
Replication Server
Version 6.2

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. Built at 2023-05-26T18:17:56

8
8
9
9
9

10
10
10
10
11
11
11
11
11
11
12
12
15
15
16
16
17
17
18
19
19
20
21
21
24
24
25
28
29
37
40
52
52
53
54
57
58
60
61
83
86
92
93

1 Replication Server
2 Introduction
2.1 Conventions Used in this Guide
2.2 Certified and Supported Product Versions
2.3 Supported Platforms
3 Overview
3.1 Why Use Replication
3.1.1 Offloading Reporting and Business Intelligence Queries
3.1.2 Using Warm Standby Servers
3.1.3 Testing Systems in Parallel
3.1.4 Migrating Data
3.1.5 Write Availability
3.1.6 Write Scalability
3.1.7 Localized Data Access
3.2 Replication Concepts and Definitions
3.2.1 Comparison of Single-Master and Multi-Master Replication
3.2.2 Publications and Subscriptions
3.2.3 Single-Master (Primary-to-secondary) Replication
3.2.4 Multi-Master Replication
3.2.5 Asynchronous
3.2.6 Snapshot and Synchronization Overview
3.2.7 Snapshot-Only Publications
3.2.8 Snapshot Replication
3.2.9 Synchronization Replication with the Trigger-Based Method
3.2.10 Synchronization Replication with the Log-Based Method
3.2.10.1 Requirements and Restrictions
3.2.10.2 Logical Replication Slots
3.2.10.3 Streaming Replication with the WAL Sender Process
3.2.10.4 Replication Origin
3.2.10.5 In-Memory Caching and Persistence
3.2.11 Multi-Master Parallel Replication
3.2.12 Table Filters
3.3 xDB Replication Server Components and Architecture
3.3.1 Physical Components
3.3.2 Logical Components
3.3.3 xDB Replication System Examples
3.4 Designing a Replication System
3.4.1 General Steps
3.4.2 Design Considerations
3.4.3 Restrictions on Replicated Database Objects
3.4.4 Performance Considerations
3.4.5 Distributed Replication
4 Installation and Uninstallation
4.1 Installing With Stack Builder or StackBuilder Plus
4.2 Installing from the Command Line
4.3 Installing the xDB RPM Package on x86-64
4.4 Installing the RHEL 8 xDB RPM Package on IBM Power (ppc64le)
4.5 Installing Replication Server on an SLES Host

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 2

96
97
98

103
105
111
111
111
112
113
114
123
125
130
130
134
138
142
155
155
157
160
165
166
166
170
172
172
174
177
179
183
186
188
191
192
192
194
194
197
198
199
199
204
212
220
221
227

4.6 Installing a JDBC driver
4.7 Post-Installation Host Environment
4.8 Uninstalling xDB Replication Server
4.9 Uninstalling the xDB RPM Package
5 Introduction to the xDB Replication Console
6 Single-Master Replication Operation
6.1 Prerequisite Steps
6.1.1 Setting Heap Memory Size for the Publication and Subscription Servers
6.1.2 Enabling Synchronization Replication with the Log-Based Method
6.1.3 Enabling Access to the Database Servers
6.1.4 Preparing the Publication Database
6.1.5 Preparing the Subscription Database
6.1.6 Verifying Host Accessibility
6.2 Creating a Publication
6.2.1 Registering a Publication Server
6.2.2 Adding a Publication Database
6.2.3 Adding a Publication
6.2.4 Control Schema Objects Created for a Publication
6.3 Creating a Subscription
6.3.1 Registering a Subscription Server
6.3.2 Adding a Subscription Database
6.3.3 Adding a Subscription
6.3.4 Subscription Metadata Object
6.4 On Demand Replication
6.4.1 Performing Snapshot Replication
6.4.2 Performing Synchronization Replication
6.5 Managing a Subscription
6.5.1 Updating a Subscription Server
6.5.2 Updating a Subscription Database
6.5.3 Updating a Subscription
6.5.4 Enabling/Disabling Table Filters on a Subscription
6.5.5 Removing a Subscription
6.5.6 Removing a Subscription Database
6.6 Performing Controlled Switchover
6.7 Performing Failover
6.8 Optimizing Performance
6.8.1 Optimizing Snapshot Replication
6.8.2 Optimizing Synchronization Replication
6.8.2.1 Using Prepared SQL Statements
6.8.2.2 Parallel Synchronization
6.8.2.3 Other Synchronization Configuration Options
7 Multi-Master Replication Operation
7.1 Prerequisite Steps
7.2 Creating a Publication
7.3 Creating Additional Primary nodes
7.4 Control Schema Objects Created in Primary nodes
7.5 On Demand Replication
7.6 Conflict Resolution

