
 

 

 

 

 

 

 

 

 

 

 

 

 

Database Compatibility for Oracle® 
Developers Tools and Utilities Guide 

 

 

 

EDB Postgres™ Advanced Server 9.6 

February 15, 2021 

 



 

Database Compatibility for Oracle® Developers 
Tools and Utilities Guide 

by EnterpriseDB® Corporation 
Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EnterpriseDB Corporation, 34 Crosby Drive, Suite 100, Bedford, MA 01730, USA 

T  +1 781 357 3390   F  +1 978 589 5701   E info@enterprisedb.com www.enterprisedb.com 

http://www.enterprisedb.com/


 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
3 

Table of Contents 

1 Introduction ............................................................................................................................................ 5 
1.1 What’s New .................................................................................................................................... 6 
1.2 Typographical Conventions Used in this Guide ............................................................................. 7 

2 EDB*Plus ............................................................................................................................................... 8 
2.1 Starting EDB*Plus .......................................................................................................................... 8 
2.2 Command Summary ......................................................................................................................11 

2.2.1 ACCEPT ................................................................................................................................11 
2.2.2 APPEND ................................................................................................................................11 
2.2.3 CHANGE ..............................................................................................................................12 
2.2.4 CLEAR ..................................................................................................................................12 
2.2.5 COLUMN ..............................................................................................................................13 
2.2.6 CONNECT ............................................................................................................................16 
2.2.7 DEFINE .................................................................................................................................17 
2.2.8 DEL .......................................................................................................................................18 
2.2.9 DESCRIBE ............................................................................................................................19 
2.2.10 DISCONNECT ......................................................................................................................19 
2.2.11 EDIT ......................................................................................................................................20 
2.2.12 EXECUTE .............................................................................................................................20 
2.2.13 EXIT ......................................................................................................................................20 
2.2.14 GET .......................................................................................................................................21 
2.2.15 HELP .....................................................................................................................................22 
2.2.16 HOST .....................................................................................................................................22 
2.2.17 INPUT ...................................................................................................................................22 
2.2.18 LIST .......................................................................................................................................23 
2.2.19 PASSWORD .........................................................................................................................24 
2.2.20 PAUSE ..................................................................................................................................24 
2.2.21 PRINT....................................................................................................................................24 
2.2.22 PROMPT ...............................................................................................................................24 
2.2.23 QUIT......................................................................................................................................25 
2.2.24 REMARK ..............................................................................................................................25 
2.2.25 SAVE .....................................................................................................................................25 
2.2.26 SET ........................................................................................................................................26 
2.2.27 SHOW ...................................................................................................................................31 
2.2.28 SPOOL ..................................................................................................................................31 
2.2.29 START ..................................................................................................................................32 
2.2.30 UNDEFINE ...........................................................................................................................32 
2.2.31 WHENEVER SQLERROR ...................................................................................................32 

3 EDB*Loader ..........................................................................................................................................34 
3.1 Data Loading Methods ..................................................................................................................35 
3.2 General Usage ...............................................................................................................................36 
3.3 Building the EDB*Loader Control File .........................................................................................37 
3.4 Invoking EDB*Loader ..................................................................................................................59 

3.4.1 Exit Codes .............................................................................................................................65 
3.5 Direct Path Load ............................................................................................................................65 
3.6 Parallel Direct Path Load ...............................................................................................................66 
3.7 Remote Loading ............................................................................................................................69 
3.8 Updating a Table with a Conventional Path Load .........................................................................70 

4 EDB*Wrap ............................................................................................................................................73 
4.1 Using EDB*Wrap to Obfuscate Source Code ...............................................................................74 

5 Dynamic Runtime Instrumentation Tools Architecture (DRITA) .........................................................78 
5.1 Configuring and Using DRITA .....................................................................................................78 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
4 

5.2 DRITA Functions ..........................................................................................................................80 
5.2.1 get_snaps() .............................................................................................................................80 
5.2.2 sys_rpt() .................................................................................................................................80 
5.2.3 sess_rpt() ................................................................................................................................81 
5.2.4 sessid_rpt() ............................................................................................................................82 
5.2.5 sesshist_rpt() ..........................................................................................................................84 
5.2.6 purgesnap() ............................................................................................................................85 
5.2.7 truncsnap() .............................................................................................................................86 

5.3 Simulating Statspack AWR Reports ..............................................................................................87 
5.3.1 edbreport() .............................................................................................................................87 
5.3.2 stat_db_rpt()...........................................................................................................................95 
5.3.3 stat_tables_rpt() .....................................................................................................................96 
5.3.4 statio_tables_rpt() ..................................................................................................................99 
5.3.5 stat_indexes_rpt() ................................................................................................................101 
5.3.6 statio_indexes_rpt() .............................................................................................................103 

5.4 Performance Tuning Recommendations ......................................................................................105 
5.5 Event Descriptions .......................................................................................................................106 

6 Acknowledgements .............................................................................................................................109 
 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
5 

1 Introduction 

The tools and utilities documented in this guide allow a developer that is accustomed to 

working with Oracle utilities to work with Advanced Server in a familiar environment. 

The sections in this guide describe compatible tools and utilities that are supported by 

Advanced Server. These include: 

 EDB*Plus 

 EDB*Loader 

 EDB*Wrap 

 Dynamic Runtime Instrumentation 

For detailed information about the features supported by Advanced Server, please consult 

the complete library of Advanced Server guides available at: 

http://www.enterprisedb.com/products-services-training/products/documentation 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.enterprisedb.com/products-services-training/products/documentation


 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
6 

1.1 What’s New 

The following database compatibility for Oracle features have been added to Advanced 

Server 9.5 to create Advanced Server 9.6: 

 Advanced Server now supports use of the Postgres password file to initially log 

into EDB*Plus or to change the connection to EDB*Plus with the CONNECT 

command. This capability provides additional security in that the user’s password 

is not exposed when making the connection to EDB*Plus. For more information, 

see Sections 2.1 and 2.2.6. 

 Advanced Server now supports the SET TRIMSPOOL command in EDB*Plus to 

trim trailing spaces from each output line in the file specified by the SPOOL 

command. For more information, see Section 2.2.26. 

 Advanced Server now supports additional functionality for EDB*Loader 

including use of a column name in the field condition of the WHEN clause to 

control loading of data records into the specified table, the RECORDS DELIMITED 

BY clause to specify a character other than the default newline character to 

terminate each record in the data file, the BOUNDFILLER clause for preventing the 

use of a field in the data file for loading a column in a table, but allowing it to be 

used in an expression for a subsequent column, specification of the length for a 

data type in the control file’s description of the data record, for example 

CHAR(3), support of the NULLIF clause to set a column to null if the field 

condition evaluates to TRUE, and use of a SELECT statement in the expression of a 

field definition to return a value for a column. For more information, see Section 

3.2. 

 Advanced Server now supports Dynamic Runtime Instrumentation Tools 

Architecture (DRITA) access to statistics for lightweight lock wait events. For 

more information, see Section 5. 

 

 

 

 

 

 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
7 

1.2 Typographical Conventions Used in this Guide 

Certain typographical conventions are used in this manual to clarify the meaning and 

usage of various commands, statements, programs, examples, etc. This section provides a 

summary of these conventions. 

In the following descriptions a term refers to any word or group of words which may be 

language keywords, user-supplied values, literals, etc. A term’s exact meaning depends 

upon the context in which it is used. 

 Italic font introduces a new term, typically, in the sentence that defines it for the 

first time. 

 Fixed-width (mono-spaced) font is used for terms that must be given 

literally such as SQL commands, specific table and column names used in the 

examples, programming language keywords, etc. For example, SELECT * FROM 
emp; 

 Italic fixed-width font is used for terms for which the user must 

substitute values in actual usage. For example, DELETE FROM table_name; 

 A vertical pipe | denotes a choice between the terms on either side of the pipe. A 

vertical pipe is used to separate two or more alternative terms within square 

brackets (optional choices) or braces (one mandatory choice). 

 Square brackets [ ] denote that one or none of the enclosed term(s) may be 

substituted. For example, [ a | b ], means choose one of “a” or “b” or neither 

of the two. 

 Braces {} denote that exactly one of the enclosed alternatives must be specified. 

For example, { a | b }, means exactly one of “a” or “b” must be specified. 

 Ellipses ... denote that the proceeding term may be repeated. For example, [ a | 

b ] ... means that you may have the sequence, “b a a b a”. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
8 

2 EDB*Plus 

EDB*Plus is a utility program that provides a command line user interface to the EDB 

Postgres Advanced Server. EDB*Plus accepts SQL commands, SPL anonymous blocks, 

and EDB*Plus commands. EDB*Plus commands are compatible with Oracle SQL*Plus 

commands and provide various capabilities including: 

 Querying certain database objects 

 Executing stored procedures 

 Formatting output from SQL commands 

 Executing batch scripts 

 Executing OS commands 

 Recording output 

The following section describes how to connect to an Advanced Server database using 

EDB*Plus. The final section provides a summary of the EDB*Plus commands. 

2.1 Starting EDB*Plus 

To open an EDB*Plus command line, navigate through the Applications (or Start) 

menu to the Advanced Server menu, to the Run SQL Command Line menu, and select 

the  EDB*Plus option.  You can also invoke EDB*Plus from the operating system 

command line with the following command: 

edbplus [ -S[ILENT ] ] [ login | /NOLOG ] [ @scriptfile[.ext ] ] 

-SILENT 

If specified, the EDB*Plus sign-on banner is suppressed along with all prompts. 

login 

Login information for connecting to the database server and database. login 

takes the following format. (There must be no white space within the login 

information.) 

username[/password][@{connectstring | variable } ] 

Where: 

username is a database username with which to connect to the database.  



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
9 

password is the password associated with the specified username.  If a 

password is not provided, but a password is required for authentication, a 

password file is used if available. If there is no password file or no entry in the 

password file with the matching connection parameters, then EDB*Plus will 

prompt for the password. For more information on using password files and 

authentication methods, see Section 2.2.6. 

connectstring is the database connection string. 

variable is a variable defined in the login.sql file that contains a database 

connection string.  The login.sql file can be found in the edbplus 

subdirectory of the Advanced Server home directory.   

host[:port][/dbname ] ] 

host is the hostname on which the database server resides. If neither 

@connectstring nor @variable nor /NOLOG is specified, the default host is 

assumed to be the localhost. port is the port number receiving connections on the 

database server. If not specified, the default is 5444. dbname is the name of the 

database to connect to. If not specified the default is edb. 

/NOLOG 

Specify /NOLOG to start EDB*Plus without establishing a database connection. 

SQL commands and EDB*Plus commands that require a database connection 

cannot be used in this mode. The CONNECT command can be subsequently given 

to connect to a database after starting EDB*Plus with the /NOLOG option. 

scriptfile[.ext ] 

scriptfile is the name of a file residing in the current working directory, 

containing SQL and/or EDB*Plus commands that will be automatically executed 

after startup of EDB*Plus. ext is the filename extension. If the filename 

extension is sql, then the .sql extension may be omitted when specifying 

scriptfile. When creating a script file, always name the file with an extension, 

otherwise it will not be accessible by EDB*Plus. (EDB*Plus will always assume 

a .sql extension on filenames that are specified with no extension.) 

The following example shows user enterprisedb with password, password, 

connecting to database edb running on a database server on the localhost at port 5444. 

C:\Program Files (x86)\PostgresPlus\9.6AS\edbplus>edbplus 

enterprisedb/password 

Connected to EnterpriseDB 9.6.0.0 (localhost:5444/edb) AS enterprisedb 

 

EDB*Plus: Release 9.6 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
10 

Copyright (c) 2008-2015, EnterpriseDB Corporation.  All rights reserved. 

 

SQL>  

The following example shows user enterprisedb with password, password, 

connecting to database edb running on a database server on the localhost at port 5445. 

C:\Program Files (x86)\PostgresPlus\9.6AS\edbplus>edbplus 

enterprisedb/password@localhost:5445/edb 

Connected to EnterpriseDB 9.6.0.0 (localhost:5445/edb) AS enterprisedb 

 

EDB*Plus: Release 9.6  

Copyright (c) 2008-2015, EnterpriseDB Corporation.  All rights reserved. 

 

SQL>  

Using variable hr_5445 in the login.sql file, the following illustrates how it is used 

to connect to database hr on localhost at port 5445. 

C:\Program Files (x86)\PostgresPlus\9.6AS\edbplus>edbplus 

enterprisedb/password@hr_5445 

Connected to EnterpriseDB 9.6.0.0 (localhost:5445/hr) AS enterprisedb 

 

EDB*Plus: Release 9.6 (Build 28) 

Copyright (c) 2008-2015, EnterpriseDB Corporation.  All rights reserved. 

 

SQL> 

The following is the content of the login.sql file used in the previous example. 

define edb="localhost:5445/edb" 

define hr_5445="localhost:5445/hr" 

The following example executes a script file, dept_query.sql after connecting to 

database edb on server localhost at port 5444. 

C:\Program Files (x86)\PostgresPlus\9.6AS\edbplus>edbplus 

enterprisedb/password @dept_query 

Connected to EnterpriseDB 9.6.0.0 (localhost:5444/edb) AS enterprisedb 

 

SQL> SELECT * FROM dept; 

 

DEPTNO DNAME          LOC 

------ -------------- ------------- 

    10 ACCOUNTING     NEW YORK 

    20 RESEARCH       DALLAS 

    30 SALES          CHICAGO 

    40 OPERATIONS     BOSTON 

 

SQL> EXIT 

Disconnected from EnterpriseDB Database.  

The following is the content of file dept_query.sql used in the previous example. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
11 

SET PAGESIZE 9999 

SET ECHO ON 

SELECT * FROM dept; 

EXIT 

2.2 Command Summary 

The following sections contains a summary of EDB*Plus commands. 

 

2.2.1 ACCEPT 

The ACCEPT command displays a prompt and waits for the user’s keyboard input. The 

value input by the user is placed in the specified variable. 

ACC[EPT ] variable 

The following example creates a new variable named my_name, accepts a value of John 

Smith, then displays the value using the DEFINE command. 

SQL> ACCEPT my_name 

Enter value for my_name: John Smith 

SQL> DEFINE my_name 

DEFINE MY_NAME = "John Smith" 

 

2.2.2 APPEND 

APPEND is a line editor command that appends the given text to the end of the current line 

in the SQL buffer. 

A[PPEND ] text 

In the following example, a SELECT command is built-in the SQL buffer using the 

APPEND command. Note that two spaces are placed between the APPEND command and 

the WHERE clause in order to separate dept and WHERE by one space in the SQL buffer. 

SQL> APPEND SELECT * FROM dept 

SQL> LIST 

  1* SELECT * FROM dept 

SQL> APPEND  WHERE deptno = 10 

SQL> LIST 

  1* SELECT * FROM dept WHERE deptno = 10 

 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
12 

2.2.3 CHANGE 

CHANGE is a line editor command performs a search-and-replace on the current line in the 

SQL buffer. 

C[HANGE ] /from/[to/ ] 

If to/ is specified, the first occurrence of text from in the current line is changed to text 

to. If to/ is omitted, the first occurrence of text from in the current line is deleted. 

The following sequence of commands makes line 3 the current line, then changes the 

department number in the WHERE clause from 20 to 30. 

SQL> LIST 

  1  SELECT empno, ename, job, sal, comm 

  2  FROM emp 

  3  WHERE deptno = 20 

  4* ORDER BY empno 

SQL> 3 

  3* WHERE deptno = 20 

SQL> CHANGE /20/30/ 

  3* WHERE deptno = 30 

SQL> LIST 

  1  SELECT empno, ename, job, sal, comm 

  2  FROM emp 

  3  WHERE deptno = 30 

  4* ORDER BY empno 

 

2.2.4 CLEAR 

The CLEAR command removes the contents of the SQL buffer, deletes all column 

definitions set with the COLUMN command, or clears the screen. 

CL[EAR ] [ BUFF[ER ] | SQL | COL[UMNS ] | SCR[EEN ] ] 

BUFFER | SQL 

Clears the SQL buffer. 

COLUMNS 

Removes column definitions. 

SCREEN 

Clears the screen. This is the default if no options are specified. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
13 

2.2.5 COLUMN 

The COLUMN command controls output formatting.  The formatting attributes set by using 

the COLUMN command remain in effect only for the duration of the current session. 

COL[UMN ] 

  [ column 

    { CLE[AR ] | 

      { FOR[MAT ] spec | 

        HEA[DING ] text | 

        { OFF | ON } 

      } [...] 

    } 

  ]  

If the COLUMN command is specified with no subsequent options, formatting options for 

current columns in effect for the session are displayed. 

If the COLUMN command is followed by a column name, then the column name may be 

followed by one of the following: 

1. No other options 
2. CLEAR 

3. Any combination of FORMAT, HEADING, and one of OFF or ON 

column 

Name of a column in a table to which subsequent column formatting options are 

to apply. If no other options follow column, then the current column formatting 

options if any, of column are displayed. 

CLEAR 

The CLEAR option reverts all formatting options back to their defaults for 

column. If the CLEAR option is specified, it must be the only option specified. 

spec 

Format specification to be applied to column. For character columns, spec takes 

the following format: 

n 

n is a positive integer that specifies the column width in characters within which 

to display the data. Data in excess of n will wrap around with the specified 

column width. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
14 

For numeric columns, spec is comprised of the following elements. 

Table 10-2-1 Numeric Column Format Elements 

Element Description 

$ Display a leading dollar sign. 

, Display a comma in the indicated position. 

. Marks the location of the decimal point. 

0 Display leading zeros. 

9 Number of significant digits to display. 

If loss of significant digits occurs due to overflow of the format, then all #’s are 

displayed. 

text 

Text to be used for the column heading of column. 

OFF | ON 

If OFF is specified, formatting options are reverted back to their defaults, but are 

still available within the session. If ON is specified, the formatting options 

specified by previous COLUMN commands for column within the session are re-

activated. 

The following example shows the effect of changing the display width of the job 

column. 

SQL> SET PAGESIZE 9999 

SQL> COLUMN job FORMAT A5 

SQL> COLUMN job 

COLUMN   JOB  ON 

FORMAT   A5 

wrapped 

SQL> SELECT empno, ename, job FROM emp; 

 

EMPNO ENAME      JOB 

----- ---------- ----- 

 7369 SMITH      CLERK 

 7499 ALLEN      SALES 

                 MAN 

 

 7521 WARD       SALES 

                 MAN 

 

 7566 JONES      MANAG 

                 ER 

 

 7654 MARTIN     SALES 

                 MAN 

 

 7698 BLAKE      MANAG 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
15 

                 ER 

 

 7782 CLARK      MANAG 

                 ER 

 

 7788 SCOTT      ANALY 

                 ST 

 

 7839 KING       PRESI 

                 DENT 

 

 7844 TURNER     SALES 

                 MAN 

 

 7876 ADAMS      CLERK 

 7900 JAMES      CLERK 

 7902 FORD       ANALY 

                 ST 

 

 7934 MILLER     CLERK 

 

14 rows retrieved. 

The following example applies a format to the sal column. 

SQL> COLUMN sal FORMAT $99,999.00 

SQL> COLUMN 

COLUMN   JOB  ON 

FORMAT   A5 

wrapped 

 

COLUMN   SAL  ON 

FORMAT   $99,999.00 

wrapped 

SQL> SELECT empno, ename, job, sal FROM emp; 

 

EMPNO ENAME      JOB           SAL 

----- ---------- ----- ----------- 

 7369 SMITH      CLERK     $800.00 

 7499 ALLEN      SALES   $1,600.00 

                 MAN 

 

 7521 WARD       SALES   $1,250.00 

                 MAN 

 

 7566 JONES      MANAG   $2,975.00 

                 ER 

 

 7654 MARTIN     SALES   $1,250.00 

                 MAN 

 

 7698 BLAKE      MANAG   $2,850.00 

                 ER 

 

 7782 CLARK      MANAG   $2,450.00 

                 ER 

 

 7788 SCOTT      ANALY   $3,000.00 

                 ST 

 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
16 

 7839 KING       PRESI   $5,000.00 

                 DENT 

 

 7844 TURNER     SALES   $1,500.00 

                 MAN 

 

 7876 ADAMS      CLERK   $1,100.00 

 7900 JAMES      CLERK     $950.00 

 7902 FORD       ANALY   $3,000.00 

                 ST 

 

 7934 MILLER     CLERK   $1,300.00 

 

14 rows retrieved. 

 

2.2.6 CONNECT 

Change the database connection to a different user and/or connect to a different database. 

There must be no white space between any of the parameters following the CONNECT 

command. 

CON[NECT] username[/password][@{connectstring | variable } ] 

Where: 

username is a database username with which to connect to the database.  

password is the password associated with the specified username.  If a 

password is not provided, but a password is required for authentication, a search 

is made for a password file, first in the home directory of the Linux operating 

system account invoking EDB*Plus (or in the %APPDATA%\postgresql\ 

directory for Windows) and then at the location specified by the PGPASSFILE 

environment variable. The password file is .pgpass on Linux hosts and 

pgpass.conf on Windows hosts. The following is an example on a Windows 

host: 

C:\Users\Administrator\AppData\Roaming\postgresql\pgpass.conf 

If a password file cannot be located, or it does not have an entry matching the 

EDB*Plus connection parameters, then EDB*Plus will prompt for the password. 

For more information about password files, see the PostgreSQL core 

documentation at: 

https://www.postgresql.org/docs/9.6/static/libpq-pgpass.html 

Note: When a password is not required, EDB*Plus does not prompt for a 

password such as when the trust authentication method is specified in the 

https://www.postgresql.org/docs/9.6/static/libpq-pgpass.html


 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
17 

pg_hba.conf file. For more information about the pg_hba.conf file and 

authentication methods, see the PostgreSQL core documentation at: 

https://www.postgresql.org/docs/9.6/static/auth-pg-hba-conf.html 

connectstring is the database connection string. 

variable is a variable defined in the login.sql file that contains a database 

connection string.  The login.sql file can be found in the edbplus 

subdirectory of the Advanced Server home directory.   

