

When usingthe ROLLUP, CUBE, 0T GROUPING SETS extensions tothe GROUP BY clause,
it may sometimes be difficult to differentiate between the various levels of subtotals
generated by the extensions as well as the base aggregate rows in the result set. The
GROUPING function provides a means of making this distinction.

The general syntaxforuse ofthe GROUuPING functionis shown by the following.

SELECT [expr ...,] GROUPING(col expr) [, expr |
FROM
GROUP BY [...,]

{ ROLLUP | CUBE | GROUPING SETS }([...,] COlieXPr

L, «..17) [, ...]

The GROUPING functiontakes a single parameter that mustbe an expression ofa

dimension column specified in the expression list ofa ROLLUP, CUBE, Or GROUPING
SETS extension ofthe GrRoUP BY clause.

The return value ofthe GRouPING functionis eithera Oor 1. In theresult setofa query,
if the column expression specified in the GRouPING function is nullbecausethe row
represents a subtotal over multiple values ofthat column then the GROUPING function
returns a value of 1. If the row returns results based on a particular value ofthe column

specified in the GROUPING function, thenthe GROUPING functionreturns a value of0. In
the latter case, thecolumn canbe nullas wellas non-null, but in any case, it is fora
particular value ofthat column, nota subtotal acro ss multiple values.

The following query shows how thereturn values ofthe GRoupING function correspond
to the subtotal lines.

SELECT loc, dname, job, COUNT (*) AS "employees",
GROUPING (loc) AS "gf loc",
GROUPING (dname) AS "gf dname",
GROUPING (job) AS "gf job"

FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY ROLLUP (loc, dname, job)

ORDER BY 1, 2, 3;

In the three right-mostcolumns displaying the outputofthe GrRourPING functions, a value

of 1 appears on a subtotal line wherever a subtotal is taken across values ofthe
corresponding columns.

loc | dname | job | employees | gf loc | gf dname | gf job
e it e bt B e
BOSTON | OPERATIONS | ANALYST | 1 0 | 0 | 0
BOSTON | OPERATIONS | CLERK | 1| 0 | 0 | 0
BOSTON | OPERATIONS | MANAGER | 1| 0 | 0 | 0

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 77

Database Compatibility for Oracle® Developers Guide

BOS TON | OPERATIONS | | 3 0 | 0 | 1
BOS TON | RESEARCH | ANALYST \ 2 | 0 | 0 | 0
BOS TON | RESEARCH | CLERK | 2 | 0 | 0 | 0
BOS TON | RESEARCH | MANAGER | 1 | 0 | 0 | 0
BOSTON | RESEARCH \ | 5 | 0 | 0 | 1
BOSTON \ \ | 8 | 0 | 1 | 1
CHICAGO | SALES | CLERK | 1 | 0 | 0 | 0
CHICAGO | SALES | MANAGER | 1 | 0 | 0 | 0
CHICAGO | SALES | SALESMAN | 4 | 0 | 0 | 0
CHICAGO | SALES \ | 6 | 0 | 0 | 1
CHICAGO | \ | 6 | 0 | 1 1
NEW YORK | ACCOUNTING | CLERK | 1 0 | 0 | 0
NEW YORK | ACCOUNTING | MANAGER | 1 | 0 | 0 | 0
NEW YORK | ACCOUNTING | PRESIDENT | 1 | 0 | 0 | 0
NEW YORK | ACCOUNTING | | 3 0 | 0 | 1
NEW YORK | \ | 3 0 | 1| 1

| \ \ 17 | 1 | 1 | 1
(20 rows)

These indicators can be used as screening criteria for particular subtotals. For example,

using the previous query, you can display only those subtotals for 1oc and dname
combinations by usingthe GROUPING functionin a HAVING clause.

SELECT loc, dname, job, COUNT (*) AS "employees",
GROUPING (loc) AS "gf loc",
GROUPING (dname) AS "gf dname",
GROUPING (job) AS "gf job"
FROM emp e, dept d -
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (loc, dname, job)
HAVING GROUPING (loc) = 0
AND GROUPING (dname)
AND GROUPING (job) =
ORDER BY 1, 2;

=0
1

This query produces the following result:

loc | dname | job | employees | gf loc | gf dname | gf job
———— e e
BOSTON | OPERATIONS | | 3 | 0 | 0 | 1
BOSTON | RESEARCH | | 5 | 0 | 0 | 1
CHICAGO | SALES \ \ 6 | 0 | 0 | 1
NEW YORK | ACCOUNTING | | 3 | 0 | 0 | 1
(4 rows)

The GROUPING functioncan be used to distinguish a subtotal row from a base aggregate
row or from certain subtotalrows where oneofthe items in the expression list returns

null as aresult ofthe column on which the expressionis based beingnull for one ormore
rows in the table, as opposed to representinga subtotal overthecolumn.

To illustrate this point, the following row is added to the emp table. This provides a row
with a null value forthe job column.

INSERT INTO emp (empno,ename,deptno) VALUES (9004, 'PETERS',40);

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 78

Database Compatibility for Oracle® Developers Guide

The following query is issued using a reducednumber ofrows for clarity.

SELECT loc, job, COUNT(*) AS "employees",
GROUPING (loc) AS "gf loc",
GROUPING (job) AS "gf job"
FROM emp e, dept d
WHERE e.deptno = d.deptno AND loc = 'BOSTON'
GROUP BY CUBE (loc, job)
ORDER BY 1, 2;

Note that the output contains two rows containing BOSTON in the 1oc column and spaces
in the job column (fourth and fifth entries in the table).

loc | job | employees | gf loc | gf job
e B i B it e
BOSTON | ANALYST | 3 | 0 | 0
BOSTON | CLERK | 3 | 0 | 0
BOSTON | MANAGER | 2 0 | 0
BOSTON | | 1 | 0 | 0
BOSTON | | 9 | 0 | 1
| ANALYST | 3 1 | 0
| CLERK \ 3 | 1 | 0
| MANAGER | 2 | 1 | 0
\ \ 1 | 1 | 0
\ \ 9 | 1] 1
(L0 rows)

The fifth row where the GRoUPING function onthe job column (g£ job)returns 1
indicates this is a subtotal overalljobs. Note that the row contains a subtotal value o9 in
the employees column.

The fourth row where the GROUPING function onthe job column as wellas on the 1oc
column returns O indicates this is a base aggregate ofallrows where 1oc is BosToN and

job is null, which is the row inserted for this example. The employees column contains
1, which is the count ofthe single such row inserted.

Also notethatin the ninthrow (next to last) the GROUPING functionon the job column
returns O while the GROUPING functionon the 1oc column returns 1 indicating thisis a

subtotal overalllocations wherethe 5 ob column is null, which again, is a countofthe
single row inserted for this example.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 79

Database Compatibility for Oracle® Developers Guide

2.2.6.5 GROUPING _ID Function

The GroupPING 1D functionprovides asimplification ofthe GROUPING functionin order
to determine the subtotallevel ofa row in the result setfroma ROLLBACK, CUBE, Or
GROUPING SETS extension.

The GrRoOUPING functiontakes only one column expression and returns an indication of
whetherornotarowis asubtotal overall values ofthe given column. Thus, multiple

GROUPING functions may be required to interpretthe level of subtotals for queries with
multiple grouping columns.

The GROUPING 1D functionaccepts one or more column expressions thathave been used

in the ROLLBACK, CUBE, Or GROUPING SETS extensions andreturns a single integer that
can be usedto determine over which ofthese columns a subtotal has been aggregated.

The general syntaxforuse of the GRourING 1D functionis shownby thefollowing.

SELECT [expr ...,]
GROUPING ID(col expr 1 [, col expr 2] ...)
[, expr]
FROM
GROUP BY [...,]
{ ROLLUP | CUBE | GROUPING SETS }([...,] col expr 1
[, col expor 21 [, ...1) [, ...]

The GrROUPING 1D functiontakes one or more parameters that mustbe expressions of

dimension columns specified in the expression list ofa ROLLUP, CUBE, Or GROUPING
SETS extension ofthe GROUP BY clause.

The GrouPING 1D functionreturnsan integer value. This valuecorresponds to the base-
10 interpretation ofa bit vector consisting ofthe concatenated 1’s and 0’s that would be
returned by a series of GROUPTNG functions specified in the same left-to-rightorderas
the ordering ofthe parameters specified in the GRourING 1D function.

The following query shows how thereturned values ofthe GrRourpING 1D function
represented in column gid correspondto the values returned by two GROUPING functions
on columns 1oc and dname.

SELECT loc, dname, COUNT (*) AS "employees",
GROUPING (loc) AS "gf loc", GROUPING (dname) AS "gf dname",
GROUPING ID(loc, dname) AS "gid" B

FROM emp e, dept d

WHERE e.deptno = d.deptno

GROUP BY CUBE (loc, dname)

ORDER BY 6, 1, 2;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 80

Database Compatibility for Oracle® Developers Guide

In the following output, notethe relationship between a bit vector consisting ofthe
gf locvalueand gf dname value comparedto the integer givenin gid.

loc | dname | employees | gf loc | gf dname | gid
e i e e +=————
BOS TON | OPERATIONS | 3 | 0 | 0 | 0
BOS TON | RESEARCH | 5 | 0 | 0 | 0
CHICAGO | SALES | 6 | 0 | 0 | 0
NEW YORK | ACCOUNTING | 3 | 0 | 0 | 0
BOSTON | | 8 | 0 | 1] 1
CHICAGO | | 6 | 0 | 1] 1
NEW YORK | | 3 0 | 1 1
| ACCOUNTING | 3 1 | 0 | 2
| OPERATIONS | 3 1 | 0 | 2
| RESEARCH | 5 | 1 | 0 | 2
| SALES [6 | 1 | 0 | 2
| | 17 | 1 | 1 | 3
(12 rows)

The following table provides specific examples ofthe GROUPING 1D function
calculations based on the GROUPTNG functionreturn values for fourrows ofthe output.

loc dname Bit Vector GROUPING_ID
gf loc gf dname gid
BOSTON OPERATIONS 0*2 + 02 0
BOSTON null 0*x20 4+ 120 1
null ACCOUNT ING 120 4+ 020 2
null null 1+ 20 4+ 1 %20 3

The following table summarizes how the GROUPING 1D functionreturn values

correspond tothe grouping columns over which aggregation occurs.

Aggregation by Column Bit Vector GROUPING_ID
gf loc gf_dname gid

loc, dname 00 0

loc 01 1

dname 10 2

Grand Total 11 3

So to display only thosesubtotals by dname, the following simplified query can be used
with a HAVING clause basedon the GrRouPING 1D function.

SELECT loc, dname, COUNT (*) AS "employees",

GROUPING (loc) AS "gf loc", GROUPING (dname) AS "gf dname",

GROUPING ID(loc, dname) AS "gid"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (loc, dname)
HAVING GROUPINGilD(lOC, dname) = 2
ORDER BY 6, 1, 2;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

81

Database Compatibility for Oracle® Developers Guide

The following is the result ofthe query.

loc | dname | employees | gf loc | gf dname | gid
e e e et B
| ACCOUNTING 3 1 0 | 2
| OPERATIONS | 3 | 1| 0 | 2
| RESEARCH | 5 | 1 | 0 | 2
SALES | 6 1 0 | 2
(4 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 82

Database Compatibility for Oracle® Developers Guide

2.3 Profile Management

Advanced Server 9.6 allows a database superuser to create named profiles. Each profile

defines rules for password management thataugment password and md5 authentication.
Therules in a profile can:

count failed login attempts

lock an account due to excessive failed login attempts
mark a password for expiration

define a grace period after a password expiration
define rules for password complexity

define rules that limit password re-use

A profile is a named set ofpassword attributes thatallow you to easily manage a group of
roles that share comparable authentication requirements. Ifthe password requirements

change, youcan modify the profile to havethe new requirements applied to each user that
is associated with thatprofile.

Aftercreating theprofile, you canassociatethe profile with one ormore users. Whena
user connects to the server, the server enforces the profile that is associated with their
loginrole. Profiles are shared by all databases within a cluster, buteach cluster may have
multiple profiles. A single user with access to multiple databases will use the same
profile when connecting to each database within the cluster.

Advanced Server 9.6 creates a profile named de fault thatis associated with anewrole
when the role is created unless an alternate profile is specified. Ifyou upgrade to
Advanced Server 9.6 from a previous server version, existing roles will automatically be
assignedtothedefault profile. Youcannotdeletethe default profile.

The default profile specifies the following attributes:

FATILED LOGIN ATTEMPTS UNLIMITED
PASSWORD_ LOCK TIME UNLIMITED
PASSWORD LIFE TIME UNLIMITED
PASSWORD GRACE TIME UNLIMITED
PASSWORD REUSE TIME UNLIMITED
PASSWORD REUSE MAX UNLIMITED

PASSWORD VERIFY FUNCTION NULL

A databasesuperuser can usethe ALTER PROFILE command to modify the values

specified by thede fault profile. Formore information about modifying a profile, see
Section 2.3.2.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 83

Database Compatibility for Oracle® Developers Guide

2.3.1 Creating a New Profile

Usethe CREATE PROFILE command to create anew profile. The syntaxis:

CREATE PROFILE profile name
[LIMIT {parameter value} ... 1;

Include the 1M1 T clause and one or more space-delimited pa rame ter/value pairs to
specify the rules enforced by Advanced Server.

Parameters:
profile name specifies the name ofthe profile.
parameter specifies the attribute limited by the profile.
value specifies theparameter limit.

Advanced Server supports the vaiue shown below foreach parameter:

FAILED LOGIN ATTEMPTS specifies thenumberoffailed login attempts that auser
may make before the serverlocks the user out oftheiraccount for the length oftime
specified by PASSWORD LOCK TIME. Supported values are:

e An INTEGER value greaterthano.
e DEFAULT - thevalueof FAILED LOGIN ATTEMPTS specified in the
DEFAULT profile.

e UNLIMITED - the connecting user may make an unlimited number of failed
login attempts.

PASSWORD LOCK TIME specifies the length oftime that must pass before the server
unlocks an account that hasbeenlocked becauseof FAILED LOGIN ATTEMPTS.
Supported values are:

e ANUMERIC value greaterthanorequalto 0. To specify a fractional portion
of aday, specify adecimalvalue. Forexample,use the value 4. 5 to specify 4
days, 12 hours.

e DEFAULT - the value of PASSWORD LOCK_ TIME specified inthe DEFAULT
profile.

e UNLIMITED-theaccountis locked untilitis manually unlocked bya
database superuser.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 84

Database Compatibility for Oracle® Developers Guide

PASSWORD LIFE TIME specifiesthe numberofdays thatthe currentpassword may
beused before theuseris prompted to provide a new password. Include the
PASSWORD GRACE_TIME clause whenusingthe PASSWORD LIFE TIME clauseto
specify the number of days thatwill pass afterthe password expires before
connections by the role are rejected. If PASSWORD GRACE_TIME is not specified, the
password will expire on the day specified by the default value of

PASSWORD_ GRACE_TIME,and the user will not be allowed to executeany command
untila new password is provided. Supported values are:

e A NUMERIC value greaterthanorequalto 0. To specify a fractional portion
of aday, specify adecimal value. Forexample,use the value 4. 5 to specify 4
days, 12 hours.

® DEFAULT - the value of PASSWORD LIFE TIME specified inthe DEFAULT
profile.

e UNLIMITED-—The passworddoesnothave an expiration date.

PASSWORD GRACE TIME specifies the lengthofthe graceperiodaftera password
expires untilthe useris forced to changetheirpassword. Whenthe graceperiod
expires, a user will be allowed to connect, but will not be allowed to executeany
command until they updatetheir expired password. Supported values are:

e A NUMERIC value greaterthanorequalto 0. To specify a fractional portion
of aday, specify adecimalvalue. Forexample,use the value 4. 5 to specify 4
days, 12 hours.

e DEFAULT - the value of PASSWORD GRACE TIME specified in the DEFAULT
profile.

e UNLIMITED- The grace period is infinite.

PASSWORD REUSE TIME specifies the numberofdaysausermust wait before re-
using a password. The PASSWORD REUSE TIME and PASSWORD REUSE MAX
parameters are intended to be usedtogether. Ifyou specify a finite value forone of
these parameters while the otheris UNLIMITED, old passwords cannever be reused.
If both parameters are set to UNLIMITED there are no restrictions on password reuse.
Supported values are:

e A NUMERIC value greaterthanorequalto 0. To specify a fractional portion
of aday, specify adecimalvalue. Forexample,use the value 4. 5 to specify 4
days, 12 hours.

e DEFAULT - the value of PASSWORD REUSE_TIME specified in the DEFAULT
profile.

e UNLIMITED-— Thepasswordcan be re-used without restrictions.

PASSWORD REUSE MaX specifies the numberofpassword changes thatmust occur
before a password canbe reused. The PASSWORD REUSE TIME and

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 85

Database Compatibility for Oracle® Developers Guide

PASSWORD REUSE_MAX parameters are intended to be used together. Ifyou specifya
finite value for one ofthese parameters while the otheris uUNLTIMITED, old passwords

canneverbereused. Ifboth parameters are setto UNLIMITED there are no
restrictions onpassword reuse. Supported values are:

e An INTEGER value greaterthanorequalto 0.

e DEFAULT - the value of PASSWORD REUSE Max specified in the DEFAULT
profile.

e UNLIMITED- Thepasswordcan be re-used without restrictions.

PASSWORD VERIFY FUNCTION specifies password complexity. Supported values
are:

e Thenameofa PL/SQL function.

e DEFAULT - the value of PASSWORD VERIFY FUNCTION specified in the
DEFAULT profile.

e NULL

Notes
Use DroP PROFILE command to remove the profile.

Examples

The following command creates a profile named acctg. The profile specifies thatifa

user has not authenticated with the correct password in five attempts, the account willbe
locked forone day:

CREATE PROFILE acctg LIMIT
FAILED LOGIN ATTEMPTS 5
PASSWORD LOCK TIME 1;

The following command creates a profile named sales. The profile specifies thatauser
must change their password every 90 days:

CREATE PROFILE sales LIMIT
PASSWORD LIFE TIME 90
PASSWORD GRACE TIME 3;

If the userhas not changed their password before the 90 days specified in the profile has

passed, they will be issueda warning at login. Aftera grace periodof3 days, their
account will not be allowed to invoke any commands until they change their password.

The following command creates a profile named accts. The profile specifies thatauser
cannotre-use a password within 180 days ofthe lastuse ofthe password, and must
changetheir password at least 5 times before re-using the password:

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 86

Database Compatibility for Oracle® Developers Guide

CREATE PROFILE accts LIMIT
PASSWORD REUSE TIME 180
PASSWORD REUSE MAX 5;

The following command creates a profile named resources;the profile calls auser-

defined functionnamed password rules that will verify that the password provided
meets theirstandards for complexity:

CREATE PROFILE resources LIMIT
PASSWORD VERIFY FUNCTION password rules;

2.3.1.1 Creating a Password Function

When specifying PASSWORD VERIFY FUNCTION, youcanprovide acustomized
function that specifies the security rules that willbe applied when yourusers change their
password. Forexample, you can specify rules thatstipulate that the new password mu st
be at least n characters long, and may not contain a specific value.

The password function has the following signature:

function name (user name VARCHARZ,
new password VARCHARZ,
old password VARCHAR2) RETURN boolean

Where:
user name is the name of the user.

new passwordis the newpassword.

old passwordistheuser'sprevious password. Ifyou reference this parameter
within your function:

When a database superuser changes their password, the third parameter
will always be NULL.

When auser with the CREATEROLE attribute changes their password, the
parameter will passthe previous passwordifthe statementincludes the
REPLACE clause. Note that theREPLACE clause is optional syntaxfora
user with the CREATEROLE privilege.

When auserthatis not a database superuser and does not have the

CREATEROLE attribute changes their password, the third parameter will
contain theprevious password forthe role.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 87

Database Compatibility for Oracle® Developers Guide

The functionreturns a Boolean value. Ifthe function returns true and does notraise an
exception, the password is accepted;ifthe functionreturns false orraises an exception,
the password is rejected. Ifthe function raises an exception, thespecified errormessage
is displayedto the user. Ifthe functiondoes notraisean exception, but returns false, the
following error message is displayed:

ERROR: password verification for the specified password failed
The functionmust be owned by a database superuser, and reside in the sys schema.
Example:

The following example creates a profile and a custom function; then, the function is
associated with the profile. The following CREATE PROFILE command creates a profile
nanmdacctg_pwd_profile:

CREATE PROFILE acctg pwd profile;

The following commands createa (schema-qualified) functionnamed
verify password:

CREATE OR REPLACE FUNCTION sys.verify password(user name varchar2,
new password varchar2, old password varchar2)

RETURN boolean IMMUTABLE

IS

BEGIN
IF (length (new_password) < 5)
THEN
raise application error(-20001, 'too short');
END TIF;

IF substring(new password FROM old password) IS NOT NULL
THEN

raise application error(-20002, 'includes old password') ;
END IF;

RETURN true;
END;

The function first ensures that thepassword is at least S characters long, and then

compares thenew password tothe old password. Ifthe new password contains fewer
than 5 characters, or contains the old password, the functionraises an error.

The following statementsets theownership ofthe verify password functionto the
enterprisedb database superuser:

ALTER FUNCTION verify password(varchar2, varchar2, varchar2) OWNER TO
enterprisedb;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 88

Database Compatibility for Oracle® Developers Guide

Then,the verify password function is associated with the profile:

ALTER PROFILE acctgipwdiprofile LIMIT PASSWORD VERIFY FUNCTION
verify password;

The following statements confirmthat the function is working by first creatinga testuser
(alice), and then attemptingto associateinvalid and valid passwords with herrole:

CREATE ROLE alice WITH LOGIN PASSWORD 'temp password' PROFILE
acctg pwd profile;

Then, when a11ce connects to the database and attempts to change her password, she
must adhere to the rules established by the profile function. A non-superuser without
CREATEROLE must include the REPLACE clause when changinga password:

edb=> ALTER ROLE alice PASSWORD 'hey';
ERROR: missing REPLACE clause

The new password mustbe at least5 characters long:

edb=> ALTER USER alice PASSWORD 'hey' REPLACE 'temp password';
ERROR: EDB-20001: too short

CONTEXT: edb-spl function verify password (character varying,character
varying, character varying) line 5 at procedure/function invocation statement

If the new passwordis acceptable, the command completes withouterror:

edb=> ALTER USER alice PASSWORD 'hello' REPLACE 'temp password';
ALTER ROLE

If a1ice decides tochange her password, the new password mustnotcontainthe old
password:

edb=> ALTER USER alice PASSWORD 'helloworld' REPLACE 'hello';

ERROR: EDB-20002: includes old password

CONTEXT: edb-spl function verify password(character varying, character
varying, character varying) line 10 at procedure/function invocation statement

To remove the verify function,set password verify functiontoNULL:
ALTER PROFILE acctg pwd profile LIMIT password verify function NULL;

Then, all password constraints will be lifted:

edb=# ALTER ROLE alice PASSWORD 'hey';
ALTER ROLE

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 89

Database Compatibility for Oracle® Developers Guide

2.3.2 Altering a Profile

Usethe ALTER PROFILE command to modify a user-defined profile; Advanced Server
supports two forms ofthe command:

ALTER PROFILE profile name RENAME TO new name;

ALTER PROFILE profile name
LIMIT {parameter value}[...];

Include the LTM1 T clause and one or more space-delimited pa rame ter/value pairs to
specify the rules enforced by Advanced Server, oruse ALTER PROFILE...RENAME TO to
changethe name ofa profile.
Parameters:

profile name specifies the name ofthe profile.

new_name specifies the new name ofthe profile.

parameter specifies the attribute limited by the profile.

value specifies theparameter limit.
See the table in Section 2.3.1 for a complete list of accepted parameter/value pairs.

Examples

The following example modifies a profile named acctg profile:

ALTER PROFILE acctg profile
LIMIT FAILED LOGIN ATTEMPTS 3 PASSWORD LOCK TIME 1;

acctg profile will count failed connectionattempts when a login role attempts to
connect to theserver. The profile specifies that ifa user has not authenticated with the
correct password in three attempts, the account will be locked for one day.

The following example changes thename ofacctg profiletopayables profile:

ALTER PROFILE acctg profile RENAME TO payables profile;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 90

Database Compatibility for Oracle® Developers Guide

2.3.3 Dropping a Profile
Use the DROP PROFILE command to drop a profile. The syntaxis:

DROP PROFILE [IF EXISTS] profile name [CASCADE|RESTRICT];

Include the 1F Ex1STS clause toinstruct the server to not throw an errorifthe specified
profile does not exist. The server will issue a notice ifthe profile does notexist.

Include the optional cascaDE clause toreassignany users thatare currently associated
with the profile to the de fault profile, and then drop theprofile. Include the optional
RESTRICT clause to instruct theserver to not drop any profile thatis associated with a
role. This is the default behavior.
Parameters
profile name

The name ofthe profile being dropped.
Examples

The following example drops aprofilenamed acctg profile:

DROP PROFILE acctg profile CASCADE;

The command first re-associates anyroles associated with the acctg profile profile
with the default profile,and then dropsthe acctg profile profile.

The following example drops aprofilenamed acctg profile:

DROP PROFILE acctg profile RESTRICT;

The RESTRICT clause in the command instructs theservertonotdropacctg profile
if there are any roles associated with the profile.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 91

Database Compatibility for Oracle® Developers Guide

2.3.4 Associating a Profile with an Existing Role

Aftercreating a profile, you canuse the ALTER USER.. PROFILE Or ALTER ROLE...

PROFILE command to associate the profile with arole. The command syntaxrelated to
profile management functionality is:

ALTER USER|ROLE name [[WITH] optionl..]

where option canbe the following compatible clauses:

PROFILE profile name

| ACCOUNT {LOCK|UNLOCK}
| PASSWORD EXPIRE [AT 'timestamp']

or option can be the following non-compatible clauses:

| PASSWORD SET AT 'timestamp'
| LOCK TIME 'timestamp'
| STORE PRIOR PASSWORD { 'password' 'timestamp} [, ...l

Forinformation aboutthe administrative clauses ofthe ALTER USER OrALTER ROLE
command that are supported by Advanced Server, please see the PostgreSQL core
documentation available at:

http://www.postgresql.org/docs/9.5/static/sql-commands.html

Only a database superuser canuse the ALTER USER|ROLE clauses that enforce profile
management. The clauses enforce the following behaviors:

Include the PROFILE clauseand a profile name to associate a pre-defined

profile with arole, or to change which pre-defined profile is associated with a
user.

Include the accounT clause and the Lock orunLock keyword to specify thatthe
useraccount shouldbe placedin a locked orunlocked state.

Include the LOCK TIME 'timestamp' clause anda date/time value tolockthe
role at the specified time, and unlock therole at the time indicated by the
PASSWORD_LOCK_TIME parameter ofthe profile assignedto thisrole. IfLock

TIME is used with the AcCOUNT L.oCK clause, therole can only be unlocked by a
database superuser with the ACCOUNT UNLOCK clause.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 92

http://www.postgresql.org/docs/9.5/static/sql-commands.html

Database Compatibility for Oracle® Developers Guide

Include the PASSWORD ExPIRE clause with theAT ' t imestamp' keywordsto

specify a date/time when the password associated with the role will expire. If you
omit the AT ' timestamp' keywords,the password will expire immediately.

Includethe PASSWORD SET AT ' timestamp' keywords to set the password
modification date to the time specified.

Include the STORE PRIOR PASSWORD { 'password' 'timestamp} [, ...]
clause to modify the password history, adding the new password and the time the
password was set.

Each login role may only have oneprofile. To discoverthe profile that is currently
associated with a login role, query the profile column ofthe DBA USERS view.

Parameters
name
The name ofthe role with which the specified profile will be associated.
password
The password associated with the role.
profile name
The name ofthe profile that will be associated with the role.

timestamp

The date and time at which the clausewill be enforced. Whenspecifyinga value
for t imestamp, enclosethe value in single-quotes.

Examples

The following command usesthe ALTER USER.. PROFILE command to associate a
profile named acctg with ausernamed john:

ALTER USER john PROFILE acctg profile;

The following command uses the ALTER ROLE.. PROFILE command to associate a
profile named acctg with ausernamed john:

ALTER ROLE john PROFILE acctg profile;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 93

Database Compatibility for Oracle® Developers Guide

2.3.5 Unlocking a Locked Account

A databasesuperuser can useclauses ofthe ALTER USER | ROLE... command to lockor
unlockarole. The syntaxis:

ALTERUSER|ROLE name

ACCOUNT {LOCK|UNLOCK}
LOCK TIME 'timestamp'

Include the AccounT LoCK clause to locka role immediately; when locked, arole’s
LOGIN functionality is disabled. When you specify the AcCOUNT LoCK clause without
the LoCK TIME clause, thestate ofthe role will not change untila superuseruses the
ACCOUNT UNLOCK clause to unlock therole.

Use the AccouNT UNLOCK clause to unlockarole.
Usethe LOCK TIME 'timestamp' clauseto instructthe serverto lockthe accountat the
time specified by the given timestamp for the length oftime specified by the
PASSWORD LOCK TIME parameterofthe profile associated with thisrole.
Combinethe LOCK TIME 'timestamp' clauseandthe AcCOUNT LoOCK clauseto lock
an account at a specified time untilthe account is unlocked by a superuser invoking the
ACCOUNT UNLOCK clause.
Parameters
name

The name ofthe role that is being locked orunlocked.

timestamp

The date and time at which the role will be locked. When specifyinga value for
timestamp,enclose the valuein single-quotes.

Note

This command (available only in Advanced Server) is implemented to support Oracle-
styled profile management.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 94

Database Compatibility for Oracle® Developers Guide
Examples

The following example uses the AccounT L.ock clause to lockthe rolenamed john.

The account will remain locked untilthe account is unlocked with the ACCOUNT UNLOCK
clause:

ALTER ROLE john ACCOUNT LOCK;

The following example uses the ACCOUNT UNLOCK clause to unlock the role named
john:

ALTER USER john ACCOUNT UNLOCK;

The following example uses the LOCK TIME ' timestamp' clauseto locktherole
named john on September4, 2015:

ALTER ROLE john LOCK TIME ‘September 4 12:00:00 2015’ ;

The role will remain locked for the length oftime specified by the
PASSWORD_LOCK_TIME parameter.

The following example combines the LOCK TIME ' timestamp' clauseandthe
ACCOUNT LOCK clause to lockthe role named j ohn on September 4, 2015:

ALTER ROLE john LOCK TIME ‘September 4 12:00:00 2015’ ACCOUNT LOCK;

The role will remain locked untila database superuserusesthe ACCOUNT UNLOCK
command to unlocktherole.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 95

Database Compatibility for Oracle® Developers Guide

2.3.6 Creatinga New Role Associated with a Profile

A databasesuperuser can useclauses ofthe CREATE USER[ROLE command to assigna
named profile to arole when creatingthe role, or to specify profile managementdetails
forarole. The command syntaxrelated to profile managementfunctionality is:

CREATE USER|ROLE name [[WITH] option [..]1]

where option canbe the following compatible clauses:

PROFILE profile name

| ACCOUNT {LOCK|UNLOCK}
PASSWORD EXPIRE [AT 'timestamp']

or option can be the following non-compatible clauses:

| LOCK TIME 'timestamp'

Forinformation aboutthe administrative clauses ofthe CREATE USER Or CREATE ROLE

command that are supported by Advanced Server, please see the PostgreSQL core
documentation available at:

http://www.postgresql.org/docs/9.5/static/sql-commands.html

CREATE ROLE |USER.. PROFILE adds anewrole with an associated profile to an
Advanced Server database cluster.

Roles created with the CREATE USER command are (by default) login roles. Roles
created with the CREATE ROLE command are (by default)notlogin roles. To create a
login account with the CREATE ROLE command, you mustinclude the Loc 1 keyword.

Only a database superuser canuse the CREATE USER|ROLE clauses that enforce profile
management; these clauses enforce the following behaviors:

Include the PrROFILE clauseand a profile name to associate a pre-defined

profile with arole, or to change which pre-defined profile is associated with a
user.

Include the accounT clause and the Lock or unLock keyword to specify thatthe
useraccount shouldbe placedin a locked orunlocked state.

Includethe LOCK TIME 'timestamp' clause anda date/time value tolockthe
role at the specified time, and unlock therole at the time indicated by the
PASSWORD_ LOCK_TIME parameter ofthe profile assignedto thisrole. IfLock

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 96

http://www.postgresql.org/docs/9.5/static/sql-commands.html
http://www.postgresql.org/docs/9.5/static/sql-commands.html

Database Compatibility for Oracle® Developers Guide

T1ME is used with the AcCOUNT L.oCK clause, therole can only be unlocked by a
database superuser with the ACCOUNT UNLOCK clause.

Include the PASSWORD ExPIRE clause with theoptional AT ' timestamp'
keywords to specify a date/time when the password associated with the role will
expire. Ifyouomitthe AT ' timestamp' keywords,the password will expire
immediately.

Each login role may only have oneprofile. To discoverthe profile that is currently
associated with a login role, query the profile column ofthe DBA USERS view.

Parameters
name
The name ofthe role.
profile name
The name ofthe profile associated with therole.

timestamp

The date and time at which the clausewill be enforced. Whenspecifyinga value
for t imestamp,enclosethe value in single-quotes.

Examples

The following example uses CREATE USER to create a login role named john who is
associatedwith the acctg profile profile:

CREATE USER john PROFILE acctg profile IDENTIFIED BY “lsafepwd”;

john can log in to the server, usingthe password 1safepwd.

The following example uses CREATE ROLE to create a login role named john who is
associatedwith the acctg profile profile:

CREATE ROLE john PROFILE acctg profile LOGIN PASSWORD “lsafepwd”;

john canlogin to the server, usingthe password 1safepwd.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 97

Database Compatibility for Oracle® Developers Guide

2.3.7 Backing up Profile Management Functions

A profile may include a PASSWORD VERIFY FUNCTION clause that refersto auser-
defined function thatspecifies thebehavior enforced by Advanced Server. Profiles are

globalobjects; theyare shared by all ofthe databases within a cluster. While profiles are
globalobjects, user-defined functions are database objects.

Invoking pg dumpall with the -g or —r option will create a script that recreates the
definition ofany existing profiles, but thatdoes not recreate the user-defined functions
that are referred to by the PASSWORD _VERIFY FUNCTION clause. You should use the
pg_dump utility to explicitly dump (and laterrestore) the database in which those
functions reside.

The script created by pg dump will contain a command that includes the clauseand
function name:

ALTER PROFILE.. LIMIT PASSWORD VERIFY FUNCTION function name

to associate therestored function with the profile with which it was previously associated.

Ifthe PASSWORD VERIFY FUNCTION clauseis setto DEFAULT orNULL, the behavior

will be replicated by the script generatedby thepg dumpall -g orpg dumpall -r
command.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 98

Database Compatibility for Oracle® Developers Guide

2.4 Optimizer Hints

When you invoke a DELETE, INSERT, SELECT or UPDATE command, the server
generates a set of execution plans; after analyzing those executionplans, the server

selects a plan that will (generally) return theresult setin the leastamount oftime. The
server's choiceofplan is dependent upon several factors:

e Theestimated execution costofdata handling operations.

e Parameter values assigned to parameters in the Query Tuning sectionofthe
postgresql.conf file.

e Column statistics thathave been gathered by the ANALYZE command.

As arule, the query planner will select the leastexpensiveplan. You can usean
optimizer hint to influencethe serveras it selects a query plan.

An optimizer hint is a directive (ormultiple directives) embedded in a comment-like

syntaxthat immediately follows a DELETE, INSERT, SELECT Or UPDATE command.
Keywords in the comment instruct the server to employ oravoid a specific plan when
producing the result set.

Synopsis
{ DELETE | INSERT | SELECT | UPDATE } /*+ { hint [comment] }
[...1 */
statement body
{ DELETE | INSERT | SELECT | UPDATE } --+ { hint [comment] }

[...]
statement body

Optimizer hints may be included in either ofthe forms shownabove. Note that in both
forms, a plus sign (+) must immediately follow the /* or -- openingcomment symbols,
with no interveningspace, or the server will not interpret the following tokens as hints.
If you are using the first form, the hint and optional comment may span multiple lines.
The second formrequires allhints and comments to occupy a single line; the remainder
of the statement muststart on anew line.

Description

Please Note:

e Thedatabase server will always try to usethe specified hints ifat all possible.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 99

http://www.enterprisedb.com/docs/en/9.3/pg/sql-analyze.html

Database Compatibility for Oracle® Developers Guide

If a plannermethod parameteris set soas todisable a certain plan type, then this
plan will notbe usedevenifit is specified in a hint, unless there are no other
possible options for the planner. Examples of planner method parameters are
enable indexscan,enable segscan,enable hashjoin,

enable mergejoin,andenable nestloop. TheseareallBoolean
parameters.

Remember that the hint is embedded within a comment. As a consequence, ifthe
hint is misspelled orif any parameterto a hint suchas view, table, or column
name is misspelled, ornon-existent in the SQL command, there will be no
indication that any sort oferror has occurred. No syntaxerror will be given and
the entire hint is simply ignored.

If an alias is used fora table or view name in the SQL command, then thealias
name, not the original objectname, must be used in the hint. Forexample, in the
COHmmnd,SELECT /*+ FULL (acct) */ * FROM accounts acct ...,
acct, thealias foraccounts,mustbe specified in the FuLL hint, notthe table
name,accounts.

Use the ExPLATN command to ensure that thehint is correctly formed and the planneris

using the hint. See the Advanced Server documentation set for information on the
EXPLAIN command.

In general, optimizer hints shouldnotbe used in productionapplications.
Typically, the table data changes throughoutthe life ofthe application. By
ensuring that themore dynamic columns are anaLyzEed frequently, the column
statistics will be updated to reflect value changes and the planner willuse such
information to producethe least cost plan forany given command execution. Use

of optimizer hints defeats the purpose ofthis process and willresult in the same
plan regardless ofhow the table datachanges.

Parameters

hint

An optimizer hint directive.

comment

A string with additional information. Note that there are restrictions as to what
characters may be included in the comment. Generally, comment may only
consist ofalphabetic, numeric, the underscore, dollar sign, number signand space

characters. These mustalso conformto the syntaxofan identifier. Any
subsequent hintwill be ignored ifthe comment is not in this form.

statement body

The remainderofthe DELETE, INSERT, SELECT, Or UPDATE command.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 100

Database Compatibility for Oracle® Developers Guide

The following sections describethe optimizer hint directives in more detail.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 101

Database Compatibility for Oracle® Developers Guide

2.41 Default Optimization Modes

There are a number of optimization modes that canbe chosen as the default setting foran
Advanced Server database cluster. This setting canalso be changed on a per session basis
byusing theALTER SEsSTON command as wellas in individual DELETE, SELECT, and
UPDATE commands within an optimizer hint. The configuration parameter that controls

these default modes is named opTIMIzER MODE. The following table shows the possible
values.

Table 3-2-1 Default Optimization Modes

Hint Description

ALL ROWS Optimizes for retrieval of all rows of the result set.

CHOOSE Does no default optimization based on assumed number of rows to be retrieved
from the result set. This is the default.

FIRST_ROWS Optimizes for retrieval of only the first row of the result set.

FIRST_ROWS_10 Optimizes for retrieval of the first 10 rows of the results set.

FIRST_ROWS_100 Optimizes for retrieval of the first 100 rows of the result set.

FIRST_ROWS_1000 Optimizes for retrieval of the first 1000 rows of the result set.
Optimizes for retrieval of the first n rows of the result set. This form may not be

FIRST ROWS (n) used as the object of the ALTER SESSION SET OPTIMIZER MODE command.
It may only be used in the form of a hint in a SQL command.

These optimization modes are based upontheassumptionthatthe client submitting the
SQL command is interested in viewing only thefirst “n” rows ofthe result set and will
then abandontheremainder ofthe result set. Resources allocated to the query are
adjusted as such.

Examples

Alterthe current session to optimize forretrieval of the first 10 rows ofthe result set.

ALTER SESSION SET OPTIMIZER MODE = FIRST ROWS 10;

The current valueofthe 0PTIMIZER MODE parameter can be shown by usingthe saow

command. Note that this command s a utility dependent command. In PSQL, the saow
command is used as follows:

SHOW OPTIMIZER MODE;

optimizer mode

first rows 10
(1 row)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 102

Database Compatibility for Oracle® Developers Guide

The saow command, compatible with Oracle databases, has the following syntax:

SHOW PARAMETER OPTIMIZER MODE;

NAME

VALUE

optimizer mode
first rows 10

The following example shows an optimization mode usedin a SELECT command as a
hint:

SELECT /*+ FIRST ROWS(7) */ * FROM emp;

empno | ename | job | mgr | hiredate | sal | comm | deptno

——————— R et e et e it B Rt e e e e
7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30
7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30
7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10
7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10

(14 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 103

Database Compatibility for Oracle® Developers Guide

2.4.2 Access Method Hints

The following hints influencehow the optimizer accesses relations to create the result set.

Table 3-2-2 Access Method Hints

Hint Description
FULL (table) Perform a full sequential scan on table.
INDEX (table [index] [...]) Use index on table to access the relation.
[NO_INDEX (table [index] [...]) |Do notuse index on table to access the relation.

In addition, the AL, ROWS,FIRST ROWS,andFIRST ROWS (n) hints of Table 3-2-1 can
beused.

Examples

The sample application does not havesufficient data to illustratethe effects of optimizer
hints so the remainder ofthe examples in this section willuse a banking database created
by the pgbench application located in the Advanced Serverbin subdirectory.

The following steps createa database named, bank, populated by the tables,

pgbench accounts,pgbench branches,pgbench tellers, and

pgbench history.The-s 20 option specifies a scaling factor of twenty, which
results in the creation of twenty branches, each with 100,000 accounts, resulting in a total
012,000,000 rows inthe pgbench accounts table and twenty rows in the

pgbench branches table. Ten tellers are assigned to eachbranchresultingin a total of
200 rows inthe pgbench tellers table.

The following initializes the pgbench applicationin the bank database.

createdb -U enterprisedb bank
CREATE DATABASE

pgbench -i -s 20 -U enterprisedb bank

NOTICE: table "pgbench history" does not exist, skipping

NOTICE: table "pgbench tellers" does not exist, skipping

NOTICE: table "pgbench accounts" does not exist, skipping
NOTICE: table "pgbench:branches" does not exist, skipping
creating tables...

100000 of 2000000 tuples (5%) done (elapsed 0.11 s, remaining 2.10 s)

200000 of 2000000 tuples (10%) done (elapsed 0.22 s, remaining 1.98 s)
300000 of 2000000 tuples (15%) done (elapsed 0.33 s, remaining 1.84 s)
400000 of 2000000 tuples (20%) done (elapsed 0.42 s, remaining 1.67 s)
500000 of 2000000 tuples (25%) done (elapsed 0.52 s, remaining 1.57 s)
600000 of 2000000 tuples (30%) done (elapsed 0.62 s, remaining 1.45 s)
700000 of 2000000 tuples (35%) done (elapsed 0.73 s, remaining 1.35 s)
800000 of 2000000 tuples (40%) done (elapsed 0.87 s, remaining 1.31 s)
900000 of 2000000 tuples (45%) done (elapsed 0.98 s, remaining 1.19 s)
1000000 of 2000000 tuples (50%) done (elapsed 1.09 s, remaining 1.09 s)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 104

Database Compatibility for Oracle® Developers Guide

1100000 of 2000000 tuples (55%) done (elapsed 1.22 s, remaining 1.00 s)
1200000 of 2000000 tuples (60%) done (elapsed 1.36 s, remaining 0.91 s)
1300000 of 2000000 tuples (65%) done (elapsed 1.51 s, remaining 0.82 s)
1400000 of 2000000 tuples (70%) done (elapsed 1.65 s, remaining 0.71 s)
1500000 of 2000000 tuples (75%) done (elapsed 1.78 s, remaining 0.59 s)
1600000 of 2000000 tuples (80%) done (elapsed 1.93 s, remaining 0.48 s)
1700000 of 2000000 tuples (85%) done (elapsed 2.10 s, remaining 0.37 s)
1800000 of 2000000 tuples (90%) done (elapsed 2.23 s, remaining 0.25 s)
1900000 of 2000000 tuples (95%) done (elapsed 2.37 s, remaining 0.12 s)
2000000 of 2000000 tuples (100%) done (elapsed 2.48 s, remaining 0.00 s)
vacuum. . .

set primary keys...

done.

A total 0£500,00 transactions are then processed. This will populate the
pgbench history table with 500,000 rows.

pgbench -U enterprisedb -t 500000 bank

starting vacuum...end.

transaction type: <builtin: TPC-B (sort of)>

scaling factor: 20

query mode: simple

number of clients: 1

number of threads: 1

number of transactions per client: 500000

number of transactions actually processed: 500000/500000
latency average: 0.000 ms

tps = 1464.338375 (including connections establishing)
tps = 1464.350357 (excluding connections establishing)

The table definitions are shown below:

\d pgbench accounts

Table "public.pgbench accounts"

Column | Type | Modifiers
__________+_______________+ ___________
aid | integer | not null
bid | integer |
abalance | integer |

filler | character (84) |

Indexes:
"pgbench accounts pkey" PRIMARY KEY, btree (aid)

\d pgbench branches

Table "public.pgbench branches"

Column | Type | Modifiers
__________+_______________+ ___________
bid | integer | not null
bbalance | integer |

filler | character (88) |
Indexes:

"pgbench branches pkey" PRIMARY KEY, btree (bid)
\d pgbench tellers

Table "public.pgbench tellers"
Column | Type | Modifiers

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 105

Database Compatibility for Oracle® Developers Guide

tid | integer | not null
bid | integer |

tbalance | integer |

filler | character (84) |

Indexes:

"pgbench tellers pkey" PRIMARY KEY, btree (tid)
\d pgbench history

Table "public.pgbench history"

Column | Type | Modifiers
tid | integer |
bid | integer |
aid | integer |
delta | integer |
mtime | timestamp without time zone |
\ |

filler character(22)

The ExpLaTN command shows the plan selected by the query planner. In the following
example, aidis the primary key column, so an indexed search is used on index,
pgbench accounts pkey.

EXPLAIN SELECT * FROM pgbench accounts WHERE aid = 100;

QUERY PLAN

Index Scan using pgbench accounts pkey on pgbench accounts (cost=0.43..8.45
rows=1 width=97)

Index Cond: (aid = 100)
(2 rows)

The FuLL hint is used to force a fullsequential scan instead ofusing the indexas shown
below:

EXPLAIN SELECT /*+ FULL (pgbench accounts) */ * FROM pgbench accounts WHERE
aid = 100;

QUERY PLAN

Seq Scan on pgbench accounts (cost=0.00..58781.69 rows=1 width=97)
Filter: (aid = 100)
(2 rows)

Theno 1nDEX hint forces a parallel sequential scan instead ofuse ofthe indexas shown
below:

EXPLAIN SELECT /*+ NO_INDEX(pgbench accounts pgbench accounts pkey) */ * FROM
pgbench accounts WHERE aid = 100;

QUERY PLAN

Gather (cost=1000.00..45094.80 rows=1 width=97)
Workers Planned: 2

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 106

Database Compatibility for Oracle® Developers Guide

-> Parallel Seq Scan on pgbench accounts (cost=0.00..44094.70 rows=1
width=97)
Filter: (aid = 100)
(4 rows)

In addition tousing the ExPLATN command as shown in the prior examples, more
detailed information regarding whether ornot a hint was used by the planner can be
obtained by settingthe trace hints configuration parameter as follows:

SET trace hints TO on;

The seLECT command with the NO_INDEX hint is repeated below to illustrate the
additional information produced whenthe t race hints configuration parameters is set.

EXPLAIN SELECT /*+ NO_ INDEX(pgbench accounts pgbench accounts pkey) */ * FROM
pgbench accounts WHERE aid = 100;

INFO: [HINTS] Index Scan of [pgbench accounts].[pgbench accounts pkey]
rejected due to NO INDEX hint.
QUERY PLAN

Gather (cost=1000.00..45094.80 rows=1 width=97
Workers Planned: 2
-> Parallel Seg Scan on pgbench accounts (cost=0.00..44094.70 rows=1
width=97)
Filter: (aid = 100)
(4 rows)

Note thatifa hintis ignored, the INFO: [HINTS] line will notappear. This may be an

indication that there was a syntaxerror orsome other misspelling in the hint as shown in
the following example where the indexname is misspelled.

EXPLAIN SELECT /*+ NO INDEX(pgbench accounts pgbench accounts xxx) */ * FROM
pgbench accounts WHERE aid = 100;

QUERY PLAN

Index Scan using pgbench accounts pkey on pgbench accounts (cost=0.43..8.45
rows=1 width=97)

Index Cond: (aid = 100)
(2 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 107

Database Compatibility for Oracle® Developers Guide

2.43 Specifyinga Join Order

Include the orRDERED directive to instructthe query optimizer to join tables in the orderin
which they are listed in the FroM clause. Ifyou do notinclude the ORDERED keyword,
the query optimizer will choosethe order in which to join the tables.

Forexample, the following command allows the optimizer to choosethe order in which
to join the tables listed in the FrROM clause:

SELECT e.ename, d.dname, h.startdate
FROM emp e, dept d, jobhist h
WHERE d.deptno = e.deptno
AND h.empno = e.empno;

The following command instructs the optimizer to join the tables in the ordered specified:

SELECT /*+ ORDERED */ e.ename, d.dname, h.startdate
FROM emp e, dept d, jobhist h
WHERE d.deptno = e.deptno
AND h.empno = e.empno;

In the ORDERED versionofthe command, Advanced Server will first join emp e with
dept d beforejoining the results with jobhist h. Without the ORDERED directive, the
join orderis selected by the query optimizer.

Please note:the oRDERED directive does not work for Oracle-style outer joins (thosejoins
that contain a'+'sign).

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 108

Database Compatibility for Oracle® Developers Guide

2.44 Joining Relations Hints

When two tables are to be joined, there are threepossible plans that may be used to

performthe join.

e Nested LoopJoin — A table is scanned once forevery row in the otherjoined

table.

e Merge Sort Join—Each table is sorted on thejoin attributes beforethe join starts.
The two tables are then scanned in parallel and the matching rows are combined

to form the join rows.

e HashJoin— A table is scanned and its join attributes are loaded into a hash table
using its join attributes as hash keys. The other joined table is thenscanned and its
join attributes are used as hashkeys to locate the matchingrows fromthe first

table.

The following table lists the optimizer hints that canbe usedto influencethe plannerto
use one type ofjoin plan over another.

Table 3-2-3 Join Hints

Hint

Description

USE_HASH (table [...])

Use a hash join for table.

NO USE_HASH(table [...])

Do not use a hash join for table.

USE_MERGE (table [...])

Use a merge sort join for table.

[NO USE_MERGE (table [...])

Do not use a merge sort join for table.

USE_NL(table [...])

Use a nested loop join for table.

INO USE NL(table [...])

Do not use a nested loop join for table.

Examples

In the following example, the use_HASH hint is used fora join on the
pgbench branches and pgbench accounts tables. The query planshows that a hash
join is used by creating a hash table fromthe join attributeofthe pgbench branches

table.

EXPLAIN SELECT /*+ USE HASH(b) */ b.bid, a.aid, abalance FROM
pgbench branches b, pgbench accounts a WHERE b.bid = a.bid;

QUERY PLAN

Hash Join (cost=21.45..81463.06 rows=2014215 width=12)
Hash Cond: (a.bid = b.bid)
-> Seq Scan on pgbench accounts a (cost=0.00..53746.15 rows=2014215
width=12)
-> Hash (cost=21.20..21.20 rows=20 width=4)
-> Seq Scan on pgbench branches b (cost=0.00..21.20 rows=20
width=4)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 109

Database Compatibility for Oracle® Developers Guide

(5 rows)

Next, the NO USE_HASH (a b) hint forces the plannerto use an approach otherthan
hash tables. The result is a merge join.

EXPLAIN SELECT /*+ NO USE HASH(a b) */ b.bid, a.aid, abalance FROM
pgbench branches b, pgbench accounts a WHERE b.bid = a.bid;

QUERY PLAN

Merge Join (cost=333526.08..368774.94 rows=2014215 width=12)
Merge Cond: (b.bid = a.bid)
-> Sort (cost=21.63..21.68 rows=20 width=4)
Sort Key: b.bid
-> Seq Scan on pgbench branches b (cost=0.00..21.20 rows=20
width=4)
-> Materialize (cost=333504.45..343575.53 rows=2014215 width=12)
-> Sort (cost=333504.45..338539.99 rows=2014215 width=12)
Sort Key: a.bid
-> Seq Scan on pgbench accounts a (cost=0.00..53746.15
rows=2014215 width=12)
(9 rows)

Finally, the use_MERGE hint forces the planner to use a merge join.

EXPLAIN SELECT /*+ USE MERGE (a) */ b.bid, a.aid, abalance FROM
pgbench branches b, pgbench accounts a WHERE b.bid = a.bid;

QUERY PLAN

Merge Join (cost=333526.08..368774.94 rows=2014215 width=12)
Merge Cond: (b.bid = a.bid)
-> Sort (cost=21.63..21.68 rows=20 width=4)
Sort Key: b.bid
-> Seq Scan on pgbench branches b (cost=0.00..21.20 rows=20
width=4)
-> Materialize (cost=333504.45..343575.53 rows=2014215 width=12)
-> Sort (cost=333504.45..338539.99 rows=2014215 width=12)
Sort Key: a.bid

-> Seq Scan on pgbench accounts a (cost=0.00..53746.15
rows=2014215 width=12)
(9 rows)

In this three-table join example, the planner first performs a hashjoin on the

pgbench branches andpgbench history tables,then finally performs a hashjoin
of the result with the pgbench accounts table.

EXPLAIN SELECT h.mtime, h.delta, b.bid, a.aid FROM pgbench history h, pgbench branches
b, pgbench accounts a WHERE h.bid = b.bid AND h.aid = a.aid;

QUERY PLAN

Hash Join (cost=86814.29..123103.29 rows=500000 width=20)
Hash Cond: (h.aid = a.aid)
-> Hash Join (cost=21.45..15081.45 rows=500000 width=20)
Hash Cond: (h.bid = b.bid)
-> Seq Scan on pgbench history h (cost=0.00..8185.00 rows=500000 width=20)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 110

Database Compatibility for Oracle® Developers Guide

-> Hash (cost=21.20..21.20 rows=20 width=4)
-> Seq Scan on pgbench branches b (cost=0.00..21.20 rows=20 width=4)
-> Hash (cost=53746.15..53746.15 rows=2014215 width=4)
-> Seq Scan on pgbench accounts a (cost=0.00..53746.15 rows=2014215 width=4)

(9 rows)

This plan is altered by using hints to forcea combination ofa merge sort join and a hash
join.

EXPLAIN SELECT /*+ USE_MERGE (h b) USE_HASH (a) */ h.mtime, h.delta, b.bid, a.aid FROM
pgbench history h, pgbench branches b, pgbench accounts a WHERE h.bid = b.bid AND h.aid
= a.aid;

QUERY PLAN

Hash Join (cost=152583.39..182562.49 rows=500000 width=20)
Hash Cond: (h.aid = a.aid)
-> Merge Join (cost=65790.55..74540.65 rows=500000 width=20)
Merge Cond: (b.bid = h.bid)
-> Sort (cost=21.63..21.68 rows=20 width=4)
Sort Key: b.bid
-> Seqg Scan on pgbench branches b (cost=0.00..21.20 rows=20 width=4)
-> Materialize (cost=65768.92..68268.92 rows=500000 width=20)
-> Sort (cost=65768.92..67018.92 rows=500000 width=20)
Sort Key: h.bid
-> Seqg Scan on pgbench history h (cost=0.00..8185.00 rows=500000
width=20)
-> Hash (cost=53746.15..53746.15 rows=2014215 width=4)
-> Seqg Scan on pgbench accounts a (cost=0.00..53746.15 rows=2014215 width=4)
(13 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 111

Database Compatibility for Oracle® Developers Guide

2.4.5 Global Hints

Thus far, hints havebeen applied directly to tables thatare referencedin the SQL
command. It is also possible to apply hints to tables thatappearin a view when the view

is referenced in the SQL command. The hint does not appear in the view, itself, but rather
in the SQL command that references the view.

When specifyinga hint thatis to apply to a table within a view, the view and table names
are given in dot notation within the hintargument list.

Synopsis
hint(view. table)
Parameters
hint

Any ofthe hints in Table 3-2-2 or Table 3-2-3.
view

The name ofthe view containing table.
table

The table on which the hintis to be applied.

Examples

A view named, tx,is created fromthe three-table join of pgbench history,

pgbench branches,and pgbench accounts shownin the finalexample of Section
244.

CREATE VIEW tx AS SELECT h.mtime, h.delta, b.bid, a.aid FROM pgbench history
h, pgbench branches b, pgbench accounts a WHERE h.bid = b.bid AND h.aid =
a.aid;

The query plan produced by selecting fromthis view is show below:

EXPLAIN SELECT * FROM tx;

QUERY PLAN

Hash Join (cost=86814.29..123103.29 rows=500000 width=20)
Hash Cond: (h.aid = a.aid)
-> Hash Join (cost=21.45..15081.45 rows=500000 width=20)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 112

Database Compatibility for Oracle® Developers Guide

Hash Cond: (h.bid = b.bid)
-> Seq Scan on pgbench history h (cost=0.00..8185.00 rows=500000 width=20)
-> Hash (cost=21.20..21.20 rows=20 width=4)
-> Seq Scan on pgbench branches b (cost=0.00..21.20 rows=20 width=4)
-> Hash (cost=53746.15..53746.15 rows=2014215 width=4)
-> Seq Scan on pgbench accounts a (cost=0.00..53746.15 rows=2014215 width=4)
(9 rows)

The same hints that were applied to this join at the end of Section 2.4.4 can be applied to
the view as follows:

EXPLAIN SELECT /*+ USE MERGE (tx.h tx.b) USE HASH(tx.a) */ * FROM tx;

QUERY PLAN

Hash Join (cost=152583.39..182562.49 rows=500000 width=20)
Hash Cond: (h.aid = a.aid)
-> Merge Join (cost=65790.55..74540.65 rows=500000 width=20)
Merge Cond: (b.bid = h.bid)
-> Sort (cost=21.63..21.68 rows=20 width=4)
Sort Key: b.bid
-> Seqg Scan on pgbench branches b (cost=0.00..21.20 rows=20 width=4)
-> Materialize (cost=65768.92..68268.92 rows=500000 width=20)
-> Sort (cost=65768.92..67018.92 rows=500000 width=20)
Sort Key: h.bid
-> Seqg Scan on pgbench history h (cost=0.00..8185.00 rows=500000
width=20)
-> Hash (cost=53746.15..53746.15 rows=2014215 width=4)
-> Seqg Scan on pgbench accounts a (cost=0.00..53746.15 rows=2014215 width=4)
(13 rows)

In addition toapplying hints to tables within stored views, hints can be applied to tables
within subqueries as illustrated by the following example. In this query onthe sample
application emp table, employees and theirmanagers are listed by joiningthe emp table
with a subquery ofthe emp table identified by the alias, b.

SELECT a.empno, a.ename, b.empno "mgr empno", b.ename "mgr ename" FROM emp a,
(SELECT * FROM emp) b WHERE a.mgr = b.empno;

empno | ename | mgr empno | mgr ename

e = o —— o -
7369 | SMITH | 7902 | FORD
7499 | ALLEN | 7698 | BLAKE
7521 | WARD | 7698 | BLAKE
7566 | JONES | 7839 | KING
7654 | MARTIN | 7698 | BLAKE
7698 | BLAKE | 7839 | KING
7782 | CLARK | 7839 | KING
7788 | SCOTT | 7566 | JONES
7844 | TURNER | 7698 | BLAKE
7876 | ADAMS | 7788 | SCOTT
7900 | JAMES | 7698 | BLAKE
7902 | FORD | 7566 | JONES
7934 | MILLER | 7782 | CLARK

(13 rows)

The plan chosenby the query planneris shownbelow:

EXPLAIN SELECT a.empno, a.ename, b.empno "mgr empno", b.ename "mgr ename"
FROM emp a, (SELECT * FROM emp) b WHERE a.mgr = b.empno;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 113

Database Compatibility for Oracle® Developers Guide

QUERY PLAN

Hash Join (cost=1.32..2.64 rows=13 width=22)
Hash Cond: (a.mgr = emp.empno)
-> Seqg Scan on emp a (cost=0.00..1.14 rows=14 width=16)
-> Hash (cost=1.14..1.14 rows=14 width=11)

-> Seqg Scan on emp (cost=0.00..1.14 rows=14 width=11)
(5 rows)

A hint can be applied to the emp table within the subquery to performan indexscan on
index, emp pk,instead ofatable scan. Notethe difference in the query plans.

EXPLAIN SELECT /*+ INDEX (b.emp emp pk) */ a.empno, a.ename, b.empno "mgr

empno", b.ename "mgr ename" FROM emp a, (SELECT * FROM emp) b WHERE a.mgr =
b.empno;

QUERY PLAN

Merge Join (cost=4.17..13.11 rows=13 width=22)
Merge Cond: (a.mgr = emp.empno)
-> Sort (cost=1.41..1.44 rows=14 width=16)
Sort Key: a.mgr
-> Seqg Scan on emp a (cost=0.00..1.14 rows=14 width=10)

-> 1Index Scan using emp pk on emp (cost=0.14..12.35 rows=14 width=11)
(6 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 114

Database Compatibility for Oracle® Developers Guide

2.4.6 Using the APPEND Optimizer Hint

By default, Advanced Server will add new data into the first available free-space in a
table (vacated by vacuumed records). Include the ApPEND directiveafteran INSERT or

SELECT command to instructthe serverto bypass mid-table free space, and affixnew
rows to the end ofthe table. This optimizer hint can be particularly useful when bulk
loading data.

The syntaxis:
/*+APPEND* /

Forexample, the following command, compatible with Oracle databases, instructs the
serverto append the data in the TNSERT statement tothe endofthe sales table:

INSERT /*+APPEND*/ INTO sales VALUES
(10, 10, '0O1-Mar-2011', 10, 'OR'");

Note that Advanced Server supports the APPEND hint when adding multiple rows in a
single INSERT statement:

INSERT /*+APPEND*/ INTO sales VALUES
(20, 20, '0l-Aug-2011', 20, 'NY'),
(30, 30, '0l-Feb-2011', 30, 'FL'),
(40, 40, '01-Nov-2011', 40, 'TX');

The apPEND hint can also be includedin the SELECT clause ofan INSERT INTO
statement:

INSERT INTO sales history SELECT /*+APPEND*/ FROM sales;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 115

Database Compatibility for Oracle® Developers Guide

2.4.7 Parallelism Hints

The PARALLEL optimizer hint is used to forceparallel scanning.
TheNno PARALLEL optimizer hint prevents usage ofa parallelscan.

Synopsis
PARALLEL (table [parallel degree | DEFAULT 1)

NO PARALLEL (table)
Description

Parallel scanning is the usage of multiple background workers to simultaneously perform
a scan ofatable (that is, in parallel) fora given query. This process provides performance
improvement over other methods such as thesequential scan.

Parameters

table

The table to which the parallel hint is to be applied.

parallel degree | DEFAULT

parallel degreeisapositive integer that specifies the desirednumber of
workers to use fora parallel scan. If specified, the lesserof parailel degree
and configuration parametermax parallel workers per gatherisusedas
the planned number of workers. For information on the

max parallel workers per gather parameter,please see Section 18.4.6
Asynchronous Behavior located in Section 18.4 Resource Consumptionin
the PostgreSQL core documentation available at:

https://www.posteresgl.org/docs/9.6/static/runtime-config-resource.html

If bEFAULT is specified, then themaximum possible paralleldegreeis used.

Ifbothparallel degreeandDEFAULT are omitted, then the query optimizer
determines theparalleldegree. In this case, if tab1e has been set with the

parallel workers storageparameter,thenthisvalueis usedasthe parallel
degree, otherwisethe optimizer uses the maximum possible paralleldegreeas if

DEFAULT was specified. Forinformation onthe parallel workers storage

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 116

https://www.postgresql.org/docs/9.6/static/runtime-config-resource.html

Database Compatibility for Oracle® Developers Guide

parameter, please see the Storage Parameters subsectionlocated under
CREATE TABLE in the PostgreSQL core documentation available at:

https://www.posteresql.org/docs/9.6/static/sql-createtable.html

Regardless ofthe circumstance, the parallel degreenever exceeds thesetting of
configurationparametermax_parallel workers per gather.

Examples

The following configuration parameter settings are in effect:

SHOW max worker processes;

max worker processes

8
(1 row)

SHOW max parallel workers per gather;

max parallel workers per gather

2
(1 row)

The following example shows thedefault scan ontable pgbench accounts.Notethata
sequential scanis shownin the queryplan.

SET trace hints TO on;
EXPLAIN SELECT * FROM pgbench accounts;

QUERY PLAN

Seq Scan on pgbench accounts (cost=0.00..53746.15 rows=2014215 width=97)
(1 row)

The following example uses the PARALLEL hint. In the query plan, the Gathernode,

which launches the background workers, indicates that two workers are planned to be
used.

Note: If trace hintsissettoon,the INFO: [HINTS] lines appearstatingthat
PARALLEL has been accepted forpgbench accounts as wellas other hint information.
Forthe remaining examples, these lines willnot be displayed as they generally show the
same output (thatis, trace hints hasbeenresettooff).

EXPLAIN SELECT /*+ PARALLEL(pgbench accounts) */ * FROM pgbench accounts;

INFO: [HINTS] SegScan of [pgbench accounts] rejected due to PARALLEL hint.
INFO: [HINTS] PARALLEL on [pgbench accounts] accepted.
INFO: [HINTS] Index Scan of [pgbench accounts].[pgbench accounts pkey]

rejected due to PARALLEL hint.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 117

https://www.postgresql.org/docs/9.6/static/sql-createtable.html

Database Compatibility for Oracle® Developers Guide

QUERY PLAN

Gather (cost=1000.00..244418.06 rows=2014215 width=97)

Workers Planned: 2

-> Parallel Seqg Scan on pgbench accounts (cost=0.00..41996.56
rows=839256 width=97)
(3 rows)

Now, themax parallel workers per gather settingis increased:

SET max_parallel workers per_ gather TO 6;
SHOW max parallel workers per gather;

max parallel workers per gather

6
(1 row)

The same query on pgbench_accounts is issued again with no paralleldegree

specificationin the PARALLEL hint. Notethatthe number of planned workers has
increased to 4 as determined by the optimizer.

EXPLAIN SELECT /*+ PARALLEL(pgbench accounts) */ * FROM pgbench accounts;

QUERY PLAN

Gather (cost=1000.00..241061.04 rows=2014215 width=97)

Workers Planned: 4

-> Parallel Seq Scan on pgbench accounts (cost=0.00..38639.54
rows=503554 width=97)
(3 rows)

Now, avalue of6 is specified for the parallel degree parameter ofthe PARALLEL hint.
The planned number of workers is now returned as this specified value:

EXPLAIN SELECT /*+ PARALLEL(pgbench accounts 6) */ * FROM pgbench accounts;

QUERY PLAN

Gather (cost=1000.00..239382.52 rows=2014215 width=97)

Workers Planned: 6

-> Parallel Seq Scan on pgbench accounts (cost=0.00..36961.03
rows=335702 width=97)
(3 rows)

The same query is now issued with the DEFAULT setting for the paralleldegree. The
results indicate thatthe maximum allowable number of workers is planned.

EXPLAIN SELECT /*+ PARALLEL(pgbenchiaccounts DEFAULT) */ * FROM
pgbench accounts;

QUERY PLAN

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 118

Database Compatibility for Oracle® Developers Guide

Gather (cost=1000.00..239382.52 rows=2014215 width=97)

Workers Planned: 6

-> Parallel Seqg Scan on pgbench accounts (cost=0.00..36961.03
rows=335702 width=97)
(3 rows)

Table pgbench accountsis nowaltered sothattheparallel workers storage
parameteris set to 3.

Note: This format of the ALTER TABLE command to settheparallel workers
parameter is not compatible with Oracle databases.

Theparallel workers settingis shownby the PSQL \d+ command.

ALTER TABLE pgbench accounts SET (parallel workers=3);

\d+ pgbench accounts
Table "public.pgbench accounts"

Column | Type | Modifiers | Storage | Stats target | Description
B ittt
aid | integer | not null | plain | |
bid | integer | | plain | |
abalance | integer | | plain | |

filler | character (84) | | extended | |

Indexes:
"pgbench accounts pkey" PRIMARY KEY, btree (aid)
Options: fillfactor=100, parallel workers=3

Now, when the PARALLEL hintis given with no parallel degree, the resultingnumber of
planned workers is the value fromthe parallel workers parameter:

EXPLAIN SELECT /*+ PARALLEL(pgbench accounts) */ * FROM pgbench accounts;

QUERY PLAN

Gather (cost=1000.00..242522.97 rows=2014215 width=97)

Workers Planned: 3

-> Parallel Seqg Scan on pgbench accounts (cost=0.00..40101.47
rows=649747 width=97)
(3 rows)

Specifying a parallel degree value or DEFAULT in the PARALLEL hint overrides the
parallel workers setting.

The following example showstheno PARALLEL hint. Notethat with trace hints set

toon, the INFO: [HINTS] message statesthat theparallelscanwas rejected dueto the
NO_PARALLEL hint.

EXPLAIN SELECT /*+ NO PARALLEL(pgbench accounts) */ * FROM pgbench accounts;
INFO: [HINTS] Parallel SegScan of [pgbench accounts] rejected due to
NO_PARALLEL hint.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 119

Database Compatibility for Oracle® Developers Guide

QUERY PLAN

Seqg Scan on pgbench accounts (cost=0.00..53746.15 rows=2014215 width=97)
(1 row)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 120

Database Compatibility for Oracle® Developers Guide

2.4.8 Conflicting Hints

If a command includes two or more conflicting hints, the server will ignore the
contradictory hints. The following table lists hints that are contradictory to each other.