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 3

227
228
230
230
231
231
232
233
237
238
245
247
247
249
252
257
257
260
260
263
271
275
282
282
284
285
287
291
294
296
299
303
304
306
307
307
324
330
337
344
356
356
361
364
375
378
382
385

7.6.1 Configuration Parameter and Table Setting Requirements
7.6.2 Conflict Types
7.6.3 Conflict Detection
7.6.4 Conflict Resolution Strategies
7.6.5 Conflict Prevention – Uniqueness Case
7.6.6 Conflict Prevention with an MMR-Ready Sequence
7.6.6.1 Creating an MMR-Ready Sequence
7.6.6.2 MMR-Ready Sequence Example
7.6.6.3 Converting a Standard Sequence to an MMR-Ready Sequence
7.6.6.4 Conversion to an MMR-Ready Sequence Example
7.6.7 Automatic Conflict Resolution Example
7.6.8 Custom Conflict Handling
7.6.8.1 Custom Conflict Handling Function
7.6.8.2 Adding a Custom Conflict Handling Function
7.6.8.3 Custom Conflict Handling Examples
7.6.9 Manual Conflict Resolution for the Trigger-Based Method
7.6.9.1 Finding Conflicts
7.6.9.2 Conflict Resolution Preparation
7.6.9.3 Overview of Correction Strategies
7.6.9.4 Manual Publication Table Correction
7.6.9.5 Correction Using New Transactions
7.6.9.6 Correction Using Shadow Table Transactions
7.6.10 Manual Conflict Resolution for the Log-Based Method
7.6.10.1 Finding Conflicts
7.6.10.2 Conflict Resolution Concept for the Log-Based Method
7.6.10.3 Overview of Correction Strategies
7.6.10.4 Manual Publication Table Correction
7.6.10.5 Correction Using New Transactions
7.7 Viewing Conflict History
7.8 Updating the Conflict Resolution Options
7.9 Enabling/Disabling Table Filters on a Primary node
7.10 Switching the Primary definition node
7.11 Ensuring High Availability
7.12 Optimizing Performance
8 Common Operations
8.1 Selecting Tables with the Wildcard Selector
8.2 Creating a Schedule
8.3 Managing a Schedule
8.4 Viewing Replication History
8.5 Managing History
8.6 Managing a Publication
8.6.1 Updating a Publication Server
8.6.2 Updating a Publication Database
8.6.3 Updating a Publication
8.6.4 Updating the Set of Available Table Filters in a Publication
8.6.5 Validating a Publication
8.6.6 Removing a Publication
8.6.7 Removing a Publication Database

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 4

387
391
395
396
398
402
409
419
419
420
425
426
426
426
427
428
428
431
432
433
433
434
436
436
437
440
441
442
442
445
446
448
448
449
450
452
452
453
454
454
455
456
458
458
459
461
461
462