In the following example, the database connection is changed to database edb on the 

localhost at port 5445 with username, smith. 

SQL> CONNECT smith/mypassword@localhost:5445/edb 

Disconnected from EnterpriseDB Database. 

Connected to EnterpriseDB 9.6.0.0 (localhost:5445/edb) AS smith 

From within the session shown above, the connection is changed to username 

enterprisedb. Also note that the host defaults to the localhost, the port defaults to 

5444 (which is not the same as the port previously used), and the database defaults to 

edb. 

SQL> CONNECT enterprisedb/password 

Disconnected from EnterpriseDB Database. 

Connected to EnterpriseDB 9.6.0.0 (localhost:5444/edb) AS enterprisedb 

2.2.7 DEFINE 

The DEFINE command creates or replaces the value of a user variable (also called a 

substitution variable). 

DEF[INE ] [ variable [ = text ] ] 

If the DEFINE command is given without any parameters, all current variables and their 

values are displayed. 

If DEFINE variable is given, only variable is displayed with its value. 

DEFINE variable = text assigns text to variable. text may be optionally 

enclosed within single or double quotation marks. Quotation marks must be used if text 

contains space characters. 

The following example defines two variables, dept and name. 

SQL> DEFINE dept = 20 

SQL> DEFINE name = 'John Smith' 

https://www.postgresql.org/docs/9.6/static/auth-pg-hba-conf.html


 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
18 

SQL> DEFINE 

DEFINE EDB = "localhost:5445/edb" 

DEFINE DEPT = "20" 

DEFINE NAME = "John Smith" 

Note: The variable EDB is read from the login.sql file located in the edbplus 

subdirectory of the Advanced Server home directory. 

 

2.2.8 DEL 

DEL is a line editor command that deletes one or more lines from the SQL buffer. 

DEL [ n | n m | n * | n L[AST ] | * | * n | * L[AST ] | 

  L[AST ] ] 

The parameters specify which lines are to be deleted from the SQL buffer. Two 

parameters specify the start and end of a range of lines to be deleted. If the DEL command 

is given with no parameters, the current line is deleted. 

n 

n is an integer representing the nth line 

n m 

n and m are integers where m is greater than n representing the nth through the mth 

lines 

* 

Current line 

LAST 

Last line 

In the following example, the fifth and sixth lines containing columns sal and comm, 

respectively, are deleted from the SELECT command in the SQL buffer. 

SQL> LIST 

  1  SELECT 

  2    empno 

  3   ,ename 

  4   ,job 

  5   ,sal 

  6   ,comm 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
19 

  7   ,deptno 

  8* FROM emp 

SQL> DEL 5 6 

SQL> LIST 

  1  SELECT 

  2    empno 

  3   ,ename 

  4   ,job 

  5   ,deptno 

  6* FROM emp 

 

2.2.9 DESCRIBE 

The DESCRIBE command displays:  

 A list of columns, column data types, and column lengths for a table or view 

 A list of parameters for a procedure or function 

 A list of procedures and functions and their respective parameters for a package. 

The DESCRIBE command will also display the structure of the database object referred to 

by a synonym.  The syntax is: 

DESC[RIBE] [ schema.]object 

 

schema 

Name of the schema containing the object to be described. 

object 

Name of the table, view, procedure, function, or package to be displayed, or the 

synonym of an object. 

 

2.2.10 DISCONNECT 

The DISCONNECT command closes the current database connection, but does not 

terminate EDB*Plus. 

DISC[ONNECT ] 

 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
20 

2.2.11 EDIT 

The EDIT command invokes an external editor to edit the contents of an operating system 

file or the SQL buffer. 

ED[IT ] [ filename[.ext ] ] 

filename[.ext ] 

filename is the name of the file to open with an external editor. ext is the 

filename extension. If the filename extension is sql, then the .sql extension 

may be omitted when specifying filename. EDIT always assumes a .sql 

extension on filenames that are specified with no extension. If the filename 

parameter is omitted from the EDIT command, the contents of the SQL buffer are 

brought into the editor. 

 

2.2.12 EXECUTE 

The EXECUTE command executes an SPL procedure from EDB*Plus. 

EXEC[UTE ] spl_procedure [ ([ parameters ]) ] 

 

spl_procedure 

The name of the SPL procedure to be executed. 

parameters 

Comma-delimited list of parameters. If there are no parameters, then a pair of 

empty parentheses may optionally be specified. 

 

2.2.13 EXIT 

The EXIT command terminates the EDB*Plus session and returns control to the 

operating system. QUIT is a synonym for EXIT. Specifying no parameters is equivalent to 

EXIT SUCCESS COMMIT. 

 

{ EXIT | QUIT }  



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
21 

[ SUCCESS | FAILURE | WARNING | value |variable ]  

[ COMMIT | ROLLBACK ]SUCCESS | FAILURE |WARNING 

Returns an operating system dependent return code indicating successful 

operation, failure, or warning for SUCCESS, FAILURE, and WARNING, 

respectively. The default is SUCCESS. 

value 

An integer value that is returned as the return code. 

variable 

A variable created with the DEFINE command whose value is returned as the 

return code. 

COMMIT | ROLLBACK 

If COMMIT is specified, uncommitted updates are committed upon exit. If 

ROLLBACK is specified, uncommitted updates are rolled back upon exit. The 

default is COMMIT. 

 

2.2.14 GET 

The GET command loads the contents of the given file to the SQL buffer. 

GET filename[.ext ] [ LIS[T ] | NOL[IST ] ] 

filename[.ext ] 

filename is the name of the file to load into the SQL buffer. ext is the filename 

extension. If the filename extension is sql, then the .sql extension may be 

omitted when specifying filename. GET always assumes a .sql extension on 

filenames that are specified with no extension. 

LIST | NOLIST 

If LIST is specified, the content of the SQL buffer is displayed after the file is 

loaded. If NOLIST is specified, no listing is displayed. The default is LIST. 

 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
22 

2.2.15 HELP 

The HELP command obtains an index of topics or help on a specific topic. The question 

mark (?) is synonymous with specifying HELP. 

{ HELP | ? } { INDEX | topic } 

INDEX 

Displays an index of available topics. 

topic 

The name of a specific topic – e.g., an EDB*Plus command, for which help is 

desired. 

 

2.2.16 HOST 

The HOST command executes an operating system command from EDB*Plus. 

HO[ST ] [os_command] 

os_command 

The operating system command to be executed.  If you do not provide an 

operating system command, EDB*Plus pauses execution and opens a new shell 

prompt.  When the shell exits, EDB*Plus resumes execution. 

 

2.2.17 INPUT 

The INPUT line editor command adds a line of text to the SQL buffer after the current 

line. 

I[NPUT ] text 

The following sequence of INPUT commands constructs a SELECT command. 

SQL> INPUT SELECT empno, ename, job, sal, comm 

SQL> INPUT FROM emp 

SQL> INPUT WHERE deptno = 20 

SQL> INPUT ORDER BY empno 

SQL> LIST 

  1  SELECT empno, ename, job, sal, comm 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
23 

  2  FROM emp 

  3  WHERE deptno = 20 

  4* ORDER BY empno 

 

2.2.18 LIST 

LIST is a line editor command that displays the contents of the SQL buffer.   

L[IST] [ n | n m | n * | n L[AST] | * | * n | * L[AST] | L[AST] ] 

The buffer does not include a history of the EDB*Plus commands. 

n 

n represents the buffer line number. 

n m  

n m displays a list of lines between n and m. 

n * 

n * displays a list of lines that range between line n and the current line. 

n L[AST] 

n L[AST] displays a list of lines that range from line n through the last line in 

the buffer. 

*  

* displays the current line. 

* n  

* n displays a list of lines that range from the current line through line n. 

* L[AST]  

* L[AST] displays a list of lines that range from the current line through the last 

line. 

L[AST] 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
24 

L[AST] displays the last line. 

 

2.2.19 PASSWORD 

Use the PASSWORD command to change your database password. 

PASSW[ORD] [user_name] 

You must have sufficient privileges to use the PASSWORD command to change another 

user's password.  The following example demonstrates using the PASSWORD command to 

change the password for a user named acctg:  

SQL> PASSWORD acctg 

Changing password for acctg 

    New password: 

    New password again: 

Password successfully changed. 

 

2.2.20 PAUSE 

The PAUSE command displays a message, and waits for the user to press ENTER.   

PAU[SE]  [optional_text] 

optional_text specifies the text that will be displayed to the user.  If the 

optional_text is omitted, Advanced Server will display two blank lines.  If you 

double quote the optional_text string, the quotes will be included in the output. 

2.2.21 PRINT 

The PRINT command displays the value of a bind variable. 

PRI[NT] [bind_variable_name] 

bind_variable_name  specifies the name of a bind variable.  Omit 

bind_variable_name to generate a list that includes the values of all bind variables. 

 

2.2.22 PROMPT 

The PROMPT command displays a message to the user before continuing.   



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
25 

PRO[MPT] [message_text] 

message_text specifies the text displayed to the user.  Double quote the string to 

include quotes in the output. 

 

2.2.23 QUIT 

The QUIT command terminates the session and returns control to the operating system.  

QUIT is a synonym for EXIT. 

QUIT  

[SUCCESS | FAILURE | WARNING | value | sub_variable]  

[COMMIT | ROLLBACK] 

The default value is QUIT SUCCESS COMMIT. 

 

2.2.24 REMARK 

Use REMARK to include comments in a script. 

REM[ARK] [optional_text] 

You may also use the following convention to include a comment: 

/* 

 *  This is an example of a three line comment. 

 */ 

 

2.2.25 SAVE 

Use the SAVE command to write the SQL Buffer to an operating system file. 

SAV[E] file_name 

[CRE[ATE] | REP[LACE] | APP[END]] 

file_name 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
26 

file_name specifies the name of the file (including the path) where the buffer 

contents are written.  If you do not provide a file extension, .sql is appended to 

the end of the file name. 

CREATE  

Include the CREATE keyword to create a new file.  A new file is created only if a 

file with the specified name does not already exist. This is the default. 

REPLACE     

Include the REPLACE keyword to specify that Advanced Server should overwrite 

an existing file. 

APPEND 

Include the APPEND keyword to specify that Advanced Server should append the 

contents of the SQL buffer to the end of the specified file. 

The following example saves the contents of the SQL buffer to a file named 

example.sql, located in the temp directory: 

SQL> SAVE C:\example.sql CREATE 

File "example.sql" written. 

 

 

2.2.26 SET 

Use the SET command to specify a value for a session level variable that controls 

EDB*Plus behavior.  The following forms of the SET command are valid: 

SET AUTOCOMMIT 

Use the SET AUTOCOMMIT command to specify COMMIT behavior for Advanced Server 

transactions. 

SET AUTO[COMMIT] 

{ON | OFF | IMMEDIATE | statement_count} 

Please note that EDB*Plus always automatically commits DDL statements. 

ON 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
27 

Specify ON to turn AUTOCOMMIT behavior on. 

OFF 

Specify OFF to turn AUTOCOMMIT behavior off. 

IMMEDIATE 

IMMEDIATE has the same effect as ON.   

statement_count 

Include a value for statement_count to instruct EDB*Plus to issue a commit 

after the specified count of successful SQL statements. 

SET COLUMN SEPARATOR 

Use the SET COLUMN SEPARATOR command to specify the text that Advanced Server 

displays between columns.   

SET COLSEP column_separator 

The default value of column_separator is a single space. 

SET ECHO 

Use the SET ECHO command to specify if SQL and EDB*Plus script statements should be 

displayed onscreen as they are executed. 

SET ECHO {ON | OFF} 

The default value is OFF. 

SET FEEDBACK 

The SET FEEDBACK command controls the display of interactive information after a SQL 

statement executes.   

SET FEED[BACK] {ON | OFF | row_threshold} 

row_threshold 

Specify an integer value for row_threshold.  Setting row_threshold to 0 is 

same as setting FEEDBACK to OFF.  Setting row_threshold equal 1 effectively 

sets FEEDBACK to ON.   



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
28 

SET FLUSH 

Use the SET FLUSH command to control display buffering. 

SET FLU[SH] {ON | OFF} 

Set FLUSH to OFF to enable display buffering.  If you enable buffering, messages bound 

for the screen may not appear until the script completes. Please note that setting FLUSH to 

OFF will offer better performance. 

Set FLUSH to ON to disable display buffering.  If you disable buffering, messages bound 

for the screen appear immediately. 

SET HEADING 

Use the SET HEADING variable to specify if Advanced Server should display column 

headings for SELECT statements. 

SET HEA[DING] {ON | OFF} 

SET HEAD SEPARATOR 

The SET HEADSEP command sets the new heading separator character used by the 

COLUMN HEADING command.  The default is '|'. 

SET HEADS[EP] 

SET LINESIZE 

Use the SET LINESIZE command to specify the width of a line in characters.   

SET LIN[ESIZE] width_of_line 

width_of_line 

The default value of width_of_line is 132. 

SET NEWPAGE 

Use the SET NEWPAGE command to specify how many blank lines are printed after a page 

break. 

SET NEWP[AGE] lines_per_page 

lines_per_page 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
29 

The default value of lines_per_page is 1.   

SET NULL 

Use the SET NULL command to specify a string that is displayed to the user when a NULL 

column value is displayed in the output buffer. 

SET NULL null_string 

SET PAGESIZE 

Use the SET PAGESIZE command to specify the number of printed lines that fit on a 

page. 

SET PAGES[IZE] line_count 

Use the line_count parameter to specify the number of lines per page. 

SET SQLCASE 

The SET SQLCASE command specifies if SQL statements transmitted to the server should 

be converted to upper or lower case. 

SET SQLC[ASE] {MIX[ED] | UP[PER] | LO[WER]} 

UPPER 

Specify UPPER to convert the command text to uppercase. 

LOWER 

Specify LOWER to convert the command text to lowercase. 

MIXED 

Specify MIXED to leave the case of SQL commands unchanged.  The default is 

MIXED. 

SET PAUSE 

The SET PAUSE command is most useful when included in a script; the command 

displays a prompt and waits for the user to press Return. 

SET PAU[SE] {ON | OFF} 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
30 

If SET PAUSE is ON, the message Hit ENTER to continue… will be displayed before 

each command is executed. 

SET SPACE 

Use the SET SPACE command to specify the number of spaces to display between 

columns: 

SET SPACE number_of_spaces 

SET SQLPROMPT 

Use SET SQLPROMPT to set a value for a user-interactive prompt: 

SET SQLP[ROMPT] "prompt" 

By default, SQLPROMPT is set to "SQL> " 

SET TERMOUT 

Use the SET TERMOUT command to specify if command output should be displayed 

onscreen.     

SET TERM[OUT] {ON | OFF} 

SET TIMING 

The SET TIMING command specifies if Advanced Server should display the execution 

time for each SQL statement after it is executed. 

SET TIMI[NG] {ON | OFF} 

SET TRIMSPOOL 

Use the SET TRIMSPOOL command to remove trailing spaces from each line in the output 

file specified by the SPOOL command. 

SET TRIMS[POOL] {ON | OFF} 

The default value is OFF. 

SET VERIFY 

Specifies if both the old and new values of a SQL statement are displayed when a 

substitution variable is encountered. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
31 

SET VER[IFY] { ON | OFF } 

 

2.2.27 SHOW 

Use the SHOW command to display current parameter values. 

SHO[W] {ALL | parameter_name} 

Display the current parameter settings by including the ALL keyword:  

SQL> SHOW ALL 

autocommit      OFF 

colsep          " " 

define          "&" 

echo            OFF 

FEEDBACK ON for 6 row(s). 

flush           ON 

heading         ON 

headsep         "|" 

linesize        78 

newpage         1 

null            " " 

pagesize        14 

pause           OFF 

serveroutput    OFF 

spool           OFF 

sqlcase         MIXED 

sqlprompt       "SQL> " 

sqlterminator   ";" 

suffix          ".sql" 

termout         ON 

timing          OFF 

verify          ON 

USER is         "enterprisedb" 

HOST is         "localhost" 

PORT is         "5444" 

DATABASE is     "edb" 

VERSION is      "9.6.0.0" 

Or display a specific parameter setting by including the parameter_name in the SHOW 

command:  

SQL> SHOW VERSION 

VERSION is "9.6.0.0" 

 

2.2.28 SPOOL 

The SPOOL command sends output from the display to a file.   



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
32 

SP[OOL] output_file | OFF 

Use the output_file parameter to specify a path name for the output file. 

 

2.2.29 START 

Use the START command to run an EDB*Plus script file; START is an alias for @ 

command. 

STA[RT] script_file 

Specify the name of a script file in the script_file parameter. 

 

2.2.30 UNDEFINE 

The UNDEFINE command erases a user variable created by the DEFINE command. 

UNDEF[INE] variable_name [ variable_name...] 

Use the variable_name parameter to specify the name of a variable or variables. 

 

2.2.31 WHENEVER SQLERROR 

The WHENEVER SQLERROR command provides error handling for SQL errors or PL/SQL 

block errors.  The syntax is: 

WHENEVER SQLERROR  

  {CONTINUE [COMMIT|ROLLBACK|NONE] 
  |EXIT [SUCCESS|FAILURE|WARNING|n|sub_variable] 
  [COMMIT|ROLLBACK]}  

If Advanced Server encounters an error during the execution of a SQL command or 

PL/SQL block, EDB*Plus performs the action specified in the WHENEVER SQLERROR 

command:   

Include the CONTINUE clause to instruct EDB*Plus to perform the specified 

action before continuing. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
33 

Include the COMMIT clause to instruct EDB*Plus to COMMIT the current 

transaction before exiting or continuing. 

Include the ROLLBACK clause to instruct EDB*Plus to ROLLBACK the current 

transaction before exiting or continuing. 

Include the NONE clause to instruct EDB*Plus to continue without committing or 

rolling back the transaction. 

Include the EXIT clause to instruct EDB*Plus to perform the specified action and 

exit if it encounters an error. 

Use the following options to specify a status code that EDB*Plus will 

return before exiting: 

[SUCCESS|FAILURE|WARNING|n|sub_variable] 

Please note that EDB*Plus supports substitution variables, but does not 

support bind variables. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
34 

3 EDB*Loader 

EDB*Loader is a high-performance bulk data loader that provides an interface 

compatible with Oracle databases for Advanced Server. The EDB*Loader command line 

utility loads data from an input source, typically a file, into one or more tables using a 

subset of the parameters offered by Oracle SQL*Loader. 

EDB*Loader features include: 

 Support for the Oracle SQL*Loader data loading methods - conventional path 

load, direct path load, and parallel direct path load 

 Syntax for control file directives compatible with Oracle SQL*Loader  

 Input data with delimiter-separated or fixed-width fields 

 Bad file for collecting rejected records 

 Loading of multiple target tables 

 Discard file for collecting records that do not meet the selection criteria of any 

target table 

 Log file for recording the EDB*Loader session and any error messages 

 Data loading from standard input and remote loading, particularly useful for large 

data sources on remote hosts 

These features are explained in detail in the following sections. 

Note: The following are important version compatibility restrictions between the 

EDB*Loader client and the database server. 

 Invoking EDB*Loader is done using a client program called edbldr, which is 

used to pass parameters and directive information to the database server. It is 

strongly recommended that the 9.6 EDB*Loader client (that is, the edbldr 

program supplied with Advanced Server 9.6) be used to load data only into 

version 9.6 of the database server. In general, the EDB*Loader client and 

database server should be the same version. 

 It is possible to use a 9.6 EDB*Loader client to load data into a 9.6 database 

server, but the new 9.6 EDB*Loader features may not be available under those 

circumstances. 

 Use of a 9.6 EDB*Loader client is not supported for database servers version 9.2 

or earlier. 

 

 

 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
35 

3.1 Data Loading Methods 

As with Oracle SQL*Loader, EDB*Loader supports three data loading methods: 

 Conventional path load 

 Direct path load 

 Parallel direct path load 

Conventional path load is the default method used by EDB*Loader. Basic insert 

processing is used to add rows to the table. 

The advantage of a conventional path load over the other methods is that table constraints 

and database objects defined on the table such as primary keys, not null constraints, 

check constraints, unique indexes, foreign key constraints, and triggers are enforced 

during a conventional path load. 

One exception is that the Advanced Server rules defined on the table are not enforced. 

EDB*Loader can load tables on which rules are defined, but the rules are not executed. 

As a consequence, partitioned tables implemented using rules cannot be loaded using 

EDB*Loader. 

Note: Advanced Server rules are created by the CREATE RULE command. Advanced 

Server rules are not the same database objects as rules and rule sets used in Oracle. 

EDB*Loader also supports direct path loads. A direct path load is faster than a 

conventional path load, but requires the removal of most types of constraints and triggers 

from the table. See Section 3.5 for information on direct path loads. 

Finally, EDB*Loader supports parallel direct path loads. A parallel direct path load 

provides even greater performance improvement by permitting multiple EDB*Loader 

sessions to run simultaneously to load a single table. See Section 3.6 for information on 

parallel direct path loads. 

 

 

 

 

 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
36 

3.2 General Usage 

EDB*Loader can load data files with either delimiter-separated or fixed-width fields, in 

single-byte or multi-byte character sets. The delimiter can be a string consisting of one or 

more single-byte or multi-byte characters. Data file encoding and the database encoding 

may be different. Character set conversion of the data file to the database encoding is 

supported. 

Each EDB*Loader session runs as a single, independent transaction. If an error should 

occur during the EDB*Loader session that aborts the transaction, all changes made 

during the session are rolled back. 

Generally, formatting errors in the data file do not result in an aborted transaction. 

Instead, the badly formatted records are written to a text file called the bad file. The 

reason for the error is recorded in the log file. 

Records causing database integrity errors do result in an aborted transaction and rollback. 

As with formatting errors, the record causing the error is written to the bad file and the 

reason is recorded in the log file. 