Table 3-2-4 Conflicting Hints

Hint Conflicting Hint
ALL ROWS FIRST ROWS - all formats

INDEX (table [index 1)
PARALLEL (table [degree 1)
FULL (table)

INDEX (table) NOilNDEX (table)

PARALLEL (table [degree 1)
FULL (table)

FULL (table)

INDEX (table index) NO INDEX (table index)
PA%ALLEL (table [degree 1)
FULL (table)

PARALLEL (table [degree]) |INDEX (table)
NO_PARALLEL(table)

USE_HASH (table) NO_USE_HASH(table)

USE MERGE (table) NO _USE MERGE (table)

USE_NL(table) NO_USE _NL(table)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 121

Database Compatibility for Oracle® Developers Guide

3 Stored Procedure Language

This chapter describes the Stored Procedure Language (SPL). SPL is a highly

productive, procedural programming language for writing customprocedures, functions,
triggers, and packages for Advanced Server that provides:

full procedural programming functionality to complement the SQL language
a single, common language to create stored procedures, functions, triggers, and
packages forthe Advanced Server database
a seamless development and testing environment
the use ofreusable code
e caseofuse

This chapter describes thebasic elements ofan SPLprogram, before providingan
overview ofthe organizationofan SPLprogramand how it is used to create a procedure
or a function. Triggers, while stillutilizing SPL, are sufficiently different to warrant a
separate discussion (see Section 4 for information about triggers). Packages are dis cussed

in the Database Compatibility for Oracle Developers Built-in Package Guide available
at:

http://www.enterprisedb.com/products -services-training/products/documentation

The remaining sections ofthis chapter delveinto thedetails ofthe SPLlanguage and
provide examples ofits application.

3.1 Basic SPL Elements

This section discusses the basic programming elements ofan SPLprogram.

3.1.1 Character Set

SPL programs are written using the following setofcharacters:

Uppercase letters A thru z and lowercase letters a thru z

Digits 0 thru 9

Symbols () +-*/<>=1~7~;:.'%,"#Ss | {}?2[]
White space characters tabs, spaces, and carriage returns

Identifiers, expressions, statements, control structures, etc. that comprise the SPL
languageare written using these characters.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 122

http://www.enterprisedb.com/products-services-training/products/documentation

Database Compatibility for Oracle® Developers Guide

Note: The data that canbe manipulated by an SPLprogramis determined by the
characterset supported by the databaseencoding.

3.1.2 Case Sensitivity

Keywords and user-defined identifiers that are used in an SPL programare case
insensitive. So forexample, the statement DBMS OUTPUT.PUT LINE ('Hello
World') ; is interpreted to mean thesame thing as doms output.put line('Hello
World'); Oor Dbms_ Output.Put Line ('Hello World'); Or

DBMS output.Put line('Hello World');.

Character and string constants, however, are case sensitiveas wellas any data retrieved
fromthe Advanced Server database or data obtained fromother external sources. The

statement DBMS OUTPUT.PUT LINE('Hello World! ') ; produces the following
output:

Hello World!

Howeverthe statementDBMS OUTPUT.PUT LINE ('HELLO WORLD! ') ; producesthe
output:

HELLO WORLD!

3.1.3 Identifiers

Identifiers are user-defined names thatare used to identify various elements ofan SPL

programincluding variables, cursors, labels, programs, and parameters. The syntaxrules
for valid identifiers are the same as foridentifiers in the SQL language.

An identifier must not be the same as an SPLkeyword ora keyword ofthe SQL
language. The following are some examples of valid identifiers:

b
last name

a_ $ Sign
Many$$$$$$$8Ssigns

THIS IS AN EXTREMELY LONG NAME
Al

3.14 Qualifiers

A qualifieris aname that specifies the owner or context ofan entity thatis the object of
the qualification. A qualified object is specified as the qualifiername followed by a dot
with no intervening white space, followed by thename ofthe object being qualified with
no intervening white space. This syntaxis called dot notation.

The following is the syntaxofa qualified object.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 123

Database Compatibility for Oracle® Developers Guide

qualifier. [qualifier.]... object

qualifieristhenameofthe ownerofthe object. object is the name ofthe entity

belongingto qualifier.ltis possible to have a chain of qualifications where the
preceding qualifier owns the entity identified by the subsequent qualifier(s) and object.

Almost any identifier can be qualified. Whatan identifier is qualified by depends upon
what the identifier represents and the context ofits usage.

Some examples of qualification follow:

e Procedure and function names qualified by the schema to which theybelong -
¢.g.,schema name.procedure name (.. .)
e Triggernames qualified by the schema to which they belong-e.g.,
schema name.trigger name
e Column names qualified by the table to which theybelong -e.g., emp . empno
e Table names qualified by the schema to which they belong-e.g.,public.emp
e Column names qualified by table andschema-e.g.,public.emp.empno

As ageneralrule, wherevera name appears in the syntaxofan SPL statement, its
qualified name can be usedas well. Typically a qualified name would only beusedif
there is some ambiguity associated with the name. For example, if two procedures with
the same name belongingto two differentschemas are invoked fromwithin a programor
if the same name is used fora table column and SPL variable within the same program.

You should avoid using qualified names ifat all possible. In this chapter, the following
conventions are adopted to avoid naming conflicts:

e Allvariables declared in the declaration sectionofan SPLprogramare prefixed
byv .Eg.,v empno

e All formal parameters declared in a procedure or function definition are prefixed
byp .Eg.p empno

e Column names and table names do not haveany special prefixconventions. E.g.,
column empno in table emp

3.1.5 Constants

Constants or literals are fixed values thatcan be used in SPL programs to represent

values of various types - e.g., numbers, strings, dates, etc. Constants come in the
following types:

e Numeric (Integerand Real)

e Characterand String
e Date/time

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 124

Database Compatibility for Oracle® Developers Guide

3.1.6 User-Defined PL/SQL Subtypes

Advanced Server supports user-defined PL/SQLsubtypes and (subtype) aliases. A
subtype is a data type with an optional set of constraints that restrict the values that can
be stored in a column ofthat type. Therules that apply to the type on which the subtype
is based are stillenforced, butyou can useadditional constraints to place limits on the
precision orscale of values stored in the type.

You can define a subtype in the declarationofa PL function, procedure, anonymous
blockorpackage. The syntaxis:

SUBTYPE subtype name IS type namel (constraint)] [NOT NULL]
Where constraintis:
{precision [, scalel} | length
Where:
subtype name
subtype name specifies thename ofthe subtype.
type name

type_name specifies the name ofthe original type on which the subtype is based.
type_namenmybe:

e Thename ofany ofthe type supportedby Advanced Server.
e Thename ofany composite type.

e A columnanchored bya ¢ TyYPE operator.

e Thename ofanothersubtype.

Include the constraint clause to definerestrictions for types that support precision or
scale.

precision

precisionspecifies thetotalnumber of digits permitted in a value ofthe
subtype.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 125

Database Compatibility for Oracle® Developers Guide

scale

scalespecifies the number of fractional digits permitted in a value ofthe
subtype.

length

length specifies the total length permitted in a value of CHARACTER, VARCHAR,
or TEXT base types

Include the NOT NULL clause to specify thatNULL values may not be stored in a column
of the specified subtype.

Note that a subtype that is based ona column will inherit the column size constraints, but
the subtypewill not inherit NOT NULL or CHECK constraints.

Unconstrained Subtypes

To create an unconstrained subtype, use the SUBTYPE command to specify thenew
subtype name and the name ofthe type on which the subtype is based. Forexample, the

following command creates a subtype named address that hasall ofthe attributes ofthe
type, CHAR:

SUBTYPE address IS CHAR;

You can also create a subtype (constrained orunconstrained) that is a subtype of another
subtype:

SUBTYPE cust address IS address NOT NULL;

This command creates a subtype named cust address thatshares allofthe attributes
ofthe address subtype. Include thenoT NULL clause to specify that a value ofthe
cust_address may notbeNULL.

Constrained Subtypes

Include a 1ength value when creating a subtype that is based ona character type to
define the maximum length ofthe subtype. Forexample:

SUBTYPE acct name IS VARCHAR (15);

This example creates a subtypenamed acct name thatis based ona vARCHAR data type,
but s limited to 15 characters in length.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 126

Database Compatibility for Oracle® Developers Guide

Include values for precision (to specify the maximum number of digits in a value of
the subtype) and optionally, sca1e (to specify the number ofdigits to the rightofthe
decimal point) when constraining a numeric base type. Forexample:

SUBTYPE acct balance IS NUMBER (5, 2);

This example creates a subtypenamed acct balance that sharesall of the attributes of

a NUMBER type, but that may notexceed 3 digits to the left ofthe decimal point and 2
digits to the right ofthe decimal.

An argument declaration (in a function or procedure header) is a formal argument. The
value passed toa function or procedureis an actual argument. Wheninvokinga function
or procedure, the caller provides (0 or more) actual arguments. Each actual argument is
assignedto a formal argument thatholds the value within thebody ofthe functionor
procedure.

If a formal argument is declared as a constrained subtype:

e Advanced Serverdoes not enforce subtype constraints when assigning an actual
argument to a formal argument when invokinga function.

e Advanced Server enforces subtype constraints when assigning an actual argument
to a formal argument when invokinga procedure.

Using the % TYPE Operator

You can use $TYPE notationto declarea subtype anchored to a column. Forexample:

SUBTYPE emp type IS emp.empnosTYPE

This command creates a subtype named emp_t ype whose basetype matches thetype of
the empno column in the emp table. A subtypethatis based on a column will share the
column size constraints; NOT NULL and CHECK constraints are not inherited.

Subtype Conversion

Unconstrained subtypes are aliases for the typeon which they are based. Any variable of
type subtype (unconstrained) is interchangeable with a variable ofthe base type without
conversion, and vice versa.

A variable ofa constrained subtype may be interchanged with a variable ofthe base type
without conversion, buta variable ofthe base typemay only be interchanged with a
constrained subtype if it complies with the constraints ofthe subtype. A variable ofa
constrained subtype may be implicitly converted to another subtype ifit is based onthe
same subtype, and the constraint values are within the values ofthe subtype towhich it is
being converted.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 127

Database Compatibility for Oracle® Developers Guide
3.2 SPL Programs

SPL is a procedural, block-structured language. There are four differenttypes of
programs thatcan be created using SPL, namely procedures, functions, triggers, and
packages.

In addition, SPLis used to create subprograms. A subprogramrefers to a subprocedure
or asubfunction, which are nearly identical in appearance to procedures and functions,
but differin that procedures and functions are standalone programs, which are
individually stored in the database and canbe invoked by other SPLprograms or from
PSQL. Subprograms canonly be invoked fromwithin the standalone programwith in
which they have been created.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 128

Database Compatibility for Oracle® Developers Guide

3.2.1 SPL Block Structure

Regardless of whetherthe programis a procedure, function, subprogram, or trigger, an
SPL programhas thesame block structure. A block consists of up to three sections - an
optional declaration section, a mandatory executable section, and an optional exception
section. Minimally, a block has an executable sectionthat consists of one ormore SPL
statements within thekeywords, BEGIN and END.

The optional declaration section is used to declare variables, cursors, types, and
subprograms that are used by the statements within the executable and exception
sections. Declarations appear justprior to the BEGIN keyword ofthe executable section.
Dependinguponthecontext of where the blockis used, the declarationsection may begin
with the keyword DECLARE.

You can include an exception section within the BEGIN - END block. The exception
section begins with the keyword, ExCEPT 10N, and continues until the end ofthe block in
which it appears. [fan exception is thrown by a statement within the block, program

control goes tothe exceptionsection where the thrown exception may or may not be
handled depending upontheexceptionand the contents ofthe exceptionsection.

The following is the general structure ofa block:

[[DECLARE]
declarations]

BEGIN
statements

[EXCEPTION
WHEN exception condition THEN
statements [, ...]]
END;

declarations areone ormore variable, cursor, type, or subprogramdeclarations that
are local to the block. If subprogramdeclarations are included, they mustbe declared
afterall other variable, cursor, and type declarations. Each declaration must be terminated

by asemicolon. The useofthe keyword DECLARE depends upon the context in which the
block appears.

statements are one ormore SPL statements. Each statementmust be terminated by a

semicolon. The end ofthe block denoted by the keyword END must also be terminated by
a semicolon.

If present, the keyword ExCEPTTON marks the beginning ofthe exception section.
exception conditionisaconditional expression testing for one ormore types of
exceptions. Ifa thrown exceptionmatches oneofthe exceptions in

exception condition, the statements following the WHEN

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 129

Database Compatibility for Oracle® Developers Guide

exception condition clause are executed. There may be one ormore WHEN
exception condition clauses, each followed by statements.

Note: A BEGIN/END blockin itself,is considereda statement; thus, blocks may be
nested. The exceptionsection may also contain nested blocks.

The following is the simplest possible block consisting ofthe NULL statement within the
executable section. The NULL statementis an executable statementthat does nothing.

BEGIN
NULL;
END;

The following block contains a declaration section as well as the executable section.

DECLARE
v numerator NUMBER (2) ;
v_denominator NUMBER (2) ;
v_result NUMBER (5, 2) ;
BEGIN
v_numerator := 75;
v denominator := 14;
v:result := Vv_numerator / v_denominator;
DBMS OUTPUT.PUT LINE (v_numerator || ' divided by ' || v _denominator |
''is ' || v result);
END; a

In this example, three numeric variables are declared of data type NUMBER. In the
executable section, values are assigned to two ofthe variables and then onenumber is
divided by the other, storing the results in a third variable which is then displayed. If
executed, the output wouldbe:

75 divided by 14 is 5.36

The following block consists ofa declaration, an executable, and an exception:

DECLARE
v_numerator NUMBER (2) ;
v denominator NUMBER (2) ;
v_result NUMBER (5, 2) ;
BEGIN
v numerator := 75;
v:denominator := 0;
v result := v numerator / v denominator;
DBMS OUTPUT.PUT LINE (v _numerator || ' divided by ' || v_denominator ||
''is ' || v_result);
EXCEPTION

WHEN OTHERS THEN
DBMS OUTPUT.PUT LINE ('An exception occurred') ;
END;

The following outputshows that the statement within the exceptionsection is executed as
a result ofthe division by zero.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 130

Database Compatibility for Oracle® Developers Guide

An exception occurred

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 131

Database Compatibility for Oracle® Developers Guide

3.2.2 Anonymous Blocks

Blocks are typically written as part ofa procedure, function, subprogram, or trigger.
Procedure, function, and trigger programs are named and stored in the database forre-
use. Forquick (one-time) execution (suchas testing), youcan simply enter theblock
without providinga name or storing it in the database.

A blockofthis typeis called an anonymous block. Ananonymous block is unnamed and
is not stored in the database. Once the block has been executed and erased fromthe
application buffer, it cannot be re-executed unless the block codeis re-entered into the
application.

Typically, the same block of code will be re-executed many times. In orderto run a block
of code repeatedly without the necessity ofre-entering the code each time, with some
simple modifications, an anonymous block canbe turned into a procedure or function.
The following sections discuss how to createa procedure or functionthatcan bestoredin
the database and invokedrepeatedly by another procedure, function, or application
program.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 132

Database Compatibility for Oracle® Developers Guide

3.2.3 Procedures Overview

Procedures are standalone SPL programs thatare invoked or called as an individual SPL
programstatement. When called, procedures may optionally receive values fromthe

caller in the formof input parameters and optionally return values to the callerin the
form of output parameters.

3.23.1 Creating a Procedure

The cREATE PROCEDURE command defines andnames a standalone procedure that will
be stored in the database.

CREATE

[

{ IS |

END

Where:

name

[OR REPLACE] PROCEDURE name [(parameters)]

IMMUTABLE

STABLE

VOLATILE

DETERMINISTIC

[NOT] LEAKPROOF

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STRICT

[EXTERNAL] SECURITY INVOKER

[EXTERNAL] SECURITY DEFINER

AUTHID DEFINER

AUTHID CURRENT USER

PARALLEL { UNSAFE | RESTRICTED | SAFE }
COST execution cost

ROWS result rows

SET configuration parameter

{ TO value | = value | FROM CURRENT }

AS }

[declarations |
BEGIN

statements
name 1];

name is the identifier ofthe procedure. Ifyou specify the [OR REPLACE] clause
and a procedure with the same name already exists in the schema, the new
procedure will replace the existing one. Ifyou do notspecify [OR REPLACE],

the new procedure will not replace the existing procedure with the same name in
the same schema.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 133

Database Compatibility for Oracle® Developers Guide

parameters

parametersis a list of formal parameters.

declarations

declarationsare variable, cursor, type, or subprogramdeclarations. If

subprogramdeclarations are included, they must be declared afterall other
variable, cursor, and type declarations.

statements

statements are SPL programstatements (the BEGIN - END block may contain

an EXCEPTION section).

IMMUTABLE
STABLE
VOLATILE

These attributes informthe query optimizer about the behavior ofthe procedure;

you can specify only one choice. voLATILE is the default behavior.

TMMUTABLE indicates thatthe procedure cannot modify the database and always
reaches the same result when given the same argumentvalues; it doesnot do
database lookups or otherwise use informationnot directly presentin its argument

list. If you include this clause, any call ofthe procedure with all-constant
arguments can be immediately replaced with the procedure value.

sTABLE indicates that the procedure cannot modify the database, and that within a
single table scan, it will consistently return the same result for the same argument

values, butthatits result could changeacross SQL statements. This is the

appropriate selection for procedures that depend on database lookups, parameter

variables (such as the current time zone), etc.

VOLATILE indicates thatthe procedure value can change even within a single
table scan, sono optimizations canbe made. Please notethatany functionthat
has side-effects must be classified volatile, even ifits result is quite predictable, to

prevent calls frombeing optimized away.

DETERMINISTIC

DETERMINISTICis a synonymfor IMMUTABLE. A DETERMINISTIC

procedure cannotmodify the databaseand always reaches the same result when
given the same argumentvalues; it does not do database lookups or otherwise use
information not directly present in its argument list. Ifyou include this clause,

any call of the procedure with all-constant arguments can be immediately
replaced with the procedure value.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

134

Database Compatibility for Oracle® Developers Guide

[NOT] LEAKPROOF

A LEAKPROOK procedure has no side effects, and reveals no information about the
values usedto call the procedure.

CALLED ON NULL INPUT
RETURNS NULL ON NULL INPUT
STRICT

CALLEDON NULL INPUT (the default) indicates thatthe procedure will be called

normally when some ofits arguments are NULL. Itis the author's res ponsibility to
check fornuLL values ifnecessary and respond appropriately.

RETURNS NULL ON NULL INPUT or STRICT indicates that the procedure always
returns NULL whenever any ofits arguments are NULL. If theseclauses are
specified, the procedure is notexecuted whenthere are NULL arguments; instead a
NULL result is assumed automatically.

[EXTERNAL] SECURITY DEFINER

SECURITY DEFINER specifies that the procedure will execute with the privileges

of the userthat created it; this is thedefault. The key word ExTERNAL is allowed
for SQL conformance, but is optional.

[EXTERNAL] SECURITY INVOKER

The SECURITY INVOKER clause indicates that the procedure will execute with the

privileges ofthe userthat calls it. The key word EXTERNAL is allowed for SQL
conformance, but is optional.

AUTHID DEFINER
AUTHID CURRENT USER

The AUTHID DEFINER clauseis asynonymfor [EXTERNAL] SECURITY

DEFINER. If the AuTHID clauseis omitted orif AUTHID DEFINER is specified,

the rights ofthe procedure owner are used to determine access privileges to
database objects.

The AUTHID CURRENT USER clauseis asynonymfor [EXTERNAL] SECURITY
INVOKER. If AUTHID CURRENT USERis specified, the rights ofthe current user
executing the procedure are used to determine access privileges.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 135

Database Compatibility for Oracle® Developers Guide

The PARALLEL clause enables the use of parallel sequential scans (parallelmode).
A parallel sequential scan uses multiple workers to scan a relation in parallel
during a query in contrastto a serial sequential scan.

When set to UNSAFE, the procedure cannotbe executed in parallelmode. The
presence of sucha procedure forces a serial executionplan. This is the default
settingifthe PARALLEL clause is omitted.

When setto RESTRICTED, the procedure can be executed in parallelmode, but
the execution is restricted to the parallel group leader. If the qualification for any
particularrelation has anything that is parallel restricted, thatrelation won't be
chosen for parallelism.

When setto SAFE, the procedure canbe executed in parallel mode with no
restriction.

COST execution cost

execution costisapositive number givingthe estimated execution cost for
the procedure, in units of cpu_operator cost. Ifthe procedure returnsa set,
this 1s the costperreturnedrow. Largervalues causethe plannerto try to avoid
evaluating the function more often than necessary.

ROWS result rows

result rowsis a positive number giving theestimated number ofrows thatthe
planner should expect the procedure to return. This is only allowed whenthe
procedure is declared to return a set. The default assumptionis 1000 rows.

= value | FROM CURRENT }

SET configuration parameter { TO value

The seT clause causes the specified configuration parameter to be setto the
specified valuewhen the procedure is entered, and thenrestored toits prior value

when the procedure exits. SET FROM CURRENT saves the session's current value
of the parameter as the value to be applied when the procedureis entered.

Ifa seT clause is attached to a procedure, then the effects ofa SET LocAL
command executed inside the procedure for the same variable are restricted to the
procedure; the configuration parameter's prior value is restored at procedure exit.
An ordinary seT command (without LocaL) overrides the SET clause, much as it
would do fora previous SET LoCcAL command, with the effects of sucha

command persisting after procedure exit, unless the current transactionis rolled
back.

Please Note: The STRICT, LEAKPROOF, PARALLEL,COST,ROWS and SET keywords
provide extended functionality for A dvanced Server and are notsupported by Oracle.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 136

Database Compatibility for Oracle® Developers Guide
Example

The following is an example of a simple procedure that takes no parameters.

CREATE OR REPLACE PROCEDURE simple procedure
Is
BEGIN
DBMS OUTPUT.PUT LINE ('That''s all folks!');
END simpfe_procedurg;

The procedure is stored in the database by entering the procedure code in Advanced
Server.

The following example demonstrates usingthe AUTHID DEFINER and SET clausesin a
procedure declaration. Theupdate salaryprocedureconveysthe privileges ofthe
role that defined the procedureto the role that is calling the procedure (while the
procedure executes):

CREATE OR REPLACE PROCEDURE update salary(id INT, new salary NUMBER)

SET SEARCH PATH = 'public' SET WORK MEM = 'I1MB'
AUTHID DEFINER IS
BEGIN
UPDATE emp SET salary = new salary WHERE emp id = id;
END;

Include the seT clause to set theprocedure's searchpathto pub1ic andthe work

memory to 1MB. Otherprocedures, functions and objects will not be affected by these
settings.

In this example, the AUTHID DEFINER clause temporarily grants privileges to arole that
might otherwise not be allowed to execute the statements within the procedure. To
instruct the serverto usethe privileges associated with the role invoking the procedure,
replace the AUTHID DEFINER clausewith the AUTHID CURRENT USER clause.

3.2.3.2 Calling a Procedure

A procedure can be invoked fromanother SPLprogramby simply specifyingthe
procedure name followed by its parameters, ifany, followed by a semicolon.

name [([parameters 1) 1;
Where:
name is the identifier ofthe procedure.

parametersis a listof actual parameters.

Note: If there are no actual parameters to be passed, the procedure may be called with an
empty parameter list, orthe opening and closing parenthesis may be omitted entirely.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 137

Database Compatibility for Oracle® Developers Guide

Note: The syntaxforcalling a procedure is the same as in the preceding syntaxdiagram
when executing it with the Exec command in PSQL or EDB*Plus. See the Database
Compatibility for Oracle Developers Tools and Utilities Guide for information about the
EXEC command.

The following is an example of calling the procedure froman anonymous block:

BEGIN
simple procedure;
END;

That's all folks!

Note: Each applicationhas its own unique way to calla procedure. Forexample, in a
Java application, theapplication programming interface, JDBC, is used.

3.2.3.3 Deleting a Procedure

A procedure can be deleted fromthe database usingthe DROP PROCEDURE command.

DROP PROCEDURE name;
Where name is the name ofthe procedure to be dropped.

The previously created procedure is dropped in this example:

DROP PROCEDURE simple procedure;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 138

Database Compatibility for Oracle® Developers Guide

3.2.4 Functions Overview

Functions are standalone SPL programs thatare invoked as expressions. When evaluated,
a functionreturns a value that is substituted in the expression in which the functionis
embedded. Functions may optionally take values fromthe calling programin the formof
input parameters. In addition to the fact thatthe function, itself, returns a value, a
function may optionally return additional values to thecaller in the form of output
parameters. The use of output parameters in functions, however, is not an encouraged
programming practice.

3.24.1 Creating a Function

The crReATE FUNCTION command defines andnames a standalone functionthatwill be
stored in the database.

CREATE [OR REPLACE] FUNCTION name [(parameters)]
RETURN data type
[
IMMUTABLE
| STABLE
| VOLATILE
| DETERMINISTIC
| [NOT] LEAKPROOF
| CALLED ON NULL INPUT
| RETURNS NULL ON NULL INPUT
| STRICT
| [EXTERNAL] SECURITY INVOKER
| [EXTERNAL] SECURITY DEFINER
| AUTHID DEFINER
| AUTHID CURRENT USER
| PARALLEL { UNSAFE | RESTRICTED | SAFE }
| COST execution cost
| ROWS result rows
| SET configuration parameter
{ TO value | = value | FROM CURRENT }
ce]
{ IS | AS }
[declarations]
BEGIN
statements
END [name 1];

Where:

name

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 139

Database Compatibility for Oracle® Developers Guide

name is the identifier of the function. Ifyou specify the [OR REPLACE] clause
and a function with the same name already exists in the schema, the new function
will replace the existing one. Ifyou do notspecify [OR REPLACE],the new

function willnot replace the existing function with the same name in the same
schema.

parameters
parametersis a list of formal parameters.

data type

data typeisthedatatypeofthe valuereturned by the function’s RETURN
statement.

declarations

declarations are variable, cursor, type, or subprogramdeclarations. If
subprogramdeclarations are included, they must be declared afterall other
variable, cursor, and type declarations.

statements

statements are SPL programstatements (the BEGIN - END block may contain
an EXCEPTION section).

IMMUTABLE
STABLE
VOLATILE

These attributes informthe query optimizer about the behavior ofthe function;
you can specify only one choice. VOLATILE is the default behavior.

TIMMUTABLE indicates thatthe function cannot modify the database and always
reaches the same result when given the same argument values; it doesnot do
database lookups or otherwise use informationnot directly presentin its argument
list. If youinclude this clause, any call ofthe function with all-constant
arguments can be immediately replaced with the function value.

sTABLE indicates that the function cannot modify the database, and that within a
single table scan, it will consistently return the same result for the same argument
values, butthatits result could changeacross SQLstatements. This is the

appropriate selection for function that depend on database lookups, parameter
variables (such as the current time zone), etc.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 140

Database Compatibility for Oracle® Developers Guide

VOLATILE indicates thatthe function value can change even within a single table
scan, so nooptimizations can be made. Pleasenote that any function that has
side-effects mustbe classified volatile, even ifits result is quite predictable, to
prevent calls frombeing optimized away.

DETERMINISTIC

DETERMINISTICis a synonymfor IMMUTABLE. A DETERMINISTIC function
cannotmodify the database and always reaches the same result when given the
same argument values; it does not do database lookups or otherwiseuse
information not directly present in its argument list. Ifyou include this clause,

any call of the function with all-constant arguments can be immediately replaced
with the function value.

[NOT] LEAKPROOF

A LEAKPROOK function has noside effects, andreveals no information aboutthe
values usedto callthe function.

CALLED ON NULL INPUT
RETURNS NULL ON NULL INPUT
STRICT

CALLED ON NULL INPUT (the default) indicates thatthe procedure will be called
normally when some of’its arguments are NULL. Itis the author's responsibility to
checkfornuLL values ifnecessary and respond appropriately.

RETURNS NULL ON NULL INPUT or STRICT indicates that the procedure always
returns NULL whenever any ofits arguments are NULL. If theseclausesare
specified, the procedure is notexecuted when there are NULL arguments; instead a
NULL result is assumed automatically.

[EXTERNAL] SECURITY DEFINER

SECURITY DEFINER specifies that the function will execute with the privileges of

the userthatcreatedit; this is the default. Thekey word ExTERNAL is allowed for
SQL conformance, butis optional.

[EXTERNAL] SECURITY INVOKER

The SECURITY INVOKER clause indicates that the function will execute with the
privileges ofthe userthat calls it. The key word EXTERNAL is allowed for SQL
conformance, but is optional.

AUTHID DEFINER
AUTHID CURRENT USER

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 141

Database Compatibility for Oracle® Developers Guide

The AUTHID DEFINER clauseis asynonymfor [EXTERNAL] SECURITY
DEFINER. If the AUTHID clause is omitted orif AUTHID DEFINER is specified,
the rights ofthe function owner are used to determine access privileges to
database objects.

The AUTHID CURRENT USER clauseis asynonymfor [EXTERNAL] SECURITY

INVOKER. If AUTHID CURRENT USERIs specified, the rights ofthe current user
executing the function are used to determine access privileges.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans (parallelmode).
A parallel sequential scan uses multiple workers to scan a relation in parallel
during a query in contrastto a serial sequential scan.

When set to UNSAFE, the function cannot be executed in parallelmode. The
presence of sucha function in a SQL statement forces a serial execution plan.
This is the default settingifthe PARALLEL clause is omitted.

When setto RESTRICTED, the function canbe executed in parallelmode, but the
execution is restricted to the parallel group leader. If the qualification forany
particularrelation has anything that is parallel restricted, thatrelation won't be
chosen for parallelism.

When set to SAFE, the function canbe executed in parallelmode with no
restriction.

COST execution cost

execution costisapositive number givingthe estimated execution cost for
the function, in units of cpu_operator cost. Ifthe function returns a set, this

is the cost perreturnedrow. Larger values cause theplannerto try to avoid
evaluating the function more often than necessary.

ROWS result rows

result rowsis a positive number giving theestimated number ofrows thatthe

plannershould expect the functionto return. Thisis only allowed whenthe
function is declared toreturna set. The default assumption is 1000 rows.

SET configuration parameter { TO value | = value | FROM CURRENT }

The seT clause causes the specified configuration parameter to be setto the
specified valuewhen the function is entered, and thenrestored to its prior value

when the functionexits. SET FROM CURRENT saves thesession's currentvalueof
the parameteras thevalue tobe applied whenthe functionis entered.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 142

Database Compatibility for Oracle® Developers Guide

Ifa sET clause is attachedto a function, thenthe effects ofa SET L.ocAL
command executed inside the function forthe same variable are restricted to the
function;the configuration parameter's prior value is restored at functionexit. An

ordinary seT command (without L.ocar)overrides the SET clause, much as it

would do fora previous SET LOCAL command, with the effects of sucha

command persisting after procedure exit, unless the currenttransactionis rolled
back.

Please Note: The STRICT, LEAKPROOF, PARALLEL,COST,ROWS and SET keywords
provide extended functionality for Advanced Server and are notsupported by Oracle.

Examples

The following is an example of a simple functionthattakes no parameters.

CREATE OR REPLACE FUNCTION Simpleifunction
RETURN VARCHAR2

IS

BEGIN
RETURN 'That''s All Folks!';

END simple function;

The following function takes two inputparameters. Parameters are discussed in more
detail in subsequentsections.

CREATE OR REPLACE FUNCTION emp comp (
p sal NUMBER,
p_comm NUMBER
) RETURN NUMBER
Is
BEGIN
RETURN (p sal + NVL (p comm, 0)) * 24;
END empicomp;i h

The following example demonstrates usingthe AUTHID CURRENT USER clause and
sTRICT keyword in a functiondeclaration:

CREATE OR REPLACE FUNCTION dept_salaries(dept_id int) RETURN NUMBER
STRICT
AUTHID CURRENT USER
BEGIN a
RETURN QUERY (SELECT sum(salary) FROM emp WHERE deptno = id);
END;

Include the sTrRICT keyword to instruct the serverto return NULL if any input parameter
passedis NULL; if aNULL value is passed, the function will not execute.

The dept salaries functionexecutes with the privileges ofthe role that is calling the
function. Ifthe currentuserdoes nothave sufficientprivileges to performthe sELECT

statement querying the emp table (to display employee salaries), the function willreport
an error. To instructthe serverto use theprivileges associated with the role thatdefined

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 143

Database Compatibility for Oracle® Developers Guide

the function, replacethe AUTHID CURRENT USER clausewith the AUTHID DEFINER
clause.

3.2.4.2 Calling a Function

A function canbe used anywhere an expression can appear within an SPL statement. A

function is invoked by simply specifying its name followed by its parameters enclosed in
parenthesis, ifany.

name [([parameters]) |
name is the name ofthe function. parametersis alist ofactual parameters.

Note: If there are no actual parameters to be passed, the functionmay be called with an
empty parameter list, or the opening and closing parenthesis may be omitted entirely.

The following shows how the function can be called fromanother SPLprogram.

BEGIN
DBMS OUTPUT.PUT LINE (simple function);
END;

That's All Folks!

A function is typically used within a SQL statement as shown in the following.

SELECT empno "EMPNO", ename "ENAME", sal "SAL", comm "COMM",
emp comp (sal, comm) "YEARLY COMPENSATION" FROM emp;

EMPNO | ENAME | SAL | COMM | YEARLY COMPENSATION
e i B e e e
7369 | SMITH | 800.00 | | 19200.00
7499 | ALLEN | 1600.00 | 300.00 | 45600.00
7521 | WARD | 1250.00 | 500.00 | 42000.00
7566 | JONES | 2975.00 | | 71400.00
7654 | MARTIN | 1250.00 | 1400.00 | 63600.00
7698 | BLAKE | 2850.00 | | 68400.00
7782 | CLARK | 2450.00 | | 58800.00
7788 | SCOTT | 3000.00 | | 72000.00

7839 | KING | 5000.00 | | 120000.00

7844 | TURNER | 1500.00 | 0.00 | 36000.00

7876 | ADAMS | 1100.00 | | 26400.00

7900 | JAMES | 950.00 | | 22800.00

7902 | FORD | 3000.00 | | 72000.00

7934 | MILLER | 1300.00 | | 31200.00
(14 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 144

Database Compatibility for Oracle® Developers Guide
3.2.4.3 Deleting a Function

A function canbe deleted fromthe databaseusing the DROP FUNCTION command.

DROP FUNCTION name [(parameters)];
Where name is the name ofthe function to bedropped.

Note: The specification ofthe parameter list is required in Advanced Server under certain
circumstances. Oracle requires that the parameter list always be omitted.

The previously created functionis dropped in this example:

DROP FUNCTION simple function;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 145

Database Compatibility for Oracle® Developers Guide

3.2.5 Procedure and Function Parameters

An important aspectofusing procedures and functions is the capability to pass data from
the calling programto the procedure or function and to receive data back fromthe
procedure or function. This is accomplished by using parameters.

Parameters are declared in the procedure or functiondefinition, enclosed within
parenthesis following the procedure or function name. Parameters declared in the
procedure or function definition are known as formal parameters. W hen the procedure or
function is invoked, the calling programsupplies the actual data that is to be used in the
called program’s processing as well as the variables thatare to receive the results ofthe

called program’s processing. The data and variables supplied by thecalling program
when the procedure or functionis called are referred to as the actual parameters.

The following is the general format ofa formal parameter declaration.

(name [IN | OUT | IN OUT] data type [DEFAULT value])

name 1s an identifier assigned to the formal parameter. If specified, 1x defines the

parameter forreceiving inputdata into the procedure or function. An 1N parameter can
also be initialized to a default value. If specified, ouT defines the parameter for returning
data fromthe procedure or function. If specified, 1n ouT allows the parameter to be used
for both input and output. Ifall of 1n, ouT, and IN oUT are omitted, then the parameter
acts as if it were defined as 1N by default. Whether a parameteris IN,0UT, Or IN OUT is
referred to as the parameter’s mode. data type definesthedatatype ofthe parameter.
valueis a default value assigned to an 1n parameter in the called programif an actual
parameter is not specified in the call.

The following is an example of a procedure thattakes parameters:

CREATE OR REPLACE PROCEDURE emp query (

p deptno IN NUMBER,
p_empno IN OUT NUMBER,
p_ename IN OUT VARCHARZ2,
p job ouT VARCHAR2,
p _hiredate OUT DATE,
p sal OUT NUMBER

)

IS

BEGIN

SELECT empno, ename, job, hiredate, sal
INTO p empno, p_ename, p job, p hiredate, p sal
FROM emp
WHERE deptno
AND (empno
OR ename

p_deptno
p_empno
UPPER (p_ename)) ;

END;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 146

Database Compatibility for Oracle® Developers Guide

In this example,p deptnois an IN formal parameter,p empnoandp ename are IN

ouT formal parameters,andp job,p hiredate,andp sal areouT formal
parameters.

Note: In the previous example, no maximum length was specified on the VARCHAR2
parameters andno precision and scale were specified on the NUMBER parameters. It is
illegal to specify a length, precision, scale or other constraints on parameter declarations.

These constraints are automatically inherited fromthe actual parameters that are used
when the procedure or functionis called.

The emp query procedure canbe called by another program, passing it the actual
parameters. The followingis an example of another SPLprogramthat calls emp query.

DECLARE
v deptno NUMBER (2) ;
v:empno NUMBER (4) ;
vV ename VARCHARZ (10) ;
v_job VARCHAR? (9) ;
v_hiredate DATE;
v sal NUMBER;

BEGIN
v deptno := 30;
v:empno = 7900;
vV_ename = 'y
emp query (v_deptno, v _empno, v _ename, v_job, v _hiredate, v sal);
DBMS OUTPUT.PUT LINE ('Department : ' || v_deptno);
DBMS OUTPUT.PUT LINE ('Employee No: ' || v_empno);
DBMS OUTPUT.PUT LINE ('Name : " || v ename);
DBMS OUTPUT.PUT LINE ('Job : " || v_job);
DBMS OUTPUT.PUT LINE ('Hire Date : ' || v hiredate) ;
DBMS OUTPUT.PUT LINE ('Salary : ' || v_sal);

END;

In this example,v_deptno,v_empno,v_ename,v_job,v hiredate,andv_sal are
the actual parameters.

The output fromthe preceding example is shown as follows:

Department : 30
Employee No: 7900

Name : JAMES

Job : CLERK
Hire Date : 03-DEC-81
Salary : 950

3.2.5.1 Positional vs. Named Parame ter Notation

You can use either positional or named parameter notation when passing parameters to a
function orprocedure. Ifyou specify parameters using positional notation, you must list

the parameters in the order that they are declared; ifyou specify parameters with named
notation, the order ofthe parameters is notsignificant.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 147

Database Compatibility for Oracle® Developers Guide

To specify parameters using named notation, list the name of each parameter followed by

an arrow (=>) and the parameter value. Named notation is more verbose, but makes your
code easierto read and maintain.

A simple example that demonstrates using positional and named parameter notation
follows:

CREATE OR REPLACE PROCEDURE emp info (

p deptno IN NUMBER,
p_empno IN OUT NUMBER,
p_ename IN OUT VARCHAR2Z2,

)

IS

BEGIN
dbms_output.put line('Department Number =' || p_deptno);
dbms_output.put line('Employee Number =' || p empno);
dbms_output.put line('Employee Name =' || p_ename;

END;

To call the procedure using positional notation, pass the following:

emp info (30, 7455, 'Clark');
To call the procedure using named notation, pass the following:

emp info (p _ename =>'Clark', p empno=>7455, p deptno=>30);
Using named notation can alleviatethe need to re-arrange a procedure’s parameter list if

the parameter list changes, ifthe parameters are reordered or ifa new optional parameter
is added.

In a case where youhave a default value for an argument and the argumentis not a
trailing argument, youmust use named notation to call the procedure or function. The
following case demonstrates a procedure with two, leading, default arguments.

CREATE OR REPLACE PROCEDURE check balance (
p_customerID IN NUMBER DEFAULT NULL,

p_balance IN NUMBER DEFAULT NULL,
p_amount IN NUMBER

)

IS

DECLARE
balance NUMBER;

BEGIN

IF (p_balance IS NULL AND p customerID IS NULL) THEN
RAISE APPLICATION ERROR
(-20010, 'Must provide balance or customer') ;
ELSEIF (p_balance IS NOT NULL AND p customerID IS NOT NULL) THEN
RAISE APPLICATION ERROR
(-20020, "Must provide balance or customer, not both');
ELSEIF (p _balance IS NULL) THEN

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 148

Database Compatibility for Oracle® Developers Guide

balance := getCustomerBalance (p_ customerID);
ELSE

balance := p balance;
END IF; B

IF (amount > balance) THEN
RAISE_APPLICATION_ERROR
(-20030, 'Balance insufficient');
END IF;
END;

You can only omit non-trailing argument values (whenyoucall this procedure) by using

named notation; when using positional notation, only trailing arguments are allowed to
default. You can callthis procedure with the following arguments:

check balance(p customerID => 10, p_ amount = 500.00)

check balance(p balance => 1000.00, p _amount = 500.00)

You can use a combination of positional and named notation (mixed notation) to specify

parameters. A simple example that demonstrates using mixed parameter notation
follows:

CREATE OR REPLACE PROCEDURE emp info (

p_deptno IN NUMBER,
p empno IN OUT NUMBER,
p_ename IN OUT VARCHAR?2,

)

IS

BEGIN
dbms output.put line('Department Number =' || p deptno);
dbms:output.put:line('Employee Number ="' | | pfeﬁpno);
dbms_output.put line('Employee Name =' || p_ename;

END;

You can call the procedure using mixed notation:

emp info (30, p_ ename =>'Clark', p empno=>7455);

If you do use mixed notation, remember that named arguments cannot precede positional
arguments.

3.2.5.2 Parameter Modes

As previously discussed, a parameter has one of threepossible modes - 1N, 0UT, or IN
ouT. The following characteristics ofa formal parameter are dependentuponits mode:

e Its initial value when the procedure or functionis called.
e Whetherornot the called procedure or function can modify the formal parameter.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 149

program.

Database Compatibility for Oracle® Developers Guide

How the actual parameter value is passed fromthe calling programto the called

What happens to the formal parameter value when an unhandled exception occurs
in the called program.

The following table summarizes the behavior of parameters according to theirmode.

Table 4-3-1 Parameter Modes

Mode Property

IN

IN OUT

ouT

Formal parameter initialized to:

Actual parameter value

[Actual parameter value

Actual parameter value

Formal parameter modifiable by the
called program?

[No

Y es

Yes

Actual parameter contains: (affer
normal called program termination)

Original actual
parameter value prior
to the call

Last value of the
formal parameter

Last value of the
formal parameter

Actual parameter contains: (afler a
handled exception in the called
[program)

Original actual
[parameter value prior
to the call

Last value of the
formal parameter

Last value of the
formal parameter

[Actual parameter contains: (afier an
unhandled exception in the called
[program)

Original actual
[parameter value prior
to the call

Original actual
[parameter value prior
to the call

Original actual
parameter value prior
to the call

As shown by the table, an 1N formal parameter is initialized to the actual parameter with
which it is called unless it was explicitly initialized with a default value. The 1N
parameter may be referenced within the called program, however, the called program
may not assignanew value to the T~ parameter. A fter control returns to the calling
program, the actual parameter always contains the same value as it was set to prior to the

call.

The ouT formal parameter is initialized to the actual parameter with which it is called.
The called programmay reference and assign new values tothe formal parameter. Ifthe
called programterminates without an exception, the actual parameter takes onthe value
last set in the formal parameter. If a handled exception occurs, the value ofthe actual
parameter takes onthe lastvalueassigned to the formal parameter. Ifan unhandled
exception occurs, the value ofthe actual parameter remains as it was priorto the call.

Like an IN parameter,an IN oUT formal parameteris initialized to the actual parameter
with which it is called. Like an ouT parameter,an 1N oUT formal parameteris
modifiable by the called programand thelast value in the formal parameter is passedto
the calling program’s actual parameter ifthe called programterminates without an
exception. Ifa handled exception occurs, the value ofthe actual parameter takes on the

last value assigned to the formal parameter. Ifan unhandled exception occurs, the value
of the actual parameter remains as it was prior to the call.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

150

Database Compatibility for Oracle® Developers Guide

3.2.5.3 Using Default Values in Parame ters

You can set adefault value ofa formal parameterby includingthe DEFAULT clauseor
using the assignment operator (: =) in the CREATE PROCEDURE O CREATE FUNCTION
statement.

The general formofa formal parameter declarationis:
(name [IN|OUT|IN OUT] data type [{DEFAULT | := } expr 1)

name is an identifier assigned to the parameter.

IN|OUT|IN OUT specifies the parameter mode.

data typeisthe datatypeassigned tothe variable.

expr is the default valueassigned to the parameter. Ifyou do notinclude a DEFAULT
clause, the callermust providea value for the parameter.

The default value is evaluated every time the function or procedure is invoked. For

example, assigning SYSDATE to a parameter of type DATE causes the parameter to have
the time ofthe current invocation, notthe time when the procedure or function was
created.

The following simple procedure demonstrates using the assignment operator to seta
default value of sYSDATE into the parameter, hiredate:

CREATE OR REPLACE PROCEDURE hire emp (

p empno NUMBER,
p:ename VARCHARZ2,
p_hiredate DATE := SYSDATE
)
IS
BEGIN

INSERT INTO emp(empno, ename, hiredate)
VALUES (p_empno, p ename, p hiredate);

DBMS_OUTPUT.PUT_LINE('Hired!');
END hire emp;

If the parameter declaration includes a default value, you can omit the parameter fromthe
actual parameter list when youcall the procedure. Calls to the sample procedure

(hire emp)mustinclude two arguments: the employeenumber(p empno)and
employeename (p_empno). The third parameter (p_hiredate)defaults to the valueof
SYSDATE:

hire emp (7575, Clark)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 151

Database Compatibility for Oracle® Developers Guide

Ifyou do include a value for the actual parameter when you call the procedure, thatvalue
takes precedence overthe default value:

hire emp (7575, Clark, 15-FEB-2010)

Addsanewemployee with a hiredate of February 15, 2010, regardless ofthe current
value of SYSDATE.

You can write the same procedure by substitutingthe DEFAULT keyword forthe
assignmentoperator:

CREATE OR REPLACE PROCEDURE hire emp (

p_empno NUMBER,
p_ename VARCHARZ2,
p_hiredate DATE DEFAULT SYSDATE
)
IS
BEGIN

INSERT INTO emp(empno, ename, hiredate)
VALUES (p_empno, p_ename, p hiredate);

DBMS OUTPUT.PUT LINE ('Hired!');
END hire emp;

3.2.6 Subprograms — Subprocedures and Subfunctions

The capability and functionality of SPL procedure and function programs can be used in

an advantageous manner to build well-structured and maintainable programs by
organizing the SPL code into subprocedures and subfunctions.

The same SPL code can be invoked multiple times from different locations within a

relatively large SPL programby declaring subprocedures and subfunctions within the
SPL program.

Subprocedures and subfunctions havethe following characteristics:

e Thesyntax structure, and functionality of subprocedures and subfunctions are
practically identical to standalone procedures and functions. The major difference
is theuse ofthe keyword PROCEDURE or FUNCTION instead of CREATE
PROCEDURE Or CREATE FUNCTION to declare the subprogram.

e Subprocedures and subfunctions provide isolation for the identifiers (that is,
variables, cursors, types, and other subprograms) declared within itself. That is,
these identifiers cannot be accessed nor altered fromthe upper, parentlevel SPL
programs or subprograms outside ofthe subprocedure or subfunction. This
ensures thatthe subprocedure and subfunction results are reliable and predictable.

e Thedeclarationsection of subprocedures and subfunctions caninclude its own
subprocedures and subfunctions. Thus, a multi-level hierarchy of subprograms

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 152

Database Compatibility for Oracle® Developers Guide

can exist in the standalone program. Within the hierarchy, a subprogramcan
access theidentifiers of upperlevel parent subprograms and also invoke upper
level parent subprograms. However, the same access to identifiers and invocation
cannotbe done for lower level child subprograms in the hierarchy.

Subprocedures and subfunctions can be declared and invoked from within any ofthe
following types of SPLprograms:

Standalone procedures and functions

Anonymous blocks

Triggers

Packages

Procedure and function methods ofan objecttype body

Subprocedures and subfunctions declared within any ofthe preceding programs

The rules regarding subprocedure and subfunction structureand access are discussed in
more detail in the next sections.

3.2.6.1 Creating a Subprocedure

The pPrROCEDURE clause specified in the declaration section defines and names a
subprocedurelocalto that block.

The term block refers to the SPLblock structure consisting ofan optional declaration
section, a mandatory executable section, and an optional exception section. Blocks are
the structures for standalone procedures and functions, anonymous blocks, subprograms,
triggers, packages, and objecttype methods.

The phrasethe identifier is localto the block means thatthe identifier (that is, a variable,
cursor, type, or subprogram) is declared within the declaration section ofthat block andis
therefore accessible by the SPL code within the executable section and optional exception
section ofthat block.

Subprocedures can only be declared afterall other variable, cursor, and type declarations
included in the declaration section. (That is, subprograms mustbe the lastsetof
declarations.)

PROCEDURE name [(parameters) |
{ IS | AS }
[declarations]

BEGIN
statements
END [name 1];

Where:

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 153

Database Compatibility for Oracle® Developers Guide

name
name is the identifier of the subprocedure.
parameters
parametersis a list of formal parameters.
declarations
declarations are variable, cursor, type, or subprogramdeclarations. If

subprogramdeclarations are included, they must be declared afterall other
variable, cursor, and type declarations.

statements

statements are SPL programstatements (the BEGIN - END block may contain
an EXCEPTION section).

Examples

The following example is a subprocedure within an anonymous block.

DECLARE
PROCEDURE list_emp
IS
vV _empno NUMBER (4) ;
v:ename VARCHARZ (10) ;
CURSOR emp cur IS
SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
OPEN emp cur;
DBMSioUTEUT.PUTiLINE('Subprocedure list emp:"');
DBMS OUTPUT.PUT LINE ('EMPNO ENAME ") ;
DBMS OUTPUT.PUT LINE ('----- s=m==m=U) g
LOOP B
FETCH emp cur INTO v empno, VvV ename;
EXIT WHEN emp cur3$NOTFOUND;
DBMS OUTPUT.PUT LINE (v_empno || ' ' || v_ename) ;
END LOOP;
CLOSE emp cur;
END;
BEGIN
list emp;
END;

Invoking this anonymous block produces the following output:

Subprocedure list emp:

EMPNO ENAME
7369 SMITH
7499 ALLEN
7521 WARD

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 154

Database Compatibility for Oracle® Developers Guide

7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAME S
7902 FORD
7934 MILLER

The following example is a subprocedure within a trigger.

CREATE OR REPLACE TRIGGER deptiaudititrig
AFTER INSERT OR UPDATE OR DELETE ON dept
DECLARE
v_action VARCHAR?Z (24) ;
PROCEDURE display action (
p_action IN VARCHAR?Z2
)
IS
BEGIN
DBMS OUTPUT.PUT LINE('User ' || USER || " ' || p_action ||
' dept on ' || TO CHAR(SYSDATE,'YYYY-MM-DD')) ;
END display action; B
BEGIN
IF INSERTING THEN
v_action := 'added';
ELSIF UPDATING THEN
v_action := 'updated';
ELSIF DELETING THEN
v_action := 'deleted';
END TIF;
display action (v_action) ;
END;

Invoking this trigger produces the following output:

INSERT INTO dept VALUES (50, "HR','DENVER') ;

User enterprisedb added dept on 2016-07-26

3.2.6.2 Creating a Subfunction

The runcTION clause specified in the declarationsection defines andnames a
subfunctionlocalto thatblock.

The term block refers to the SPLblock structure consisting of an optional declaration
section, a mandatory executable section, and an optional exception section. Blocks are
the structures for standalone procedures and functions, anonymous blocks, subprograms,
triggers, packages, and objecttype methods.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 155

Database Compatibility for Oracle® Developers Guide

The phrasethe identifier is localto the block means thatthe identifier (that is, a variable,
cursor, type, or subprogram) is declared within the declaration section ofthat block andis

therefore accessible by the SPL code within the executable section and optional exception
section ofthat block.

FUNCTION name [(parameters)]
RETURN data type
{ IS | AS }

[declarations]

BEGIN
statements
END [name 1];

Where:
name

name is the identifier of the subfunction.
parameters

parametersis a list of formal parameters.

data type

data typeisthedatatypeofthe valuereturned by the function’s RETURN
statement.

declarations

declarations are variable, cursor, type, or subprogramdeclarations. If
subprogramdeclarations are included, they must be declared afterall other
variable, cursor, and type declarations.

statements

statements are SPL programstatements (the BEGIN - END block may contain
an EXCEPTION section).

Examples

The following example shows theuseofarecursive subfunction:

DECLARE
FUNCTION factorial (
n BINARYilNTEGER
) RETURN BINARY INTEGER
IS a
BEGIN

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 156

Database Compatibility for Oracle® Developers Guide

IF n = 1 THEN

RETURN n;
ELSE
RETURN n * factorial(n-1);
END IF;
END factorial;

BEGIN

END;

FOR 1 IN 1..5 LOOP
DBMS OUTPUT.PUT LINE(i || '"! = ' || factorial(i));
END LOOP;

The output fromthe example is the following:

1l
21
3l
4!
51

1
2

6
24

120

3.2.6.3 Block Relationships

This section describes the terminology ofthe relationship between blocks thatcan be

declared in an SPL program. The ability to invoke subprograms and access identifiers
declared within a block depends upon this relationship.

The following are the basic terms:

A block is the basic SPL structure consisting ofan optional declarationsection, a
mandatory executable section, and an optional exception section. Blocks
implement standalone procedure and function programs, anonymous blocks,
triggers, packages, and subprocedures and subfunctions.

An identifier (variable, cursor, type, or subprogram) local to a block means that it
is declared within the declaration section ofthe givenblock. Suchlocalidentifiers
are accessible fromthe executable sectionand optional exception sectionofthe
block.

The parentblock contains the declaration ofanother block (the child block).
Descendent blocks are the setofblocks forming the child relationship starting
froma given parentblock.

Ancestor blocks are thesetofblocks forming the parental relationship starting
froma given child block.

The set ofdescendent (or ancestor) blocks forma hierarchy.

The level is an ordinalnumber ofa given block fromthe highest, ancestor block.
Forexample, given a standalone procedure, the subprograms declared within the
declaration section ofthis procedure are all at the same level, for example call it
level 1. Additional subprograms within the declaration section ofthe

subprograms declared in the standalone procedure are at the next level, which is
level 2.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 157

Database Compatibility for Oracle® Developers Guide

e Thesibling blocks are thesetofblocks that havethe same parent block (that is,
they are all locally declared in the same block). Sibling blocks are also always at
the same levelrelative to each other.

The following schematic ofa set of procedure declaration sections provides an example
of aset ofblocks and theirrelationships to their surrounding blocks.

The two vertical lines on the left-hand side ofthe blocks indicate there are two pairs of

sibling blocks.block laandblock 1bisonepair,andblock 2aandblock 2bis
the second pair.

The relationship ofeach block with its ancestors is shown on the right-hand side ofthe
blocks. There are three hierarchical paths formed when progressing up the hierarchy from
the lowest level child blocks. The first consistsofblock 0,block la,block 2a,and
block 3.Thesecondisblock 0,block la,andblock 2b.Thethirdisblock 0,
block 1b,andblock 2b. - - -

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 158

Database Compatibility for Oracle® Developers Guide

CREATE PROCEDURE block 0

IS
+---- PROCEDURE block la W ------- Local to block 0
| IS
\ \
\ \
\ . \
| +-- PROCEDURE block Z2a ---- Local to block la and descendant
| | IS of block 0
I I I
I I I
I I . I
| | PROCEDURE block 3 -- Local to block 2a and descendant
| | IS of block la, and block 0
| Siblings . |
I I I
I I o |
| | END block 3; I
\ \ END block 2a; \
| +-- PROCEDURE block 2b --—- Local to block la and descendant
| | Is of block 0

Siblings | 5 |
I I 5 I
\ \ . \
| +-- END block 2b;
\ \
I END block la; = —-------- +
+---- PROCEDURE block 1lb; ------- Local to block 0
| i
\ \
\ \
\ . \
| PROCEDURE block 2b ---- Local to block 1lb and descendant
| IS of block 0
I I
I I
| . |
| END block 2b; |
I I
+---- END block 1b; = -—-—-=—-—--- 4

BEGIN

END block O;

The rules forinvoking subprograms based upon block location is described starting with
Section 3.2.6.4. The rules foraccessing variables based upon block locationis described
in Section 3.2.6.7.

3.2.6.4 Invoking Subprograms

A subprogramis invoked in the same manner as a standalone procedure or function by
specifyingits name and any actual parameters.

The subprogrammay be invoked with none, one, or more qualifiers, which are the names

of the parentsubprograms orlabeled anonymous blocks forming the ancestor hierarchy
from where the subprogramhas been declared.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 159

Database Compatibility for Oracle® Developers Guide

The invocationis specified as a dot-separated list of qualifiers ending with the
subprogramname and any ofits arguments as shown by the following:

[[qualifier 1.][...]lqualifier n.]subprog [(arguments)]

If specified, qualifier nisthesubprogramin which subproghas beendeclared in its
declaration section. The preceding list of qualifiers must reside in a continuous path up
the hierarchy fromqualifier ntoqualifier 1.qualifier 1maybeany
ancestor subprogramin the pathas wellas any ofthe following:

Standalone procedure name containing the subprogram

Standalone function name containing subprogram

Package name containing the subprogram

Object type name containing the subprogramwithin an object type method
An anonymous blocklabelincluded priorto the DECLARE keyword ifa

declaration sectionexists, or prior to the BEG TN keyword if there is no declaration
section.

Note: qualifier 1may notbeaschemaname,otherwisean erroris thrownupon

invocation ofthe subprogram. This Advanced Server restrictionis not compatible with
Oracle databases, which allow use ofthe schema name as a qualifier.

argumentsis the list of actual parameters to be passed to the subprocedure or
subfunction.

Upon invocation, the search for the subprogramoccurs as follows:

e Theinvoked subprogramname ofits type (that is, subprocedure or subfunction)
along with any qualifiers in the specified order, (referred to as theinvocation list)
is used to find amatching set of blocks residing in the same hierarchical order.
The search begins in the block hierarchy wherethe lowestlevelis the block from
where the subprogramis invoked. Thedeclaration ofthe subprogrammust be in
the SPL code priorto the code line where it is invoked when the code is observed
from top to bottom. (An exceptionto this requirement canbe accomplished using
a forward declaration. See Section 3.2.6.5 for information on forward
declarations.)

e Iftheinvocation list does notmatch the hierarchy ofblocks starting fromthe
block where the subprogramis invoked, a comparison is made by matching the
invocation list starting with the parent ofthe previous starting block. In other
words, the comparison progresses up thehierarchy.

e Iftherearesibling blocks ofthe ancestors, the invocation list comparisonalso
includes the hierarchy ofthe sibling blocks, butalways comparing in an upward
level, never comparing the descendants ofthe sibling blocks.

e This comparison process continues up thehierarchies until the first complete
match is found in which casethe located subprogramis invoked. Notethat the
formal parameter list of the matched subprogrammust comply with the actual

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 160

Database Compatibility for Oracle® Developers Guide

parameter list specified for the invoked subprogram, otherwise an error occurs
upon invocation ofthe subprogram.

e Ifnomatchis found after searchingup to the standalone program, then an error is
thrown upon invocation ofthe subprogram.

Note: The Advanced Server search algorithmfor subprograminvocation is not quite
compatible with Oracle databases. For Oracle, the search looks forthe first match ofthe
first qualifier (thatis qualifier 1).Whensuchamatchis found,allremaining
qualifiers, the subprogramname, subprogramtype, and arguments ofthe invocation must
match the hierarchy content where the matching first qualifier is found, otherwise an
erroris thrown. For Advanced Server, a match is not found unless all qualifiers , the
subprogramname, and the subprogramtype ofthe invocation match the hierarchy
content. [fsuchan exact match is not initially found, Advanced Server continues the
search progressingup thehierarchy.

The location of subprograms relative to the block fromwhere the invocation is made can
be accessed as follows:

e Subprograms declared in the localblock can be invoked fromthe executable
section ortheexceptionsection ofthe same block.

e Subprograms declared in the parent or other ancestor blocks canbe invoked from
the child block ofthe parent or other ancestors.

e Subprograms declaredin sibling blocks canbe called froma sibling block or from
any descendent block ofthe sibling.

However, the following location of subprograms cannot be accessed relative to the block
from where the invocation is made:

e Subprograms declared in blocks that are descendants ofthe block fromwhere the
invocation is attempted.

e Subprograms declared in blocks that are descendants ofa sibling block from
where the invocation is attempted.

The following examples illustrate the various conditions previously described.

Invoking Locally Declared Subprograms

The following example contains a single hierarchy ofblocks contained within standalone
procedure level 0.Withinthe executable section ofprocedure 1evel 1a,themeans
of invoking thelocal procedure 1evel 2a are shown,both with and withoutqualifiers.

Alsonotethataccess to thedescendant oflocal procedure 1evel 2a,which is procedure

level 3a,is notpermitted, with or without qualifiers. Thesecalls are commented outin
the example.

CREATE OR REPLACE PROCEDURE level 0

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 161

Database Compatibility for Oracle® Developers Guide

IS
PROCEDURE level 1la
IS
PROCEDURE level 2a
IS
PROCEDURE level 3a
IS
BEGIN
DBMS OUTPUT.PUT LINE('........ BLOCK level 3a');
DBMS OUTPUT.PUT LINE('........ END BLOCK level 3a');
END level 3a;
BEGIN
DBMS OUTPUT.PUT LINE('...... BLOCK level 2a');
DBMS OUTPUT.PUT LINE('...... END BLOCK level 2a');
END level 2a;
BEGIN
DBMS OUTPUT.PUT LINE('.. BLOCK level la');
level 2a; -— Local block called
level la.level 2a; -- Qualified local block called
level 0.level la.level 2a; -- Double qualified local block called
-- level 3a; -- Error - Descendant of local block
- level 2a.level 3a; -- Error - Descendant of local block
DBMS OUTPUT.PUT LINE('.. END BLOCK level la');
END level 1la;
BEGIN

DBMS OUTPUT.PUT LINE ('BLOCK level 0');

level la;

DBMS OUTPUT.PUT LINE ('END BLOCK level 0');
END level 0;

When thestandalone procedure is invoked, the outputis the following, which indicates

that procedure 1evel 2ais successfully invoked fromthe calls in the executable section
of procedure level 1a.

BEGIN
level 0;
END;

BLOCK level 0
. BLOCK level 1la
...... BLOCK level 2a
...... END BLOCK level 2a
...... BLOCK level 2a
...... END BLOCK level 2a
...... BLOCK level 2a
...... END BLOCK level 2a
. END BLOCK level 1la
END BLOCK level 0

If you were to attempt to run procedure 1evel 0 with any ofthecalls to the descendent
blockuncommented, then an error occurs.

Invoking Subprograms Declaredin Ancestor Blocks

The following example shows how subprograms can be invoked that are declared in
parent and other ancestor blocks relative to the block where the invocation is made.

In this example, the executable section of procedure 1evel 3ainvokesprocedure
level 2a,whichis its parentblock. (Notethatv cnt is usedto avoid an infinite loop.)

CREATE OR REPLACE PROCEDURE level 0
IS

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 162

Database Compatibility

v cnt NUMBER (2) := 0;
PROCEDURE level 1la
IS
PROCEDURE level 2a
IS
PROCEDURE level 3a
IS
BEGIN
DBMS OUTPUT.PUT LINE('........
v _cnt := v cnt + 1;
IF v_cnt < 2 THEN
level 2a;
END IF;
DBMS OUTPUT.PUT LINE('........
END level 3a;
BEGIN
DBMS OUTPUT.PUT LINE('......
level 3a;

DBMS OUTPUT.PUT LINE ('
END level 2a;

for Oracle®

BLOCK level 3a');

Parent block called

END BLOCK level 3a');

BLOCK level 2a');

-— Local block called

END BLOCK level 2a');

BEGIN
DBMS OUTPUT.PUT LINE('.. BLOCK level la');
level 2a;

DBMS OUTPUT.PUT LINE('..
END level 1la;
BEGIN
DBMS OUTPUT.PUT LINE ('BLOCK level 0');
level 1la;
DBMS OUTPUT.PUT LINE ('END BLOCK level 0');
END level O;

The following is the resulting output:

BEGIN
level 0;
END;

BLOCK level O
BLOCK level 1la
BLOCK level 2a
........ BLOCK level 3a
BLOCK level 2a
BLOCK level 3a
END BLOCK level 3a
END BLOCK level 2a
END BLOCK level 3a
END BLOCK level 2a
END BLOCK level 1la
END BLOCK level O

—-- Local block called

END BLOCK level la');

Developers Guide

In a similar example, the executable sectionofprocedure 1evel 3a invokesprocedure
level 1a,whichis furtherup the ancestor hierarchy. (Note that v _cnt is usedto avoid

an infinite loop.)

CREATE OR REPLACE PROCEDURE level 0
Is
v_cnt NUMBER (2) :=
PROCEDURE level la
Is

0;

PROCEDURE level 2a
IS
PROCEDURE level 3a
IS
BEGIN
DBMS OUTPUT.PUT LINE ('
v_cnt := v cnt + 1;
IF v_cnt < 2 THEN

BLOCK level 3a');

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

163

Database Compatibility for Oracle® Developers Guide

level 1la; -— Ancestor block called
END IF;
DBMS OUTPUT.PUT LINE('........ END BLOCK level 3a');
END level 3a;
BEGIN
DBMS OUTPUT.PUT LINE('...... BLOCK level 2a');
level 3a; -- Local block called
DBMS OUTPUT.PUT LINE('...... END BLOCK level 2a');
END level 2a;
BEGIN
DBMS OUTPUT.PUT LINE('.. BLOCK level la');
level 2a; -- Local block called
DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_la');
END level 1la;
BEGIN
DBMS OUTPUT.PUT LINE ('BLOCK level 0');
level 1la;

DBMS OUTPUT.PUT LINE ('END BLOCK level 0');
END level O;

The following is the resulting output:

BEGIN
level 0;
END;

BLOCK level 0

. BLOCK level la

...... BLOCK level 2a
........ BLOCK level 3a

. BLOCK level la

...... BLOCK level 2a
........ BLOCK level 3a
........ END BLOCK level 3a
...... END BLOCK level 2a

. END BLOCK level 1la
........ END BLOCK level 3a
...... END BLOCK level 2a

. END BLOCK level 1la
END BLOCK leve170

Invoking Subprograms Declaredin Sibling Blocks

The following examples show how subprograms can be invoked that are declared in a

sibling blockrelative to the local, parent, or other ancestor blocks fromwhere the
invocation ofthe subprogramis made.

In this example, the executable section of procedure 1evel 1b invokesprocedure
level 1la,whichis its sibling block. Both are localto standalone procedure 1evel 0.

Note that invocationoflevel 2aorequivalently,level la.level 2afromwithin
procedure level 1bis commentedoutas this callwould result in an error. Invoking a
descendent subprogram(level 2a)ofsiblingblock(level 1a)isnotpermitted.

CREATE OR REPLACE PROCEDURE level 0
Is
v cnt NUMBER (2) := 0;
PROCEDURE level 1la
IS
PROCEDURE level 2a
IS
BEGIN

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 164

Database Compatibility for Oracle® Developers Guide

DBMS OUTPUT.PUT LINE('...... BLOCK level 2a');
DBMS OUTPUT.PUT LINE('...... END BLOCK leveli2a');
END level 2a;
BEGIN
DBMS OUTPUT.PUT LINE('.. BLOCK level la');
DBMS OUTPUT.PUT LINE('.. END BLOCK level la');
END level 1la;
PROCEDURE level 1b

IS
BEGIN
DBMS_OUTPUT.PUT_LINE('.. BLOCK level 1b');
level la; -- Sibling block called
== level 2a; -- Error - Descendant of sibling block
- level la.level 2a; -- Error - Descendant of sibling block
DBMS OUTPUT.PUT LINE('.. END BLOCK level 1b');
END level 1b;
BEGIN
DBMS_OUTPUT.PUT_LINE ('BLOCK level 0');
level 1b;

DBMS OUTPUT.PUT LINE ('END BLOCK 1eve170');
END level O;

The following is the resulting output:

BEGIN
level 0;
END;

BLOCK level 0
BLOCK level 1b
BLOCK level la
END BLOCK level 1la
END BLOCK level 1b
END BLOCK level 0

In the following example, procedure 1evel 1a,which is the siblingofprocedure
level 1b,whichis anancestorofprocedure level 3b is successfully invoked.