8.7 Switching the Controller Database
8.8 Replicating DDL Changes
8.8.1 DDL Change Replication Process
8.8.2 DDL Change Replication Using the xDB Replication Console
8.9 Loading Tables From an External Data Source (Offline Snapshot)
8.10 Replicating Postgres Partitioned Tables
8.11 Using Secure Sockets Layer (SSL) Connections
9 xDB Replication Server Command Line Interface
9.1 Prerequisite Steps
9.2 General Usage
9.3 xDB Replication Server CLI Commands
9.3.1 Getting Help (help)
9.3.2 Printing the Version Number (version)
9.3.3 Printing the xDB Replication Server Version Number (repversion)
9.3.4 Encrypting Passwords (encrypt)
9.3.5 Printing the Time the Server Has Been Running (uptime)
9.3.6 Adding a Publication Database (addpubdb)
9.3.7 Printing Publication Database IDs (printpubdbids)
9.3.8 Printing Publication Database Details (printpubdbidsdetails)
9.3.9 Printing the Controller Database ID (printcontrollerdbid)
9.3.10 Printing the Primary definition node Database ID (printmdndbid)
9.3.11 Updating a Publication Database (updatepubdb)
9.3.12 Removing a Publication Database (removepubdb)
9.3.13 Get Tables for a New Publication (gettablesfornewpub)
9.3.14 Creating a Publication (createpub)
9.3.15 Printing a List of Publications (printpublist)
9.3.16 Printing a List of Tables in a Publication (printpublishedtables)
9.3.17 Printing a List of Filters in a Publication (printpubfilterslist)
9.3.18 Adding Tables to a Publication (addtablesintopub)
9.3.19 Removing Tables from a Publication (removetablesfrompub)
9.3.20 Adding Table Filters to a Publication (addfilter)
9.3.21 Updating Table Filters in a Publication (updatefilter)
9.3.22 Removing a Table Filter from a Publication (removefilter)
9.3.23 Printing the Conflict Resolution Strategy (printconfresolutionstrategy)
9.3.24 Updating the Conflict Resolution Strategy (updateconfresolutionstrategy)
9.3.25 Setting the master definition node (setasmdn)
9.3.26 Setting the Controller (setascontroller)
9.3.27 Validating a Publication (validatepub)
9.3.28 Validating All Publications (validatepubs)
9.3.29 Removing a Publication (removepub)
9.3.30 Replicating DDL Changes (replicateddl)
9.3.31 Adding a Subscription Database (addsubdb)
9.3.32 Printing Subscription Database IDs (printsubdbids)
9.3.33 Printing Subscription Database Details (printsubdbidsdetails)
9.3.34 Updating a Subscription Database (updatesubdb)
9.3.35 Removing a Subscription Database (removesubdb)
9.3.36 Creating a Subscription (createsub)
9.3.37 Printing a Subscription List (printsublist)

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 5

463
464
466
467
469
470
472
474
475
476
477
479
480
480
481
481
484
494
494
496
496
500
503
504
504
518
521
522
532
532
533
535
536
536
537
538
539
539
540
540
540
541
541
542
542
543
543
544

9.3.38 Enabling Filters on a Subscription or Non-MDN Node (enablefilter)
9.3.39 Disabling Filters on a Subscription or Non-MDN Node (disablefilter)
9.3.40 Taking a Single-Master Snapshot (dosnapshot)
9.3.41 Take a Multi-Master Snapshot (dommrsnapshot)
9.3.42 Performing a Synchronization (dosynchronize)
9.3.43 Configuring a Single-Master Schedule (confschedule)
9.3.44 Configuring a Multi-Master Schedule (confschedulemmr)
9.3.45 Print Schedule (printschedule)
9.3.46 Updating a Subscription (updatesub)
9.3.47 Removing a Subscription (removesub)
9.3.48 Scheduling Shadow Table History Cleanup (confcleanupjob)
9.3.49 Cleaning Up Shadow Table History (cleanshadowhistforpub)
9.3.50 Cleaning Up Replication History (cleanrephistoryforpub)
9.3.51 Cleaning Up All Replication History (cleanrephistory)
10 Data Validator
10.1 Installation and Configuration
10.2 Performing Data Validation
11 Appendix
11.1 Permitted Configurations and Combinations
11.2 Upgrading to xDB Replication Server 6.2
11.2.1 Upgrading with the Graphical User Interface Installer
11.2.2 Upgrading with the xDB Replication Server RPM Package
11.2.3 Updating the Publication and Subscription Server Ports
11.3 Resolving Problems
11.3.1 Error Messages
11.3.2 Where to Look for Errors
11.3.3 Common Problem Checklist
11.3.4 Troubleshooting Areas
11.4 Miscellaneous xDB Replication Server Processing Topics
11.4.1 Publication and Subscription Server Configuration Options
11.4.1.1 Controlling Logging Level, Log File Sizes, and Rotation Count
11.4.1.2 Replacing Null Characters
11.4.1.3 Schema Migration Options
11.4.1.4 Replicating Oracle Partitioned Tables
11.4.1.5 Specifying a Custom URL for an Oracle JDBC Connection
11.4.1.6 Snapshot Replication Options
11.4.1.7 Assigning an IP Address for Remote Method Invocation
11.4.1.8 Using pgAgent Job Scheduling
11.4.1.9 Forcing Immediate Shadow Table Cleanup
11.4.1.10 Setting Event History Cleanup Threshold
11.4.1.11 DDL Change Replication Table Locking
11.4.1.12 Persisting Zero Transaction Count Replication History
11.4.1.13 Skipping Grants of Table Level User Privileges on MMR Target Tables
11.4.1.14 Applying Grants of Table Level User Privileges on SMR Target Tables
11.4.1.15 Log-Based Method of Synchronization Options
11.4.1.16 Setting the Apache DBCP Connection Validation Query Timeout
11.4.2 Encrypting the Password in the xDB Replication Configuration File
11.4.3 Writing a Cron Expression