Note: EDB*Loader differs from Oracle SQL*Loader in that a database integrity error 

results in a rollback in EDB*Loader. In Oracle SQL*Loader, only the record causing the 

error is rejected. Records that were previously inserted into the table are retained and 

loading continues after the rejected record. 

The following are examples of types of formatting errors that do not abort the transaction: 

 Attempt to load non-numeric value into a numeric column 

 Numeric value is too large for a numeric column 

 Character value is too long for the maximum length of a character column 

 Attempt to load improperly formatted date value into a date column 

The following are examples of types of database errors that abort the transaction and 

result in the rollback of all changes made in the EDB*Loader session: 

 Violation of a unique constraint such as a primary key or unique index 

 Violation of a referential integrity constraint 

 Violation of a check constraint 

 Error thrown by a trigger fired as a result of inserting rows 

 

 

 

 

 

 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
37 

3.3 Building the EDB*Loader Control File 

When you invoke EDB*Loader, the list of arguments provided must include the name of 

a control file.  The control file includes the instructions that EDB*Loader uses to load the 

table (or tables) from the input data file.  The control file includes information such as: 

 The name of the input data file containing the data to be loaded. 

 The name of the table or tables to be loaded from the data file. 

 Names of the columns within the table or tables and their corresponding field 

placement in the data file. 

 Specification of whether the data file uses a delimiter string to separate the fields, 

or if the fields occupy fixed column positions. 

 Optional selection criteria to choose which records from the data file to load into a 

given table. 

 The name of the file that will collect illegally formatted records. 

 The name of the discard file that will collect records that do not meet the selection 

criteria of any table. 

The syntax for the EDB*Loader control file is as follows: 

[ OPTIONS (param=value [, param=value ] ...) ] 

LOAD DATA 

  [ CHARACTERSET charset ] 

  [ INFILE '{ data_file | stdin }' ] 

  [ BADFILE 'bad_file' ] 

  [ DISCARDFILE 'discard_file' ] 

  [ { DISCARDMAX | DISCARDS } max_discard_recs ] 

[ INSERT | APPEND | REPLACE | TRUNCATE ] 

[ PRESERVE BLANKS ] 

{ INTO TABLE target_table 

  [ WHEN field_condition [ AND field_condition ] ...] 

  [ FIELDS TERMINATED BY 'termstring' 

    [ OPTIONALLY ENCLOSED BY 'enclstring' ] ] 

  [ RECORDS DELIMITED BY 'delimstring' ] 

  [ TRAILING NULLCOLS ] 

   (field_def [, field_def ] ...) 

} ... 

where field_def defines a field in the specified data_file that describes the 

location, data format, or value of the data to be inserted into column_name of the 

target_table.  The syntax of field_def is the following: 

column_name { 

  CONSTANT val | 

  FILLER [ POSITION (start:end) ] [ fieldtype ] | 

  BOUNDFILLER [ POSITION (start:end) ] [ fieldtype ] | 

  [ POSITION (start:end) ] [ fieldtype ] 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
38 

  [ NULLIF field_condition [ AND field_condition ] ...] 

  [ PRESERVE BLANKS ] [ "expr" ] 

} 

where fieldtype is one of: 

CHAR [(length)] | DATE [(length)] [ "datemask" ] | 

INTEGER EXTERNAL [(length)] |  

FLOAT EXTERNAL [(length)] | DECIMAL EXTERNAL [(length)] | 

ZONED EXTERNAL [(length)] | ZONED [(precision[,scale])] 

Description 

The specification of data_file, bad_file, and discard_file may include the full 

directory path or a relative directory path to the file name. If the file name is specified 

alone or with a relative directory path, the file is then assumed to exist (in the case of 

data_file), or is created (in the case of bad_file or discard_file), relative to the 

current working directory from which edbldr is invoked. 

You can include references to environment variables within the EDB*Loader control file 

when referring to a directory path and/or file name.  Environment variable references are 

formatted differently on Windows systems than on Linux systems: 

 On Linux, the format is $ENV_VARIABLE or ${ENV_VARIABLE} 

 On Windows, the format is %ENV_VARIABLE% 

Where ENV_VARIABLE is the environment variable that is set to the directory path and/or 

file name. 

The EDBLDR_ENV_STYLE environment variable instructs Advanced Server to interpret 

environment variable references as Windows-styled references or Linux-styled references 

irregardless of the operating system on which EDB*Loader resides.  You can use this 

environment variable to create portable control files for EDB*Loader. 

 On a Windows system, set EDBLDR_ENV_STYLE to linux or unix to instruct 

Advanced Server to recognize Linux-style references within the control file. 

 On a Linux system, set EDBLDR_ENV_STYLE to windows to instruct Advanced 

Server to recognize Windows-style references within the control file. 

The operating system account enterprisedb must have read permission on the 

directory and file specified by data_file. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
39 

The operating system account enterprisedb must have write permission on the 

directories where bad_file and discard_file are to be written. 

Note: It is suggested that the file names for data_file, bad_file, and 

discard_file include extensions of .dat, .bad, and .dsc, respectively. If the 

provided file name does not contain an extension, EDB*Loader assumes the actual file 

name includes the appropriate aforementioned extension. 

If an EDB*Loader session results in data format errors and the BADFILE clause is not 

specified, nor is the BAD parameter given on the command line when edbldr is invoked, 

a bad file is created with the name control_file_base.bad in the current working 

directory from which edbldr is invoked. control_file_base is the base name of the 

control file (that is, the file name without any extension) used in the edbldr session. 

If all of the following conditions are true, the discard file is not created even if the 

EDB*Loader session results in discarded records: 

 The DISCARDFILE clause for specifying the discard file is not included in the 

control file. 

 The DISCARD parameter for specifying the discard file is not included on the 

command line. 

 The DISCARDMAX clause for specifying the maximum number of discarded 

records is not included in the control file. 

 The DISCARDS clause for specifying the maximum number of discarded records 

is not included in the control file. 

 The DISCARDMAX parameter for specifying the maximum number of discarded 

records is not included on the command line. 

If neither the DISCARDFILE clause nor the DISCARD parameter for explicitly specifying 

the discard file name are specified, but DISCARDMAX or DISCARDS is specified, then the 

EDB*Loader session creates a discard file using the data file name with an extension of 

.dsc. 

Note: There is a distinction between keywords DISCARD and DISCARDS. DISCARD is an 

EDB*Loader command line parameter used to specify the discard file name (see Section 

3.2). DISCARDS is a clause of the LOAD DATA directive that may only appear in the 

control file. Keywords DISCARDS and DISCARDMAX provide the same functionality of 

specifying the maximum number of discarded records allowed before terminating the 

EDB*Loader session. Records loaded into the database before termination of the 

EDB*Loader session due to exceeding the DISCARDS or DISCARDMAX settings are kept 

in the database and are not rolled back. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
40 

If one of INSERT, APPEND, REPLACE, or TRUNCATE is specified, it establishes the 

default action of how rows are to be added to target tables. If omitted, the default action 

is as if INSERT had been specified. 

If the FIELDS TERMINATED BY clause is specified, then the POSITION (start:end) 

clause may not be specified for any field_def. Alternatively if the FIELDS 

TERMINATED BY clause is not specified, then every field_def must contain either the 

POSITION (start:end) clause, the fieldtype(length) clause, or the CONSTANT 

clause. 

Parameters 

OPTIONS param=value 

Use the OPTIONS clause to specify param=value pairs that represent an 

EDB*Loader directive.  If a parameter is specified in both the OPTIONS clause 

and on the command line when edbldr is invoked, the command line setting is 

used. 

Specify one or more of the following parameter/value pairs:  

DIRECT= { FALSE | TRUE } 

If DIRECT is set to TRUE EDB*Loader performs a direct path load instead 

of a conventional path load.  The default value of DIRECT is FALSE. 

See Section 3.5 for information on direct path loads.  

ERRORS=error_count 

error_count specifies the number of errors permitted before aborting 

the EDB*Loader session. The default is 50. 

FREEZE= { FALSE | TRUE } 

Set FREEZE to TRUE to indicate that the data should be copied with the 

rows frozen.  A tuple guaranteed to be visible to all current and future 

transactions is marked as frozen to prevent transaction ID wrap-around.  

For more information about frozen tuples, see the PostgreSQL core 

documentation at: 

http://www.postgresql.org/docs/9.6/static/routine-vacuuming.html 

http://www.postgresql.org/docs/9.6/static/routine-vacuuming.html


 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
41 

You must specify a data-loading type of TRUNCATE in the control file 

when using the FREEZE option.  FREEZE is not supported for direct 

loading.   

By default, FREEZE is FALSE. 

PARALLEL= { FALSE | TRUE } 

Set PARALLEL to TRUE to indicate that this EDB*Loader session is one of 

a number of concurrent EDB*Loader sessions participating in a parallel 

direct path load.  The default value of PARALLEL is FALSE.   

When PARALLEL is TRUE, the DIRECT parameter must also be set to 

TRUE . See Section 3.6 for more information about parallel direct path 

loads. 

ROWS=n 

n specifies the number of rows that EDB*Loader will commit before 

loading the next set of n rows. 

If EDB*Loader encounters an invalid row during a load (in which the 

ROWS parameter is specified), those rows committed prior to encountering 

the error will remain in the destination table.   

SKIP=skip_count 

skip_count specifies the number of records at the beginning of the input 

data file that should be skipped before loading begins.  The default is 0. 

SKIP_INDEX_MAINTENANCE={ FALSE | TRUE } 

If SKIP_INDEX_MAINTENANCE is TRUE, index maintenance is not 

performed as part of a direct path load, and indexes on the loaded table are 

marked as invalid.  The default value of SKIP_INDEX_MAINTENANCE is 

FALSE.   

Please note: During a parallel direct path load, target table indexes are not 

updated, and are marked as invalid after the load is complete. 

You can use the REINDEX command to rebuild an index.  For more 

information about the REINDEX command, see the PostgreSQL core 

documentation available at: 

http://www.postgresql.org/docs/9.6/static/sql-reindex.html 

http://www.postgresql.org/docs/9.6/static/sql-reindex.html


 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
42 

charset 

Use the CHARACTERSET clause to identify the character set encoding of 

data_file where charset is the character set name. This clause is required if 

the data file encoding differs from the control file encoding. (The control file 

encoding must always be in the encoding of the client where edbldr is invoked.) 

Examples of charset settings are UTF8, SQL_ASCII, and SJIS. 

For more information about client to database character set conversion, see the 

PostgreSQL core documentation available at: 

http://www.postgresql.org/docs/9.6/static/multibyte.html 

data_file 

File containing the data to be loaded into target_table. Each record in the data 

file corresponds to a row to be inserted into target_table. 

If an extension is not provided in the file name, EDB*Loader assumes the file has 

an extension of .dat, for example, mydatafile.dat. 

Note: If the DATA parameter is specified on the command line when edbldr is 

invoked, the file given by the command line DATA parameter is used instead. 

If the INFILE clause is omitted as well as the command line DATA parameter, 

then the data file name is assumed to be identical to the control file name, but 

with an extension of .dat. 

stdin 

Specify stdin (all lowercase letters) if you want to use standard input to pipe the 

data to be loaded directly to EDB*Loader. This is useful for data sources 

generating a large number of records to be loaded. 

bad_file 

File that receives data_file records that cannot be loaded due to errors. 

If an extension is not provided in the file name, EDB*Loader assumes the file has 

an extension of .bad, for example, mybadfile.bad. 

Note: If the BAD parameter is specified on the command line when edbldr is 

invoked, the file given by the command line BAD parameter is used instead. 

http://www.postgresql.org/docs/9.6/static/multibyte.html


 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
43 

discard_file 

File that receives input data records that are not loaded into any table because 

none of the selection criteria are met for tables with the WHEN clause, and there are 

no tables without a WHEN clause. (All records meet the selection criteria of a table 

without a WHEN clause.) 

If an extension is not provided in the file name, EDB*Loader assumes the file has 

an extension of .dsc, for example, mydiscardfile.dsc. 

Note: If the DISCARD parameter is specified on the command line when edbldr 

is invoked, the file given by the command line DISCARD parameter is used 

instead. 

{ DISCARDMAX | DISCARDS } max_discard_recs 

Maximum number of discarded records that may be encountered from the input 

data records before terminating the EDB*Loader session. (A discarded record is 

described in the preceding description of the discard_file parameter.) Either 

keyword DISCARDMAX or DISCARDS may be used preceding the integer value 

specified by max_discard_recs. 

For example, if max_discard_recs is 0, then the EDB*Loader session is 

terminated if and when a first discarded record is encountered. If 

max_discard_recs is 1, then the EDB*Loader session is terminated if and 

when a second discarded record is encountered. 

When the EDB*Loader session is terminated due to exceeding 

max_discard_recs, prior input data records that have been loaded into the 

database are retained. They are not rolled back. 

INSERT | APPEND | REPLACE | TRUNCATE 

Specifies how data is to be loaded into the target tables. If one of INSERT, 

APPEND, REPLACE, or TRUNCATE is specified, it establishes the default action for 

all tables, overriding the default of INSERT. 

INSERT 

Data is to be loaded into an empty table. EDB*Loader throws an 

exception and does not load any data if the table is not initially empty. 

Note:  If the table contains rows, the TRUNCATE command must be used 

to empty the table prior to invoking EDB*Loader. EDB*Loader throws an 

exception if the DELETE command is used to empty the table instead of 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
44 

the TRUNCATE command. Oracle SQL*Loader allows the table to be 

emptied by using either the DELETE or TRUNCATE command. 

APPEND 

Data is to be added to any existing rows in the table. The table may be 

initially empty as well. 

REPLACE 

The REPLACE keyword and TRUNCATE keywords are functionally 

identical.  The table is truncated by EDB*Loader prior to loading the new 

data. 

Note:  Delete triggers on the table are not fired as a result of the REPLACE 

operation. 

TRUNCATE 

The table is truncated by EDB*Loader prior to loading the new data. 

Delete triggers on the table are not fired as a result of the TRUNCATE 

operation. 

PRESERVE BLANKS 

For all target tables, retains leading white space when the optional enclosure 

delimiters are not present and leaves trailing white space intact when fields are 

specified with a predetermined size. When omitted, the default behavior is to trim 

leading and trailing white space. 

target_table 

Name of the table into which data is to be loaded. The table name may be 

schema-qualified (for example, enterprisedb.emp). The specified target must 

not be a view. 

field_condition 

Conditional clause taking the following form: 

[ ( ] { (start:end) | column_name } { = | != | <> } 

  'val' [ ) ] 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
45 

This conditional clause is used for the WHEN clause, which is part of the INTO 

TABLE target_table clause, and the NULLIF clause, which is part of the field 

definition denoted as field_def in the syntax diagram. 

start and end are positive integers specifying the column positions in 

data_file that mark the beginning and end of a field that is to be compared 

with the constant val. The first character in each record begins with a start 

value of 1. 

column_name specifies the name assigned to a field definition of the data file as 

defined by field_def in the syntax diagram. 

Use of either (start:end) or column_name defines the portion of the record in 

data_file that is to be compared with the value specified by 'val' to evaluate 

as either true or false. 

All characters used in the field_condition text (particularly in the val string) 

must be valid in the database encoding. (For performing data conversion, 

EDB*Loader first converts the characters in val string to the database encoding 

and then to the data file encoding.) 

In the WHEN field_condition [ AND field_condition ] clause, if all 

such conditions evaluate to TRUE for a given record, then EDB*Loader attempts 

to insert that record into target_table. If the insert operation fails, the record 

is written to bad_file. 

If for a given record, none of the WHEN clauses evaluate to TRUE for all INTO 

TABLE clauses, the record is written to discard_file, if a discard file was 

specified for the EDB*Loader session. 

See the description of the NULLIF clause in this Parameters list for the effect of 

field_condition on this clause. 

termstring 

String of one or more characters that separates each field in data_file. The 

characters may be single-byte or multi-byte as long as they are valid in the 

database encoding. Two consecutive appearances of termstring with no 

intervening character results in the corresponding column set to null. 

enclstring 

String of one or more characters used to enclose a field value in data_file. The 

characters may be single-byte or multi-byte as long as they are valid in the 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
46 

database encoding. Use enclstring on fields where termstring appears as 

part of the data. 

delimstring 

String of one or more characters that separates each record in data_file. The 

characters may be single-byte or multi-byte as long as they are valid in the 

database encoding. Two consecutive appearances of delimstring with no 

intervening character results in no corresponding row loaded into the table. The 

last record (in other words, the end of the data file) must also be terminated by the 

delimstring characters, otherwise the final record is not loaded into the table. 

Note: The RECORDS DELIMITED BY 'delimstring' clause is not compatible 

with Oracle databases. 

TRAILING NULLCOLS 

If TRAILING NULLCOLS is specified, then the columns in the column list for 

which there is no data in data_file for a given record, are set to null when the 

row is inserted. This applies only to one or more consecutive columns at the end 

of the column list. 

If fields are omitted at the end of a record and TRAILING NULLCOLS is not 

specified, EDB*Loader assumes the record contains formatting errors and writes 

it to the bad file. 

column_name 

Name of a column in target_table into which a field value defined by 

field_def is to be inserted. If the field definition includes the FILLER or 

BOUNDFILLER clause, then column_name is not required to be the name of a 

column in the table. It can be any identifier name since the FILLER and 

BOUNDFILLER clauses prevent the loading of the field data into a table column. 

CONSTANT val 

Specifies a constant that is type-compatible with the column data type to which it 

is assigned in a field definition. Single or double quotes may enclose val. If val 

contains white space, then enclosing quotation marks must be used. 

The use of the CONSTANT clause completely determines the value to be assigned 

to a column in each inserted row. No other clause may appear in the same field 

definition. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
47 

If the TERMINATED BY clause is used to delimit the fields in data_file, there 

must be no delimited field in data_file corresponding to any field definition 

with a CONSTANT clause. In other words, EDB*Loader assumes there is no field 

in data_file for any field definition with a CONSTANT clause. 

FILLER 

Specifies that the data in the field defined by the field definition is not to be 

loaded into the associated column if the identifier of the field definition is an 

actual column name in the table. In such case, the column is set to null. Use of the 

FILLER or BOUNDFILLER clause is the only circumstance in which the field 

definition does not have to be identified by an actual column name. 

Unlike the BOUNDFILLER clause, an identifier defined with the FILLER clause 

must not be referenced in a SQL expression. See the discussion of the expr 

parameter. 

BOUNDFILLER 

Specifies that the data in the field defined by the field definition is not to be 

loaded into the associated column if the identifier of the field definition is an 

actual column name in the table. In such case, the column is set to null. Use of the 

FILLER or BOUNDFILLER clause is the only circumstance in which the field 

definition does not have to be identified by an actual column name. 

Unlike the FILLER clause, an identifier defined with the BOUNDFILLER clause 

may be referenced in a SQL expression. See the discussion of the expr 

parameter. 

POSITION (start:end) 

Defines the location of the field in a record in a fixed-width field data file. start 

and end are positive integers. The first character in the record has a start value of 

1. 

CHAR [(length)] | DATE [(length)] [ "datemask" ] | 

INTEGER EXTERNAL [(length)] |  

FLOAT EXTERNAL [(length)] | DECIMAL EXTERNAL [(length)] | 

ZONED EXTERNAL [(length)] | ZONED [(precision[,scale])] 

 

Field type that describes the format of the data field in data_file. 

Note: Specification of a field type is optional (for descriptive purposes only) and 

has no effect on whether or not EDB*Loader successfully inserts the data in the 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
48 

field into the table column.  Successful loading depends upon the compatibility of 

the column data type and the field value.  For example, a column with data type 

NUMBER(7,2) successfully accepts a field containing 2600, but if the field 

contains a value such as 26XX, the insertion fails and the record is written to 

bad_file. 

Please note that ZONED data is not human-readable; ZONED data is stored in an 

internal format where each digit is encoded in a separate nibble/nybble/4-bit field.  

In each ZONED value, the last byte contains a single digit (in the high-order 4 bits) 

and the sign (in the low-order 4 bits). 

length 

Specifies the length of the value to be loaded into the associated column. 

If the POSITION (start:end) clause is specified along with a 

fieldtype(length) clause, then the ending position of the field is overridden 

by the specified length value. That is, the length of the value to be loaded into 

the column is determined by the length value beginning at the start position, 

and not by the end position of the POSITION (start:end) clause. Thus, the 

value to be loaded into the column may be shorter than the field defined by 

POSITION (start:end), or it may go beyond the end position depending 

upon the specified length size. 

If the FIELDS TERMINATED BY 'termstring' clause is specified as part of 

the INTO TABLE clause, and a field definition contains the 

fieldtype(length) clause, then a record is accepted as long as the specified 

length values are greater than or equal to the field lengths as determined by the 

termstring characters enclosing all such fields of the record. If the specified 

length value is less than a field length as determined by the enclosing 

termstring characters for any such field, then the record is rejected. 

If the FIELDS TERMINATED BY 'termstring' clause is not specified, and 

the POSITION (start:end) clause is not included with a field containing the 

fieldtype(length) clause, then the starting position of this field begins with 

the next character following the ending position of the preceding field. The 

ending position of the preceding field is either the end of its length value if the 

preceding field contains the fieldtype(length) clause, or by its end 

parameter if the field contains the POSITION (start:end) clause without the 

fieldtype(length) clause. 

precision  

Use precision to specify the length of the ZONED value.   



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
49 

If the precision value specified for ZONED conflicts with the length calculated 

by the server based on information provided with the POSITION clause, 

EDB*Loader will use the value specified for precision. 

scale 

scale specifies the number of digits to the right of the decimal point in a ZONED 

value. 

datemask 

Specifies the ordering and abbreviation of the day, month, and year components 

of a date field. 

Note: If the DATE field type is specified along with a SQL expression for the 

column, then datemask must be specified after DATE and before the SQL 

expression. See the following discussion of the expr parameter. 

NULLIF field_condition [ AND field_condition ] ... 