CREATE OR REPLACE PROCEDURE level 0

IS
PROCEDURE level 1la
IS
BEGIN
DBMS OUTPUT.PUT LINE('.. BLOCK level la');
DBMS OUTPUT.PUT LINE('.. END BLOCK level 1la');

END level la;
PROCEDURE level 1b

IS
PROCEDURE level 2b
IS
PROCEDURE level 3b
IS
BEGIN
DBMS_OUTPUT.PUT_LINE('........ BLOCK level 3b');
level la; -- Ancestor's sibling block called
level 0O.level 1la; -- Qualified ancestor's sibling block
DBMS_OUTPUT.PUT LINE('........ END BLOCK level 3b');
END level 3b;
BEGIN
DBMS OUTPUT.PUT LINE('...... BLOCK level 2b');
level 3b; -- Local block called
DBMS OUTPUT.PUT LINE('...... END BLOCK level 2b');
END level 2b;
BEGIN
DBMS OUTPUT.PUT LINE('.. BLOCK level 1b');
level 2b; -- Local block called
DBMS OUTPUT.PUT LINE('.. END BLOCK level 1b');

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 165

Database Compatibility for Oracle® Developers Guide

END level 1b;
BEGIN
DBMS OUTPUT.PUT LINE ('BLOCK level 0');
level 1b;
DBMS OUTPUT.PUT LINE ('END BLOCK level 0');
END level 0;

The following is the resulting output:

BEGIN
level 0;
END;

BLOCK level O
. BLOCK level 1b
...... BLOCK level 2b
........ BLOCK level 3b
.. BLOCK level 1la
. END BLOCK level 1la
.. BLOCK level 1la
.. END BLOCK level la
........ END BLOCK level 3b
...... END BLOCK level 2b
. END BLOCK level 1b
END BLOCK level O

3.2.6.5 Using Forward Declarations

As discussedso far, when a subprogramis to be invoked, it must have been declared
somewhere in the hierarchy ofblocks within thestandalone program, but prior to where it
is invoked. In other words, when scanning the SPL code frombeginningto end, the
subprogramdeclarationmust be found before its invocation.

However, there is a method of constructing the SPL code sothat the full declaration of
the subprogram (that is, its optional declaration section, its mandatory executable section,

and optional exceptionsection) appears in the SPLcode after the point in the code where
it is invoked.

This is accomplished by inserting a forward declaration in the SPL code priorto its

invocation. The forward declaration is the specification ofa subprocedure or subfunction
name, formal parameters, and return type ifit is a subfunction.

The full subprogramspecification consisting ofthe optional declaration section, the
executable section, and the optional exceptionsectionmustbe specified in the same

declaration section as the forward declaration, but may appear following other
subprogramdeclarations thatinvoke this subprogramwith the forward declaration.

Typicalusage ofa forward declarationis when two subprograms invoke each otheras
shown by the following:

DECLARE
FUNCTION add one (
piadd IN NUMBER
) RETURN NUMBER;
FUNCTION test max (

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 166

Database Compatibility for Oracle® Developers Guide

p_test IN NUMBER)

RETURN NUMBER

IS

BEGIN
IF p test < 5 THEN

RETURN add one (p_test) ;

END IF;
DBMS_OUTPUT.PUT('Final value is '");
RETURN p test;

END;

FUNCTION add one (
p add IN NUMBER)

RETURN NUMBER

IS

BEGIN
DBMSioUTPUT.PUTiLINE('Increase by 1');
RETURN test max (p_add + 1);

END;

BEGIN
DBMS OUTPUT.PUT LINE (test max(3)) ;
END;

Subfunctiontest max invokessubfunctionadd one, which also invokes subfunction

test max,so aforward declarationis required for oneofthe subprograms, which is
implemented foradd one at the beginning ofthe anonymous block declaration section.

The resulting output fromthe anonymous block is as follows:

Increase by 1
Increase by 1
Final value is 5

3.2.6.6 Overloading Subprograms

Generally, subprograms ofthe same type (subprocedure or subfunction) with the same
name, and same formal parameter specification can appear multiple times within the

same standaloneprogramas long as they are notsibling blocks (thatis, the subprograms
are not declared in the same local block).

Each subprogramcan be individually invoked depending upon the use of qualifiers and

the location wherethe subprograminvocationis made as discussed in the previous
sections.

It is howeverpossible to declare subprograms, even as siblings, thatare ofthe same
subprogramtypeand name as long as certain aspects of the formal parameters differ.
These characteristics (subprogramtype, name, and formal parameter specification) is
generally known as a program’s signature.

The declaration of multiple subprograms where the signatures are identical except for
certain aspects of the formal parameter specification is referred to as subprogram
overloading.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 167

Database Compatibility for Oracle® Developers Guide

Thus, the determination of which particular overloaded subprogramis to be invoked is
determined by a match ofthe actual parameters specified by the subprograminvocation
and the formal parameter lists ofthe overloaded subprograms.

Any ofthe following differences permit overloaded subprograms:

e Thenumberofformal parameters are different.

e Atleastone pairofdata types ofthe corresponding formal parameters (thatis,
compared according to the same order of appearance in the formal parameter list)
are different, but are not aliases. Data type aliases are discussed later in this
section.

Note that the following differences alone do not permit overloaded subprograms :

e Different formal parameter names

e Different parametermodes (1N, IN ouT, oUT) for the corresponding formal
parameters

e Forsubfunctions, different data types in the RETURN clause

As previously indicated, one ofthe differences allowing overloaded subprograms are
different data types.

However, certain data types havealternative names referred to as aliases, which canbe
used for the table definition.

Forexample, there are fixed length character datatypes that canbe specified as CHAR or
CHARACTER. There are variable length character datatypes that canbe specified as CHAR
VARYING,CHARACTER VARYING,VARCHAR, OrVARCHAR2. Forintegers, there are
BINARY INTEGER,PLS INTEGER,and INTEGER datatypes. Fornumbers,there are
NUMBER, NUMERIC, DEC, and DECIMAL data types.

Fordetailed information aboutthe datatypes supportedby Advanced Server, please see

the Database Compatibility for Oracle Developers Reference Guide, available from
EnterpriseDB at:

http://www.enterprisedb.com/products -services-training/products/documentation

Thus, whenattempting to create overloaded subprograms, the formal parameter data
types are not considered differentifthe specified data types are aliases ofeach other.

It can be determined if certain data types are aliases of other types by displaying thetable
definition containing the data types in question.

Forexample, the following table definition contains some datatypes and their aliases.

CREATE TABLE data type aliases (

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 168

http://www.enterprisedb.com/products-services-training/products/documentation

Database Compatibility for Oracle® Developers Guide

dt BIOB BLOB,

dt LONG RAW LONG RAW,
dt RAW RAW(4),
dt BYTEA BYTEA,
dt_ INTEGER INTEGER,

dt BINARY INTEGER
dt PLS INTEGER

BINARY INTEGER,
PLS INTEGER,

dt RFAT REAL,

dt DOUBLE PRECTISION DOUBLE PRECISION,
dt FLOAT FLOAT,

dt NUMBER NUMBER,

dt DECIMAL DECIMAL,

dt_ NUMERIC NUMERIC,

dt CHAR CHAR,

dt CHARACTER CHARACTER,

dt VARCHAR2
dt CHAR VARYING
dt VARCHAR

VARCHAR?2 (4),
CHAR VARYING (4),
VARCHAR (4)

) ;

Using the PSQL \ d command to display the table definition, the Type column displays
the data type internally assigned to each column based uponits data type in the table
definition:

\d data type aliases

Column | Type | Modifiers

_____________________+______________________+ ___________
dt blob | bytea |
dt:long_raw bytea |
dt raw bytea (4) |
dt bytea bytea |
dt:integer integer |
dt binary integer integer |
dt pls_integer integer |
dt real real |

|

dt double precision
dt float

dt number

dt decimal

dt numeric

dt char
dt:character

dt varchar2

dt char varying

double precision
double precision
numeric

numeric

numeric

character (1)
character (1)
character varying (4)
character varying (4)

dt varchar character varying (4)
In the example, the base setofdatatypes arebytea,integer,real,double

precision,numeric,character, and character varying.

When attempting to declare overloaded subprograms, a pair of formal parameter data
types thatare aliases would not be sufficient to allow subprogramoverloading. Thus,
parameters with datatypes INTEGER and PLS INTEGER cannotoverloada pairof
subprograms, but data types INTEGER and REAL, Or INTEGER and FLOAT, Or INTEGER
and NUMBER can overload the subprograms.

Note: The overloading rules based upon formal parameter data types are not compatible
with Oracle databases. Generally, the Advanced Serverrules are more flexible, and

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 169

Database Compatibility for Oracle® Developers Guide

certain combinations are allowed in Advanced Server that would result in an error when
attempting to createthe procedure or functionin Oracle databases.

For certain pairs of data types used for overloading, casting of the arguments specified by
the subprograminvocation may be required to avoid an error encountered during runtime
of the subprogram. Invocation ofa subprogrammust include the actual parameter list that
can specifically identify the datatypes. Certain pairs of o verloaded datatypes may

require the cAsT functionto explicitly identify datatypes. Forexample, pairs of
overloaded data types that may require casting during the invocation are CHAR and
VARCHAR2,0r NUMBER and REAL.

The following example shows a group of overloaded subfunctions invoked fromwithin
an anonymous block. The executable section ofthe anonymous block contains the use of
the casT function to invoke overloaded functions with certain datatypes.

DECLARE
FUNCTION add it (
p add 1 IN BINARY INTEGER,
p add 2 IN BINARY INTEGER
) RETURN VARCHAR2
IS
BEGIN
RETURN 'add it BINARY INTEGER: ' || TO CHAR(p add 1 + p add 2,9999.9999);
END add it;
FUNCTION add it (
p add 1 IN NUMBER,
p add 2 IN NUMBER
) RETURN VARCHAR2
IS
BEGIN
RETURN 'add it NUMBER: ' || TO CHAR(p add 1 + p add 2,999.9999);
END add it;
FUNCTION add it (
p_add 1 IN REAL,
p add 2 IN REAL
) RETURN VARCHAR2
IS
BEGIN
RETURN 'add it REAL: ' || TO CHAR(p add 1 + p_add 2,9999.9999);
END add it;
FUNCTION add it (
p add 1 IN DOUBLE PRECISION,
p_add 2 IN DOUBLE PRECISION
) RETURN VARCHAR2
IS
BEGIN
RETURN 'add it DOUBLE PRECISION: ' || TO CHAR(p add 1 + p add 2,9999.9999);
END add_it;
BEGIN
DBMS_OUTPUT.PUT_LINE
DBMS OUTPUT.PUT LINE (add it (25.3333, 50.3333)):;

add_it (25, 50));
(

DBMS_OUTPUT.PUT LINE (add it (TO NUMBER(25.3333), TO NUMBER(50.3333)));
(
(

DBMS OUTPUT.PUT LINE (add it (CAST('25.3333' AS REAL), CAST('50.3333' AS REAL)));
DBMS OUTPUT.PUT LINE(add it (CAST('25.3333' AS DOUBLE PRECISION),
CAST ('50.3333' AS DOUBLE PRECISION))) ;
END;

The following is the outputdisplayed from the anonymous block:

add it BINARY INTEGER: 75.0000
add it NUMBER: 75.6666

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 170

Database Compatibility for Oracle® Developers Guide

add it NUMBER: 75.6666
add_it REAL: 75.6666
add it DOUBLE PRECISION: 75.6666

3.2.6.7 Accessing Subprogram Variables

Variable declared in blocks such as subprograms oranonymous blocks can be accessed

from the executable section or the exception section of other blocks dependingupon their
relative location.

Accessinga variable means beingable to reference it within a SQL statementoran SPL
statement as is donewith any local variable.

Note: If the subprogramsignature contains formal parameters, these may be accessed in

the same manner as local variables ofthe subprogram. In this section, all discussion
related to variables ofa subprogramalso applies to formal parameters o fthe subprogram.

Access ofvariables notonly includes those defined as a data type, butalso includes
others such asrecord types, collection types, and cursors.

The variable may be accessed by at mostone qualifier, which is the name ofthe
subprogramor labeled anonymous block in which the variable has been locally declared.

The syntaxto reference a variable is shown by the following:

[qualifier.]variable

If specified, qua1ifieristhe subprogramorlabeled anonymous block in which
variablehasbeen declaredin its declarationsection (that is, it is a local variable).

Note: In Advanced Server, thereis only onecircumstance where two qualifiers are
permitted. This scenario is foraccessing public variables of packages where thereference
can be specified in the following format:

schema name.package name.public variable name

Formore information aboutsupported package syntax, please see the Database
Compatibility for Oracle Developers Built-In Packages Guide.

The following summarizes how variables canbe accessed:

e Variables can be accessedas longas the block in which the variable has been
locally declared is within the ancestor hierarchical path starting from the block
containing thereference to the variable. Such variables declared in ancestor
blocks are referred to as globalvariables.

e [fareference to an unqualified variable is made, the first attempt is to locate a
local variable ofthat name. If such a local variable does notexist, then thesearch

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 171

Database Compatibility for Oracle® Developers Guide

for the variable is made in the parent ofthe current block, and so forth,
proceeding up the ancestor hierarchy. If sucha variable is not found, then an error
occurs upon invocation ofthe subprogram.

e [fareference to a qualified variable is made, the same search process is
performed as described in the previous bullet point, but searching forthe first
match ofthe subprogramorlabeled anonymous block that contains the local
variable. The search proceeds up the ancestor hierarchy untila match is found. If
such a match is not found, thenan error occurs uponinvocationofthe
subprogram.

The following location of variables cannot be accessed relative to theblock fromwhere
the reference to the variable is made:

e Variables declared in a descendent block cannot be accessed,
e Variables declared in a sibling block, a sibling block ofan ancestor block, orany
descendants within the sibling block cannotbe accessed.

Note: The Advanced Server process foraccessing variables is notcompatible with Oracle
databases. For Oracle, any number of qualifiers can be s pecified and the search is based
upon thefirst match ofthe first qualifier in a similar mannerto the Oracle matching
algorithmfor invoking subprograms.

The following example displays how variables in various blocks are accessed, with and
without qualifiers. The lines that are commented out illustrate attempts to access
variables that wouldresult in an error.

CREATE OR REPLACE PROCEDURE lev9170
Is
v_level O VARCHAR2 (20) := 'Value from level 0';
PROCEDURE level 1la
IS
v level la VARCHAR2 (20) := 'Value from level la';
PROCEDURE level 2a
IS

v level 2a VARCHAR2 (20) := 'Value from level 2a';
BEGIN
DBMS OUTPUT.PUT LINE('...... BLOCK level 2a');
DBMS OUTPUT.PUT LINE('........ v _level 2a: ' || v _level 2a);
DBMS OUTPUT.PUT LINE('........ v level la: ' || v level 1la);
DBMS OUTPUT.PUT LINE('........ level la.v level la: ' |
level la.v level 1la);
DBMS OUTPUT.PUT LINE('........ v level 0: ' || v level 0);
DBMS OUTPUT.PUT LINE('........ level 0.v_level 0: ' || level 0.v_level 0);
DBMS OUTPUT.PUT LINE('...... END BLOCK level 2a');
END level 2a;
BEGIN
DBMS_OUTPUT.PUT_LINE('.. BLOCK level la');
level 2a;
== DBMS OUTPUT.PUT LINE('.... v_level 2a: ' || v_level 2a);
oo Error - Descendent block ----%
== DBMS OUTPUT.PUT LINE('.... level 2a.v level 2a: ' || level 2a.v level 2a);
== Error - Descendent block - - - ————-———--——- ”
DBMS OUTPUT.PUT LINE('.. END BLOCK level la');

END level la;
PROCEDURE level 1b
IS
v_level 1b VARCHARZ2 (20) := 'Value from level 1b';

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 172

Database Compatibility for Oracle® Developers Guide

BEGIN
DBMS OUTPUT.PUT LINE('.. BLOCK level 1b'");
DBMS OUTPUT.PUT LINE('.... v level 1b: ' || v level 1b);
DBMS_ OUTPUT.PUT LINE('.... v _level 0 : ' || v_level 0);
== DBMS OUTPUT.PUT LINE('.... level la.v level la: ' || level la.v level 1la);
= Berer = Silbling blegk —s-s=osososooomomo ”
== DBMS OUTPUT.PUT LINE('.... level 2a.v level 2a: ' || level 2a.v level 2a);
== Error - Sibling block descendant ------ ”
DBMS OUTPUT.PUT LINE('.. END BLOCK level 1b');
END level 1b;
BEGIN
DBMS OUTPUT.PUT LINE ('BLOCK level 0');
DBMS_OUTPUT.PUT LINE('.. v_level 0: ' || v_level 0);
level la;
level 1b;

DBMS OUTPUT.PUT LINE ('END BLOCK level 0');
END level O;

The following is the output showing the content of each variable whentheprocedureis
invoked:

BEGIN
level O;
END;

BLOCK level O
v level 0: Value from level 0
BLOCK level 1la
...... BLOCK level 2a
........ v level 2a: Value from level 2a
........ v_level la: Value from level la
........ level la.v_level la: Value from level la
........ v_level 0: Value from level 0
........ level 0.v_level 0: Value from level O
...... END BLOCK level 2a
END BLOCK level 1la
BLOCK level 1b
v_level 1b: Value from level 1b
v level 0 : Value from level 0
END BLOCK levelilb
END BLOCK leV6170

The following example shows similar access attempts when all variables in all blocks
have the same name:

CREATE OR REPLACE PROCEDURE level 0

IS
VvV common VARCHARZ2 (20) := 'Value from level 0';
PROCEDURE level 1la
IS
v_common VARCHARZ2 (20) := 'Value from level la';
PROCEDURE level 2a
IS
Vv_common VARCHARZ2 (20) := 'Value from level 2a';
BEGIN
DBMS OUTPUT.PUT LINE('...... BLOCK level 2a');
DBMS OUTPUT.PUT LINE('........ v _common: ' || v common) ;
DBMS_OUTPUT.PUT_LINE('........ level 2a.v_common: ' || level 2a.v_common) ;
DBMS OUTPUT.PUT LINE('........ level la.v common: ' || level la.v common) ;
DBMS_OUTPUT.PUT_LINE('........ level 0.v_common: ' || level 0.v_common) ;
DBMS OUTPUT.PUT LINE('...... END BLOCK level 2a');
END level 2a;
BEGIN
DBMS OUTPUT.PUT LINE('.. BLOCK level 1la');
DBMS OUTPUT.PUT LINE('.... v _common: ' || v _common);
DBMS OUTPUT.PUT LINE('.... level 0.v common: ' || level 0.v common);

level 2a;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 173

Database Compatibility for Oracle® Developers Guide

DBMS OUTPUT.PUT LINE('.. END BLOCK level la');
END level 1la;
PROCEDURE level 1b

IS
Vv common VARCHAR2 (20) := 'Value from level 1b';

BEGIN
DBMS OUTPUT.PUT LINE('.. BLOCK level 1lb');
DBMS_OUTPUT.PUT_LINE('.... v_common: ' || v_common);
DBMS OUTPUT.PUT LINE('.... level O0.v common : ' || level 0.v common);
DBMS OUTPUT.PUT LINE('.. END BLOCK level 1b');

END level 1b;

BEGIN

DBMS_OUTPUT.PUT LINE ('BLOCK level 0');

DBMS OUTPUT.PUT LINE('.. v common: ' || v common);

level la;

level 1b;

DBMS OUTPUT.PUT LINE ('END BLOCK level 0');
END level O;

The following is the outputshowing the content of each variable when the procedureis

invoked:

BEGIN
level 0;
END;

BLOCK level O
v common: Value from level 0
BLOCK level la
v _common: Value from level 1la
level 0.v_common: Value from level 0
...... BLOCK level 2a
........ v_common: Value from level 2a
........ level 2a.v_common: Value from level 2a
........ level la.v_common: Value from level la
........ level 0.v common: Value from level O
...... END BLOCK level 2a
END BLOCK level la
BLOCK level 1b
v_common: Value from level 1b
level 0.v common : Value from level 0
END BLOCK level 1b
END BLOCK leV6170

As previously discussed, thelabels on anonymous blocks canalsobe usedto qualify
accessto variables. The following example shows variable access within a setofnested

anonymous blocks:
DECLARE
v _common VARCHAR2 (20) 'Value from level 0';
BEGIN
DBMS OUTPUT.PUT LINE ('BLOCK level 0');
DBMS_OUTPUT.PUT LINE('.. v_common: ' || v_common);
<<level la>>
DECLARE
v_common VARCHAR2 (20) 'Value from level la';
BEGIN
DBMS_OUTPUT.PUT LINE('.. BLOCK level la');
DBMS OUTPUT.PUT LINE('.... v common: ' || v common) ;
<<level 2a>>
DECLARE
vV_common VARCHAR2 (20) := 'Value from level 2a';
BEGIN
DBMS OUTPUT.PUT LINE('...... BLOCK level 2a');
DBMS OUTPUT.PUT LINE('........ v_common: ' || v_common);
DBMS OUTPUT.PUT LINE('........ level la.v_common:

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

level la.v common);

Database Compatibility for Oracle® Developers Guide

DBMS OUTPUT.PUT LINE('...... END BLOCK level 2a');
END;
DBMS OUTPUT.PUT LINE('.. END BLOCK level la');
END;
<<level 1lb>>
DECLARE
vV common VARCHAR2 (20) := 'Value from level 1b';
BEGIN
DBMS OUTPUT.PUT LINE('.. BLOCK level 1b');
DBMS OUTPUT.PUT LINE('.... v common: ' || v common);
DBMS OUTPUT.PUT_LINE('.... level lb.v_common: ' || level 1lb.v_common) ;
DBMS OUTPUT.PUT LINE('.. END BLOCK level 1b');
END;

DBMS OUTPUT.PUT LINE ('END BLOCK level 0');
END;

The following is the outputshowing the content of each variable when theanonymous
blockis invoked:

BLOCK level 0
v common: Value from level 0
BLOCK level 1la
50 v common: Value from level la
...... BLOCK level 2a
........ v common: Value from level 2a
........ level la.v _common: Value from level la
...... END BLOCK level 2a
END BLOCK level 1la
BLOCK level 1b
v _common: Value from level 1b
level 1b.v_common: Value from level 1b
END BLOCK level 1b
END BLOCK level 0

The following example is an object typewhoseobject type method, display emp,
containsrecord typeemp typ and subprocedure emp sal query.Record variable

r _emp declared locallyto emp sal queryis ableto accessthe record type emp typ
declared in the parent blockdisplay emp.

CREATE OR REPLACE TYPE emp pay obj typ AS OBJECT

(
empno NUMBER (4) ,

MEMBER PROCEDURE display emp (SELF IN OUT emp pay obj typ)
)i

CREATE OR REPLACE TYPE BODY emp pay obj typ AS
MEMBER PROCEDURE display emp (SELF IN OUT emp pay obj_typ)

IS
TYPE emp_ typ IS RECORD (
ename emp.ename$TYPE,
job emp.job%TYPE,
hiredate emp.hiredate%TYPE,
sal emp.sal%TYPE,
deptno emp.deptno%TYPE

) ;
PROCEDURE emp sal query (

p empno IN emp.empno%TYPE
)
I

r emp emp_ typ;

v avgsal emp.sal$TYPE;
BEGIN

SELECT ename, job, hiredate, sal, deptno

INTO r emp.ename, r emp.job, r emp.hiredate, r emp.sal, r emp.deptno
FROM emp WHERE empno = p empno;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 175

Database Compatibility for Oracle® Developers Guide

DBMS OUTPUT.PUT LINE ('Employee # : ' || p empno);

DBMS OUTPUT.PUT LINE ('Name : " || r emp.ename);
DBMS OUTPUT.PUT LINE ('Job : ' || r emp.job);

DBMS OUTPUT.PUT LINE ('Hire Date : ' || r emp.hiredate);
DBMS OUTPUT.PUT LINE('Salary : " || r emp.sal);

DBMS OUTPUT.PUT LINE ('Dept # : " || r emp.deptno);

SELECT AVG (sal) INTO v_avgsal
FROM emp WHERE deptno = r emp.deptno;
IF r emp.sal > v _avgsal THEN
DBMS OUTPUT.PUT_LINE ('Employee''s salary is more than the '

|| 'department average of ' || v avgsal);
ELSE
DBMS OUTPUT.PUT LINE ('Employee''s salary does not exceed the '
|| 'department average of ' || v_avgsal);
END IF;
END;
BEGIN

emp sal query (SELF.empno) ;
END;
END;

The following is the outputdisplayed when an instance of the object typeis created and
procedure display emp is invoked:

DECLARE

v_emp EMP PAY OBJ TYP;
BEGIN

v_emp := emp pay obj typ(7900);

v _emp.display emp;
END;

Employee # : 7900

Name : JAMES

Job : CLERK

Hire Date : 03-DEC-81 00:00:00
Salary : 950.00

Dept # g 30

Employee's salary does not exceed the department average of 1566.67

The following example is a package with threelevels of subprocedures. A record type,

collection type, and cursor typedeclared in the upperlevel procedure canbe accessed by
the descendent subprocedure.

CREATE OR REPLACE PACKAGE emp dept pkg
IS
PROCEDURE display emp (
p deptno NUMBER
)
END;

CREATE OR REPLACE PACKAGE BODY emp_dept pkg

TS
PROCEDURE display emp (
p deptno NUMBER
)
RS
TYPE emp rec_ typ IS RECORD (
empno emp.empno%STYPE,
ename emp.ename$TYPE

)i
TYPE emp arr typ IS TABLE OF emp rec typ INDEX BY BINARY INTEGER;
TYPE emp cur type IS REF CURSOR RETURN emp rec typ;
PROCEDURE emp by dept (
p_deptno emp.deptno%TYPE
)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 176

Database Compatibility for Oracle® Developers Guide

IS
emp_arr emp arr typ;
emp refcur emp cur type;
i BINARY INTEGER := 0;
PROCEDURE display emp arr
Is
BEGIN
DBMS_OUTPUT.PUT_LINE ('EMPNO ENAME') ;
DBMS OUTPUT.PUT LINE('----- = -------— ')
FOR j IN emp arr.FIRST .. emp arr.LAST LOOP
DBMS_OUTPUT.PUT_LINE (emp_arr(j) .empno || ' '
emp arr(j).ename);
END LOOP;
END display emp arr;
BEGIN
OPEN emp refcur FOR SELECT empno, ename FROM emp WHERE deptno = p deptno;
LOOP
i =1+ 1;
FETCH emp refcur INTO emp arr(i).empno, emp arr(i).ename;
EXIT WHEN emp refcur%NOTFOUND;
END LOOP;
CLOSE emp_ refcur;
display emp arr;
END emp by dept;
BEGIN
emp by dept (p deptno);
END;
END;

The following is the outputdisplayed whenthe top level package procedure is invoked:

BEGIN
emp_dept pkg.display emp (20) ;

END;

EMPNO ENAME

7369 SMITH

7566 JONES

7788 SCOTT

7876 ADAMS

7902 FORD

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 177

Database Compatibility for Oracle® Developers Guide

3.2.7 Compilation Errors in Procedures and Functions

When the Advanced Server parsers compile a procedure or function, they confirmthat
both the cCREATE statement and the programbody (thatportionofthe programthat
follows the As keyword) conforms to the grammarrules for SPL and SQL constructs. By
default, the server will terminate the compilation process if a parser detects an error.
Note that the parsers detect syntaxerrors in expressions, but not semantic errors (i.e. an
expression referencing a non-existent column, table, or function, ora value of incorrect

type).

spl.max_error_count instructs theserverto stop parsing if it encounters the specified
number oferrors in SPL code, orwhen it encounters an errorin SQL code. The default
valueofspl.max _error countis 10;the maximum valueis 1000. Setting

spl.max_error counttoavalueofl instructstheserverto stopparsingwhenit
encounters the first error in either SPLor SQL code.

You can use the sET command to specify avalue forspl.max_error count foryour
current session. The syntaxis:

SET spl.max error count = number of errors

Where number of errorsspecifiesthe numberof SPLerrors that may occurbefore
the serverhalts the compilation process. Forexample:

SET spl.max error count = 6

The example instructs the server to continuepast the first five SPL errors it encounters.
When theserver encounters the sixth error it will stop validating, and print sixdetailed
error messages, and one error summary.

To save time when developing new code, or when importing existing code fromanother

source, you may want to setthe spl.max_error count configuration parameterto a
relatively high numberoferrors.

Please note that if you instruct the server to continue parsing in spiteoferrors in the SPL
code in aprogrambody, and theparser encounters an errorin a segment of SQL code,

there may still be errors in any SPLor SQL code that follows theerroneous SQL code.
Forexample, the following function results in two errors:

CREATE FUNCTION computeBonus (baseSalary number) RETURN
number AS

BEGIN
bonus := baseSalary * 1.10;
total := bonus + 100;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 178

Database Compatibility for Oracle® Developers Guide

RETURN bonus;

END;

ERROR: "bonus" is not a known variable
LINE 4: bonus := baseSalary * 1.10;
ERROR: "total" is not a known variable
LINE 5: total := bonus + 100;

A

ERROR: compilation of SPL function/procedure

"computebonus" failed due to 2 errors

The following example adds a SELECT statement to the previous example. The errorin

the sELECT statement masks the other errors that follow:

CREATE FUNCTION computeBonus (employeeName number) RETURN

number AS
BEGIN
SELECT salary INTO baseSalary FROM emp
WHERE ename = employeeName;

bonus := baseSalary * 1.10;
total := bonus + 100;

RETURN bonus;

END;

ERROR: '"basesalary" is not a known variable
LINE 3: SELECT salary INTO baseSalary FROM
ename = emp...

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

emp WHERE

179

Database Compatibility for Oracle® Developers Guide

3.2.8 Program Security

Security over whatuser may execute an SPLprogramand what database objects an SPL
programmay access forany given user executing the programis controlled by the
following:

Privilege to execute a program.
Privileges granted onthe database objects (including other SPLprograms) which
a programattempts toaccess.

e Whetherthe programis defined with definer’s rights or invoker’s rights.

These aspects are discussed in the following sections.

3.2.8.1 EXECUTE Privilege

An SPL program(function, procedure, or package) can begin execution only ifany ofthe
following are true:

e The currentuseris a superuser, or
e The currentuserhasbeen granted ExECUTE privilege onthe SPLprogram, or

e The currentuserinherits EXECUTE privilegeon the SPLprogramby virtue of
being amember ofa group which does havesuchprivilege, or

e EXECUTE privilege has been granted to the PUBLIC group.

Wheneveran SPLprogramis created in Advanced Server, EXECUTE privilege is

automatically granted to the PUBL1C group by default, therefore, any user can
immediately execute the program.

This default privilege canbe removed by using the REVOKE EXECUTE command. The
following is an example:

REVOKE EXECUTE ON PROCEDURE list emp FROM PUBLIC;

Explicit EXECUTE privilege on the programcan thenbe granted to individual users or
groups.

GRANT EXECUTE ON PROCEDURE list emp TO john;

Now, user, john, can execute the 1ist emp program; other users who donotmeet any
of the conditions listed at the beginning ofthis section cannot.

Once a programbegins execution, the next aspectofsecurity is what privilege checks
occurif the programattempts to performan action onany database objectincluding:

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 180

Database Compatibility for Oracle® Developers Guide

Reading or modifying table or view data.

Creating, modifying, or deletinga database object such as a table, view, index, or
sequence.

Obtaining the current ornext value froma sequence.

Calling another program (function, procedure, or package).

Each such action canbe protected by privileges onthe database objecteitherallowed or
disallowed forthe user.

Note that it is possible fora databaseto have more thanoneobjectofthe same type with
the same name, but each such objectbelonging to a different schema in the database. If
this is the case, which object is beingreferenced by an SPLprogram? This is the topic of
the next section.

3.2.8.2 Database Object Name Resolution

A databaseobject inside an SPLprogrammay either be referenced by its qualified name
or by an unqualified name. A qualified name is in the formof schema . name where
schema 1s the name ofthe schema under which the database object with identifier, name,
exists. An unqualified name does nothave the*“schema.” portion. Whena referenceis
made to a qualified name, there is absolutely no ambiguity as to exactly which database
object is intended — it either does or does not exist in the specified schema.

Locating an object with an unqualified name, however, requires the use ofthe current
user’s search path. When a userbecomes the current user ofa session, a default search
path is always associated with that user. The search path consists ofa list of schemas
which are searched in left-to-right order for locating an unqualified database object
reference. The object is considered non-existentifit can’t be found in any oftheschemas
in the search path. The default search pathcanbe displayed in PSQL using the saow
search pathcommand.

SHOW search path;

search path

Suser,public,sys,dbo
(1 row)

$user in the above search pathis a generic placeholder that refers to the current user so

if the current user ofthe abovesession is enterprisedb, an unqualified database object
would be searched for in the following schemas in this order — first,enterprisedb,
then public,then sys,and finally, dbo.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 181

Database Compatibility for Oracle® Developers Guide

Once an unqualified name has beenresolved in the search path, it can be determined if
the current user has the appropriate privilege to performthe desired action on that
specific object.

Note: The concept ofthe search pathis not compatible with Oracle databases. Foran
unqualified reference, Oracle simply looks in the schema ofthe current user for the
named database object. It also important to notethatin Oracle, auserand his orher

schema is the same entity while in Advanced Server, a userand a schema are two distinct
objects.

3.2.8.3 Database Object Privileges

Once an SPL programbegins execution, any attempt to access a database object from
within the programresults in a check to ensure the current user has the authorizationto
performthe intended action against thereferenced object. Privileges on database objects
are bestowed and removed using the GRANT and REVOKE commands, respectively. Ifthe

current user attempts unauthorized access on a database object, then the programwill
throw an exception. See Section 3.5.7 for information about exception handling.

The final topic discusses exactly who is the current user.

3.2.8.4 Definer’s vs. Invokers Rights

When an SPLprogramis aboutto begin execution, a determination is made as to what
useris to be associated with this process. This user is referred to as the current user. The
current user’s database objectprivileges are used to determine whether ornot access to
database objects referenced in the programwill be permitted. The current, prevailing

search path in effect when the programis invoked willbe used to resolve any unqualified
object references.

The selection ofthe currentuseris influenced by whetherthe SPLprogramwas created
with definer’s right orinvoker’s rights. The AuTHID clause determines thatselection.
Appearance ofthe clause AUTHID DEFINER gives the programdefiner’s rights. This is
also the defaultifthe aAuTHID clause is omitted. Use ofthe clause auTHID

CURRENT_ USER gives theprograminvoker’s rights. Thedifference between thetwo is
summarized as follows:

e [Ifaprogramhas definer’s rights,thenthe owner ofthe programbecomes the
current user when programexecution begins. The programowner’s database
object privileges are used to determine ifaccess to a referenced object is
permitted. In a definer’s rights program, it is irrelevant as to which useractually
invoked the program.

e [Ifaprogramhas invoker’s rights, thenthe current user at the time the programis
called remains the currentuser while the programis executing (but not necessarily
within called subprograms — see the following bullet points). When an invoker’s
rights programis invoked, the current user is typically theuser thatstarted the

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 182

Database Compatibility for Oracle® Developers Guide

session (i.e., made the database connection) althoughit is possible to changethe
current user after the session has startedusingthe SET ROLE command. In an
invoker’s rights program, it is irrelevant as to which useractually owns the
program.

From the previous definitions, the following observations canbe made:

e [fadefiner’s rights programcalls a definer’s rights program, the current user
changes fromthe owner ofthe calling programto the owner ofthe called program
during executionofthe called program.

e [fadefiner’s rights programcalls an invoker’s rights program, the owner ofthe
calling programremains the currentuser during execution ofboththe calling and
called programs.

e [faninvoker’s rights programcalls an invoker’s rights program, the current user
of'the calling programremains the current user during execution ofthe called
program.

e [Ifaninvokers’rights programcalls a definer’s rights program, the current user
switches to theowner ofthe definer’s rights programduring execution ofthe
called program.

The same principles apply if the called programin turn calls another programin the cases
cited above.

This section onsecurity concludes with an example using the sample application.

3.2.8.5 Security Example

In the following example, a new database will be created along with two users —hr mgr
who will own a copy ofthe entire sample application in schema, hr mgr;and

sales mgr whowill ownaschemanamed, sales mgr,thatwillhaveacopy ofonly
the emp table containing only the employees who work in sales.

The procedure 1ist emp, function hire clerk,andpackageemp admin willbeused
in this example. All ofthe default privileges that are granted upon installation ofthe

sample application will be removed and thenbe explicitly re-granted so as topresent a
more secure environment in this example.

Programs 1ist empandhire clerk willbechangedfromthe default ofdefiner’s
rights to invoker’s rights. It will be then illustratedthatwhensales mgr runsthese
programs, theyactupon theemp table in sales mgr’s schemasince sales mgr’s
search path and privileges will be used for name resolution and authorization checking.

Programs get dept nameandhire empintheemp admin package will thenbe

executed by sales mgr.In this case,the dept tableandemp tablein hr mgr’s schema
will beaccessedas hr mgr is the ownerofthe emp admin packagewhich is using

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 183

Database Compatibility for Oracle® Developers Guide

definer’s rights. Since the default search pathis in effect with the suser placeholder, the
schema matchingthe user (in this case, hr mgr)is usedto find the tables.

Step 1 — Create Database and Users

Asuserenterprisedb,create the hr database:

CREATE DATABASE hr;

Switch to the hrdatabase and create theusers:

\c hr enterprisedb
CREATE USER hr mgr IDENTIFIED BY password;
CREATE USER sales mgr IDENTIFIED BY password;

Step 2 — Create the Sample Application

Create the entire sample application, ownedby hr mgr,inhr mgr’s schema.

\c - hr mgr
\i C:/Program Files/PostgresPlus/9.6AS/installer/server/edb-sample.sqgl

BEGIN

CREATE TABLE
CREATE TABLE
CREATE TABLE
CREATE VIEW
CREATE SEQUENCE

CREATE PACKAGE
CREATE PACKAGE BODY
COMMIT

Step 3 — Create the emp Table in Schemasales mgr

Create asubset ofthe emp table ownedby sales mgrinsales mgr’s schema.

\c - hr mgr

GRANT USAGE ON SCHEMA hr mgr TO sales mgr;

\c - sales mgr - -

CREATE TABLE emp AS SELECT * FROM hr mgr.emp WHERE job = 'SALESMAN';

In the above example, the GRANT USAGE ON SCHEMA command is given to allow
sales mgraccessinto hr mgr’sschematomakeacopyofhr mgr’s emp table. This
step is required in Advanced Server and is notcompatible with Oracle databases since
Oracle does not havethe concept ofa schema thatis distinct fromits user.

Step4 — Remove DefaultPrivileges

Remove all privileges to laterillustrate the minimum required privileges needed.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 184

Database Compatibility for Oracle® Developers Guide

\c - hr mgr

REVOKE USAGE ON SCHEMA hr mgr FROM sales mgr;

REVOKE ALL ON dept FROM PEBLIC; B

REVOKE ALL ON emp FROM PUBLIC;

REVOKE ALL ON next empno FROM PUBLIC;

REVOKE EXECUTE ON FUNCTION new empno () FROM PUBLIC;

REVOKE EXECUTE ON PROCEDURE list emp FROM PUBLIC;

REVOKE EXECUTE ON FUNCTION hire_glerk(VARCHARZ,NUMBER) FROM PUBLIC;
REVOKE EXECUTE ON PACKAGE emp admin FROM PUBLIC;

Step S — Change list_empto Invoker’s Rights

While connectedas user,hr mgr,add the AUTHID CURRENT USER clauseto the

list emp programand resave it in Advanced Server. When performing this step, be
sureyou are loggedonas hr mgr, otherwise the modified programmay wind up in the
publicschemainsteadofinhr mgr’s schema.

CREATE OR REPLACE PROCEDURE listiemp
AUTHID CURRENT USER
IS B
Vv_empno NUMBER (4) ;
vV ename VARCHAR2 (10) ;
CURSOR emp cur IS
SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
OPEN emp cur;
DBMS OUTPUT.PUT LINE ('EMPNO ENAME ') ;
DBMS OUTPUT.PUT LINE ('----- ———mm)
LOOP
FETCH emp cur INTO v empno, Vv ename;
EXIT WHEN emp cur$NOTFOUND;
DBMS OUTPUT.PUT LINE (v empno || ' ' || v ename);
END LOOP; B B B
CLOSE emp cur;
END;

Step 6 — Change hire_clerk to Invoker’s Rights and Qualify Call to new_empno

While connectedas user,hr mgr,add the AUTHID CURRENT USER clauseto the
hire clerkprogram.

Also,afterthe BEGIN statement, fully qualify thereference, new empno,to
hr mgr.new_empno inordertoensurethehire clerk functioncallto the
new_empno function resolvesto the hr mgr schema.

When resaving the program, be sure youare logged onas hr mgr,otherwise the
modified programmay wind up in the pub1lic schemainstead ofin hr mgr’s schema.

CREATE OR REPLACE FUNCTION hireiclerk (
p_ename VARCHARZ2,
p deptno NUMBER

) RETURN NUMBER

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 185

AUTHID CURRENT U
IS

Database Compatibility for Oracle® Developers Guide

SER

v_empno NUMBER (4) ;

Vv ename VARCHAR2 (10) ;

v_job VARCHAR? (9) ;

v_mgr NUMBER (4) ;

v hiredate DATE ;

v_sal NUMBER (7, 2) ;

v_comm NUMBER (7, 2) ;

v _deptno NUMBER (2) ;

BEGIN

v_empno := hr mgr.new_ empno;

INSERT INTO emp VALUES (v_empno, p ename, 'CLERK', 7782,
TRUNC (SYSDATE), 950.00, NULL, p deptno) ;

SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno INTO
v_empno, Vv_ename, V_job, v_mgr, v _hiredate, v _sal, v_comm, v_deptno
FROM emp WHERE empno = v_empno;

DBMS OUTPUT.PUT LINE ('Department : ' || v_deptno);

DBMS OUTPUT.PUT LINE ('Employee No: ' || v_empno);

DBMS OUTPUT.PUT LINE (' Name : " || v ename);

DBMS OUTPUT.PUT LINE ('Jo : ' || v job);

DBMSioUTPUT.PUTiLINE('Manager : " || v._mgr);

DBMS OUTPUT.PUT LINE ('Hire Date : ' || v hiredate) ;

DBMS OUTPUT.PUT LINE ('Salary : ' || v_sal);

DBMS_OUTPUT.PUT_LINE('CommlSSlOH : ' || v_comm);

RETURN v empno;
EXCEPTION

WHEN OTHERS THEN
DBMS OUTPUT.
DBMS OUTPUT.
DBMS OUTPUT.
DBMS_OUTPUT.
RETURN -1;

PUT LINE
PUT LINE
PUT LINE
PUT_ LINE

'The following is SQLERRM:') ;
SQLERRM) ;
'The following is SQLCODE:"') ;
SQLCODE) ;

END;

Step 7 — Grant Required Privileges

While connectedas user,hr mgr, grantthe privilegesneeded so sales mgr can
executethe 1ist emp procedure,hire clerk function,and emp admin package.
Note that the only data object sales mgr hasaccessto is the emp table in the

sales mgrschema.sales mgr hasno privileges on anytableinthe hr mgr schema.

GRANT
GRANT
GRANT
GRANT
GRANT

USAGE ON SCHEMA hr mgr TO sales mgr;

EXECUTE ON PROCEDURE list emp TO sales mgr;
EXECUTE ON FUNCTION hire clerk (VARCHAR2,NUMBER)
EXECUTE ON FUNCTION new empno() TO sales mgr;
EXECUTE ON PACKAGE emp admin TO sales mgr;

TO sales mgr;

Step 8 — Run Programs list empand hire_clerk

Connectasuser,sales mgr,andrunthe followinganonymous block:

\c - sales mgr
DECLARE
Vv_empno
BEGIN
hr mgr.list emp;
DBMS OUTPUT.PUT LINE ('*** Adding new employee

NUMBER (4) ;

‘k‘k‘kl)’.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 186

Database Compatibility for Oracle® Developers Guide

v_empno := hr mgr.hire clerk ('JONES',40);
DBMS OUTPUT.PUT LINE ('*** After new employee added ***');
hr mgr.list emp;

END;

EMPNO ENAME
7499 ALLEN
7521 WARD
7654 MART IN
7844 TURNER

*** Adding new employee ***
Department : 40
Employee No: 8000

Name : JONES

Job : CLERK

Manager 7782

Hire Date 08-NOV-07 00:00:00
Salary 950.00

*** After new employee added ***
EMPNO ENAME

7499 ALLEN

7521 WARD

7654 MART IN

7844 TURNER

8000 JONES

The table and sequence accessed by the programs ofthe anonymous block are illustrated
in the following diagram. The gray ovals representthe schemasof sales mgr and

hr mgr.The currentuserduring eachprogramexecutionis shown within parenthesis in
bold red font.

(sales_mgr)

BEGIN
hr_mgr.list_emp;
hr_mgr.hire_clerk

END;

hr_mg

sales_mgr
list_emp
(sales_mgr)

hire_clerk
(sales_mgr)

new_empno
(hr_mgr)

Figure 3 - Invoker's Rights Programs

Selecting fromsales mgr’s emp table shows thatthe update was made in this table.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 187

Database Compatibility for Oracle® Developers Guide

SELECT empno, ename, hiredate, sal, deptno,
hr mgr.emp admin.get dept name(deptno) FROM sales mgr.emp;

empno | ename | hiredate | sal | deptno | get dept name
i et et
7499 | ALLEN | 20-FEB-81 00:00:00 | 1600.00 | 30 | SALES
7521 | WARD | 22-FEB-81 00:00:00 | 1250.00 | 30 | SALES
7654 | MARTIN | 28-SEP-81 00:00:00 | 1250.00 | 30 | SALES
7844 | TURNER | 08-SEP-81 00:00:00 | 1500.00 | 30 | SALES
8000 | JONES | 08-NOV-07 00:00:00 | 950.00 | 40 | OPERATIONS
(5 rows)

The following diagramshows that the SELECT command references the emp table in the
sales mgr schema,butthe dept table referenced by the get dept name functionin
the emp admin packageis fromthe hr mgr schemasincethe emp admin package has
definer’s rights andis ownedby hr mgr. The default search pathsetting with the $user
placeholderresolves the accessbyuserhr mgr to the dept tableinthe hr mgr schema.

(sales_mgr)

SELECT empno, ename...
hr_mgr.emp_admin.get_dept_name...
FROM sales_mgr.emp

sales_mgr
get_dept_name
/
emp emp dept

Figure 4 Definer's Rights Package

Step9 — Run Programhire_empin the emp_admin Package

While connectedas user, sales mgr,runthehire emp procedureinthe emp admin
package.

EXEC hr mgr.emp admin.hire emp (9001,
'ALICE', 'SALESMAN',8000, TRUNC (SYSDATE), 1000, 7369, 40) ;

This diagramillustrates that thehire emp procedureinthe emp admin definer’srights
package updates the emp table belongingto hr mgr since the object privileges of

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 188

Database Compatibility for Oracle® Developers Guide

hr mgr are used, andthedefault search pathsetting with the suser placeholderresolves
tothe schemaofhr mgr.

(sales_mgr)
EXEC hr_mgr.emp_admin.hire_emp...

hr_mgr
sales_mgr
emp.admin
hire_emp
/ get_dept_name
emp emp dept

Figure 5 Definer's Rights Package

Now connectas user,hr mgr. The following SELECT command verifies that thenew

employee was addedto hr mgr’semp table sincethe emp admin package hasdefiner’s
rights and hr mgris emp admin’s Oowner.

\c - hr_mgr
SELECT empno, ename, hiredate, sal, deptno,
hr mgr.emp admin.get dept name(deptno) FROM hr mgr.emp;

empno | ename | hiredate | sal | deptno | get dept name
B e et e e e it e et
7369 | SMITH | 17-DEC-80 00:00:00 | 800.00 | 20 | RESEARCH
7499 | ALLEN | 20-FEB-81 00:00:00 | 1600.00 | 30 | SALES
7521 | WARD | 22-FEB-81 00:00:00 | 1250.00 | 30 | SALES
7566 | JONES | 02-APR-81 00:00:00 | 2975.00 | 20 | RESEARCH
7654 | MARTIN | 28-SEP-81 00:00:00 | 1250.00 | 30 | SALES
7698 | BLAKE | 01-MAY-81 00:00:00 | 2850.00 | 30 | SALES
7782 | CLARK | 09-JUN-81 00:00:00 | 2450.00 | 10 | ACCOUNTING
7788 | SCOTT | 19-APR-87 00:00:00 | 3000.00 | 20 | RESEARCH
7839 | KING | 17-NOV-81 00:00:00 | 5000.00 | 10 | ACCOUNTING
7844 | TURNER | 08-SEP-81 00:00:00 | 1500.00 | 30 | SALES
7876 | ADAMS | 23-MAY-87 00:00:00 | 1100.00 | 20 | RESEARCH
7900 | JAMES | 03-DEC-81 00:00:00 | 950.00 | 30 | SALES
7902 | FORD | 03-DEC-81 00:00:00 | 3000.00 | 20 | RESEARCH
7934 | MILLER | 23-JAN-82 00:00:00 | 1300.00 | 10 | ACCOUNTING
9001 | ALICE | 08-NOV-07 00:00:00 | 8000.00 | 40 | OPERATIONS
(15 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 189

Database Compatibility for Oracle® Developers Guide

3.3 Variable Declarations
SPL is a block-structured language. The first section thatcan appearin a block s the

declaration. The declaration contains the definition of variables, cursors, and other types
that can be used in SPL statements contained in the block.

3.3.1 Declaring a Variable

Generally, all variables usedin a blockmust be declared in the declaration section ofthe
block. A variable declaration consists ofa name that is assigned to the variable and its

datatype. Optionally, the variable can be initialized to a default value in the variable
declaration.

The general syntaxofa variable declarationis:
name type [{ := | DEFAULT } { expression | NULL }];
name 1s an identifier assigned to the variable.

type 1s the data type assigned to the variable.

[= expression], if given, specifies the initial value assigned to the variable whenthe

blockis entered. Ifthe clauseis not giventhen the variable is initialized to the SQL nULL
value.

The default value is evaluated every time the block is entered. So, forexample, assigning

SYSDATE to a variable oftype DATE causes the variable to have thetime ofthe current
invocation, not the time when the procedure or function was precompiled.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 190

Database Compatibility for Oracle® Developers Guide

The following procedure illustrates some variable declarations thatutilize defaults
consisting of string and numeric expressions.

CREATE OR REPLACE PROCEDURE dept salary rpt (

p_deptno NUMBER
)
Is

todays date DATE := SYSDATE;

rpt_tigle VARCHAR2 (60) := 'Report For Department # ' || p deptno

[" on ' || todays date;

base sal INTEGER := 35525;

base:comm_rate NUMBER := 1.33333;

base_annual NUMBER := ROUND(base_sal * base comm rate, 2);
BEGIN

DBMS OUTPUT.PUT LINE (rpt title);

DBMS OUTPUT.PUT LINE ('Base Annual Salary: ' || base annual);
END;

The following outputofthe above procedure shows thatdefault values in the variable
declarations are indeed assigned to the variables.

EXEC dept salary rpt (20);

Report For Department # 20 on 10-JUL-07 16:44:45
Base Annual Salary: 47366.55

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 191

Database Compatibility for Oracle® Developers Guide

3.3.2 Using %I'YPE in Variable Declarations

Often, variables willbe declared in SPL programs thatwill be used to hold values from

tables in the database. In order to ensure compatibility between the table columns and the
SPL variables, thedatatypes ofthe two should be thesame.

However, as quite often happens, a change might be made to thetable definition. Ifthe
data type ofthecolumn is changed, the corresponding change may be required to the
variable in the SPL program.

Instead of coding the specific column data typeinto the variable declaration the column
attribute, $TYPE, can be used instead. A qualified column name in dot notationorthe
name of a previously declared variable mustbe specified as a prefixto s TvpE. The data
type ofthe column orvariable prefixed to $ Ty PE is assigned to the variable being
declared. Ifthe data type ofthe given column or variable changes, the new data type will
be associated with the variable without the need to modify the declaration code.

Note: The sTYPE attribute canbe used with formal parameter declarations as well.

name { { table | view }.column | variable }%$TYPE;

name 1s the identifier assigned to the variable or formal parameter that is beingdeclared.

columnis thenameofa columnin tableor view. variableis the name ofa variable
that was declared priorto the variable identified by name.

Note: The variable does notinherit any ofthe column’s other attributes such as might be
specified on the column with the NOT NULL clause orthe DEFAULT clause.

In the following example a procedure queries the emp table using an employeenumber,
displays theemployee’s data, finds the average salary ofallemployees in the department
to which the employee belongs, and then compares the chosen employee’s salary with the
departmentaverage.

CREATE OR REPLACE PROCEDURE emp sal query (

p_empno IN NUMBER
)
IS
v_ename VARCHAR2 (10) ;
v_job VARCHAR? (9) ;
v hiredate DATE ;
v_sal NUMBER (7, 2) ;
v deptno NUMBER (2) ;
v_avgsal NUMBER (7, 2) ;
BEGIN

SELECT ename, job, hiredate, sal, deptno
INTO v_ename, v_job, v hiredate, v_sal, v_deptno
FROM emp WHERE empno = p empno;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 192

Database Compatibility for Oracle® Developers Guide

DBMS OUTPUT.PUT LINE ('Employee # : ' || p_empno);
DBMS OUTPUT.PUT LINE (' Name : ' || v_ename);
DBMS OUTPUT.PUT LINE ('Jo : ' || v _job);

DBMS OUTPUT.PUT LINE('lee Date : ' || v_hiredate);
DBMS OUTPUT.PUT LINE ('Salary 3 U eE) g

DBMS OUTPUT.PUT LINE ('Dept # : ' || v_deptno);

SELECT AVG(sal) INTO v _avgsal
FROM emp WHERE deptno = v _deptno;
IF v sal > v avgsal THEN
DBMS_OUTPUT.PUT LINE ('Employee''s salary is more than the

|| 'department average of ' || v_avgsal);
ELSE
DBMS OUTPUT.PUT_LINE ('Employee''s salary does not exceed the '
|| 'department average of ' || v_avgsal);
END IF;
END;

Instead ofthe above, the procedure could be written as follows withoutexplicitly coding
the emp table data types into the declaration section ofthe procedure.

CREATE OR REPLACE PROCEDURE emp sal query (

p_empno IN emp.empno%TYPE
)
IS
vV _ename emp . ename $TYPE;
v:job emp . Job$TYPE ;
v_hiredate emp.hiredate®TYPE;
v sal emp.sal%TYPE;
v:deptno emp .deptno%TYPE;
v _avgsal v sal$TYPE;
BEGIN B
SELECT ename, job, hiredate, sal, deptno
INTO v_ename, v_job, v hiredate, v_sal, v_deptno
FROM emp WHERE empno = p_empno;
DBMS OUTPUT.PUT LINE ('Employee # : ' || p empno);
DBMS OUTPUT.PUT LINE ('Name : ' || v_ename);
DBMS OUTPUT.PUT LINE ('Job : ' || v job);
DBMS OUTPUT.PUT LINE ('"Hire Date : ' || v hiredate) ;
DBMS OUTPUT.PUT LINE ('Salary : ' || v_sal);
DBMS OUTPUT.PUT LINE ('Dept # : ' || v deptno) ;
SELECT AVG(sal) INTO v _avgsal
FROM emp WHERE deptno = v deptno;
IF v_sal > v_avgsal THEN -
DBMS OUTPUT.PUT LINE ('Employee''s salary is more than the '
|| '"department average of ' || v avgsal);
ELSE B
DBMS OUTPUT.PUT_ LINE ('Employee''s salary does not exceed the '
|| 'department average of ' || v_avgsal);
END IF;
END;

Note: p_empno shows an example ofa formal parameterdefinedusing ¢ TYPE.

v_avgsal illustrates theusage of s Ty PE referring to another variable instead ofa table
column.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 193

Database Compatibility for Oracle® Developers Guide
The following is sample output fromexecuting this procedure.

EXEC emp sal query (7698) ;

Employee # : 7698

Name : BLAKE

Job : MANAGER

Hire Date : 01-MAY-81 00:00:00
Salary : 2850.00

Dept # : 30

Employee's salary is more than the department average of 1566.67

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 194

Database Compatibility for Oracle® Developers Guide

3.3.3 Using YROWTYPE in Record Declarations

The ¢ TYPE attribute provides an easy way to create a variable dependentupona
column’s data type. Usingthe $ROWT Y PE attribute, youcan definea record that contains
fields that correspond to allcolumns ofa given table. Each field takes onthe data typeof
its corresponding column. The fields in the record do not inherit any ofthe columns’

otherattributes suchas might be specified with the NoT NULL clause orthe DEFAULT
clause.

A record is anamed, ordered collectionoffields. A field is similar to a variable; it has an
identifier and data type, but has the additional property ofbelonging to a record, and must
be referenced using dot notation with the record name as its qualifier.

You can use the $ROWT Y PE attribute to declare arecord. The $ROWT Y PE attributeis
prefixed by atable name. Each column in the named table defines an identically named
field in the record with the same data typeas thecolumn.

record table%SROWTYPE;

recordis anidentifierassigned to the record. tableis the name ofatable (or view)
whose columns are to define the fields in the record. The following example shows how
theemp sal query procedure fromthe priorsection canbe modified to use
emp3ROWTYPE to create arecord named r emp instead of declaring individual variables
for the columns in emp.

CREATE OR REPLACE PROCEDURE emp sal query (

p_empno IN emp.empno3$TYPE
)
Is
r emp emp $ROWTYPE ;
v:avgsal emp.sal%$TYPE;
BEGIN
SELECT ename, job, hiredate, sal, deptno
INTO r emp.ename, r emp.job, r emp.hiredate, r emp.sal, r emp.deptno
FROM emp WHERE empno = p empno;
DBMS OUTPUT.PUT LINE ('Employee # : ' || p_empno);
DBMS OUTPUT.PUT LINE ('Name : ' || r_emp.ename);
DBMS OUTPUT.PUT LINE ('Job : ' || r emp.job);
DBMS OUTPUT.PUT LINE ('Hire Date : ' || r emp.hiredate);
DBMS OUTPUT.PUT LINE ('Salary : " || r emp.sal);
DBMS OUTPUT.PUT LINE ('Dept # : ' || r emp.deptno) ;
SELECT AVG(sal) INTO v _avgsal
FROM emp WHERE deptno = r emp.deptno;
IF r emp.sal > v_avgsal THEN
DBMS OUTPUT.PUT LINE ('Employee''s salary is more than the '
|| 'department average of ' || v_avgsal);
ELSE
DBMS OUTPUT.PUT LINE ('Employee''s salary does not exceed the '
TI 'departmgnt average of ' || v_avgsal);
END IF;
END;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 195

Database Compatibility for Oracle® Developers Guide

3.3.4 User-Defined Record Types and Record Variables

Records can bedeclared based upon a table definitionusingthe $ROWT Y PE attribute as
shown in Section 3.3.3. This section describes how a new record structure canbe defined
that is not tied to any particular table definition.

The TYPE IS RECORD statement is usedto create thedefinitionofarecord type. A
record typeis adefinition ofa record comprised of one or more identifiers and their
corresponding data types. A recordtype cannot, by itself, be used to manipulate data.

The syntaxfora TYPE IS RECORD statementis:

TYPE rec type IS RECORD (fields)

Where fieldsisacomma-separatedlist ofone ormore field definitions ofthe
following form:

field namedata type [NOT NULL] [{:=| DEFAULT} default value]
Where:
rec type
rec typeis anidentifierassigned tothe record type.
field name
field nameistheidentifierassigned to the field ofthe record type.
data type
data typespecifies thedatatypeof fielid name.

DEFAULT default value

The DEFAULT clause assigns a default data value for the corresponding field. The
data type ofthedefault expression mustmatch thedatatype ofthe column. Ifno
default is specified, thenthe default is NULL.

A record variable or simply put, a record,is an instance ofarecord type. A record is
declared fromarecord type. The properties ofthe record such as its field names and
types are inherited fromthe record type.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 196

Database Compatibility for Oracle® Developers Guide

The following is the syntaxfor arecord declaration.

record rectype

recordis anidentifier assigned to the record variable. rectype is the identifierofa
previously definedrecord type. Once declared, a record canthenbe usedto hold data.

Dot notationis usedto make reference to the fields in the record.

record. field

recordis apreviously declared record variable and £ie1dis the identifier ofa field
belongingto therecordtype fromwhich recordis defined.

Theemp sal queryis again modified —this time using a user-defined record type and
record variable.

CREATE OR REPLACE PROCEDURE emp sal query (

p_empno IN emp.empno%TYPE
)
IS
TYPE emp typ IS RECORD (
ename emp . ename$TYPE,
job emp . Job$TYPE,
hiredate emp . hiredate%TYPE,
sal emp.sal3TYPE,
deptno emp .deptno3sTYPE
)i
r _emp emp typ;
v_avgsal emp .sal%$TYPE;
BEGIN

SELECT ename, job, hiredate, sal, deptno
INTO r emp.ename, r emp.job, r emp.hiredate, r emp.sal, r emp.deptno
FROM emp WHERE empno = p empno;

DBMS OUTPUT.PUT LINE ('Employee # : ' || p empno) ;

DBMS OUTPUT.PUT LINE ('Name : ' || r emp.ename);
DBMS OUTPUT.PUT LINE ('Job : " || r emp.job);

DBMS OUTPUT.PUT LINE ('Hire Date : ' || r emp.hiredate);
DBMS OUTPUT.PUT LINE ('Salary : " || r emp.sal);

DBMS OUTPUT.PUT LINE ('Dept # : " || r emp.deptno) ;

SELECT AVG(sal) INTO v avgsal
FROM emp WHERE depEno = r emp.deptno;
IF r emp.sal > v_avgsal THEN
DBMS OUTPUT.PUT LINE ('Employee''s salary is more than the '

|| 'department average of ' || v_avgsal);
ELSE
DBMS OUTPUT.PUT LINE ('Employee''s salary does not exceed the '
11 'departmgnt average of ' || v_avgsal);
END IF;

END;

Note that instead of specifying datatype names, the < Ty PE attribute canbe used for the
field data types in the record typedefinition.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 197

Database Compatibility for Oracle® Developers Guide

The following is the output fromexecuting this stored procedure.

EXEC emp sal query (7698) ;

Employee # : 7698

Name : BLAKE

Job : MANAGER

Hire Date : 01-MAY-81 00:00:00
Salary : 2850.00

Dept # : 30

Employee's salary is more than the department average of 1566.67

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 198

Database Compatibility for Oracle® Developers Guide

3.4 Basic Statements

This section begins the discussion ofthe programming statements that canbe used in an
SPL program.

3.41 NULL

The simplest statementis the NULL statement. This statementis an executable statement
that does nothing.

NULL;

The following is the simplest, possible valid SPLprogram.

BEGIN
NULL;
END;

The NULL statementcan actas a placeholder where an executable statement is required
suchas inabranchofan 1F-THEN-ELSE statement.

Forexample:
CREATE OR REPLACE PROCEDURE divide it (
p_numerator IN NUMBER, B
p denominator IN NUMBER,
p result OUT NUMBER
)
Is
BEGIN
IF p denominator = 0 THEN
NULL;
ELSE
p result := p numerator / p denominator;
END IF; a a

END;

3.4.2 Assignment

The assignment statement sets a variable or a formal parameter ofmode ouT or 1IN oUT
specified on theleft side ofthe assignment, : =, to the evaluated expression specified on
the right side ofthe assignment.

variable := expression;

variableis anidentifier fora previously declared variable, ouT formal parameter, or
IN ouT formal parameter.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 199

Database Compatibility for Oracle® Developers Guide

expressionis an expression that produces a single value. Thevalueproduced by the
expression must have a compatible data type with thatof variabie.

The following example shows thetypicaluseofassignmentstatements in the executable
section oftheprocedure.

CREATE OR REPLACE PROCEDURE dept salary rpt (

p_deptno NUMBER
)
jifS
todays date DATE;
rpt title VARCHARZ (60) ;
base sal INTEGER;
base:commirate NUMBER ;
base annual NUMBER ;
BEGIN
todays date := SYSDATE;
rpt title := 'Report For Department # ' || p deptno [| ' on '
|| todays date;
base sal := 35525;
base comm rate := 1.33333;
base:annugl := ROUND (base sal * base comm rate, 2);

DBMS OUTPUT.PUT LINE (rpt title);
DBMS OUTPUT.PUT LINE ('Base Annual Salary: ' || base annual);

END;

3.4.3 SELECTINTO

The seLECT INTO statementis an SPLvariation ofthe SQL sSELECT command, the
differences being;

e ThatserLeECcT INTO is designed to assigntheresults to variables orrecords where
they can then be used in SPLprogramstatements.

e Theaccessibleresult setof SELECT INTO is at most one row.

Otherthan the above, allof the clauses ofthe SELECT command suchas WHERE, ORDER
BY, GROUP BY, HAVING, etc.are valid for seLEcT 1nTO. The following are the two
variations of SELECT INTO.

SELECT select expressions INTO target FROM ...;

targetis acomma-separated list of simple variables. select expressionsandthe

remainder ofthe statement are the same as forthe seLECT command. The selected values
must exactly match in data type, number, and order the structure of the target or a runtime
error occurs.

SELECT * INTO record FROM table ...;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 200

Database Compatibility for Oracle® Developers Guide

recordis arecord variable that has previously beendeclared.

If the query returns zero rows, null values are assigned to the target(s). Ifthe query
returns multiple rows, the first row is assigned to the target(s) and therest are discarded.
(Note that "the first row" is notwell-defined unless you’ve used ORDER BY.)

Note: In eithercases, where norow is returned or more than one row is returned, SPL
throws an exception.

Note: There is a variation of SELECT INTO usingthe BULK COLLECT clause that allows
a result set of more than one row that is returned into a collection. See Section 3.12.4.1

for more information on usingthe BULK COLLECT clause with the SELECT INTO
statement.

You canuse thewHEN NO_DATA FOUND clausein an EXCEPTION blockto determine
whether the assignment was successful (that is, at least one row was returned by the

query).

This versionofthe emp sal gquery procedure usesthe variationof SELECT INTO that

returns theresult set into arecord. Alsonote theadditionofthe ExcEpTION block
containing theWHEN NO_DATA FOUND conditional expression.

CREATE OR REPLACE PROCEDURE emp sal query (

p_empno IN emp.empno%TYPE
)
IS
r emp emp $ROWTYPE ;
v:avgsal emp.sal%$TYPE;
BEGIN
SELECT * INTO r emp
FROM emp WHERE empno = p empno;
DBMS OUTPUT.PUT LINE ('Employee # : ' || p_empno);
DBMS OUTPUT.PUT LINE ('Name : " || r emp.ename);
DBMS OUTPUT.PUT LINE ('Job : ' || r emp.job);
DBMS OUTPUT.PUT LINE ('Hire Date : " || r emp.hiredate);
DBMS OUTPUT.PUT LINE ('Salary : ' || r emp.sal);
DBMS OUTPUT.PUT LINE ('Dept # : " || r emp.deptno) ;
SELECT AVG(sal) INTO v _avgsal
FROM emp WHERE deptno = r emp.deptno;
IF r emp.sal > v _avgsal THEN
BBMS_OUTPUT.EUT_LINE('Employee"s salary is more than the '
| | '"department average of ' || v avgsal);
ELSE B
DBMS OUTPUT.PUT LINE ('Employee''s salary does not exceed the '
|| 'department average of ' || v_avgsal);
END IF;
EXCEPTION
WHEN NO DATA FOUND THEN
DBMS OUTPUT.PUT LINE ('Employee # ' || p_empno || ' not found');
END;

If the query is executed with a non-existentemployee number the results appear as
follows.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 201

Database Compatibility for Oracle® Developers Guide
EXEC emp sal query (0) ;

Employee # 0 not found

Another conditional clause ofuse in the EXCEPTION section with SELECT INTO is the

TOO MANY ROWS exception.fmorethan onerowis selected by the SELECT INTO
statement an exception is thrown by SPL.

When thefollowing blockis executed, the Too MANY ROWS exception is thrownsince
there are many employees in the specified department.

DECLARE
v_ename emp .ename$TYPE;
BEGIN
SELECT ename INTO v _ename FROM emp WHERE deptno = 20 ORDER BY ename;
EXCEPTION B
WHEN TOO MANY ROWS THEN
DBMSiOUTPﬁT.PUTiLINE('More than one employee found') ;
[

DBMS OUTPUT.PUT LINE ('First employee returned is ' v_ename);

END;

More than one employee found
First employee returned is ADAMS

Note: See Section 3.5.7 or more information on exception handling.

3.44 INSERT
The INSERT command available in the SQLlanguage canalsobe usedin SPL programs.

An expressionin the SPL1language canbe used wherever an expressionis allowed in the

SQL 1nsERT command. Thus, SPLvariables and parameters canbe used to supply
values to theinsert operation.

The following is an example of a procedure thatperforms an insert ofanew employee
using data passed froma calling program.

CREATE OR REPLACE PROCEDURE emp insert (

p_empno IN emp.empno%TYPE,
p ename IN emp.ename%TYPE,
p:job IN emp.job%$TYPE,
P mgr IN emp.mgr3TYPE,
p:hiredate IN emp.hiredate$TYPE,
p_sal IN emp.sal%TYPE,
p_comm IN emp.comm3TYPE,
p:deptno IN emp.deptno%sTYPE
)
IS
BEGIN
INSERT INTO emp VALUES (
p_empno,
p_ename,
p_Jjob,
p_mgr,

p_hiredate,

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 202

Database Compatibility for Oracle® Developers Guide

p_sal,

p_comm,

p:deptno);
DBMS OUTPUT.PUT LINE ('Added employee...');
DBMS OUTPUT.PUT LINE ('Employee # : ' || p_empno);
DBMS OUTPUT.PUT LINE (' Name : ' || p_ename);
DBMS OUTPUT.PUT LINE ('Jo : ' || p_job);
DBMS_OUTPUT.PUT_LINE('Manager : ' || p_mgr);
DBMS OUTPUT.PUT LINE ('Hire Date : ' || p hiredate);
DBMS OUTPUT.PUT LINE ('Salary : ' || p sal);
DBMS OUTPUT.PUT LINE ('Commission ' || p comm);
DBMS OUTPUT.PUT LINE ('Dept # : ' || p_deptno);
DBMS OUTPUT.PUT LINE ('-—--———--—————————————-");

EXCEPTION

WHEN OTHERS THEN

DBMS OUTPUT.PUT LINE ('OTHERS exception on INSERT of employee # '

|| p_empno) ;

DBMS OUTPUT.PUT LINE (
DBMS OUTPUT.PUT LINE (

END;

'SQLCODE : '
'SQLERRM : '

SQLCODE) ;

[l
|| SQLERRM) ;

If an exception occurs all database changes made in the procedure are automatically
rolled back. In this example the EXCEPTTON section with the WHEN OTHERS clause
catchesallexceptions. Two variables are displayed. SQL.cODE is a number thatidentifies

the specific exceptionthat occurred. SQLERRM is a text messageexplaining the error. See
Section 3.5.7 for more information on exception handling.