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 6

545
547
548
549
550
551
551
551
552
553
553
553
554
554
555
555

11.4.4 Disabling Foreign Key Constraints for Snapshot Replications
11.4.5 Quoted Identifiers and Default Case Translation
11.4.6 Replicating the SQL Server SQL_VARIANT Data Type
11.5 Service Pack Maintenance
12 Release Notes
12.1 Version 6.2.18
12.2 Version 6.2.17
12.3 Version 6.2.16
12.4 Version 6.2.15
12.5 Version 6.2.14
12.6 Version 6.2.13
12.7 Version 6.2.12
12.8 Version 6.2.11
12.9 Version 6.2.10
12.10 Version 6.2.9
12.11 Version 6.2.19

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 7

1 Replication Server

EDB Postgres Replication Server (EPRS) provides a robust data platform that replicates between PostgreSQL databases in single-master or multi-master
mode, or from non-PostgreSQL databases to PostgreSQL in single-master mode.

2 Introduction

This document describes the installation, configuration, architecture, and operation of the EDB xDB Replication Server. EDB xDB (cross database)
Replication Server (referred to hereafter as xDB Replication Server) is an asynchronous replication system available for PostgreSQL and for EDB Postgres
Advanced Server. The latter will be referred to simply as Advanced Server.

xDB Replication Server can be used to implement replication systems based on either of two different replication models – single-master (primary-to-
secondary) replication or multi-master replication.

Regardless of the chosen replication model, xDB Replication Server is extremely flexible and easy to use.

For single-master replication, PostgreSQL, Advanced Server, Oracle, and Microsoft SQL Server are supported in an assortment of configurations (including
cascading replication) allowing organizations to utilize it in multiple use cases with a variety of benefits.

The following are some combinations of cross database replications that xDB Replication Server supports for single-master replication:

From Oracle to PostgreSQL
From Oracle to Advanced Server
From SQL Server to PostgreSQL
From SQL Server to Advanced Server
From Advanced Server to Oracle
From PostgreSQL to SQL Server
From Advanced Server to SQL Server
Between PostgreSQL and Advanced Server
From PostgreSQL to Oracle (WAL mode)
From PostgreSQL to Oracle (trigger mode)

NoteNote

Oracle Real Application Clusters (RAC) and Oracle Exadata are not supported by xDB Replication Server. These Oracle products have not been
evaluated nor certified with xDB Replication Server.

For multi-master replication, xDB Replication Server supports the following configurations:

Between PostgreSQL database servers
Between PostgreSQL database servers and Advanced Servers in PostgreSQL compatible mode
Between Advanced Servers in PostgreSQL compatible mode
Between Advanced Servers in Oracle compatible mode

The reader is assumed to have basic SQL knowledge and basic Oracle, SQL Server, or PostgreSQL database administration skills (whichever are applicable)
so that databases, users, schemas, and tables can be created and database object privileges assigned.

The remainder of Chapter Introduction describes conventions used throughout this user’s guide along with suggested sections to read based upon
your purpose for using this guide.
Chapter Overview provides an overview of xDB Replication Server including basic replication concepts and definitions, architecture and components
of xDB Replication Server, and design guidelines for setting up a replication system.
Chapter Installation and Uninstallation gives instructions for installing and uninstalling xDB Replication Server.
Chapter Introduction to the xDB Replication Console provides an overview of the xDB Replication Console, the graphical user interface for using xDB
Replication Server.
Chapter Single-Master Replication Operation gives instructions for the configuration and operation of xDB Replication Server for single-master
replication systems.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 8

Chapter Multi-Master Replication Operation gives instructions for the configuration and operation of xDB Replication Server for multi-master
replication systems.
Chapter Common Operations describes operations that are common to both single-master and multi-master replication systems.
Chapter xDB Replication Server Command Line Interface describes the xDB Replication Server Command Line Interface, an alternative to the
graphical user interface for xDB Replication Server configuration and management.
Chapter Data Validator gives instructions for configuration and usage of the Data Validator.
Chapter Appendix is an appendix containing troubleshooting tips, a list of error messages, their causes and resolutions, permitted combinations of
database servers in a replication system, xDB Replication Server product upgrade procedures, and other miscellaneous technical information.