Note: See the description of field_condition previously listed in this 

Parameters section for the syntax of field_condition. 

If all field conditions evaluate to TRUE, then the column identified by 

column_name in the field definition is set to null. If any field condition evaluates 

to FALSE, then the column is set to the appropriate value as would normally occur 

according to the field definition. 

PRESERVE BLANKS 

For the column on which this option appears, retains leading white space when 

the optional enclosure delimiters are not present and leaves trailing white space 

intact when fields are specified with a predetermined size. When omitted, the 

default behavior is to trim leading and trailing white space. 

expr 

A SQL expression returning a scalar value that is type-compatible with the 

column data type to which it is assigned in a field definition. Double quotes must 

enclose expr. expr may contain a reference to any column in the field list 

(except for fields with the FILLER clause) by prefixing the column name by a 

colon character (:). 

expr may also consist of a SQL SELECT statement. If a SELECT statement is 

used then the following rules must apply: 1) The SELECT statement must be 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
50 

enclosed within parentheses (SELECT ...). 2) The select list must consist of 

exactly one expression following the SELECT keyword. 3) The result set must not 

return more than one row. If no rows are returned, then the returned value of the 

resulting expression is null. The following is the syntax for use of the SELECT 

statement: 

"(SELECT expr [ FROM table_list [ WHERE condition ] ])" 

Note: Omitting the FROM table_list clause is not compatible with Oracle 

databases. If no tables need to be specified, use of the FROM DUAL clause is 

compatible with Oracle databases. 

Examples 

The following are some examples of control files and their corresponding data files. 

Delimiter-Separated Field Data File 

The following control file uses a delimiter-separated data file that appends rows to the 

emp table: 

LOAD DATA 

  INFILE    'emp.dat' 

    BADFILE 'emp.bad' 

  APPEND 

  INTO TABLE emp 

    FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' 

    TRAILING NULLCOLS 

  ( 

    empno, 

    ename, 

    job, 

    mgr, 

    hiredate, 

    sal, 

    deptno, 

    comm 

  ) 

In the preceding control file, the APPEND clause is used to allow the insertion of 

additional rows into the emp table. 

The following is the corresponding delimiter-separated data file: 

9101,ROGERS,CLERK,7902,17-DEC-10,1980.00,20 

9102,PETERSON,SALESMAN,7698,20-DEC-10,2600.00,30,2300.00 

9103,WARREN,SALESMAN,7698,22-DEC-10,5250.00,30,2500.00 

9104,"JONES, JR.",MANAGER,7839,02-APR-09,7975.00,20 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
51 

The use of the TRAILING NULLCOLS clause allows the last field supplying the comm 

column to be omitted from the first and last records. The comm column is set to null for 

the rows inserted from these records. 

The double quotation mark enclosure character surrounds the value JONES, JR. in the 

last record since the comma delimiter character is part of the field value. 

The following query displays the rows added to the table after the EDB*Loader session: 

SELECT * FROM emp WHERE empno > 9100; 

 

 empno |   ename    |   job    | mgr  |      hiredate      |   sal   |  comm   | deptno 

-------+------------+----------+------+--------------------+---------+---------+-------

- 

  9101 | ROGERS     | CLERK    | 7902 | 17-DEC-10 00:00:00 | 1980.00 |         |     20 

  9102 | PETERSON   | SALESMAN | 7698 | 20-DEC-10 00:00:00 | 2600.00 | 2300.00 |     30 

  9103 | WARREN     | SALESMAN | 7698 | 22-DEC-10 00:00:00 | 5250.00 | 2500.00 |     30 

  9104 | JONES, JR. | MANAGER  | 7839 | 02-APR-09 00:00:00 | 7975.00 |         |     20 

(4 rows) 

Fixed-Width Field Data File 

The following example is a control file that loads the same rows into the emp table, but 

uses a data file containing fixed-width fields: 

LOAD DATA 

  INFILE        'emp_fixed.dat' 

    BADFILE     'emp_fixed.bad' 

  APPEND 

  INTO TABLE emp 

    TRAILING NULLCOLS 

  ( 

    empno       POSITION (1:4), 

    ename       POSITION (5:14), 

    job         POSITION (15:23), 

    mgr         POSITION (24:27), 

    hiredate    POSITION (28:38), 

    sal         POSITION (39:46), 

    deptno      POSITION (47:48), 

    comm        POSITION (49:56) 

  ) 

In the preceding control file, the FIELDS TERMINATED BY and OPTIONALLY 

ENCLOSED BY clauses are absent. Instead, each field now includes the POSITION clause. 

The following is the corresponding data file containing fixed-width fields: 

9101ROGERS    CLERK    790217-DEC-10   1980.0020 

9102PETERSON  SALESMAN 769820-DEC-10   2600.0030 2300.00 

9103WARREN    SALESMAN 769822-DEC-10   5250.0030 2500.00 

9104JONES, JR.MANAGER  783902-APR-09   7975.0020 

Single Physical Record Data File – RECORDS DELIMITED BY Clause 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
52 

The following example is a control file that loads the same rows into the emp table, but 

uses a data file with one physical record. Each individual record that is to be loaded as a 

row in the table is terminated by the semicolon character (;) specified by the RECORDS 

DELIMITED BY clause. 

LOAD DATA 

  INFILE    'emp_recdelim.dat' 

    BADFILE 'emp_recdelim.bad' 

  APPEND 

  INTO TABLE emp 

    FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' 

    RECORDS DELIMITED BY ';' 

    TRAILING NULLCOLS 

  ( 

    empno, 

    ename, 

    job, 

    mgr, 

    hiredate, 

    sal, 

    deptno, 

    comm 

  ) 

The following is the corresponding data file. The content is a single, physical record in 

the data file. The record delimiter character is included following the last record (that is, 

at the end of the file). 

9101,ROGERS,CLERK,7902,17-DEC-10,1980.00,20,;9102,PETERSON,SALESMAN,7698,20-

DEC-10,2600.00,30,2300.00;9103,WARREN,SALESMAN,7698,22-DEC-

10,5250.00,30,2500.00;9104,"JONES, JR.",MANAGER,7839,02-APR-09,7975.00,20,; 

FILLER Clause 

The following control file illustrates the use of the FILLER clause in the data fields for 

the sal and comm columns. EDB*Loader ignores the values in these fields and sets the 

corresponding columns to null. 

LOAD DATA 

  INFILE        'emp_fixed.dat' 

    BADFILE     'emp_fixed.bad' 

  APPEND 

  INTO TABLE emp 

    TRAILING NULLCOLS 

  ( 

    empno       POSITION (1:4), 

    ename       POSITION (5:14), 

    job         POSITION (15:23), 

    mgr         POSITION (24:27), 

    hiredate    POSITION (28:38), 

    sal         FILLER POSITION (39:46), 

    deptno      POSITION (47:48), 

    comm        FILLER POSITION (49:56) 

  ) 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
53 

Using the same fixed-width data file as in the prior fixed-width field example, the 

resulting rows in the table appear as follows: 

SELECT * FROM emp WHERE empno > 9100; 

 

 empno |      ename       |   job    | mgr  |      hiredate      | sal | comm | deptno 

-------+------------------+----------+------+--------------------+-----+------+-------- 

  9101 | ROGERS           | CLERK    | 7902 | 17-DEC-10 00:00:00 |     |      |     20 

  9102 | PETERSON         | SALESMAN | 7698 | 20-DEC-10 00:00:00 |     |      |     30 

  9103 | WARREN           | SALESMAN | 7698 | 22-DEC-10 00:00:00 |     |      |     30 

  9104 | JONES, JR.       | MANAGER  | 7839 | 02-APR-09 00:00:00 |     |      |     20 

(4 rows) 

BOUNDFILLER Clause 

The following control file illustrates the use of the BOUNDFILLER clause in the data 

fields for the job and mgr columns. EDB*Loader ignores the values in these fields and 

sets the corresponding columns to null in the same manner as the FILLER clause. 

However, unlike columns with the FILLER clause, columns with the BOUNDFILLER 

clause are permitted to be used in an expression as shown for column jobdesc. 

LOAD DATA 

  INFILE    'emp.dat' 

    BADFILE 'emp.bad' 

  APPEND 

  INTO TABLE empjob 

    FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' 

    TRAILING NULLCOLS 

  ( 

    empno, 

    ename, 

    job         BOUNDFILLER, 

    mgr         BOUNDFILLER, 

    hiredate    FILLER, 

    sal         FILLER, 

    deptno      FILLER, 

    comm        FILLER, 

    jobdesc     ":job || ' for manager ' || :mgr" 

  ) 

The following is the delimiter-separated data file used in this example. 

9101,ROGERS,CLERK,7902,17-DEC-10,1980.00,20 

9102,PETERSON,SALESMAN,7698,20-DEC-10,2600.00,30,2300.00 

9103,WARREN,SALESMAN,7698,22-DEC-10,5250.00,30,2500.00 

9104,"JONES, JR.",MANAGER,7839,02-APR-09,7975.00,20 

The following table is loaded using the preceding control file and data file. 

CREATE TABLE empjob ( 

    empno           NUMBER(4) NOT NULL CONSTRAINT empjob_pk PRIMARY KEY, 

    ename           VARCHAR2(10), 

    job             VARCHAR2(9), 

    mgr             NUMBER(4), 

    jobdesc         VARCHAR2(25) 

); 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
54 

The resulting rows in the table appear as follows: 

SELECT * FROM empjob; 

 

 empno |   ename    | job | mgr |          jobdesc           

-------+------------+-----+-----+--------------------------- 

  9101 | ROGERS     |     |     | CLERK for manager 7902 

  9102 | PETERSON   |     |     | SALESMAN for manager 7698 

  9103 | WARREN     |     |     | SALESMAN for manager 7698 

  9104 | JONES, JR. |     |     | MANAGER for manager 7839 

(4 rows) 

Field Types with Length Specification 

The following example is a control file that contains the field type clauses with the length 

specification: 

LOAD DATA 

  INFILE        'emp_fixed.dat' 

    BADFILE     'emp_fixed.bad' 

  APPEND 

  INTO TABLE emp 

    TRAILING NULLCOLS 

  ( 

    empno       CHAR(4), 

    ename       CHAR(10), 

    job         POSITION (15:23) CHAR(9), 

    mgr         INTEGER EXTERNAL(4), 

    hiredate    DATE(11) "DD-MON-YY", 

    sal         DECIMAL EXTERNAL(8), 

    deptno      POSITION (47:48), 

    comm        POSITION (49:56) DECIMAL EXTERNAL(8) 

  ) 

Note that the POSITION clause and the fieldtype(length) clause can be used 

individually or in combination as long as each field definition contains at least one of the 

two clauses. 

The following is the corresponding data file containing fixed-width fields: 

9101ROGERS    CLERK    790217-DEC-10   1980.0020 

9102PETERSON  SALESMAN 769820-DEC-10   2600.0030 2300.00 

9103WARREN    SALESMAN 769822-DEC-10   5250.0030 2500.00 

9104JONES, JR.MANAGER  783902-APR-09   7975.0020 

The resulting rows in the table appear as follows: 

SELECT * FROM emp WHERE empno > 9100; 

 

 empno |   ename    |   job    | mgr  |      hiredate      |   sal   |  comm   | deptno  

-------+------------+----------+------+--------------------+---------+---------+-------

- 

  9101 | ROGERS     | CLERK    | 7902 | 17-DEC-10 00:00:00 | 1980.00 |         |     20 

  9102 | PETERSON   | SALESMAN | 7698 | 20-DEC-10 00:00:00 | 2600.00 | 2300.00 |     30 

  9103 | WARREN     | SALESMAN | 7698 | 22-DEC-10 00:00:00 | 5250.00 | 2500.00 |     30 

  9104 | JONES, JR. | MANAGER  | 7839 | 02-APR-09 00:00:00 | 7975.00 |         |     20 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
55 

(4 rows) 

NULLIF Clause 

The following example uses the NULLIF clause on the sal column to set it to null for 

employees of job MANAGER as well as on the comm column to set it to null if the 

employee is not a SALESMAN and is not in department 30. In other words, a comm value 

is accepted if the employee is a SALESMAN or is a member of department 30. 

The following is the control file: 

LOAD DATA 

  INFILE        'emp_fixed_2.dat' 

    BADFILE     'emp_fixed_2.bad' 

  APPEND 

  INTO TABLE emp 

    TRAILING NULLCOLS 

  ( 

    empno       POSITION (1:4), 

    ename       POSITION (5:14), 

    job         POSITION (15:23), 

    mgr         POSITION (24:27), 

    hiredate    POSITION (28:38), 

    sal         POSITION (39:46) NULLIF job = 'MANAGER', 

    deptno      POSITION (47:48), 

    comm        POSITION (49:56) NULLIF job <> 'SALESMAN' AND deptno <> '30' 

  ) 

The following is the corresponding data file: 

9101ROGERS    CLERK    790217-DEC-10   1980.0020 

9102PETERSON  SALESMAN 769820-DEC-10   2600.0030 2300.00 

9103WARREN    SALESMAN 769822-DEC-10   5250.0030 2500.00 

9104JONES, JR.MANAGER  783902-APR-09   7975.0020 

9105ARNOLDS   CLERK    778213-SEP-10   3750.0030  800.00 

9106JACKSON   ANALYST  756603-JAN-11   4500.0040 2000.00 

9107MAXWELL   SALESMAN 769820-DEC-10   2600.0010 1600.00 

The resulting rows in the table appear as follows: 

SELECT empno, ename, job, NVL(TO_CHAR(sal),'--null--') "sal", 

  NVL(TO_CHAR(comm),'--null--') "comm", deptno FROM emp WHERE empno > 9100; 

 

 empno |   ename    |   job    |   sal    |   comm   | deptno  

-------+------------+----------+----------+----------+-------- 

  9101 | ROGERS     | CLERK    | 1980.00  | --null-- |     20 

  9102 | PETERSON   | SALESMAN | 2600.00  | 2300.00  |     30 

  9103 | WARREN     | SALESMAN | 5250.00  | 2500.00  |     30 

  9104 | JONES, JR. | MANAGER  | --null-- | --null-- |     20 

  9105 | ARNOLDS    | CLERK    | 3750.00  | 800.00   |     30 

  9106 | JACKSON    | ANALYST  | 4500.00  | --null-- |     40 

  9107 | MAXWELL    | SALESMAN | 2600.00  | 1600.00  |     10 

(7 rows) 

Note that the sal column for employee JONES, JR. is null since the job is MANAGER. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
56 

The comm values from the data file for employees PETERSON, WARREN, ARNOLDS, and 

MAXWELL are all loaded into the comm column of the emp table since these employees are 

either SALESMAN or members of department 30. 

The comm value of 2000.00 in the data file for employee JACKSON is ignored and the 

comm column of the emp table set to null since this employee is neither a SALESMAN nor 

is a member of department 30. 

SELECT Statement in a Field Expression 

The following example uses a SELECT statement in the expression of the field definition 

to return the value to be loaded into the column. 

LOAD DATA 

  INFILE        'emp_fixed.dat' 

    BADFILE     'emp_fixed.bad' 

  APPEND 

  INTO TABLE emp 

    TRAILING NULLCOLS 

  ( 

    empno       POSITION (1:4), 

    ename       POSITION (5:14), 

    job         POSITION (15:23) "(SELECT dname FROM dept WHERE deptno = :deptno)", 

    mgr         POSITION (24:27), 

    hiredate    POSITION (28:38), 

    sal         POSITION (39:46), 

    deptno      POSITION (47:48), 

    comm        POSITION (49:56) 

  ) 

The content of the dept table used in the SELECT statement is the following: 

SELECT * FROM dept; 

 

 deptno |   dname    |   loc     

--------+------------+---------- 

     10 | ACCOUNTING | NEW YORK 

     20 | RESEARCH   | DALLAS 

     30 | SALES      | CHICAGO 

     40 | OPERATIONS | BOSTON 

(4 rows) 

The following is the corresponding data file: 

9101ROGERS    CLERK    790217-DEC-10   1980.0020 

9102PETERSON  SALESMAN 769820-DEC-10   2600.0030 2300.00 

9103WARREN    SALESMAN 769822-DEC-10   5250.0030 2500.00 

9104JONES, JR.MANAGER  783902-APR-09   7975.0020 

The resulting rows in the table appear as follows: 

SELECT * FROM emp WHERE empno > 9100; 

 

 empno |   ename    |   job    | mgr  |      hiredate      |   sal   |  comm   | deptno  



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
57 

-------+------------+----------+------+--------------------+---------+---------+-------

- 

  9101 | ROGERS     | RESEARCH | 7902 | 17-DEC-10 00:00:00 | 1980.00 |         |     20 

  9102 | PETERSON   | SALES    | 7698 | 20-DEC-10 00:00:00 | 2600.00 | 2300.00 |     30 

  9103 | WARREN     | SALES    | 7698 | 22-DEC-10 00:00:00 | 5250.00 | 2500.00 |     30 

  9104 | JONES, JR. | RESEARCH | 7839 | 02-APR-09 00:00:00 | 7975.00 |         |     20 

(4 rows) 

Note that the job column contains the value from the dname column of the dept table 

returned by the SELECT statement instead of the job name from the data file. 

Multiple INTO TABLE Clauses 

The following example illustrates the use of multiple INTO TABLE clauses. For this 

example, two empty tables are created with the same data definition as the emp table. The 

following CREATE TABLE commands create these two empty tables, while inserting no 

rows from the original emp table: 

CREATE TABLE emp_research AS SELECT * FROM emp WHERE deptno = 99; 

CREATE TABLE emp_sales AS SELECT * FROM emp WHERE deptno = 99; 

The following control file contains two INTO TABLE clauses. Also note that there is no 

APPEND clause so the default operation of INSERT is used, which requires that tables 

emp_research and emp_sales be empty. 

LOAD DATA 

  INFILE        'emp_multitbl.dat' 

    BADFILE     'emp_multitbl.bad' 

    DISCARDFILE 'emp_multitbl.dsc' 

  INTO TABLE emp_research 

    WHEN (47:48) = '20' 

    TRAILING NULLCOLS 

  ( 

    empno       POSITION (1:4), 

    ename       POSITION (5:14), 

    job         POSITION (15:23), 

    mgr         POSITION (24:27), 

    hiredate    POSITION (28:38), 

    sal         POSITION (39:46), 

    deptno      CONSTANT '20', 

    comm        POSITION (49:56) 

  ) 

  INTO TABLE emp_sales 

    WHEN (47:48) = '30' 

    TRAILING NULLCOLS 

  ( 

    empno       POSITION (1:4), 

    ename       POSITION (5:14), 

    job         POSITION (15:23), 

    mgr         POSITION (24:27), 

    hiredate    POSITION (28:38), 

    sal         POSITION (39:46), 

    deptno      CONSTANT '30', 

    comm        POSITION (49:56) "ROUND(:comm + (:sal * .25), 0)" 

  ) 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
58 

The WHEN clauses specify that when the field designated by columns 47 thru 48 contains 

20, the record is inserted into the emp_research table and when that same field 

contains 30, the record is inserted into the emp_sales table. If neither condition is true, 

the record is written to the discard file named emp_multitbl.dsc. 

The CONSTANT clause is given for column deptno so the specified constant value is 

inserted into deptno for each record. When the CONSTANT clause is used, it must be the 

only clause in the field definition other than the column name to which the constant value 

is assigned. 

Finally, column comm of the emp_sales table is assigned a SQL expression. Column 

names may be referenced in the expression by prefixing the column name with a colon 

character (:). 

The following is the corresponding data file: 

9101ROGERS    CLERK    790217-DEC-10   1980.0020 

9102PETERSON  SALESMAN 769820-DEC-10   2600.0030 2300.00 

9103WARREN    SALESMAN 769822-DEC-10   5250.0030 2500.00 

9104JONES, JR.MANAGER  783902-APR-09   7975.0020 

9105ARNOLDS   CLERK    778213-SEP-10   3750.0010 

9106JACKSON   ANALYST  756603-JAN-11   4500.0040 

Since the records for employees ARNOLDS and JACKSON contain 10 and 40 in columns 

47 thru 48, which do not satisfy any of the WHEN clauses, EDB*Loader writes these two 

records to the discard file, emp_multitbl.dsc, whose content is shown by the 

following: 

9105ARNOLDS   CLERK    778213-SEP-10   3750.0010 

9106JACKSON   ANALYST  756603-JAN-11   4500.0040 

The following are the rows loaded into the emp_research and emp_sales tables: 

SELECT * FROM emp_research; 

 

empno |   ename    |   job   | mgr  |      hiredate      |   sal   | comm | deptno 

-------+------------+---------+------+--------------------+---------+------+-------- 

  9101 | ROGERS     | CLERK   | 7902 | 17-DEC-10 00:00:00 | 1980.00 |      |  20.00 

  9104 | JONES, JR. | MANAGER | 7839 | 02-APR-09 00:00:00 | 7975.00 |      |  20.00 

(2 rows) 

 

SELECT * FROM emp_sales; 

 

empno |  ename   |   job    | mgr  |      hiredate      |   sal   |  comm   | deptno 

-------+----------+----------+------+--------------------+---------+---------+-------- 

  9102 | PETERSON | SALESMAN | 7698 | 20-DEC-10 00:00:00 | 2600.00 | 2950.00 |  30.00 

  9103 | WARREN   | SALESMAN | 7698 | 22-DEC-10 00:00:00 | 5250.00 | 3813.00 |  30.00 

(2 rows) 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
59 

3.4 Invoking EDB*Loader 

You must have superuser privileges to run EDB*Loader. Use the following command to 

invoke EDB*Loader from the command line: 

edbldr [ -d dbname ] [ -p port ] [ -h host ] 

[ USERID={ username/password | username/ | username | / } ] 

  CONTROL=control_file 

[ DATA=data_file ] 

[ BAD=bad_file ] 

[ DISCARD=discard_file ] 

[ DISCARDMAX=max_discard_recs ] 

[ LOG=log_file ] 

[ PARFILE=param_file ] 

[ DIRECT={ FALSE | TRUE } ] 

[ FREEZE={ FALSE | TRUE } ] 

[ ERRORS=error_count ] 

[ PARALLEL={ FALSE | TRUE } ] 

[ ROWS=n ] 

[ SKIP=skip_count ] 

[ SKIP_INDEX_MAINTENANCE={ FALSE | TRUE } ] 

[ edb_resource_group=group_name ] 

Description 

If the -d option, the -p option, or the -h option are omitted, the defaults for the database, 

port, and host are determined according to the same rules as other Advanced Server 

utility programs such as edb-psql, for example. 