The following shows the output when this procedureis executed.

EXEC empiinsert(9503, 'PETERSON', 'ANALYST', 7902, '31-MAR-05"',5000, NULL, 40) ;
Added employee...
Employee # : 9503
Name : PETERSON
Job : ANALYST
Manager : 7902
Hire Date : 31-MAR-05 00:00:00
Salary : 5000
Dept # 40
SELECT * FROM emp WHERE empno = 9503;
empno | ename | job | mgr | hiredate | sal | comm | deptno
——————— B et e e e e L LR TP e e
9503 | PETERSON | ANALYST | 7902 | 31-MAR-05 00:00:00 | 5000.00 | | 40
(1 row)

Note: The I1NSERT command can be included in a FORALL statement. A FORALL

statement allows a single INSERT command to insert multiple rows fromvalues supplied
m one ormore collections. See 3.12.3 for more information on the FORALL statement.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

203

Database Compatibility for Oracle® Developers Guide
3.4.5 UPDATE

The upDATE command available in the SQL language canalsobe used in SPL programs.
An expressionin the SPL1language canbe used wherever an expressionis allowed in the

SQL uppATE command. Thus, SPL variables and parameters canbe usedto supply
values to theupdate operation.

CREATE OR REPLACE PROCEDURE emp comp update (

p_empno IN emp.empno3TYPE,
p_sal IN emp.sal%TYPE,
p}mmn IN emp.comm3%TYPE
)
IS
BEGIN
UPDATE emp SET sal = p sal, comm = p comm WHERE empno = p_empno;
IF SQL%FOUND THEN
DBMS OUTPUT.PUT LINE ('Updated Employee # : ' || p_ empno);
DBMS OUTPUT.PUT LINE ('New Salary : ' || p_sal);
DBMS OUTPUT.PUT LINE ('New Commission : " || p_comm);
ELSE B B B
DBMS OUTPUT.PUT LINE ('Employee # ' || p _empno || ' not found');
END IF;
END;

The sQL%FOUND conditional expressionreturns TRUE if arow is updated, FALSE

otherwise. See Section 3.4.8 fora discussionof sQL$FoUND and other similar
expressions.

The following shows the update on theemployee using this procedure.

EXEC emp comp update (9503, 6540, 1200);
Updated Employee # : 9503
New Salary : 6540

New Commission : 1200

SELECT * FROM emp WHERE empno = 9503;

empno | ename | job | mgr | hiredate | sal | comm | deptno
——————— B e e e et s e L L P

9503 | PETERSON | ANALYST | 7902 | 31-MAR-05 00:00:00 | 6540.00 | 1200.00 | 40
(1 row)

Note: The upDATE command can be includedin a FORALL statement. A FORALL

statement allows a single upDATE command to update multiple rows fromvalues
suppliedin one or more collections. See Section 3.12.3 for more information on the
FORALL statement.

3.4.6 DELETE

The DELETE command (available in the SQL language) canalso be used in SPL
programs.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 204

Database Compatibility for Oracle® Developers Guide

An expressionin the SPL1language canbe used wherever an expressionis allowed in the

SQL pELETE command. Thus, SPLvariables and parameters canbe used to supply
values to thedelete operation.

CREATE OR REPLACE PROCEDURE emp delete (
p_empno IN emp.empno%TYPE

)
IS

BEGIN
DELETE FROM emp WHERE empno = p empno;

IF SQL3FOUND THEN

DBMS OUTPUT.PUT LINE ('Deleted Employee # : ' || p_empno);
ELSE

DBMS OUTPUT.PUT LINE ('Employee # ' || p_empno || ' not found');
END IF;

END;

The soL2FoUND conditional expressionreturns TRUE if arow is deleted, FALSE

otherwise. See Section 3.4.8 fora discussionof sQL$FoUND and other similar
expressions.

The following shows the deletion ofan employeeusing this procedure.

EXEC emp delete (9503) ;
Deleted Employee # : 9503
SELECT * FROM emp WHERE empno = 9503;

empno | ename | job | mgr | hiredate | sal | comm | deptno
it S e s s it e e
(0 rows)

Note: The DELETE command can be includedin a FORALL statement. A FORALL
statement allows a single DELETE command to delete multiple rows fromvalues supplied

in one ormore collections. See Section 3.12.3 for more information on the FORALL
statement.

3.4.7 Using the RETURNING INTO Clause

The INSERT,UPDATE, and DELETE commands may be appended by the optional
RETURNING INTO clause. This clauseallows the SPLprogramto capturethe newly

added, modified, ordeleted values fromthe results ofan INSERT, UPDATE, Or DELETE
command, respectively.

The following is the syntax.

{ insert | update | delete }
RETURNING { * | expr 1 [, expr 2] ...}
INTO { record | field 1 [, field 2] ...};

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 205

Database Compatibility for Oracle® Developers Guide

insertis avalid INSERT command. updateis a valid UPDATE command. deletels a

valid DELETE command. If * is specified, then the values fromthe row affected by the
INSERT, UPDATE, or DELETE command are made available forassignment to the
record or fields to the right ofthe 1nTO keyword. (Notethatthe useof * is an Advanced
Server extension and is notcompatible with Oracle databases.) expr 1,expr 2...are
expressions evaluatedupon the row affected by the INSERT, UPDATE, or DELETE
command. The evaluated results are assigned to the record or fields to the right ofthe
INTO keyword. recordis the identifier ofa record that mustcontain fields that matchin
number and order, and are data type compatible with thevalues in the RETURNING
clause. field 1,field 2,..arevariables that mustmatch in numberandorder,andare
data type compatible with the set of values in the RETURNING clause.

Ifthe INSERT,UPDATE, or DELETE command returns a result set with more than one
row, then an exceptionis thrown with SQLCODE 01422, query returned more than

one row. If norows are in the result set, thenthevariables following the 1nT0 keyword
are set tonull.

Note: There is a variation of RETURNING INTO using the BULK COLLECT clause that
allows aresult set of more than onerow that is returned into a collection. See Section
3.12.4 for more information on the BULK COLLECT clause.

The following example is a modification ofthe emp comp update procedure
mmtroduced in Section 3.4.5, with the addition ofthe RETURNING INTO clause.

CREATE OR REPLACE PROCEDURE emp comp update (

p_empno IN emp.empno3$TYPE,
p _sal IN emp.sal%TYPE,
p:comm IN emp.comm3%TYPE
)
IS
v_empno emp . empno $TYPE ;
v ename emp .ename$TYPE ;
v:job emp . jobSTYPE;
v_sal emp.sal3TYPE;
v comm emp .comm%TYPE;
v:deptno emp .deptno%TYPE;
BEGIN
UPDATE emp SET sal = p sal, comm = p comm WHERE empno = p_empno
RETURNING
empno,
ename,
job,
sal,
comm,
deptno
INTO
vV_empno,
Vv_ename,
v_job,
v_sal,
v_comm,
v_deptno;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 206

Database Compatibility

IF SQL%FOUND THEN

DBMS OUTPUT.PUT LINE ('Updated Employee #

DBMS OUTPUT.PUT LINE ('Name

DBMS OUTPUT.PUT LINE ('Job

DBMS OUTPUT.PUT LINE ('Department

DBMS OUTPUT.PUT LINE ('New Salary

DBMS OUTPUT.PUT LINE ('New Commission
ELSE B B

DBMS OUTPUT.PUT LINE ('Employee # ' ||
END IF;

END;

P_empno

for Oracle® Developers Guide

[

not found');

The following is the output fromthis procedure (assuming employee 9503 created by the

emp_insert procedure still exists within the table).

EXEC emp comp update (9503, 6540, 1200);
Updated Employee # 9503

Name PETERSON

Job : ANALYST

Department : 40

New Salary 6540.00

New Commission 1200.00

The following example is a modification ofthe emp delete procedure, with the
addition ofthe RETURNING INTO clause using record types.

CREATE OR REPLACE PROCEDURE emp delete (

p_empno IN emp.empno$TYPE
)
Is
r_emp emp $ROWTYPE ;
BEGIN
DELETE FROM emp WHERE empno = p_empno
RETURNING
*
INTO
r emp;
IF SQL$FOUND THEN
DBMS OUTPUT.PUT LINE ('Deleted Employee #
DBMS OUTPUT.PUT LINE ('Name
DBMS OUTPUT.PUT LINE ('Job
DBMS OUTPUT.PUT LINE ('Manager
DBMS OUTPUT.PUT LINE ('Hire Date
DBMS_OUTPUT.PUT LINE ('Salary
DBMS OUTPUT.PUT LINE ('Commission
DBMS_OUTPUT.PUT LINE ('Department
ELSE
DBMS_OUTPUT.PUT LINE ('Employee # ' ||
END IF;
END;

The following is the output fromthis procedure.

EXEC emp delete (9503) ;

9503
PETERSON

Deleted Employee i
Name

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

p_empno

.empno) ;
.ename) ;
.job) ;
.mgr) ;
.hiredate) ;
.sal);
.comm) ;
.deptno) ;

|| " not found');

207

Database Compatibility for Oracle® Developers Guide

Job : ANALYST

Manager : 7902

Hire Date : 31-MAR-05 00:00:00
Salary : 6540.00

Commission : 1200.00

Department : 40

3.4.8 Obtaining the Result Status

There are several attributes that canbe used to determine theeffect ofa command.
SQL$FOUND is a Boolean that returns TRUE ifat least one row was affected by an

INSERT,UPDATE OrDELETE command ora SELECT INTO command retrieved one or
morc rows.

The following anonymous block inserts a row and then displays the fact that the row has
been inserted.

BEGIN
INSERT INTO emp (empno,ename,job,sal,deptno) VALUES (
9001, 'JONES', 'CLERK', 850.00, 40);
IF SQLS%FOUND THEN

DBMS OUTPUT.PUT LINE ('Row has been inserted');
END IF;
END;

Row has been inserted

SQL%ROWCOUNT provides the number ofrows affected byan INSERT, UPDATE or

DELETE command. The following example updates therow that was justinsertedand
displays SQL$ROWCOUNT.

BEGIN
UPDATE emp SET hiredate = '03-JUN-07' WHERE empno = 9001;
DBMS OUTPUT.PUT LINE ('# rows updated: ' || SQLSROWCOUNT) ;
END;

rows updated: 1

SQL$NOTFOUND is the opposite of SQL.$FOUND. SQL$NOTFOUND returns TRUE if no rows

were affected by an INSERT, UPDATE Or DELETE command ora SELECT INTO
command retrieved no rows.

BEGIN
UPDATE emp SET hiredate = '03-JUN-07' WHERE empno = 9000;
IF SQLSNOTFOUND THEN
DBMS OUTPUT.PUT LINE ('No rows were updated') ;
END IF; B
END;

No rows were updated

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 208

Database Compatibility for Oracle® Developers Guide

3.5 Control Structures

The programming statements in SPLthat make it a full procedural complement to SQL
are describedin this section.

3.5.1 IF Statement

IF statements let you executecommands based on certain conditions. SPLhas four forns
of TF:

e TF ... THEN

e TIF ... THEN ... ELSE

e TF ... THEN ... ELSE IF

e TF ... THEN ... ELSIF ... THEN ... ELSE

3.5.1.1 IF-THEN

IF boolean-expression THEN
statements
END IF;

IF-THEN statements are the simplest formof 1¥. The statements between THEN and END
1F will be executed if the conditionis TRUE. Otherwise, they are skipped.

In the following example an TF-THEN statementis used to test and display employees
who have a commission.

DECLARE

V_empno emp . empno $TYPE ;

v comm emp . comm%TYPE;

CURSOR emp cursor IS SELECT empno, comm FROM emp;
BEGIN

OPEN emp cursor;

DBMS OUTPUT.PUT LINE ('EMPNO comM') ;

DBMS OUTPUT.PUT LINE ('----- coocoo=m) g

LOOP B

FETCH emp cursor INTO v_empno, Vv_comm;
EXIT WHEN emp cursor3NOTFOUND;

-— Test whether or not the employee gets a commission

IF v_comm IS NOT NULL AND v comm > 0 THEN
DBMS OUTPUT.PUT LINE (v_empno || ' ' ||
TO CHAR(v_comm,'$99999.99")) ;
END IF;
END LOOP;
CLOSE emp cursor;
END;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 209

Database Compatibility for Oracle® Developers Guide

The following is the output fromthis program.

EMPNO COMM

7499 $300.00
7521 $500.00
7654 $1400.00

3.5.1.2 IF-THEN-ELSE
IF boolean-expression THEN
statements

ELSE
statements

END IF;

IF-THEN-ELSE statements add to TF-THEN by letting youspecify an alternative setof
statements that should be executed if the condition evaluates to false.

The previous example is modified so an TF-THEN-ELSE statement is used to display the
text Non-commission ifthe employee does notgeta commission.

DECLARE

v_empno emp . empno$TYPE ;

v_comm emp .comm%TYPE;

CURSOR emp cursor IS SELECT empno, comm FROM emp;
BEGIN B

OPEN emp cursor;

DBMS OUTPUT.PUT LINE ('EMPNO COMM"') ;

DBMS OUTPUT.PUT LINE ('----- cme—=e=0)) g

LOOP

FETCH emp cursor INTO v_empno, Vv_comm;
EXIT WHEN emp cursorsNOTFOUND;

—-— Test whether or not the employee gets a commission

IF v_comm IS NOT NULL AND v _comm > 0 THEN
DBMS OUTPUT.PUT LINE (v_empno || ' ' ||
TO CHAR(v comm,'$99999.99")) ;
ELSE B
DBMS OUTPUT.PUT LINE (v_empno || ' ' || '"Non-commission');
END IF;
END LOOP;
CLOSE emp cursor;
END; a

The following is the output fromthis program.

EMPNO COMM

7369 Non-commission
7499 S 300.00
7521 S 500.00

7566 Non-commission
7654 $ 1400.00

7698 Non-commission
7782 Non-commi ssion

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 210

Database Compatibility for Oracle® Developers Guide

7788 Non-commission
7839 Non-commission
7844 Non-commi ssion
7876 Non-commi ssion
7900 Non-commi ssion
7902 Non-commi ssion
7934 Non-commi ssion

3.5.1.3 IF-THEN-ELSE IF

IF statements canbe nested sothatalternative I F statements canbe invoked onceit is
determined whether ornot the conditional of an outer IF statement is TRUE Or FALSE.

In the following example the outer TF-THEN-ELSE statement tests whether ornot an

employee has a commission. Theinner IF-THEN-ELSE statements then test whether the
employee’s total compensation exceeds oris less than the company average.

DECLARE

vV empno emp . empno$TYPE ;

v:sal emp .sal3TYPE;

v_comm emp .comm%TYPE;

v avg NUMBER (7, 2) ;

CURSOR emp cursor IS SELECT empno, sal, comm FROM emp;
BEGIN

-— Calculate the average yearly compensation in the company

SELECT AVG((sal + NVL(comm,0)) * 24) INTO v_avg FROM emp;
DBMS OUTPUT.PUT LINE ('Average Yearly Compensation: ' ||
TO _CHAR (v_avg, '$999,999.99")) ;
OPEN eﬁp_cursgr;
DBMS_OUTPUT . PUT_LINE ('EMPNO YEARLY COMP');
DBMS OUTPUT.PUT LINE ('--=--= =—==————————- ")
LOOP
FETCH emp cursor INTO v _empno, v _sal, v _comm;
EXIT WHENiempicursor%NOfFOUND; N N

-— Test whether or not the employee gets a commission
IF v_comm IS NOT NULL AND v comm > O THEN
-— Test if the employee's compensation with commission exceeds the average

IF (v_sal + v _comm) * 24 > v avg THEN
DBMS OUTPUT.PUT LINE (v empno || ' ' ||
TO CHAR((v sal + v comm) * 24,'$999,999.99'") ||
' Exceeds Xverage'y;
ELSE
DBMS OUTPUT.PUT LINE (v _empno || ' ' ||
TO CHAR((v_sal + v _comm) * 24,'5999,999.99") ||
' Below Average') ;
END TIF;
ELSE
-— Test if the employee's compensation without commission exceeds the
average
IF v_sal * 24 > v_avg THEN
DBMS OUTPUT.PUT LINE (v empno || ' ' ||

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 211

Database Compatibility for Oracle® Developers Guide

TO CHAR(v_sal * 24,'$999,999.99") || ' Exceeds Average');
ELSE
DBMS OUTPUT.PUT LINE (v empno || ' ' ||
TO CHAR(v sal * 24,'$999,999.99'") || ' Below Average');
END IF; B
END IF;
END LOOP;

CLOSE emp cursor;
END;

Note: The logic in this programcan be simplified considerably by calculatingthe
employee’s yearly compensation using the NvL function within the SELECT command of

the cursor declaration, however, the purpose ofthis example is to demonstratehow 1F
statements canbe used.

The following is the output fromthis program.

Average Yearly Compensation: $ 53,528.57

EMPNO YEARLY COMP

7369 $ 19,200.00 Below Average
7499 $ 45,600.00 Below Average
7521 $ 42,000.00 Below Average
7566 $ 71,400.00 Exceeds Average
7654 $ 63,600.00 Exceeds Average
7698 $ 68,400.00 Exceeds Average
7782 $ 58,800.00 Exceeds Average
7788 $ 72,000.00 Exceeds Average
7839 $ 120,000.00 Exceeds Average
7844 $ 36,000.00 Below Average
7876 $ 26,400.00 Below Average
7900 $ 22,800.00 Below Average
7902 $ 72,000.00 Exceeds Average
7934 $ 31,200.00 Below Average

When you use this form, you are actually nestingan 1F statementinside the ELSE part of

an outer IF statement. Thus youneedone END IF statement for each nested 1F and one
for the parent IF-ELSE.

3.5.14 IF-THEN-ELSIF-ELSE

IF boolean-expression THEN
statements
[ELSIF boolean-expression THEN
statements
[ELSIF boolean-expression THEN
statements] ...]
[ELSE
statements]
END TIF;

IF-THEN-ELSIF-ELSE provides a method of checkingmany alternatives in one

statement. Formally it is equivalent to nested IF-THEN-ELSE-IF-THEN commands, but
only one END IF is needed.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 212

Database Compatibility for Oracle® Developers Guide

The following example usesan IF-THEN-ELSIF-ELSE statement to count the number

of employees by compensationranges of $25,000.

DECLARE
vV empno emp . empno$TYPE ;
v:comp NUMBER (8, 2) ;
v 1t 25K SMALLINT :=
v 25K 50K SMALLINT :=
v_50K_75K SMALLINT :=
v_75K 100K SMALLINT :=
v_ge 100K SMALLINT :=

’
’
’

’

o O O o O

’

CURSOR emp cursor IS SELECT empno, (sal + NVL (comm,

BEGIN
OPEN emp cursor;
LOOP
FETCH emp cursor INTO v empno, Vv comp;
EXIT WHEN emp cursor%NOTFOUND;
IF v comp < 25000 THEN
v 1t 25K := v_1t 25K + 1;
ELSIF v_comp < 50000 THEN
v_25K 50K := v_25K 50K + 1;
ELSIF v _comp < 75000 THEN
v_50K 75K := v 50K 75K + 1;
ELSTF v_comp < 100000 THEN
v_ 75K 100K := v 75K 100K + 1;
ELSE
v _ge 100K := v ge 100K + 1;
END IF;
END LOOP;
CLOSE emp cursor;
DBMS OUTPUT.PUT LINE (
DBMS OUTPUT.PUT LINE ('Less than 25,000 : ' ||
DBMS OUTPUT.PUT LINE ('25,000 - 49,9999 : ' |
DBMS OUTPUT.PUT LINE ('50,000 - 74,9999 : ' |
DBMS OUTPUT.PUT LINE ('75,000 - 99,9999 : ' |
DBMS OUTPUT.PUT LINE ('100,000 and over : ' ||
END;

The following is the output fromthis program.

Number of employees by yearly compensation
Less than 25,000
25,000 - 49,9999
50,000 - 74,9999
75,000 - 99,9999
100,000 and over

= o o U N

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

0)) * 24 FROM emp;

'Number of employees by yearly compensation');
v_1t 25K);

v_25K 50K) ;

v 50K 75K) ;
v_75K_100K) ;

v_ge 100K) ;

213

Database Compatibility for Oracle® Developers Guide

3.5.2 RETURN Statement

The RETURN statement terminates the current function, procedure or anonymous block
and returns control to the caller.

There are two forms ofthe RETURN Statement. The first formofthe RETURN statement is

used to terminate a procedure or functionthat returns void. The syntaxofthe first form
is:

RETURN;

The second formofRETURN returns a value to the caller. The syntaxofthe second form
ofthe RETURN statementis:

RETURN expression;

expressionmustevaluate to thesame data type as thereturntype ofthe function.

The following example uses the RETURN statement returns a value to the caller:

CREATE OR REPLACE FUNCTION emp comp (
p sal NUMBER, B
p comm NUMBER
) RETURN NUMBER
IS
BEGIN
RETURN (p_sal + NVL(p comm, 0)) * 24;
END emp comp;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 214

Database Compatibility for Oracle® Developers Guide

3.5.3 GOTO Statement

The coTo statement causes the point of executionto jump to the statement with the
specified label. The syntaxofa GoTo statement is:

GOTO label

labelis a name assignedto an executable statement. 1abel mustbe uniquewithin the
scope ofthe function, procedure oranonymous block.

To labela statement, use thesyntax:

<<label>> statement

statement is the point ofexecution that the programjumps to.

You can label assignment statements, any SQL statement (like INSERT, UPDATE,

CREATE, etc.) and selected procedural language statements. The procedural language
statements that canbe labeled are:

e IF

e EXIT

e RETURN
e RAISE

e EXECUTE
e PERFORM
e GETDIAGNOSTICS

e OPEN

e FETCH
e MOVE

e CLOSE
e NULL

e COMMIT
e ROLLBACK
e GOTO

e CASE

e TLOOP

e WHILE
e FOR

Please note that ex i t is considered a keyword, and cannot be used as the name ofa label

GOTO statements cannot transfer control info a conditional block or sub-block, butcan
trans fer control from a conditional block or sub-block.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 215

Database Compatibility for Oracle® Developers Guide

The following example verifies that an employee record contains a name, job description,

and employee hire date; ifany piece of information is missing, a GOTO statement transfers
the point of executionto a statement that prints a messagethatthe employeeis not valid.

CREATE OR REPLACE PROCEDURE verify_emp (
p_empno NUMBER
)
S
v_ename emp .ename$TYPE;
v _job emp . Job$TYPE ;
v:hiredate emp . hiredate%TYPE;
BEGIN
SELECT ename, job, hiredate
INTO v_ename, v_job, v _hiredate FROM emp
WHERE empno = p empno;
IF v_ename IS NULL THEN
GOTO invalid emp;
END IF;
IF vijob IS NULL THEN
GOTO invalid emp;
END IF; B
IF vihiredate IS NULL THEN
GOTO invalid emp;
END IF; B
DBMS OUTPUT.PUT LINE ('Employee ' || p empno ||
" validated without errors.'); N
RETURN;
<<invalid emp>> DBMS OUTPUT.PUT LINE ('Employee ' || p empno | |
' is not a valid_employee.'y; N
END;

GoTo statements havethe followingrestrictions:
e A GOTO statement cannotjump to a declaration.
e A GOTO statement cannottransfer control to another function or procedure.

e A label should notbe placed at theend ofa block, functionorprocedure.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 216

Database Compatibility for Oracle® Developers Guide

3.5.4 CASE Expression

The cASE expression returns a valuethatis substituted where the CASE expressionis
located within an expression.

There are two formats ofthe CASE expression -one thatis called a searched case and
the other that uses a selector.

3.54.1 Selector CASE Expression

The selector CASE expression attempts to match an expression called theselector to the
expression specified in one ormore WHEN clauses. result is an expressionthatis type-
compatible in the context where the CASE expressionis used. [fa match is found, the
value given in the corresponding THEN clause is returned by the CASE expression. Ifthere

are no matches, the value following ELSE is returned. IfELSE is omitted, the CASE
expression returns null.

CASE selector-expression
WHEN match-expression THEN
result
[WHEN match-expression THEN
result
[WHEN match-expression THEN
result 1 ...]

[ELSE
result]

END;

match-expressionis evaluated in the orderin which it appears within the cASE
expression. resul t is an expressionthat is type-compatible in the context where the
CASE expressionis used. When the first match-expressionis encountered that equals
selector-expression, resultinthecorresponding THEN clause is returned as the
value ofthe cAsE expression. [fnone of match-expressionequals selector-
expressionthen result following ELSE is returned. [fno ELSE is specified, thecasE
expression returns null.

The following example uses a selector CASE expression to assignthe department name to
a variable based upon the departmentnumber.

DECLARE
V_empno emp . empno $TYPE ;
v:ename emp .ename$TYPE;
v_deptno emp .deptno%TYPE;
v_dname dept .dname$TYPE;

CURSOR emp cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN
OPEN emp cursor;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 217

END;

Database Compatibility for Oracle® Developers
DBMSioUTPUT.PUTiLINE('EMPNO ENAME DEPTNO DNAME ') ;
DBMS OUTPUT.PUT LINE ('----- —————— T
LOOP

FETCH emp cursor INTO v empno, Vv ename, v deptno;
EXIT WHEN emp cursor%NOTFOUND; B
v_dname :=
CASE v deptno
WHEN 10 THEN 'Accounting'
WHEN 20 THEN 'Research'
WHEN 30 THEN 'Sales'
WHEN 40 THEN 'Operations'
ELSE 'unknown'
END;
DBMS OUTPUT.PUT LINE (v_empno || ' ' || RPAD(v_ename, 10) |
! ' || v_deptno || ' ' || v_dname) ;
END LOOP;
CLOSE emp cursor;

The following is the output fromthis program.

EMPNO ENAME DEPTNO DNAME

7369 SMITH 20 Research
7499 ALLEN 30 Sales

7521 WARD 30 Sales

7566 JONE S 20 Research
7654 MARTIN 30 Sales

7698 BLAKE 30 Sales

7782 CLARK 10 Accounting
7788 SCOTT 20 Research
7839 KING 10 Accounting
7844 TURNER 30 Sales

7876 ADAMS 20 Research
7900 JAME S 30 Sales

7902 FORD 20 Research
7934 MILLER 10 Accounting

3.54.2 Searched CASE Expression

Guide

A searched casE expressionuses one or more Boolean expressions to determine the
resulting value to return.

CASE WHEN boolean-expression THEN

[

[

result

WHEN boolean-expression THEN
result

[WHEN boolean-expression THEN
result 1 ...]

ELSE
result]

END;

boolean-expressionisevaluatedin the orderin which it appears within the caSE
expression. result is an expressionthat is type-compatible in the context where the
CASE expressionis used. When the first boolean-expressionis encountered that

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

218

Database Compatibility for Oracle® Developers Guide

evaluates to TRUE, resul t in the corresponding THEN clauseis returned as the value of
the casE expression. [fnone of boolean-expressionevaluatesto true then resuit
following ELSE is returned. Ifno ELSE is specified, the CASE expression returns null.

The following example uses a searched CASE expression to assign the department name
to a variable based upon the departmentnumber.

DECLARE
vV _empno emp . empno$TYPE;
v:ename emp .ename$TYPE;
v _deptno emp . deptno%TYPE;
v:dname dept .dname$TYPE;
CURSOR emp cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN
OPEN emp cursor;
DBMS OUTPUT.PUT LINE ('EMPNO ENAME DEPTNO DNAME ') ;
DBMS OUTPUT.PUT LINE ('----- —————— - ————— =)
LOOP B
FETCH emp cursor INTO v empno, v ename, v deptno;
EXIT WHEN emp cursor%NOTFOUND; B
v_dname :=
CASE
WHEN v deptno = 10 THEN 'Accounting'
WHEN v deptno = 20 THEN 'Research'
WHEN v deptno = 30 THEN 'Sales'
WHEN v:deptno = 40 THEN 'Operations'
ELSE 'unknown'
END;
DBMS OUTPUT.PUT LINE (v_empno || ' ' || RPAD(v_ename, 10) |
! ' || v_deptno || ' ' || v_dname) ;
END LOOP;

CLOSE emp cursor;

END;

The following is the output fromthis program.

EMPNO
7369
7499
7521
7566
7654
7698
7782
7788
7839
7844
7876
7900
7902
7934

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

ENAME DEPTNO DNAME
SMITH 20 Research
ALLEN 30 Sales

WARD 30 Sales

JONE S 20 Research
MARTIN 30 Sales
BLAKE 30 Sales
CLARK 10 Accounting
SCOTT 20 Research
KING 10 Accounting
TURNER 30 Sales
ADAMS 20 Research
JAME S 30 Sales

FORD 20 Research
MILLER 10 Accounting

219

Database Compatibility for Oracle® Developers Guide

3.5.5 CASE Statement

The caSE statementexecutes a set of one ormore statements when a specified search
conditionis TRUE. The CASE statement is a stand-alonestatementin itself while the
previously discussed CASE expressionmustappear as part of an expression.

There are two formats ofthe casE statement - one that is called a searched cast and the
otherthat uses a selector.

3.5.5.1 Selector CASE Statement

The selector cASE statementattempts to match an expression called the selector to the

expression specified in one ormore WHEN clauses. When a match is found one or more
corresponding statements are executed.

CASE selector-expression
WHEN match-expression THEN
statements
[WHEN match-expression THEN
statements
[WHEN match-expression THEN
statements] ...]
[ELSE
statements]
END CASE;

selector-expressionreturnsavalue type-compatible with each match-
expression.match-expressionisevaluatedin the orderin which it appears within
the CASE statement. statements are oneormore SPL statements, each terminated by a
semi-colon. When the valueof selector-expressionequals the first match-
expression,the statement(s) in the corresponding THEN clauseare executed and
control continues followingthe END casE keywords. Ifthere are no matches, the

statement(s) following ELSE are executed. Ifthere are no matches andthere is no ELSE
clause, an exceptionis thrown.

The following example uses a selector CASE statement to assign a department name and
location to a variable based upon the department number.

DECLARE
V_empno emp . empno $TYPE ;
v:ename emp . ename$TYPE ;
v deptno emp .deptno%TYPE;
v:dname dept .dname$TYPE;
v _loc dept.loc3TYPE;

CURSOR emp cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 220

Database Compatibility for Oracle® Developers

OPEN emp cursor;
DBMS OUTPUT.PUT LINE ('EMPNO ENAME
[Loc!');

DEPTNO DNAME

DBMS OUTPUT.PUT LINE ('----- '

[° e 7 5

LOOP
FETCH emp cursor INTO v empno, v _ename, v _deptno;
EXIT WHEN emp cursor$NOTFOUND; B
CASE v_deptno
WHEN 10 THEN v dname := 'Accounting';
v:loc = '"New York';
WHEN 20 THEN v dname := 'Research';
v:loc := 'Dallas';
WHEN 30 THEN v_dname := 'Sales';
v_loc = 'Chicago’';
WHEN 40 THEN v_dname := 'Operations';
v _loc := 'Boston';
ELSE v dname := 'unknown';
B v _loc 3= g
END CASE;
DBMS OUTPUT.PUT LINE (v_empno || ' ' || RPAD(v_ename, 10)
! ' || v_deptno || ' ' || RPAD(v_dname, 14) || '
v loc);
END LOOP;
CLOSE emp cursor;
END;

The following is the output fromthis program.

EMPNO ENAME DEPTNO DNAME LOC

7369 SMITH 20 Research Dallas
7499 ALLEN 30 Sales Chicago
7521 WARD 30 Sales Chicago
7566 JONE S 20 Research Dallas
7654 MART IN 30 Sales Chicago
7698 BLAKE 30 Sales Chicago
7782 CLARK 10 Accounting New York
7788 SCOTT 20 Research Dallas
7839 KING 10 Accounting New York
7844 TURNER 30 Sales Chicago
7876 ADAMS 20 Research Dallas
7900 JAME S 30 Sales Chicago
7902 FORD 20 Research Dallas
7934 MILLER 10 Accounting New York

3.5.5.2 Searched CASE statement

A searched casE statement uses one or more Boolean expressions to determine the

resulting set of statements to execute.

CASE WHEN boolean-expression THEN
statements
[WHEN boolean-expression THEN
statements
[WHEN boolean-expression THEN
statements] ...]
[ELSE

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

Guide

221

Database Compatibility for Oracle® Developers Guide

statements]
END CASE;

boolean-expressionis evaluatedin the orderin which it appears within the cask
statement. Whenthefirst boolean-expressionis encountered that evaluates to TRUE,
the statement(s) in the corresponding THEN clauseare executed and control continues
following the END caAsSE keywords. Ifnone of boolean-expression evaluatesto
TRUE, the statement(s) following ELSE are executed. [fnone of boolean-expression
evaluates to TRUE and there is no ELSE clause, an exceptionis thrown.

The following example uses a searched CASE statementto assign a department name and
location to a variable based upon the department number.

DECLARE
Vv_empno emp . empno $TYPE ;
vV_ename emp . ename$TYPE ;
v deptno emp .deptno%TYPE;
v:dname dept .dname$TYPE;
v _loc dept.loc3TYPE;
CURSOR emp cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN B
OPEN emp cursor;
DBMS_OUTEUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME !
[Loc');
DBMS OUTPUT.PUT LINE ('----- Semssss Ssosos mmosssos== U
T " 5
LOOP
FETCH emp cursor INTO v_empno, v_ename, v_deptno;
EXIT WHEN emp cursorsNOTFOUND;
CASE
WHEN v_deptno = 10 THEN v_dname := 'Accounting’;
v _loc := '"New York';
WHEN v _deptno = 20 THEN v dname := 'Research';
N v:loc := 'Dallas';
WHEN v _deptno = 30 THEN v _dname := 'Sales';
v _loc := 'Chicago';
WHEN v _deptno = 40 THEN v _dname := 'Operations';
v loc := 'Boston';
ELSE v_dname := "unknown ' ;.
v _loc = '';
END CASE;
DBMS OUTPUT.PUT LINE (v_empno || ' ' || RPAD(v_ename, 10) |
! ' || v deptno || ' ' || RPAD(v dname, 14) || " " []
v_loc); N N
END LOOP;
CLOSE emp cursor;

END;

The following is the output fromthis program.

EMPNO ENAME DEPTNO DNAME
7369 SMITH 20 Research
7499 ALLEN 30 Sales
7521 WARD 30 Sales
7566 JONES 20 Research
7654 MARTIN 30 Sales

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

Chicago
Dallas
Chicago

222

Database Compatibility for Oracle® Developers Guide

7698 BLAKE 30 Sales Chicago
7782 CLARK 10 Accounting New York
7788 SCOTT 20 Research Dallas
7839 KING 10 Accounting New York
7844 TURNER 30 Sales Chicago
7876 ADAMS 20 Research Dallas
7900 JAME S 30 Sales Chicago
7902 FORD 20 Research Dallas
7934 MILLER 10 Accounting New York

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 223

Database Compatibility for Oracle® Developers Guide

3.5.6 Loops

With the LoOP,EXIT,CONTINUE, WHILE, and FOR statements, you canarrange foryour
SPL programto repeat a series of commands.

3.5.6.1 LOOP

LOOP
statements

END LOOP;

Loop defines an unconditional loop that is repeated indefinitely until terminated by an
EXIT OrRETURN statement.

3.5.6.2 EXIT

EXIT [WHEN expression];

The innermost loop is terminated and the statement following END LooP is executed
next.

IfwHEN 1s present, loop exit occurs only ifthe specified condition is TRUE, otherwise
controlpasses tothe statement after EX1T.

EXIT can beusedto cause early exit fromall types ofloops;itis not limited to use with
unconditional loops.

The following is a simple example of a loop that iterates tentimes and thenuses the ExIT
statement to terminate.

DECLARE
v counter NUMBER (2) ;
BEGIN
v_counter := 1;
LOOP
EXIT WHEN v _counter > 10;
DBMS OUTPUT.PUT LINE ('Iteration # ' || v counter);
v_coanter = V_Eounter + 1; N
END LOOP;
END;

The following is the output fromthis program.

Iteration # 1
Iteration # 2
Iteration # 3
Iteration # 4
Iteration # 5
Iteration # 6
Iteration # 7

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 224

Database Compatibility for Oracle® Developers Guide

Iteration # 8
Iteration # 9
Iteration # 10

3.5.6.3 CONTINUE

The coNTINUE statement provides a way to proceed with the next iteration ofa loop
while skipping intervening statements.

When thecoNTINUE statementis encountered, the next iteration ofthe innermost loop is
begun, skippingall statements following the CONTINUE statement untilthe end ofthe
loop. That is, controlis passed back to theloop control expression, ifany, and thebody
of the loop is re-evaluated.

Ifthe wHEN clause is used, thenthenext iteration ofthe loopis begun only ifthe specified
expression in the wHEN clause evaluates to TRUE. Otherwise, controlis passed to the next
statement following the CONT INUE statement.

The CONTINUE statement may notbe used outsideofa loop.

The following is a variation ofthe previous example that uses the CONTINUE statementto
skip the display oftheodd numbers.

DECLARE
v counter NUMBER (2) ;
BEGIN
v _counter := 0;
LOOP
v_counter := v _counter + 1;
EXIT WHEN v counter > 10;
CONTINUE WHEN MOD(v_counter,2) = 1;
DBMS OUTPUT.PUT LINE ('Iteration # ' || v_counter);
END LOOP;
END;

The following is the output fromaboveprogram.

Iteration # 2
Iteration # 4
Iteration # 6
Iteration # 8

1

Iteration 0

3.5.64 WHILE

WHILE expression LOOP
statements
END LOOP;

The wHTILE statement repeats a sequence of statements so longas the condition

expression evaluates to TRUE. The condition is checked justbefore eachentryto theloop
body.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 225

Database Compatibility for Oracle® Developers Guide

The following example contains the same logic as in the previous example except the

WHILE statementis usedto take the place ofthe Ex1 T statementto determine whento
exit the loop.

Note: The conditional expression used to determine when to exit the loop must be
altered. The ExIT statementterminates the loop whenits conditional expressionis true.

The wHILE statement terminates (ornever begins the loop) when its conditional
expression is false.

DECLARE
v counter NUMBER (2) ;
BEGIN
v counter := 1;
WHILE v_counter <= 10 LOOP
DBMS OUTPUT.PUT LINE ('Iteration # ' || v_counter);
v counter := v counter + 1;
END LOOP; -
END;

The same result is generated by this example as in the prior example.

Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration

S oS e oS o e o e e
RO ®adoU s WN

0

3.5.6.5 FOR (integer variant)

FOR name IN [REVERSE] expression .. expression LOOP
statements
END LOOP;

This form of FOR creates a loop that iterates overarange ofinteger values. The variable
name 1s automatically defined as type INTEGER andexists only insidethe loop. The two
expressions giving the looprange are evaluated once whenenteringthe loop. The
iteration stepis +1 and name begins with the valueof expressiontotheleftof . . and
terminates once name exceeds the value of expressionto therightof . .. Thus the two
expressions take on thefollowing roles: start-value..end-value.

The optional REVERSE clausespecifies that theloop should iteratein reverseorder. The
first time through the loop, name is set to the value ofthe right-most expression;the
loop terminates when the name is less than the left-mostexpression.

The following example simplifies the wHT LE loop example even furtherby usinga For
loop that iterates from1 to 10.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 226

Database Compatibility for Oracle® Developers Guide

BEGIN
FOR i IN 1 .. 10 LOOP
DBMS OUTPUT.PUT LINE ('Iteration # ' || 1);
END LOOP;
END;

Here is the outputusingthe FOR statement.

Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration

T ke
RO JdoU W N

If the start value is greater than the end valuethe loopbody s not executedat all. No
error is raised as shownby the following example.

BEGIN
FOR i IN 10 .. 1 LOOP
DBMS OUTPUT.PUT LINE ('Iteration # ' || 1i);
END LOOP; B
END;

There is no output fromthis example as the loop body is never executed.

Note: SPL also supports CURSOR FOR loops (see Section 3.8.7).

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 227

Database Compatibility for Oracle® Developers Guide

3.5.7 Exception Handling

By default, any error occurring in an SPL programaborts execution ofthe program. You
can trap errors andrecover fromthemby usinga BEGIN block with an EXCEPTTON
section. The syntaxis an extensionofthe normalsyntaxfora Bec1n block:

[DECLARE
declarations]

BEGIN
statements

EXCEPTION
WHEN condition [OR condition]... THEN
handler statements
[WHEN condition [OR condition]... THEN
handler statements]...

END;

If no error occurs, this formofblock simply executes allthe statements,and then
controlpasses tothe next statementafter EnD. If an erroroccurs within the
statements, furtherprocessing ofthe statements is abandoned, and control passes to
the excepTION list. The listis searched forthe first condi t i on matchingtheerror that
occurred. Ifamatch is found,the corresponding handler statements areexecuted,
and then control passes to the next statementafter END. If no match is found, the error
propagates outas though the ExCEPTTON clausewere not there at all. The errorcan be

caughtby an enclosingblock with ExcEpT1ON; ifthere is no enclosing block, it aborts
processing ofthe subprogram.

The special condition name 0THERS matches every error type. Conditionnames are not
case-sensitive.

If a new error occurs within the selected handler statements,itcannotbe caught by
this ExCEPTTON clause, but is propagated out. A surrounding EXCEPTION clause could
catchit.

The following table lists the condition names thatmay be used:

Table 4-3-2 Exception Condition Names

Condition Name Description
The application has encountered a situation where none of the
CASE_NOT_FOUND cases ina CASE statement evaluates to TRUE and there is no ELSE
condition.

The application has attempted to invoke a collection method on a

COLLECTION IS NULL ’ -
- null collection such as an uninitialized nested table.

The application has attempted to open a cursor that is already
open.

CURSOR ALREADY OPEN

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 228

Database Compatibility for Oracle® Developers Guide

Condition Name Description
DUP VAL ON INDEX The applicat.ion hgs gttempted tg store a duplicate value that
- T~ currently exists within a constrained column.

INVALID_CURSOR The application has attempted to access an unopened cursor.
The application has encountered a data exception (equivalent to

INVALID_NUMBER SQLSTATE class code 22). INVALID NUMBER is an alias for
VALUE_ERROR.

NO_DATA_FOUND No rows satisfy the selection criteria.

OTHERS The application has encountered an exception that hasn’t been

caught by a prior condition in the exception section.

The application has attempted to reference a subscript of a nested
table or varray beyond its initialized or extended size.

The application has attempted to reference a subscript or extend a
varray beyond its maximum size limit.

SUBSCRIPT BEYOND COUNT

SUBSCRIPT OUTSIDE LIMIT

The application has encountered more than one row that satisfies

TOO_MANY_ ROWS the selection criteria (where only one row is allowed to be
returned).
The application has encountered a data exception (equivalent to

[VALUE ERROR SQLSTATE class code 22). VALUE ERROR is an alias for
INVALID NUMBER.

ZERO DIVIDE The application has tried to divide by zero.

User-defined Exception |See Section 3.5.8

Note: Condition names INVALID NUMBER andVALUE ERROR are not compatible with
Oracle databases for which these condition names are for exceptions resulting only from
a failed conversionofa string to a numeric literal. In addition, for Oracle databases, an
INVALID NUMBER exception is applicable only to SQL statements while a
VALUE_ERROR exception is applicable only to procedural statements.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 229

Database Compatibility for Oracle® Developers Guide

3.5.8 User-defined Exceptions

Any number oferrors (referred toin PL/SQL as exceptions) can occur during program
execution. When an exceptionis thrown, normal execution ofthe programstops, and
control ofthe programtransfers to the error-handling portion ofthe program. An
exceptionmay be a pre-defined error thatis generated by theserver, ormay be a logical
error that raises a user-defined exception.

User-defined exceptions are neverraised by the server; they are raised explicitly by a

RATSE statement. A user-defined exceptionis raised when a developer-defined logical
rule is broken; a common example of a logical rule being broken occurs when a check s
presented againstan account with insufficient funds. An attempt to casha checkagainst
an account with insufficient funds will provoke a user-defined exception.

You can define exceptions in functions, procedures, packages or anonymous blocks.
While you cannot declare the same exceptiontwice in the same block, youcandeclare
the same exception in two different blocks.

Before implementing a user-defined exception, you must declare theexceptionin the
declaration sectionofa function, procedure, package oranonymous block. You can then
raise the exception usingthe RATSE statement:

DECLARE
exception name EXCEPTION;

BEGIN
RAISE exception name;
END;

exception nameis the name ofthe exception.

Unhandled exceptions propagate back through the call stack. If the exception remains
unhandled, the exceptionis eventually reported to the client application.

User-defined exceptions declared in a block are considered to be local to thatblock, and
globalto any nested blocks within the block. To referencean exception that resides in an
outerblock, you must assigna label to the outer block; then, prefacethe name ofthe
exception with the blockname:

block name.exception name

Conversely, outer blocks cannotreference exceptions declared in nested blocks.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 230

Database Compatibility for Oracle® Developers Guide

The scope ofa declarationis limited to the block in which it is declared unless it is
created in a package, and whenreferenced, qualified by the package name. Forexample,

toraise an exception named out of stock thatresidesin a packagenamed
inventory control aprogrammustraise an errornamed:

inventory control.out of stock

The following example demonstrates declaring a user-defined exceptionin a package.
The user-defined exception does not require a package-qualifier when it is raised in
check balance,sinceitresidesin the same packageas theexception:

CREATE OR REPLACE PACKAGE ar AS

overdrawn EXCEPTION;

PROCEDURE check balance(p balance NUMBER, p amount NUMBER);
END;

CREATE OR REPLACE PACKAGE BODY ar AS

PROCEDURE check balance (p balance NUMBER, p amount NUMBER)
IS8
BEGIN

IF (p_amount > p balance) THEN

RAISE overdrawn;

END TIF;

END;

The following procedure (purchase)calls the check balance procedure. If

p amount is greaterthanp balance,check balance raisesanexception;purchase
catchesthear.overdrawn exception. purchase mustreferto the exception with a
package-qualified name (ar . overdrawn)becausepurchase is not defined within the
ar package.

CREATE PROCEDURE purchase (customerID INT, amount NUMERIC)
AS
BEGIN
ar.check Dbalance (getcustomerbalance(customerid), amount) ;
record purchase (customerid, amount) ;
EXCEPTION
WHEN ar.overdrawn THEN
raise credit limit(customerid, amount*1.5);
END;

When ar.check balance raises an exception, executionjumps tothe exception
handlerdefinedin purchase:

EXCEPT ION
WHEN ar.overdrawn THEN
raise credit limit(customerid, amount*1.5);

The exception handlerraises the customer’s credit limit and ends. Whenthe exception
handler ends, executionresumes with the statementthat follows ar.check balance.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 231

Database Compatibility for Oracle® Developers Guide

3.5.9 PRAGMAEXCEPTION_INIT

PRAGMA EXCEPTION INIT associatesauser-definederrorcode with an exception. A
PRAGMA EXCEPTION INIT declarationmay be included in any block, sub-blockor
package. You can only assignan error code to an exception (using PRAGMA
EXCEPTION INIT)afterdeclaringtheexception. The formatofa pPraGMA
EXCEPTION INIT declarationis:

PRAGMA EXCEPTION_INIT(exception_name,
{exception number | exception code})

Where:
exception nameis thename ofthe associated exception.

exception numberis a user-definederror code associated with the pragma. Ifyou
specify an unmapped exception number,the server will return a warning.

exception codels thename ofa pre-definedexception. Fora complete list of valid
exceptions, see the Postgres core documentation available at:

http://www.postgresql.ore/docs/9.5/static/errcodes -appendix.html

The previous section (User-defined Exceptions) included an example that demonstrates
declaring a user-defined exception in a package. The following example uses the same
basic structure, but adds a PRAGMA EXCEPTION INIT declaration:

CREATE OR REPLACE PACKAGE ar AS

overdrawn EXCEPTION;

PRAGMA EXCEPTION INIT (overdrawn, -20100);

PROCEDURE check balance(p balance NUMBER, p amount NUMBER);
END;

CREATE OR REPLACE PACKAGE BODY ar AS

PROCEDURE check balance (p_balance NUMBER, p amount NUMBER)
IS
BEGIN

IF (p_amount > p balance) THEN

RAISE overdrawn;

END IF;

END;

The following procedure (purchase)calls the check balance procedure. If
p_amount is greaterthanp_balance, check balance raises an exception;purchase
catchesthear.overdrawn exception.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 232

http://www.postgresql.org/docs/9.5/static/errcodes-appendix.html

Database Compatibility for Oracle® Developers Guide

CREATE PROCEDURE purchase(customerID int, amount NUMERIC)
AS
BEGIN
ar.check Dbalance (getcustomerbalance(customerid), amount) ;
record purchase (customerid, amount) ;
EXCEPTION
WHEN ar.overdrawn THEN
DBMS OUTPUT.PUT LINE ('This account is overdrawn.');
DBMS OUTPUT.PUT LINE ('SQLCode :'||SQLCODE||"' '||SQLERRM);
END;

When ar.check balance raises an exception, executionjumps tothe exception
handlerdefinedin purchase.

EXCEPT ION
WHEN ar.overdrawn THEN
DBMS OUTPUT.PUT LINE ('This account is overdrawn.');
DBMS OUTPUT.PUT LINE ("SQLCode :'"||SQLCODE||" "] |SQLERRM) ;

The exception handler returns an error message, followed by so1L.cODE information:

This account is overdrawn.
SQLCODE: -20100 User-Defined Exception

The following example demonstrates using a pre-defined exception. The code creates a
more meaningfulname forthe no_data found exception;ifthe given customer

does notexist, the code catches the exception, calls DBMS OUTPUT.PUT LINE toreport
the error, and then re-raises the original exception:

CREATE OR REPLACE PACKAGE ar AS
overdrawn EXCEPTION;
PRAGMA EXCEPTION INIT (unknown customer, no_ data found);
PROCEDURE check balance(p customer id NUMBER) ;

END;

CREATE OR REPLACE PACKAGE BODY ar AS
PROCEDURE check balance (p_customer id NUMBER)
IS8
DEC LARE
v_balance NUMBER;
BEGIN
SELECT balance INTO v_balance FROM customer
WHERE cust_id = p customer id;
EXCEPTION WHEN unknown_customer THEN
DBMS OUTPUT.PUT LINE('invalid customer id');
RAISE;
END ;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 233

Database Compatibility for Oracle® Developers Guide

3.510 RAISE_APPLICATION_ERROR

The procedure, RATSE APPLICATION ERROR,allows adeveloperto intentionally abort
processing within an SPLprogramfromwhich it is called by causingan exception. The
exception is handled in the same manneras described in Section3.5.7. In addition, the

RAISE APPLICATION ERROR procedure makes auser-definedcodeanderrormessage
available to the programwhich can then be used to identify the exception.

RAISE APPLICATION ERROR (error number, message);
Where:

error numberis aninteger value orexpressionthat is returned in a variable named
sQLCODE when the procedure is executed. error number mustbe a value between
-20000and -20999.

messageis astring literal or expressionthatis returned in a variable named SQLERRM.

Foradditional information onthe sQLCcODE and SQLERRM variables, see Section 3.13,
Errors and Messages.

The following example usesthe RATSE APPLICATION ERROR procedure to displaya
different code and message depending upon the information missing froman employee.

CREATE OR REPLACE PROCEDURE verify emp (

p_empno NUMBER
)
S
v ename emp .ename$TYPE ;
v:job emp . job$TYPE;
v _mgr emp . mgr$TYPE;
v hiredate emp .hiredate$TYPE;
BEGIN
SELECT ename, job, mgr, hiredate
INTO v _ename, Vv_job, v _mgr, v _hiredate FROM emp
WHERE empno = p empno;
IF v ename IS NULL THEN
ﬁAISE_APPLICATION_ERROR(—20010, 'No name for ' || p_empno) ;
END IF;
IF v job IS NULL THEN
RAISE APPLICATION ERROR (-20020, 'No job for' || p_empno);
END IF;
IF v mgr IS NULL THEN
RAISE APPLICATION ERROR (-20030, 'No manager for ' || p_ empno) ;
END IF;
IF v_hiredate IS NULL THEN
RAISE APPLICATION ERROR (-20040, 'No hire date for ' || p empno);
END IF; - B
DBMS OUTPUT.PUT LINE ('Employee ' || p empno ||
' validated without errors') ;
EXCEPTION

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 234

Database Compatibility for Oracle® Developers Guide
WHEN OTHERS THEN
DBMSioUTPUT.PUTiLINE('SQLCODE: ' || SQLCODE) ;
| |

DBMS OUTPUT.PUT LINE ('SQLERRM: ' SQLERRM) ;
END;

The following shows the output in a case where the manager number is missing froman
employee record.

EXEC verify emp (7839);

SQLCODE: -20030
SQLERRM: EDB-20030: No manager for 7839

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 235

Database Compatibility for Oracle® Developers Guide

3.6 Transaction Control

There may be circumstances where it is desired that allupdates to a databaseare to occur
successfully, ornoneare to occurat all if any erroroccurs. A setofdatabase updates that

are to all occursuccessfully as a single unit, orare not to occuratall,is said to be a
transaction.

A common example in banking is a funds transfer between two accounts. The two parts
of the transaction are the withdrawal of funds fromone account, and the deposit ofthe
funds in another account. Both parts ofthis transaction mustoccur otherwise thebank’s
books will be out ofbalance. The deposit and withdrawal are one transaction.

An SPL application canbe created that uses a style oftransaction control compatible with
Oracle databases ifthe following conditions are met:

e Theedb stmt level txparametermustbesetto TRUE. This preventsthe
action ofunconditionally rolling back all database updates within the BEGIN/END
blockif any exceptionoccurs. See Section 1.3.4 for more information on the
edb stmt level txparameter.

e Theapplication must not be running in autocommit mode. If autocommit mode is
on, each successful database update is immediately committed and cannot be

undone. The manner in which autocommit mode is turned onor offis application
dependent.

A transactionbegins when the first SQL command is encountered in the SPL program.

All subsequent SQL commands are included as partofthat transaction. The transaction
ends whenoneofthe following occurs:

e Anunhandled exceptionoccurs in which case theeffects ofall database updates
made during the transaction are rolled back and the transactionis aborted.

e A commIT command is encountered in which case the effect ofall database
updates made during the transaction become permanent.

e A ROLLBACK command is encountered in which casethe effects ofall database
updates made during the transaction are rolled back and the transactionis aborted.
If a new SQL command is encountered, a new transaction begins.

e Controlreturns to thecalling application (suchas Java, PSQL, etc.) in which case

the action ofthe application determines whether thetransactionis committed or
rolled back.

Note: Unlike Oracle, DDL commands suchas cREATE TABLE do not implicitly occur

within their own transaction. Therefore, DDL commands do not automatically cause an
immediate database commit as in Oracle, and DDL commands may be rolled backjust

like DML commands.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 236

Database Compatibility for Oracle® Developers Guide

A transactionmay span one ormore BEGIN/END blocks, ora single BEGIN/END block
may contain one or more transactions.

The following sections discuss the coMMT T and ROLLBACK commands in more detail.

3.61 COMMIT

The comm1 T command makes all database updates made duringthe currenttransaction
permanent, and ends the current transaction.

COMMIT [WORK];

The comMT T command may be used within anonymous blocks, stored procedures, or

functions. Within an SPLprogram, it may appearin the executable section and/or the
exception section.

In the following example, the third INSERT command in the anonymous block results in
an error. The effect ofthe first two INSERT commands are retained as shown by the first
SELECT command. Even afterissuinga ROLLBACK command, the two rows remain in the

table as shown by the second sELECT command verifyingthat they were indeed
committed.

Note: Theedb stmt level tx configurationparameter showninthe example below
can be set forthe entire database usingthe ALTER DATABASE command, orit can be set
for the entire database serverby changingit in the postgresqgl.conf file.

\set AUTOCOMMIT off
SET edb stmt level tx TO on;

BEGIN
INSERT INTO dept VALUES (50, 'FINANCE', 'DALLAS');
INSERT INTO dept VALUES (60, 'MARKETING', 'CHICAGO');
COMMIT ;
INSERT INTO dept VALUES (70, 'HUMAN RESOURCES', 'CHICAGO');
EXCEPTION
WHEN OTHERS THEN
DBMS OUTPUT.PUT LINE ('SQLERRM: ' || SQLERRM) ;
DBMS OUTPUT.PUT LINE ('SQLCODE: ' || SQLCODE) ;
END;

SQLERRM: value too long for type character varying(14)
SQLCODE: 22001

SELECT * FROM dept;

deptno | dname | loc
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
30 | SALES | CHICAGO

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 237

Database Compatibility for Oracle® Developers Guide

40 | OPERATIONS | BOSTON

50 | FINANCE | DALLAS
60 | MARKETING | CHICAGO
(6 rows)
ROLLBACK;

SELECT * FROM dept;

deptno | dname | loc
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
30 | SALES | CHICAGO
40 | OPERATIONS | BOSTON
50 | FINANCE | DALLAS
60 | MARKETING | CHICAGO

(6 rows)

3.6.2 ROLLBACK

The roLLBACK command undoes all databaseupdates made during the current
transaction, and ends the current transaction.

ROLLBACK [WORK 1];

The rROLLBACK command may be used within anonymous blocks, stored procedures, or
functions. Within an SPLprogram, it may appearin the executable sectionand/orthe
exception section.

In the following example, the exception section contains a ROLLBACK command. Even
though thefirst two INSERT commands are executed successfully, thethird results in an
exception that results in the rollback ofall the TNSERT commands in the anonymous
block.

\set AUTOCOMMIT off
SET edb stmt level tx TO on;

BEGIN
INSERT INTO dept VALUES (50, 'FINANCE', 'DALLAS');
INSERT INTO dept VALUES (60, 'MARKETING', 'CHICAGO');
INSERT INTO dept VALUES (70, 'HUMAN RESOURCES', 'CHICAGO');
EXCEPTION
WHEN OTHERS THEN
ROLLBACK;
DBMS OUTPUT.PUT LINE ('SQLERRM: ' || SQLERRM) ;
DBMS_OUTPUT.PUT LINE ('SQLCODE: ' || SQLCODE) ;
END;

SQLERRM: value too long for type character varying (14)
SQLCODE: 22001

SELECT * FROM dept;

deptno | dname | loc

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 238

Database Compatibility for Oracle® Developers Guide

10 | ACCOUNTING | NEW YORK

20 | RESEARCH | DALLAS

30 | SALES | CHICAGO

40 | OPERATIONS | BOSTON
(4 rows)

The following is a more complex example using both comM1T and ROLLBACK. First, the
following stored procedureis created which inserts anew employee.

\set AUTOCOMMIT off
SET edb stmt level tx TO on;

CREATE OR REPLACE PROCEDURE emp insert (

p_empno IN emp.empno3$TYPE,
p:ename IN emp.ename3TYPE,
p_job IN emp.job%TYPE,
p mgr IN emp.mgr3TYPE,
p:hiredate IN emp.hiredate$TYPE,
p_sal IN emp.sal$TYPE,
P comm IN emp.comm%TYPE,
p:deptno IN emp.deptno$TYPE
)
IS
BEGIN
INSERT INTO emp VALUES (
p_empno,
p_ename,
p_Jjob,
p_mg r,
p hiredate,
p:sal,
p_comm,
p_deptno);

DBMS OUTPUT.PUT LINE ('Added employee...');

(' 5 o
DBMS OUTPUT.PUT LINE ('Employee # : ' || p_empno);
DBMS OUTPUT.PUT LINE ('Name : ' || p_ename);
DBMS OUTPUT.PUT LINE ('Job : ' || p job);
DBMS OUTPUT.PUT LINE ('Manager : ' || p_mgr);
DBMS OUTPUT.PUT LINE ('Hire Date : ' || p hiredate);
DBMS OUTPUT.PUT LINE ('Salary : " || p sal);
DBMS OUTPUT.PUT LINE ('Commission : ' || p comm);
DBMS OUTPUT.PUT LINE ('Dept # : ' || p_deptno);
('

DBMS OUTPUT.PUT LINE
END;

g g S S RS) ;

Note that this procedurehas no exception sectionsoany error that may occuris
propagated upto thecalling program.

The following anonymous block is run. Note the use ofthe comMm1T command afterall

calls tothe emp insert procedure andthe ROLLBACK commandin the exception
section.

BEGIN
emp insert (9601, 'FARRELL','ANALYST', 7902, '03-MAR-08"',5000,NULL,40);
emp insert(9602, 'TYLER', 'ANALYST',7900,'25-JAN-08"',4800,NULL, 40) ;
COMMIT ;

EXCEPTION

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 239

Database Compatibility for Oracle® Developers Guide

WHEN OTHERS THEN
DBMS OUTPUT.PUT LINE ('SQLERRM: ' || SQLERRM) ;

DBMS OUTPUT.PUT LINE ('An error occurred - roll back inserts');

ROLLBACK;
END;

Added employee..
Employee # : 9601

Name : FARRELL

Job : ANALYST

Manager : 7902

Hire Date : 03-MAR-08 00:00:00
Salary : 5000

Commission

Dept # : 40

Added employee. ..
Employee # : 9602

Name : TYLER

Job : ANALYST

Manager : 7900

Hire Date : 25-JAN-08 00:00:00
Salary : 4800

Commission

Dept # : 40

The following sELECT command shows thatemployees Farrelland Tyler were
successfully added.

SELECT * FROM emp WHERE empno > 9600;

empno | ename | job | mgr | hiredate | sal | comm | deptno

——————— et e e e e i
9601 | FARRELL | ANALYST | 7902 | 03-MAR-08 00:00:00 | 5000.00 | | 40
9602 | TYLER | ANALYST | 7900 | 25-JAN-08 00:00:00 | 4800.00 | | 40

(2 rows)

Now, execute the following anonymous block:

BEGIN

emp insert (9603, 'HARRISON', 'SALESMAN', 7902, '13-DEC-07"',5000,3000,20);

emp insert(9604, 'JARVIS', 'SALESMAN', 7902, '05-MAY-08"',4800,4100,11);

COMMIT ;
EXCEPTION
WHEN OTHERS THEN
DBMS OUTPUT.PUT LINE ('SQLERRM: ' || SQLERRM) ;

DBMS OUTPUT.PUT LINE ('An error occurred - roll back inserts') ;

ROLLBACK;
END;

Added employee..
Employee # : 9603

Name : HARRISON

Job : SALESMAN

Manager : 7902

Hire Date : 13-DEC-07 00:00:00
Salary : 5000

Commission : 3000

Dept # : 20

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

240

Database Compatibility for Oracle® Developers Guide

SQLERRM: insert or update on table "emp" violates foreign key constraint
"emp ref dept fk"
An error occurred - roll back inserts

A sLECT command run againstthe table yields the following:

SELECT * FROM emp WHERE empno > 9600;

empno | ename | job | mgr | hiredate | sal | comm | deptno

——————— B it et i et
9601 | FARRELL | ANALYST | 7902 03-MAR-08 00:00:00 5000.00 40
9602 | TYLER | ANALYST | 7900 | 25-JAN-08 00:00:00 | 4800.00 | | 40

(2 rows)

The rROLLBACK command in the exception section successfully undoes the insertof
employee Harrison. Alsonote that employees Farrelland Tylerare stillin the table as

their inserts were made permanentby the coMMIT command in the first anonymous
block.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 241

Database Compatibility for Oracle® Developers Guide

3.7 Dynamic SQL

Dynamic SQOL 1s atechniquethatprovides the ability to execute SQL commands that are
not known untilthe commands are aboutto be executed. Up to this point, the SQL
commands thathave been illustrated in SPLprograms have been static SQL- the full
command (with the exception ofvariables) mustbe knownand coded into the program

before the program, itself, can begin to execute. Thus using dynamic SQL, the executed
SQL can change during programruntime.

In addition, dynamic SQL is the only method by which data definition commands, such
as CREATE TABLE,can be executed fromwithin an SPL program.

Note, however, that the runtime performance of dynamic SQL will be slower than static
SQL.

The EXECUTE IMMEDIATE command is usedto run SQLcommands dynamically.

EXECUTE IMMEDIATE 'sgl expression;'
[INTO { variable [, ...] | record }]
[USING expression [, ...]]

sgl expressionisastring expression containing the SQL command to be
dynamically executed. variablereceivesthe output ofthe result set, typically froma
SELECT command, created as aresult ofexecutingthe SQL command in
sgl_expression.The number, order, andtype of variables must match the number,
order, and be type-compatible with the fields oftheresult set. Alternatively, a record can
be specified as longas the record’s fields match the number, order, and are type -
compatible with the result set. Whenusingthe INTO clause, exactly onerow must be
returned in the result set, otherwise an exception occurs. Whenusingthe us NG clause
the value of expressionis passed to a placeholder. Placeholders appear embedded
within the SQL command in sq1 expression where variables may be used.
Placeholders are denoted by an identifier with a colon (:) prefix - : name. The number,
order, and resultant data types of the evaluated expressions must match the number, order
and be type-compatible with the placeholdersin sg1 expression.Note that

placeholders are not declared anywhere in the SPL program— they only appearin
sgl expression.

The following example shows basic dynamic SQL commands as string literals.

DECLARE
v sqgl VARCHAR?Z (50) ;
BEGIN
EXECUTE IMMEDIATE 'CREATE TABLE job (jobno NUMBER (3),' ||

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 242

Database Compatibility for Oracle® Developers Guide

' jname VARCHARZ2 (9)) ';

v_sqgl := '"INSERT INTO job VALUES (100, ''ANALYST'')';
EXECUTE IMMEDIATE v_sql;
v_sgl := 'INSERT INTO job VALUES (200, ''CLERK'')"';
EXECUTE IMMEDIATE v_sql;

END;

The following example illustrates the UsING clause topass values to placeholders in the
SQL string.

DECLARE
v_sql VARCHAR2 (50) := 'INSERT INTO job VALUES ' ||
'(:p jobno, :p jname)';
v_jobno job.jobna%TYPE; -
V_Jjname job.jname$TYPE;
BEGIN
v_jobno := 300;
vV jname : 'MANAGER' ;
EXECUTE IMMEDIATE v_sql USING v_jobno, v_jname;
v_jobno := 400;
v jname := 'SALESMAN';
EXECUTE IMMEDIATE v_sql USING v_jobno, v_Jjname;
v jobno := 500;
v_jname := 'PRESIDENT';
EXECUTE IMMEDIATE v _sgl USING v_jobno, v_jname;
END;

The following example shows boththe 18T0 and USING clauses. Note the last execution
ofthe sELECT command returns the results intoa record instead ofindividual variables.

DECLARE
v_sql VARCHAR2 (60) ;
v_jobno job.jobno%TYPE;
V_Jjname job.jname$TYPE;
r job JObSROWT Y PE ;
BEGIN
DBMS OUTPUT.PUT LINE ('JOBNO JNAME ') ;
DBMS OUTPUT.PUT LINE ('----- sooos=s V)
v sgql := 'SELECT jobno, jname FROM job WHERE jobno = :p jobno';
EXECUTE IMMEDIATE v_sgl INTO v_jobno, v_jname USING 100;
DBMS OUTPUT.PUT LINE (v_jobno || ' ' || v_Jjname);
EXECUTE IMMEDIATE v sgl INTO v jobno, v jname USING 200;
DBMS OUTPUT.PUT LINE (v_jobno || ' " || v_jname);
EXECUTE IMMEDIATE v sgl INTO v jobno, v jname USING 300;
DBMS OUTPUT.PUT LINE (v_jobno || ' T || v_jname);
EXECUTE IMMEDIATE v_sgl INTO v_jobno, v _jname USING 400;
DBMS OUTPUT.PUT LINE (v jobno || ' ' || v_jname);
EXECUTE IMMEDIATE v_sgl INTO r job USING 500;
DBMS OUTPUT.PUT LINE (r job.jobno || ' ' || r job.jname);
END;

The following is the outputfromthe previous anonymous block:

JOBNO JNAME
100 ANALYST
200 CLERK
300 MANAGER
400 SALESMAN

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 243

Database Compatibility for Oracle® Developers Guide

500 PRESIDENT
You canusetheRULK COLLECT clauseto assemble theresult setfroman EXECUTE

IMMEDIATE statement into a named collection. See Section3.12.4, EXECUTE
IMMEDIATE BULK COLLECT for information about usingthe BULK COLLECT clause.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 244

Database Compatibility for Oracle® Developers Guide

3.8 Static Cursors

Ratherthan executing a whole query at once, it is possible to set up a cursor that
encapsulates the query, and thenread the query result set one row at a time. This allows
the creation of SPL programlogic that retrieves a row from the result set, does some
processing onthe datain that row, and then retrieves the next row and repeats the
process.

Cursors are most often used in the context ofa FOR orwHILE loop. A conditional test
shouldbe included in the SPLIogic that detects whenthe end ofthe result set has been
reached sothe programcan exit the loop.

3.8.1 Declaring a Cursor

In orderto use a cursor, it must first be declared in the declaration sectionofthe SPL
program. A cursordeclaration appears as follows:

CURSOR name IS query;

name 18 an identifier that will be used to reference the cursorand its result setlaterin the
program. queryis a SQL sELECT command that determines the result set retrievable by
the cursor.

Note: An extension ofthis syntaxallows the use of parameters. This is discussed in more
detailin Section 3.8.8.

The following are some examples of cursor declarations:

CREATE OR REPLACE PROCEDURE cursor example
IS B
CURSOR emp cur 1 IS SELECT * FROM emp;
CURSOR emp cur 2 IS SELECT empno, ename FROM emp;
CURSOR emp cur 3 IS SELECT empno, ename FROM emp WHERE deptno = 10
ORDER BY empno;
BEGIN

R
3.8.2 Openinga Cursor

Before a cursorcan beused toretrieve rows, it must first be opened. This is accomplished
with the OPEN statement.