2.1 Conventions Used in this Guide

The following is a list of other conventions used throughout this document.

This guide applies to both Linux and Windows systems. Directory paths are presented in the Linux format with forward slashes. When working on
Windows systems, start the directory path with the drive letter followed by a colon and substitute back slashes for forward slashes.
Much of the information in this document applies interchangeably to PostgreSQL and EDB Postgres Advanced Server. The term Postgres is used to
generically refer to both PostgreSQL and Advanced Server. When a distinction needs to be made between these two database systems, the specific
names, PostgreSQL or Advanced Server are used.
The installation directory path of the PostgreSQL or Advanced Server products is referred to as POSTGRES_INSTALL_HOME . For PostgreSQL
Linux installations, this defaults to /opt/PostgreSQL/x.x for version 10 and earlier. For later versions, use the PostgreSQL community
packages. For PostgreSQL Windows installations, this defaults to C:\Program Files\PostgreSQL\x.x . For Advanced Server Linux
installations accomplished using the interactive installer for version 10 and earlier, this defaults to /opt/PostgresPlus/x.xAS or
/opt/edb/asx.x . For Advanced Server Linux installations accomplished using an RPM package, this defaults to /usr/ppas-x.x or
/usr/edb/asx.x . For Advanced Server Windows installations, this defaults to C:\Program Files\PostgresPlus\x.xAS or
C:\Program Files\edb\asx.x . The product version number is represented by x.x or by xx for version 10 and later.

2.2 Certified and Supported Product Versions

The following database product versions may be used with xDB Replication Server:

PostgreSQL versions 10, 11, 12, 13, and 14
Advanced Server versions 10, 11, 12, 13, and 14
Oracle 10g Release 2 version 10.2.0.1.0 has been explicitly certified. Newer minor versions in the 10.2 line are supported as well.
Oracle 11g Release 2 version 11.2.0.2.0 has been explicitly certified. Newer minor versions in the 11.2 line are supported as well.
Oracle 12c version 12.1.0.2.0 has been explicitly certified. Newer minor versions in the 12.1 line are supported as well.
Oracle 18c version 18.1.0.2.0 has been explicitly certified. Newer minor versions in the 18.1 line are supported as well.
Oracle 19c version 19.1.0.2.0 has been explicitly certified. Newer minor versions in the 19.1 line are supported as well.
SQL Server 2008 version 10.50.1617.0 has been explicitly certified. Newer minor versions in the 10.50 line are supported as well.
SQL Server 2012 version 11.0.6020.0 has been explicitly certified. Newer minor versions in the 11.0 line are supported as well.
SQL Server 2014 version 12.0.5000.0 has been explicitly certified. Newer minor versions in the 12.0 line are supported as well.

Contact your EnterpriseDB Account Manager or sales@enterprisedb.com if you require support for other platforms.

A Note Regarding Oracle RAC and Oracle ExadataA Note Regarding Oracle RAC and Oracle Exadata

xDB Replication server has not been tested and is not officially supported for use with Oracle RAC and Exadata, but may work when connected to a single
persistent node. To determine its ability to work with RAC or Exadata, please contact your EDB representative.

2.3 Supported Platforms

The xDB Replication Server is certified to work with the following Java platforms:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 9

mailto:sales@enterprisedb.com
mailto:sales@enterprisedb.com

Table-1: Certified Java PlatformsTable-1: Certified Java Platforms

Operating SystemsOperating Systems JDK VersionsJDK Versions

RHEL 8 - Red Hat OpenJDK 8
- Oracle JDK 8

RHEL 7 - Red Hat OpenJDK 8
- Oracle JDK 8

Rocky Linux/AlmaLinux 8 Red Hat OpenJDK 8

CentOS 7 Red Hat OpenJDK 8

PPCLE RHEL 8 Red Hat OpenJDK 8

SLES 12 Red Hat OpenJDK 8

Debian 10 Red Hat OpenJDK 11

Ubuntu 18.04 and 20.04 Red Hat OpenJDK 11

Windows 2012 R2, 2016, and 2019 Red Hat OpenJDK 8

See Product Compatibility for more information.

3 Overview

This chapter defines basic replication terms and concepts, and presents an overview of the components and architecture of xDB Replication Server. The
chapter concludes with design guidelines and directions for implementing a replication system using xDB Replication Server.