Any parameter listed in the preceding syntax diagram except for the -d option, -p 

option, -h option, and the PARFILE parameter may be specified in a parameter file. The 

parameter file is specified on the command line when edbldr is invoked using 

PARFILE=param_file. Some parameters may be specified in the OPTIONS clause in 

the control file. See the description of the control file in Section 3.3. 

The specification of control_file, data_file, bad_file, discard_file, 

log_file, and param_file may include the full directory path or a relative directory 

path to the file name. If the file name is specified alone or with a relative directory path, 

the file is assumed to exist (in the case of control_file, data_file, or 

param_file), or to be created (in the case of bad_file, discard_file, or 

log_file) relative to the current working directory from which edbldr is invoked. 

Note: The control file must exist in the character set encoding of the client where 

edbldr is invoked. If the client is in a different encoding than the database encoding, 

then the PGCLIENTENCODING environment variable must be set on the client to the 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
60 

client’s encoding prior to invoking edbldr. This must be done to ensure character set 

conversion is properly done between the client and the database server. 

The operating system account used to invoke edbldr must have read permission on the 

directories and files specified by control_file, data_file, and param_file. 

The operating system account enterprisedb must have write permission on the 

directories where bad_file, discard_file, and log_file are to be written. 

Note: It is suggested that the file names for control_file, data_file, bad_file, 

discard_file, and log_file include extensions of .ctl, .dat, .bad, .dsc, and 

.log, respectively. If the provided file name does not contain an extension, EDB*Loader 

assumes the actual file name includes the appropriate aforementioned extension. 

Parameters 

dbname 

Name of the database containing the tables to be loaded. 

port 

Port number on which the database server is accepting connections. 

host 

IP address of the host on which the database server is running. 

USERID={ username/password | username/ | username | / } 

EDB*Loader connects to the database with username. username must be a 

superuser. password is the password for username. 

If the USERID parameter is omitted, EDB*Loader prompts for username and 

password. If USERID=username/ is specified, then EDB*Loader 1) uses the 

password file specified by environment variable PGPASSFILE if PGPASSFILE is 

set, or 2) uses the .pgpass password file (pgpass.conf on Windows systems) 

if PGPASSFILE is not set. If USERID=username is specified, then EDB*Loader 

prompts for password. If USERID=/ is specified, the connection is attempted 

using the operating system account as the user name. 

Note: The Advanced Server connection environment variables PGUSER and 

PGPASSWORD are ignored by EDB*Loader. See the PostgreSQL core 

documentation for information on the PGPASSFILE environment variable and the 

password file. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
61 

CONTROL=control_file 

control_file specifies the name of the control file containing EDB*Loader 

directives.  If a file extension is not specified, an extension of .ctl is assumed.  

See Section 3.3 for a description of the control file. 

DATA=data_file 

data_file specifies the name of the file containing the data to be loaded into the 

target table. If a file extension is not specified, an extension of .dat is assumed.  

See Section 3.3 for a description of the data_file. 

Note: Specifying a data_file on the command line overrides the INFILE 

clause specified in the control file. 

BAD=bad_file 

bad_file specifies the name of a file that receives input data records that cannot 

be loaded due to errors.  See Section 3.3 for a description of the bad_file. 

Note: Specifying a bad_file on the command line overrides any BADFILE 

clause specified in the control file. 

DISCARD=discard_file 

discard_file is the name of the file that receives input data records that do not 

meet any table’s selection criteria. See the description of discard_file in 

Section 3.3. 

Note: Specifying a discard_file using the command line DISCARD parameter 

overrides the DISCARDFILE clause in the control file. 

DISCARDMAX=max_discard_recs 

max_discard_recs is the maximum number of discarded records that may be 

encountered from the input data records before terminating the EDB*Loader 

session. See the description of max_discard_recs in Section3.3. 

Note: Specifying max_discard_recs using the command line DISCARDMAX 

parameter overrides the DISCARDMAX or DISCARDS clause in the control file. 

LOG=log_file 

log_file specifies the name of the file in which EDB*Loader records the 

results of the EDB*Loader session. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
62 

If the LOG parameter is omitted, EDB*Loader creates a log file with the name 

control_file_base.log in the directory from which edbldr is invoked.  

control_file_base is the base name of the control file used in the 

EDB*Loader session.  The operating system account enterprisedb must have 

write permission on the directory where the log file is to be written. 

PARFILE=param_file 

param_file specifies the name of the file that contains command line 

parameters for the EDB*Loader session.  Any command line parameter listed in 

this section except for the -d, -p, and -h options, and the PARFILE parameter 

itself, can be specified in param_file instead of on the command line. 

Any parameter given in param_file overrides the same parameter supplied on 

the command line before the PARFILE option.  Any parameter given on the 

command line that appears after the PARFILE option overrides the same 

parameter given in param_file. 

Note: Unlike other EDB*Loader files, there is no default file name or extension 

assumed for param_file, though by Oracle SQL*Loader convention, .par is 

typically used, but not required, as an extension. 

DIRECT= { FALSE | TRUE } 

If DIRECT is set to TRUE EDB*Loader performs a direct path load instead of a 

conventional path load.  The default value of DIRECT is FALSE. 

See Section 3.5 for information on direct path loads.  

FREEZE= { FALSE | TRUE } 

Set FREEZE to TRUE to indicate that the data should be copied with the rows 

frozen.  A tuple guaranteed to be visible to all current and future transactions is 

marked as frozen to prevent transaction ID wrap-around.  For more information 

about frozen tuples, see the PostgreSQL core documentation at: 

http://www.postgresql.org/docs/9.6/static/routine-vacuuming.html 

You must specify a data-loading type of TRUNCATE in the control file when using 

the FREEZE option.  FREEZE is not supported for direct loading.   

By default, FREEZE is FALSE. 

 

http://www.postgresql.org/docs/9.6/static/routine-vacuuming.html


 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
63 

ERRORS=error_count 

error_count specifies the number of errors permitted before aborting the 

EDB*Loader session. The default is 50. 

PARALLEL= { FALSE | TRUE } 

Set PARALLEL to TRUE to indicate that this EDB*Loader session is one of a 

number of concurrent EDB*Loader sessions participating in a parallel direct path 

load.  The default value of PARALLEL is FALSE.   

When PARALLEL is TRUE, the DIRECT parameter must also be set to TRUE . See 

Section 3.6 for more information about parallel direct path loads. 

ROWS=n 

n specifies the number of rows that EDB*Loader will commit before loading the 

next set of n rows. 

SKIP=skip_count 

Number of records at the beginning of the input data file that should be skipped 

before loading begins. The default is 0. 

SKIP_INDEX_MAINTENANCE= { FALSE | TRUE } 

If set to TRUE, index maintenance is not performed as part of a direct path load, 

and indexes on the loaded table are marked as invalid.  The default value of 

SKIP_INDEX_MAINTENANCE is FALSE.   

Please note: During a parallel direct path load, target table indexes are not 

updated, and are marked as invalid after the load is complete. 

You can use the REINDEX command to rebuild an index.  For more information 

about the REINDEX command, see the PostgreSQL core documentation available 

at: 

http://www.postgresql.org/docs/9.6/static/sql-reindex.html 

edb_resource_group=group_name 

group_name specifies the name of an EDB Resource Manager resource group to 

which the EDB*Loader session is to be assigned. 

http://www.postgresql.org/docs/9.6/static/sql-reindex.html


 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
64 

Any default resource group that may have been assigned to the session (for 

example, a database user running the EDB*Loader session who had been assigned 

a default resource group with the ALTER ROLE ... SET 

edb_resource_group command) is overridden by the resource group given by 

the edb_resource_group parameter specified on the edbldr command line. 

Examples 

In the following example EDB*Loader is invoked using a control file named emp.ctl 

located in the current working directory to load a table in database edb: 

$ /opt/PostgresPlus/9.6AS/bin/edbldr -d edb USERID=enterprisedb/password 

CONTROL=emp.ctl 

EDB*Loader: Copyright (c) 2007-2015, EnterpriseDB Corporation. 

 

Successfully loaded (4) records 

In the following example, EDB*Loader prompts for the user name and password since 

they are omitted from the command line. In addition, the files for the bad file and log file 

are specified with the BAD and LOG command line parameters. 

$ /opt/PostgresPlus/9.6AS/bin/edbldr -d edb CONTROL=emp.ctl BAD=/tmp/emp.bad 

LOG=/tmp/emp.log 

Enter the user name : enterprisedb 

Enter the password : 

EDB*Loader: Copyright (c) 2007-2015, EnterpriseDB Corporation. 

 

Successfully loaded (4) records 

The following example runs EDB*Loader with the same parameters as shown in the 

preceding example, but using a parameter file located in the current working directory. 

The SKIP and ERRORS parameters are altered from their defaults in the parameter file as 

well. The parameter file, emp.par, contains the following: 

CONTROL=emp.ctl 

BAD=/tmp/emp.bad 

LOG=/tmp/emp.log 

SKIP=1 

ERRORS=10 

EDB*Loader is invoked with the parameter file as shown by the following: 

$ /opt/PostgresPlus/9.6AS/bin/edbldr -d edb PARFILE=emp.par 

Enter the user name : enterprisedb 

Enter the password : 

EDB*Loader: Copyright (c) 2007-2015, EnterpriseDB Corporation. 

 

Successfully loaded (3) records 

 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
65 

3.4.1 Exit Codes 

When EDB*Loader exits, it will return one of the following codes: 

Exit Code Description 
0 Indicates that all rows loaded successfully. 
1 Indicates that EDB*Loader encountered command line or syntax errors, or 

aborted the load operation due to an unrecoverable error. 
2 Indicates that the load completed, but some (or all) rows were rejected or 

discarded. 
3 Indicates that EDB*Loader encountered fatal errors (such as OS errors).  

This class of errors is equivalent to the FATAL or PANIC severity levels of 

PostgreSQL errors. 

 

 

 

 

 

 

 

 

 

 

 

 

3.5 Direct Path Load 

During a direct path load, EDB*Loader writes the data directly to the database pages, 

which is then synchronized to disk. The insert processing associated with a conventional 

path load is bypassed, thereby resulting in a performance improvement. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
66 

Bypassing insert processing reduces the types of constraints that may exist on the target 

table.  The following types of constraints are permitted on the target table of a direct path 

load: 

 Primary key 

 Not null constraints 

 Indexes (unique or non-unique) 

The restrictions on the target table of a direct path load are the following: 

 Triggers are not permitted 

 Check constraints are not permitted 

 Foreign key constraints on the target table referencing another table are not 

permitted 

 Foreign key constraints on other tables referencing the target table are not 

permitted 

 The table must not be partitioned 

 Rules may exist on the target table, but they are not executed 

Note: Currently, a direct path load in EDB*Loader is more restrictive than in Oracle 

SQL*Loader. The preceding restrictions do not apply to Oracle SQL*Loader in most 

cases.  The following restrictions apply to a control file used in a direct path load: 

 Multiple table loads are not supported. That is, only one INTO TABLE clause may 

be specified in the control file. 

 SQL expressions may not be used in the data field definitions of the INTO TABLE 

clause. 

 The FREEZE option is not supported for direct path loading. 

To run a direct path load, add the DIRECT=TRUE option as shown by the following 

example: 

$ /opt/PostgresPlus/9.6AS/bin/edbldr -d edb USERID=enterprisedb/password 

CONTROL=emp.ctl DIRECT=TRUE 

EDB*Loader: Copyright (c) 2007-2015, EnterpriseDB Corporation. 

 

Successfully loaded (4) records 

3.6 Parallel Direct Path Load 

The performance of a direct path load can be further improved by distributing the loading 

process over two or more sessions running concurrently. Each session runs a direct path 

load into the same table. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
67 

Since the same table is loaded from multiple sessions, the input records to be loaded into 

the table must be divided amongst several data files so that each EDB*Loader session 

uses its own data file and the same record is not loaded more than once into the table. 

The target table of a parallel direct path load is under the same restrictions as a direct path 

load run in a single session.  

The restrictions on the target table of a direct path load are the following: 

 Triggers are not permitted 

 Check constraints are not permitted 

 Foreign key constraints on the target table referencing another table are not 

permitted 

 Foreign key constraints on other tables referencing the target table are not 

permitted 

 The table must not be partitioned 

 Rules may exist on the target table, but they are not executed 

In addition, the APPEND clause must be specified in the control file used by each 

EDB*Loader session. 

To run a parallel direct path load, run EDB*Loader in a separate session for each 

participant of the parallel direct path load. Invocation of each such EDB*Loader session 

must include the DIRECT=TRUE and PARALLEL=TRUE parameters. 

Each EDB*Loader session runs as an independent transaction so if one of the parallel 

sessions aborts and rolls back its changes, the loading done by the other parallel sessions 

are not affected. 

Note: In a parallel direct path load, each EDB*Loader session reserves a fixed number of 

blocks in the target table in a round-robin fashion. Some of the blocks in the last allocated 

chunk may not be used, and those blocks remain uninitialized. A subsequent use of the 

VACUUM command on the target table may show warnings regarding these uninitialized 

blocks such as the following: 

WARNING:  relation "emp" page 98264 is uninitialized --- fixing 

 

WARNING:  relation "emp" page 98265 is uninitialized --- fixing 

 

WARNING:  relation "emp" page 98266 is uninitialized --- fixing 

This is an expected behavior and does not indicate data corruption. 

Indexes on the target table are not updated during a parallel direct path load and are 

therefore marked as invalid after the load is complete. You must use the REINDEX 

command to rebuild the indexes. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
68 

The following example shows the use of a parallel direct path load on the emp table. 

Note: If you attempt a parallel direct path load on the sample emp table provided with 

Advanced Server, you must first remove the triggers and constraints referencing the emp 

table. In addition the primary key column, empno, was expanded from NUMBER(4) to 

NUMBER in this example to allow for the insertion of a larger number of rows. 

The following is the control file used in the first session: 

LOAD DATA 

  INFILE    '/home/user/loader/emp_parallel_1.dat' 

  APPEND 

  INTO TABLE emp 

    FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' 

    TRAILING NULLCOLS 

  ( 

    empno, 

    ename, 

    job, 

    mgr, 

    hiredate, 

    sal, 

    deptno, 

    comm 

  ) 

The APPEND clause must be specified in the control file for a parallel direct path load. 

The following shows the invocation of EDB*Loader in the first session. The 

DIRECT=TRUE and PARALLEL=TRUE parameters must be specified. 

$ /opt/PostgresPlus/9.6AS/bin/edbldr -d edb USERID=enterprisedb/password 

CONTROL=emp_parallel_1.ctl DIRECT=TRUE PARALLEL=TRUE 

WARNING:  index maintenance will be skipped with PARALLEL load 

EDB*Loader: Copyright (c) 2007-2015, EnterpriseDB Corporation. 

The control file used for the second session appears as follows. Note that it is the same as 

the one used in the first session, but uses a different data file. 

LOAD DATA 

  INFILE    '/home/user/loader/emp_parallel_2.dat' 

  APPEND 

  INTO TABLE emp 

    FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' 

    TRAILING NULLCOLS 

  ( 

    empno, 

    ename, 

    job, 

    mgr, 

    hiredate, 

    sal, 

    deptno, 

    comm 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
69 

  ) 

The preceding control file is used in a second session as shown by the following: 

$ /opt/PostgresPlus/9.6AS/bin/edbldr -d edb USERID=enterprisedb/password 

CONTROL=emp_parallel_2.ctl DIRECT=TRUE PARALLEL=TRUE 

WARNING:  index maintenance will be skipped with PARALLEL load 

EDB*Loader: Copyright (c) 2007-2015, EnterpriseDB Corporation. 

EDB*Loader displays the following message in each session when its respective load 

operation completes: 

Successfully loaded (10000) records 

The following query shows that the index on the emp table has been marked as INVALID: 

SELECT index_name, status FROM user_indexes WHERE table_name = 'EMP'; 

 

 index_name | status 

------------+--------- 

 EMP_PK     | INVALID 

(1 row) 

Note: user_indexes is the view of indexes compatible with Oracle databases owned 

by the current user. 

Queries on the emp table will not utilize the index unless it is rebuilt using the REINDEX 

command as shown by the following: 

REINDEX INDEX emp_pk; 

A subsequent query on user_indexes shows that the index is now marked as VALID: 

SELECT index_name, status FROM user_indexes WHERE table_name = 'EMP'; 

 

 index_name | status 

------------+-------- 

 EMP_PK     | VALID 

(1 row) 

 

3.7 Remote Loading 

EDB*Loader supports a feature called remote loading. In remote loading, the database 

containing the table to be loaded is running on a database server on a different host than 

from where EDB*Loader is invoked with the input data source. 

This feature is useful if you have a large amount of data to be loaded, and you do not 

want to create a large data file on the host running the database server. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
70 

In addition, you can use the standard input feature to pipe the data from the data source 

such as another program or script, directly to EDB*Loader, which then loads the table in 

the remote database. This bypasses the process of having to create a data file on disk for 

EDB*Loader. 

Performing remote loading along with using standard input requires the following: 

 The edbldr program must be installed on the client host on which it is to be 

invoked with the data source for the EDB*Loader session. 

 The control file must contain the clause INFILE 'stdin' so you can pipe the 

data directly into EDB*Loader’s standard input. See Section 3.3 for information 

on the INFILE clause and the EDB*Loader control file. 

 All files used by EDB*Loader such as the control file, bad file, discard file, and 

log file must reside on, or are created on, the client host on which edbldr is 

invoked. 

 When invoking EDB*Loader, use the -h option to specify the IP address of the 

remote database server. See Section 3.4 for information on invoking 

EDB*Loader. 

 Use the operating system pipe operator (|) or input redirection operator (<) to 

supply the input data to EDB*Loader. 

The following example loads a database running on a database server at 192.168.1.14 

using data piped from a source named datasource. 

datasource | ./edbldr -d edb -h 192.168.1.14 USERID=enterprisedb/password 

CONTROL=remote.ctl 

The following is another example of how standard input can be used: 

./edbldr -d edb -h 192.168.1.14 USERID=enterprisedb/password 

CONTROL=remote.ctl < datasource 

 

3.8 Updating a Table with a Conventional Path Load 

You can use EDB*Loader with a conventional path load to update the rows within a 

table, merging new data with the existing data.  When you invoke EDB*Loader to 

perform an update, the server searches the table for an existing row with a matching 

primary key:  

 If the server locates a row with a matching key, it replaces the existing row with 

the new row.  

 If the server does not locate a row with a matching key, it adds the new row to the 

table. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
71 

To use EDB*Loader to update a table, the table must have a primary key.  Please note 

that you cannot use EDB*Loader to UPDATE a partitioned table.   

To perform an UPDATE, use the same steps as when performing a conventional path load: 

1. Create a data file that contains the rows you wish to UPDATE or INSERT. 

2. Define a control file that uses the INFILE keyword to specify the name of the 

data file.  For information about building the EDB*Loader control file, see 

Section 3.3. 

3. Invoke EDB*Loader, specifying the database name, connection information, and 

the name of the control file.  For information about invoking EDB*Loader, see 

Section 3.4. 