OPEN name;
name is the identifier ofa cursorthat has been previously declared in the declaration

section ofthe SPLprogram. The 0PEN statement mustnotbe executed ona cursorthat
has already been, and stillis open.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 245

Database Compatibility for Oracle® Developers Guide

The following shows an 0PEN statement with its corresponding cursor declaration.

CREATE OR REPLACE PROCEDURE cursor example
Is B
CURSOR emp cur 3 IS SELECT empno, ename FROM emp WHERE deptno = 10
ORDER BY empno;
BEGIN

OPEN emp cur 3;

END;
3.8.3 Fetching Rows From a Cursor

Once a cursor has beenopened, rows canbe retrieved fromthe cursor’s result set by
using the FETCH statement.

FETCH name INTO { record | variable [, variable 2]1... };

name is the identifier ofa previously opened cursor. recordis the identifierofa
previously definedrecord (forexample, using tab1e%ROWTYPE). variable,
variable 2...are SPL variables thatwill receive the field data fromthe fetchedrow.
The fields in recordorvariable,variable 2.. mustmatch in numberand order,
the fields returned in the SELECT list ofthe query givenin the cursor declaration. The

data types ofthe fields in the sELECT list must match, orbe implicitly convertible to the
datatypes ofthe fields in recordorthe datatypesofvariable,variable 2..

Note: There is a variation of FETCH INTO using the BULK COLLECT clause that can
return multiple rows at a time into a collection. See Section 3.12.4 for more information
onusing theBULK COLLECT clause with the FETCH INTO statement.

The following shows the FETCH statement.

CREATE OR REPLACE PROCEDURE cursoriexample
IS
vV_empno NUMBER (4) ;
v_ename VARCHAR2 (10) ;
CURSOR emp cur 3 IS SELECT empno, ename FROM emp WHERE deptno = 10
ORDER BY empno;
BEGIN
OPEN emp cur 3;
FETCH emg_cu;_3 INTO v_empno, Vv_ename;

END;

Instead ofexplicitly declaring the data type ofa target variable, $TYPE can be used
instead. In this way, ifthe data type ofthe database column is changed, thetarget variable

declaration in the SPL programdoes not have to bechanged. Ty PE will automatically
pick up the new datatype ofthe specified column.

CREATE OR REPLACE PROCEDURE cursor example
IS
Vv_empno emp . empno$TYPE ;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 246

Database Compatibility for Oracle® Developers Guide

vV_ename emp . ename$TYPE ;
CURSOR emp cur 3 IS SELECT empno, ename FROM emp WHERE deptno = 10
ORDER BY empno;
BEGIN
OPEN emp cur 3;
FETCH emp cur 3 INTO v_empno, V_ename;

END;

If all the columns in a table are retrieved in the order defined in the table, SROWTYPE can

beused to define arecord into which the FETCH statement will place the retrieved data.
Each field within the record can then be accessed using dot notation.

CREATE OR REPLACE PROCEDURE cursor example

IS
V_emp rec emp $ROWTYPE ;
CURSOR emp cur 1 IS SELECT * FROM emp;
BEGIN -
OPEN emp cur 1;
FETCH emgicugil INTO v_emp rec;
DBMS OUTPUT.PUT LINE ('Employee Number: ' || v_emp rec.empno);
DBMS OUTPUT.PUT LINE ('Employee Name : ' || v_emp rec.ename);
END;

3.8.4 Closing a Cursor

Once all the desired rows have beenretrieved fromthe cursorresult set, the cursor must

be closed. Once closed, the result set is no longeraccessible. The cLOSE statement
appears as follows:

CLOSE name;

name is the identifier ofa cursorthat is currently open. Oncea cursoris closed, it must

not be closedagain. However, once the cursoris closed, the 0PEN statementcan be
issuedagain onthe closed cursorand the query result set will be rebuilt after which the
FETCH statementcan then beusedto retrieve the rows ofthe newresult set.

The following example illustrates the use ofthe cLOSE statement:

CREATE OR REPLACE PROCEDURE cursor example

Is
vV _emp rec emp $ROWTYPE ;
CURSOR emp cur 1 IS SELECT * FROM emp;
BEGIN
OPEN emp cur 1;
FETCH emgicuzil INTO v_emp rec;
DBMS OUTPUT.PUT LINE ('Employee Number: ' || v_emp rec.empno);
DBMS OUTPUT.PUT LINE ('Employee Name : ' || v emp rec.ename);
CLOSE emp cur 1; -
END;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 247

Database Compatibility for Oracle® Developers Guide

This procedure produces the following output when invoked. Employee number 7369,
sMITH s the firstrowofthe result set.

EXEC cursor example;

Employee Number: 7369
Employee Name : SMITH

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 248

Database Compatibility for Oracle® Developers Guide

3.8.5 Using YROWTYPE With Cursors

Using the sROWT Y PE attribute, a record canbe defined that contains fields corresponding
to all columns fetched froma cursoror cursor variable. Each field takes on thedatatype

of its corresponding column. The $rRoWTY PE attribute is prefixed by a cursorname or
cursorvariable name.

record cursor%sROWTYPE;

recordis anidentifier assigned to the record. cursoris an explicitly declared cursor
within the current scope.

The following example shows how you canuse a cursor with $ROWTYPE to get
information about which employee works in which department.

CREATE OR REPLACE PROCEDURE emp info
Is B
CURSOR empcur IS SELECT ename, deptno FROM emp;
myvar empcur $SROWTYPE ;
BEGIN
OPEN empcur;
LOOP
FETCH empcur INTO myvar;
EXIT WHEN empcur3$NOTFOUND;
DBMS OUTPUT.PUT_LINE (myvar.ename || ' works in department '
| | myvar.deptno);
END LOOP;
CLOSE empcur;
END;

The following is the output fromthis procedure.

EXEC emp info;

SMITH works in department 20
ALLEN works in department 30
WARD works in department 30
JONES works in department 20
MARTIN works in department 30
BLAKE works in department 30
CLARK works in department 10
SCOTT works in department 20
KING works in department 10
TURNER works in department 30
ADAMS works in department 20
JAMES works in department 30
FORD works in department 20
MILLER works in department 10

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 249

Database Compatibility for Oracle® Developers Guide

3.8.6 Cursor Attributes

Each cursorhas a set of attributes associated with it that allows the programto test the

state ofthe cursor. Theseattributes are $ I SOPEN, $FOUND, $NOTFOUND, and
$ROWCOUNT. These attributes are described in the following sections.

3.8.6.1 %ISOPEN

The $1s0PEN attribute is used to testwhether ornot a cursoris open.
cursor namesISOPEN

cursor nameis thename ofthe cursor for which a BooLEAN data type of TRUE will be
returned ifthe cursoris open, FALSE otherwise.

The following is an example of using $ T SOPEN.

CREATE OR REPLACE PROCEDURE cursor example
1S

CURSOR emp cur 1 IS SELECT * FROM emp;

BEGIN

IF emp cur 1%ISOPEN THEN
NULL;

ELSE
OPEN emp cur 1;

END IF; -

FETCH emp cur 1 INTO ...

END;

3.8.6.2 % FOUND

The srounD attribute is usedto testwhether ornota row is retrieved fromthe result set
of the specified cursoraftera FETCH on the cursor.

cursor namesFOUND

cursor name is the name ofthe cursor for which a BooLEAN data type of TRUE will be
returned ifarow is retrieved fromthe result setofthe cursoraftera FETCH.

Afterthe lastrowofthe result set has been FETcHed the next FETCH results in $FOUND

returning FALSE. FALSE is also returned after the first FETCH if there are no rows in the
result set to begin with.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 250

Database Compatibility for Oracle® Developers Guide

Referencing $ FOUND on a cursor before it is opened or afterit is closed results in an
INVALID CURSOR exception beingthrown.

$FOUND returns nul1 if it is referenced whenthe cursoris open, but before the first
FETCH.

The following example uses $FOUND.

CREATE OR REPLACE PROCEDURE cursor example
IS
V_emp rec emp $ROWTYPE ;
CURSOR emp cur 1 IS SELECT * FROM emp;
BEGIN
OPEN emp cur 1;
DBMS OUTPUT.PUT LINE ('EMPNO ENAME ') ;
DBMS OUTPUT.PUT LINE ('----- comso==U) o
FETCH empicurililNTO V_emp rec;
WHILE emp cur 13FOUND LOOP
DBMS OUTPUT.PUT LINE (v _emp rec.empno || ' ' || v_emp rec.ename);
FETCH emp cur 1 INTO v _emp rec;
END LOOP;
CLOSE emp cur 1;
END;

When theprevious procedure is invoked, the output appears as follows:

EXEC cursor example;

EMPNO ENAME
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAME S
7902 FORD
7934 MILLER

3.8.6.3 %NOTFOUND

The $NOTFOUND attributeis the logical opposite of $FOUND.

cursor namesNOTFOUND

cursor nameis thename ofthe cursor for which a BooLEAN data type of FALSE will
bereturned ifarow is retrieved fromthe result setofthe cursoraftera FETCH.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 251

Database Compatibility for Oracle® Developers Guide

Afterthe lastrowofthe result set has been FETcHed the next FETCH results in

$NOTFOUND returning TRUE. TRUE is also returned after the first FETCH if there are no
rows in the result set tobegin with.

Referencing $NOTFOUND on a cursor before it is opened or afterit is closed, results in an
INVALID CURSOR exception beingthrown.

$NOTFOUND returns nul1 ifit is referenced when the cursoris open, butbeforethe first
FETCH.

The following example uses $NOTFOUND.

CREATE OR REPLACE PROCEDURE cursor example

IS
V_emp rec emp $ROWTYPE ;
CURSOR emp cur 1 IS SELECT * FROM emp;
BEGIN
OPEN emp cur 1;
DBMS OUTPUT.PUT LINE ('EMPNO ENAME') ;
DBMS OUTPUT.PUT LINE ('-—---- —————==");
LOOP -
FETCH emp cur 1 INTO v _emp rec;
EXIT WHEN emp cur 1%$NOTFOUND;
DBMS_OUTPUT.PET_LENE(v_emp_rec.empno (- ' || v_emp rec.ename);
END LOOP;
CLOSE emp cur 1;
END; I

Similar to the prior example, this procedure produces the same output when invoked.

EXEC cursor example;

EMPNO ENAME
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 252

Database Compatibility for Oracle® Developers Guide
3.8.6.4 % ROWCOUNT

The $ROWCOUNT attributereturns an integer showing the number ofrows FETCHed so far
from the specified cursor.

cursor namesROWCOUNT

cursor name is the name ofthe cursor for which $roWCOUNT returns thenumber of

rows retrieved thus far. A fterthe lastrow has beenretrieved, $ROWCOUNT remains set to
the totalnumber ofrows returned until the cursor is closed at which point $ROWCOUNT
will throwan INVALID CURSOR exception ifreferenced.

Referencing $ROWCOUNT on a cursor before it is opened or afteritis closed, results in an
INVALID CURSOR exception beingthrown.

$ROWCOUNT returns 0 if it is referenced whenthe cursoris open, but before the first

FETCH. $ROWCOUNT also returns 0 afterthe first FETCH when there are no rows in the
result set to begin with.

The following example uses $ROWCOUNT.

CREATE OR REPLACE PROCEDURE cursor example

IS
v_emp rec emp $ROWTYPE ;
CURSOR emp cur 1 IS SELECT * FROM emp;
BEGIN -
OPEN emp cur 1;
DBMS OUTPUT.PUT LINE ('EMPNO ENAME') ;
DBMSioUTPUT.PUTiLINE('————— meomo==) 2
LOOP
FETCH emp cur 1 INTO v _emp rec;
EXIT WHEN emp cur 1%NOTFOUND;
DBMS OUTPUT.PUT LINE (v emp rec.empno || ' ' || v emp rec.ename) ;
END LOOP; B - -
DBMS OUTPUT'PUT LINE (' khk khkhk hkhkkh kkh kkhhkhk vk vk xk*x k!) ;
DBMSiOUTPUT.PUT:LINE(empicuril%ROWCOUNT || ' rows were retrieved');
CLOSE emp cur 1;
END;

This procedureprints thetotalnumber ofrows retrieved at the end ofthe employee list as
follows:

EXEC cursor example;

EMPNO ENAME
7369 SMITH
7499 ALLEN
7521 WARD

7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 253

Database Compatibility for Oracle® Developers Guide

7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAME S
7902 FORD
7934 MILLER

Kk hkk kK Ak ok Ak Ak k Ak k Ak k% k% %

14 rows were retrieved

3.8.6.5 Summary of Cursor States and Attributes

The following table summarizes the possible cursor states and the values returned by the
cursor attributes.

Table 4-3-3 Cursor Attributes

Cursor State %ISOPEN %FOUND %NOTFOUND %ROWCOUNT
INVALID CURSOR INVALID CURSOR INVALID CURSOR
Before OPEN False . . .
[Exception [Exception Exception
After OPEN & Before
True INull INull 0
Ist FETCH
After 1st Successful
FETCH True True False 1
After nth Successful
True True False n
FETCH (last row)
A ff +1st FETCH
er s True False True n
(afier last row)
INVALID CURSOR INVALID CURSOR INVALID CURSOR
After CLOSE False E . = . = .
xception Exception Exception

3.8.7 CursorFOR Loop

In the cursorexamples presented so far, the programming logic required to process the
result set ofa cursorincluded a statementto openthe cursor, a loop constructto retrieve
each rowoftheresult set,atest forthe end ofthe result set, and finally a statementto

close the cursor. The cursor FOR loop is aloop construct that eliminates the need to
individually codethe statements just listed.

The cursor FOR loop opens a previously declared cursor, fetches allrows in the cursor
result set, and then closes the cursor.

The syntaxforcreating a cursor FOR loop is as follows.

FOR record IN cursor

LOOP
statements

END LOOP;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 254

Database Compatibility for Oracle® Developers Guide

recordis anidentifier assigned to an implicitly declared record with definition,

cursor$ROWTYPE. cursoris thename ofa previously declared cursor. statements
are one ormore SPL statements. There mustbe at leastonestatement.

The following example shows theexample from Section 3.8.6.3, modified to use a cursor
FOR loop.

CREATE OR REPLACE PROCEDURE cursor example

Is
CURSOR emp cur 1 IS SELECT * FROM emp;
BEGIN
DBMS OUTPUT.PUT LINE ('EMPNO ENAME ') ;
DBMS OUTPUT.PUT LINE ('---—- —memm)
FOR v_emp rec IN emp cur 1 LOOP
DBMS OUTPUT.PUT LINE (v _emp rec.empno || ' ' || v_emp rec.ename);
END LOOP;
END;

The same results are achieved as shown in the output below.

EXEC cursor example;

EMPNO ENAME
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MART IN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAME S
7902 FORD
7934 MILLER

3.8.8 Parameterized Cursors

A usercan also declare a static cursor thataccepts parameters, and can passvalues for
thoseparameters when opening that cursor. In the following example we have created a
parameterized cursor which willdisplay the name and salary ofallemployees fromthe
emp table that have a salaryless than a specified value which is passed as a parameter.

DECLARE
my record emp $ROWTYPE ;
CURSOR c1 (max wage NUMBER) IS
SELECT * FROM emp WHERE sal < max wage;
BEGIN B
OPEN c1(2000);
LOOP
FETCH cl INTO my record;
EXIT WHEN cl$NOTFOUND;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 255

Database Compatibility for Oracle® Developers Guide

DBMS OUTPUT.PUT LINE ('Name = ' || my record.ename || ', salary = '
| | my record.sal) ;
END LOOP;
CLOSE cl;

END;

So for example if we pass the value 2000 as max wage, then we will only be shown the
name and salary ofallemployees that have a salary less than 2000. The result ofthe
above query is the following:

Name = SMITH, salary = 800.00
Name = ALLEN, salary = 1600.00
Name = WARD, salary = 1250.00
Name = MARTIN, salary = 1250.00
Name = TURNER, salary = 1500.00
Name = ADAMS, salary = 1100.00
Name = JAMES, salary = 950.00
Name = MILLER, salary = 1300.00

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 256

Database Compatibility for Oracle® Developers Guide
3.9 REF CURSORs and Cursor Variables

This section discusses another type of cursor thatprovides far greater flexibility than the
previously discussed static cursors.

3.9.1 REF CURSOR Overview

A cursorvariable s a cursor that actually contains a pointerto a query result set. The

result set is determined by the executionofthe 0PEN FOR statementusing the cursor
variable.

A cursorvariable is nottied to a single particular query like a static cursor. The same

cursor variable may be openeda number oftimes with OPEN FOR statements containing
different queries. Each time, a newresult setis created fromthat query and made
available via the cursor variable.

REF CURSOR typesmay be passedas parameters to or fromstored procedures and
functions. The returntype ofa function may also be a REF CURSOR type. This provides
the capability to modularize the operations on a cursor into separate programs by passing
a cursor variable between programs.

3.9.2 Declaring a Cursor Variable

SPL supports thedeclaration ofa cursor variable usingboth the sys REFCURSOR built-
in datatypeas wellas creatingatype of REF CURSOR and then declaringa variable of

thattype. sYs REFCURSORIS aREF CURSOR typethatallowsanyresultsettobe
associated with it. This is known as a weakly-typed REF CURSOR.

Only the declarationofsys REFCURSOR anduser-defined REF CURSOR variables are
different. The remaining usage like openingthe cursor, selecting into the cursorand
closing the cursoris the same across boththe cursortypes. Forthe rest ofthis chapter our

examples will primarily be making use ofthe sys REFCURSOR cursors. Allyou needto

changein the examples to make themwork for userdefined REF CURSORS is the
declaration section.

Note: Strongly-typed REF CURSORS require the result setto conformto a declared
number and order of fields with compatible datatypes and canalso optionally returna
result set.

3.9.2.1 Declaring aSYS REFCURSOR Cursor Variable

The following is the syntaxfor declaringa sys REFCURSOR cursor variable:

name SYS REFCURSOR;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 257

Database Compatibility for Oracle® Developers Guide

name is an identifier assigned to the cursor variable.

The following is an example of a SYS REFCURSOR variable declaration.

DECLARE
emp refcur SYS REFCURSOR;

3.9.2.2 Declaring a User Defined REF CURSOR Type Variable

You must performtwo distinctdeclaration steps in orderto use auserdefined REF
CURSOR variable:

o Create areferenced cursor TYPE
e Declare the actual cursor variable based onthat TYPE

The syntaxforcreating auserdefined REF CURSOR typeis as follows:

TYPE cursor type name IS REF CURSOR [RETURN return type];

The following is an example of a cursor variable declaration.

DECLARE
TYPE emp cur type IS REF CURSOR RETURN emp$ROWTYPE;
my rec emp cur type;

3.9.3 Openinga Cursor Variable

Once a cursor variable is declared, it must be opened with an associated SELECT

command. The OPEN FOR statementspecifies the SELECT command to be used to create
theresult set.

OPEN name FOR query;

name 1s the identifier ofa previously declared cursor variable. qgueryis a SELECT

command that determines the result set when the statement is executed. The value ofthe
cursorvariable afterthe oPEN FOR statementis executedidentifies the result set.

In the following example, the result setis a list of employee numbers and names froma
selected department. Notethat a variable or parameter can be used in the SELECT
command anywhere an expression cannormally appear. In this case a parameteris used
in the equality test for department number.

CREATE OR REPLACE PROCEDURE empibyidept (
p_deptno emp .deptno%TYPE

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 258

Database Compatibility for Oracle® Developers Guide

)
IS
emp refcur SYS REFCURSOR;
BEGIN
OPEN emp refcur FOR SELECT empno, ename FROM emp WHERE deptno = p deptno;

3.9.4 Fetching Rows From a Cursor Variable

Afteracursorvariable is opened, rows may be retrieved fromthe result set using the

FETCH statement. See Section 3.8.3 for details on using the FETCH statement toretrieve
rows fromaresult set.

In the example below, a FETCH statementhas been added to the previous example so now
the result setis returned into two variables and then displayed. Notethatthe cursor

attributes used to determine cursor state of static cursors can also be used with cursor
variables. See Section 3.8.6 for details on cursor attributes.

CREATE OR REPLACE PROCEDURE emp by dept (

p_deptno emp .deptno%TYPE

)

1S
emp refcur SYS REFCURSOR;
v_empno emp . empno$TYPE;
vV _ename emp .ename$TYPE;

BEGIN
OPEN emp refcur FOR SELECT empno, ename FROM emp WHERE deptno = p_deptno;
DBMS OUTPUT.PUT LINE ('EMPNO ENAME ') ;
DBMS OUTPUT.PUT LINE ('----- cme—=e=T)) g
LOOP

FETCH empﬁrefcur INTO v_empno, Vv_ename;

EXIT WHEN emp refcur$NOTFOUND;

DBMS OUTPUT.PUT LINE (v empno || ' '|] v ename);
END LOOP; B - a

3.9.5 Closing a Cursor Variable
Usethe cLosE statementdescribed in Section 3.8.4to release the result set.

Note: Unlike static cursors, a cursor variable does not haveto be closed before it can be
re-openedagain. The result set fromthe previous open will be lost.

The example is completed with the additionofthe cLOSE statement.

CREATE OR REPLACE PROCEDURE emp by dept (

p_deptno emp .deptno$TYPE
)
IS
emp refcur SYS REFCURSOR;
V_empno emp . empno $TYPE ;
V_ename emp . ename $TYPE ;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 259

Database Compatibility for Oracle® Developers Guide

BEGIN
OPEN emp refcur FOR SELECT empno,
DBMSiOUTEUT.PUTiLINE('EMPNO
DBMS OUTPUT.PUT LINE ('-—----
LOOP B
FETCH emp refcur INTO v _empno,
EXIT WHEN emp refcur%$NOTFOUND;
DBMS_OUTPUT.PET_LINE(v_empno [' L
END LOOP;
CLOSE emp refcur;
END; B

ename FROM emp WHERE deptno =
ENAME ') ;

soem===T)

p_deptno;

V_ename;

v_ename) ;

The following is the output when this procedure is executed.

EXEC emp by dept (20)

EMPNO ENAME
7369 SMITH
7566 JONES
7788 SCOTT
7876 ADAMS
7902 FORD

3.9.6 Usage Restrictions

The following are restrictions on cursor variable us age.

e Comparison operators cannotbe used to testcursor variables for equality,
inequality, null, ornot null

e Null cannot be assigned to a cursor variable
The value ofa cursor variable cannot be stored in a database column

Static cursors and cursor variables are not interchangeable. Forexample, a static
cursor cannot be used in an OPEN FOR statement.

In addition the following table shows the permitted parameter modes fora cursor variable
used as a procedure or function parameter depending upon the operations on the cursor

variable within the procedure or function.

Table 4-3-4 Permitted Cursor Variable Parameter Modes

Operation IN IN OUT ouT
OPEN No Yes [No
FETCH Yes Yes No
CLOSE Yes Yes INo

So for example, if a procedure performs all three operations, OPEN FOR, FETCH, and

CLOSE on a cursor variable declared as the procedure’s formal parameter, then that
parameter must be declared with TN ouT mode.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

260

Database Compatibility for Oracle® Developers Guide

3.9.7 Examples

The following examples demonstrate cursor variable usage.

3.9.7.1 Returning a REF CURSOR From a Function

In the following example the cursor variable is opened with a query thatselects

employees

with a givenjob. Note that the cursor variable is specified in this function’s

RETURN statementso the result set is made available to the caller of the function.

CREATE OR REPLACE FUNCTION emp by job (p_job VARCHAR2)
RETURN SYS REFCURSOR

IS
emp
BEGIN
OPEN

refcur SYS REFCURSOR;

emp refcur FOR SELECT empno, ename FROM emp WHERE job = p job;

RETURN emp refcur;

END;

This functionis invokedin the following anonymous block by assigning the function’s

return value to a cursor variable declared in the anonymous block’s declaration section.
Theresult setis fetched using this cursor variable and then it is closed.

DECLARE

v_empno emp . empno$TYPE;

v_en

ame emp .ename$TYPE;

v_job emp . job$TYPE := 'SALESMAN';
v_emp refcur SYS REFCURSOR;

BEGIN
DBMS
DBMS
DBMS

_OUTPUT.PUT LINE ('EMPLOYEES WITH JOB ' || v_job);
_OUTPUT .PUT LINE ('EMPNO ENAME') ;
_OUTPUT.PUT LINE ('----- ————e== T p

v _emp refcur := emp by job(v_job);

LOOP

END
CLOS
END;

FETCH v_emp refcur INTO v _empno, V_ename;

EXIT WHEN v emp refcur$NOTFOUND;

DBMS OUTPUT.PUT LINE (v_empno || ' " || v_ename);
LOOP;

E v _emp refcur;

The following is the output when the anonymous block is executed.

EMPLOYEE
EMPNO
7499
7521
7654
7844

S WITH JOB SALESMAN
ENAME

ALLEN
WARD

MART IN
TURNER

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 261

Database Compatibility for Oracle® Developers Guide

3.9.7.2 Modularizing Cursor Operations

The following example illustrates how the various operations on cursor variables canbe
modularized into separate programs.

The following procedure opens the given cursor variable with a SELECT command that
retrieves allrows.

CREATE OR REPLACE PROCEDURE open _all emp (

p_emp refcur IN OUT SYS REFCURSOR
)
IS
BEGIN
OPEN p emp refcur FOR SELECT empno, ename FROM emp;
END;

This variation opens the given cursor variable with a SELECT command that retrieves all
rows, but ofa given department.

CREATE OR REPLACE PROCEDURE open emp by dept (

p_emp refcur IN OUT SYS REFCURSOR,
p_deptno emp .deptno%TYPE

)

S

BEGIN

OPEN p emp refcur FOR SELECT empno, ename FROM emp
WHERE deptno = p_deptno;
END;

This third variation opens the given cursor variable with a SELECT command that

retrieves allrows, but froma different table. Also notethatthe function’s returnvalue is
the opened cursor variable.

CREATE OR REPLACE FUNCTION open dept (

p_dept refcur IN OUT SYS REFCURSOR
) RETURN SYS REFCURSOR
Is B

v dept refcur SYS REFCURSOR;
BEGIN B B

v_dept refcur := p dept refcur;

OPEN v _dept refcur FOR SELECT deptno, dname FROM dept;
RETURN v _dept refcur;
END;

This procedure fetches and displays a cursor variable result setconsisting ofemployee
number and name.

CREATE OR REPLACE PROCEDURE fetch emp (

p_emp refcur IN OUT SYS REFCURSOR
)
IS
V_empno emp . empno $TYPE;
v ename emp .ename$TYPE ;
BEGIN
DBMS OUTPUT.PUT LINE ('EMPNO ENAME ') ;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 262

Database Compatibility for Oracle® Developers Guide

DBMS OUTPUT.PUT LINE ('----- soo=s==)
LOOP
FETCH p emp refcur INTO v _empno, V_ename;
EXIT WHEN p emp refcur$NOTFOUND;
DBMS OUTPUT.PUT LINE (v_empno || ' "o
END LOOP;
END;

This procedure fetches and displays a cursor variable result setconsisting of department

numberand name.

CREATE OR REPLACE PROCEDURE fetch dept (
p_dept refcur IN SYS REFCURSOR
)
IS
v deptno dept .deptno%STYPE;
v:dname dept .dname$TYPE;
BEGIN
DBMS OUTPUT.PUT LINE ('DEPT DNAME"') ;
DBMS OUTPUT.PUT LINE ('-—-- —emme—ee) g
LOOP
FETCH p dept refcur INTO v _deptno, v_dname;
EXIT WHEN p dept refcur3NOTFOUND;
DBMS OUTPUT.PUT LINE (v deptno || ']
END LOOP; a a
END;

This procedurecloses thegiven cursor variable.

CREATE OR REPLACE PROCEDURE close refcur (
p_refcur IN OUT SYS REFCURSOR

)

IS

BEGIN
CLOSE p refcur;

END;

The following anonymous block executes all the previously described programs.

DECLARE
gen refcur SYS REFCURSOR;
BEGIN B
DBMS OUTPUT.PUT LINE ('ALL EMPLOYEES');
open:all_emp(geg_refcur);
fetch emp (gen refcur);
DBMS OUTPUT.PUT LINE ('*****x*x*xxxxxxkxxxl) ;

DBMS OUTPUT.PUT LINE ('EMPLOYEES IN DEPT #10"') ;
open emp by dept (gen refcur, 10);
fetcE_emE(ggn_refcurT;

DBMS_ OUTPUT . PUT LINE ('*** %k k %k xkkkokk 4k 1) ;

DBMSioUTPUT.PUTiLINE('DEPARTMENTSW;
fetch dept(open dept (gen refcur)) ;
DBMS OUTPUT . PUT LINE (' ** % %k k %k %% % xk kkk %1) ;

close refcur (gen refcur) ;
END;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

263

Database Compatibility for Oracle® Developers Guide
The following is the output fromthe anonymous block.

ALL EMPLOYEES

EMPNO ENAME
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MART IN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAME S
7902 FORD
7934 MILLER

kk kK ok kk ok kk Ak ok kK K

EMPLOYEES IN DEPT #10

EMPNO ENAME
7782 CLARK
7839 KING
7934 MILLER
Kok Kk ok ok kok k Kk Kk ok koK Kk
DEPARTMENTS

DEPT DNAME

10 ACCOUNTING
20 RESEARCH
30 SALES

40 OPERATIONS

Kk kk kK hkkhk khkk kK Kk kk kK

3.9.8 Dynamic Queries With REF CURSORs

Advanced Server also supports dynamic queries viathe OPEN FOR USING statement. A

string literal or string variable is supplied in the OPEN FOR USING statement to the
SELECT command.

OPEN name FOR dynamic string
[USING bind arg [, bind arg 2] ...];

name 1s the identifier ofa previously declared cursor variable. dynamic stringisa

string literal or string variable containinga sELECT command (without the terminating
semi-colon). bind arg,bind arg 2...arebind argumentsthat are usedto pass

variables to corresponding placeholders in the SELECT command whenthe cursor
variable is opened. The placeholders are identifiers prefixed by a colon character.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 264

Database Compatibility for Oracle® Developers Guide

The following is an example of a dynamic query usinga string literal.

CREATE OR REPLACE PROCEDURE dept query
IS
emp refcur SYS REFCURSOR;
vV _empno emp . empno$TYPE ;
v:ename emp . ename $TYPE;
BEGIN
OPEN emp refcur FOR 'SELECT empno, ename FROM emp WHERE deptno = 30' ||
' AND sal >= 1500';
DBMS OUTPUT.PUT LINE ('EMPNO ENAME') ;
DBMS OUTPUT.PUT LINE ('----- sso====U) g
LOOP a
FETCH emp refcur INTO v empno, Vv ename;
EXIT WHEN emp refcur$NOTFOUND;
DBMS OUTPUT.PUT LINE (v_empno || ' ' || v_ename);
END LOOP;
CLOSE emp refcur;
END;

The following is the outputwhen the procedure is executed.

EXEC dept query;

EMPNO ENAME
7499 ALLEN
7698 BLAKE
7844 TURNER

In the next example, the previous query is modified to usebind arguments to pass the
query parameters.

CREATE OR REPLACE PROCEDURE dept query (
p_deptno emp . deptno%TYPE,
p_sal emp .sal3TYPE
)
IS
emp refcur SYS REFCURSOR;
vV_empno emp . empno$TYPE ;
VvV ename emp .ename$TYPE ;
BEGIN
OPEN emp refcur FOR 'SELECT empno, ename FROM emp WHERE deptno = :dept'
[| ' AND sal >= :sal' USING p_deptno, p_sal;
DBMS OUTPUT.PUT LINE ('EMPNO ENAME ') ;
DBMS OUTPUT.PUT LINE ('----- cooooomU) 2
LOOP B
FETCH emp_refcur INTO v_empno, Vv_ename;
EXIT WHEN emp refcur$NOTFOUND;
DBMS_OUTPUT.PET_LINE(v_empno [' || v_ename);
END LOOP;
CLOSE emp refcur;
END;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 265

Database Compatibility for Oracle® Developers Guide

The following is the resulting output.

EXEC dept query (30, 1500);

EMPNO ENAME
7499 ALLEN
7698 BLAKE
7844 TURNER

Finally, a string variable is used to pass the sELECT providing the most flexibility.

CREATE OR REPLACE PROCEDURE dept query (
p_deptno emp . deptno%TYPE,
p_sal emp . sal3TYPE

emp refcur SYS REFCURSOR;
Vv_empno emp . empno $TYPE ;
vV_ename emp . ename$TYPE ;
P query string VARCHAR2 (100);
BEGIN B
p query string := 'SELECT empno, ename FROM emp WHERE ' ||
B ‘degtno = :dept AND sal >= :sal';
OPEN emp refcur FOR p query string USING p deptno, p sal;
DBMS OUTPUT.PUT LINE ('EMPNO ENAME ') ;
DBMS OUTPUT.PUT LINE ('----- ———mmm)
LOOP
FETCH emp_refcur INTO v_empno, V_ename;
EXIT WHEN emp refcur%NOTFOUND;
DBMS OUTPUT.PUT LINE (v empno || ' ' || v ename);
END LOOP; B B B
CLOSE emp refcur;
END;
EXEC dept query (20, 1500);

EMPNO ENAME
7566 JONES
7788 SCOTT
7902 FORD

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 266

Database Compatibility for Oracle® Developers Guide
3.10 Collections

A collection is aset ofordered dataitems with the same data type. Generally, the data
itemis ascalar field, but may also be auser-defined type such as a record type oran
object typeas longas the structure and the datatypes that comprise each field ofthe user-
defined typeare the same for each element in the set. Each particular dataitemin the set
is referenced by using subscriptnotation within a pair of parentheses.

Note: Multilevel collections (that is, where thedataitemofa collection is another
collection) are not supported.

The most commonly known typeofcollectionis an array. In Advanced Server, the

supported collection types are associative arrays (formerly called index-by-tables in
Oracle), nested tables,and varrays.

The general steps forusinga collectionare the following:

e A collection ofthe desired typemust be defined. This canbe donein the
declaration sectionofan SPL program, which results in a /ocal type that is
accessible only within that program. Fornes ted table and varray types this can
also be done using the CREATE TYPE command, which creates a persistent,
standalone type that canbe referenced by any SPLprogramin the database.

e Variables of the collectiontype are declared. The collection associated with the
declared variable is said to be uninitialized at this point if there is no value
assignmentmade as part ofthe variable declaration.

e Uninitialized collections ofnested tables and varrays are null. A null collection
does notyetexist. Generally,a COLLECTION IS NULL exception is thrownifa
collection methodis invoked onanull collection.

e Uninitialized collections ofassociative arrays exist, but haveno elements. An
existing collection with no elements is called an empty collection.

e Toinitialize anull collection, youmust either make it an empty collection or
assignanon-null value to it. Generally, a null collection is initialized by using its
constructor.

e Toadd elements to anempty associative array, youcan simply assign values to its
keys. Fornested tables and varrays, generally its constructor is used to assign
initial values to the nested table or varray. Fornested tables and varrays, the
EXTEND method is then used to grow the collectionbeyond its initial size
established by the constructor.

The specific process foreach collectiontype is described in the following sections.

3.10.1 Associative Arrays

An associative array is atype of collection thatassociates a uniquekey with a value. The
key does nothave to be numeric, but canbe character dataas well.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 267

Database Compatibility for Oracle® Developers Guide

An associativearray has the following characteristics:

e Anassociative array type mustbe defined after which arrayvariables canbe
declared ofthat array type. Data manipulation occurs using thearray variable.

e When an array variable is declared, theassociativearray is created, but it is empty
- just start assigning values to key values.

e Thekey canbe any negative integer, positive integer, or zero if INDEX BY
BINARY INTEGEROTPLS INTEGERISs specified.
The key can be characterdata if INDEX BY VARCHAR? is specified.
There is no pre-defined limit on the number of elements in the array - it grows
dynamically as elements are added.
The array can be sparse - there may be gaps in the assignment of values to keys.
An attempt to referencean array element that has notbeenassigned a value will
result in an exception.

TheTYPE IS TABLE OF ... INDEX BY statementis usedto define an associative
array type.

TYPE assoctype IS TABLE OF { datatype | rectype | objtype }
INDEX BY { BINARY INTEGER | PLS INTEGER | VARCHARZ (n) };

assoctype s anidentifier assignedto the array type. datatypeis ascalardata type
such as VARCHAR2 Or NUMBER. rectype is apreviously definedrecordtype. objtypeis
a previously defined object type. n is the maximum length ofa characterkey.

In orderto make use ofthe array, a variable mustbe declared with that array type. The
following is the syntaxfor declaring an array variable.

array assoctype

arrayis anidentifier assignedto the associative array. assoctype is the identifier ofa
previously defined array type.

An element ofthe array is referenced using the following syntax.
array(n)[.field]

arrayis theidentifier ofa previously declared array. n is the key value, type-compatible
with the data typegivenin the INDExX BY clause. Ifthe array type of array is defined
froma record type orobject type, then[.fie1d]mustreference an individual field

within the record type or attribute within the object type fromwhich the array type is
defined. Alternatively, theentire record canbe referenced by omitting[. fieid].

The following example reads the first tenemployee names fromthe emp table, stores
themin an array, then displays the results fromthe array.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 268

Database Compatibility for Oracle® Developers Guide

DECLARE
TYPE emp arr typ IS TABLE OF VARCHAR2(10) INDEX BY BINARY INTEGER;
emp arr B - emp arr typ; B
CURSOR emp cur IS SELECT ename FROM emp WHERE ROWNUM <= 10;
i - INTEGER := 0;
BEGIN
FOR r emp IN emp cur LOOP
i = 1+ 1;
emp_arr(i) = r_ emp.ename;
END LOOP;

FOR j IN 1..10 LOOP
DBMS OUTPUT.PUT LINE (emp arr (j));
END LOOP; B a
END;

The aboveexample produces the following output:

SMITH
ALLEN
WARD
JONE S
MARTIN
BLAKE
CLARK
SCOTT
KING
TURNER

The previous example is now modified to use arecord typein the array definition.

DECLARE
TYPE emp rec typ IS RECORD (
empno NUMBER (4),
ename VARCHARZ (10)

) i
TYPE emp arr typ IS TABLE OF emp rec typ INDEX BY BINARY INTEGER;

emp arr emp arr typ;
CURSOR emp cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
i INTEGER := 0;
BEGIN
DBMS OUTPUT.PUT LINE ('EMPNO ENAME') ;

DBMS OUTPUT.PUT LINE ('----- coom=s==U) g
FOR r emp IN emp cur LOOP

i :=1i+ 1;

emp arr (i) .empno := r emp.empno;

emp:arr(i).ename = r:emp.ename;
END LOOP;

FOR j IN 1..10 LOOP
DBMS OUTPUT.PUT LINE (emp arr (j).empno || ' Y
emp_arr(j).ename) ;
END LOOP;
END;

The following is the output fromthis anonymous block.

EMPNO ENAME
7369 SMITH
7499 ALLEN
7521 WARD

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 269

Database Compatibility for Oracle® Developers Guide

7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER

The emp$ROWTYPE attribute could be used to define emp arr typinsteadofusingthe
emp rec typrecord typeas shown in the following.

DECLARE
TYPE emp arr typ IS TABLE OF emp%ROWTYPE INDEX BY BINARY INTEGER;
emp arr emp arr typ;
CURSOR emp cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
i B INTEGER := 0;

BEGIN
DBMS OUTPUT.PUT LINE ('EMPNO ENAME ') ;

DBMS OUTPUT.PUT LINE ('----- so==o== V) 2
FOR r emp IN emp cur LOOP

i :=1i+ 1;

emp arr (i) .empno := r emp.empno;

emp arr (i) .ename := r emp.ename;
END LOOP; B

FOR j IN 1..10 LOOP
DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno
emp _arr(j).ename) ;
END LOOP;
END;

v]

The results are the same as in the prior example.

Instead ofassigningeach field ofthe record individually, a record level assignment can
bemade fromr emp toemp arr.

DECLARE
TYPE emp rec typ IS RECORD (
empno NUMBER (4) ,
ename VARCHAR?2 (10)

) ;
TYPE emp arr typ IS TABLE OF emp rec typ INDEX BY BINARY INTEGER;

emp _arr emp_arr typ;
CURSOR emp cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
i B INTEGER := 0;
BEGIN
DBMS OUTPUT.PUT LINE ('EMPNO ENAME ') ;

DBMS OUTPUT.PUT LINE ('----- -—————=");
FOR r emp IN emp cur LOOP

i := 1+ 1;
emp arr (i) := r_ emp;
END LOOP;

FOR j IN 1..10 LOOP
DBMSioUTPUT.PUTiLINE(empiarr(j).empno
emp_arr(j).ename) ;
END LOOP;
END;

v v

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 270

Database Compatibility for Oracle® Developers Guide

The key ofan associative array canbe character data as shownin the following example.

DECLARE
TYPE job_arr typ IS TABLE OF NUMBER INDEX BY VARCHAR2 (9) ;
job_arr B B job _arr typ:;

BEGIN
job arr('ANALYST') = 100;
job_arr('CLERK') = 200;
job arr('MANAGER') = 300;
job_arr('SALESMAN') := 400;
job_arr('PRESIDENT') = 500;

DBMS OUTPUT.PUT LINE ('ANALYST " || job_arr ('ANALYST'));
DBMS_OUTPUT.PUT LINE ('CLERK ' || job_arr ('CLERK'));
DBMS OUTPUT.PUT LINE ('MANAGER : ' || job arr ('MANAGER')) ;
DBMS OUTPUT.PUT LINE ('SALESMAN : ' || job arr ('SALESMAN'));
DBMS OUTPUT.PUT LINE ('PRESIDENT: ' || job arr ('PRESIDENT')) ;

END;

ANALYST : 100

CLERK : 200

MANAGER : 300

SALESMAN : 400
PRESIDENT: 500

3.10.2 Nested Tables

A nested tableis atype of collection that associates a positive integer with a value. A
nestedtable has the following characteristics:

o A nested tabletypemust be defined after which nested table variables canbe
declared ofthat nested table type. Data manipulation occurs using the nested table
variable, orsimply, “table” for short.

e When anested table variable is declared, the nested table initially does notexist
(it is anull collection). The nulltable mustbe initialized with a constructor. You
can also initialize the table by using an assignmentstatement where theright-hand
side ofthe assignmentis an initialized table ofthe same type. Note: Initialization
of anestedtable is mandatory in Oracle, but optional in SPL.

e Thekeyis a positive integer.

e The constructorestablishes thenumber ofelements in the table. The EXTEND
method adds additional elements to thetable. See Section 3.11 for information on
collection methods. Note: Usage ofthe constructor to establish the number of
elements in the table andusage of the ExTEND method to add additional elements
to the table are mandatory in Oracle, but optional in SPL.

e Thetable can be sparse - there may be gaps in the assignmentofvalues to keys.

e Anattempt to referencea table element beyondits initialized or extended size will
resultina SUBSCRIPT BEYOND COUNT exception.

The TYPE IS TABLE statementis usedto define anestedtable typewithin the
declaration sectionofan SPLprogram.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 271

Database Compatibility for Oracle® Developers Guide

TYPE tbltype IS TABLE OF { datatype | rectype | objtype };

tbltypeis anidentifierassigned tothe nestedtable type. datatypeis ascalardata

type such as VARCHAR2 Or NUMBER. rectype is a previously definedrecord type.
objtypeis apreviously defined objecttype.

Note: You can use the CREATE TYPE command to define a nested table typethatis
available to all SPL programs in the database. See the Database Compatibility for Oracle
Developers Reference Guide for more information about the CREATE TYPE command.

In orderto make use ofthe table, a variable must be declared ofthat nested table type.
The following is the syntaxfor declaring a table variable.

table tbltype

tableis anidentifierassignedto the nestedtable. tb1typeis the identifierofa
previously defined nested table type.

A nestedtable is initialized using the nested table type’s constructor.

tbltype ([{ exprl | NULL } [, { expr2 | NULL } 1 [, ...1 1)

tbltypeis theidentifier ofthe nestedtable type’s constructor, which has the same nanme
as the nestedtable type. expri, expr2, ... are expressions that are type-compatible with
the element type ofthe table. If NULL is specified, the corresponding element is set to
null. If the parameter list is empty, then an empty nested table is returned, which means
there are no elements in the table. Ifthe table is defined froman object type, then exprn
must return an object ofthatobject type. The object canbe the return value ofa function
or the object type’s constructor, or the objectcan be anelement ofanother nested table of
the same type.

If a collection method other than ExTsTs is applied to an uninitialized nested table, a

COLLECTION IS NULL exceptionis thrown. See Section 3.11 for information on
collection methods.

The following is an example of a constructor foranestedtable:

DECLARE
TYPE nested typ IS TABLE OF CHAR (1) ;
v_nested nested typ := nested typ('A','B');

An element ofthe table is referenced using the following s yntax.

table(n) [.element]

tableis theidentifier ofa previously declared table. n is a positive integer. Ifthe table
type of tableis defined froma record typeorobject type, then[.element Jmust

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 272

Database Compatibility for Oracle® Developers Guide

reference an individual field within the record type or attribute within the object type
from which the nested table type is defined. Alternatively, theentire record or object can

bereferenced by omitting [.e Iement |.

The following is an example of a nested table where it is known that there will be four

NULL) ;

elements.
DECLARE
TYPE dname tbl typ IS TABLE OF VARCHAR2 (14) ;
dname tbl dname tbl typ;
CURSOR dept cur IS SELECT dname FROM dept ORDER BY dname;
i INTEGER := 0;
BEGIN
dname_ tbl := dname tbl typ(NULL, NULL, NULL,
FOR r dept IN dept cur LOOP
i =i+ 1;
dname tbl(i) := r dept.dname;
END LOOP;

DBEMS OUTPUT.PUT LINE ('DNAME');
DBMS OUTPUT.PUT LINE ('-——-------=");
FOR j IN 1..i LOOP
DBMS OUTPUT.PUT LINE (dname tbl(3j)) ;
END LOOP;
END;

The aboveexample produces the following output:

DNAME
ACCOUNT ING
OPERATIONS
RESEARCH
SALES

The following example reads the first tenemployee names fromthe emp table, stores
themin a nested table, then displays theresults fromthe table. The SPL code is written to
assume that the number ofemployees to be returned is not known beforehand.

DECLARE
TYPE emp rec typ IS RECORD (
empno NUMBER (4) ,
ename VARCHAR?2 (10)

)i
TYPE emp tbl typ IS TABLE OF emp rec typ;

emp tbl emp tbl typ;
CURSOR emp cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
i INTEGER := 0;
BEGIN
emp tbl := emp tbl typ();
DBMS OUTPUT.PUT LINE ('EMPNO ENAME ') ;

DBMS OUTPUT.PUT LINE ('----- coeso==U) 2

FOR r emp IN emp cur LOOP
ioi= i+ 1;
emp tbl.EXTEND;
emp tbl (i) := r emp;
END LOOP;
FOR j IN 1..10 LOOP

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 273

Database Compatibility for Oracle® Developers Guide

DBMSioUTPUT.PUTiLINE(empitbl(j).empno - '
emp tbl(j).ename) ;
END LOOP;
END;

Note the creation ofan empty table with the constructor emp tbl typ () asthe first

statement in the executable section ofthe anonymous block. The EXTEND collection
method is then used to add an elementto thetable for each employeereturned fromthe
result set. See Section 3.11.4 for information on EXTEND.

The following is the output.

EMPNO ENAME
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER

The following example shows how a nested table ofan object type canbe used. First, an
object typeis created with attributes for the departmentname and location.

CREATE TYPE dept obj typ AS OBJECT (
dname VARCHARZ (14),
loc VARCHARZ (13)

) ;

The following anonymous block defines a nested table type whose elementconsists of

thedept obj typ objecttype. A nested table variable is declared, initialized, and then
populated fromthe dept table. Finally, the elements fromthe nested table are displayed.

DECLARE
TYPE dept tbl typ IS TABLE OF dept obj typ;
dept tbl ~ dept tbl typ; -
CURSOR dept cur IS SELECT dname, loc FROM dept ORDER BY dname;
i B INTEGER := 0;
BEGIN
dept tbl := dept tbl typ(

dept obj typ (NULL, NULL) ,
dept obj typ (NULL,NULL),
dept obj typ (NULL,NULL),
dept obj typ (NULL, NULL)

FOR r dept IN dept cur LOOP

i =i+ 1;
dept tbl (i).dname := r dept.dname;
dept:tbl(i).loc = r:dept.loc;

END LOOP;

DBMSioUTPUT.PUTiLINE('DNAME LOC");

DBMS OUTPUT.PUT LINE('---------- ———mm—)
FOR j IN 1..i LOOP

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 274

Database Compatibility for Oracle® Developers Guide

DBMS OUTPUT.PUT LINE (RPAD(dept tbl (j) .dname,14) || ' ' [|
dept tbl (j) .loc);
END LOOP;
END;

Note: The parameters comprising thenested table’s constructor, dept tbl typ,are
calls to the object type’s constructor dept obj typ.

The following is the output fromthe anonymous block.

DNAME LOC
ACCOUNT ING NEW YORK
OPERATIONS BOSTON
RESEARCH DALLAS
SALES CHICAGO

3.10.3 Varrays

A varray orvariable-size array 1s atypeofcollectionthatassociates a positive integer
with a value. In many respects, it is similar to anestedtable.

A varray has thefollowing characteristics:

e Avarraytype must be defined along with a maximum size limit. Afterthe varray
type is defined, varrayvariables canbe declared of that varray type. Data
manipulation occurs using the varray variable, or simply, “varray” for short. The
number of elements in the varray cannot exceed the maximum size limit
established in the varray type definition.

e When avarray variable is declared, the varray initially does notexist (it is a null
collection). The null varray mustbe initialized with a constructor. You can also
initialize the varray by using an assignmentstatementwhere theright-hand side of
the assignment is an initialized varray ofthe same type.

The key is a positive integer.

The constructor establishes thenumber of elements in the varray, which mustnot
exceed the maximum size limit. The EXTEND method can add additional elements
to the varray up to the maximum size limit. See Section 3.11 for information on
collection methods.

e Unlike a nested table, a varray cannotbe sparse - there are no gaps in the
assignmentofvaluesto keys.

e Anattempt to referencea varray element beyond its initialized or extended size,
but within the maximum size limit will resultina SUBSCRIPT BEYOND COUNT
exception.

e An attempt to referencea varray element beyond the maximum size limit or
extend a varray beyond the maximum size limit will resultin a
SUBSCRIPT OUTSIDE LIMIT exception.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 275

Database Compatibility for Oracle® Developers Guide

The TYPE IS VARRAY statement is usedto define a varray type within the declaration
section ofan SPLprogram.

TYPE varraytype IS { VARRAY | VARYING ARRAY } (maxsize)
OF { datatype | objtype };

varraytype is an identifierassigned to the varray type. datatypeis ascalardata type

such as VARCHAR2 Or NUMBER. maxsi ze 1s the maximum number of elements permitted
in varrays ofthattype. objtypeis apreviously defined objecttype.

Note: The crREATE TYPE command can be usedto define a varray typethatis available
to all SPL programs in the database. In order to make use ofthe varray, a variable must
be declared ofthat varray type. The following is the syntaxfor declaring a varray
variable.

varray varraytype

varrayis anidentifierassigned to the varray. varraytypeis the identifierofa
previously defined varray type.

A varray is initialized using the varray type’s constructor.

varraytype ([{ exprl | NULL } [, { expr2 | NULL }]
(, -...1. 1

varraytypeis the identifier ofthe varray type’s constructor, which has the same name
as the varray type. expri,expr2,... are expressions thatare type-compatible with the
element type ofthe varray. IfNULL is specified, the corresponding element is setto null.
If the parameter list is empty, then an empty varray is returned, which means there are no
elements in the varray. Ifthe varray is defined froman object type, then exprn must
return an object ofthat object type. The objectcan be thereturn valueofa functionorthe

return value ofthe object type’s constructor. The object canalso be an elementofanother
varray ofthe same varray type.

If a collection method otherthan Ex1sTs is applied to an uninitialized varray, a

COLLECTION IS NULL exceptionis thrown. See Section 3.11 for information on
collection methods.

The following is an example of a constructor fora varray:

DECLARE
TYPE varray typ IS VARRAY (2) OF CHAR(1);
v_varray varray typ := varray typ('A','B');

An element ofthe varray is referenced using the following syntax.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 276

Database Compatibility for Oracle® Developers Guide

varray(n) [.element]

varrayis the identifier ofa previously declared varray. nis a positive integer. If the
varray type of varrayis defined froman object type,then [. element] must

reference an attribute within the objecttype fromwhich the varray type is defined.
Alternatively, the entire object canbe referenced by omitting [. element .

The following is an example of a varray where it is known that there willbe four
elements.

DECLARE
TYPE dname varray typ IS VARRAY(4) OF VARCHARZ2 (14);
dnameﬁvarrgy dﬁameivarrayityp;
CURSOR dept cur IS SELECT dname FROM dept ORDER BY dname;
i INTEGER := 0;
BEGIN
dname varray := dname varray typ (NULL, NULL, NULL, NULL);
FOR r dept IN dept cur LOOP
i =1+ 1;
dname varray (i) := r dept.dname;
END LOOP; a

DBMS OUTPUT.PUT LINE ('DNAME');
DBMS OUTPUT.PUT LINE ('---——-———=");
FOR j IN 1..i LOOP
DBMS OUTPUT.PUT LINE (dname varray(j)):;
END LOOP; a a
END;

The aboveexample produces the following output:

DNAME
ACCOUNT ING
OPERATIONS
RESEARCH
SALES

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 277

Database Compatibility for Oracle® Developers Guide
3.11 Collection Methods

Collection methods are functions and procedures that provide useful information about a

collection thatcan aid in the processing of datain the collection. The following sections
discuss the collection methods supported by Advanced Server.

3.11.1 COUNT

COUNT is @ method that returns thenumber of elements in a collection. The syntaxfor
using COUNT is as follows:

collection.COUNT
collectionisthename ofa collection.
Fora varray, COUNT always equals LAST.

The following example shows that an associative array canbe sparsely populated (i.e.,

there are “gaps” in the sequence ofassigned elements). cCOUNT includes only the
elements thathave been assigneda value.

DECLARE
TYPE sparse arr typ IS TABLE OF NUMBER INDEX BY BINARY INTEGER;
sparse arr sparse arr typ;
BEGIN - -
sparse_arr(-100) = -100;
sparse arr(-10) = -10;
sparse:arr(O) = 0;
sparse arr(10) = 10;
sparse:arr(IOO) = 100;
DBMS OUTPUT.PUT LINE ('COUNT: ' || sparse arr.COUNT) ;

END;

The following outputshows that there are five populated elements included in cOuNT.

COUNT: 5

3.11.2 DELETE

The pELETE method deletes entries froma collection. You can callthe DELETE method
in three different ways.

Use the first form ofthe DELETE method to remove all entries froma collection:

collection.DELETE

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 278

Database Compatibility for Oracle® Developers Guide

Use the second formofthe DELETE method to removethe specified entry froma
collection:

collection.DELETE (subscript)

Use the third formofthe DELETE method to removethe entries that are within the range
specifiedby first subscriptandlast subscript (includingtheentries forthe
first subscriptandthe last subscript)froma collection.

collection.DELETE (first subscript, last subscript)

If first subscriptandlast subscript refertonon-existent elements,elements
that are in the range between the specified subscripts are deleted. If first subscript
is greaterthan last subscript,orifyouspecify avalue of NULL forone ofthe
arguments, DELETE hasno effect.

Note that whenyoudeletean entry, the subscript remains in the collection; youcan re-
use the subscriptwith an alternate entry. Ifyou specify a subscriptthat does notexist in
the call to the DELETE method, DELETE does notraise an exception.

The following example demonstrates usingthe DELETE methodto remove the element
with subscript 0 fromthe collection:

DECLARE
TYPE sparse arr typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
sparse arr sparse arr typ;
v_results VARCHAR?2 (50) ;
v sub NUMBER ;

BEGIN
sparse_arr(-100) := -100;
sparse arr(-10) := —10;
sparse:arr(O) := 0;
sparse_arr(10) := 10;
sparse arr(100) := 100;
DBMSiOGTPUT.PUTiLINE('COUNT: ' || sparse arr.COUNT) ;
sparse arr.DELETE (0) ;
DBMSiOGTPUT.PUTiLINE('COUNT: ' || sparse arr.COUNT) ;
v_sub := sparse arr.FIRST;

WHILE v _sub IS NOT NULL LOOP
IF sparse arr (v_sub) IS NULL THEN

v_results := v_results || 'NULL ';
ELSE
v_results := v _results || sparse arr(v_sub) []| ' ';
END IF;
v_sub := sparse arr.NEXT (v_sub);
END LOOP;
DBMS OUTPUT.PUT LINE ('Results: ' || v results);
END; B B B
COUNT: 5
COUNT: 4

Results: -100 -10 10 100

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 279

Database Compatibility for Oracle® Developers Guide

couNT indicates that before the DELETE method, therewere 5 elements in the collection;
afterthe DELETE method was invoked, the collection contains 4 elements.

3.11.3 EXISTS

The Ex15TS method verifies that a subscript exists within a collection. EXISTS returns
TRUE if the subscript exists; ifthe subscriptdoes not exist, EXISTs returns FALSE. The
method takes a single argument; the subscript that you are testing for. The syntaxis:

collection.EXISTS (subscript)

collectionisthename ofthe collection.

subscriptis the value that you are testing for. Ifyou specify a value of NULL,EXTSTS
returns false.

The following example verifies that subscriptnumber 10 exists within the associative
array:

DECLARE
TYPE sparse arr typ IS TABLE OF NUMBER INDEX BY BINARY INTEGER;
sparse_arr B _sparse_arr_typ; B
BEGIN
sparse_arr(-100) := -100;
sparse_arr(-10) := =107
sparse arr(0) := 07
sparse:arr(IO) := 10;
sparse_arr(100) := 100;
DBMS OUTPUT.PUT LINE ('The index exists: ' ||
CASE WHEN sgarseiarr.exists(IO) = TRUE THEN 'true' ELSE 'false' END);

END;

The index exists: true

Some collection methods raise an exception if you callthemwith a subscript that does

not exist within the specified collection. Ratherthanraisingan error,the EXT1STS
method returns a value of FALSE.

3.11.4 EXTEND

The EXTEND method increases the size ofa collection. Thereare three variations ofthe
EXTEND method. The first variation appends a single NULL element to a collection; the
syntaxforthe first variation is:

collection.EXTEND

collectionisthename ofa collection.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 280

Database Compatibility for Oracle® Developers Guide

The following example demonstrates usingthe ExTEND methodto appenda single, null

element to a collection:

DECLARE
TYPE sparse arr typ IS TABLE OF NUMBER;
sparse_arr B 7sparse_arr_typ := sparse arr typ(-100,-10,0,10,100) ;
v_results VARCHAR2 (50) ;

BEGIN

sparse_ arr.COUNT) ;

DBMS OUTPUT.PUT LINE ('COUNT:
sparse arr.EXTEND;

DBMS OUTPUT.PUT LINE ('COUNT: ' || sparse arr.COUNT) ;
FOR i IN sparse arr.FIRST .. sparse_arr.LAST LOOP
IF sparse arr (i) IS NULL THEN
viresalts := v_results || 'NULL ';
ELSE
v_results := v _results || sparse arr(i) || " ';
END IF;
END LOOP;
DBMS OUTPUT.PUT LINE ('Results: ' || v _results);
END;
COUNT: 5
COUNT: ©

Results: -100 -10 0 10 100 NULL

counT indicates that before the ExTEND method, there were 5 elements in the collection;

afterthe ExTEND method was invoked, the collection contains 6 elements.

The second variation ofthe ExTEND method appends a specified number of elements to

the end ofa collection.

collection.EXTEND (count)
collectionisthename ofa collection.

count is the numberofnull elements added to theend ofthecollection.

The following example demonstrates usingthe ExTEND method to append multiple null

elements to a collection:

DECLARE
TYPE sparse arr typ IS TABLE OF NUMBER;
sparse arr sparse arr typ := sparse arr typ(-100,-10,0,10,100) ;
v_results VARCHAR2 (50) ; -
BEGIN
DBMS OUTPUT.PUT LINE ('"COUNT: ' || sparse arr.COUNT) ;
spargeiarr.EXTEﬁD(B); B
DBMS OUTPUT.PUT LINE ('COUNT: ' || sparse arr.COUNT) ;
FOR i IN sparse arr.FIRST .. sparse arr.LAST LOOP
IF sparse arr (i) IS NULL THEN
v_results := v _results || 'NULL ';
ELSE
v_results := v _results || sparse arr(i) || " ';
END IF;
END LOOP;
DBMS OUTPUT.PUT LINE ('Results: ' || v_results);

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

281

Database Compatibility for Oracle® Developers Guide

END;
COUNT: 5
COUNT: 8

Results: -100 -10 0 10 100 NULL NULL NULL

couNT indicates that before the EXTEND method, there were 5 elements in the collection;
afterthe ExTEND method was invoked, the collection contains 8 elements.

The third variation ofthe ExTEND method appends a specified number of copies ofa
particular element to the end ofa collection.

collection.EXTEND (count, index number)
collectionisthename ofa collection.
count is the numberofelements added tothe end of the collection.

index numberis the subscript ofthe elementthat is being copied to the collection.

The following example demonstrates usingthe ExTEND methodto append multiple
copies ofthe second elementto the collection:

DECLARE
TYPE sparse arr typ IS TABLE OF NUMBER;
sparse_arr sparse arr typ := sparse arr typ(-100,-10,0,10,100)
v_results VARCHAR2 (50) ;
BEGIN
DBMS OUTPUT.PUT LINE ('COUNT: ' || sparse arr.COUNT) ;
sparse_arr.EXTEND (3, 2);
DBMS OUTPUT.PUT LINE ('"COUNT: ' || sparse arr.COUNT) ;
FOR i IN sparse:arr.FIRST o o sparseiarr.fAST LOOP
IF sparse arr (i) IS NULL THEN
vgresﬁlts := v_results || 'NULL ';
ELSE
v results := v results || sparse arr(i) || "' ';
END IF; B B
END LOOP;
DBMS OUTPUT.PUT LINE ('Results: ' || v results):;
END; - - -
COUNT: 5
COUNT: 8

Results: -100 -10 0 10 100 -10 -10 -10

couNT indicates that before the EXTEND method, there were 5 elements in the collection;
afterthe ExTEND method was invoked, the collection contains 8 elements.

Note: The ExTEND method cannotbe usedon anullorempty collection.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 282

Database Compatibility for Oracle® Developers Guide
3.11.5 FIRST

FIRST is a method that returns the subscriptofthe first element in a collection. The
syntaxforusing FTRST is as follows:

collection.FIRST
collectionisthename ofa collection.

The following example displays the first element ofthe associative array.

DECLARE
TYPE sparse arr typ IS TABLE OF NUMBER INDEX BY BINARY INTEGER;
sparse_arr B 7sparse7arr7typ; B
BEGIN
sparse arr(-100) := -100;
sparseiarr(—lO) := -0
sparse _arr(0) := 0;
sparse arr(10) := 10;
sparseiarr(lOO) := 100;
DBMS OUTPUT.PUT LINE ('FIRST element: ' || sparse arr(sparse arr.FIRST));

END;

FIRST element: -100

3.11.6 LAST

LAST is a method thatreturns thesubscript ofthe last element in a collection. The syntax
forusing LasT is as follows:

collection.LAST
collectionisthename ofa collection.

The following example displays the last elementofthe associative array.

DECLARE
TYPE sparse arr typ IS TABLE OF NUMBER INDEX BY BINARY INTEGER;
sparse arr sparse arr typ;
BEGIN a -
sparse arr(-100) := -100;
sparse:arr(—IO) := -10;
sparse _arr(0) := 0;
sparse arr(10) := 10;
sparse arr(100) 1= 100;
DBMS OUTPUT.PUT LINE ('LAST element: ' || sparse arr (sparse arr.LAST));

END;

LAST element: 100

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 283

Database Compatibility for Oracle® Developers Guide
3.11.7 LIMIT

LIMITis a method that returns the maximum number ofelements permittedin a
collection. L.TMIT is applicable only to varrays. The syntaxforusing LTM1T is as follows:

collection.LIMIT
collectionisthename ofa collection.

Foran initialized varray, LIMIT returns the maximum size limit determined by the varray
type definition. Ifthe varray is uninitialized (thatis, it is a null varray), an exception is
thrown.

Foran associativearray or an initialized nested table, LIMI T returns NULL. If the nested
table is uninitialized (that is, it is a null nested table), an exceptionis thrown.

3.11.8 NEXT

NEXT 1s @ method thatreturns the subscript that follows a specified subscript. The
method takes a single argument; the subscript that you are testing for.

collection.NEXT (subscript)
collectionisthename ofthe collection.
If the specified subscriptis less thanthe first subscript in the collection, the function

returns thefirst subscript. Ifthe subscript does not have a successor, NEXT returns NULL.
If you specify aNULL subscript, PRIOR does not return a value.

The following example demonstrates using NEXT to return the subscript that follows
subscript 10 in the associativearray, sparse arr:

DECLARE
TYPE sparse arr typ IS TABLE OF NUMBER INDEX BY BINARY INTEGER;
sparse arr B _sparse_arr_typ; B
BEGIN
sparse_arr(-100) := =-100;
sparse_arr(-10) := -10;
sparse arr(0) = 0;
sparse:arr(IO) = 10;
sparse_arr(100) := 100;
DBMS OUTPUT.PUT LINE ('NEXT element: ' || sparse arr.next (10));

END;

NEXT element: 100

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 284

Database Compatibility for Oracle® Developers Guide
3.11.9 PRIOR

The prTOR method returns the subscript that precedes a specified subscript in a

collection. The method takes a single argument; the subscript thatyouare testing for.
The syntaxis:

collection.PRIOR (subscript)

collectionisthename ofthe collection.

If the subscript specified does nothave a predecessor, PRTOR returns NULL. Ifthe
specified subscriptis greater thanthe lastsubscriptin the collection, the method returns
the last subscript. Ifyou specify a NULL subscript, PRTOR does not return a value.

The following example returns the subscriptthat precedes subscript 100 in the
associative array, sparse_arr:

DECLARE
TYPE sparse arr typ IS TABLE OF NUMBER INDEX BY BINARY INTEGER;
sparse arr sparse arr typ;
BEGIN a -
sparse_arr(-100) = -100;
sparse arr(-10) = =-10;
sparse:arr(O) = 0;
sparse_arr(10) = 10;
sparse arr(100) = 100;
DBMS_OETPUT.PUT_LINE('PRIOR element: ' || sparse_arr.prior(lOO));

END;

PRIOR element: 10

3.11.10 TRIM

The TrRIM method removes an element or elements fromthe end ofa collection. The
syntaxforthe TRTM method is:

collection.TRIM[(count)]
collectionisthename ofa collection.
count is the numberofelements removed fromthe end ofthe collection. Advanced
Server will return an errorif count is less than 0 or greater than the number of elements
in the collection.
The following example demonstrates usingthe TRIM method toremove an element from

the end ofacollection:

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 285

DECLARE

TYPE sparse arr

sparse_arr
BEGIN

DBMS OUTPUT.PUT

sparse arr.TRIM;

DBMS OUTPUT.PUT

END;
COUNT: 5
COUNT: 4

Database Compatibility for Oracle® Developers Guide

typ IS TABLE OF NUMBER;
sparse_arr typ sparse_arr typ(-100,-10,0,10,100) ;

LINE ("COUNT: ' || sparse arr.COUNT) ;

LINE ('"COUNT: ' || sparse arr.COUNT) ;

couNT indicates that before the TRIM method, there were 5 elements in the collection;
afterthe TRIM method was invoked, the collection contains 4 elements.

You can also specify the number of elements to remove fromthe end ofthe collection

with the TRIM method:

DECLARE

TYPE sparse arr

sparse_arr
v_results
BEGIN

DBMS OUTPUT.PUT LINE ('COUNT: '

typ IS TABLE OF NUMBER;
sparse_arr typ sparse_arr typ(-100,-10,0,10,100) ;
VARCHAR?2 (50) ;

sparse_ arr.COUNT) ;

sparse arr.TRIM(2);

DBMS OUTPUT.PUT LINE ('COUNT: '
FOR i IN sparse arr.FIRST
IF sparse arr (i)
v_results

ELSE

v_results

END IF;
END LOOP;

DBMS OUTPUT.PUT LINE ('Results: '

END;

COUNT: 5
COUNT: 3

Results: -100 -10 O

| | sparse arr.COUNT) ;
sparse arr.LAST LOOP

IS NULL THEN
v_results |

'NULL ';

Hll.
’

v_results || sparse arr(i)

v_results) ;

couNT indicates that before the TRIM method, there were 5 elements in the collection;
afterthe TRIM method was invoked, the collection contains 3 elements.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

286

Database Compatibility for Oracle® Developers Guide
3.12Working with Collections

Collection operators allow you to transform, query and manipulate the contents ofa
collection.

3.12.1 TABLE()

Usethe TABLE () functionto transformthe members ofan array into aset ofrows. The
signature is:

TABLE (collection value)

Where:

collection value

collection valueis anexpressionthatevaluatesto a value of collectiontype.

The TABLE () function expands the nested contents ofa collectioninto a table format.
You canuse the TABLE () functionanywhere you use a regular table expression.

The TABLE () function returnsa SETOF ANYELEMENT (a set of values ofanytype). For
example, if the argument passed to this functionis an array of dates, TABLE () will

returna SETOF dates. Iftheargumentpassedto this functionis an array ofpaths,
TABLE () will returna SETOF paths.