3.1 Why Use Replication

Replication of data can be employed in a variety of use cases in organizations where it is important to use the same data in multiple settings. This allows
users to work with ‘real’ data that will yield ‘real’ results that are reliable in more than one setting. Support of both single-master and multi-master
replication gives xDB Replication Server a broad range of supported use cases.

Some of the more popular uses of single-master replication include the following:

3.1.1 Offloading Reporting and Business Intelligence Queries

In this use case, users take all or just a subset of data from a production OLTP system and replicate it to another database whose sole purpose is to support
reporting queries. This can have multiple benefits:

1. Reporting loads are removed from the OLTP system, improving transaction processing performance.
2. Query performance improves as well without being subordinated to transactions on the system.
3. In Oracle installations, the reporting server duties can be handled by a product like Advanced Server reducing licensing costs for a reporting server.

3.1.2 Using Warm Standby Servers

When many organizations wish to improve the availability of their data, a cost effective solution is often the use of warm standby servers. These are
database servers kept up to date with the online system through replication that can be brought online quickly in the event of a failure in the production

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 10

https://www.enterprisedb.com/platform-compatibility#eprs

system. Warm standby servers can also be used for regular maintenance by gracefully switching over to the standby server so that the production server can
be brought offline for regular maintenance.

3.1.3 Testing Systems in Parallel

Often times, upgrading or moving to a new database system requires that the old and new systems be up and running in parallel to allow for testing and
comparing results in real time. Replication can be employed in this use case and is frequently used in development and testing environments.

3.1.4 Migrating Data

Similar to running in parallel, is the situation where data may be migrated from one system to another in a sort of seeding operation. Replication can be
very effective in this situation by quickly copying data.

Some reasons to consider multi-master replication include the following:

3.1.5 Write Availability

In single-master replication, only the primary database is available for writes. The secondary databases are read-only for applications. If the replicated
target databases must be available for write access as well, multi-master replication can be employed for the same use cases as outlined for single-master
replication, but with the additional advantage of write access to the secondary.

3.1.6 Write Scalability

In write-intensive applications, multi-master replication allows you to utilize multiple database servers on separate hosts to process write transactions
independently of each other on their own primary databases. Changes can then be reconciled across primary databases according to your chosen schedule.

3.1.7 Localized Data Access

In a geographically dispersed application, local access to the database can be provided to regions of clients. Having the database servers physically close to
clients can reduce latency with the database. Multi-master replication allows you to employ a WAN connected network of primary databases that can be
geographically close to groups of clients, yet maintain data consistency across primary databases.

3.2 Replication Concepts and Definitions

xDB Replication Server is a software product that enables the implementation of a replication system. A replication systemreplication system is software and hardware whose
purpose is to make a copy of data from one location to another and to ensure the copied data is the same as the original over time.

xDB Replication Server applies the replication system concept to tables of Oracle, SQL Server, PostgreSQL, and Advanced Server database management
systems.

The following sections present specific terms and concepts used when discussing xDB Replication Server.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 11

3.2.1 Comparison of Single-Master and Multi-Master Replication

There are two models of replication systems supported by xDB Replication Server:

Single-Master Replication (SMR).Single-Master Replication (SMR). Changes (inserts, updates, and deletions) to table rows are allowed to occur in a designated primary database.
These changes are replicated to tables in one or more secondary databases. The replicated tables in the secondary databases are not permitted to
accept any changes except from its designated primary database. (This is also known as primary-to-secondary replication.)
Multi-Master Replication (MMR).Multi-Master Replication (MMR). Two or more databases are designated in which tables with the same table definitions and initial row sets are
created. Changes (inserts, updates, and deletions) to table rows are allowed to occur in any database. Changes to table rows in any given database
are replicated to their counterpart tables in every other database.

For a single-master replication system, a variety of configurations are supported including:

Replication between PostgreSQL and Advanced Server databases (between products in either direction)
Replication in either direction between Oracle and Advanced Server
Replication in either direction between SQL Server and PostgreSQL
Replication in either direction between SQL Server and Advanced Server
Replication in either direction between PostgreSQL and Oracle

For multi-master replication, the participating database servers in a given multi-master replication system must be of the same type:

PostgreSQL database servers
PostgreSQL database servers and Advanced Servers operating in PostgreSQL compatible mode
Advanced Servers operating in PostgreSQL compatible mode
Advanced Servers operating in Oracle compatible mode

NoteNote

A given database cannot simultaneously participate in both a single-master replication system and a multi-master replication system.