The following example uses the emp table that is distributed with the Advanced Server 

sample data.  By default, the table contains: 

edb=# select * from emp; 

empno|ename |   job   | mgr  |      hiredate      |   sal   | comm  | deptno 

-----+------+---------+------+--------------------+---------+-------+-------- 

7369 |SMITH |CLERK    | 7902 | 17-DEC-80 00:00:00 |  800.00 |       |     20 

7499 |ALLEN |SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 |300.00 |     30 

7521 |WARD  |SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 |500.00 |     30 

7566 |JONES |MANAGER  | 7839 | 02-APR-81 00:00:00 | 2975.00 |       |     20 

7654 |MARTIN|SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 |1400.00|     30 

7698 |BLAKE |MANAGER  | 7839 | 01-MAY-81 00:00:00 | 2850.00 |       |     30 

7782 |CLARK |MANAGER  | 7839 | 09-JUN-81 00:00:00 | 2450.00 |       |     10 

7788 |SCOTT |ANALYST  | 7566 | 19-APR-87 00:00:00 | 3000.00 |       |     20 

7839 |KING  |PRESIDENT|      | 17-NOV-81 00:00:00 | 5000.00 |       |     10 

7844 |TURNER|SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 |  0.00 |     30 

7876 |ADAMS |CLERK    | 7788 | 23-MAY-87 00:00:00 | 1100.00 |       |     20 

7900 |JAMES |CLERK    | 7698 | 03-DEC-81 00:00:00 |  950.00 |       |     30 

7902 |FORD  |ANALYST  | 7566 | 03-DEC-81 00:00:00 | 3000.00 |       |     20 

7934 |MILLER|CLERK    | 7782 | 23-JAN-82 00:00:00 | 1300.00 |       |     10 

(14 rows) 

The following control file (emp_update.ctl) specifies the fields in the table in a 

comma-delimited list.  The control file performs an UPDATE on the emp table: 

LOAD DATA 

  INFILE 'emp_update.dat' 

  BADFILE 'emp_update.bad' 

  DISCARDFILE 'emp_update.dsc' 

UPDATE INTO TABLE emp 

FIELDS TERMINATED BY ","  

(empno, ename, job, mgr, hiredate, sal, comm, deptno) 

The data that is being updated or inserted is saved in the emp_update.dat file.  

emp_update.dat contains: 

7521,WARD,MANAGER,7839,22-FEB-81 00:00:00,3000.00,0.00,30 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
72 

7566,JONES,MANAGER,7839,02-APR-81 00:00:00,3500.00,0.00,20 

7903,BAKER,SALESMAN,7521,10-JUN-13 00:00:00,1800.00,500.00,20 

7904,MILLS,SALESMAN,7839,13-JUN-13 00:00:00,1800.00,500.00,20 

7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1500.00,400.00,30 

Invoke EDB*Loader, specifying the name of the database (edb), the name of a database 

superuser (and their associated password) and the name of the control file 

(emp_update.ctl): 

edbldr -d edb userid=user_name/password control=emp_update.ctl 

After performing the update, the emp table contains: 

edb=# select * from emp; 

empno|ename |   job   | mgr  |      hiredate      |   sal   | comm  | deptno 

-----+------+---------+------+--------------------+---------+-------+-------- 

7369 |SMITH |CLERK    | 7902 | 17-DEC-80 00:00:00 |  800.00 |       |     20 

7499 |ALLEN |SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 |300.00 |     30 

7521 |WARD  |MANAGER  | 7839 | 22-FEB-81 00:00:00 | 3000.00 |0.00   |     30 

7566 |JONES |MANAGER  | 7839 | 02-APR-81 00:00:00 | 3500.00 |0.00   |     20 

7654 |MARTIN|SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1500.00 |400.00 |     30 

7698 |BLAKE |MANAGER  | 7839 | 01-MAY-81 00:00:00 | 2850.00 |       |     30 

7782 |CLARK |MANAGER  | 7839 | 09-JUN-81 00:00:00 | 2450.00 |       |     10 

7788 |SCOTT |ANALYST  | 7566 | 19-APR-87 00:00:00 | 3000.00 |       |     20 

7839 |KING  |PRESIDENT|      | 17-NOV-81 00:00:00 | 5000.00 |       |     10 

7844 |TURNER|SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 |  0.00 |     30 

7876 |ADAMS |CLERK    | 7788 | 23-MAY-87 00:00:00 | 1100.00 |       |     20 

7900 |JAMES |CLERK    | 7698 | 03-DEC-81 00:00:00 |  950.00 |       |     30 

7902 |FORD  |ANALYST  | 7566 | 03-DEC-81 00:00:00 | 3000.00 |       |     20 

7903 |BAKER |SALESMAN |7521  | 10-JUN-13 00:00:00 | 1800.00 |500.00 |     20 

7904 |MILLS |SALESMAN |7839  |13-JUN-13 00:00:00  |1800.00  |500.00 |     20 

7934 |MILLER|CLERK    | 7782 | 23-JAN-82 00:00:00 | 1300.00 |       |     10 

(16 rows) 

 

 

The rows containing information for the three employees that are currently in the emp 

table are updated, while rows are added for the new employees (BAKER and MILLS) 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
73 

4 EDB*Wrap 

The EDB*Wrap utility protects proprietary source code and programs (functions, stored 

procedures, triggers, and packages) from unauthorized scrutiny.  The EDB*Wrap 

program translates a file that contains SPL or PL/pgSQL source code (the plaintext) into 

a file that contains the same code in a form that is nearly impossible to read.  Once you 

have the obfuscated form of the code, you can send that code to the PostgreSQL server 

and the server will store those programs in obfuscated form.  While EDB*Wrap does 

obscure code, table definitions are still exposed.   

Everything you wrap is stored in obfuscated form.  If you wrap an entire package, the 

package body source, as well as the prototypes contained in the package header and the 

functions and procedures contained in the package body are stored in obfuscated form. 

If you wrap a CREATE PACKAGE statement, you hide the package API from other 

developers.  You may want to wrap the package body, but not the package header so 

users can see the package prototypes and other public variables that are defined in the 

package body.  To allow users to see what prototypes the package contains, use 

EDBWrap to obfuscate only the CREATE PACKAGE BODY statement in the edbwrap 

input file, omitting the 'CREATE PACKAGE' statement. The package header source will 

be stored plaintext, while the package body source and package functions and procedures 

will be stored obfuscated. 

 

Once wrapped, source code and programs cannot be unwrapped or debugged.  Reverse 

engineering is possible, but would be very difficult. 

The entire source file is wrapped into one unit.  Any psql meta-commands included in 

the wrapped file will not be recognized when the file is executed; executing an 

obfuscated file that contains a psql meta-command will cause a syntax error.  edbwrap 

does not validate SQL source code - if the plaintext form contains a syntax error, 

edbwrap will not complain.  Instead, the server will report an error and abort the entire 

file when you try to execute the obfuscated form. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
74 

4.1 Using EDB*Wrap to Obfuscate Source Code 

EDB*Wrap is a command line utility; it accepts a single input source file, obfuscates the 

contents and returns a single output file.  When you invoke the edbwrap utility, you 

must provide the name of the file that contains the source code to obfuscate.  You may 

also specify the name of the file where edbwrap will write the obfuscated form of the 

code.  edbwrap offers three different command-line styles.  The first style is compatible 

with Oracle's wrap utility: 

edbwrap iname=input_file [oname=output_file] 

The iname=input_file argument specifies the name of the input file; if input_file 

does not contain an extension, edbwrap will search for a file named input_file.sql 

The oname=output_file argument (which is optional) specifies the name of the output 

file; if output_file does not contain an extension, edbwrap will append .plb to the 

name. 

If you do not specify an output file name, edbwrap writes to a file whose name is 

derived from the input file name: edbwrap strips the suffix (typically .sql) from the 

input file name and adds .plb. 

edbwrap offers two other command-line styles that may feel more familiar: 

edbwrap --iname input_file [--oname output_file] 

edbwrap -i input_file [-o output_file] 

You may mix command-line styles; the rules for deriving input and output file names are 

identical regardless of which style you use. 

Once edbwrap has produced a file that contains obfuscated code, you typically feed that 

file into the PostgreSQL server using a client application such as edb-psql.  The server 

executes the obfuscated code line by line and stores the source code for SPL and 

PL/pgSQL programs in wrapped form. 

In summary, to obfuscate code with EDB*Wrap, you: 

1. Create the source code file. 
2. Invoke EDB*Wrap to obfuscate the code. 
3. Import the file as if it were in plaintext form. 

The following sequence demonstrates edbwrap functionality. 

First, create the source code for the list_emp procedure (in plaintext form): 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
75 

[bash] cat listemp.sql 

CREATE OR REPLACE PROCEDURE list_emp 

IS                                   

    v_empno         NUMBER(4);       

    v_ename         VARCHAR2(10);    

    CURSOR emp_cur IS                

        SELECT empno, ename FROM emp ORDER BY empno; 

BEGIN                                                

    OPEN emp_cur;                                    

    DBMS_OUTPUT.PUT_LINE('EMPNO    ENAME');          

    DBMS_OUTPUT.PUT_LINE('-----    -------');        

    LOOP                                             

        FETCH emp_cur INTO v_empno, v_ename;         

        EXIT WHEN emp_cur%NOTFOUND;                  

        DBMS_OUTPUT.PUT_LINE(v_empno || '     ' || v_ename); 

    END LOOP;                                                

    CLOSE emp_cur;                                           

END;                                                         

/                                                            

You can import the list_emp procedure with a client application such as edb-psql: 

[bash] edb-psql edb 

Welcome to edb-psql 8.4.3.2, the EnterpriseDB interactive terminal. 

 

Type:  \copyright for distribution terms 

       \h for help with SQL commands     

       \? for help with edb-psql commands 

       \g or terminate with semicolon to execute query 

       \q to quit                                      

 

edb=# \i listemp.sql 

CREATE PROCEDURE 

You can view the plaintext source code (stored in the server) by examining the pg_proc 

system table: 

edb=# SELECT prosrc FROM pg_proc WHERE proname = 'list_emp'; 

                            prosrc                             

-------------------------------------------------------------- 

                                                               

     v_empno         NUMBER(4);                                

     v_ename         VARCHAR2(10);                             

     CURSOR emp_cur IS                                         

         SELECT empno, ename FROM emp ORDER BY empno;          

 BEGIN                                                         

     OPEN emp_cur;                                             

     DBMS_OUTPUT.PUT_LINE('EMPNO    ENAME');                   

     DBMS_OUTPUT.PUT_LINE('-----    -------');                 

     LOOP                                                      

         FETCH emp_cur INTO v_empno, v_ename;                  

         EXIT WHEN emp_cur%NOTFOUND;                           

         DBMS_OUTPUT.PUT_LINE(v_empno || '     ' || v_ename);  

     END LOOP;                                                 

     CLOSE emp_cur;                                            

 END                                                           

(1 row)                                                        

 

edb=# quit 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
76 

Next, obfuscate the plaintext file with EDB*Wrap: 

[bash] edbwrap -i listemp.sql                                         

EDB*Wrap Utility: Release 8.4.3.2 

 

Copyright (c) 2004-2013 EnterpriseDB Corporation.  All Rights Reserved. 

 

Using encoding UTF8 for input 

Processing listemp.sql to listemp.plb 

 

Examining the contents of the output file (listemp.plb) file reveals that the 

code is obfuscated: 

 

[bash] cat listemp.plb  

$__EDBwrapped__$                      

UTF8                                  

d+6DL30RVaGjYMIzkuoSzAQgtBw7MhYFuAFkBsfYfhdJ0rjwBv+bHr1FCyH6j9SgH 

movU+bYI+jR+hR2jbzq3sovHKEyZIp9y3/GckbQgualRhIlGpyWfE0dltDUpkYRLN 

/OUXmk0/P4H6EI98sAHevGDhOWI+58DjJ44qhZ+l5NNEVxbWDztpb/s5sdx4660qQ 

Ozx3/gh8VkqS2JbcxYMpjmrwVr6fAXfb68Ml9mW2Hl7fNtxcb5kjSzXvfWR2XYzJf 

KFNrEhbL1DTVlSEC5wE6lGlwhYvXOf22m1R2IFns0MtF9fwcnBWAs1YqjR00j6+fc 

er/f/efAFh4= 

$__EDBwrapped__$ 

You may notice that the second line of the wrapped file contains an encoding name (in 

this case, the encoding is UTF8).  When you obfuscate a file, edbwrap infers the 

encoding of the input file by examining the locale.  For example, if you are running 

edbwrap while your locale is set to en_US.utf8, edbwrap assumes that the input file is 

encoded in UTF8.  Be sure to examine the output file after running edbwrap; if the locale 

contained in the wrapped file does not match the encoding of the input file, you should 

change your locale and rewrap the input file. 

You can import the obfuscated code into the PostgreSQL server using the same tools that 

work with plaintext code: 

[bash] edb-psql edb 

Welcome to edb-psql 8.4.3.2, the EnterpriseDB interactive terminal. 

 

Type:  \copyright for distribution terms 

       \h for help with SQL commands 

       \? for help with edb-psql commands 

       \g or terminate with semicolon to execute query 

       \q to quit 

 

edb=# \i listemp.plb 

CREATE PROCEDURE 

 

Now, the pg_proc system table contains the obfuscated code:  

 

edb=# SELECT prosrc FROM pg_proc WHERE proname = 'list_emp'; 

                                    prosrc 

---------------------------------------------------------------- 

 $__EDBwrapped__$ 

 UTF8 

 dw4B9Tz69J3WOsy0GgYJQa+G2sLZ3IOyxS8pDyuOTFuiYe/EXiEatwwG3h3tdJk 

 ea+AIp35dS/4idbN8wpegM3s994dQ3R97NgNHfvTQnO2vtd4wQtsQ/Zc4v4Lhfj 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
77 

 nlV+A4UpHI5oQEnXeAch2LcRD87hkU0uo1ESeQV8IrXaj9BsZr+ueROnwhGs/Ec 

 pva/tRV4m9RusFn0wyr38u4Z8w4dfnPW184Y3o6It4b3aH07WxTkWrMLmOZW1jJ 

 Nu6u4o+ezO64G9QKPazgehslv4JB9NQnuocActfDSPMY7R7anmgw 

 $__EDBwrapped__$ 

(1 row) 

Invoke the obfuscated code in the same way that you would invoke the plaintext form: 

edb=# exec list_emp; 

EMPNO    ENAME 

-----    ------- 

7369     SMITH 

7499     ALLEN 

7521     WARD 

7566     JONES 

7654     MARTIN 

7698     BLAKE 

7782     CLARK 

7788     SCOTT 

7839     KING 

7844     TURNER 

7876     ADAMS 

7900     JAMES 

7902     FORD 

7934     MILLER 

 

EDB-SPL Procedure successfully completed 

edb=# quit 

When you use pg_dump to back up a database, wrapped programs remain obfuscated in 

the archive file.   

Be aware that audit logs produced by the Postgres server will show wrapped programs in 

plaintext form.  Source code is also displayed in plaintext in SQL error messages 

generated during the execution of a program. 

Note: At this time, the bodies of the objects created by the following statements will not 

be stored in obfuscated form: 

CREATE [OR REPLACE] TYPE type_name AS OBJECT 

CREATE [OR REPLACE] TYPE type_name UNDER type_name 

CREATE [OR REPLACE] TYPE BODY type_name



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
78 

5 Dynamic Runtime Instrumentation 
Tools Architecture (DRITA) 

The Dynamic Runtime Instrumentation Tools Architecture (DRITA) allows a DBA to 

query catalog views to determine the wait events that affect the performance of individual 

sessions or the system as a whole.  DRITA records the number of times each event occurs 

as well as the time spent waiting; you can use this information to diagnose performance 

problems.  DRITA offers this functionality, while consuming minimal system resources. 

DRITA compares snapshots to evaluate the performance of a system.  A snapshot is a 

saved set of system performance data at a given point in time.  Each snapshot is identified 

by a unique ID number; you can use snapshot ID numbers with DRITA reporting 

functions to return system performance statistics. 

5.1 Configuring and Using DRITA 

Advanced Server's postgresql.conf file includes a configuration parameter named 

timed_statistics that controls the collection of timing data.  The valid parameter 

values are TRUE or FALSE; the default value is FALSE.   

This is a dynamic parameter which can be modified in the postgresql.conf file, or 

while a session is in progress.  To enable DRITA, you must either: 

Modify the postgresql.conf file, setting the timed_statistics parameter 

to TRUE. 

or 

Connect to the server with the EDB-PSQL client, and invoke the command: 

SET timed_statistics = TRUE 

After modifying the timed_statistics parameter, take a starting snapshot.  A 

snapshot captures the current state of each timer and event counter.  The server will 

compare the starting snapshot to a later snapshot to gauge system performance.   

Use the edbsnap() function to take the beginning snapshot: 

edb=# SELECT * FROM edbsnap(); 

       edbsnap         

---------------------- 

 Statement processed. 

(1 row) 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
79 

Then, run the workload that you would like to evaluate; when the workload has 

completed (or at a strategic point during the workload), take another snapshot: 

edb=# SELECT * FROM edbsnap(); 

       edbsnap         

---------------------- 

 Statement processed. 

(1 row) 

You can capture multiple snapshots during a session.  Then, use the DRITA functions 

and reports to manage and compare the snapshots to evaluate performance information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
80 

5.2 DRITA Functions 

You can use DRITA functions to gather wait information and manage snapshots.  DRITA 

functions are fully supported by Advanced Server 9.6 whether your installation is made 

compatible with Oracle databases or is made in PostgreSQL-compatible mode.   

5.2.1 get_snaps() 

The get_snaps() function returns a list of the current snapshots.  The signature is: 

get_snaps() 

The following example demonstrates using the get_snaps() function to display a list 

of snapshots: 

edb=# SELECT * FROM get_snaps(); 

          get_snaps            

------------------------------ 

 1  11-FEB-10 10:41:05.668852 

 2  11-FEB-10 10:42:27.26154 

 3  11-FEB-10 10:45:48.999992 

 4  11-FEB-10 11:01:58.345163 

 5  11-FEB-10 11:05:14.092683 

 6  11-FEB-10 11:06:33.151002 

 7  11-FEB-10 11:11:16.405664 

 8  11-FEB-10 11:13:29.458405 

 9  11-FEB-10 11:23:57.595916 

 10 11-FEB-10 11:29:02.214014 

 11 11-FEB-10 11:31:44.244038 

(11 rows) 

The first column in the result list displays the snapshot identifier; the second column 

displays the date and time that the snapshot was captured. 

 

5.2.2 sys_rpt() 

The sys_rpt() function returns system wait information.  The signature is: 

sys_rpt(beginning_id, ending_id, top_n) 

Parameters 

beginning_id 

beginning_id is an integer value that represents the beginning session 

identifier. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
81 

 

ending_id 

ending_id is an integer value that represents the ending session identifier. 

top_n 

top_n represents the number of rows to return 

This example demonstrates a call to the sys_rpt()function: 

 

edb=# SELECT * FROM sys_rpt(9, 10, 10); 

                                   sys_rpt                                    

----------------------------------------------------------------------------- 

 WAIT NAME                                COUNT      WAIT TIME       % WAIT 

 --------------------------------------------------------------------------- 

 wal write                                21250      104.723772      36.31 

 db file read                             121407     72.143274       25.01 

 wal flush                                84185      51.652495       17.91 

 wal file sync                            712        29.482206       10.22 

 infinitecache write                      84178      15.814444       5.48 

 db file write                            84177      14.447718       5.01 

 infinitecache read                       672        0.098691        0.03 

 db file extend                           190        0.040386        0.01 

 query plan                               52         0.024400        0.01 

 wal insert lock acquire                  4          0.000837        0.00 

(12 rows) 

The information displayed in the result set includes: 

Column Name Description 

WAIT NAME The name of the wait. 

COUNT The number of times that the wait event occurred. 

WAIT TIME The time of the wait event in milliseconds. 

% WAIT 
The percentage of the total wait time used by this 

wait for this session. 

 

5.2.3 sess_rpt() 

The sess_rpt() function returns session wait information.  The signature is: 

sess_rpt(beginning_id, ending_id, top_n) 

Parameters 

beginning_id 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
82 

beginning_id is an integer value that represents the beginning session 

identifier. 

ending_id 

ending_id is an integer value that represents the ending session identifier. 

top_n 

top_n represents the number of rows to return 

The following example demonstrates a call to the sess_rpt()function: 

SELECT * FROM sess_rpt(18, 19, 10); 

 

                              sess_rpt                                        

----------------------------------------------------------------------------- 

ID    USER       WAIT NAME              COUNT TIME(ms)   %WAIT SES  %WAIT ALL 

 ---------------------------------------------------------------------------- 

 

 17373 enterprise db file read           30   0.175713   85.24      85.24 

 17373 enterprise query plan             18   0.014930   7.24       7.24 

 17373 enterprise wal flush              6    0.004067   1.97       1.97 

 17373 enterprise wal write              1    0.004063   1.97       1.97 

 17373 enterprise wal file sync          1    0.003664   1.78       1.78 

 17373 enterprise infinitecache read     38   0.003076   1.49       1.49 

 17373 enterprise infinitecache write    5    0.000548   0.27       0.27 

 17373 enterprise db file extend         190  0.04.386   0.03       0.03 

 17373 enterprise db file write          5    0.000082   0.04       0.04 

 (11 rows) 

The information displayed in the result set includes: 

Column Name Description 

ID The processID of the session. 

USER The name of the user incurring the wait. 

WAIT NAME The name of the wait event. 

COUNT The number of times that the wait event occurred. 

TIME (ms) The length of the wait event in milliseconds. 

% WAIT SES 
The percentage of the total wait time used by this 

wait for this session. 

% WAIT ALL 
The percentage of the total wait time used by this 

wait (for all sessions). 

 

5.2.4 sessid_rpt() 

The sessid_rpt() function returns session ID information for a specified backend.  

The signature is: 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
83 

sessid_rpt(beginning_id, ending_id, backend_id) 

 

Parameters 

beginning_id 

beginning_id is an integer value that represents the beginning session 

identifier. 

ending_id 

ending_id is an integer value that represents the ending session identifier. 

backend_id  

backend_id is an integer value that represents the backend identifier. 

The following code sample demonstrates a call to sessid_rpt(): 

SELECT * FROM sessid_rpt(18, 19, 17373); 

 

                                sessid_rpt                                  

----------------------------------------------------------------------------- 

 ID    USER       WAIT NAME             COUNT TIME(ms)  %WAIT SES   %WAIT ALL 

 ---------------------------------------------------------------------------- 

 17373 enterprise db file read           30   0.175713  85.24       85.24 

 17373 enterprise query plan             18   0.014930  7.24        7.24 

 17373 enterprise wal flush              6    0.004067  1.97        1.97 

 17373 enterprise wal write              1    0.004063  1.97        1.97 

 17373 enterprise wal file sync          1    0.003664  1.78        1.78 

 17373 enterprise infinitecache read     38   0.003076  1.49        1.49 

 17373 enterprise infinitecache write    5    0.000548  0.27        0.27 

 17373 enterprise db file extend         190  0.040386  0.03        0.03 

 17373 enterprise db file write          5    0.000082  0.04        0.04 

(11 rows) 

The information displayed in the result set includes: 

Column Name Description 

ID The process ID of the wait. 

USER The name of the user that owns the session. 

WAIT NAME The name of the wait event. 

COUNT  The number of times that the wait event occurred. 

TIME (ms) The length of the wait in milliseconds. 

% WAIT SES 
The percentage of the total wait time used by this wait for this 

session. 

% WAIT ALL 
The percentage of the total wait time used by this wait (for all 

sessions). 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
84 

 

 

 

5.2.5 sesshist_rpt() 

The sesshist_rpt() function returns session wait information for a specified backend.  

The signature is: 

sesshist_rpt(snapshot_id, session_id) 

Parameters 

snapshot_id 

snapshot_id is an integer value that identifies the snapshot. 

session_id  

session_id is an integer value that represents the session. 