You canusetheTABLE () functionto expandthe contents ofa collection into table form:

postgres=# SELECT * FROM TABLE (monthly balance(445.00, 980.20, 552.00));
monthly balance

445 .00
980.20
552.00
(3 rows)

3.12.2 Using the MULTISET UNION Operator

The MULTISET UNION operator combines two collections to forma third collection. The
signature is:

coll 1 MULTISET UNION [ALL | DISTINCT] coll 2

coll 1andcoll 2specify thenamesofthe collectionstocombine.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 287

Database Compatibility for Oracle® Developers Guide

Include the o1.1 keyword to specify thatduplicate elements (elements thatare present in
both col1 1andcolil 2)should berepresentedin the result,onceforeach time they
are present in the original collections. This is thedefault behaviorof MULTISET UNTON.

Include the prsTINCT keyword to specify that duplicate elements should be included in

the result only once.

The following example demonstrates usingthe MULTISET UNION operator to combine

two collections (collection landcollection 2)into athird collection
(collection 3):

DECLARE
TYPE int arr typ IS TABLE OF NUMBER (2) ;
collectignili int arr typ;
collection 2 int arr typ;
collection:3 int:arr:typ;
v_results VARCHAR?Z (50) ;
BEGIN
collection 1 := int arr typ(10,20,30);
collection 2 := int arr typ(30,40);
Collection:3 5= colIectIonfl MULTISET UNION ALL collection 2;
DBMS OUTPUT.PUT LINE ('COUNT: ' || collection 3.COUNT) ;
FOR i1 IN collection 3.FIRST .. collection 3.LAST LOOP
IF collection 3(i) IS NULL THEN B
v_results := v_results || 'NULL ';
ELSE
v_results := v _results || collection 3(i) [| " ';
END IF;
END LOOP;
DBMS OUTPUT.PUT LINE ('Results: ' || v _results);
END;
COUNT: 5

Results: 10 20 30 30 40

The resulting collection includes one entry foreach elementin collection 1 and
collection 2. IfthepIisTincT keyword is used,the results are the following:

DECLARE
TYPE int arr typ IS TABLE OF NUMBER (2) ;
collection 1 int arr typ;
collection:2 int:arr:typ;
collection 3 int arr typ;
v results VARCHAR2 (50) ;
BEGIN
collection 1 := int arr typ(10,20,30);
collection 2 := int arr typ(30,40);
collection 3 := collection 1 MULTISET UNION DISTINCT collection 2;
DBMS OUTPUT.PUT LINE ("COUNT: ' || collection 3.COUNT) ;
FOR i IN collection 3.FIRST .. collection 3.LAST LOOP
IF collection 3 (i) IS NULL THEN
v_results := v _results || 'NULL ';
ELSE
v_results := v _results || collection 3(i) || " ';
END IF;
END LOOP;
DBMS OUTPUT.PUT LINE ('Results: ' || v_results);

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

288

Database Compatibility for Oracle® Developers Guide
END;

COUNT: 4
Results: 10 20 30 40

The resulting collection includes only those members with distinct values. Note in the

following example that the MULTISET UNTION DISTINCT operatoralsoremoves
duplicate entries thatare stored within the same collection:

DECLARE
TYPE int_arr_typ IS TABLE OF NUMBER (2) ;
collection 1 int arr typ;
collection:2 int:arr:typ;
collection 3 int arr typ;
v_results VARCHARZ (50) ;
BEGIN
collection 1 := int arr typ(10,20,30,30) ;
collection:Z i = int:arr:typ(40,50);
collection 3 := collection 1 MULTISET UNION DISTINCT collection 2;
DBMS OUTPUT.PUT LINE ('COUNT: ' || collection 3.COUNT) ;
FOR i IN collection 3.FIRST .. collection 3.LAST LOOP
IF Collection73(i) IS NULL THEN
v results := v results || 'NULL ';
ELSE -
v results := v results || collection 3(i) || " ';
END IF; B B
END LOOP;
DBMS OUTPUT.PUT LINE ('Results: ' || v results);
END; a a -
COUNT: 5

Results: 10 20 30 40 50

3.12.3 Using the FORALL Statement

Collections canbe usedto more efficiently process DML commands by passingall the
values to be used forrepetitive executionofa DELETE, INSERT, Or UPDATE command in
one pass to the database serverrather than re-iteratively invoking the DML command
with new values. The DML command to be processed in such a manneris specified with
the FORALL statement. In addition, one or more collections are given in the DML
command where different values are to be substituted each time the command is
executed.

FORALL index IN lower bound .. upper bound
{ insert stmt | update stmt | delete stmt };

indexis the position in the collectiongiveninthe insert stmt,update stmt,or

delete stmt DML command that iterates fromthe integer value given as
lower bounduptoandincluding upper bound.

Note: If an exception occurs during any iteration ofthe FORALL statement, allupdates
that occurred sincethe startofthe executionofthe FORALL statementare automatically

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 289

Database Compatibility for Oracle® Developers Guide

rolled back. This behavioris not compatible with Oracle databases. Oracle allows explicit

use ofthe COMMIT or ROLLBACK commands to control whether ornot to commit orroll
backupdates that occurred priorto the exception.

The FORALL statement creates a loop — eachiteration ofthe loop increments the index
variable (you typically use the index within the loop to select a memberofa collection).
The number ofiterations is controlled by the 1ower bound .. upper bound clause.
The loop is executes once foreach integer betweenthe lower boundand

upper bound (inclusive)andthe indexis incremented by one foreachiteration. For
example:

FORALL i IN 2 .. 5

Creates a loop thatexecutes four times — in the first iteration, the index (i)is set to the
value 2; in the second iteration, the indexis set to the value 3,and soon. The loop
executes forthe value 5 and thenterminates.

The following example creates atable (emp copy)thatis an empty copy ofthe emp
table. The example declares atype (emp tb1l)thatis an array where each element in the
array is of compositetype, composed ofthe column definitions used to create the table,
emp. The example also creates an indexon the emp tb1 type.

t empis an associative array, oftype emp tbl. The SELECT statementuses the BULK
COLLECT INTO command to populatethet emp array. Afterthe t emp array is
populated, the FORALL statementiterates through the values (i) in the t emp array index
and inserts arow foreach record into emp copy.

CREATE TABLE emp copy (LIKE emp) ;

DECLARE
TYPE emp tbl IS TABLE OF emp3*ROWTYPE INDEX BY BINARY INTEGER;
t emp emp tbl;

BEGIN
SELECT * FROM emp BULK COLLECT INTO t emp;

FORALL i IN t emp.FIRST .. t emp.LAST
INSERT INTO emp copy VALUES t emp(i);

END;

The following example uses a FORALL statementto update the salary ofthree employees:

DECLARE
TYPE empno tbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY INTEGER;
TYPE sal tbl IS TABLE OF emp.ename3TYPE INDEX BY BINARY INTEGER;
t_empno EMPNO_TBL; B
t sal SAL TBL;

BEGIN

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 290

Database Compatibility for Oracle® Developers Guide

t _empno (1) := 9001;
t sal(l) := 3350.00;
t _empno(2) := 9002;
t sal(2) := 2000.00;
t _empno(3) := 9003;
t sal(3) = 4100.00;

FORALL i IN t empno.FIRST..t empno.LAST
UPDATE emp SET sal = t sal (i) WHERE empno = t empno(i);
END;

SELECT * FROM emp WHERE empno > 9000;

empno | ename | job | mgr | hiredate | sal | comm | deptno
B et fomm R e fomm - fo—— = B
9001 | JONES | ANALYST | \ | 3350.00 | | 40
9002 | LARSEN | CLERK \ \ | 2000.00 | | 40
9003 | WILSON | MANAGER | \ | 4100.00 | | 40
(3 rows)
The following example deletes three employees in a FORALL statement:
DECLARE
TYPE empnoftbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY INTEGER;
t empno EMPNO TBL;
BEGIN -
t empno(1) := 9001;
t empno(2) := 9002;
t:empno(3) := 9003;

FORALL i IN t empno.FIRST..t empno.LAST
DELETE FROM emp WHERE empno = t empno (i);

END;

SELECT * FROM emp WHERE empno > 9000;

empno | ename | job | mgr | hiredate | sal | comm | deptno
(0 rows)
3.12.4 Using the BULK COLLECT Clause

SQL commands that return a result setconsistingofa large number ofrows may not be
operatingas efficiently as possible due to the constant context switching thatmust occur
between the databaseserver and theclient in orderto transfer the entire result set. This
inefficiency can be mitigatedby usinga collectionto gather the entire result setin

memory which the client can then access. TheBuLk cOLLECT clauseis used tospecify
the aggregation ofthe result setinto a collection.

The BULK COLLECT clause can be used with the SELECT INTO,FETCH INTO and
EXECUTE IMMEDIATE commands,andwiththe RETURNING INTO clause ofthe
DELETE, INSERT, and UPDATE commands. Each oftheseis illustrated in the following

sections.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 291

3.124.1

Database Compatibility for Oracle® Developers Guide

SELECT BULKCOLLECT

The BULK COLLECT clause can be used with the SELECT INTO statementas follows.
(Refer to Section 3.4.3 foradditional informationon the SELECT INTO statement.)

SELECT select expressions BULK COLLECT INTO collection

[/

.] FROM

o7

Ifa single collectionis specified, then col1ectionmay be a collectionofa single field,
or it may be a collection ofarecord type. [f more than one collection is specified, then
each collectionmustconsistofasingle field. seiect expressionsmustmatchin
number, order, and type-compatibility all fields in the target collections.

The following example shows theuseofthe BULK coLLECT clause where the target
collections are associative arrays consisting ofa single field.

DECLARE
TYP
TYP
TYP
TYP
TYP
TYP
TYP
t_e
t_e
"
t_h
t_s
t c

E empno t
E ename t
E job_ tbl
E hiredat
E sal tbl
E comm tb

E deptno

mpno
name

ob
iredate
al

omm

t_deptno

BEGIN

bl IS TABLE OF emp.empno$TYPE INDEX BY BINARY INTEGER;
bl IS TABLE OF emp.ename$TYPE INDEX BY BINARY INTEGER;

IS TABLE OF emp.job$TYPE INDEX BY BINARY INTEGER;
e tbl IS TABLE OF emp.hiredate%TYPE INDEX BY BINARY INTEGER;
a IS TABLE OF emp.sal$TYPE INDEX BY BINARY INTEGER;
1 IS TABLE OF emp.comm$TYPE INDEX BY BINARY INTEGER;
tbl IS TABLE OF emp.deptno%TYPE INDEX BY BINARY INTEGER;

EMPNO_TBL; a

ENAME TBL;

JOB_TBL;

HIREDATE TBL;

SAL_TBL;

COMM_TBL;

DEPTNO_TBL;

SELECT empno, ename,
INTO t empno, t en

job, hiredate, sal, comm, deptno BULK COLLECT
ame, t job, t hiredate, t sal, t comm, t deptno

FROM emp;
DBMS OUTPUT.PUT LINE ('EMPNO ENAME JOB HIREDATE 'l
'SAL ' || 'COMM DEPTNO"'") ;

DBMS OUTPUT.PUT LINE ('----- —--=———= ————————- e

Y S ______l),.

FOR 1 IN 1..t empno.COUNT LOOP
DBMS_OUTPGT.PUT_LINE(t_empno(i) N Y
RPAD (t ename (i),8) || " ' ||
RPAD (t_job(i),10) || " ' ||
TO_CHAR(t_hiredate(i),'DD—MON—YY') (I .
TO CHAR(t sal(i),'99,999.99") || ' ' ||
TO CHAR(NVL (t comm(i),0),'99,999.99") || ' ' ||

END
END;

EMPNO
7369
7499
7521
7566
7654

t _de
LOOP;

ENAME
SMITH
ALLEN
WARD
JONES
MARTIN

ptno (1)) ;

CLERK
SALESMAN
SALESMAN
MANAGER
SALESMAN

HIREDATE SAL COMM DEPTNO
17-DEC-80 800.00 .00 20
20-FEB-81 1,600.00 300.00 30
22-FEB-81 1,250.00 500.00 30
02-APR-81 2,975.00 .00 20

28-SEP-81 1,250.00 1,400.00 30

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 292

Database Compatibility for Oracle® Developers Guide

7698 BLAKE MANAGER 01-MAY-81 2,850.00 .00 30
7782 CLARK MANAGER 09-JUN-81 2,450.00 .00 10
7788 SCOTT ANALYST 19-APR-87 3,000.00 .00 20
7839 KING PRESIDENT 17-NOV-81 5,000.00 .00 10
7844 TURNER SALESMAN 08-SEP-81 1,500.00 .00 30
7876 ADAMS CLERK 23-MAY-87 1,100.00 .00 20
7900 JAMES CLERK 03-DEC-81 950.00 .00 30
7902 FORD ANALYST 03-DEC-81 3,000.00 .00 20
7934 MILLER CLERK 23-JAN-82 1,300.00 .00 10

The following example produces the same result, butuses an associative array on a
record type defined with the srROWT Y PE attribute.

DECLARE
TYPE emp tbl IS TABLE OF emp$ROWTYPE INDEX BY BINARY INTEGER;
t emp EMP_ TBL; B
BEGIN
SELECT * BULK COLLECT INTO t emp FROM emp;
DBMS OUTPUT.PUT LINE ('EMPNO ENAME JOB HIREDATE v

'SAL ']] 'COMM DEPTNO') ;
DBMS OUTPUT.PUT LINE ('----= =—-----= ————————— e
Ve o e e —] || Ve e e ______l),.
FOR 1 IN 1..t emp.COUNT LOOP
DBMS_OUTPﬁT.PUT_LINE(t_emp(i).empno N L
RPAD (t emp(i).ename,8) || ' ' ||
RPAD (t emp(i).Jjob,10) || ' ' ||
TO CHAR(t emp(i) .hiredate,'DD-MON-YY') || ' ' ||
TO CHAR(t emp(i).sal,'99,999.99") || ' ' ||
TO CHAR(NVL (t emp (i) .comm,0),'99,999.99") || ' Yl
t_emp(i) .deptno) ;

END LOOP;

END;

EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
7369 SMITH CLERK 17 =DEC=80 800 .00 .00 20
7499 ALLEN SALESMAN 20-FEB-81 1,600.00 300.00 30
7521 WARD SALESMAN 22-FEB-81 1,250.00 500.00 30
7566 JONES MANAGER 02-APR-81 2,975.00 .00 20
7654 MARTIN SALESMAN 28-SEP-81 1,250.00 1,400.00 30
7698 BLAKE MANAGER 01-MAY-81 2,850.00 .00 30
7782 CLARK MANAGER 09-JUN-81 2,450.00 .00 10
7788 SCOTT ANALYST 19-APR-87 3,000.00 .00 20
7839 KING PRESIDENT 17-NOV-81 5,000.00 .00 10
7844 TURNER SALESMAN 08-SEP-81 1,500.00 .00 30
7876 ADAMS CLERK 23-MAY-87 1,100.00 .00 20
7900 JAMES CLERK 03-DEC-81 950.00 .00 30
7902 FORD ANALYST 03-DEC-81 3,000.00 .00 20
7934 MILLER CLERK 23-JAN-82 1,300.00 .00 10

3.124.2 FETCH BULK COLLECT

The BULK COLLECT clause can be used with a FETCH statement. (See Section 3.8.3 for
information on the FETCH statement.) Instead ofreturning a single row at a time from the

resultset,the FETCH BULK COLLECT will return allrows at once fromthe result setinto
the specified collectionunless restricted by the LTMIT clause.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 293

Database Compatibility for Oracle® Developers Guide

FETCH name BULK COLLECT INTO collection [, ...] [LIMIT n 1;

If'a single collectionis specified, then collectionmay beacollectionofasingle field,
or it may be a collection ofarecord type. If more than one collection is specified, then

each ¢

ollectionmustconsistofasingle field. The expressions in the SELECT list of

the cursoridentified by name must match in number, order, and type-compatibility all

fields in the target collections. If LIMIT n is specified, the number ofrows returned into
the collection oneach FETCH will not exceed n.

The following example usesthe FETCH BULK COLLECT statement toretrieve rows into
an associative array.

DECLARE

BEGI

TYPE emp tbl IS TABLE OF emp$ROWTYPE INDEX BY BINARY INTEGER;

t emp EMP_ TBL; B

CURSOR emp cur IS SELECT * FROM emp;

N

OPEN emp cur;

FETCH emp cur BULK COLLECT INTO t emp;

CLOSE emp:cur; B

DBMS OUTPUT.PUT LINE ('EMPNO ENAME JOB HIREDATE '
'SAL ' || '"COMM DEPTNO"') ;

DBMS OUTPUT.PUT LINE('----——= —--——-—7== -————————-— o oo ooooo '

———————— i

FOR 1 IN 1..t emp.COUNT LOOP
DBMS_OUTPET.PUT_LINE(t_emp(i).empno (- o
RPAD (t_emp(i).ename,8) || " ' ||
RPAD (t_emp(i).job,10) || ' " ||
TO CHAR(t emp(i) .hiredate,'DD-MON-YY') || ' ' ||
TO CHAR(t emp(i).sal,'99,999.99") || ' ' ||
TO CHAR(NVL (t emp (i) .comm,0),'99,999.99") || ' '
t emp (i) .deptno);

END LOOP;

END;

EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
7369 SMITH CLERK 17-DEC-80 800.00 .00 20
7499 ALLEN SALESMAN 20-FEB-81 1,600.00 300.00 30
7521 WARD SALESMAN 22-FEB-81 1,250.00 500.00 30
7566 JONES MANAGER 02-APR-81 2,975.00 .00 20
7654 MARTIN SALESMAN 28-SEP-81 1,250.00 1,400.00 30
7698 BLAKE MANAGER 01-MAY-81 2,850.00 .00 30
7782 CLARK MANAGER 09-JUN-81 2,450.00 .00 10
7788 SCOTT ANALYST 19-APR-87 3,000.00 .00 20
7839 KING PRESIDENT 17-NOV-81 5,000.00 .00 10
7844 TURNER SALESMAN 08-SEP-81 1,500.00 .00 30
7876 ADAMS CLERK 23-MAY-87 1,100.00 .00 20
7900 JAMES CLERK 03-DEC-81 950.00 .00 30
7902 FORD ANALYST 03-DEC-81 3,000.00 .00 20
7934 MILLER CLERK 23-JAN-82 1,300.00 .00 10

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 294

Database Compatibility for Oracle® Developers Guide
31243 EXECUTE IMMEDIATE BULK COLLECT

The BULK COLLECT clause can be used with a EXECUTE IMMEDIATE statementto
specify a collectionto receivethe returned rows.

EXECUTE IMMEDIATE 'sgl expression;'
BULK COLLECT INTO collection [, ...]
[USING {[bind type] bind argument} [, ...]}];

collectionspecifies the name ofa collection.
bind type specifies theparametermode ofthe bind argument.

e Abind typeof 1IN specifiesthatthe bind argument containsavalue thatis
passedtothe sql expression.

e Abind typeofourTspecifies thatthebind argumentreceivesa value from
the sql expression.

e Abind typeofIN ouUT specifies thatthe bind argumentis passedto
sql expression,and thenstores the value returned by sq1 expression.

bind argument specifies a parameter that contains a valuethatis either passed to the
sgl expression(specified withabind typeof1IN),orthatreceivesa value fromthe

sgl expression(specified withabind typeofouT),or both (specified with a
bind typeofIN OUT).

If a single collectionis specified, then collectionmay beacollectionofasingle field,

or acollection ofarecord type; if more than one collection is specified, each
collectionmustconsistofasingle field.

3.124.4 RETURNING BULK COLLECT

The BULK cOLLECT clause can be added to the RETURNING INTO clause ofa DELETE,

INSERT,or UPDATE command. (See Section 3.4.7 for information on the RETURNING
INTO clause.)

{ insert | update | delete }
RETURNING { * | expr 1 [, expr 2] ...}
BULK COLLECT INTO collection [, ...];

insert,update,and deletearethe INSERT,UPDATE,and DELETE commands as
describedin Sections 3.4.4, 3.4.5, and 3.4.6, respectively. Ifa single collectionis
specified, then collectionmay beacollectionofasingle field, orit may be a
collection ofarecord type. [fmore than onecollection is specified, then each

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 295

Database Compatibility for Oracle® Developers Guide

collectionmustconsistofasingle field. The expressions following the RETURNING
keyword must match in number, order, and type-compatibility all fields in the target
collections. If * is specified, thenall columns in the affected table are returned. (Note that

theuse of * is an Advanced Server extension and is not compatible with Oracle
databases.)

The clerkemp table created by copyingthe emp table is used in the remaining examples
in this section as shown below.

CREATE TABLE clerkemp AS SELECT * FROM emp WHERE job = 'CLERK';

SELECT * FROM clerkemp;

empno | ename | Jjob | mgr | hiredate | sal | comm | deptno
—— i b e o e e = ——————
7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | \ 20
7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | \ 20
7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | \ 30
7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | \ 10
(4 rows)

The following example increases everyone’s salary by 1.5, stores the employees’
numbers, names, and new salaries in three associative arrays, and finally, displays the
contents ofthese arrays.

DECLARE
TYPE empno tbl IS TABLE OF emp.empno3%TYPE INDEX BY BINARY INTEGER;
TYPE ename tbl IS TABLE OF emp.ename$TYPE INDEX BY BINARY INTEGER;
TYPE Salitgl IS TABLE OF emp.sal%TYPE INDEX BY BINARY:INTEGER;

t _empno EMPNO TBL;

t ename ENAME TBL;

t_sal SAL TBL;
BEGIN

UPDATE clerkemp SET sal = sal * 1.5 RETURNING empno, ename, sal
BULK COLLECT INTO t empno, t ename, t sal;
DBMS OUTPUT.PUT LINE ('EMPNO ENAME SAL ')
DBMS OUTPUT.PUT LINE ('----- —--=———== ——————— ") 5
FOR i IN 1..t empno.COUNT LOOP
DBMS OUTPUT.PUT LINE (t empno (i) || "' ' || RPAD(t ename(i), 8) |
"' || TO CHAR(t sal (i), '99,999.99')); B

END LOOP;
END;
EMPNO ENAME SAL
7369 SMITH 1,200.00
7876 ADAMS 1,650.00
7900 JAMES 1,425.00
7934 MILLER 1,950.00

The following example performs the same functionality as the previous example, but uses
a single collection defined with a record typeto storethe employees’ numbers, names,
and new salaries.

DECLARE

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 296

Database Compatibility for Oracle® Developers

TYPE emp rec IS RECORD (

empno emp . empno $TYPE,
ename emp .ename$TYPE,
sal emp.sal%$TYPE

) 7
TYPE emp tbl IS TABLE OF emp rec INDEX BY BINARY INTEGER;
t emp EMP TBL;
BEGIN B
UPDATE clerkemp SET sal = sal * 1.5 RETURNING empno, ename, sal
BULK COLLECT INTO t emp;
DBMS_OUTPUT.PUT_LINE('EMPNO ENAME SAL ')
DBMS OUTPUT.PUT LINE ('-----= ——————= ———————— ") g
FOR i IN 1..t emp.COUNT LOOP
DBMS OUTPUT.PUT LINE (t emp (i) .empno || ' '
RPAD (t emp(i).ename,8) || " " ||
TO_CHAﬁ(t_emp(i).sal,'99,999.99'));

END LOOP;
END;
EMPNO ENAME SAL
7369 SMITH 1,200.00
7876 ADAMS 1,650.00
7900 JAMES 1,425.00
7934 MILLER 1,950.00

The following example deletes allrows from the c1erkemp table,and returns
information on the deleted rows into an associative array, which is then displayed.

DECLARE
TYPE emp rec IS RECORD (

empng emp . empno$TYPE,
ename emp . ename$TYPE,
job emp . Job$TYPE,
hiredate emp . hiredate$TYPE,
sal emp.sal%$TYPE,

comm emp .comm3TYPE,
deptno emp . deptno%TYPE

)
TYPE emp tbl IS TABLE OF emp rec INDEX BY BINARY INTEGER;
r_emp EMP TBL;
BEGIN
DELETE FROM clerkemp RETURNING empno, ename, Jjob, hiredate, sal,
comm, deptno BULK COLLECT INTO r emp;
DBMS OUTPUT.PUT LINE ('EMPNO ENAME ~ JOB HIREDATE 'l
'SAL '] 'COMM DEPTNO') ;
DBMS OUTPUT.PUT LINE ('----- —=---=--= ————————— T
'mmm - B e e B
FOR i IN 1..r emp.COUNT LOOP
DBMS OUTPUT.PUT LINE (r emp (i) .empno || ' o
RPAD (r_emp(i).ename,8) || ' ' ||
RPAD (r_emp(i).Jjob,10) [" " ||
TO CHAR(r emp(i) .hiredate,'DD-MON-YY') || ' ' ||
TO CHAR(r emp(i).sal,'99,999.99") || ' ' ||
TO CHAR(NVL (r emp (i) .comm,0),"'99,999.99") || ' v
rggmp(i).deptgo);

END LOOP;
END;
EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
7369 SMITH CLERK 17-DEC-80 1,200.00 .00 20

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

Guide

297

Database Compatibility for Oracle® Developers Guide

7876 ADAMS CLERK 23-MAY-87 1,650.00 .00 20
7900 JAMES CLERK 03-DEC-81 1,425.00 .00 30
7934 MILLER CLERK 23-JAN-82 1,950.00 .00 10

3.13Errors and Messages
Usethe DBMS OUTPUT.PUT LINE statementto reportmessages.

DBMS OUTPUT.PUT LINE (message);
message s any expressionevaluating toa string.
This example displays themessage onthe user’s output display:

DBMS OUTPUT.PUT LINE ('My name is John');

The special variables sO01.cODE and SQLERRM contain a numeric codeand a text message,
respectively, thatdescribe the outcome ofthe last SQL command issued. Ifany other

error occurs in the programsuch as division by zero, these variables contain information
pertaining to the error.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 298

Database Compatibility for Oracle® Developers Guide

4 Triggers

This chapter describes triggers in Advanced Server. As with procedures and functions,
triggers are written in the SPL language.

4.1 Overview

A triggeris a named SPL code block thatis associated with a table and stored in the
database. When a specified eventoccurs on the associated table, the SPLcode block s
executed. The triggeris said to be fired whenthecode blockis executed.

The event that causes a trigger to fire can be any combination ofan insert, update, or
deletion carried outon thetable, either directly or indirectly. Ifthe table is the object ofa
SQL INSERT,UPDATE, or DELETE command the triggeris directly fired assuming that
the corresponding insert, update, or deletionevent is defined as a triggering event. The
events that fire the trigger are defined in the CREATE TRIGGER command.

A trigger can be fired indirectly ifa triggering event occurs on thetable asaresult ofan
event initiated on another table. For example, if a triggeris defined on a table containing
a foreign key defined with theon DELETE CASCADE clause and arow in the parent

table is deleted, all children ofthe parent would be deleted as well. If deletion is a
triggering event onthe child table, deletion ofthechildren will cause thetrigger to fire.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 299

Database Compatibility for Oracle® Developers Guide
4.2 Types of Triggers

Advanced Server supports both row-level and statement-leveltriggers. A row-level
trigger fires once for each row that is affected by a triggering event. Forexample, if
deletion is defined as a triggeringeventon a table anda single DELETE command is
issuedthatdeletes five rows fromthe table, thenthetrigger will fire five times, once for
each row.

In contrast, a statement-level trigger fires once pertriggering statementregardless ofthe

number ofrows affected by the triggering event. In the prior example of asingle DELETE
command deleting five rows, a statement-level trigger would fire only once.

The sequenceofactions can be defined regarding whether the trigger codeblock s
executed before orafter thetriggering statement, itself, in the case of statement-level
triggers; or before orafter each row is affected by thetriggering statement in the case of
row-leveltriggers.

In a before row-leveltrigger, the trigger codeblockis executed before the triggering
action is carried out on each affectedrow. In a before statement-level trigger, the trigger
code blockis executed before the action ofthe triggering statement is carried out.

In an affer row-leveltrigger, the trigger codeblock is executed after the triggering action
is carried out on each affectedrow. In an affer statement-level trigger, thetrigger code
blockis executed afterthe action ofthe triggering statementis carried out.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 300

Database Compatibility for Oracle® Developers Guide

4.3 Creating Triggers

The CREATE TRIGGER command defines and names a trigger that willbe stored in the
database.

Name

CREATE TRIGGER -- define anew trigger

Synopsis

CREATE [OR REPLACE] TRIGGER name
{ BEFORE | AFTER | INSTEAD OF }
{ INSERT | UPDATE | DELETE }
[OR { INSERT | UPDATE | DELETE }] [, ...]
ON table
REFERENCING { OLD AS old | NEW AS new } ...]

[
[FOR EACH ROW]
[WHEN condition]
[DECLARE
declaration; [, ...]]
BEGIN
statement; [, ...]
[EXCEPTION
{ WHEN exception [OR exception] [...] THEN
statement; [, ...1 } [, ...]

END
Description

CREATE TRIGGER defines anewtrigger. CREATE OR REPLACE TRIGGER will either
create anew trigger, orreplace an existing definition.

Ifyou are using the CREATE TRIGGER keywords tocreatea new trigger, the name ofthe
new trigger must not match any existing trigger defined on the same table. New triggers
will be created in the same schema as the table on which thetriggering event is defined.

If you are updating the definition ofan existing trigger, use the CREATE OR REPLACE
TRIGGER keywords.

When you use syntaxcompatible with Oracle databases to createa trigger, the trigger
runs as a SECURITY DEFINER function.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 301

Database Compatibility for Oracle® Developers Guide

Parameters

name

The name ofthe triggerto create.

BEFORE | AFTER

Determines whether thetriggeris fired before or after the triggeringevent.

INSERT | UPDATE | DELETE

table

Defines the triggering event.

The name ofthe table on which the triggering eventoccurs.

condition

conditionis a Boolean expressionthatdetermimes if the trigger will actually be
executed; if condi tion evaluates to TRUE, the trigger will fire.

If the trigger definition includes the FOrR EACH ROW keywords, thewHEN clause
can referto columns ofthe old and/ornew row values by writing
OLD.column_name OTNEW.column namerespectively. INSERT triggers cannot

refer to oLD and DELETE triggers cannotreferto NEW.

If the triggerincludes the INSTEAD OF keywords, it may not include a wHEN
clause.

WHEN clauses cannotcontain subqueries.

REFERENCING { OLD AS old | NEW AS new }

REFERENCING clause to reference old rows andnew rows, but restricted in that
old may only be replaced by an identifiernamed o1d orany equivalentthatis

saved in all lowercase (forexample, REFERENCING OLD AS old,
REFERENCING OLD AS OLD,Or REFERENCING OLD AS "old").Also,new

may only be replaced by an identifiernamed new orany equivalent that is saved

in all lowercase (forexample, REFERENCING NEW AS new, REFERENCING
NEW AS NEW,OrREFERENCING NEW AS "new").

Either one, orboth phrases 0LD AS oldand NEW AS new may be specified in
the REFERENCING clause(forexample, REFERENCING NEW AS New OLD AS
01d).

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 302

Database Compatibility for Oracle® Developers Guide

See Section 3.4 for information on how theseidentifiers are used as pseudo-
record names to referenceold rows andnew rows.

This clause is notcompatible with Oracle databases in thatidentifiers other than
old ornew may notbeused.

FOR EACH ROW

Determines whether thetrigger should be fired once foreveryrow affected by the
triggering event, or just once per SQL statement. If specified, the trigger is fired
once forevery affected row (row-level trigger), otherwise the triggeris a
statement-level trigger.

declaration

A variable, type, REF CURSOR, or subprogramdeclaration. If subprogram
declarations are included, they mustbe declared afterall other variable, type, and
REF CURSOR declarations.

sStatement

An SPL programstatement. Note thata DECLARE - BEGIN - END blockis

considered an SPL statement unto itself. Thus, the trigger body may contain
nestedblocks.

exception

An exception conditionname such as NO DATA FOUND, OTHERS, etc.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 303

Database Compatibility for Oracle® Developers Guide

4.4 Trigger Variables

In the trigger code block, several special variables are available foruse.

NEW

OLD

NEW is a pseudo-record name thatrefers to thenew table row forinsert and update

operations in row-leveltriggers. This variable is not applicable in statement-level
triggers and in delete operations of row-leveltriggers.

Its usageis: : NEW.column where columnis the name ofa column in the table on
which the triggeris defined.

The initial content of : NEW.column is the valuein the named column ofthe new
row to be inserted orofthe newrowthat is to replacethe old one when usedin a
before row-leveltrigger. When used in an after row-leveltrigger, this value has
already been stored in the table since the action has already occurred on the
affected row.

In the trigger code block, : NEW.column canbe usedlike any other variable. Ifa
value is assigned to : NEW.column, in the code block ofabefore row-level trigger,
the assigned value willbe used in the new inserted orupdated row.

oLD is a pseudo-record name thatrefers to theold table row forupdateand delete
operations in row-level triggers. This variable is not applicable in statement-level
triggers and in insert operations of row-level triggers.

Its usageis: : OLD.column where columnis the name ofa column in the table on
which the triggeris defined.

The initial content of : 0LD.columnis the valuein the named column ofthe row
to be deleted orofthe old row that is to be replaced by the new one when used in
a before row-leveltrigger. Whenused in an afterrow-level trigger, this value is

no longerstoredin the table since the action has already occurred on the affected
TOW.

In the trigger code block, : 0LD.co1umn canbe used like any other variable.
Assigning avalue to : 0OLD.column,hasno effect onthe actionofthe trigger.

INSERTING

INSERTING is a conditional expressionthat returns TRUE ifan insert operation
fired the trigger, otherwiseit returns FALSE.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 304

Database Compatibility for Oracle® Developers Guide

UPDATING

UPDATING is a conditional expression that returns TRUE if an update operation
fired the trigger, otherwiseit returns FALSE.

DELETING

DELETING is a conditional expressionthat returns TRUE ifa delete operation fired
the trigger, otherwise it returns FALSE.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 305

Database Compatibility for Oracle® Developers Guide

4.5 Transactions and Exceptions

A triggeris always executed as partofthe same transaction within which the triggering
statement is executing. Whenno exceptions occur within the trigger code block, the
effects ofany DML commands within the trigger are committed ifand only ifthe
transaction containing thetriggering statement is committed. Therefore, if the transaction
is rolled back, the effects ofany DML commands within the trigger are also rolled back.

If an exception does occur within thetrigger codeblock, but it is caught and handled in
an exception section, the effects of any DML commands within thetrigger are stillrolled

backnonetheless. The triggering statementitself, however, is not rolled back unlessthe
application forces arollback of the encapsulating transaction.

If an unhandled exception occurs within the trigger codeblock, the transaction that
encapsulates the triggeris abortedandrolled back. Therefore the effects ofany DML
commands within the trigger and the triggering statement, itselfare all rolled back.

4.6 Trigger Examples

The following sections illustratean example ofeach type oftrigger.

4.6.1 Before Statement-Level Trigger

The following is an example of a simple before statement-level trigger thatdisplays a
messageprior to an insertoperation onthe emp table.

CREATE OR REPLACE TRIGGER emp alert trig

BEFORE INSERT ON emp
BEGIN

DBMS OUTPUT.PUT LINE ('New employees are about to be added');
END;

The following TNSERT is constructed sothat severalnew rows are inserted upon a single
execution ofthe command. Foreach row that has an employeeid between 7900 and
7999, a newrowis inserted with an employeeid incremented by 1000. The following are
the results of executing the command whenthreenew rows are inserted.

INSERT INTO emp (empno, ename, deptno) SELECT empno + 1000, ename, 40
FROM emp WHERE empno BETWEEN 7900 AND 7999;
New employees are about to be added

SELECT empno, ename, deptno FROM emp WHERE empno BETWEEN 8900 AND 8999;

EMPNO ENAME DEPTNO
8900 JAMES 40
8902 FORD 40
8934 MILLER 40

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 306

Database Compatibility for Oracle® Developers Guide

The message,New employees are about to be added,is displayedonce by the
firing ofthe trigger even though the result is the addition ofthree new rows.

4.6.2 After Statement-Level Trigger
The following is an example of an after statement-level trigger. Whenever an insert,

update, ordelete operation occurs on the emp table,arowis added to the empauditlog
table recordingthe date, user, and action.

CREATE TABLE empauditlog (

audit date DATE,
audit user VARCHAR2 (20) ,
audit desc VARCHARZ2 (20)

) ;
CREATE OR REPIACE TRIGGER emp audit trig
AFTER INSERT OR UPDATE OR DELETE ON emp

DECLARE
v action VARCHAR?Z (20) ;
BEGIN
IF INSERTING THEN
v_action := 'Added employee(s)';
ELSIF UPDATING THEN
v action := 'Updated employee(s) ';
ELSIF DELETING THEN
v_action := 'Deleted employee(s)';
END IF;

INSERT INTO empauditlog VALUES (SYSDATE, USER,
v_action);
END;

In the following sequence of commands, two rows are inserted intothe emp table using

two INSERT commands. The sal and comm columns ofbothrows are updated with one
upPDATE command. Finally, both rows are deleted with one DELETE command.

INSERT INTO emp VALUES (9001, 'SMITH', 'ANALYST', 7782, SYSDATE,NULL,NULL,10) ;
INSERT INTO emp VALUES (9002, 'JONES', 'CLERK', 7782, SYSDATE, NULL, NULL, 10) ;
UPDATE emp SET sal = 4000.00, comm = 1200.00 WHERE empno IN (9001, 9002);
DELETE FROM emp WHERE empno IN (9001, 9002);

SELECT TO CHAR(AUDIT DATE, 'DD-MON-YY HH24:MI:SS') AS "AUDIT DATE",
audit user, audit desc FROM empauditlog ORDER BY 1 ASC;

AUDIT DATE AUDIT USER AUDIT DESC
31-MAR-05 14:59:48 SYSTEM Added employee(s)
31-MAR-05 15:00:07 SYSTEM Added employee(s
31-MAR-05 15:00:19 SYSTEM Updated employee(s)
31-MAR-05 15:00:34 SYSTEM Deleted employee(s)

The contents ofthe empaudit1og table show how many times the trigger was fired -

once each forthe two inserts, once for the update (even though two rows were changed)
and once forthe deletion (eventhough two rows were deleted).

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 307

Database Compatibility for Oracle® Developers Guide
4.6.3 Before Row-Level Trigger

The following example is a before row-level trigger that calculates the commissionof
every new employeebelonging to department 30 that is inserted into the emp table.

CREATE OR REPLACE TRIGGER emp comm trig

BEFORE INSERT ON emp
FOR EACH ROW

BEGIN
IF :NEW.deptno = 30 THEN
:NEW.comm := :NEW.sal * .4;
END TIF;
END;

The listing following the addition ofthe two employees shows that the trigger computed
their commissions and inserted it as part ofthe new employee rows.

INSERT INTO emp VALUES (9005, 'ROBERS', 'SALESMAN',7782,SYSDATE,3000.00,NULL, 30) ;

INSERT INTO emp VALUES (9006, 'ALLEN', 'SALESMAN',7782,SYSDATE, 4500.00,NULL, 30) ;

SELECT * FROM emp WHERE empno IN (9005, 9006);

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
9005 ROBERS SALESMAN 7782 01-APR-05 3000 1200 30
9006 ALLEN SALESMAN 7782 01-APR-05 4500 1800 30

4.6.4 After Row-Level Trigger

The following example is an afterrow-level trigger. When anew employee row is
inserted, thetriggeradds anewrowto the jobhist table forthat employee. Whenan
existing employee is updated, the triggersets the enddate column ofthe latest jobhist
row (assumed to be the one with anullenddate)to the current date and inserts anew
jobhist row with the employee’s new information.

Finally, triggeradds arowto the empchglog table with a description oftheaction.

CREATE TABLE empchglog (
chg date DATE,
chg desc VARCHAR? (30)

) 7

CREATE OR REPLACE TRIGGER emp chg trig
AFTER INSERT OR UPDATE OR DELETE ON emp
FOR EACH ROW

DECLARE
vV_empno emp . empno$TYPE;
v _deptno emp .deptno%TYPE;
v:dname dept .dname$TYPE;
v_action VARCHARZ2 (7) ;
v_chgdesc jobhist.chgdesc$TYPE;
BEGIN
IF INSERTING THEN
v_action := 'Added';
v_empno := :NEW.empno;
v_deptno := :NEW.deptno;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 308

Database Compatibility for Oracle® Developers Guide

INSERT INTO jobhist VALUES (:NEW.empno, SYSDATE, NULL,
:NEW.job, :NEW.sal, :NEW.comm, :NEW.deptno, 'New Hire');
ELSIF UPDATING THEN

v action := 'Updated';

v:empno := :NEW.empno;

v_deptno := :NEW.deptno;

v _chgdesc := '';

IF NVL(:0LD.ename, '-null-') != NVL(:NEW.ename, '-null-') THEN
v_chgdesc := v_chgdesc || 'name, ';

END IF;

IF NVL(:0LD.job, '-null-') != NVL(:NEW.job, '-null-') THEN
v_chgdesc := v _chgdesc || 'job, ';

END IF;

IF NVL(:OLD.sal, -1) !'= NVL(:NEW.sal, -1) THEN
v_chgdesc := v_chgdesc || 'salary, ';

END IF;

IF NVL(:O0LD.comm, -1) != NVL (:NEW.comm, -1) THEN
v_chgdesc := v _chgdesc || 'commission, ';

END IF;

IF NVL(:0LD.deptno, -1) != NVL(:NEW.deptno, -1) THEN
v_chgdesc := v_chgdesc || 'department, ';

END IF;

v chgdesc := 'Changed ' || RTRIM(v chgdesc, ', '");
UPDATE jobhist SET enddate = SYSDATE WHERE empno =
AND enddate IS NULL;
INSERT INTO jobhist VALUES (:NEW.empno, SYSDATE, NULL,
:NEW.job, :NEW.sal, :NEW.comm, :NEW.deptno, v chgdesc) ;
ELSIF DELETING THEN

:OLD.empno

v_action := 'Deleted';

v_empno := :0LD.empno;

v_deptno := :0LD.deptno;
END IF;

INSERT INTO empchglog VALUES (SYSDATE,
v_action || ' employee # ' || v_empno);
END;

In the first sequence of commands shown below, two employees are added usingtwo
separate INSERT commands and thenboth are updated usinga single UPDATE command.
The contents ofthe jobhist table shows the action of the trigger for each affected row -
two new hire entries forthe two new employees and two changed commis sion records for
the updated commissions on thetwo employees. The empchglog table alsoshows the

trigger was fired a total of four times, once foreach action on thetwo rows.
INSERT INTO emp VALUES (9003, 'PETERS', 'ANALYST',7782,SYSDATE,5000.00,NULL, 40) ;
INSERT INTO emp VALUES (9004, 'AIKENS', 'ANALYST',7782,SYSDATE,4500.00,NULL,40) ;
UPDATE emp SET comm = sal * 1.1 WHERE empno IN (9003, 9004);

SELECT * FROM jobhist WHERE empno IN (9003, 9004);

EMPNO STARTDATE ENDDATE JOB SAL COMM DEPTNO CHGDESC
9003 31-MAR-05 31-MAR-05 ANALYST 5000 40 New Hire
9004 31-MAR-05 31-MAR-05 ANALYST 4500 40 New Hire
9003 31-MAR-05 ANALYST 5000 5500 40 Changed
commission
9004 31-MAR-05 ANALYST 4500 4950 40 Changed
commission

SELECT * FROM empchglog;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 309

Database Compatibility for Oracle® Developers Guide

CHG_DATE CHG DESC

31-MAR-05 Added employee # 9003
31-MAR-05 Added employee # 9004
31-MAR-05 Updated employee # 9003
31-MAR-05 Updated employee # 9004

Finally, both employees are deleted with a single DELETE command. Theempchglog
table now shows the trigger was fired twice, once foreach deleted employee.

DELETE FROM emp WHERE empno IN (9003, 9004);
SELECT * FROM empchglog;

CHG DATE CHG DESC

31-MAR-05 Added employee # 9003
31-MAR-05 Added employee # 9004
31-MAR-05 Updated employee # 9003
31-MAR-05 Updated employee # 9004
31-MAR-05 Deleted employee # 9003
31-MAR-05 Deleted employee # 9004

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 310

Database Compatibility for Oracle® Developers Guide

5 Packages

Advanced Server provides a collection of packages that provide compatibility with
Oracle packages.

A package is anamed collection of functions, procedures, variables, cursors, user-defined

record types, and records that are referenced usinga common qualifier— the package
identifier. Packages havethe following characteristics:

e Packages provide a convenientmeans of organizing the functions and procedures
that performa related purpose. Permission to use the package functions and
procedures is dependent upon one privilege granted to the entire package. Allof
the packageprograms mustbe referenced with a common name.

e Certain functions, procedures, variables, types, etc. in the package canbe declared
as public. Public entities are visible and can be referenced by other programs that
are given EXECUTE privilege on the package. For public functions and
procedures, only their signatures are visible - the programnames, parameters if
any, and returntypes of functions. The SPL code ofthese functions and
procedures is notaccessible to others, therefore applications thatutilize a package
are dependent only uponthe information available in the signature —not in the
procedurallogic itself.

e Other functions, procedures, variables, types, etc. in the packagecan be declared
as private. Private entities can be referenced and used by function and procedures
within the package, but not by other external applications. Private entities are for
use only by programs within thepackage.

e Function and procedure names canbe overloaded within a package. One or more
functions/procedures can be defined with the same name, but with different
signatures. This provides the capability to create identically named programs that
performthe same job, but on different types of input.

Formore information aboutthe package supportprovided by Advanced Server, please

see the Database Compatibility for Oracle Developers Built-in Package Guide,available
at:

https://www.enterprisedb.com/docs/en/9.6/DB_Compat_Oracle Built_in_Package/Datab
ase_Compatibility_for Oracle_Developers_Built-in_Package Guide.1.01.html

Fora list ofbuilt-in packages, see the Table of Contents, beginning with Chapter 3

"Built-In Packages" ofthe Database Compatibility for Oracle Developers Built-in
Package Guide, available at:

https://www.enterprisedb.com/docs/en/9.6/DB_Compat_Oracle Built_in_Package/toc.ht
ml

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 311

https://www.enterprisedb.com/docs/en/9.6/DB_Compat_Oracle_Built_in_Package/Database_Compatibility_for_Oracle_Developers_Built-in_Package_Guide.1.01.html
https://www.enterprisedb.com/docs/en/9.6/DB_Compat_Oracle_Built_in_Package/Database_Compatibility_for_Oracle_Developers_Built-in_Package_Guide.1.01.html
https://www.enterprisedb.com/docs/en/9.6/DB_Compat_Oracle_Built_in_Package/toc.html
https://www.enterprisedb.com/docs/en/9.6/DB_Compat_Oracle_Built_in_Package/toc.html

Database Compatibility for Oracle® Developers Guide

6 Object Types and Objects

This chapter discusses how object-oriented programming techniques canbe exploited in
SPL. Object-oriented programming as seen in programming languages such as Java and
C++ centers on the concept of objects. An objectis arepresentation ofa real-world entity
such as a person, place, orthing. The generic description or definition ofa particular
object such asaperson forexample, is called an object type. Specific people such as
“Joe” or“Sally” are said to be objects ofobject type, person, or equivalently, instances of
the object type, person, or simply, person objects.

Note: The terms “databaseobjects” and “objects” that have beenused in this document
up to this pointshould not be confused with an object type and objectas usedin this
chapter. The previous usage of these terms relates to the entities thatcan be createdin a
database such as tables, views, indexes, users, etc. Withinthe context ofthis chapter,
object typeand object refer to specific data structures supported by the SPL programming
languageto implement object-oriented concepts.

Note: In Oracle, the term abstract datatype (ADT)is used todescribe object types in

PL/SQL. The SPL implementation ofobject types is intended to be compatible with
Oracle abstractdatatypes.

Note: Advanced Server has not yet implemented support for some features of object-
oriented programming languages. This chapter documents only those features thathave
been implemented.

6.1 Basic Object Concepts

An object type is a description or definition of some entity. This definitionofan object
type is characterized by two components:

e Attributes — fields thatdescribeparticular characteristics of an object instance. For
a personobject, examples might be name, address, gender, date ofbirth, height,
weight, eye color, occupation, etc.

e Methods—programs that performsome type of function or operation on, or
related to an object. Fora personobject, examples might be calculating the
person’s age, displaying the person’s attributes, changing the values assigned to
the person’s attributes, etc.

The following sections elaborate onsome basic object concepts.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 312

Database Compatibility for Oracle® Developers Guide
6.1.1 Attributes

Every object typemust contain at least one attribute. The datatype ofan attribute canbe
any ofthe following:

A base datatype suchas NUMBER, VARCHAR2, etc.
e Anotherobject type

e A globally defined collectiontype (created by the CREATE TYPE command)such
as anestedtable or varray

An attribute gets its initial value (which may be null) when an object instance is initially
created. Each object instance has its own setofattribute values.

6.1.2 Methods

Methods are SPL procedures or functions defined within anobjecttype. Methods canbe
categorized into three general types:

o Member Methods — procedures or functions thatoperate within thecontext ofan
object instance. Member methods haveaccess to, and canchange the attributes of
the object instance on whichthey are operating.

e Static Methods — procedures or functions that operate independently ofany
particular object instance. Static methods donot haveaccess to, and cannot
changethe attributes of an object instance.

o Constructor Methods — functions used to createan instanceofan objecttype. A
default constructor method is always provided when an objecttype is defined.

6.1.3 Overloading Methods
In an object type it is permissible to define two or more identically named methods ofthe
same type (this is, either a procedure or function), but with different signatures. Such

methods are referred to as overloaded methods.

A method’s signature consists of the number of formal parameters, the data types ofits
formal parameters, and their order.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 313

Database Compatibility for Oracle® Developers Guide

6.2 Object Type Components

Object types are created and stored in the database by using the following two constructs
of the SPL language:

e Theobject type specification - This is the public interface specifying theattributes
and method signatures oftheobject type.

e Theobject type body - This contains the implementation ofthe methods specified
in the object type specification.

The following sections describethe commands used to create the object type
specificationand theobjecttype body.

6.2.1 Object Type Specification Syntax

The following is the syntaxofthe object type specification:

CREATE [OR REPLACE] TYPE name
[AUTHID { DEFINER | CURRENT USER }]
{ IS | AS } OBJECT
({ attribute { datatype | objtype | collecttype } }

l, ...1
[method spec] [, ...]

[constructor 1 [, ...]
) [[NOT] { FINAL | INSTANTIABLE }] ...;

where method specis the following:

[[NOT] { FINAL | INSTANTIABLE }]
[OVERRIDING]
subprogram spec

where subprogram spec is the following:

{ MEMBER | STATIC }
{ PROCEDURE proc name
[([SELF [IN | IN OUT] name]
[, parml [IN | IN OUT | OUT] datatypel
[DEFAULT valuel]]
[, parm2 [IN | IN OUT | OUT] datatypeZ
[DEFAULT value?]
1 ...)
]

|
FUNCTION func name

[(I SELF [IN | IN OUT] name]
[, parml [IN | IN OUT | OUT] datatypel
[DEFAULT valuel]]

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 314

Database Compatibility for Oracle® Developers Guide

[, parm2 [IN | IN OUT | OUT] datatypeZ
[DEFAULT valuel2]
1 ...)
]
RETURN return type

}

where constructoris the following:

CONSTRUCTOR func name
[([SELF [IN | IN OUT] name]

[, parml [IN | IN OUT | OUT] datatypel
[DEFAULT valuel]]

[, parm2 [IN | IN OUT | OUT] datatypeZ
[

DEFAULT valueZ]

1 ...)
]
RETURN self AS RESULT

Note: The o0rR REPLACE option cannotbe currently usedto add, delete, ormodify the
attributes ofan existing objecttype. Use the DROP TYPE command to first delete the

existing object type. The OrR REPLACE option can be usedto add, delete, or modify the
methods in an existing object type.

Note: The PostgreSQL formofthe ALTER TYPE ALTER ATTRIBUTE command can be
used to changethe data typeofan attributein an existing object type. However, the
ALTER TYPE command cannot add ordeleteattributes in the object type.

name is an identifier (optionally schema-qualified) assigned to the objecttype.

Ifthe aAuTHID clause is omitted or DEFINER is specified, therights ofthe objecttype
owner are used to determine access privileges to database objects. [f CURRENT USER s

specified, the rights ofthe current user executinga method in the objectare used to
determine access privileges.

attributeis anidentifierassignedto an attribute ofthe objecttype.
datatypels abasedatatype.
objtypeis apreviously defined objecttype.

collecttypeis apreviously defined collection type.

Following the closing parenthesis ofthe CREATE TYPE definition, [NOT] FINAL
specifies whether ornot a subtype can be derived fromthis object type. FINAL, which is

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 315

Database Compatibility for Oracle® Developers Guide

the default, means thatno subtypes canbe derived fromthis object type. Specify NOT
FINAL if you want to allow subtypes to be defined under this object type.

Note: Even thoughthespecificationofNOT FINAL is acceptedin the CREATE TYPE
command, SPL does notcurrently support the creation of subtypes.

Following the closingparenthesis ofthe CREATE TYPE definition, [NOT]
INSTANTIABLE specifies whether ornot an object instance canbe created ofthis object
type. INSTANTIABLE, which is the default, means that an instance ofthis object type can
be created. Specify NOT INSTANTIABLE if this object type is to be used only as a parent
“template” fromwhich other specialized subtypes are to be defined. [f NOT
INSTANTIABLE is specified, thenNoT FINAL mustbe specified as well. If any method

in the object type contains the NOT INSTANTIABLE qualifier, then the object type, itself,
mustbe defined with NOT INSTANTIABLE and NOT FINAL.

Note: Even thoughthespecificationof NOT INSTANTIABLE is acceptedin the CREATE
TYPE command, SPL does not currently support the creation of subtypes.

method_specdenotes thespecification ofa member method orstatic method.

Prior to the definition ofamethod, [NOT] FINAL specifies whether ornot the method

can be overridden in asubtype. NOT FINAL is the default meaningthemethodcanbe
overriddenin a subtype.

Prior to the definition ofa method specify oVERRIDING ifthe method overrides an
identically named method in a supertype. The overriding method must have the same
number ofidentically named method parameters with thesame data types and parameter

modes, in the same order, and the same return type (ifthe method is a function) as
defined in the supertype.

Prior to the definition ofamethod, [NOT] INSTANTIABLE specifies whether ornot
the object type definition provides an implementation for the method. If INSTANTTIABLE
is specified, thenthe CREATE TyPE BODY command forthe object type must specify the
implementation ofthe method. [f NOT INSTANTIABLE is specified, thenthe CREATE
TYPE BODY command forthe object type mustnotcontain the implementation ofthe
method. In this latter case, it is assumed a subtype contains the implementation of the
method, overriding themethod in this object type. Ifthere are any NOT INSTANTIABLE
methods in the objecttype, then the object type definition itself, must specify NOT
INSTANTIABLE and NOT FINAL following the closing parenthesis ofthe object type
specification. The defaultis INSTANTTABLE.

subprogram_spec denotes the specification ofa procedure or function and begins with
the specificationofeither MEMBER or STATIC. A member subprogrammust be invoked
with respect to a particular object instance while a static subprogramis not invoked with
respectto any objectinstance.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 316

Database Compatibility for Oracle® Developers Guide

proc_nameis an identifier of a procedure. Ifthe SELF parameter is specified, name is
the object type name given in the CREATE TYPE command. If specified, parmi, parm2,
... are the formal parameters ofthe procedure. datatypel,datatype?2,...arethe data
typesofparmi,parmz2,... respectively. IN, IN oUT, and oUT are the possible parameter
modes foreach formal parameter. Ifnone are specified, the defaultis IN. vaiue1,
value?2,... are default values thatmay be specified for 1n parameters.

Include the consTrRUCTOR keyword and function definitionto definea constructor
function.

func nameis an identifier of a function. Ifthe SELF parameter is specified, name is the
object typename givenin the CREATE TyYPE command. If specified, parmi1,parm2,...
are the formal parameters ofthe function. datatypel,datatype2,...arethe data
typesofparmi,parmz2,... respectively. IN, IN oUT, and oUT are the possible parameter
modes for each formal parameter. [fnone are specified, the defaultis IN. vaiue1,
value?2,... are default values thatmay be specified for 1N parameters. return typeis
the data type ofthe value the functionreturns.

The following points should be noted about an object typespecification:
e There mustbe at least one attribute defined in the object type.

e There may be none, one, or more methods defined in the object type.

e Foreach member method there is an implicit, built-in parameternamed SELF,
whose data type is that ofthe objecttype being defined.

SELF refers to the object instance that is currently invoking the method. SELF

can be explicitly declared as an 1N or IN OUT parameter in the parameter list (for
example as MEMBER FUNCTION (SELF IN OUT object type ...)).

If seLF is explicitly declared, sSELF must be the first parameter in the parameter
list. If sELF is not explicitly declared, its parameter mode defaults to 1n ouT for

member procedures and 1N formember functions.

e A static methodcannot be overridden (OVERRIDING and STATIC cannot be
specified togetherin method spec).

e A static method must be instantiable (NOT INSTANTIABLE and STATIC cannot
be specified togetherin method spec).

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 317

Database Compatibility for Oracle® Developers Guide
6.2.2 Object Type Body Syntax

The following is the syntaxofthe object type body:

CREATE [OR REPLACE] TYPE BODY name
{ IS | AS }
method spec [...]
[constructor] [...]

END;

where method specis the following:
subprogram_ spec
and subprogram specis the following:

{ MEMBER | STATIC }
{ PROCEDURE proc name
[([SELF [IN | IN OUT] name |

[, parml [IN | IN OUT | OUT] datatypel
[DEFAULT valuel]]

[, parm2 [IN | IN OUT | OUT] datatypeZ
[

DEFAULT valueZ2]

]
{ IS | AS }
[declarations]
BEGIN
statement;
[EXCEPTION
WHEN ... THEN
statement; ...]
END;

FUNCTION func name
[([SELF [IN | IN OUT] name]
[, parml [IN | IN OUT | OUT] datatypel
[DEFAULT valuel]]
[, parm2 [IN | IN OUT | OUT] datatypeZ
[DEFAULT valueZ2]

]
RETURN return type

{ IS | AS }
[declarations]
BEGIN
statement;
[EXCEPTION
WHEN ... THEN
statement; ...]

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 318

Database Compatibility for Oracle® Developers Guide

END;

where constructoris:

CONSTRUCTOR func name
[([SELF [IN | IN OUT] name]
[, parml [IN | IN OUT | OUT] datatypel
[DEFAULT valuel]]
[, parm2 [IN | IN OUT | OUT] datatypeZ
[DEFAULT valueZ2]

]
RETURN self AS RESULT
{ IS | AS }
[declarations]

BEGIN
statement;

[EXCEPTION

WHEN ... THEN
statement; ...]

END;
name 1s an identifier (optionally schema-qualified) assigned to theobjecttype.

method specdenotes theimplementation ofan instantiable method that was specified
in the CREATE TYPE command.

If INsTANTIABLE was specified oromitted in method spec ofthe CREATE TYPE
command, then there mustbe a method spec forthis methodinthe CREATE TYPE
BODY command.

IfNOT INSTANTIABLE was specified in method specofthe CREATE TYPE
command, then there mustbe nomethod spec forthis methodin the CREATE TYPE
BODY command.

subprogram_spec denotes the specification ofa procedure or functionand begins with

the specificationofeither MEMBER or STATIC. The same qualifiermust be used as was
specified in subprogram specofthe CREATE TYPE command.

proc nameis an identifier of a procedure specified in the CREATE TYPE command. The
parameter declarations havethe same meaning as described forthe CREATE TYPE

command, and must be specified in the CREATE TYPE BODY command in the same
manner as specified in the CREATE TYPE command.

Include the consTrRUCTOR keyword and function definition to definea constructor
function.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 319

Database Compatibility for Oracle® Developers Guide

func nameis an identifier of a function specified in the CREATE TYPE command. The
parameter declarations havethe same meaning as described forthe CREATE TYPE
command, and must be specified in the CREATE TYPE BODY command in the same
manner as specified in the CREATE TYPE command. return typeis the datatype of
the value the function returns and must match return type givenin the CREATE TYPE
command.

declarations are variable, cursor, type, or subprogramdeclarations. If subprogram

declarations are included, they mustbe declared afterall other variable, cursor, and type
declarations.

statementis an SPL programstatement.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 320

Database Compatibility for Oracle® Developers Guide

6.3 Creating Object Types

You canuse the CREATE TYPE command to create an object typespecification, and the
CREATE TYPE BODY command to create an object typebody. This section provides
some examples using the CREATE TYPE and CREATE TYPE BODY commands.

The first example creates theaddr object type objecttype that contains only
attributes and no methods:

CREATE OR REPLACE TYPE addr object type AS OBJECT
(

street VARCHAR2 (30) ,
city VARCHARZ2 (20) ,
state CHAR (2),

zip NUMBER (5)

) ;

Since there are no methods in this object type, an objecttype body is not required. This

example creates a compositetype, that allows you totreat related objects as a single
attribute.

6.3.1 Member Methods

A member method is a function or procedure thatis defined within an object typeand can
only be invoked through an instance ofthat type. Member methods haveaccessto,and
can change theattributes of, the object instance on which they are operating.

The following object type specification creates the emp obj typ object type:

CREATE OR REPLACE TYPE emp obj typ AS OBJECT
(

empno NUMBER (4) ,
ename VARCHARZ (20),
addr ADDR OBJ TYP,

MEMBER PROCEDURE display emp (SELF IN OUT emp obj typ)

Objecttype emp obj typ contains amembermethod nameddisplay emp.

display_ emp usesa SELF parameter, that passes theobjectinstance on whichthe
method is invoked.

A SELF parameteris a parameter whose data type is that ofthe objecttype being defined.
SELF always refers to theinstancethatis invokingthemethod. A sELF parameteris the
first parameter in a member procedure or function regardless of whetherit is explicitly
declared in the parameter list.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 321

Database Compatibility for Oracle® Developers Guide
The following code snippetdefines an object type body for emp obj typ:

CREATE OR REPLACE TYPE BODY emp obj typ AS
MEMBER PROCEDURE display emp (SELF IN OUT emp obj typ)

IS
BEGIN
DBMS OUTPUT.PUT LINE ('Employee No ' || empno);
DBMS OUTPUT.PUT LINE ('Name : ' || ename) ;
DBMS OUTPUT.PUT LINE ('Street : ' || addr.street);
DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || addr.city || ', ' ||
addr.state || ' ' || LPAD(addr.zip,5,'0"));
END;

END;

You can also use the SELF parameter in an object typebody. To illustratehowthe sSELF

parameter would be used in the CREATE TYPE BODY command, the preceding object type
body could be writtenas follows:

CREATE OR REPLACE TYPE BODY emp obj typ AS
MEMBER PROCEDURE display emp (SELF IN OUT emp obj typ)

IS
BEGIN

DBMS OUTPUT.PUT LINE ('Employee No ' || SELF.empno);

DBMS OUTPUT.PUT LINE ('Name : ' || SELF.ename);

DBMS OUTPUT.PUT LINE ('Street : ' || SELF.addr.street) ;

DBMS OUTPUT.PUT LINE ('City/State/Zip: ' || SELF.addr.city || ', ' ||

SELF.addr.state || ' ' || LPAD(SELF.addr.zip,5,'0"));

END ;

END;
Both versions ofthe emp obj typ bodyare completely equivalent.

6.3.2 Static Methods

Like a member method, a static method belongs to a type. A static method, however, is
invoked notby an instance ofthe type, butby usingthe name ofthe type. Forexample,

to invoke a static functionnamed get count,definedwithintheemp obj type type,
you would write:

emp obj type.get count();

A static method does nothave access to, and cannot change theattributes ofan object
instance,and does nottypically work with an instance ofthe type.

The following object type specification includes a static functionget dname anda
member procedure display dept:

CREATE OR REPLACE TYPE dept obj typ AS OBJECT (
deptno NUMBER (2) ,
STATIC FUNCTION get dname (p_deptno IN NUMBER) RETURN VARCHARZ,
MEMBER PROCEDURE display dept

)i

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 322

Database Compatibility for Oracle® Developers Guide

The object type body fordept obj typ definesastatic functionnamed get dname
and amember procedure nameddisplay dept:

CREATE OR REPLACE TYPE BODY dept obj typ AS
STATIC FUNCTION getidname(piaeptgo IN NUMBER) RETURN VARCHAR2
IS
v dname VARCHAR2 (14) ;
BEGIN
CASE p deptno

WHEN 10 THEN v dname := 'ACCOUNTING';
WHEN 20 THEN v:dname := '"RESEARCH';
WHEN 30 THEN v _dname := 'SALES';
WHEN 40 THEN v dname := '"OPERATIONS';
ELSE v _dname := 'UNKNOWN';

END CASE;

RETURN v_dname;
END;

MEMBER PROCEDURE display dept

IS
BEGIN
DBMS OUTPUT.PUT LINE ('Dept No : ' || SELF.deptno) ;
DBMS OUTPUT.PUT LINE ('Dept Name HEE
dept _obj typ.get dname (SELF. deptno))
END;

END;

Within the static functionget dname,there canbe no referencesto SELF. Since a static

function is invoked independently ofany object instance, it has no implicit access to any
object attribute.

Member procedure display dept canaccessthe deptno attribute ofthe object
instance passedin the SELF parameter. Itis not necessary toexplicitly declare the sELF
parameterinthe display dept parameter list.

Thelast DBMS OUTPUT.PUT LINE statementinthedisplay dept procedureincludes
a call to the static functionget dname (qualified by its objecttype name
dept obj typ).

6.3.3 Constructor Methods

A constructor methodis a function that creates aninstance ofan object type, typically by
assigning values to the members ofthe object. An objecttype may define several
constructors to accomplish differenttasks. A constructormethod is a member function
(invoked with a SELF parameter) whosename matches the name ofthe type.

Forexample, if you define atypenamed address,eachconstructoris named address.
You may overload a constructor by creating one or more different constructor functions
with the same name, but with different argument types.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 323

Database Compatibility for Oracle® Developers Guide

The SPL compiler will provide a default constructor for each object type. The default
constructor is a member function whosename matches the name ofthe type and whose
argument list matches the type members (in order). Forexample, given an object type
such as:

CREATE TYPE address AS OBJECT
(

street address VARCHARZ2(40),
postal code VARCHAR2(10),
city VARCHAR? (40) ,
state VARCHARZ2 (2)

The SPL compiler will provide a default constructor with the following signature:

CONSTRUCTOR FUNCTION address
(

street address VARCHARZ2 (40),
postal code VARCHARZ2(10),
city VARCHAR2 (40) ,
state VARCHAR2 (2)

The body ofthe default constructor simply sets each memberto NULL.

To create a customconstructor, declarethe constructor function (using the keyword
constructor) in the CREATE TyPE command and define the construction functionin the
CREATE TYPE BODY command. Forexample, you may wish to create a custom
constructor forthe address typewhich computes thecity andstategivena
street_addressandpostal code:

CREATE TYPE address AS OBJECT
(

street address VARCHARZ2 (40),
postal code VARCHAR2(10),
city VARCHAR?Z2 (40),
state VARCHAR2(2),

CONSTRUCTOR FUNCTION address
(
street address VARCHARZ2,
postal:code VARCHARZ2
) RETURN self AS RESULT
)
CREATE TYPE BODY address AS
CONSTRUCTOR FUNCTION address
(
street address VARCHARZ,
postal code VARCHAR?Z2
) RETURN self AS RESULT
IS
BEGIN
self.street address := street address;
self.postal code := postal code;
self.city := postalicodeitgicity(postalicode);

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 324

Database Compatibility for Oracle® Developers Guide

self.state := postal code to state(postal code);
RETURN ;
END;
END;

To create an instance of an object type, you invoke one ofthe constructor methods for
that type. Forexample:

DECLARE

cust addr address := address('100 Main Street', 02203');
BEGIN

DBMS OUTPUT.PUT LINE(cust addr.city); -- displays Boston

DBMS OUTPUT.PUT LINE(cust addr.state); -- displays MA
END;

Customconstructor functions are typically used to compute member values when given

incomplete information. The preceding example computes the values for cityand
state when given apostalcode.

Customconstructor functions are also used to enforce business rules that restrict the state
of an object. Forexample, if you define an object type to representa payment,you can
use a customconstructor to ensure thatno object oftype payment canbe created with an
amount thatis NULL,negative, or zero. The default constructor would set
payment.amount t0 NULL so you mustcreatea customconstructor (whose signature
matches thedefault constructor) to prohibit NULL amounts.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 325

Database Compatibility for Oracle® Developers Guide

6.4 Creating Object Instances
To create an instance of an object type, you must first declarea variable ofthe object
type, and then initialize the declared object variable. The syntaxfordeclaring an object
variable is:

object obj type

objectis anidentifier assigned to the object variable.

obj typeis theidentifier ofa previously defined objecttype.

Afterdeclaring the objectvariable, youmust invoke a constructor methodto mitialize the
object with values. Use thefollowing syntaxto invoke the constructor method:

[NEW] obj type ({exprl | NULL} [, {expr2 | NULL}] [, ...])

obj typeis theidentifier ofthe objecttype’s constructor method; the constructor
method has the same name as the previously declared object type.

exprl, expr2,... are expressions thatare type-compatible with the first attribute ofthe
object type, the second attribute ofthe object type, etc. Ifan attribute is ofan objecttype,
then the corresponding expression can be NULL, an object initialization expression, or any
expression thatreturns that object type.

The following anonymous block declares and initializes a variable:

DECLARE
v_emp EMP OBJ TYP;
BEGIN
v _emp := emp obj typ (9001, 'JONES',

addr obj typ('123 MAIN STREET', 'EDISON','NJ',6 08817)) ;
END;

The variable (v_emp)is declared with a previously defined object typenamed

EMp_0BJ_TYPE. The bodyofthe blockinitializes the variable using the emp obj typ
and addr obj type constructors.

You can include theNEw keyword when creating a new instance ofan objectin the body

of ablock. The NEw keyword invokes the object constructor whose signature matches the
arguments provided.

The following example declares two variables,namedmgr and emp. The variables are
bothofEMP 0BJ TypPE. Themgr objectis initialized in the declaration, while the emp
object is initialized to NULL in the declaration, and assigned a value in the body.

DECLARE
mgr EMP OBJ TYPE := (9002, 'SMITH') ;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 326

Database Compatibility for Oracle® Developers Guide

emp EMP OBJ TYPE;
BEGIN

emp := NEW EMP OBJ TYPE (9003, 'RAY') ;
END;

Note: In Advanced Server, the followingalternate syntaxcan be used in place ofthe
constructor method.

[ROW 1 ({ exprl | NULL } [, { expr2 | NULL } 1 [, ...1)

ROW is an optional keyword if two or more terms are specified within the parenthesis-
enclosed, comma-delimited list. Ifonly one termis specified, then specification ofthe
roW keyword is mandatory.

6.5 Referencing an Object

Once an object variable is created and initialized, individual attributes can be referenced
using dotnotationofthe form:

object.attribute

objectis the identifier assignedto theobjectvariable. at t ributeis the identifier ofan
object typeattribute.

If attribute, itself,is of an object type, then the reference must take the form:

object.attribute.attribute inner

attribute inneris anidentifierbelonging tothe objecttype to which attribute
references in its definition of object.

The following example expands upon the previous anonymous block to display the
values assignedto theemp obj typ object.

DECLARE
v_emp EMP OBJ TYP;
BEGIN
v_emp := emp obj typ(9001,'JONES',
addr_obj typ('123 MAIN STREET', 'EDISON','NJ',08817)) ;
DBMS OUTPUT.PUT LINE ('Employee No : " || v emp.empno);
DBMS OUTPUT.PUT LINE ('Name " || v_emp.ename);
DBMS OUTPUT.PUT LINE ('Street : ' || v _emp.addr.street);
DBMS OUTPUT.PUT LINE ('City/State/Zip: ' || v emp.addr.city || ', ' ||
giemp.addr.gtate (I I LPAD(Vﬁemp.adar.zip,S,’O’));
END;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 327

Database Compatibility for Oracle® Developers Guide

The following is the output fromthis anonymous block.

Employee No : 9001
Name : JONES
Street : 123 MAIN STREET

City/State/Zip: EDISON, NJ 08817

Methods are called in a similar manner as attributes.

Once an object variable is created and initialized, member procedures or functions are
called using dotnotationofthe form:

object.prog name

objectis the identifierassignedto theobjectvariable. prog nameis the identifier of
the procedureor function.

Static procedures or functions are notcalled utilizing an object variable. Instead the
procedure or functionis called utilizing the object type name:

object type.prog name

object typeistheidentifierassigned tothe objecttype. prog nameis the identifier
of the procedure or function.

The results ofthe previous anonymous block canbe duplicated by calling the member
procedure display emp:

DECLARE
vV _emp EMP OBJ TYP;
BEGIN -
v _emp := emp obj typ (9001, 'JONES',

addr _obj typ('123 MAIN STREET', 'EDISON','NJ',08817)) ;
v_emp.display emp;
END;

The following is the output fromthis anonymous block.

Employee No : 9001
Name : JONES
Street : 123 MAIN STREET

City/State/Zip: EDISON, NJ 08817

The following anonymous block creates an instance of dept obj typ andcalls the
member procedure display dept:

DECLARE

v_dept DEPT OBJ TYP := dept obj typ (20);
BEGIN

v_dept.display dept;
END;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 328

Database Compatibility for Oracle® Developers Guide
The following is the output fromthis anonymous block.

Dept No : 20
Dept Name : RESEARCH

The static function definedin dept obj typ canbe called directly by qualifyingit by
the object type name as follows:

BEGIN
DBMS OUTPUT.PUT LINE (dept obj typ.get dname (20)) ;
END;

RESEARCH

6.6 Dropping an Object Type

The syntaxfordeleting an object type is as follows.

DROP TYPE objtype;

objtypeis the identifier ofthe object type to be dropped. Ifthe definition of objtype
contains attributes thatare themselves object types or collection types, these nested object
types orcollectiontypes mustbe dropped last.

If an object type body is defined for the objecttype, the brRoP TYPE command deletes
the object type body as well as the objecttype specification. In order to recreate the

complete object type, both the CREATE TYPE and CREATE TYPE BODY commands must
bereissued.

The following example drops the emp obj typandtheaddr obj typ objecttypes
created earlier in this chapter. emp ob3j typ mustbe droppedfirst sinceit contains
addr obj typ within its definition as an attribute.

DROP TYPE emp obj typ;
DROP TYPE addr obj typ;

The syntaxfordeleting an object type body, but not the object type specification is as
follows.

DROP TYPE BODY objtype;
The object type body canbe recreated by issuingthe CREATE TYPE BODY command.
The following example drops only theobject type body ofthe dept obj typ.

DROP TYPE BODY dept obj typ;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 329

Database Compatibility for Oracle® Developers Guide

7 Open Client Library

The Open Client Library provides application interoperability with the Oracle Call
Interface — an application that was formerly “locked in”” cannow work with eitheran
EDB Postgres Advanced Server oran Oracle database with minimal to no changes to the
application code. The EnterpriseDB implementationofthe Open Client Library is
written in C.

The following diagramcompares the Open Client Library and Oracle Call Interface
application stacks.

Oracle Call EnterpriseDB's
Interface Open Client Library
Same

Application Programs Application Programs

Published API Compatible API
Open Client Library
Black e Open
Box ks Source
Wire-Level Protocols

Fordetailed usage information about the Open Client Library and the supported
functions, please see the EDB Postgres Advanced Server OCI Connector Guide, available
at:

http://www.enterprisedb.com/products -services-training/products/documentation
Please note: EnterpriseDB does not support use ofthe Open Client Library with Oracle

Real Application Clusters (RAC)and Oracle Exadata; the aforementioned Oracle
products have not been evaluated nor certified with this EnterpriseDB product.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 330

http://www.enterprisedb.com/products-services-training/products/documentation

Database Compatibility for Oracle® Developers Guide

8 Oracle Catalog Views

The Oracle Catalog Views provide information aboutdatabase objects in a manner
compatible with the Oracle data dictionary views. Information about the supported views
is now available in the Database Compatibility for Oracle® Developer’s Guide
Reference, available at:

http://www.enterprisedb.com/products-services-training/products/documentation

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 331

http://www.enterprisedb.com/products-services-training/products/documentation

Database Compatibility for Oracle® Developers Guide

9 Tools and Utilities

Compatible tools and utility programs can allow a developer to work with Advanced
Serverin a familiar environment. The tools supported by Advanced Server include:

e EDB*Plus

e EDB*Loader

e EDB*Wrap

e The Dynamic Runtime Instrumentation Tools Architecture (DRITA)

Fordetailed information aboutthe functionality supported by Advanced Server, please
consult the Database Compatibility for Oracle® Developer’s Toolsand Utilities Guide,
available at:

http://www.enterprisedb.com/products -services-training/products/documentation

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 332

http://www.enterprisedb.com/products-services-training/products/documentation

Database Compatibility for Oracle® Developers Guide

10 Table Partitioning

In a partitionedtable, one logically large table is broken into smaller physical pieces.
Partitioning can provide several benefits:

e Query performance canbe improved dramatically in certain situations,
particularly when mostofthe heavily accessedrows ofthe table are in a single
partition ora small number of partitions. Partitioningallows youto omit the

partition column fromthe front ofan index, reducing indexsize and making it
more likely that the heavily used parts ofthe indexfits in memory.

e When aqueryorupdate accesses a large percentage ofa single partition,
performance may improve becausethe server will performa sequentialscanof

the partition instead ofusingan indexand randomaccess reads scattered across
the whole table.

e Abulkload (or unload)can beimplemented by adding or removing partitions, if
you plan thatrequirement into the partitioning design. ALTER TABLE is far faster
than abulk operation. Italso entirely avoids the vacuuM overhead caused by a
bulk DELETE.

e Seldom-useddatacan be migratedto less-expensive (or slower) storage media.

Table partitioning is worthwhile only whena table would otherwise be very large. The
exact point at which a table will benefit frompartitioning depends on theapplication; a

good rule ofthumb is that the size ofthe table should exceed the physical memory ofthe
database server.

This document discusses the aspects oftable partitioning compatible with Oracle
databases that are supported by Advanced Server.

The PostgreSQL9.6 INSERT.. ON CONFLICT DO NOTHING/UPDATE clause
(commonly known as UPSERT) is not supported on Oracle-styled partitioned tables. If

you include the ON CONFLICT DONOTHING/UPDATE clause when invokingthe INSERT
command to add datato a partitioned table, the server will return an error.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 333

Database Compatibility for Oracle® Developers Guide
10.1 Selecting a Partition Type

When you create a partitioned table, youspecify LIST,RANGE,Or HASH partitioning
rules. The partitioning rules providea set of constraints that define the datathatis stored

in each partition. As newrows are addedto thepartitioned table, the serveruses the
partitioningrules to decide which partition should contain each row.

Advanced Server can alsouse thepartitioning rules to enforce partition pruning,
improving performance when responding to user queries. Whenselectinga partitioning
type and partitioning keys for a table, you should take into considerationhow the data
that is stored within a table will be queried, and include often-queried columns in the
partitioningrules.

List Partitioning

When you create a list-partitioned table, youspecify a single partitioning key column.
When addinga rowto the table, theserver compares thekey values specified in the
partitioningrule to the corresponding column within the row. Ifthe column value

matches a value in the partitioning rule, the row is stored in the partitionnamedin the
rule.

Range Partitioning

When you create a range-partitioned table, youspecify one or more partitioning key
columns. When you add anewrow to the table, the server compares the value ofthe
partitioningkey (orkeys)to the corresponding column (or columns) in a table entry. If
the column values satisfy the conditions specified in the partitioningrule, the row is
stored in the partitionnamed in the rule.

Hash Partitioning

When you create a hash-partitioned table, you specify one or more partitioning key
columns. Datais dividedinto (approx.) equal-sized partitions amongst thespecified
partitions. When youadd arow to a hash-partitioned table, the server computes a hash

value forthe data in the specified column (or columns), and stores therow in a partition
accordingto the hash value.

Subpartitioning
Subpartitioning breaks a partitioned table into smaller subsets. Allsubsets mustbe stored

in the same database server cluster. A table is typically subpartitioned by a different set

of columns, and may be a different subpartitioning type than the parentpartition. Ifone
partition is subpartitioned, then each partition willhave at least one subpartition.

If a table is subpartitioned, no datawill be stored in any ofthe partition tables; the data
will be stored instead in the corresponding subpartitions.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 334

Database Compatibility for Oracle® Developers Guide

10.2Using Partition Pruning

Advanced Server's query planner uses partition pruning to compute an efficient planto
locate arow (or rows) that matches the conditions specified in the wHERE clause ofa
SELECT statement. To successfully prunepartitions froman execution plan, the WHERE

clause must constrain the information that is compared to the partitioningkey column
specified when creating the partitioned table. Whenqueryinga:

e list-partitioned table, partition pruning is effective whenthe wHERE clause
compares a literal value to the partitioning key using operators like equal (=) or
AND.

e range-partitionedtable, partition pruning is effective when the WHERE clause
compares a literal value to a partitioning key using operators suchas equal (=),
less than (<), or greater than (>).

e hash-partitioned table, partition pruning is effective when the WHERE clause
compares a literal value to the partitioning key using an operator such as equal

=)
The partition pruning mechanismuses two optimization techniques:
e FastPruning
e Constraintexclusion

Partition pruning techniques limit the search for datato only those partitions in which the

values for which youare searching might reside. Both pruningtechniques remove
partitions froma query's execution plan, increasing performance.

The difference between the fast pruning and constraintexclusionis thatfast pruning
understands therelationship between the partitions in an Oracle-partitioned table, while
constraintexclusiondoes not. Forexample, when a query searches fora specific value
within a list-partitioned table, fast pruning can reason thatonly a specific partition may
hold that value, while constraint exclusion mustexamine the constraints defined for each
partition. Fast pruning occurs early in the planning process to reducethe number of
partitions thatthe planner must consider, while constraintexclusion occurs late in the
planning process.

Using Constraint Exclusion

The constraint exclusion parametercontrols constraintexclusion. The
constraint_ exclusion parametermay haveavalueofon,off,orpartition. To
enable constraintexclusion, the parameter must be set to eitherpartition oron. By
default, the parameteris setto partition.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 335

Database Compatibility for Oracle® Developers Guide

Formore information aboutconstraint exclusion, see:

http://www.postgresgl.org/docs/9.5/static/ddl-partitioning.html

When constraintexclusionis enabled, the server examines the constraints defined for
each partitionto determine ifthat partition can satisfy a query.

When you execute a SELECT statement that does not contain a WHERE clause, the query
planner must recommend an execution planthatsearches the entire table. Whenyou
execute a SELECT statementthatdoes contain a wHERE clause, the query planner
determines in which partition that row would be stored, and sends query fragments to that
partition, pruning the partitions that could not contain that row fromthe execution plan.
If you are not using partitioned tables, disabling constraint exclusion may improve
performance.

Fast Pruning

Like constraintexclusion, fast pruning canonly optimize queries thatincludea WHERE
(or join) clause, and only when the qualifiers in the wHERE clausematch a certain form.

In both cases, the query planner will avoid searching for data within partitions that cannot
possibly hold thedatarequired by the query.

Fast pruningis controlled by a boolean configuration parameter named
edb enable pruning. Ifedb enable pruningis oN, Advanced Server will fast

prune certain queries. Ifedb enable pruningis OFF,the serverwill disable fast
pruning.

Please note: Fast pruning cannot optimize queries against subpartitioned tables or
optimize queries against range-partitioned tables that are partitioned on more thanone
column.

For LIST-partitioned tables, Advanced Server can fast prune queries thatcontain a

WHERE clause that constrains a partitioning column to a literal value. Forexample, given
a LIST-partitioned table such as:

CREATE TABLE sales hist (..., country text, ...)
PARTITION BY LIST (country)

(
PARTITION americas VALUES ('US', 'CA', 'MX'),
PARTITION europe VALUES('BE', 'NL', 'FR'),
PARTITION asia VALUES('JP', 'PK', 'CN'),
PARTITION others VALUES(DEFAULT)

)

Fast pruning canreason about WHERE clauses such as:

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 336

http://www.postgresql.org/docs/9.5/static/ddl-partitioning.html

Database Compatibility for Oracle® Developers Guide

WHERE country = 'US'

WHERE country IS NULL;

Given the first wHERE clause, fastpruning would eliminate partitions europe,asia,and
others because those partitions cannothold rows that satisfy the qualifier: WHERE
country = 'US"'.

Given the second WHERE clause, fast pruning would eliminate partitions americas,
europe,and asia because thosepartitions cannothold rows where country IS NULL.

The operator specified in the wHERE clause must be an equal sign (=) orthe equality
operator appropriate for the data type ofthe partitioning column.

Forrange-partitioned tables, Advanced Server can fastprune queries that contain a

WHERE clause that constrains a partitioning column to a literal value, but the operator may
be any ofthe following:

Fast pruningwillalso reason aboutmore complexexpressions involving AND and
BETWEEN operators, suchas:

WHERE size > 100 AND size <= 200
WHERE size BETWEEN 100 AND 200

But cannot prune based on expressions involving OR or IN.
Forexample, when querying a RANGE-partitioned table, suchas:

CREATE TABLE boxes (id int, size int, color text)
PARTITION BY RANGE (size)

PARTITION small VALUES LESS THAN(100),

PARTITION medium VALUES LESS THAN (200),
PARTITION large VALUES LESS THAN (300)

Fast pruning canreason about WHERE clauses such as:
WHERE size > 100 -- scan partitions 'medium' and 'large'

WHERE size >= 100 -- scan partitions 'medium' and 'large'

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 337

Database Compatibility for Oracle® Developers Guide

WHERE size = 100 -- scan partition 'medium'

WHERE size <= 100 -- scan partitions 'small' and 'medium'

WHERE size < 100 -- scan partition 'small'

WHERE size > 100 AND size < 199 -- scan partition 'medium'

WHERE size BETWEEN 100 AND 199 -- scan partition 'medium'

WHERE color = 'red' AND size = 100 -- scan 'medium'

WHERE color = 'red' AND (size > 100 AND size < 199) -- scan 'medium'

In each case, fastpruning requires that the qualifier must refer to a partitioning column
and literal value (or 1s NULL/IS NOT NULL).

Note that fastpruning can also optimize DELETE and UPDATE statements containing
WHERE clauses ofthe forms described above.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 338

Database Compatibility for Oracle® Developers Guide

10.2.1 Example - Partition Pruning

The ExPLATN statement displays theexecutionplan ofa statement. You can use the
EXPLAIN statementto confirmthat Advanced Serveris pruning partitions fromthe
execution plan ofa query.

To demonstratethe efficiency of partition pruning, first create a simple table:

CREATE TABLE sales
(

dept no number,

part no varcharz,
country varchar2 (20),
date date,

amount number

)
PARTITION BY LIST (country)

(
PARTITION europe VALUES ('FRANCE', 'ITALY'),
PARTITION asia VALUES ('INDIA', 'PAKISTAN'),
PARTITION americas VALUES('US', 'CANADA')

)i
Then, performa constrained query that includes the ExPLA TN statement:

EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE country = 'INDIA';

The resulting query plan shows that theserver willscan only the sales asiatable-the
table in which a rowwith a country value of INDIA would be stored:

edb=# EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE country = 'INDIA';
QUERY PLAN

Append
-> Seg Scan on sales
Filter: ((country)::text = "INDIA'::text)
-> Seq Scan on sales_asia
Filter: ((country)::text = 'INDIA'::text)
(5 rows)

If you performa query that searches fora row that matches a value not included in the
partitioningkey:

EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE dept no = '30';
The resulting query plan shows that theserver mustlook in all of the partitions to locate

the rows that satisfy the query:

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 339

Database Compatibility for Oracle® Developers Guide

edb=# EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE dept no = '30';
QUERY PLAN

Append
-> Seqg Scan on sales
Filter: (dept no = 30::numeric)
-> Seg Scan on sales europe
Filter: (dept_ng = 30: :numeric)
-> Seq Scan on sales asia
Filter: (dept no = 30::numeric)
-> Seq Scan on salgs_americas
Filter: (dept no = 30::numeric)
(9 rows) -

Constraintexclusionalso applies when querying subpartitioned tables:

CREATE TABLE sales
(

dept no number,

part no varchar?2,
country varchar2 (20),
date date,

amount number

)
PARTITION BY RANGE (date) SUBPARTITION BY LIST (country)
(
PARTITION"2011" VALUES LESS THAN ('01-JAN-2012")
(
SUBPARTITION europe 2011VALUES ('ITALY', 'FRANCE'),
SUBPARTITION asia 2011 VALUES ('PAKISTAN', 'INDIA'),
SUBPARTITION americas 2011 VALUES ('US', 'CANADA')
)/
PARTITION"2012" VALUES LESS THAN ('01-JAN-2013")
(
SUBPARTITION europe 2012 VALUES ('ITALY', 'FRANCE'),
SUBPARTITION asia 2012 VALUES ('PAKISTAN', 'INDIA'),
SUBPARTITION americas 2012 VALUES ('US', 'CANADA')
),
PARTITION"2013" VALUES LESS THAN ('01-JAN-2015")
(
SUBPARTITION europe 2013 VALUES ('ITALY', 'FRANCE'),
SUBPARTITION asia 2013 VALUES ('PAKISTAN', 'INDIA'),
SUBPARTITION americas 2013 VALUES ('US', 'CANADA')
)
)

When you query the table, the query planner prunes any partitions or subpartitions from
the search path that cannotpossibly contain the desired result set:

edb=# EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE country = 'US' AND date =
'Dec 12, 2012°';
QUERY PLAN

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 340

Database Compatibility for Oracle® Developers Guide

-> Seq Scan on sales

Filter: (((country)::text = 'US'::text) AND (date = 'l12-DEC-12
00:00:00": :timestamp without time zone))
-> Seq Scan on sales 2012
Filter: (((country)::text = 'US'::text) AND (date = 'l2-DEC-12
00:00:00": :timestamp without time zone))
-> Seq Scan on sales americas 2012
Filter: (((counEry)::teXE = 'US'::text) AND (date = 'l1l2-DEC-12
00:00:00"': :timestamp without time zone))

(7 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 341

Database Compatibility for Oracle® Developers Guide

10.3 Partitioning Commands Compatible with Oracle Databases

The following sections provide information about using thetable partitioning syntax
compatible with Oracle databases supported by Advanced Server.

10.3.1 CREATE TABLE...PARTITION BY

Usethe PARTITIONBY clause ofthe CREATE TABLE command to create a partitioned

table with data distributed amongst one or more partitions (and subpartitions). The
command syntaxcomes in the following forms:

List Partitioning Syntax
Use the first form to create a list-partitioned table:

CREATE TABLE [schema.]table name
table definition
PARTITION BY LIST (column)
[SUBPARTITION BY {RANGE|LIST|HASH} (column|[, column]...)]
(list partition definition/[, 1list partition definition]...);

Where 1ist partition definition Is:

PARTITION [partition name]
VALUES (valuel[, value]...)
[TABLESPACE tablespace name]
[(subpartition, ...)]

Range Partitioning Syntax
Use the second formto create a range-partitioned table:
CREATE TABLE [schema.]table name

table definition

PARTITION BY RANGE (column[, column]...)

[SUBPARTITION BY {RANGE|LIST|HASH} (column|[, column]...)]
(range partition definition|[, range partition definition]...);

Where range partition definitionis:
PARTITION [partition name]
VALUES LESS THAN (valuel[, value]...)

[TABLESPACE tablespace name]
[(subpartition, ...)]

Hash Partitioning Syntax
Use the third formto create a hash-partitioned table:

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 342

Database Compatibility for Oracle® Developers Guide

CREATE TABLE [schema.]table name
table definition
PARTITION BY HASH (column{[, column]...)
[SUBPARTITION BY {RANGE|LIST|HASH} (column|[, column]...)]
(hash partition definition|, hash partition definition]...);

Where hash partition definitionis:
[PARTITION partition name]

[TABLESPACE tablespace name]
[(subpartition, ...)]

Subpartitioning Syntax
subpartitionmay beoneofthe following:
{list subpartition| range subpartition | hash subpartition}
where 1ist subpartitionis:
SUBPARTITION [subpartition name]

VALUES (valuel[, value]...)
[TABLESPACE tablespace name]

where range subpartitionis:

SUBPARTITION [subpartition name]
VALUES LESS THAN (valuel, valuel...)
[TABLESPACE tablespace name]

where hash subpartitionis:

[SUBPARTITION subpartition name]
[TABLESPACE tablespace name]

Description

The CREATE TABLE.. PARTITION BY command creates a table with one ormore
partitions; each partition may have one or more subpartitions. There is no upper limit to
the number ofdefined partitions, butifyou include the PARTITION BY clause, youmust
specify at leastone partitioningrule. The resultingtable will be owned by theuser that
creates it.

Usethe PARTITTIONBY LIST clause to divide a table into partitions based on the values
entered in a specified column. Each partitioning rule must specify at leastoneliteral
value, but thereis no upper limit placed on the number ofvalues youmay specify.
Include arule that specifies a matching value of DEFAULT to direct any un-qualified rows

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 343

Database Compatibility for Oracle® Developers Guide

to the given partition; for more information aboutusing the DEFAULT keyword, see
Section 10.4.

Usethe PARTITION BY RANGE clause to specify boundary rules by which to create
partitions. Each partitioning rule must contain at least onecolumn ofa data type thathas
two operators (1.€.,a greater-than orequal to operator, and a less-than operator). Range
boundaries are evaluated against a LESS THAN clause and are non-inclusive; a date

boundaryofJanuary 1,2013 will include only those date values thatfallon or before
December31, 2012.

Range partitionrules mustbe specified in ascendingorder. INSERT commands that store
rows with values that exceed the top boundary ofa range-partitioned table will fail unless
the partitioning rules include a boundaryrule thatspecifies a value of MAXxvVALUE . Ifyou

do notinclude a MAXVALUE partitioning rule, any row that exceeds the maximum limit
specified by theboundary rules willresult in an error.

Formore information aboutusingthe MaAxvATLUE keyword, see Section 10.4.

Usethe PARTITION BY HASH clause to createa hash-partitionedtable. Ina HASH
partitioned table, data is divided amongstequal-sized partitions based on the hash value
of the column specified in the partitioning syntax. Whenspecifyinga HASH partition,
choose a column (or combinationof columns) thatis as close to unique as possible to
help ensurethatdata is evenly distributed amongst the partitions. Whenselectinga
partitioning column (or combination of columns), select a column (or columns) that you
frequently search for exact matches forbest performance.

Usethe TABLESPACE keyword tospecify the name ofa tablespace on which a partition

or subpartition will reside; if you do not specify a tablespace, the partition or subpartition
will reside in the default tablespace.

If a table definition includes the SUBPARTITION BY clause, each partition within that
table will have at least one subpartition. Each subpartition may be explicitly defined or
system-defined.

If the subpartition is system-defined, the server-generated subpartition will reside in the

default tablespace, and the name ofthe subpartition willbe assigned by the server. The
server will create:

e A DEFAULT subpartitionifthe SUBPARTITION BY clause specifies LIST.

e A MAXVALUE subpartitionifthe SUBPARTITION BY clause specifies RANGE.
The server will generate a subpartition name that is a combination ofthe partition table

name and a unique identifier. You can query theATLT, TAB SUBPARTITIONS tableto
review a complete list of subpartitionnames.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 344

Database Compatibility for Oracle® Developers Guide

Parameters

table name

The name (optionally schema-qualified) ofthe table to be created.

table definition

The column names, datatypes, and constraintinformation as described in the
PostgreSQL core documentation forthe CREATE TABLE statement, available at:

http://www.postgresql.ore/docs/9.5/static/sgl-createtable.html

partition name

The name ofthe partition to be created. Partitionnames must be unique amongst

all partitions and subpartitions, and must follow the naming conventions for
object identifiers.

subpartition name

The name ofthe subpartitionto be created. Subpartition names must be unique

amongstall partitions and subpartitions, and must follow the naming conventions
for object identifiers.

column

The name ofa column on which the partitioning rules are based. Each row will
be stored in a partition thatcorresponds to the va1ue ofthe specified column(s).

(valuel, valuel...)

Use value to specify a quoted literal value (or comma-delimited list of literal
values) by whichtable entries will be grouped into partitions. Each partitioning
rule must specify at leastonevalue, but there is no limit placed on thenumber of
values specified within arule. value may beNULL, DEFAULT (if specifying a
LIST partition), or MAXVALUE (if specifyinga RANGE partition).

When specifyingrules fora list-partitioned table, include the bEFAULT keyword in the
last partition rule to direct any un-matched rows tothe given partition. Ifyou do not
include arule that includes a value of DEFAULT, any INSERT statement that attempts to

add arowthat does notmatch thespecified rules ofat least one partition will fail, and
return an error.

When specifyingrules fora list-partitioned table, include themaxvarL Ut keywordin the
last partition rule to direct any un-categorized rows to the given partition. Ifyou do not

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 345

http://www.postgresql.org/docs/9.5/static/sql-createtable.html

Database Compatibility for Oracle® Developers Guide
include a MAXVALUE partition, any INSERT statement that attempts to add arow where

the partitioning key is greater than thehighest value specified will fail, and return an
error.

tablespace name
The name ofthe tablespace in which the partition or subpartition resides.

10.3.1.1 Example - PARTITION BY LIST

The following example creates a partitionedtable (sales)using the PARTITION BY
LIST clause. The sales table stores informationin three partitions (europe,asia,and
americas):

CREATE TABLE sales
(

dept no number,

part no varchar2z,
country varchar?2 (20),
date date,

amount number

)

PARTITION BY LIST (country)

(
PARTITION europe VALUES ('FRANCE', 'ITALY'),
PARTITION asia VALUES ('INDIA', 'PAKISTAN'),
PARTITION americas VALUES('US', 'CANADA')

) ;

The resultingtable is partitioned by the value specified in the country column:

acctg=# SELECT partition name, high value from ALL TAB PARTITIONS;
partition name high value

________________ +_____________________
americas | 'UsS', 'CANADA'

asia | "INDIA', 'PAKISTAN'
europe | "FRANCE', 'ITALY'

(3 rows)

e Rows with a value ofus or cANADA in the country column are stored in the
americas partition.

e Rows with a value of INDIA or PAKISTAN in the country column are stored in
the asia partition.

e Rows witha value of FRANCE or ITALY in the country column are stored in the
europe partition.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 346

Database Compatibility for Oracle® Developers Guide

The server would evaluatethe following statementagainst the partitioning rules, and
store the row in the europe partition:

INSERT INTO sales VALUES (10, '9519%9a', 'FRANCE', 'l18-Aug-2012",
'650000") ;

10.3.1.2 Example - PARTITION BY RANGE

The following example creates a partitionedtable (sales)using the PARTITION BY

RANGE clause. The sales table stores information in four partitions (g1 2012,
g2 2012,93 2012 andg4 2012):

CREATE TABLE sales
(

dept no number,

part no varchar?2,
country varchar?2 (20),
date date,

amount number

)
PARTITION BY RANGE (date)
(
PARTITION gl 2012
VALUES LESS THAN ('2012-Apr-01"'),
PARTITION g2 2012
VALUES LESS THAN ('2012-Jul-01"'),
PARTITION g3 2012
VALUES LESS THAN ('2012-Oct-01"),
PARTITION g4 2012
VALUES LESS THAN ('2013-Jan-01")
)

Theresultingtable is partitioned by the value specified in the date column:

acctg=# SELECT partition name, high value from ALL TAB PARTITIONS;

partition name | high value
________________ +_______________
g4 2012 | '2013-Jan-01"
g3 2012 | '2012-0ct-01"
g2 2012 | '2012-Jul-01"'
gl 2012 | '2012-Apr-01'
(4 rows)

e Anyrowwith avalue in the date column before April 1, 2012 is stored in a
partitionnamed g1 _2012.

e Anyrowwithavalueinthe date column before July 1,2012 is storedin a
partition named g2 2012.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 347

Database Compatibility for Oracle® Developers Guide

e Anyrowwithavalueinthe date column before October 1,2012 is stored in a
partition named g3_2012.

e Anyrowwithavalueinthe date column before January 1,2013 is storedin a
partitionnamed g4 2012.

The server would evaluatethe following statementagainst the partitioning rules and store
therowin the g3 2012 partition:

INSERT INTO sales VALUES (10, '9519a', 'FRANCE', 'l18-Aug-2012',

'650000") ;

10.3.1.3 Example - PARTITION BY HASH

The following example creates a partitioned table (sales)using the PARTITION BY
HASH clause. The sales table stores informationin three partitions (p1,p2,and p3:

CREATE TABLE sales
(

dept no number,

part no varcharz,
country varchar2 (20),
date date,

amount number

)
PARTITION BY HASH (part no)

(
PARTITION pl,
PARTITION p2,
PARTITION p3
)

The table is partitioned by the hash value ofthe value specified in the part no column:

acctg=# SELECT partition name, partition position from ALL TAB PARTITIONS;

partition name | partition position

________________ +____________________
p3 | 3

p2 \ 2

pl \ 1

(3 rows)

The server will evaluatethe hash value ofthe part no column, anddistributethe rows
into approximately equal partitions.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 348

Database Compatibility for Oracle® Developers Guide

10.3.1.4 Example - PARTITION BY RANGE, SUBPARTITIONBY
LIST

The following example creates a partitionedtable (sales)thatis first partitioned by the
transactiondate; the range partitions (q1 2012,g2 2012, g3 2012andg4 2012)are
then list-subpartitioned using thevalueofthe country column.

CREATE TABLE sales
(

dept no number,

part no varcharz,
country varchar2 (20),
date date,

amount number

)
PARTITION BY RANGE (date)

SUBPARTITION BY LIST (country)
(
PARTITION gl 2012
VALUES LESS THAN('2012-Apr-01")
(
SUBPARTITION ql_europe VALUES ('FRANCE', 'ITALY'"),
SUBPARTITION ql_asia VALUES ('INDIA', 'PAKISTAN'),
SUBPARTITION gl americas VALUES ('US', 'CANADA')
)I
PARTITION q2_2012
VALUES LESS THAN('2012-Jul-01")
(
SUBPARTITION q2_europe VALUES ('FRANCE', 'ITALY'),
SUBPARTITION q2_asia VALUES ('"INDIA', 'PAKISTAN'),
SUBPARTITION q2_americas VALUES ('US', 'CANADA')
)I
PARTITION g3 2012
VALUES LESS THAN('2012-0Oct-01")

(
SUBPARTITION g3 europe VALUES ('FRANCE', 'ITALY'),

SUBPARTITION g3 asia VALUES ('INDIA', 'PAKISTAN'),
SUBPARTITION g3 americas VALUES ('US', 'CANADA')
)I
PARTITION q4_2012
VALUES LESS THAN('2013-Jan-01")

(
SUBPARTITION q4_europe VALUES ('FRANCE', 'ITALY'),
SUBPARTITION q4_asia VALUES ('INDIA', 'PAKISTAN'),
SUBPARTITION g4 americas VALUES ('US', 'CANADA')

)

) ;

This statementcreates a table with four partitions; each partition has three subpartitions:

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 349

Database Compatibility for Oracle® Developers Guide

acctg=# SELECT subpartition name, high value, partition name FROM
ALL TAB SUBPARTITIONS;

g2 _asia
g2 _europe
gl _americas

'"INDIA', 'PAKISTAN' | g2 2012
'"FRANCE', 'ITALY' q2 2012
'US', 'CANADA' ql 2012

|

|
"INDIA', 'PAKISTAN' | gl 2012

|

subpartition name | high value | partition name
___________________ +_____________________+________________
g4 asia | 'INDIA', 'PAKISTAN' | g4 2012
g4 europe | 'FRANCE', 'ITALY' | g4 2012
g4 americas | 'US', 'CANADA' | g4 2012
q3:americas | 'US', 'CANADA' | q3:2012
g3 asia | '"INDIA', 'PAKISTAN' | g3 2012
g3 _europe | 'FRANCE', 'ITALY' | g3 2012
g2 americas | 'US', 'CANADA' | g2 2012
\
\
\
gl asia |

gl europe | 'FRANCE', 'ITALY' gl 2012

(12 rows)

When arowis added tothis table, thevalue in the date column is comparedto the
values specified in the rangepartitioning rules, and the server selects the partition in
which the rowshould reside. The value in the country column is then compared to the
values specified in the list subpartitioning rules; when the server locates a match forthe
value, the rowis stored in the corresponding subpartition.

Any row addedto thetable will be stored in a subpartition, so the partitions will contain
no data.

The server would evaluatethe following statementagainst the partitioning and
subpartitioning rules and store the row in the g3 europe partition:

INSERT INTO sales VALUES (10, '9519%9a', 'FRANCE', 'l18-Aug-2012',
'650000") ;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 350

Database Compatibility for Oracle® Developers Guide

10.3.2 ALTER TABLE...ADD PARTITION

Usethe ALTER TABLE...ADD PARTITION command to add a partition toan existing
partitionedtable. Thesyntaxis:

ALTER TABLE table name ADD PARTITION partition definition;

Where partition definitionis:

{list partition | range partition }
and 1ist partitionis:

PARTITION [partition name]
VALUES (valuel[, value]...)
[TABLESPACE tablespace name]
[(subpartition, ...)]

and range partitionis:
PARTITION [partition name]
VALUES LESS THAN (valuel[, value]...)

[TABLESPACE tablespace name]
[(subpartition, ...)]

Where subpartitionis:

{list subpartition| range subpartition | hash subpartition}

and 1ist subpartitionis:
SUBPARTITION [subpartition name]

VALUES (valuel, valuel]...)
[TABLESPACE tablespace name]

and range subpartitionis:
SUBPARTITION [subpartition name]

VALUES LESS THAN (valuel[, value]...)
[TABLESPACE tablespace name]

Description

The ALTER TABLE.. ADD PARTITION command addsa partitionto an existing
partitioned table. There is no upper limit to the number ofdefined partitions in a
partitionedtable.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 351

Database Compatibility for Oracle® Developers Guide

New partitions mustbe ofthe same type (LIST,RANGE or HASH) as existing partitions.

The new partition rules must reference the same column specified in the partitioning rules
that define the existing partition(s).

You cannotuse theALTER TABLE...ADD PARTITION statementto adda partitionto a
table with aMAXVALUE or DEFAULT rule. Note that youcan alternatively use the ALTER

TABLE... SPLIT PARTITION statementto split an existing partition, effectively
increasing the number of partitions in a table.

RANGE partitions mustbe specified in ascending order. You cannot adda new partition
that precedes existing partitions in a RANGE partitioned table.

Include the TABLESPACE clause to specify the tablespace in which the new partition will
reside. If you do notspecify a tablespace, the partition will reside in the default
tablespace.

Ifthe table is indexed, the indexwill be created on thenew partition.

Tousethe ALTER TABLE. .. ADD PARTITION command youmust be the table owner,
or have superuser (oradministrative) privileges.

Parameters
table name

The name (optionally schema-qualified) ofthe partitioned table.

partition name

The name ofthe partition to be created. Partitionnames must be unique amongst
all partitions and subpartitions, and must follow the naming conventions for
object identifiers.

subpartition name

The name ofthe subpartitionto be created. Subpartition names must be unique

amongstall partitions and subpartitions, and must follow the naming conventions
for object identifiers.

(valuel, valuel...)
Use valueto specify aquoted literal value (or comma-delimited list of literal

values) by whichrows will be distributed into partitions. Each partitioning rule
must specify at least one va1ue, but there is no limit placed on thenumber of

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 352

Database Compatibility for Oracle® Developers Guide

values specified within arule. vaiuemay alsobeNULL, DEFAULT (if specifying
a LIST partition), or MAXVALUE (if specifying a RANGE partition).

Forinformation aboutcreating a DEFAULT Oor MAXVALUE partition, see Section
10.4.

tablespace name
The name ofthe tablespace in which a partition or subpartition resides.
10.3.2.1 Example - Adding a Partition to a LIST Partitioned Table

The example that follows adds a partition to the list-partitioned sa1es table. The table
was created using the command:

CREATE TABLE sales
(

dept no number,

part no varcharz,
country varchar2 (20),
date date,

amount number

)
PARTITION BY LIST (country)

(
PARTITION europe VALUES ('FRANCE', 'ITALY'),
PARTITION asia VALUES ('INDIA', 'PAKISTAN'),
PARTITION americas VALUES('US', 'CANADA')

) ;

The table contains three partitions (americas,asia,and europe):

acctg=# SELECT partition name, high value FROM ALL TAB PARTITIONS;

partition name | high value
________________ +_____________________
americas | 'UsS', 'CANADA'

asia | 'INDIA', 'PAKISTAN'
europe | "FRANCE', 'ITALY'

(3 rows)

The following command adds a partition named east asiatothesales table:

ALTER TABLE sales ADD PARTITION east asia
VALUES ('CHINA', 'KOREA');

Afterinvoking thecommand, thetable includes the east asia partition:

acctg=# SELECT partition name, high value FROM ALL TAB PARTITIONS;
partition name | high value
________________ ——_—_— e e - —

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 353

Database Compatibility for Oracle® Developers Guide

east asia | "CHINA', 'KOREA'
americas | 'Us', 'CANADA'

asia | 'INDIA', 'PAKISTAN'
europe | 'FRANCE', 'ITALY'
(4 rows)

10.3.2.2 Example - Adding a Partition to a RANGE Partitioned
Table

The example that follows adds a partition to a range-partitioned table named sales:

CREATE TABLE sales
(

dept no number,

part no varchar?2,
country varchar2 (20),
date date,

amount number

)
PARTITION BY RANGE (date)
(
PARTITION gl 2012
VALUES LESS THAN('2012-Apr-01"'),
PARTITION g2 2012
VALUES LESS THAN('2012-Jul-01"),
PARTITION g3 2012
VALUES LESS THAN('2012-Oct-01"),
PARTITION g4 2012
VALUES LESS THAN('2013-Jan-01")
) ;

The table contains four partitions (g1 _2012,q2 2012, g3 2012,and g4 2012):

acctg=# SELECT partition name, high value FROM ALL TAB PARTITIONS;

partition name | high value
________________ +_______________
g4 2012 | '2013-Jan-01
g3 2012 | '2012-0ct-01"
g2 2012 | '2012-Jul-01"
gl 2012 | '2012-Apr-01"'
(4 Eows)

The following command adds a partition named g1 2013 tothe sales table:

ALTER TABLE sales ADD PARTITION gl 2013
VALUES LESS THAN('0O1-APR-2013");

Afterinvoking thecommand, thetable includesthe g1 201 3 partition:

acctg=# SELECT partition name, high value FROM ALL TAB PARTITIONS;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 354

Database Compatibility for Oracle® Developers Guide

\

________________ +_______________
gl 2012 | '2012-Apr-01"
g2 2012 | '2012-Jul-01"
g3 2012 | '2012-0Oct-01"
g4 2012 | '2013-Jan-01"
gl 2013 | "01-APR-2013"
(5 ;ows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 355

Database Compatibility for Oracle® Developers Guide

10.3.3 ALTER TABLE... ADD SUBPARTITION

The ALTER TABLE.. ADD SUBPARTITION command adds a subpartition to an existing
subpartitioned partition. The syntaxis:

ALTER TABLE table name MODIFY PARTITION partition name
ADD SUBPARTITION subpartition definition;

Where subpartition definitionis:

{list subpartition | range subpartition}
and 1ist subpartitionis:

SUBPARTITION [subpartition name]
VALUES (valuel[, value]...)
[TABLESPACE tablespace name]

and range subpartitionis:

SUBPARTITION [subpartition name]
VALUES LESS THAN (valuel[, value]...)
[TABLESPACE tablespace name]

Description

The ALTER TABLE... ADD SUBPARTITION command adds a subpartition to an existing
partition; thepartition mustalreadybe subpartitioned. There is no upper limit to the
number of defined subpartitions.

New subpartitions must be ofthe same type (LI ST,RANGE Or HASH) as existing
subpartitions. Thenew subpartition rules must reference the same column specified in
the subpartitioningrules thatdefine the existing subpartition(s).

You cannotuse the ALTER TABLE...ADD SUBPARTITION statement to add a subpartition
to a table with aMAXVALUE or DEFAULT rule, but youcan split an existing subpartition
with the ALTER TABLE... SPLIT SUBPARTITION statement, effectively addinga
subpartition to a table.

You cannot add a new subpartition thatprecedes existing subpartitions in arange
subpartitioned table; range subpartitions mustbe specified in ascending order.

Include the TABLESPACE clause to specify the tablespace in which the subpartition will
reside. If you do notspecify a tablespace, the subpartition will be created in the default
tablespace.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 356

Database Compatibility for Oracle® Developers Guide

If the table is indexed, the indexwill be created on thenew subpartition.

Tousethe ALTER TABLE. .. ADD SUBPARTITION command you mustbe the table
owner, or have superuser (oradministrative) privileges.

Parameters

table name

The name (optionally schema-qualified) ofthe partitioned table in which the
subpartition willreside.

partition name

The name ofthe partition in which the new subpartition willreside.

subpartition name

The name ofthe subpartitionto be created. Subpartition names must be unique

amongstall partitions and subpartitions, and must follow the naming conventions
for object identifiers.

(valuel, valuel]...)

Use value to specify a quoted literal value (or comma-delimited list of literal
values) by whichtable entries will be grouped into partitions. Each partitioning
rule must specify at leastone value, but there is no limit placed on thenumber of
values specified within arule. value may alsobeNULL, DEFAULT (if specifying
a LIST partition), or MAXVALUE (if specifying a RANGE partition).

Forinformation aboutcreating a DEFAULT or MAXVALUE partition, see Section
10.4.

tablespace name

The name ofthe tablespace in which the subpartitionresides.

10.33.1 Example - Adding a Subpartition to a LIST-RANGE Partitioned
Table

The following example adds a RANGE subpartition tothe list-partitioned sales table.
The sales table was created with the command:

CREATE TABLE sales

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 357

Database Compatibility for Oracle® Developers Guide

dept no number,

part no varchar2z,
country varchar?2 (20),
date date,

amount number

)
PARTITION BY LIST (country)
SUBPARTITION BY RANGE (date)

PARTITION europe VALUES ('FRANCE', 'ITALY')
(
SUBPARTITION europe 2011
VALUES LESS THAN('2012-Jan-01"),
SUBPARTITION europe 2012
VALUES LESS THAN('2013-Jan-01")
)I
PARTITION asia VALUES ('INDIA', 'PAKISTAN')
(
SUBPARTITION asia 2011
VALUES LESS THAN('2012-Jan-01"),
SUBPARTITION asia 2012
VALUES LESS THAN('2013-Jan-01")
)I
PARTITION americas VALUES('US', 'CANADA')

(
SUBPARTITION americas 2011

VALUES LESS THAN('2012-Jan-01"),
SUBPARTITION americas 2012
VALUES LESS THAN('2013-Jan-01")

)

The sales table has threepartitions, named europe, asia, and americas. Each
partition has two range-defined subpartitions:

acctg=# SELECT partition name, subpartition name, high value FROM
ALL TAB SUBPARTITIONS;

partition name | subpartition name | high value
europe | europe 2011 | '2012-Jan-01"
europe | europe 2012 | '2013-Jan-01"
asia | asia 2011 | '2012-Jan-01"
asia | asia 2012 | '2013-Jan-01"
americas | americas 2011 | '2012-Jan-01"
americas | americas 2012 | '2013-Jan-01"
(6 rows)

The following command adds a subpartitionnamed europe 2013:
ALTER TABLE sales MODIFY PARTITION europe
ADD SUBPARTITION europe 2013
VALUES LESS THAN('2015-Jan-01");

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 358

Database Compatibility for Oracle® Developers Guide

Afterinvoking thecommand, thetable includes a subpartitionnamed europe 2013:

acctg=# SELECT partition name, subpartition name, high value FROM
ALL TAB SUBPARTITIONS;

partition name | subpartition name | high value
europe | europe 2011 | '2012-Jan-01"
europe europe 2012 '2013-Jan-01"

\ |
europe | europe 2013 | '2015-Jan-01"
asia | asia 2011 | '"2012-Jan-01"
asia | asia 2012 | '"2013-Jan-01"
\ |
| |

americas americas_2011 '2012-Jan-01"
americas americas 2012 '2013-Jan-01"
(7 rows)

Note that whenadding a new range subpartition, the subpartitioning rules must specify a
range that falls affer any existing subpartitions.

10.3.3.2 Example - Adding a Subpartition to a RANGE-LIST
Partitioned Table

The following example adds a 1.7 ST subpartition to the RANGE partitioned sales table.
The sales table was created with the command:

CREATE TABLE sales
(

dept no number,

part no varchar?2,
country varchar2 (20),
date date,

amount number

)
PARTITION BY RANGE (date)
SUBPARTITION BY LIST (country)
(
PARTITION first half 2012 VALUES LESSTHAN('01-JUL-2012")

(
SUBPARTITION europe VALUES ('ITALY', '"FRANCE'),
SUBPARTITION americas VALUES ('US', "CANADA')

)
PARTITION second half 2012 VALUES LESS THAN('01-JAN-2013")

(
SUBPARTITION asia VALUES ('INDIA', '"PAKISTAN')

)
) ;

Afterexecuting the abovecommand, the sales table will have two partitions, named
first half 2012andsecond half 2012. Thefirst half 2012 partitionhas
two subpartitions,named europe and americas,andthesecond half 2012 partition
has one partition,named asia:

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 359

Database Compatibility for Oracle® Developers Guide

acctg=# SELECT partition name, subpartition name, high value FROM

ALL TAB SUBPARTITIONS;

partition name subpartition name high value

|
__________________ +___________________+_____________________
first half 2012 | europe | 'ITALY', 'FRANCE'
first half 2012 | americas | 'US', 'CANADA'
second half 2012 | asia | '"INDIA', 'PAKISTAN'

(3 rows)

The following command adds a subpartitionto the second_half 2012 partition,
named east asia:

ALTER TABLE sales MODIFY PARTITION second half 2012
ADD SUBPARTITION east_asia VALUES ('CHINA') ,

Afterinvoking thecommand, thetable includes a subpartitionnamedeast asia:

acctg=# SELECT partition name, subpartition name, high value FROM
ALL TAB SUBPARTITIONS;

partition name subpartition name | high value
__________________ +___________________+_____________________
first half 2012 | europe | 'ITALY', 'FRANCE'
first half 2012 | americas | 'US', 'CANADA'
second half 2012 | asia | 'INDIA', 'PAKISTAN'
second half 2012 | east asia | 'CHINA'

(4 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 360

Database Compatibility for Oracle® Developers Guide

10.3.4 ALTER TABLE...SPLIT PARTITION

Usethe ALTER TABLE...SPLIT PARTITION command to divide a single partition into
two partitions, and redistribute the partition's contents between thenew partitions. The
command syntaxcomes in two forms.

The first form splits a RANGE partition into two partitions:

ALTER TABLE table name SPLIT PARTITION partition name
AT (range part value)
INTO

(
PARTITION new partl

[TABLESPACE tablespace name],
PARTITION new part?Z2
[TABLESPACE tablespace name]

) ;
The second formsplits a LT ST partition into two partitions:

ALTER TABLE table name SPLIT PARTITION partition name
VALUES (valuel[, value]...)

INTO

(
PARTITION new partl

[TABLESPACE tablespace name],
PARTITION new partZ2
[TABLESPACE tablespace name]

)
Description

The ALTER TABLE. . .SPLIT PARTITION command adds a partitionto an existing LTST
Or RANGE partitionedtable. Please note thatthe ALTER TABLE... SPLIT PARTITION

command cannot add a partitionto a HaSH partitioned table. Thereis no upper limit to
the number ofpartitions thata table may have.

When you execute an ALTER TABLE...SPLIT PARTITION command, Advanced
Server creates twonew partitions, and redistributes the content ofthe old partition
between them(as constrained by thepartitioning rules).

Include the TABLESPACE clause to specify the tablespace in which a partition will reside.
If you do not specify a tablespace, the partition will reside in the default tablespace.

If the table is indexed, the indexwill be created on thenew partition.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 361

Database Compatibility for Oracle® Developers Guide

Tousethe ALTER TABLE. .. SPLIT PARTITION command you mustbe the table
owner, or have superuser (oradministrative) privileges.

Parameters

table name

The name (optionally schema-qualified) ofthe partitioned table.

partition name

The name ofthe partition that is being split.

new partl

The name ofthe first new partition to be created. Partition names must be unique

amongstall partitions and subpartitions, and must follow the naming conventions
for object identifiers.

new partl will receive the rows thatmeet the subpartitioning constraints
specified inthe ALTER TABLE.. SPLIT SUBPARTITION command.

new part?Z

The name ofthe secondnew partition to be created. Partitionnames must be

unique amongst all partitions and subpartitions, and must follow the naming
conventions for object identifiers.

new part2will receive the rows are not directedto new parti1by the

partitioning constraints specified in the ALTER TABLE.. SPLIT PARTITION
command.

range part value

Use range part value tospecify the boundaryrules by which to create the
new partition. The partitioning rule must containat least one column ofa data
type thathas two operators (i.e., a greater-than-or-equal to operator,andaless-
than operator). Range boundaries are evaluated against a LESS THAN clause and

are non-inclusive; a date boundary of January 1,2010 will include only thosedate
values that fallon orbefore December 31, 2009.

(valuel, valuel...)

Use valueto specify aquoted literal value (or comma-delimited list of literal
values) by whichrows willbe distributed into partitions. Each partitioning rule

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 362

Database Compatibility for Oracle® Developers Guide

must specify at least one value, butthereis no limit placed on the number of
values specified within a rule.

Forinformation aboutcreating a DEFAULT or MAXVALUE partition, see Section
10.4.

tablespace name

The name ofthe tablespace in which the partition or subpartitionresides.

10.34.1 Example - Splitting a LIST Partition

Our example will divide one ofthe partitions in the list-partitioned sa1es table into two

new partitions, and redistribute the contents ofthe partitionbetween them. The sales
table is created with the statement:

CREATE TABLE sales
(

dept no number,

part no varcharz,
country varchar?2 (20),
date date,

amount number

)

PARTITION BY LIST (country)

(
PARTITION europe VALUES ('FRANCE', 'ITALY'),
PARTITION asia VALUES ('INDIA', 'PAKISTAN'),
PARTITION americas VALUES('US', 'CANADA')

)

The table definition creates three partitions (europe,asia,and americas). The
following command adds rows to each partition:

INSERT INTO sales VALUES
(10, '"4518b', 'FRANCE', 'l7-Jan-2012', '45000"),
(20, '3788a', 'INDIA', '0l-Mar-2012', '75000"),
(40, '95189b', 'Us', '1l2-Apr-2012', '145000"),
(20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500"),
(40, '4577b', 'Us', 'll1-Nov-2012', '25000"),
(30, '7588b', 'CANADA', 'l4-Dec-2012', '50000")
(30, '9519b', 'CANADA', '0Ol-Feb-2012', '75000")
(30, '"4519b', 'CANADA', '08-Apr-2012', '120000°'

(

(

(

(

(

(

4

)
40, '3788a', 'US', 'l2-May-2012', '4950'"),

10, '9519p', 'ITALY', '07-Jul-2012', '15000"),
10, '951%9a', 'FRANCE', 'l18-Aug-2012', '650000"'),
10, 'S951%b', 'FRANCE', 'l8-Aug-2012', '650000"),
20, '3788b', 'INDIA', '2l1-Sept-2012', '5090"),
40, '4788a', 'Us', '23-Sept-2012', '4950"),

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 363

Database Compatibility for Oracle® Developers Guide
(40, '4788pb', 'us', '09-Oct-2012', '15000"),
(20, '"4519%9a', 'INDIA', '18-0Oct-2012', '650000"),
(20, '"4519b', 'INDIA', '2-Dec-2012', '50890");
The rows are distributed amongstthe partitions:

acctg=# SELECT tableoid::regclass, * FROM sales;

tableoid | dept no | part no | country | date | amount
e e e e et Fo—————
sales europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
sales europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
sales europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
sales europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
sales asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
sales:asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
sales asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
sales asia | 20 | 4519%a | INDIA | 18-0CT-12 00:00:00 | 650000
sales:asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
sales americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
sales americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
sales americas | 30 | 7588Db | CANADA | 14-DEC-12 00:00:00 | 50000
sales americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
sales:americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
sales americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
sales americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
sales americas | 40 | 4788Db | US | 09-0CT-12 00:00:00 | 15000

(17 rows)

The following command splits the americas partitioninto two partitions named us and
canada.

ALTER TABLE sales SPLIT PARTITION americas
VALUES ('US'")
INTO (PARTITION us, PARTITION canada);

A SELECT statementconfirms that therows havebeenredistributed across the correct
partitions:

acctg=# SELECT tableoid::regclass, * FROM sales;

tableoid | dept no | part no | country | date | amount
—————————————— Bt e
sales europe | 10 | 4519 | FRANCE | 17-JAN-12 00:00:00 | 45000
sales europe | 10 | 9519 | ITALY | 07-JUL-12 00:00:00 | 15000
sales europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
sales_europe | 10 | 9519% | FRANCE | 18-AUG-12 00:00:00 | 650000
sales asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
sales:asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
sales asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
sales asia | 20 | 4519a | INDIA | 18-0CT-12 00:00:00 | 650000
sales:asia | 20 | 4519 | INDIA | 02-DEC-12 00:00:00 | 5090
sales us | 40 | 9519 | US | 12-APR-12 00:00:00 | 145000
sales us | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
sales:us | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
sales us | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
sales us | 40 | 4788b | US | 09-0CT-12 00:00:00 | 15000
sales canada | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
sales canada | 30 | 9519 | CANADA | 01-FEB-12 00:00:00 | 75000
sales canada | 30 | 4519 | CANADA | 08-APR-12 00:00:00 | 120000

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 364

Database Compatibility for Oracle® Developers Guide

(17 rows)

10.34.2 Example - Splitting a RANGE Partition

This example divides theg4 2012 partition (ofthe range-partitioned sales table) into
two partitions, and redistribute the partition's contents. Use the following commandto
create the sales table:

CREATE TABLE sales
(

dept no number,

part no varcharz,
country varchar2 (20),
date date,

amount number

)
PARTITION BY RANGE (date)
(
PARTITION gl 2012
VALUES LESS THAN ('2012-Apr-01"),
PARTITION g2 2012
VALUES LESS THAN('2012-Jul-01"),
PARTITION g3 2012
VALUES LESS THAN('2012-Oct-01"),
PARTITION g4 2012
VALUES LESS THAN('2013-Jan-01")
)

The table definition creates four partitions (g1 _2012,92 2012, g3 2012,and
g4 2012). The following command adds rows to each partition:

INSERT INTO sales VALUES
(10, '4519b', 'FRANCE', 'l17-Jan-2012', '45000'),
(20, '3788a', 'INDIA', '0l1-Mar-2012', '75000'),
(40, '9519b', 'US', '12-Apr-2012', '145000'),

(20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
(40, '4577b', 'US', '11-Nov-2012', '25000'),

(30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
(30, '9519b', 'CANADA', '0l-Feb-2012', '75000'),
(30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
(40, '3788a', 'US', '12-May-2012', '4950'),

(10, '9519b', 'ITALY', '07-Jul-2012', '15000'"),
(10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
(10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
(20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
(40, '4788a', 'US', '23-Sept-2012', '4950'),

(40, '4788b', 'US', '09-Oct-2012', '15000'"),

(20, '4519a', 'INDIA', '18-0ct-2012', '650000'"),

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 365

Database Compatibility for Oracle® Developers Guide

(20, '"4519pb', 'INDIA', '2-Dec-2012', '5090");

A SELECT statementconfirms that therows are distributed amongst thepartitions as
expected:

acctg=# SELECT tableoid::regclass, * FROM sales;

tableoid | dept no | part no | country | date | amount
e it T fom Fo——— fom e t-——————
sales gl 2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
sales gl 2012 | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
sales gl 2012 | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
sales g2 2012 | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
sales g2 2012 | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
sales g2 2012 | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
sales g2 2012 | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
sales g3 2012 | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
sales:q3:2012 \ 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
sales g3 2012 | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
sales g3 2012 | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
sales:q3:2012 | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
sales g4 2012 | 40 | 4577b | US [11-NOV-12 00:00:00 | 25000
sales g4 2012 | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
sales g4 2012 | 40 | 4788b | US | 09-0CT-12 00:00:00 | 15000
sales g4 2012 | 20 | 4519a | INDIA | 18-0CT-12 00:00:00 | 650000
sales g4 2012 | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090

(17 rows)

The following command splitsthe g4 2012 partition into two partitions named
g4 2012 plandqg4 2012 p2:

ALTER TABLE sales SPLIT PARTITION g4 2012
AT ('15-Nov-2012")
INTO

(
PARTITION g4 2012 pl,
PARTITION g4 2012 p2
)

A SELECT statementconfirms that therows havebeenredistributed across the new
partitions:

acctg=# SELECT tableoid::regclass, * FROM sales;

tableoid | dept no | part no | country | date | amount
e b B e et i +————
sales gl 2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
sales gl 2012 20 3788a INDIA | 01-MAR-12 00:00:00 | 75000
sales gl 2012 30 9519b CANADA | 01-FEB-12 00:00:00 | 75000
sales g2 2012 40 9519b us | 12-APR-12 00:00:00 [145000
sales g2 2012 20 3788a PAKISTAN | 04-JUN-12 00:00:00 | 37500
sales g2 2012 30 4519Db CANADA 08-APR-12 00:00:00 |120000

| | |

| | |

| | |

| | |
i | | |

sales g2 2012 | 40 | 3788a | US 12-MAY-12 00:00:00 | 4950

| | |

| | |

| | |

| | |

\ \ \

| | |

|

|
sales g3 2012 10 9519b ITALY | 07-JUL-12 00:00:00 | 15000
saleS:q3:2012 10 9519a FRANCE | 18-AUG-12 00:00:00 650000
sales g3 2012 10 9519b FRANCE | 18-AUG-12 00:00:00 650000
sales g3 2012 20 3788b INDIA | 21-SEP-12 00:00:00 | 5090
sales g3 2012 40 4788a us | 23-SEP-12 00:00:00 | 4950
sales g4 2012 pl 40 4577b Us | 11-NOV-12 00:00:00 | 25000

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 366

Database Compatibility for Oracle® Developers Guide

sales g4 2012 pl | 40 | 4788b | US | 09-0CT-12 00:00:00 | 15000
sales g4 2012 pl | 20 | 4519a | INDIA | 18-0CT-12 00:00:00 |650000
sales g4 2012 p2 | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
sales g4 2012 p2 | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090

(17 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 367

Database Compatibility for Oracle® Developers Guide

10.3.5 ALTER TABLE...SPLIT SUBPARTITION

Usethe ALTER TABLE...SPLIT SUBPARTITION command to divideasingle
subpartition into two subpartitions, and redistribute the subpartition's contents. The
command comes in two variations.

The first variation splits a range subpartition into two subpartitions:

ALTER TABLE table name SPLIT SUBPARTITION subpartition name
AT (range part value)
INTO

(
SUBPARTITION new subpartl

[TABLESPACE tablespace name],
SUBPARTITION new subpartZ?
[TABLESPACE tablespace name]

) ;
The second variationsplits a list subpartition into two subpartitions:

ALTER TABLE table name SPLIT SUBPARTITION subpartition name
VALUES (valuel[, value]...)
INTO

(
SUBPARTITION new subpartl

[TABLESPACE tablespace name],
SUBPARTITION new subpartZ
[TABLESPACE tablespace name]

)

Description

The ALTER TABLE. . .SPLIT SUBPARTITION command addsasubpartitionto an
existing subpartitioned table. There is no upper limit to the number ofdefined
subpartitions. When you execute an ALTER TABLE. ..SPLIT SUBPARTITION
command, Advanced Server creates two new subpartitions, moving any rows thatcontan
values that are constrained by the specified subpartitionrules into new subparti,and
any remaining rows into new subpart2.

The new subpartition rules mustreference the column specified in the rules thatdefine
the existing subpartition(s).

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 368

Database Compatibility for Oracle® Developers Guide

Include the TABLESPACE clause to specify a tablespace in which a new subpartition will
reside. If you do notspecify a tablespace, the subpartition will be created in the default
tablespace.

If the table is indexed, the indexwill be created on thenew subpartition.

Tousethe ALTER TABLE... SPLIT SUBPARTITION command you mustbe the table
owner, or have superuser (oradministrative) privileges.

Parameters

table name

The name (optionally schema-qualified) ofthe partitioned table.

subpartition name

The name ofthe subpartition thatis being split.

new subpartl

The name ofthe first new subpartition to be created. Subpartition names mustbe
unique amongst all partitions and subpartitions, and must follow the naming
conventions for object identifiers.

new subpartl will receive the rows that meet the subpartitioning constraints
specified inthe ALTER TABLE.. SPLIT SUBPARTITION command.

new_ subpartZ2

The name ofthe second new subpartitionto be created. Subpartitionnames must
beunique amongstall partitions and subpartitions, and must follow the naming
conventions for object identifiers.

new subpart2will receive the rows are not directedto new subpart1 by the

subpartitioning constraints specified in the ALTER TABLE.. SPLIT
SUBPARTITION command.

(valuel, valuel...)

Use valueto specify aquoted literal value (or comma-delimited list of literal
values) by whichtable entries will be grouped into partitions. Each partitioning
rule must specify at leastone value, but there is no limit placed on thenumber of
values specified within arule. valuemay alsobeNULL, DEFAULT (if specifying
a LIST subpartition), or MAXVALUE (if specifyinga RANGE subpartition).

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 369

Database Compatibility for Oracle® Developers Guide

Forinformation aboutcreating a DEFAULT or MAXVALUE partition, see Section
10.4.

tablespace name

The name ofthe tablespace in which the partition or subpartitionresides.

10.3.5.1 Example - Splitting a LIST Subpartition

The following example splits a list subpartition, redistributing the subpartition's contents

between two new subpartitions. The sample table (sa1es)was created with the
command:

CREATE TABLE sales
(

dept no number,

part no varchar2z,
country varchar2 (20),
date date,

amount number

)
PARTITION BY RANGE (date)
SUBPARTITION BY LIST (country)
(
PARTITION first half 2012 VALUES LESSTHAN('01-JUL-2012")
(
SUBPARTITION pl europe VALUES ('ITALY', '"FRANCE'),
SUBPARTITION pl americas VALUES ('US', "CANADA')

)
PARTITION second half 2012 VALUES LESSTHAN('0O1-JAN-2013")

(
SUBPARTITION p2 europe VALUES ('ITALY', 'FRANCE'),
SUBPARTITION p2 americas VALUES ('US', 'CANADA')
)
)

The sales table has two partitions,named first half 2012, and

second_half 2012. Each partition hastworange-defined subpartitions thatdistribute
the partition's contents into subpartitions based on the value ofthe count ry column:

acctg=# SELECT partition name, subpartition name, high value FROM
ALL TAB SUBPARTITIONS;
partition name | subpartition name

second_half 2012
first half 2012
Seconaihalf72012
first half 2012
(4 rowg) N

"ITALY', 'FRANCE'
'"ITALY', 'FRANCE'
'US', 'CANADA'
'US', 'CANADA'

p2_europe
pl europe
p2:ame ricas
pl americas

The following command adds rows to each subpartition:

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 370

Database Compatibility for Oracle® Developers Guide

INSERT INTO sales VALUES
(10, '4519b', 'FRANCE', 'l7-Jan-2012', '45000"),
(40, '9519p', 'Us', '"l2-Apr-2012', '145000"),
(40, '4577b', 'Uus', 'l1l1-Nov-2012', '25000"'),
(30, '7588b', 'CANADA', 'l4-Dec-2012', '50000"),
(30, '9519b', 'CANADA', 'Ol-Feb-2012', '75000"),
(30, '4519p', 'CANADA', '08-Apr-2012', '120000"),
(40, '3788a', 'US', 'l2-May-2012', '4950'"),
(10, '9519p', 'ITALY', '07-Jul-2012', '15000"),
(10, '951%9a', 'FRANCE', 'l18-Aug-2012', '650000"),
(10, '9519p', 'FRANCE', 'l18-Aug-2012', '650000"),
(40, '4788a', 'US', '23-Sept-2012', '4950"),
(40, '4788p', 'Us', '09-0Oct-2012', '15000");

A SELECT statementconfirms that therows are correctly distributed amongst the
subpartitions:

acctg=# SELECT tableoid::regclass, * FROM sales;

tableoid | dept no | part no | countryl date |amount
——————————————————— o e e e e e e e
sales pl europe | 10 | 4519 | FRANCE | 17-JAN-12 00:00:00 | 45000
sales pl europe | 10 | 4519 | FRANCE | 17-JAN-12 00:00:00 | 45000
sales pl americas | 40 | 9519 | US | 12-APR-12 00:00:00 | 145000
sales pl americas | 30 | 9519 | CANADA | O01-FEB-12 00:00:00 | 75000
sales pl americas | 30 | 4519 | CANADA | 08-APR-12 00:00:00 | 120000
sales pl americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
sales_p2_ europe \ 10 | 9519% | ITALY | 07-JUL-12 00:00:00 | 15000
sales p2 europe | 10 | 9519%a | FRANCE | 18-AUG-12 00:00:00 | 650000
sales p2 europe | 10 | 9519 | FRANCE | 18-AUG-12 00:00:00 | 650000
sales p2 americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
sales p2 americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
sales p2 americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
sales p2 americas | 40 | 4788b | US | 09-0CT-12 00:00:00 | 15000

(13 rows)

The following command splitsthe p2 americas subpartitioninto twonew
subpartitions, and redistributes the contents:

ALTER TABLE sales SPLIT SUBPARTITION p2Z2 americas
VALUES ('US")
INTO
(
SUBPARTITION p2 us,
SUBPARTITION p2 canada

)

Afterinvoking thecommand, thep2 americas subpartition has beendeleted; in its
place, the serverhas created two new subpartitions (p2 us andp2 canada):

acctg=# SELECT partition name, subpartition name, high value FROM
ALL TAB SUBPARTITIONS; B B
partition name | subpartition name | high value
__________________ +___________________+___________________
first half 2012 | pl europe | 'ITALY', 'FRANCE'

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 371

Database Compatibility for Oracle® Developers Guide
first half 2012 | pl americas | 'US', 'CANADA'
second half 2012 | p2 europe | 'ITALY', 'FRANCE'
second:half:ZOIZ \ p2:canada | 'CANADA'
second half 2012 | p2 us ['us’
(5 rows)
Querying the sales table demonstrates thatthe content ofthe p2 americas
subpartition has beenredistributed:

acctg=# SELECT tableoid::regclass, * FROM sales;

tableoid | dept no | part no | country | date | amount
e +-———
sales pl europe | 10 | 4519 | FRANCE | 17-JAN-12 00:00:00 | 45000
sales pl europe | 10 | 4519 | FRANCE | 17-JAN-12 00:00:00 | 45000
sales pl americas | 40 | 9519 | US | 12-APR-12 00:00:00 |145000
sales pl americas | 30 | 9519 | CANADA | 01-FEB-12 00:00:00 | 75000
sales pl americas | 30 | 4519 | CANADA | 08-APR-12 00:00:00 |120000
sales pl americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
sales p2 europe | 10 | 9519 | ITALY | 07-JUL-12 00:00:00 | 15000
sales p2 europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 |650000
sales p2 europe | 10 | 9519 | FRANCE | 18-AUG-12 00:00:00 |650000
sales p2 us | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
sales p2 us | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
sales p2 us | 40 | 4788b | US | 09-0CT-12 00:00:00 | 15000
sales p2 canada | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000

(13 rows)

10.3.5.2 Example -

Splitting a RANGE Subpartition

The following example splits a range subpartition, redistributing the subpartition's
contents between two new subpartitions. The sample table (sales)was created with the

command:

CREATE TABLE sales
(

dept no number,

part no varchar2z,
country varchar?2 (20),
date date,

amount number

)

PARTITION BY LIST (country)
SUBPARTITION BY RANGE (date)

PARTITION europe VALUES ('FRANCE', 'ITALY')

(

SUBPARTITION europe 2011

VALUES LESS THAN('2012-Jan-01"),
SUBPARTITION europe 2012

VALUES LESS THAN('2013-Jan-01")

)

PARTITION asia VALUES ('INDIA', 'PAKISTAN')

Copy right © 2007 -2017 Enterpris

eDB Corporation. All rights reserved.