The following example demonstrates a call to the sesshist_rpt()function: 

edb=# SELECT * FROM sesshist_rpt (9, 5531); 

                              sesshist_rpt                                   

---------------------------------------------------------------------------- 

 ID    USER       SEQ  WAIT NAME                 

   ELAPSED(ms)   File  Name                 # of Blk   Sum of Blks  

 ---------------------------------------------------------------------------- 

 5531 enterprise 1     db file read  

   18546        14309  session_waits_pk     1          1            

 5531 enterprise 2     infinitecache read        

   125          14309  session_waits_pk     1          1            

 5531 enterprise 3     db file read              

   376          14304  edb$session_waits    0          1            

 5531 enterprise 4     infinitecache read        

   166          14304  edb$session_waits    0          1            

 5531 enterprise 5     db file read              

   7978         1260   pg_authid            0          1            

 5531 enterprise 6     infinitecache read        

   154          1260   pg_authid            0          1            

 5531 enterprise 7     db file read              

   628          14302  system_waits_pk      1          1            

 5531 enterprise 8     infinitecache read        

   463          14302  system_waits_pk      1          1            

 5531 enterprise 9     db file read              

   3446         14297  edb$system_waits     0          1            

 5531 enterprise 10    infinitecache read        

   187          14297  edb$system_waits     0          1            

 5531 enterprise 11    db file read              

   14750        14295  snap_pk              1          1            



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
85 

 5531 enterprise 12    infinitecache read        

   416          14295  snap_pk              1          1            

 5531 enterprise 13    db file read              

   7139         14290  edb$snap             0          1            

 5531 enterprise 14    infinitecache read        

   158          14290  edb$snap             0          1            

 5531 enterprise 15    db file read              

   27287        14288  snapshot_num_seq     0          1            

 5531 enterprise 16    infinitecache read        

(17 rows) 

The information displayed in the result set includes: 

Column Name Description 

ID The system-assigned identifier of the wait. 

USER The name of the user that incurred the wait. 

SEQ The sequence number of the wait event. 

WAIT NAME The name of the wait event. 

ELAPSED (ms) The length of the wait event in milliseconds. 

File The relfilenode number of the file. 

Name If available, the name of the file name related to the wait event. 

# of Blk The block number read or written for a specific instance of the event . 

Sum of Blks The number of blocks read. 

 

5.2.6 purgesnap() 

The purgesnap() function purges a range of snapshots from the snapshot tables.  The 

signature is: 

purgesnap(beginning_id, ending_id) 

Parameters 

beginning_id 

beginning_id is an integer value that represents the beginning session 

identifier. 

ending_id 

ending_id is an integer value that represents the ending session identifier. 

purgesnap()removes all snapshots between beginning_id and ending_id 

(inclusive): 

SELECT * FROM purgesnap(6, 9); 

 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
86 

             purgesnap               

------------------------------------ 

 Snapshots in range 6 to 9 deleted. 

(1 row) 

A call to the get_snaps() function after executing the example shows that snapshots 6 

through 9 have been purged from the snapshot tables:  

edb=# SELECT * FROM get_snaps(); 

          get_snaps            

------------------------------ 

 1  11-FEB-10 10:41:05.668852 

 2  11-FEB-10 10:42:27.26154 

 3  11-FEB-10 10:45:48.999992 

 4  11-FEB-10 11:01:58.345163 

 5  11-FEB-10 11:05:14.092683 

 10 11-FEB-10 11:29:02.214014 

 11 11-FEB-10 11:31:44.244038 

(7 rows) 

 

5.2.7 truncsnap() 

Use the truncsnap() function to delete all records from the snapshot table.  The 

signature is: 

truncsnap() 

For example: 

SELECT * FROM truncsnap(); 

 

      truncsnap        

---------------------- 

 Snapshots truncated. 

(1 row) 

A call to the get_snaps() function after calling the truncsnap() function shows that 

all records have been removed from the snapshot tables:  

SELECT * FROM get_snaps(); 
 get_snaps  

----------- 

(0 rows) 

 

 

 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
87 

5.3 Simulating Statspack AWR Reports 

The functions described in this section return information comparable to the information 

contained in an Oracle Statspack/AWR (Automatic Workload Repository) report.  When 

taking a snapshot, performance data from system catalog tables is saved into history 

tables.  The reporting functions listed below report on the differences between two given 

snapshots. 

 stat_db_rpt() 

 stat_tables_rpt() 

 statio_tables_rpt() 

 stat_indexes_rpt() 

 statio_indexes_rpt() 

The reporting functions can be executed individually or you can execute all five functions 

by calling the edbreport() function. 

 

5.3.1 edbreport() 

The edbreport() function includes data from the other reporting functions, plus 

additional system information.  The signature is: 

edbreport(beginning_id, ending_id) 

Parameters 

beginning_id 

beginning_id is an integer value that represents the beginning session 

identifier. 

ending_id 

ending_id is an integer value that represents the ending session identifier. 

The call to the edbreport() function returns a composite report that contains system 

information and the reports returned by the other statspack functions.  : 

edb=# SELECT * FROM edbreport(9, 10); 

                                                                       

edbreport                                                                     

----------------------------------------------------------------------------- 

    EnterpriseDB Report for database edb        23-AUG-15 

 Version: EnterpriseDB 9.6.0.0 on i686-pc-linux-gnu 

      Begin snapshot: 9 at 23-AUG-15 13:45:07.165123 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
88 

      End snapshot:   10 at 23-AUG-15 13:45:35.653036 

  

 Size of database edb is 155 MB 

      Tablespace: pg_default Size: 179 MB Owner: enterprisedb 

      Tablespace: pg_global  Size: 435 kB Owner: enterprisedb 

  

 Schema: pg_toast_temp_1         Size: 0 bytes    Owner: enterprisedb         

 Schema: public                  Size: 0 bytes    Owner: enterprisedb         

 Schema: enterprisedb            Size: 143 MB     Owner: enterprisedb         

 Schema: pgagent                 Size: 192 kB     Owner: enterprisedb        

 Schema: dbms_job_procedure      Size: 0 bytes    Owner: enterprisedb         

 

The information displayed in the report introduction includes the database name and 

version, the current date, the beginning and ending snapshot date and times, database and 

tablespace details and schema information.  

 

                Top 10 Relations by pages 

  

 TABLE                                        RELPAGES   

 ---------------------------------------------------------------------------- 

 pgbench_accounts                              15874      

 pg_proc                                       102        

 edb$statio_all_indexes                        73         

 edb$stat_all_indexes                          73         

 pg_attribute                                  67         

 pg_depend                                     58         

 edb$statio_all_tables                         49         

 edb$stat_all_tables                           47         

 pgbench_tellers                               37         

 pg_description                                32         

The information displayed in the Top 10 Relations by pages section includes: 

Column Name Description 

TABLE The name of the table. 

RELPAGES The number of pages in the table. 

 
 

                Top 10 Indexes by pages 

 

 INDEX                                        RELPAGES   

 ---------------------------------------------------------------------------- 

 pgbench_accounts_pkey                         2198       

 pg_depend_depender_index                      32         

 pg_depend_reference_index                     31         

 pg_proc_proname_args_nsp_index                30         

 pg_attribute_relid_attnam_index               23         

 pg_attribute_relid_attnum_index               17         

 pg_description_o_c_o_index                    15         

 edb$statio_idx_pk                             11         

 edb$stat_idx_pk                               11         

 pg_proc_oid_index                             9          

 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
89 

 

The information displayed in the Top 10 Indexes by pages section includes: 

Column Name Description 

INDEX The name of the index. 

RELPAGES The number of pages in the index. 

 
                 Top 10 Relations by DML 

  

 SCHEMA          RELATION                       UPDATES   DELETES   INSERTS  

 --------------------------------------------------------------------------- 

 enterprisedb    pgbench_accounts               10400     0         1000000  

 enterprisedb    pgbench_tellers                10400     0         100   

 enterprisedb    pgbench_branches               10400     0         10    

 enterprisedb    pgbench_history                0         0         10400    

 pgagent         pga_jobclass                   0         0         6        

 pgagent         pga_exception                  0         0         0        

 pgagent         pga_job                        0         0         0        

 pgagent         pga_jobagent                   0         0         0        

 pgagent         pga_joblog                     0         0         0        

 pgagent         pga_jobstep                    0         0         0        

The information displayed in the Top 10 Relations by DML section includes: 

Column Name Description 

SCHEMA The name of the schema in which the table resides. 

RELATION The name of the table. 

UPDATES The number of UPDATES performed on the table. 

DELETES The number of DELETES performed on the table. 

INSERTS The number of INSERTS performed on the table. 

 
   DATA from pg_stat_database 

  

 DATABASE   NUMBACKENDS  XACT COMMIT  XACT ROLLBACK   BLKS READ  BLKS HIT   

BLKS ICACHE HIT      HIT RATIO  ICACHE HIT RATIO     

 ---------------------------------------------------------------------------- 

 edb        0            142          0               78         10446       

    0                 99.26      0.00  

The information displayed in the DATA from pg_stat_database section of the report 

includes: 

Column Name Description 

DATABASE The name of the database. 

NUMBACKENDS 

Number of backends currently connected to this database. This is the 

only column in this view that returns a value reflecting current state; all 

other columns return the accumulated values since the last reset. 

XACT COMMIT Number of transactions in this database that have been committed. 

XACT ROLLBACK Number of transactions in this database that have been rolled back. 

BLKS READ Number of disk blocks read in this database. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
90 

Column Name Description 

BLKS HIT 
Number of times disk blocks were found already in the buffer cache  

(when a read was not necessary). 

BLKS ICACHE HIT The number of blocks found in Infinite Cache. 

HIT RATIO 
The percentage of times that a block was found in the shared buffer 

cache. 

ICACHE HIT RATIO The percentage of times that a block was found in Infinite Cache. 

 
   DATA from pg_buffercache 

  

 RELATION                            BUFFERS    

 ----------------------------------------------------------------------------

- 

 pgbench_accounts                    16671      

 pgbench_accounts_pkey               2745       

 pgbench_history                     590        

 pg_statistic                        39         

 edb$statio_all_indexes              31         

 edb$stat_all_indexes                31         

 edb$statio_all_tables               21         

 edb$stat_all_tables                 20         

 pg_depend                           20         

 pg_operator                         15 

The information displayed in the DATA from pg_buffercache section of the report 

includes: 

Column Name Description 

RELATION The name of the table. 

BUFFERS The number of shared buffers used by the relation. 

Note: In order to obtain the report for DATA from pg_buffercache, the 

pg_buffercache module must have been installed in the database. Perform the 

installation with the CREATE EXTENSION command. 

For more information on the CREATE EXTENSION command please see the PostgreSQL 

Core documentation at: 

https://www.postgresql.org/docs/9.6/static/sql-createextension.html 

 

   DATA from pg_stat_all_tables ordered by seq scan 

  

 SCHEMA               RELATION                       SEQ SCAN   REL TUP READ 

IDX SCAN   IDX TUP READ INS    UPD    DEL    

 ---------------------------------------------------------------------------- 

 pg_catalog           pg_class                       16         7162         

546        319          0      1      0      

 pg_catalog           pg_am                          13         13           

0          0            0      0      0      

 pg_catalog           pg_database                    4          16           

42         42           0      0      0      

https://www.postgresql.org/docs/9.6/static/sql-createextension.html


 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
91 

 pg_catalog           pg_index                       4          660          

145        149          0      0      0      

 pg_catalog           pg_namespace                   4          100          

49         49           0      0      0      

 sys                  edb$snap                       1          9            

0          0            1      0      0      

 pg_catalog           pg_authid                      1          1            

25         25           0      0      0      

 sys                  edb$session_wait_history       0          0            

0          0            50     0      0      

 sys                  edb$session_waits              0          0            

0          0            2      0      0      

 sys                  edb$stat_all_indexes           0          0            

0          0            165    0      0      

The information displayed in the DATA from pg_stat_all_tables ordered by 

seq scan  section includes: 

Column Name Description 

SCHEMA The name of the schema in which the table resides. 

RELATION The name of the table. 

SEQ SCAN The number of sequential scans initiated on this table.. 

REL TUP READ The number of tuples read in the table. 

IDX SCAN The number of index scans initiated on the table. 

IDX TUP READ The number of index tuples read. 

INS The number of rows inserted. 

UPD The number of rows updated. 

DEL The number of rows deleted. 

 
 

   DATA from pg_stat_all_tables ordered by rel tup read 

  

 SCHEMA               RELATION                       SEQ SCAN   REL TUP READ 

IDX SCAN   IDX TUP READ INS    UPD    DEL    

 ---------------------------------------------------------------------------- 

 pg_catalog           pg_class                       16         7162         

546        319          0      1      0      

 pg_catalog           pg_index                       4          660          

145        149          0      0      0      

 pg_catalog           pg_namespace                   4          100          

49         49           0      0      0      

 pg_catalog           pg_database                    4          16           

42         42           0      0      0      

 pg_catalog           pg_am                          13         13           

0          0            0      0      0      

 sys                  edb$snap                       1          9            

0          0            1      0      0      

 pg_catalog           pg_authid                      1          1            

25         25           0      0      0      

 sys                  edb$session_wait_history       0          0            

0          0            50     0      0      

 sys                  edb$session_waits              0          0            

0          0            2      0      0      

 sys                  edb$stat_all_indexes           0          0            

0          0            165    0      0      



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
92 

The information displayed in the DATA from pg_stat_all_tables ordered by 

rel tup read section includes: 

Column Name Description 

SCHEMA The name of the schema in which the table resides. 

RELATION The name of the table. 

SEQ SCAN The number of sequential scans performed on the table. 

REL TUP READ The number of tuples read from the table. 

IDX SCAN The number of index scans performed on the table. 

IDX TUP READ The number of index tuples read. 

INS The number of rows inserted. 

UPD The number of rows updated. 

DEL The number of rows deleted. 

 
   DATA from pg_statio_all_tables 

  

 SCHEMA      RELATION             HEAP     HEAP     HEAP     IDX      IDX 

                                  READ     HIT      ICACHE   READ     HIT      

                                                    HIT                    

 

             IDX      TOAST    TOAST    TOAST    TIDX     TIDX    TIDX     

             ICACHE   READ     HIT      ICACHE   READ     HIT     ICACHE   

             HIT                        HIT                       HIT    

----------------------------------------------------------------------------- 

 public      pgbench_accounts     92766    67215    288      59       32126  

             9        0        0        0        0        0        0        

 pg_catalog  pg_class             0        296      0        3        16   

             0        0        0        0        0        0        0        

 sys         edb$stat_all_indexes 8        125      0        4        233   

             0        0        0        0        0        0        0        

 sys         edb$statio_all_index 8        125      0        4        233    

             0        0        0        0        0        0        0        

 sys         edb$stat_all_tables  6        91       0        2        174    

             0        0        0        0        0        0        0        

 sys         edb$statio_all_table 6        91       0        2        174    

             0        0        0        0        0        0        0        

 pg_catalog  pg_namespace         3        72       0        0        0      

             0        0        0        0        0        0        0        

 sys         edb$session_wait_his 1        24       0        4        47     

             0        0        0        0        0        0        0        

 pg_catalog  pg_opclass           3        13       0        2        0       

             0        0        0        0        0        0        0        

 pg_catalog  pg_trigger           0        12       0        1        15      

             0        0        0        0        0        0        0        

The information displayed in the Data from pg_statio_all_tables section 

includes: 

Column Name Description 

SCHEMA The name of the schema in which the table resides. 

RELATION The name of the table. 

HEAP READ The number of heap blocks read. 

HEAP HIT The number of heap blocks hit. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
93 

Column Name Description 

HEAP ICACHE HIT The number of heap blocks in Infinite Cache. 

IDX READ The number of index blocks read. 

IDX HIT The number of index blocks hit. 

IDX ICACHE HIT The number of index blocks in Infinite Cache. 

TOAST READ The number of toast blocks read. 

TOAST HIT The number of toast blocks hit. 

TOAST ICACHE HIT The number of toast blocks in Infinite Cache. 

TIDX READ The number of toast index blocks read. 

TIDX HIT The number of toast index blocks hit. 

TIDX ICACHE HIT The number of toast index blocks in Infinite Cache. 

 
 

   DATA from pg_stat_all_indexes 

  

 SCHEMA               RELATION                  INDEX                        

IDX SCAN   IDX TUP READ IDX TUP FETCH   

 ---------------------------------------------------------------------------- 

 pg_catalog           pg_attribute              

pg_attribute_relid_attnum_index     427        907          907             

 pg_catalog           pg_class                  pg_class_relname_nsp_index    

289        62           62              

 pg_catalog           pg_class                  pg_class_oid_index           

257        257          257             

 pg_catalog           pg_statistic              

pg_statistic_relid_att_inh_index    207        196          196             

 enterprisedb         pgbench_accounts          pgbench_accounts_pkey        

200        255          200             

 pg_catalog           pg_cast                   pg_cast_source_target_index  

199        50           50              

 pg_catalog           pg_proc                   pg_proc_oid_index            

116        116          116            

 pg_catalog           edb_partition             edb_partition_partrelid_index 

112        0            0               

 pg_catalog           edb_policy                edb_policy_object_name_index 

112        0            0              

 enterprisedb         pgbench_branches          pgbench_branches_pkey        

101        110          0               

The information displayed in the DATA from pg_stat_all_indexes section 

includes: 

Column Name Description 

SCHEMA The name of the schema in which the index resides. 

RELATION The name of the table on which the index is defined. 

INDEX The name of the index. 

IDX SCAN The number of indexes scans initiated on this index. 

IDX TUP READ Number of index entries returned by scans on this index 

IDX TUP FETCH 
Number of live table rows fetched by simple index scans using this 

index. 

 
   DATA from pg_statio_all_indexes 

  



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
94 

 SCHEMA               RELATION                  INDEX                               

IDX BLKS READ   IDX BLKS HIT    IDX BLKS ICACHE HIT  

 ---------------------------------------------------------------------------- 

 pg_catalog           pg_attribute              

pg_attribute_relid_attnum_index     0               867             0                    

 enterprisedb         pgbench_accounts          pgbench_accounts_pkey               

1               778             0                    

 pg_catalog           pg_class                  pg_class_relname_nsp_index          

0               590             0                    

 pg_catalog           pg_class                  pg_class_oid_index                  

0               527             0                    

 pg_catalog           pg_statistic              

pg_statistic_relid_att_inh_index    0               441             0                    

 sys                  edb$stat_all_indexes      edb$stat_idx_pk                     

1               332             0                    

 sys                  edb$statio_all_indexes    edb$statio_idx_pk                   

1               332             0                    

 pg_catalog           pg_proc                   pg_proc_oid_index                   

0               244             0                    

 sys                  edb$stat_all_tables       edb$stat_tab_pk                     

0               241             0                    

 sys                  edb$statio_all_tables     edb$statio_tab_pk                   

0               241             0                    

The information displayed in the DATA from pg_statio_all_indexes section 

includes: 

Column Name Description 

SCHEMA The name of the schema in which the index resides. 

RELATION The name of the table on which the index is defined. 

INDEX The name of the index. 

IDX BLKS READ The number of index blocks read. 

IDX BLKS HIT The number of index blocks hit. 

IDX BLKS ICACHE HIT The number of index blocks in Infinite Cache that were hit. 

 
    System Wait Information 

  

 WAIT NAME                                COUNT      WAIT TIME       % WAIT 

 --------------------------------------------------------------------------- 

 query plan                               0          0.000407        100.00 

 db file read                             0          0.000000        0.00 

The information displayed in the System Wait Information section includes: 

Column Name Description 

WAIT NAME The name of the wait. 

COUNT The number of times that the wait event occurred. 

WAIT TIME The length of the wait time in milliseconds. 

% WAIT The percentage of the total wait time used by this wait for this session. 

 
 

    Database Parameters from postgresql.conf  

  



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
95 

 PARAMETER                         SETTING                                  

CONTEXT     MINVAL       MAXVAL        

 ---------------------------------------------------------------------------- 

 allow_system_table_mods            off                                      

postmaster                            

 application_name                   psql                                     

user                                  

 archive_command                    (disabled)                               

sighup                                

 archive_mode                       off                                      

postmaster                            

 archive_timeout                    0                                        

sighup      0            2147483647   

 array_nulls                        on                                       

user                                  

 authentication_timeout             60                                       

sighup      1            600          

 autovacuum                         on                                       

sighup                                

 autovacuum_analyze_scale_factor    0.1                                      

sighup      0            100          

 autovacuum_analyze_threshold       50                                       

sighup      0            2147483647   

 autovacuum_freeze_max_age          200000000                                

postmaster  100000000    2000000000   

 autovacuum_max_workers             3                                        

postmaster  1            8388607      

 autovacuum_naptime                 60                                       

sighup      1            2147483      

 autovacuum_vacuum_cost_delay       20                                       

... 

 

The information displayed in the Database Parameters from postgresql.conf 

section includes: 

Column Name Description 

PARAMETER The name of the parameter. 

SETTING The current value assigned to the parameter. 

CONTEXT The context required to set the parameter value. 

MINVAL The minimum value allowed for the parameter. 

MAXVAL The maximum value allowed for the parameter. 

 

5.3.2 stat_db_rpt() 

The signature is: 

stat_db_rpt(beginning_id, ending_id) 

Parameters 

beginning_id 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
96 

beginning_id is an integer value that represents the beginning session 

identifier. 

ending_id 

ending_id is an integer value that represents the ending session identifier. 

The following example demonstrates the stat_db_rpt() function: 

SELECT * FROM stat_db_rpt(9, 10); 

                               stat_db_rpt                                                            

----------------------------------------------------------------------------- 

   DATA from pg_stat_database 

  

 DATABASE   NUMBACKENDS  XACT COMMIT  XACT ROLLBACK   BLKS READ  BLKS HIT  

        BLKS ICACHE HIT      HIT RATIO      ICACHE HIT RATIO     

----------------------------------------------------------------------------- 

 edb        1            21           0               92928      101217     

        301                  52.05          0.15 

 

The information displayed in the DATA from pg_stat_database section of the report 

includes: 

Column Name Description 

DATABASE The name of the database. 