372

Database Compatibility for Oracle® Developers Guide

SUBPARTITION asia_ZOll
VALUES LESS THAN('2012-Jan-01"),
SUBPARTITION asia_2012
VALUES LESS THAN('2013-Jan-01")
) s
PARTITION americas VALUES('US', 'CANADA')
(
SUBPARTITION americas 2011
VALUES LESS THAN('2012-Jan-01"),
SUBPARTITION americas 2012
VALUES LESS THAN('2013-Jan-01")

) ;

The sales table has threepartitions (europe, asia, and americas). Each partition
has two range-defined subpartitions that sortthe partitions contents into subpartitions by

the value ofthe date column:

acctg=# SELECT partition name, subpartition name, high value FROM

ALL TAB SUBPARTITIONS;

partition name | subpartition name | high value

europe | europe 2011 | '2012-Jan-01"
europe europe 2012 '2013-Jan-01"
asia asia_2611 '2012-Jan-01"

\ |
\ |
asia | asia 2012 | '2013-Jan-01"
\ |
\ |

americas americas_2011 '2012-Jan-01"
americas americas_2012 '2013-Jan-01"
(6 rows)

The following command adds rows to each subpartition:

INSERT INTO sales VALUES

(10, '4519b', 'FRANCE', 'l7-Jan-2012', '45000"),
20, '3788a', 'INDIA', '0Ol-Mar-2012', '75000"),
40, '9519b', 'Us', 'l2-Apr-2012', '145000"),

20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500"),

(
(
(
(40, '4577b', 'US', '11-Nov-2012', '25000'),
(30, '7588b', 'CANADA', 'l4-Dec-2012', '50000'),
(30, '9519b', 'CANADA', '0l-Feb-2012', '75000'),
(30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
(40, '3788a', 'US', '12-May-2012', '4950'),

(10, '9519b', 'ITALY', '07-Jul-2012', '15000'"),
(10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
(10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
(20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
(40, '4788a', 'US', '23-Sept-2012', '4950'),

(40, '4788b', 'US', '09-0Oct-2012', '15000'),

(20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
(20, '4519b', 'INDIA', '2-Dec-2012', '5090');

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

373

Database Compatibility for Oracle® Developers Guide

A SELECT statementconfirms that therows are distributed amongst the subpartitions:

acctg=# SELECT tableoid::regclass, * FROM sales;

tableoid | dept no|part no| country date |amount

17-JAN-12 00:00:00
07-JUL-12 00:00:00

45000
15000
650000

10| 4519b
10| 9519b
10| 9519a

| FRANCE

|

|
10| 9519b | FRANCE

|

|

|

ITALY

\
+
sales europe 2012 |
|
FRANCE | 18-AUG-12 00:00:00
|
|
|
|
|
|
|

sales europe 2012
sales europe 2012

+ +

| |

| |

| |
sales europe 2012 | 18 -AUG-12 00:00:00 | 650000
sales asia 2012 | 20| 3788a INDIA 01-MAR-12 00:00:00 | 75000
sales asia 2012 | 20| 3788a PAKISTAN| 04-JUN-12 00:00:00 | 37500
sales asia 2012 | 20| 3788b | INDIA 21-SEP-12 00:00:00 | 5090
sales asia 2012 | 20| 4519a | INDIA 18-0CT-12 00:00:00 | 650000
sales asia 2012 | 20| 4519b | INDIA 02-DEC-12 00:00:00 | 5090
sales americas 2012 | 40| 9519b | US 12-APR-12 00:00:00 | 145000
sales americas 2012 | 40| 4577b | US | 11-NOV-12 00:00:00 | 25000
sales:americas:2012 | 30| 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
sales americas 2012 | 30| 9519b | CANADA | O01-FEB-12 00:00:00 | 75000
sales americas 2012 | 30| 4519b | CANADA | 08-APR-12 00:00:00 | 120000
sales:americas:2012 | 40| 3788a | US | 12-MAY-12 00:00:00 | 4950
sales americas 2012 | 40| 4788a | US | 23-SEP-12 00:00:00 | 4950
sales americas 2012 | 40| 4788b | US | 09-0CT-12 00:00:00 | 15000

(17 rows)

The following command splits the americas 2012 subpartition into two new
subpartitions, and redistributes the contents:

ALTER TABLE sales
SPLIT SUBPARTITION americas 2012
AT ('2012-Jun-01")
INTO
(
SUBPARTITION americas pl 2012,
SUBPARTITION americas p2 2012
)

Afterinvoking thecommand,theamericas 2012 subpartition has beendeleted; in its

place, the serverhas created two new subpartitions (americas pl 2012 and
americas p2 2012):

acctg=# SELECT partition name, subpartition name, high value FROM
ALL TAB SUBPARTITIONS;

partition name | subpartition name | high value
________________ +___________________+_______________
europe | europe 2012 | '2013-Jan-01"
europe | europe 2011 | '2012-Jan-01"
americas | americas 2011 | '2012-Jan-01"
americas | americas p2 2012 | '2013-Jan-01"
americas | americas pl 2012 | '2012-Jun-01"
asia | asia 2012 | '2013-Jan-01"
asia | asia 2011 | '2012-Jan-01"
(7 rows)

Querying the sales table demonstrates thatthe subpartition's contents are redistributed:

acctg=# SELECT tableoid::regclass, * FROM sales;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 374

Database Compatibility for Oracle® Developers Guide

tableoid | dept nol|part nolcountry | date |amount

e e o
sales europe 2012 | 10| 4519 |FRANCE | 17-JAN-12 00:00:00 | 45000
sales europe 2012 | 10| 951% |ITALY | 07-JUL-12 00:00:00| 15000
sales europe 2012 | 10| 9519%9a |FRANCE | 18-AUG-12 00:00:00] 650000
sales europe 2012 | 10| 9519 |FRANCE | 18-AUG-12 00:00:00] 650000
sales asia 2012 | 20| 3788a |INDIA | 01-MAR-12 00:00:00| 75000

| |

\ |

| |

|

sales asia 2012 20| 3788a |PAKISTAN| 04-JUN-12 00:00:00 | 37500
sales asia 2012 20| 3788b |INDIA 21-SEP-12 00:00:00| 5090
sales asia 2012 20| 4519%9a |INDIA 18-0CT-12 00:00:00] 650000
sales asia 2012 | 20| 4519 |INDIA 02-DEC-12 00:00:00| 5090
sales americas pl 2012 | 40| 9519 |US | 12-APR-12 00:00:00| 145000
sales americas pl 2012 30| 9519p |CANADA | 01-FEB-12 00:00:00| 75000
sales americas pl 2012 | 30| 4519 |CANADA | 08-APR-12 00:00:00] 120000
sales americas pl 2012 | 40| 3788a |US | 12-MAY-12 00:00:00 | 4950
sales_americas p2 2012 40| 4577p |US | 11-NOV-12 00:00:00| 25000
sales americas p2 2012 | 30| 7588b |CANADA | 14-DEC-12 00:00:00] 50000
sales americas p2 2012 | 40| 4788a |US | 23-SEP-12 00:00:00 | 4950
sales americas p2 2012 | 40| 4788b |US | 09-0CT-12 00:00:00 | 15000
(17 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 375

Database Compatibility for Oracle® Developers Guide

10.3.6 ALTER TABLE... EXCHANGE PARTITION

The ALTER TABLE..EXCHANGE PARTITION command swapsan existingtable with a
partition. If you plan to add a large quantity of data to a partitioned table, youcanuse the
ALTER TABLE... EXCHANGE PARTITION command to implement a bulkload. You can

alsousethe ALTER TABLE...EXCHANGE PARTITION command to remove old or
unneeded data for storage.

The command syntaxis available in two forms.

The first form swaps a table fora partition:

ALTER TABLE target table
EXCHANGE PARTITION target partition
WITH TABLE source table
[(INCLUDING | EXCLUDING) INDEXES]
[(WITH | WITHOUT) VALIDATION];

The second formswaps a table fora subpartition:

ALTER TABLE target table
EXCHANGE SUBPARTITION target subpartition
WITH TABLE source table
[(INCLUDING | EXCLUDING) INDEXES]
[(WITH | WITHOUT) VALIDATION];

Description

When theALTER TABLE...EXCHANGE PARTITION command completes, the data
originally located in the targe t partition will be located in the so urce table,
and the dataoriginally locatedin the source tablewill belocated inthe

target partition.

The ALTER TABLE... EXCHANGE PARTITION command can exchangepartitions in a
LIST, RANGE or HASH partitioned table. The structure ofthe source tablemust
match the structure ofthe target table (bothtables must havematching columns and

data types), and thedatacontained within thetable mustadhere to the partitioning
constraints.

Ifthe INCLUDING INDEXES clauseis specified with EXCHANGE PARTITION,then
matching indexes inthe target partitionandsource table areswapped. Indexes
in the target partitionwithnomatchinthe source tablearerebuiltand vice
versa (thatis, indexes in the source table with no match in the targe t partition
are also rebuilt).

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 376

Database Compatibility for Oracle® Developers Guide

Ifthe ExCLUDING INDEXES clauseis specified with EXCHANGE PARTITION,then
matching indexes inthe target partitionandsource tableareswapped,butthe
target partitionindexes withnomatchinthe source tablearemarkedas
invalid and vice versa(thatis, indexes in the source table with no match inthe
target partitionarealsomarked as invalid).

The previouslyused matching indextermrefers to indexes that havethe same attributes

such as the collation order, ascending or descending direction, ordering ofnulls first or
nulls last, and so forth as determined by the CREATE INDEX command.

If both INCLUDING INDEXES and EXCLUDING INDEXES are omitted, then the default
action is the EXCLUDING INDEXES behavior.

Advanced Serveraccepts the WITHOUT VALIDATION clause, butignores it; the new table
is always validated.

The same behavior as previously described applies forthe target subpartitionused
with the EXCHANGE SUBPARTITION clause.

You must own atable to invoke ALTER TABLE... EXCHANGE PARTITION Or ALTER
TABLE... EXCHANGE SUBPARTITION against that table.

Parameters:

target table

The name (optionally schema-qualified) ofthe table in which the partition or
subpartition resides.

target partition

The name ofthe partition to be replaced.
target subpartition

The name ofthe subpartitionto be replaced.

source table

The name ofthe table that willreplace the target partitionor
target subpartition.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 377

Database Compatibility for Oracle® Developers Guide

10.3.6.1 Example - Exchanging a Table for a Partition

The example that follows demonstrates swappinga table fora partition (americas)of
the sales table. You can createthe sales table with the following command:

CREATE TABLE sales
(

dept no number,

part no varcharz,
country varchar2 (20),
date date,

amount number

)

PARTITION BY LIST (country)

(
PARTITION europe VALUES ('FRANCE', 'ITALY'"),
PARTITION asia VALUES ('INDIA', 'PAKISTAN'),
PARTITION americas VALUES('US', 'CANADA')

)

Use the following command to add sample datato the sales table:

INSERT INTO sales VALUES
(40, '9519p', 'us', '"12-Apr-2012', '145000"),
(10, '4519b', 'FRANCE', 'l7-Jan-2012', '45000"),
(20, '3788a', 'INDIA', '0Ol-Mar-2012', '75000"),
(20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500"),
(10, '9519p', 'ITALY', '07-Jul-2012', '15000"),
(10, '951%9a', 'FRANCE', 'l8-Aug-2012', '650000"),
(10, '9519b', 'FRANCE', 'l1l8-Aug-2012', '650000"),
(20, '3788b', 'INDIA', '21-Sept-2012', '5090"),
(20, '451%a', 'INDIA', '18-0Oct-2012', '650000"),
(20, '4519b', '"INDIA', '2-Dec-2012', '5090"');

Querying the sales table showsthat only onerowresides in the americas partition:

acctg=# SELECT tableoid::regclass, * FROM sales;

tableoid | dept no| part no | country | date | amount
it et e e e e it
sales europe | 10| 4519% | FRANCE | 17-JAN-12 00:00:00] 45000
sales_europe | 10| 9519 | ITALY | 07-JUL-12 00:00:00] 15000
sales_europe | 10| 9519 | FRANCE | 18-AUG-12 00:00:00] 650000
sales europe | 10| 9519 | FRANCE | 18-AUG-12 00:00:00] 650000
sales asia | 20| 3788a | INDIA | 01-MAR-12 00:00:00] 75000
sales:asia | 20| 3788a | PAKISTAN| 04-JUN-12 00:00:00] 37500
sales asia | 20| 3788b | INDIA | 21-SEP-12 00:00:00] 5090
sales asia | 20| 4519a | INDIA | 18-0CT-12 00:00:00] 650000
sales asia | 20| 4519 | INDIA | 02-DEC-12 00:00:00] 5090
sales americas| 40| 9519 | US | 12-APR-12 00:00:00] 145000

(10 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 378

Database Compatibility for Oracle® Developers Guide

The following command creates a table (n_america)that matches the definition ofthe
sales table:

CREATE TABLE n_america
(

dept no number,

part no varcharz,
country varchar2 (20),
date date,

amount number

)

The following command adds datatothe n_america table. The data conforms to the
partitioningrules ofthe ame ricas partition:

INSERT INTO n_america VALUES
(40, '9519pb', 'Us', '"1l2-Apr-2012', '145000"),
(40, '4577b', 'Uus', 'l1l1-Nov-2012', '25000"'),
(30, '7588b', 'CANADA', 'l4-Dec-2012', '50000"),
(30, '9519b', 'CANADA', 'Ol-Feb-2012', '75000"),
(30, '"4519p', 'CANADA', '08-Apr-2012', '120000"),
(40, '3788a', 'US', 'l2-May-2012', '4950'"),
(40, '4788a', 'US', '23-Sept-2012', '4950'),
(40, '4788p', 'us', '09-Oct-2012', '15000");

The following command swaps the table into the partitioned table:
ALTER TABLE sales

EXCHANGE PARTITION americas
WITH TABLE n america;

Querying the sales table shows that thecontents ofthe n _america table hasbeen
exchanged forthe contentofthe americas partition:

acctg=# SELECT tableoid::regclass, * FROM sales;

tableoid | dept no| part no | country | date | amount
B it B st o ————
sales europe | 10| 4519 | FRANCE | 17-JAN-12 00:00:00 | 45000
sales europe | 10] 9519 | ITALY | 07-JUL-12 00:00:00 | 15000
sales europe | 10| 9519%a | FRANCE | 18-AUG-12 00:00:00 | 650000
sales_europe | 10| 9519 | FRANCE | 18-AUG-12 00:00:00 | 650000
sales_asia \ 20| 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
sales asia | 20| 3788a | PAKISTAN| 04-JUN-12 00:00:00 | 37500
sales:asia | 20| 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
sales asia | 20| 4519a | INDIA | 18-0CT-12 00:00:00 | 650000
sales asia | 20| 4519 | INDIA | 02-DEC-12 00:00:00 | 5090
sales:americasl 40| 9519 | US | 12-APR-12 00:00:00 | 145000
sales americas| 40| 4577b | US | 11-NOV-12 00:00:00 | 25000
sales:americas\ 30| 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
sales americas| 30| 9519 | CANADA | 01-FEB-12 00:00:00 | 75000
sales americas| 30| 4519 | CANADA | 08-APR-12 00:00:00 | 120000
sales americas| 40| 3788a | US | 12-MAY-12 00:00:00 | 4950
sales americas | 40| 4788a | US | 23-SEP-12 00:00:00 | 4950

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 379

Database Compatibility for Oracle® Developers Guide

sales americas| 40| 4788b | US | 09-0CT-12 00:00:00 | 15000
(17 rows)

Queryingthe n_america table shows thatthe row that was previously stored in the
americas partition hasbeenmovedto then america table:

acctg=# SELECT tableoid::regclass, * FROM n america;

tableoid | dept no | part no | country | date | amount
——————————— e e e ke T
n_america | 40 | 9519 | US | 12-APR-12 00:00:00 | 145000
(1 row)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 380

Database Compatibility for Oracle® Developers Guide

10.3.7 ALTER TABLE... MOVE PARTITION

Usethe ALTER TABLE...MOVE PARTITION command to move a partition to a different
tablespace. The command takes two forms.

The first form moves a partition to a new tablespace:
ALTER TABLE table name

MOVE PARTITION partition name
TABLESPACE tablespace name;

The second formmoves a subpartitionto a new tablespace:

ALTER TABLE table name
MOVE SUBPARTITION subpartition name
TABLESPACE tablespace name;

Description
The ALTER TABLE...MOVE PARTITION command moves a partition fromits current
tablespace to a different tablespace. The ALTER TABLE...MOVE PARTITION command

can move partitionsofa LIST,RANGE or HASH partitioned table.

The same behavioras previously described applies forthe subpartition nameused
with the MOVE SUBPARTITION clause.

You must own the table to nvoke ALTER TABLE...MOVE PARTITION Or ALTER
TABLE... MOVE SUBPARTITION.

Parameters

table name

The name (optionally schema-qualified) ofthe table in which the partition or
subpartition resides.

partition name

The name ofthe partition to be moved.

subpartition name

The name ofthe subpartitionto be moved.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 381

Database Compatibility for Oracle® Developers Guide

tablespace name

The name ofthe tablespace to which the partition or subpartition will be moved.

10.3.7.1 Example - Moving a Partition to a Different Tablespace

The following example moves a partition ofthe sales table fromone tablespace to
another. First, create the sales table with the command:

CREATE TABLE sales
(

dept no number,

part no varcharz,
country varchar2 (20),
date date,

amount number

)
PARTITION BY RANGE (date)
(
PARTITIONgl 2012 VALUESLESSTHAN ('2012-Apr-01"),
PARTITIONg2 2012 VALUESLESSTHAN ('2012-Jul-01"),
PARTITIONQg3 2012 VALUES LESS THAN ('2012-0ct-01"),
()
()

PARTITIONg4 2012 VALUESLESSTHAN ('2013-Jan-01"') TABLESPACE ts 1,
PARTITIONQgl 2013 VALUESLESSTHAN ('2013-Mar-01') TABLESPACE ts 2

) ;

Querying the ALL_TAB PARTITIONS view confirms that thepartitions reside onthe
expected servers and tablespaces:

acctg=# SELECT partition name, tablespace name FROM ALL TAB PARTITIONS;
partition name tablespace name

gl 2013
g4 2012
g3 2012
g2 2012
gl 2012
(5 rows)

Afterpreparingthe targettablespace, invoke the ALTER TABLE...MOVE PARTITION
command to movethe g1 2013 partition froma tablespacenamed ts 2 to atablespace
named ts 3:

ALTER TABLE sales MOVE PARTITION gl 2013 TABLESPACE ts_3;

Querying the AL _TAB PARTITIONS view shows thatthemove was successful:

acctg=# SELECT partition name, tablespace name FROM ALL TAB PARTITIONS;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 382

Database Compatibility for Oracle® Developers Guide

gl 2013
q4 2012
g3 2012
g2 2012
ql 2012
(5 ;ows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 383

Database Compatibility for Oracle® Developers Guide

10.3.8 ALTER TABLE... RENAME PARTITION

Usethe ALTER TABLE.. RENAME PARTITION command to rename a table partition. The
syntaxtakes two forms.

The first form renames a partition:

ALTERTABLE table name
RENAME PARTITION partition name
TO new name;

The second formrenames a subpartition:

ALTER TABLE table name
RENAME SUBPARTITION subpartition name
TO new_name;

Description
The ALTER TABLE... RENAME PARTITION command renames a partition.

The same behavioras previously described applies forthe subpartition nameused
with the RENAME SUBPARTITION clause.

You must own the specified table to invoke ALTER TABLE... RENAME PARTITION O
ALTER TABLE... RENAME SUBPARTITION.

Parameters

table name

The name (optionally schema-qualified) ofthe table in which the partition or
subpartition resides.

partition name

The name ofthe partition to be renamed.
subpartition name

The name ofthe subpartitionto be renamed.

new name

The newname ofthe partition or subpartition.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 384

Database Compatibility for Oracle® Developers Guide

10.3.8.1 Example - Renaming a Partition

The following command creates a list-partitioned table named sales:

CREATE TABLE sales
(

dept no number,

part no varchar?2,
country varchar2 (20),
date date,

amount number

)
PARTITION BY LIST (country)

(
PARTITION europe VALUES ('FRANCE', 'ITALY'"),

PARTITION asia VALUES ('INDIA', 'PAKISTAN'),
PARTITION americas VALUES('US', 'CANADA')
)

Query the ALL_TAB PARTITIONS viewto display the partition names:

acctg=# SELECT partition name, high value FROM ALL TAB PARTITIONS;

partition name | high value
________________ +_____________________
europe | 'FRANCE', 'ITALY'
asia | '"INDIA', 'PAKISTAN'
americas | 'US', 'CANADA'

(3 rows)

The following command renames the americas partitionton_america:

ALTER TABLE sales
RENAME PARTITION americas TOn_ america;

Querying the ALTL,_TAB PARTITIONS view demonstrates that the partitionhas been
successfully renamed:

acctg=# SELECT partition name, high value FROM ALL TAB PARTITIONS;

partition name | high value
________________ +_____________________
europe | 'FRANCE', 'ITALY'
asia | 'INDIA', 'PAKISTAN'
n_america | 'US', 'CANADA'

(3 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 385

Database Compatibility for Oracle® Developers Guide

10.3.9 DROP TABLE

Use the PostgreSQL DROP TABLE command to remove a partitioned table definition, it's
partitions and subpartitions, and delete the table contents. The syntaxis:

DROP TABLE table name
Parameters
table name
The name (optionally schema-qualified) ofthe partitioned table.

Description

The proP TABLE command removes an entire table, and the data that resides in that
table. When youdeleteatable, any partitions or subpartitions (ofthat table) are deleted
as well.

To use the brOP TABLE command, you must be theowner ofthe partitioningroot, a
member of a group thatowns thetable, the schema owner, or a database superuser.

Example

To delete atable, connectto the controllernode (the host ofthe partitioning root), and
invoke the brRoOP TABLE command. Forexample, to delete the sales table,invoke the
following command:

DROP TABLE sales;

The server will confirmthat the table has been dropped:

acctg=# drop table sales;
DROP TABLE
acctg=+#

Formore information aboutthe brROP TABLE command, please see the PostgreSQL core
documentation at:

http://www.postgresqgl.org/docs/9.5/static/sql-droptable.html

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 386

http://www.postgresql.org/docs/9.5/static/sql-droptable.html

Database Compatibility for Oracle® Developers Guide

10.3.10 ALTER TABLE... DROP PARTITION

Usethe ALTER TABLE...DROP PARTITION command to delete a partition definition, and
the data stored in that partition. The syntaxis:

ALTER TABLE table name DROP PARTITION partition name;
Parameters
table name

The name (optionally schema-qualified) ofthe partitioned table.
partition name

The name ofthe partition to be deleted.

Description

The ALTER TABLE.. DROP PARTITION command deletesa partitionandany datastored
on that partition. The ALTER TABLE...DROP PARTITION command can drop partitions
ofaLIST orrRANGE partitionedtable; pleasenote that this command does notworkon a

HASH partitioned table. Whenyoudeletea partition, any subpartitions (ofthat partition)
are deleted as well.

To use the DROP PARTITION clause, youmustbe the owner ofthe partitioningroot, a
member of a group thatowns thetable, or have database superuser or administrative
privileges.

10.3.10.1 Example - Deleting a Partition

The example that follows deletes a partitionofthe sales table. Use thefollowing
command to create the sales table:

CREATE TABLE sales
(

dept no number,

part no varcharz,
country varchar2 (20),
date date,

amount number
)
PARTITION BY LIST (country)

(
PARTITION europe VALUES ('FRANCE', 'ITALY'),

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 387

Database Compatibility for Oracle® Developers Guide

PARTITION asia VALUES('INDIA', 'PAKISTAN'),
PARTITION americas VALUES('US', 'CANADA')

)
Querying the ALL_TAB PARTITIONS view displays the partition names:

acctg=# SELECT partition name, server name, high value FROM
ALL TAB PARTITIONS;

partition name server name | high value
europe | seattle | '"FRANCE', 'ITALY'
asia | chicago | '"INDIA', 'PAKISTAN'
americas | boston | 'US', 'CANADA'

(3 rows)
To delete the americas partition fromthe sales table, invoke the following command:

ALTER TABLE sales DROP PARTITION americas;

Querying the ALL_TAB PARTITIONS view demonstrates that the partitionhas been
successfully deleted:

acctg=# SELECT partition name, server name, high value FROM

ALL TAB PARTITIONS;
partition name | high value

'INDIA', 'PAKISTAN'
'FRANCE', 'ITALY'

asia
europe
(2 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 388

Database Compatibility for Oracle® Developers Guide

10.3.11 ALTER TABLE... DROP SUBPARTITION

Usethe ALTER TABLE...DROP SUBPARTITION command to drop a subpartition
definition, and thedatastored in that subpartition. The syntaxis:

ALTER TABLE table name DROP SUBPARTITION subpartition name;
Parameters
table name

The name (optionally schema-qualified) ofthe partitioned table.
subpartition name

The name ofthe subpartitionto be deleted.

Description

The ALTER TABLE.. DROP SUBPARTITION command deletes a subpartition, and the data
stored in thatsubpartition. To usethe DROP SUBPARTITION clause, youmustbe the

owner ofthe partitioning root,a member ofa group that owns the table, orhave superuser
or administrative privileges.

10.3.11.1 Example - Deleting a Subpartition

The example that follows deletes a subpartition ofthe sales table. Use the following
command to create the sales table:

CREATE TABLE sales
(

dept no number,

part no varcharz,
country varchar?2 (20),
date date,

amount number
)
PARTITION BY RANGE (date)
SUBPARTITION BY LIST (country)
(
PARTITIONfirst_half_20l2VALUESLESSTHAN('Ol—JUL—ZOlZ')
(
SUBPARTITION europe VALUES ('ITALY', '"FRANCE'),
SUBPARTITION americas VALUES ('CANADA', 'US'"),

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 389

Database Compatibility for Oracle® Developers Guide

SUBPARTITION asia VALUES ('PAKISTAN', '"INDIA')
),
PARTITION second half 2012 VALUES LESS THAN ('01-JAN-2013")
)

Querying the ALL_TAB SUBPARTITIONS view displays the subpartition names:

acctg=# SELECT subpartition name, high value, server name FROM

ALL TAB_SUBPARTITIONS; subpartition_ name | high value | server name
___________________ +_____________________+_____________

europe | '"ITALY', 'FRANCE' | chicago

americas | 'CANADA', 'US' | seattle

asia | '"PAKISTAN', 'INDIA' | boston

(3 rows)

To delete the americas subpartition fromthe sales table, invoke the following
command:

ALTER TABLE sales DROP SUBPARTITION americas;

Querying the ALTL_TAB SUBPARTITIONS view demonstrates thatthe subpartitionhas
been successfully deleted:

acctg=# SELECT subpartition name, high value FROM ALL TAB SUBPARTITIONS;

subpartition name | high value
___________________ +_____________________
europe | 'ITALY', 'FRANCE'
asia | 'PAKISTAN', 'INDIA'

(2 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 390

Database Compatibility for Oracle® Developers Guide

10.3.12 TRUNCATE TABLE

Use the TRUNCATE TABLE command to remove the contents ofa table, while preserving
the table definition. When you truncate a table, any partitions or subpartitions ofthat
table are also truncated. The syntaxis:

TRUNCATE TABLE table name
Description
The TRUNCATE TABLE command removes an entire table, and thedatathat resides in

that table. Whenyoudeleteatable, any partitions or subpartitions (ofthat table) are
deleted as well.

To use the TRUNCATE TABLE command, youmust bethe owner ofthe partitioningroot, a
member of a group thatowns thetable, the schema owner, ora database superuser.

Parameters

table name

The name (optionally schema-qualified) ofthe partitioned table.

10.3.12.1 Example - Emptying a Table

The example that follows removes thedatafromthe sales table. Usethe following
command to create the sales table:

CREATE TABLE sales
(

dept no number,

part no varcharz,
country varchar2 (20),
date date,

amount number

)

PARTITION BY LIST (country)

(
PARTITION europe VALUES ('FRANCE', 'ITALY'),
PARTITION asia VALUES ('INDIA', 'PAKISTAN'),
PARTITION americas VALUES('US', 'CANADA')

) ;

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 391

Database Compatibility for Oracle® Developers Guide

Populate the sales table with the command:

INSERT INTO sales VALUES
(10, '4519b', 'FRANCE', 'l17-Jan-2012', '45000'),
(20, '3788a', 'INDIA', '0l1-Mar-2012', '75000'),
(40, '9519b', 'US', '12-Apr-2012', '145000'),

(20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'"),
(40, '4577b', 'US', '11-Nov-2012', '25000'),

(30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
(30, '9519b', 'CANADA', '0l-Feb-2012', '75000'),
(30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
(40, '3788a', 'US', '12-May-2012', '4950'),

(10, '9519b', 'ITALY', '07-Jul-2012', '15000'"),
(10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
(10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
(20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
(40, '4788a', 'US', '23-Sept-2012', '4950'),

(40, '4788b', 'US', '09-0Oct-2012', '15000'),

(20, '4519a', 'INDIA', '18-0ct-2012', '650000'"),
(20, '4519b', 'INDIA', '2-Dec-2012', '5090');

Querying the sales table shows that thepartitions are populated with data:

acctg=# SELECT tableoid::regclass, * FROM sales;

tableoid |dept no | part no | country | date | amount
e it e T e et LR
sales europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
sales europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
sales europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
sales europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
sales asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
sales asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
sales asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
sales asia | 20 | 4519a | INDIA | 18-0CT-12 00:00:00 | 650000
sales:asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
sales americas| 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
sales americas]| 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
sales:americas\ 30 | 7588Db | CANADA | 14-DEC-12 00:00:00 | 50000
sales americas| 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
sales americas]| 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
sales:americas\ 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
sales americas]| 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
sales:americas\ 40 | 4788b | US | 09-0CT-12 00:00:00 | 15000

(17 rows)

To delete the contents ofthe sales table, invoke the following command:

TRUNCATE TABLE sales;

Now, queryingthe sales table shows that the data has beenremovedbutthe structureis
intact:

acctg=# SELECT tableoid::regclass, * FROM sales;
tableoid | dept no | part no | country | date | amount

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 392

Database Compatibility for Oracle® Developers Guide

et it A

(0 rows)

Formore information aboutthe TRUNCATE TABLE command, please see the PostgreSQL
documentation at:

http://www.postgresql.ore/docs/9.5/static/sgl-truncate.html

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 393

http://www.postgresql.org/docs/9.5/static/sql-truncate.html

Database Compatibility for Oracle® Developers Guide

10.3.13 ALTER TABLE... TRUNCATE PARTITION

Usethe ALTER TABLE... TRUNCATE PARTITION command to remove the data fromthe
specified partition, leaving the partition structure intact. The syntaxis:

ALTER TABLE table name TRUNCATE PARTITION partition name
[{DROP|REUSE} STORAGE]

Description

Usethe ALTER TABLE... TRUNCATE PARTITION command to remove the data fromthe
specified partition, leaving the partition structure intact. Whenyoutruncate a partition,
any subpartitions ofthatpartition are also truncated.

ALTER TABLE... TRUNCATE PARTITION will notcause ON DELETE triggers thatmight
exist forthe table to fire, but it will fire ON TRUNCATE triggers. Ifan ON TRUNCATE
triggeris defined forthe partition, all BEFORE TRUNCATE triggers are fired before any

truncation happens, andall AFTER TRUNCATE triggers are fired after the last truncation
occurs.

You must have the TRUNCATE privilege onatable to invoke ALTER TABLE...
TRUNCATE PARTITION.

Parameters

table name

The name (optionally schema-qualified) ofthe partitioned table.
partition name

The name ofthe partition to be deleted.

DROP STORAGE and REUSE STORAGE are included for compatibility only;the clauses are
parsed andignored.

10.3.13.1 Example - Emptying a Partition

The example that follows removes thedata froma partition ofthe sales table. Use the
following command to create the sales table:

CREATE TABLE sales

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 394

Database Compatibility for Oracle® Developers Guide

dept no number,

part no varchar2z,
country varchar?2 (20),
date date,

amount number

)

PARTITION BY LIST (country)

(
PARTITION europe VALUES ('FRANCE', 'ITALY'),
PARTITION asia VALUES ('INDIA', 'PAKISTAN'),
PARTITION americas VALUES('US', 'CANADA')

) ;

Populate the sales table with the command:

INSERT INTO sales VALUES
(10, '4519b', 'FRANCE', 'l7-Jan-2012', '45000"),
(20, '3788a', 'INDIA', '0Ol-Mar-2012', '75000"),
(40, '9519p', 'Us', '1l2-Apr-2012', '145000"),
(20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500"),
(40, '4577b', 'Uus', 'll-Nov-2012', '25000"'),
(30, '7588b', 'CANADA', 'l4-Dec-2012', '50000"),
(30, '9519b', 'CANADA', 'Ol-Feb-2012', '75000"),
(30, '4519p', 'CANADA', '08-Apr-2012', '120000"),
(40, '3788a', 'US', 'l2-May-2012', '4950'),
(10, '9519p', 'ITALY', '07-Jul-2012', '15000"),
(10, '9519a', 'FRANCE', 'l8-Aug-2012', '650000"),
(10, '9519b', 'FRANCE', 'l8-Aug-2012', '650000"),
(20, '3788b', 'INDIA', '21-Sept-2012', '5090"),
(40, '4788a', 'US', '23-Sept-2012', '4950"'),
(40, '4788b', 'us', '09-Oct-2012', '15000"'),
(20, '451%a', 'INDIA', '18-0Oct-2012', '650000"),
(20, '4519b', '"INDIA', '2-Dec-2012', '5090");

Querying the sales table shows that thepartitions are populated with data:

acctg=# SELECT tableoid::regclass, * FROM sales;

tableoid | dept no | part no | country | date | amount
———————————————— e s e et e A e e
sales europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
sales europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
sales asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
sales asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
sales asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
sales:asia | 20 | 4519a | INDIA | 18-0CT-12 00:00:00 | 650000
sales asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
sales:americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
sales americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
sales americas | 30 | 7588Db | CANADA | 14-DEC-12 00:00:00 | 50000
sales:americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
sales americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 395

Database Compatibility for Oracle® Developers Guide

sales americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
sales americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
sales americas | 40 | 4788Db | US | 09-0CT-12 00:00:00 | 15000
(17 rows)

To delete the contents ofthe americas partition, invoke the following command:

ALTER TABLE sales TRUNCATE PARTITION americas;

Now, queryingthe sales table shows that the content ofthe americas partitionhas
been removed:

acctg=# SELECT tableoid::regclass, * FROM sales;

tableoid | dept no | part no | country | date | amount
—————————————— B e it
sales europe | 10 | 4519 | FRANCE | 17-JAN-12 00:00:00 | 45000
sales europe | 10 | 9519 | ITALY | 07-JUL-12 00:00:00 | 15000
sales europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
sales europe | 10 | 9519 | FRANCE | 18-AUG-12 00:00:00 | 650000
sales asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
sales:asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
sales asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
sales asia | 20 | 4519a | INDIA | 18-0CT-12 00:00:00 | 650000
sales asia | 20 | 4519 | INDIA | 02-DEC-12 00:00:00 | 5090

(9 rows)

While the rows have been removed, the structure ofthe americas partitionis still intact:

acctg=# SELECT partition name, high value FROM ALL TAB PARTITIONS;

partition name | high value
________________ +_____________________
europe | '"FRANCE', 'ITALY'
asia | 'INDIA', 'PAKISTAN'
americas | 'US', 'CANADA'

(3 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 396

Database Compatibility for Oracle® Developers Guide

10.3.14 ALTER TABLE... TRUNCATE SUBPARTITION

Usethe ALTER TABLE... TRUNCATE SUBPARTITION command toremove allofthe data
from the specified subpartition, leaving the subpartition structure intact. Thesyntaxis:

ALTER TABLE table name
TRUNCATE SUBPARTITION subpartition name
[{DROP|REUSE} STORAGE]

Description

The ALTER TABLE... TRUNCATE SUBPARTITION command removes alldata froma
specified subpartition, leaving the subpartition structure intact.

ALTER TABLE... TRUNCATE SUBPARTITION will notcauseoN DELETE triggers that
might exist for the table to fire, but it will fire ON TRUNCATE triggers. Ifan on
TRUNCATE triggeris defined for the subpartition, all BEFORE TRUNCATE triggers are

fired before any truncation happens,andall AFTER TRUNCATE triggers are fired after the
last truncationoccurs.

You must have the TRUNCATE privilege onatable to invoke ALTER TABLE...
TRUNCATE SUBPARTITION.

Parameters

table name

The name (optionally schema-qualified) ofthe partitioned table.

subpartition name
The name ofthe subpartition to be truncated.

The DROP STORAGE and REUSE STORAGE clauses are included for compatibility only; the
clauses are parsed and ignored.

10.3.14.1 Example - Emptying a Subpartition

The example that follows removes thedatafroma subpartitionofthe sales table. Use
the following command to createthe sales table:

CREATE TABLE sales
(

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 397

Database Compatibility for Oracle® Developers Guide

dept no number,

part no varchar2z,
country varchar2 (20),
date date,

amount number

)
PARTITION BY RANGE (date) SUBPARTITION BY LIST (country)
(
PARTITION"2011" VALUES LESS THAN ('01-JAN-2012")
(
SUBPARTITION europe 2011 VALUES ('ITALY', 'FRANCE'),
SUBPARTITION asia 2011 VALUES ('PAKISTAN', 'INDIA'),
SUBPARTITION americas 2011 VALUES ('US', 'CANADA')
)/
PARTITION"2012" VALUES LESS THAN ('01-JAN-2013")

(
SUBPARTITION europe 2012 VALUES ('ITALY', '"FRANCE'),

SUBPARTITION asia 2012 VALUES ('PAKISTAN', 'INDIA'),
SUBPARTITION americas 2012 VALUES ('US', 'CANADA')

) 4

PARTITION"2013" VALUES LESS THAN ('01-JAN-2015")

(
SUBPARTITION europe 2013 VALUES ('ITALY', 'FRANCE'),
SUBPARTITION asia 2013 VALUES ('PAKISTAN', 'INDIA'),
SUBPARTITION americas 2013 VALUES ('US', 'CANADA')

)

) ;

Populate the sales table with the command:

INSERT INTO sales VALUES
(10, '4519b', 'FRANCE', 'l7-Jan-2011', '45000"),
(20, '3788a', '"INDIA', '0Ol-Mar-2012', '75000"),
(40, '9519p', 'Us', 'l2-Apr-2012', '145000"),
(20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500"),
(40, '4577b', 'Uus', 'l1l1-Nov-2012', '25000"'),
(30, '7588b', 'CANADA', 'l4-Dec-2011', '50000"),
(30, '4519p', 'CANADA', '08-Apr-2012', '120000"),
(40, '3788a', 'US', 'l2-May-2011', '4950'"),
(20, '3788a', 'US', '04-Apr-2012', '37500"),
(40, '4577b', '"INDIA', 'l1l1-Jun-2011', '25000"),
(10, '9519p', 'ITALY', '07-Jul-2012', '15000"),
(20, '4519b', '"INDIA', '2-Dec-2012', '5090"');

Querying the sales table shows that therows havebeendistributed amongst the
subpartitions:

acctg=# SELECT tableoid::regclass, * FROM sales;
tableoid | dept no| part no| country | date |amount

B e e B

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 398

Database Compatibility for Oracle® Developers Guide

sales 2011 europe | 10| 4519 | FRANCE | 17-JAN-11 00:00:00| 45000
sales 2011 asia | 40| 4577b | INDIA | 11-JUN-11 00:00:00| 25000
saleS:ZOll:americasl 30| 7588b | CANADA | 14-DEC-11 00:00:00| 50000
sales 2011 americas| 40| 3788a | US | 12-MAY-11 00:00:00| 4950
sales 2012 europe | 10| 9519 | ITALY | 07-JUL-12 00:00:00] 15000
sales 2012 asia | 20| 3788a | INDIA | 01-MAR-12 00:00:00| 75000
sales 2012 asia | 20| 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
sales 2012 asia | 20| 4519 | INDIA | 02-DEC-12 00:00:00 | 5090
sales 2012 americas| 40| 9519 | US | 12-APR-12 00:00:00| 145000
sales 2012 americas| 40| 4577b | US | 11-NOvV-12 00:00:00] 25000
sales:2012:americas| 30| 4519 | CANADA | 08-APR-12 00:00:00| 120000
sales 2012 americas| 20| 3788a | US | 04-APR-12 00:00:00| 37500
(12 ro@s) B

To delete the contents ofthe 2012 americas partition, invoke the following command:

ALTER TABLE sales TRUNCATE SUBPARTITION "americas 2012";

Now, queryingthe sales table shows that the content ofthe americas 2012 partition
has beenremoved:

acctg=# SELECT tableoid::regclass, * FROM sales;

tableoid | dept nolpart no| country | date | amount
e e e e e e f—————
sales 2011 europe | 10| 4519 | FRANCE | 17-JAN-11 00:00:00 | 45000
sales 2011 asia | 40| 4577b | INDIA | 11-JUN-11 00:00:00 | 25000
sales 2011 americas| 30| 7588b | CANADA | 14-DEC-11 00:00:00 | 50000
sales 2011 americas| 40| 3788a | US | 12-MAY-11 00:00:00 | 4950
sales 2012 europe | 10| 9519 | ITALY | 07-JUL-12 00:00:00 | 15000
sales_2012_ asia | 20| 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
sales 2012 asia | 20| 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
sales 2012 asia | 20| 4519 | INDIA | 02-DEC-12 00:00:00 | 5090
(8 rows)

While the rows have been removed, thestructure ofthe 2012 americas partition is still
intact:

acctg=# SELECT subpartition name, high value FROM ALL TAB SUBPARTITIONS;
subpartition name | high value

'ITALY', 'FRANCE'
'ITALY', 'FRANCE'
'ITALY', 'FRANCE'

2013 europe
2012 europe
2011 europe

2013 asia 'PAKISTAN', 'INDIA'
2012 asia 'PAKISTAN', 'INDIA'
2011 asia 'PAKISTAN', 'INDIA'

2013_americas
2012 _americas
2011 _americas
(9

TOWS)

'US', 'CANADA'
'US', 'CANADA'
'US', 'CANADA'

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 399

Database Compatibility for Oracle® Developers Guide
10.4 Handling Stray Values in a LIST or RANGE Partitioned Table

A DEFAULT or MAXVALUE partition or subpartition will capture any rows that donotmeet
the otherpartitioning rules defined fora table.

Defining a DEFAULT Partition

A DEFAULT partition will capture any rows that do notfit into any other partition in a
LIST partitioned (or subpartitioned) table. Ifyou do notinclude a DEFAULT rule, any
row that does not match oneofthe values in the partitioning constraints will result in an
error. Each 1.1sT partition or subpartitionmay haveits own DEFAULT rule.

The syntaxofa DEFAULT ruleis:

PARTITION [partition name] VALUES (DEFAULT)

Where partition name specifies the name ofthe partition or subpartition that will
store any rows that donot matchthe rules specified for other partitions.

The last example created a list partitioned table in which the server decided which
partition to store the data based upon the valueofthe country column. Ifyou attempt
to add arow in which the value ofthe country column contains a value not listed in the
rules, Advanced Serverreports an error:

acctg=# INSERT INTO sales VALUES
acctg-# (40, '3000x', 'IRELAND', '0Ol1-Mar-2012"', '45000');
ERROR: inserted partition key does not map to any partition

The following example creates the same table, butadds a DEFAULT partition. Theserver
will store anyrows thatdo not match a value specified in the partitioning rules for
europe,asia, Or americas partitions in the ot hers partition:

CREATE TABLE sales
(

dept no number,

part no varchar2,
country varchar2 (20),
date date,

amount number

)

PARTITION BY LIST (country)

(
PARTITION europe VALUES ('FRANCE', 'ITALY'),
PARTITION asia VALUES('INDIA', 'PAKISTAN'),
PARTITION americas VALUES('US', 'CANADA'),
PARTITION others VALUES (DEFAULT)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 400

Database Compatibility for Oracle® Developers Guide

To testthe DEFAULT partition, add row with a value in the country column thatdoes
not match one ofthe countries specified in the partitioning constraints:

INSERT INTO sales VALUES
(40, '3000x', 'IRELAND', 'Ol-Mar-2012', '45000");

Querying the contents ofthe sales table confirms that the previously rejected row is
nowstoredinthe sales others partition:

acctg=# SELECT tableoid::regclass, * FROM sales;

tableoid | dept no | part no | country | date | amount
et i et e e B +o—
sales europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
sales europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
sales europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
sales europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
sales asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
sales:asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
sales asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
sales asia | 20 | 4519a | INDIA | 18-0CT-12 00:00:00 | 650000
sales:asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
sales americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
sales:americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
sales americas | 30 | 7588Db | CANADA | 14-DEC-12 00:00:00 | 50000
sales americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
sales:americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
sales americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
sales_americas | 40 | 4788a | Us | 23-SEP-12 00:00:00 | 4950
sales_americas | 40 | 4788b | Us | 09-0CT-12 00:00:00 | 15000
sales others | 40 | 3000x | TRELAND | 01-MAR-12 00:00:00 | 45000

(18 rows)

Please note that Advanced Server does nothave a way to re-assignthe contents ofa
DEFAULT partition or subpartition:

e You cannotuse theALTER TABLE...ADD PARTITION command to add a
partition to a table with a DEFAULT rule, but you can usethe ALTER TABLE...
SPLIT PARTITION command to split an existing partition.

e You cannotusetheALTER TABLE...ADD SUBPARTITION command to add a
subpartition to a table with a DEFAULT rule,but you canuse the ALTER TABLE...
SPLIT SUBPARTITION command to split an existing subpartition.

Defining a MAXVALUE Partition

A MAXVALUE partition (or subpartition) will capture any rows thatdo not fit into any
other partition in a range-partitioned (or subpartitioned) table. Ifyou do not include a
MAXVALUE rule, any row that exceeds the maximum limit specified by the partitioning

rules will result in an error. Each partition or subpartition may haveits own MAXVALUE
partition.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 401

Database Compatibility for Oracle® Developers Guide

The syntaxofa MAXVALUE rule is:

PARTITION [partition name] VALUES LESS THAN (MAXVALUE)

Where partition name specifies the name ofthe partitionthatwill store any rows that
do not match the rules specified for other partitions.

The last example created a range-partitioned table in which the data was partitioned

based upon the valueofthe date column. Ifyou attemptto addarow with a date that
exceeds a date listed in the partitioning constraints, Advanced Server reports an error:

acctg=# INSERT INTO sales VALUES
acctg-# (40, '3000x', 'IRELAND', '0Ol1-Mar-2013"', '45000');
ERROR: inserted partition key does not map to any partition

The following CREATE TABLE command creates the same table, but with a MAXVALUE
partition. Instead ofthrowing an error, the server will store any rows thatdo notmatch
the previous partitioning constraints in the ot he rs partition:

CREATE TABLE sales
(

dept no number,

part no varcharz,
country varchar2 (20),
date date,

amount number

)
PARTITION BY RANGE (date)
(
PARTITION gl 2012 VALUES LESS THAN),
PARTITION g2 2012 VALUES LESS THAN('2012-Jul-01"),
)
)

('2012-Apr-01"
(
PARTITION g3 2012 VALUES LESS THAN('2012-Oct-01"
(
(

r

PARTITION g4 2012 VALUES LESS THAN('2013-Jan-01"
PARTITION others VALUES LESS THAN (MAXVALUE)
)

4

To test the MAXVALUE partition, add a row with a value in the date column that exceeds
the last date value listed in a partitioningrule. The server will store therow in the
others partition:

INSERT INTO sales VALUES
(40, '3000x', 'IRELAND', '0Ol1l-Mar-2013', '45000"'");

Querying the contents ofthe sales table confirms that the previously rejected row is
nowstoredinthe sales others partition :

acctg=# SELECT tableoid::regclass, * FROM sales;
tableoid | dept no | part no | country | date | amount
——————————————— Bt S it et LR EEEE PP

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 402

Database Compatibility for Oracle® Developers Guide

sales gl 2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
sales gl 2012 | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
sales gl 2012 | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
sales g2 2012 | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
sales g2 2012 | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
sales g2 2012 | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
sales g2 2012 | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
sales g3 2012 | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
sales g3 2012 | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
sales g3 2012 | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
sales g3 2012 | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
sales g3 2012 | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
sales g4 2012 | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
sales g4 2012 | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
sales g4 2012 | 40 | 4788b | US | 09-0CT-12 00:00:00 | 15000
sales g4 2012 | 20 | 4519a | INDIA | 18-0CT-12 00:00:00 | 650000
sales g4 2012 | 20 | 4519p | INDIA | 02-DEC-12 00:00:00 | 5090
sales others | 40 | 3000x | IRELAND | 01-MAR-13 00:00:00 | 45000

(18 rows)

Please note that Advanced Server does nothave a way to re-assignthe contents ofa
MAXVALUE partition or subpartition:

e You cannotusetheALTER TABLE...ADD PARTITION statementto add a partition
to a table with a MAXVALUE rule, but you canuse the ALTER TABLE... SPLIT
PARTITION statement to split an existing partition.

¢ You cannotusetheALTER TABLE...ADD SUBPARTITION statement to adda
subpartition to a table with a MAXVALUE rule , but you cansplit an existing
subpartition with the ALTER TABLE... SPLIT SUBPARTITION statement.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 403

Database Compatibility for Oracle® Developers Guide

10.5 Specifying Multiple Partitioning Keys in a RANGE
Partitioned Table

You can often improve performance by spec1fy1ng multlp le key columns fora RANGE
partitionedtable. Ifyou oftenselect rows using comparison operators (basedona
greater-thanorless-than value) ona smallset of columns, consider using those columns
In RANGE partitioning rules.

Specifying Multiple Keys in a Range-Partitioned Table

Range-partitioned table definitions may include multiple columns in the partitioning key.
To specify multiple partitioning keys for a range-partitioned table, include the column
names in a comma-separated list afterthe PARTITION BY RANGE clause:

CREATE TABLE sales
(

dept no number,

part no varcharz,
country varchar?2 (20),
sale year number,

sale month number,

sale day number,
amount number

)
PARTITION BY RANGE (sale year, sale month)
(
PARTITION gl 2012
VALUES LESS THAN (2012, 4),
PARTITION g2 2012
VALUES LESS THAN (2012, 7),
PARTITION g3 2012
VALUES LESS THAN (2012, 10),
PARTITION g4 2012
VALUES LESS THAN (2013, 1)
)

If a table is created with multiple partitioning keys, you must specify multiple key values
when querying the table to take fulladvantage of partition pruning:

acctg=# EXPLAIN SELECT * FROM sales WHERE sale year = 2012 AND sale month =
8;
QUERY PLAN
Result (cost=0.00..14.35 rows=2 width=250)
-> Append (cost=0.00..14.35 rows=2 width=250)
-> Seqg Scan on sales (cost=0.00..0.00 rows=1 width=250)
Filter: ((sale year = 2012::numeric) AND (sale month =

8::numeric))

-> Seq Scan on sales g3 2012 sales (cost=0.00..14.35 rows=1
width=250)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 404

Database Compatibility for Oracle® Developers Guide

Filter: ((sale year = 2012::numeric) AND (sale month =
8::numeric))
(6 rows)

Since all rows with a value of 8 inthe sale month columnandavalueof2012 inthe

sale year column will be stored inthe g3 2012 partition, Advanced Server searches
only that partition.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 405

10.6 Retrieving Information about a Partitioned Table

Advanced Serverprovides five systemcatalog views thatyou can useto view

Database Compatibility for Oracle® Developers Guide

information about the structure of partitioned tables.

Querying the Partitioning Views

You can query the following views to retrieve information aboutpartitioned and
subpartitioned tables:

e ALL PART TABLES

e ALL TAB PARTITIONS

e ALL TAB SUBPARTITIONS

e ALL PART KEY COLUMNS

e ALL SUBPART KEY COLUMNS

The structureofeach view is explained in Section 10.6.1, Table Partitioning Views. 1f
you are using the EDB-PSQL client, you can also discover the structure ofa view by

entering:

\d view name
Where view name specifies the name ofthe table partitioning view.

Querying a view can provide information aboutthestructure ofa partitioned or
subpartitioned table. Forexample, the following code snippetdisplays the system-

assignednames ofa subpartitioned table:

acctg=# SELECT subpartition name, partition name FROM ALL TAB SUBPARTITIONS;
subpartition name
___________________ +________________

SYS SUBP107
SYS SUBP104
SYS SUBP101
SYS_SUBP108
SYS_SUBP105
SYS SUBP102
SYS_SUBP109
SYS_SUBP106
SYS SUBP103
(9 rows)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

partition name

americas
asia
europe
americas
asia
europe
americas
asia
europe

406

10.6.1

Database Compatibility for Oracle® Developers Guide

Table Partitioning Views - Reference

Query the following catalog views, compatible with Oracle databases, to review detailed
information about your partitioned tables.

10.6.1.1

ALL_PART TABLES

The following table lists the nformationavailable in the ALL PART TABLES view:

Column Type Description

owner name The owner of the table.

table name name The name of the table.

schema_name name The schema in which the table resides.

partitioning type text RANGE, LIST or HASH

subpartitioning type text RANGE, LIST, HASH, or NONE

partition count bigint The number of partitions.

def subpartition count integer The default subpartition count - this will
always be 0.

partitioning_key count integer The number of columns listed in the partition
by clause.

subpartitioning_key_ count integer The number of columns in the subpartition by
clause.

status character This column

varying (8)

will always be VALID.

def_tablespace_name character This column will always be NULL.
varying (30)

def _pct free numeric This column will always be NULL.

def pct used numeric This column will always be NULL.

def ini trans numeric This column will always be NULL.

def _max_trans numeric This column will always be NULL.

def_initial_extent character This column will always be NULL.
varying (40)

def_ next extent character This column will always be NULL.
varying (40)

def min_extents character This column will always be NULL.
varying (40)

def max_extents character This column will always be NULL.
varying (40)

def_pct_increase character This column will always be NULL.
varying (40)

def freelists numeric This column will always be NULL.

def freelist groups numeric This column will always be NULL.

def _logging character This column will always be YES
varying (7)

def compression character This column will always be NONE
varying (8)

def_buffer pool character This column will always be DEFAULT
varying (7)

ref ptn constraint name character This column will always be NULL
varying (30)

interval character This column

varying (1000)

will always be NULL

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved.

407

10.6.1.2

Database Compatibility for Oracle® Developers Guide

ALL_TAB_PARTITIONS

The following table lists theinformationavailable in the ALL TAB PARTITIONS view:

Column Type Description
table_owner name The owner of the table.
table name name The name of the table.
schema_name name The schema in which the table resides.
composite text YES if the table is subpartitioned; NO if it is

not subpartitioned.
partition name name The name of the partition.
subpartition_count bigint The number of subpartitions for this partition.
high value text The partition limit for RANGE partitions, or
the partition value for LIST partitions.
high_value_length integer The length of high value.
partition_position integer The ordinal position of this partition.
tablespace name name The tablespace in which this partition resides.
pct free numeric This column will always be 0.
pct_used numeric This column will always be 0.
ini_trans numeric This column will always be 0.
max_trans numeric This column will always be 0.
initial_extent numeric This column will always be NULL.
next_extent numeric This column will always be NULL.
min_extent numeric This column will always be 0.
max_extent numeric This column will always be 0.
pct_increase numeric This column will always be 0.
freelists numeric This column will always be NULL
freelist_groups numeric This column will always be NULL
logging character This column will always be YES.
varying (7)
compression character This column will always be NONE.
varying (8)

num_rows numeric The approx. number of rows in this partition.
blocks integer The approx. number of blocks in this partition.
empty blocks numeric This column will always be NULL
avg_space numeric This column will always be NULL
chain_cnt numeric This column will always be NULL
avg_row len numeric This column will always be NULL
sample size numeric

This column will always be NULL

last_analyzed

timestamp
without time

This column will always be NULL

zone

buffer_pool character This column will always be NULL
varying (7)

global_stats character This column will always be YES.
varying (3)

user stats character

varying (3)

This column will always be NO.

backing table

regclass

OID of the backing table for this partition.

server name

name

The name of the server on which the partition
resides.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 408

Database Compatibility for Oracle® Developers Guide
10.6.1.3 ALL_TAB SUBPARTITIONS

The following table lists theinformation available in the ALL TAB SUBPARTITIONS

VIEW!
Column Type Description

table owner name The name of the owner of the table.

table name name The name of the table.

schema_name name The name of the schema in which the table
resides.

partition name name The name of the partition.

high_value text The subpartition limit for RANGE subpartitions,
or the subpartition value for LIST subpartitions.

high_value_length integer The length of high_value.

subpartition name name The name of the subpartition.

subpartition position integer The ordinal position of this subpartition.

tablespace name name The tablespace in which this subpartition resides.

pct_free numeric This column will always be 0.

pct_used numeric This column will always be 0.

ini_trans numeric This column will always be 0.

max_trans numeric This column will always be 0.

initial_extent numeric This column will always be NULL.

next_extent numeric This column will always be NULL.

min_extent numeric This column will always be 0.

max_extent numeric This column will always be 0.

pct_increase numeric This column will always be 0.

freelists numeric This column will always be NULL.

freelist_groups numeric This column will always be NULL.

logging character This column will always be YES.

varying (7)
compression character This column will always be NONE.
varying (8)

num_rows numeric The approx. number of rows in this subpartition.

blocks integer The approx. number of blocks in this
subpartition.

empty blocks numeric This column will always be NULL.

avg_space numeric This column will always be NULL.

chain_cnt numeric This column will always be NULL.

avg_row_len numeric This column will always be NULL.

sample size numeric

This column will always be NULL.

last _analyzed

timestamp
without time
zone

This column will always be NULL.

buffer pool

character
varying (7)

This column will always be NULL.

global_stats character This column will always be YES.
varying (3)
user stats character

varying (3)

This column will always be NO.

backing table

regclass

OID of the backing table for this subpartition.

server name

name

The name of the server on which the subpartition
resides.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 409

10.6.1.4

Database Compatibility for Oracle® Developers Guide
ALL_PART KEY COLUMNS

The following table lists theinformationavailable in the ALL PART KEY COLUMNS

VIEW!
Column Type Description
owner name The name of the table owner.
name name The name of the table.
schema name The name of the schema on which the table

resides.

object type

character (5)

This column will always be TABLE.

column_name

name

The name of the partitioning key column.

column_posi

tion

integer

The position of this column within the
partitioning key (the first column has a column
position of 1, the second column has a column
position of 2...)

10.6.1.5

ALL_SUBPART KEY COLUMNS

The Pllowing table lists the information available in the ALL, SUBPART KEY COLUMNS view:

Column Type Description
owner name The name of the table owner.
name name The name of the table.
schema name The name of the schema on which the table

resides.

object type

character (5)

This column will always be TABLE.

column_name

name

The name of the partitioning key column.

column_posi

tion

integer

The position of this column within the
subpartitioning key (the first column has a
column position of 1, the second column has a
column position of 2...)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 410

Database Compatibility for Oracle® Developers Guide

11 ECPGPlus

EnterpriseDB has enhanced ECPG (the Postgre SQL pre-compiler) to create ECPGPlus.
ECPGPlus allows you to include embedded SQL commands in C applications; when you

use ECPGPlus to compile an applicationthat contains embedded SQL commands, the
SQL code is syntax-checked and translated into C.

ECPGPlus supports Pro*C compatible syntaxin C programs when connected to an
Advanced Server database. ECPGPlus supports:

e Oracle Dynamic SQL —Method4 (ODS-M4).
e Pro*Ccompatible anonymous blocks.
e A caLL statement compatible with Oracle databases.

As part of ECPGPlus's Pro*C compatibility, you donotneedto include the BEGIN
DECLARE SECTION and END DECLARE SECTION directives.

Formore information aboutusing ECPGPlus, please see the EDB Postgres Advanced
Server ECPG Connector Guide available fromthe EnterpriseDB website at:

http://www.enterprisedb.com/products-services-training/products/documentation

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 411

http://www.enterprisedb.com/products-services-training/products/documentation

Database Compatibility for Oracle® Developers Guide

12 dblink_ora

dblink ora provides an OCI-based database link that allows you SELECT, INSERT,
UPDATE or DELETE data stored onan Oracle system fromwithin Advanced Server.

Connecting to an Oracle Database

To enable Oracle connectivity, download Oracle's freely available OCI drivers fromtheir
website, presently at:

http://www.oracle.com/technetwork/database/features/instant—
client/index-100365.html

Before creating a link to an Oracle server, youmust tell Advanced Server where to find
the OCI driver. You can eithersetthe LD LIBRARY PATH environment variable (or
paTH on Windows) to the 11ib directory ofthe Oracle client installation or set the value
ofthe oracle home configuration parameterin the postgresql.conf file. The value
specified inthe oracle home configuration parameter will override the

LD_LIBRARY PATH (OorPATH)environment variable.

IfyouusetherLD LIBRARY PATH (or PATH)environmentvariable, youmustensure that
the variable is properly set each time you start Advanced Server.

If the Oracle instant client thatyou'vedownloaded does not includethe 1ibclntsh.so
library, you must create a symbolic linknamed 1ibclntsh.so that pointsto the
downloaded version. Navigate tothe Instant Client directory, and executethe following
command:

In -s libclntsh.so<version number> libclntsh.so

Where version numberis the version numberofthe 1ibclntsh.so library. For
example:

In -s libclntsh.so.11.1 libclntsh.so

Tosetthe oracle home configurationparameterinthe postgresqgl.conf file, edit the
file, adding the following line:

oracle home = '"lIib directory'

Where 1ib directoryis thename ofthe directory thatcontains 1ibclntsh.so (on
Linux) or oci.d11 (on Windows).

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 412

http://www.oracle.com/technetwork/database/features/instant-client/index-100365.html
http://www.oracle.com/technetwork/database/features/instant-client/index-100365.html

Database Compatibility for Oracle® Developers Guide

Aftersettingtheoracle home configuration parameter, youmust restart the server for
the changes to take effect.

12.1dblink_ora Functions and Procedures

dblink ora supports the following functions and procedures.

121.1 dblink_ora_connect()

Thedblink ora connect () function establishesaconnection to an Oracle database

with user-specified connection information. The functioncomes in two forms; the
signature ofthe first formis:

dblink ora connect (conn name, server name, service name,
user name, password, port, asDBA)

Where:

conn name specifies the name ofthe link.

server name specifies the name ofthe host.

service name specifies the name ofthe service.

user name specifies the name usedto connect to the server.
passwordspecifies thepassword associated with the username.
port specifies the port number.

asDBA is True if you wish to request sYspBA privileges on the Oracle server.
This parameteris optional; if omitted, the default value is FALSE.

The first formofdblink ora connect () returnsa TEXT value.

The signatureofthe second formofthe db1ink ora connect () functionis:

dblink ora connect (foreign server name, asDBA)

Where:

foreign server name specifies the name ofa foreign server.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 413

Database Compatibility for Oracle® Developers Guide

asDBA 1s True if you wish to request sYsDBA privileges on the Oracle server.
This parameteris optional; if omitted, the default value is FALSE.

The second formofthe dblink ora connect () functionallows youtousethe
connection properties ofa pre-defined foreign server when establishing a connectionto
the server.

Before invoking the second formofthe dblink ora connect () function,usethe
CREATE SERVER command to storethe connection properties for the linkto a system
table. Whenyoucallthe db1ink ora connect() function, substitutethe servername
specified in the CREATE SERVER command for the name ofthe link.

Thesecondformofdblink ora connect () returnsa TEXT value.

121.2 dblink_ora_status()

Thedblink ora status () functionreturnsthedatabase connectionstatus. The
signature is:

dblink ora status(conn name)
Where:
conn name specifies the name ofthe link.

If the specified connection s active, the function returns a TEXT value of Ok.

121.3 dblink_ora_disconnect()

Thedblink ora disconnect () functionclosesadatabase connection. The signature
iS:

dblink ora disconnect (conn name)

Where:
conn name specifies the name ofthe link.

The functionreturns a TEXT value.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 414

Database Compatibility for Oracle® Developers Guide
121.4 dblink_ora_record()

Thedblink ora record() functionretrieves informationfroma database. The
signature is:

dblink ora record(conn name, query text)
Where:
conn name specifies the name ofthe link.

query text specifiesthetext ofthe SQL sELECT statement thatwill be
mvoked on theOracle server.

The functionreturns a SETOF record.

121.5 dblink_ora_call()

Thedblink ora call () functionexecutesanon-sELECT statementon an Oracle
database andreturns aresult set. Thesignatureis:

dblink ora call(conn name, command, iterations)
Where:
conn_name specifies the name ofthe link.

command specifies thetext ofthe SQL statement that willbe invoked on the
Oracle server.

iterations specifies the numberoftimes the statementis executed.

The functionreturns a SETOF record.

121.6 dblink_ora_exec()

Thedblink ora exec () procedure executesa DMLorDDL statement in the remote
database. The signatureis:

dblink ora exec(conn_name, command)

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 415

Database Compatibility for Oracle® Developers Guide
Where:

conn_name specifies the name ofthe link.

command specifies thetext ofthe INSERT, UPDATE, or DELETE SQL statement
that will be invoked on the Oracle server.

The functionreturns a voIp.

121.7 dblink_ora_copy()

The dblink ora copy() functioncopies an Oracle table to an EnterpriseDB table. The
dblink ora_copy() function returns a BIGINT value that represents the number ofrows
copied. The signature is:

dblink ora copy(conn name, command, schema name,
table name, truncate, count)

Where:
conn name specifies the name ofthe link.

command specifies thetext ofthe SQL seLECT statement that willbe invoked on
the Oracle server.

schema name specifies the name ofthe target schema.
table name specifiesthe name ofthe targettable.

truncate specifies ifthe servershould TRUNCATE thetable priorto copying;
specify TRUE to indicatethatthe server should TRUNCATE the table. truncates
optional; if omitted, the value is FALSE.

count instructs the serverto report status informationevery n record, where n is
the numberspecified. During the execution ofthe function, Advanced Server
raises anotice of severity INFO with each iteration ofthe count. Forexample, if
FeedbackCountis 10,dblink ora copy () raisesanoticeevery 10 records.
count is optional; ifomitted, the value is 0.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 416

Database Compatibility for Oracle® Developers Guide

12.2 Calling dblink_ora Functions

The following command establishes a connectionusing the dblink ora connect ()
function:

SELECT dblink ora connect ('acctg', 'localhost', 'xe', 'hr',
'pwd', 1521);

The example connects to a service named xe runningon port 1521 (onthe localhost)

with a username of hr and a password of pwd. You can use theconnectionname acctg
to refer to this connection when calling other dblink ora functions.

The following command usesthe db1ink ora copy () functionoveraconnection
named edb conn to copy the empidand deptno columns froma table (on an Oracle
server)named ora acctgtoatablelocatedin the public schemaon an instance of
Advanced Servernamed as_acctg. The TRUNCATE optionis enforced, anda feedback
count of 3 is specified:

edb=# SELECT dblink ora copy('edb conn', 'select empid,
deptno FROM ora acctg', 'public', 'as acctg', true, 3);

INFO: Row: O
INFO: Row: 3
INFO: Row: 6
INFO: Row: 9
INFO: Row: 12

dblink ora copy

(1 row)

The following SELECT statementuses dblink ora record () functionandtheacctg
connectionto retrieve information fromthe Oracle server:

SELECT * FROM dblink ora record('acctg', 'SELECT
first name from employees') AS tl(id VARCHAR) ;

The command retrieves a list that includes all of the entries in the first name column
ofthe employeestable.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 417

Database Compatibility for Oracle® Developers Guide

13 System Catalog Tables

The systemcatalog tables contain definitions of database objects thatare available to
Advanced Server; thelayout ofthe systemtables is subject tochange. Ifyou are writing
an application thatdepends on informationstored in the systemtables, it would be
prudentto use an existing catalog view, or create a catalog view to isolate the application
from changes to the systemtable.

Fordetailed information aboutthe systemcatalog tables, pleaseseethe Database
Compatibility for Oracle® Developer’s Reference Guide, available at:

http://www.enterprisedb.com/products -services-training/products/documentation

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 418

http://www.enterprisedb.com/products-services-training/products/documentation

Database Compatibility for Oracle® Developers Guide

14 Acknowledgements

The PostgreSQLS8.3, 8.4, 9.0, 9.1, 9.2, 9.3, 9.4 and 9.5 Documentation provided the

baseline forthe portions ofthis guide that are common to PostgreSQL, and is hereby
acknowledged:

Portions ofthis EnterpriseDB Software and Documentation may utilize the following
copyrighted material, the use of which is hereby acknowledged.

PostgreSQL Documentation, Database Management System

PostgreSQL s Copyright © 1996-2016 by the PostgreSQL Global Development Group
and is distributed under the terms ofthe license ofthe University of California below.

Postgres95is Copyright © 1994-5 by the Regents ofthe University of California.

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose, withoutfee, and withouta written agreement is hereby granted, provided
that the above copyrightnotice and this paragraph and the following two paragraphs
appearin all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
PROVIDED HEREUNDER IS ON AN "AS-IS" BASIS, AND THE UNIVERSITY OF
CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

Copy right © 2007 -2017 EnterpriseDB Corporation. All rights reserved. 419