NUMBACKENDS 

Number of backends currently connected to this database. This is the 

only column in this view that returns a value reflecting current state; all 

other columns return the accumulated values since the last reset. 

XACT COMMIT The number of transactions in this database that have been committed. 

XACT ROLLBACK The number of transactions in this database that have been rolled back. 

BLKS READ The number of blocks read. 

BLKS HIT The number of blocks hit. 

BLKS ICACHE HIT The number of blocks in Infinite Cache that were hit. 

HIT RATIO 
The percentage of times that a block was found in the shared buffer 

cache. 

ICACHE HIT RATIO The percentage of times that a block was found in Infinite Cache. 

 

5.3.3 stat_tables_rpt() 

The signature is: 

function_name(beginning_id, ending_id, top_n, scope) 

Parameters 

beginning_id 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
97 

beginning_id is an integer value that represents the beginning session 

identifier. 

ending_id 

ending_id is an integer value that represents the ending session identifier. 

top_n  

top_n represents the number of rows to return 

scope 

scope determines which tables the function returns statistics about.  Specify SYS, 

USER or ALL:  

 SYS indicates that the function should return information about system 

defined tables.  A table is considered a system table if it is stored in one of 

the following schemas: pg_catalog, information_schema, sys, or 

dbo.  

 USER indicates that the function should return information about user-

defined tables. 

 ALL specifies that the function should return information about all tables.   

The stat_tables_rpt() function returns a two-part report.  The first portion of the 

report contains:  

SELECT * FROM stat_tables_rpt(18, 19, 10, 'ALL'); 

 

stat_tables_rpt                                                       

----------------------------------------------------------------------------- 

DATA from pg_stat_all_tables ordered by seq scan 

 

SCHEMA        RELATION                        

    SEQ SCAN   REL TUP READ IDX SCAN   IDX TUP READ   INS    UPD    DEL    

----------------------------------------------------------------------------- 

pg_catalog    pg_class                        

    8          2952         78         65             0      0      0      

pg_catalog    pg_index                        

    4          448          23         28             0      0      0      

pg_catalog    pg_namespace                    

    4          76           1          1              0      0      0      

pg_catalog    pg_database                     

    3          6            0          0              0      0      0      

pg_catalog    pg_authid                       

    2          1            0          0              0      0      0      

sys           edb$snap                        

    1          15           0          0              1      0      0      



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
98 

public        accounts                        

    0          0            0          0              0      0      0      

public        branches                        

    0          0            0          0              0      0      0      

sys           edb$session_wait_history        

    0          0            0          0              25     0      0      

sys           edb$session_waits               

    0          0            0          0              10     0      0      

 

 

The information displayed in the DATA from pg_stat_all_tables ordered by 

seq scan  section includes: 

Column Name Description 

SCHEMA The name of the schema in which the table resides. 

RELATION The name of the table. 

SEQ SCAN The number of sequential scans on the table. 

REL TUP READ The number of tuples read from the table. 

IDX SCAN The number of index scans performed on the table. 

IDX TUP READ The number of index tuples read from the table. 

INS The number of rows inserted. 

UPD The number of rows updated. 

DEL The number of rows deleted. 

 

The second portion of the report contains: 

 
DATA from pg_stat_all_tables ordered by rel tup read 

 

SCHEMA       RELATION                        

    SEQ SCAN   REL TUP READ IDX SCAN   IDX TUP READ INS    UPD    DEL    

----------------------------------------------------------------------------- 

pg_catalog   pg_class                        

    8          2952         78         65           0      0      0      

pg_catalog   pg_index                        

    4          448          23         28           0      0      0      

pg_catalog   pg_namespace                    

    4          76           1          1            0      0      0      

sys          edb$snap                        

    1          15           0          0            1      0      0      

pg_catalog   pg_database                     

    3          6            0          0            0      0      0      

pg_catalog   pg_authid                       

    2          1            0          0            0      0      0      

public       accounts                        

    0          0            0          0            0      0      0      

public       branches                        

    0          0            0          0            0      0      0      

sys          edb$session_wait_history        

    0          0            0          0            25     0      0      

sys          edb$session_waits               

    0          0            0          0            10     0      0      

(29 rows) 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
99 

The information displayed in the DATA from pg_stat_all_tables ordered by 

rel tup read section includes: 

Column Name Description 

SCHEMA The name of the schema in which the table resides. 

RELATION The name of the table. 

SEQ SCAN The number of sequential scans performed on the table. 

REL TUP READ The number of tuples read from the table. 

IDX SCAN The number of index scans performed on the table. 

IDX TUP READ The number of live rows fetched by index scans. 

INS The number of rows inserted. 

UPD The number of rows updated. 

DEL The number of rows deleted. 

 

5.3.4 statio_tables_rpt() 

The signature is: 

statio_tables_rpt(beginning_id, ending_id, top_n, scope) 

Parameters 

beginning_id 

beginning_id is an integer value that represents the beginning session 

identifier. 

ending_id 

ending_id is an integer value that represents the ending session identifier. 

top_n  

top_n represents the number of rows to return 

scope 

scope determines which tables the function returns statistics about.  Specify SYS, 

USER or ALL:  

 SYS indicates that the function should return information about system 

defined tables.  A table is considered a system table if it is stored in one of 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
100 

the following schemas: pg_catalog, information_schema, sys, or 

dbo.  

 USER indicates that the function should return information about user-

defined tables. 

 ALL specifies that the function should return information about all tables.   

The statio_tables_rpt() function returns a report that contains:  

edb=# SELECT * FROM statio_tables_rpt(9, 10, 10, 'SYS'); 

 

                               statio_tables_rpt                                     

----------------------------------------------------------------------------- 

   DATA from pg_statio_all_tables 

  

 SCHEMA      RELATION             HEAP     HEAP     HEAP     IDX      IDX 

                                  READ     HIT      ICACHE   READ     HIT      

                                                    HIT                    

 

             IDX      TOAST    TOAST    TOAST    TIDX     TIDX    TIDX     

             ICACHE   READ     HIT      ICACHE   READ     HIT     ICACHE   

             HIT                      HIT                        HIT    

----------------------------------------------------------------------------- 

 public      pgbench_accounts     92766    67215    288      59       32126  

             9        0        0        0        0        0        0        

 pg_catalog  pg_class             0        296      0        3        16   

             0        0        0        0        0        0        0        

 sys         edb$stat_all_indexes 8        125      0        4        233   

             0        0        0        0        0        0        0        

 sys         edb$statio_all_index 8        125      0        4        233    

             0        0        0        0        0        0        0        

 sys         edb$stat_all_tables  6        91       0        2        174    

             0        0        0        0        0        0        0        

 sys         edb$statio_all_table 6        91       0        2        174    

             0        0        0        0        0        0        0        

 pg_catalog  pg_namespace         3        72       0        0        0      

             0        0        0        0        0        0        0        

 sys         edb$session_wait_his 1        24       0        4        47     

             0        0        0        0        0        0        0        

 pg_catalog  pg_opclass           3        13       0        2        0       

             0        0        0        0        0        0        0        

 pg_catalog  pg_trigger           0        12       0        1        15      

             0        0        0        0        0        0        0        

(16 rows) 

The information displayed in the Data from pg_statio_all_tables section 

includes: 

Column Name Description 

SCHEMA The name of the schema in which the relation resides. 

RELATION The name of the relation. 

HEAP READ The number of heap blocks read. 

HEAP HIT The number of heap blocks hit. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
101 

Column Name Description 

HEAP ICACHE HIT The number of heap blocks in Infinite Cache. 

IDX READ The number of index blocks read. 

IDX HIT The number of index blocks hit. 

IDX ICACHE HIT The number of index blocks in Infinite Cache. 

TOAST READ The number of toast blocks read. 

TOAST HIT The number of toast blocks hit. 

TOAST ICACHE HIT The number of toast blocks in Infinite Cache. 

TIDX READ The number of toast index blocks read. 

TIDX HIT The number of toast index blocks hit. 

TIDX ICACHE HIT The number of toast index blocks in Infinite Cache. 

 

5.3.5 stat_indexes_rpt() 

The signature is: 

stat_indexes_rpt(beginning_id, ending_id, top_n, scope) 

Parameters 

beginning_id 

beginning_id is an integer value that represents the beginning session 

identifier. 

ending_id 

ending_id is an integer value that represents the ending session identifier. 

top_n  

top_n represents the number of rows to return 

scope 

scope determines which tables the function returns statistics about.  Specify SYS, 

USER or ALL:  

 SYS indicates that the function should return information about system 

defined tables.  A table is considered a system table if it is stored in one of 

the following schemas: pg_catalog, information_schema, sys, or 

dbo.  



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
102 

 USER indicates that the function should return information about user-

defined tables. 

 ALL specifies that the function should return information about all tables.   

The stat_indexes_rpt() function returns a report that contains:  

edb=# SELECT * FROM stat_indexes_rpt(9, 10, 10, 'ALL'); 

                                                       

                            stat_indexes_rpt                                  

----------------------------------------------------------------------------- 

   DATA from pg_stat_all_indexes 

  

 SCHEMA        RELATION        INDEX                                

                          IDX SCAN    IDX TUP READ    IDX TUP FETCH   

----------------------------------------------------------------------------- 

 pg_catalog    pg_cast         pg_cast_source_target_index          

                          30          7               7               

 pg_catalog    pg_class        pg_class_oid_index                   

                          15          15              15              

 pg_catalog    pg_trigger      pg_trigger_tgrelid_tgname_index      

                          12          12              12              

 pg_catalog    pg_attribute    pg_attribute_relid_attnum_index       

                          7           31              31              

 pg_catalog    pg_statistic    pg_statistic_relid_att_index         

                          7           0               0               

 pg_catalog    pg_database     pg_database_oid_index                

                          5           5               5               

 pg_catalog    pg_proc         pg_proc_oid_index              

                          5           5               5               

 pg_catalog    pg_operator     pg_operator_oprname_l_r_n_index      

                          3           1               1               

 pg_catalog    pg_type         pg_type_typname_nsp_index         

                          3           1               1               

 pg_catalog    pg_amop         pg_amop_opr_fam_index         

                          2           3               3               

(14 rows) 

The information displayed in the DATA from pg_stat_all_indexes section 

includes: 

Column Name Description 

SCHEMA The name of the schema in which the relation resides. 

RELATION The name of the relation. 

INDEX The name of the index. 

IDX SCAN The number of indexes scanned. 

IDX TUP READ The number of index tuples read. 

IDX TUP FETCH The number of index tuples fetched. 

 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
103 

5.3.6 statio_indexes_rpt() 

The signature is: 

statio_indexes_rpt(beginning_id, ending_id, top_n, scope) 

Parameters 

beginning_id 

beginning_id is an integer value that represents the beginning session 

identifier. 

ending_id 

ending_id is an integer value that represents the ending session identifier. 

top_n  

top_n represents the number of rows to return 

scope 

scope determines which tables the function returns statistics about.  Specify SYS, 

USER or ALL:  

 SYS indicates that the function should return information about system 

defined tables.  A table is considered a system table if it is stored in one of 

the following schemas: pg_catalog, information_schema, sys, or 

dbo.  

 USER indicates that the function should return information about user-

defined tables. 

 ALL specifies that the function should return information about all tables.   

The statio_indexes_rpt()function returns a report that contains:  

edb=# SELECT * FROM statio_indexes_rpt(9, 10, 10, 'SYS'); 

 

                            statio_indexes_rpt                                

----------------------------------------------------------------------------- 

   DATA from pg_statio_all_indexes 

  

 SCHEMA      RELATION        INDEX                                

                        IDX BLKS READ   IDX BLKS HIT    IDX BLKS ICACHE HIT  

----------------------------------------------------------------------------- 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
104 

public               pgbench_accounts          pgbench_accounts_pkey          

                        59              32126           9                    

 sys                  edb$stat_all_indexes      edb$stat_idx_pk           

                        4               233             0                    

 sys                  edb$statio_all_indexes    edb$statio_idx_pk          

                        4               233             0                    

 sys                  edb$stat_all_tables       edb$stat_tab_pk             

                        2               174             0                    

 sys                  edb$statio_all_tables     edb$statio_tab_pk            

                        2               174             0                    

 sys                  edb$session_wait_history  session_waits_hist_pk      

                        4               47              0                    

 pg_catalog           pg_cast                   pg_cast_source_target_index  

                        1               29              0                    

 pg_catalog           pg_trigger                pg_trig_tgrelid_tgname_index  

                        1               15              0                    

 pg_catalog           pg_class                  pg_class_oid_index         

                        1               14              0                    

 pg_catalog           pg_statistic              pg_statistic_relid_att_index  

                        2               12              0                    

(14 rows) 

 

 

The information displayed in the DATA from pg_statio_all_indexes report 

includes: 

Column Name Description 

SCHEMA The name of the schema in which the relation resides. 

RELATION The name of the table on which the index is defined. 

INDEX The name of the index. 

IDX BLKS READ The number of index blocks read. 

IDX BLKS HIT The number of index blocks hit. 

IDX BLKS ICACHE HIT The number of index blocks in Infinite Cache that were hit. 

 

 

 

 

 

 

 

 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
105 

5.4 Performance Tuning Recommendations 

To use DRITA reports for performance tuning, review the top five events in a given 

report, looking for any event that takes a disproportionately large percentage of resources.  

In a streamlined system, user I/O will probably make up the largest number of waits.  

Waits should be evaluated in the context of CPU usage and total time; an event may not 

be significant if it takes 2 minutes out of a total measurement interval of 2 hours, if the 

rest of the time is consumed by CPU time.  The component of response time (CPU 

"work" time or other "wait" time) that consumes the highest percentage of overall time 

should be evaluated. 

When evaluating events, watch for: 

Event type Description 
Checkpoint waits Checkpoint waits may indicate that checkpoint parameters need to 

be adjusted, (checkpoint_segments and checkpoint_timeout). 

WAL-related waits WAL-related waits may indicate wal_buffers are under-sized. 

SQL Parse waits If the number of waits is high, try to use prepared statements. 
db file random reads If high, check that appropriate indexes and statistics exist. 
db file random writes If high, may need to decrease bgwriter_delay. 

btree random lock acquires May indicate indexes are being rebuilt.  Schedule index builds during 
less active time. 

Performance reviews should also include careful scrutiny of the hardware, the operating 

system, the network and the application SQL statements. 

 

 

 

 

 

 

 

 

 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
106 

5.5 Event Descriptions 

The following table lists the basic wait events that are displayed by DRITA. 

 

Event Name Description 

add in shmem lock acquire Obsolete/unused 
bgwriter communication 

lock acquire 
The bgwriter (background writer) process has waited for the short-

term lock that synchronizes messages between the bgwriter and a 

backend process. 
btree vacuum lock acquire The server has waited for the short-term lock that synchronizes access 

to the next available vacuum cycle ID. 
buffer free list lock 

acquire 
The server has waited for the short-term lock that synchronizes access 

to the list of free buffers (in shared memory). 
checkpoint lock acquire:  A server process has waited for the short-term lock that prevents 

simultaneous checkpoints. 
checkpoint start lock 

acquire 
The server has waited for the short-term lock that synchronizes access 

to the bgwriter checkpoint schedule.  
clog control lock acquire The server has waited for the short-term lock that synchronizes access 

to the commit log. 
control file lock acquire The server has waited for the short-term lock that synchronizes write 

access to the control file (this should usually be a low number). 
db file extend A server process has waited for the operating system while adding a 

new page to the end of a file. 
db file read A server process has waited for the completion of a read (from disk). 
db file write A server process has waited for the completion of a write (to disk). 
db file sync A server process has waited for the operating system to flush all 

changes to disk. 
first buf mapping lock 

acquire 
The server has waited for a short-term lock that synchronizes access 

to the shared-buffer mapping table. 
freespace lock acquire The server has waited for the short-term lock that synchronizes access 

to the freespace map. 
Infinite Cache read The server has waited for an Infinite Cache read request. 
Infinite Cache write The server has waited for an Infinite Cache write request. 
lwlock acquire The server has waited for a short-term lock that has not been 

described elsewhere in this section. 
multi xact gen lock 

acquire 
The server has waited for the short-term lock that synchronizes access 

to the next available multi-transaction ID (when a SELECT...FOR 

SHARE statement executes). 
multi xact member lock 

acquire 
The server has waited for the short-term lock that synchronizes access 

to the multi-transaction member file (when a SELECT...FOR SHARE 

statement executes). 
multi xact offset lock 

acquire 
The server has waited for the short-term lock that synchronizes access 

to the multi-transaction offset file (when a SELECT...FOR SHARE 

statement executes). 
oid gen lock acquire The server has waited for the short-term lock that synchronizes access 

to the next available OID (object ID). 
query plan The server has computed the execution plan for a SQL statement. 
rel cache init lock 

acquire 
The server has waited for the short-term lock that prevents 

simultaneous relation-cache loads/unloads. 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
107 

shmem index lock acquire The server has waited for the short-term lock that synchronizes access 

to the shared-memory map. 
sinval lock acquire  The server has waited for the short-term lock that synchronizes access 

to the cache invalidation state. 
sql parse The server has parsed a SQL statement. 
subtrans control lock 

acquire 
The server has waited for the short-term lock that synchronizes access 

to the subtransaction log. 
tablespace create lock 

acquire 
The server has waited for the short-term lock that prevents 

simultaneous CREATE TABLESPACE or DROP TABLESPACE 

commands. 
two phase state lock 

acquire 
The server has waited for the short-term lock that synchronizes access 

to the list of prepared transactions. 
wal insert lock acquire The server has waited for the short-term lock that synchronizes write 

access to the write-ahead log. A high number may indicate that WAL 

buffers are sized too small. 
wal write lock acquire The server has waited for the short-term lock that synchronizes write-

ahead log flushes. 
wal file sync The server has waited for the write-ahead log to sync to disk (related 

to the wal_sync_method parameter which, by default, is 'fsync' - 

better performance can be gained by changing this parameter to 

open_sync). 
wal flush The server has waited for the write-ahead log to flush to disk. 
wal write The server has waited for a write to the write-ahead log buffer (expect 

this value to be high). 
xid gen lock acquire The server has waited for the short-term lock that synchronizes access 

to the next available transaction ID. 

When wait events occur for lightweight locks, they are displayed by DRITA as well. A 

lightweight lock is used to protect a particular data structure in shared memory. 

Certain wait events can be due to the server process waiting for one of a group of related 

lightweight locks, which is referred to as a lightweight lock tranche. Individual 

lightweight lock tranches are not displayed by DRITA, but their summation is displayed 

by a single event named other lwlock acquire. 

For a list and description of lightweight locks displayed by DRITA, please see Section 

27.2, The Statistics Collector in the PostgreSQL core documentation available at: 

https://www.postgresql.org/docs/9.6/static/monitoring-stats.html 

Under Section 27.2.2. Viewing Statistics, the lightweight locks are listed in Table 

27-4 wait_event Description where the Wait Event Type column designates 

LWLockNamed. 

Note that the table entries where Wait Event Type designates LWLockTranche are the 

lightweight lock tranches. 

The following example displays lightweight locks ProcArrayLock, 

CLogControlLock, WALBufMappingLock, and XidGenLock. 

https://www.postgresql.org/docs/9.6/static/monitoring-stats.html


 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
108 

postgres=# select * from sys_rpt(40,70,20); 

                                   sys_rpt                                    

---------------------------------------------------------------------------- 

 WAIT NAME                                COUNT      WAIT TIME       % WAIT 

 --------------------------------------------------------------------------- 

 wal flush                               56107      44.456494       47.65 

 db file read                            66123      19.543968       20.95 

 wal write                               32886      12.780866       13.70 

 wal file sync                           32933      11.792972       12.64 

 query plan                              223576     4.539186        4.87 

 db file extend                          2339       0.087038        0.09 

 other lwlock acquire                    402        0.066591        0.07         

 ProcArrayLock                           135        0.012942        0.01 

 CLogControlLock                         212        0.010333        0.01 

 WALBufMappingLock                       47         0.006068        0.01 

 XidGenLock                              53         0.005296        0.01 

(13 rows) 

DRITA also displays wait events that occur that are related to certain Advanced Server 

product features. 

These Advanced Server feature specific wait events and the other lwlock acquire 

event are listed in the following table. 

Event Name Description 

ICacheLock The server has waited for access related to Infinite Cache. 
BulkLoadLock The server has waited for access related to EDB*Loader. 
EDBResoureManagerLock The server has waited for access related to EDB Resource Manager. 
other lwlock acquire Summation of waits for lightweight lock tranches. 

 

 

 

 

 

 

 

 

 

 



 
Database Compatibility for Oracle® Developers 

Tools and Utilities Guide 
 

Copyright © 2007 - 2021 EnterpriseDB Corporation.  All rights reserved. 

 
109 

6 Acknowledgements 

The PostgreSQL 8.3, 8.4, 9.0, 9.1, 9.2, 9.3 and 9.4 Documentation provided the baseline 

for the portions of this guide that are common to PostgreSQL, and is hereby 

acknowledged: 

Portions of this EnterpriseDB Software and Documentation may utilize the following 

copyrighted material, the use of which is hereby acknowledged. 

PostgreSQL Documentation, Database Management System 

PostgreSQL is Copyright © 1996-2016 by the PostgreSQL Global Development Group 

and is distributed under the terms of the license of the University of California below. 

Postgres95 is Copyright © 1994-5 by the Regents of the University of California. 

Permission to use, copy, modify, and distribute this software and its documentation for 

any purpose, without fee, and without a written agreement is hereby granted, provided 

that the above copyright notice and this paragraph and the following two paragraphs 

appear in all copies. 

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY 

FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, 

INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS 

DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF 

THE POSSIBILITY OF SUCH DAMAGE. 

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, 

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE 

PROVIDED HEREUNDER IS ON AN "AS-IS" BASIS, AND THE UNIVERSITY OF 

CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, 

ENHANCEMENTS, OR MODIFICATIONS. 

 

 

 

 