3.2.2 Publications and Subscriptions

xDB Replication Server uses an architecture called publish and subscribe. The data to be made available for copying by a replication system is defined as a
publication. To get a copy of that data, you must subscribe to that publication. The manner in which you subscribe is slightly different for single-master
and multi-master replication systems.

In xDB Replication Server a publication is defined as a named set of tables and views within a database. The database that contains the publication is
called the publication database of that publication.

In a single-master replication system, to get a copy of an xDB Replication Server publication, you must create a subscription. An xDB Replication Server
subscription is a named association of a publication to a database to which the publication is to be copied. This database is called the subscription
database.

Similar to a single-master replication system, when creating a multi-master replication system, you first define a publication in the publication database.
You then add one or more additional databases that you want to participate in this multi-master replication system. As you add each database, it is
associated with this replication system. You do not create an explicit, named subscription in a multi-master replication system.

In a single-master replication system, replication is said to occur when xDB Replication Server initiates and completes either of the following processes:

1. applies changes that have been made to rows in the publication since the last replication occurred, to rows in tables of the subscription database
(called synchronization); or

2. copies rows of the publication to empty tables of the subscription database (called a snapshot). See Snapshot and Synchronization Overview for
further discussion on snapshots and synchronization.

The subscription tables are the tables in the subscription database created from corresponding tables or views in the publication.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 12

NoteNote

In a single-master replication system xDB Replication Server creates a table in the subscription database for each view contained in the
publication.

In a multi-master replication system, the concept and definition of replication is nearly identical to a single-master replication system with the following
modifications:

1. synchronization can occur between any pair of databases (referred to as primary nodes) participating in the replication system;
2. a snapshot can occur from the publication database designated as the Primary Definition Node to any of the other primary nodes.

The following diagrams illustrate some basic single-master replication system examples.

The preceding diagram illustrates that a table that has been created as a member of a subscription can be used in a publication replicating to another
subscription. This scenario is called cascading replication.

The following diagram illustrates a multi-master replication system with three primary nodes.

Figure 2-1: Publications in one database replicating to subscriptions in another databaseFigure 2-1: Publications in one database replicating to subscriptions in another database

Figure 2-2:Publications replicating to two subscription databasesFigure 2-2:Publications replicating to two subscription databases

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 13

Figure 2-3: Publications in two databases replicating to one subscription databaseFigure 2-3: Publications in two databases replicating to one subscription database

Figure 2-4: Cascading Replication: Tables used in both a subscription and a publicationFigure 2-4: Cascading Replication: Tables used in both a subscription and a publication

The preceding diagram illustrates that a table that has been created as a member of a subscription can be used in a publication replicating to another
subscription. This scenario is called cascading replication.

The following diagram illustrates a multi-master replication system with three primary nodes.

Figure 2-5: Multi-master replication systemFigure 2-5: Multi-master replication system

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 14

3.2.3 Single-Master (Primary-to-secondary) Replication

xDB Replication Server performs primary-to-secondary replication when a single-master replication system is implemented. The publication is the master
and the subscription is the secondary. In a primary-to-secondary relationship, changes are propagated in one direction only, from the master to the
secondary.

Figure 2-6: Single-Master (Primary-to-secondary) replicationFigure 2-6: Single-Master (Primary-to-secondary) replication

Generally, changes must not be made to the definitions of the publication tables or the subscription tables. If such changes are made to the publication
tables, they are not propagated to the subscription and vice versa unless the DDL change replication feature is used as described in Replicating DDL
Changes. If changes are made to the table definitions without using the DDL change replication feature, there is a risk that future replication attempts may
fail.

Changes must not be made to the rows of the subscription tables. If such changes are made, they are not propagated back to the publication. If changes are
made to the subscription table rows, it is fairly likely that the rows will no longer match their publication counterparts. There is also a risk that future
replication attempts may fail.

3.2.4 Multi-Master Replication

As an alternative to the single-master (primary-to-secondary) replication model, xDB Replication Server supports multi-master replication.

The following definitions are used when referring to multi-master replication systems.

A primary node is a database participating in a multi-master replication system.

The database (primary node) in which the publication is initially defined is specially designated as the primary definition node (MDN) . There can
be only one primary definition node at any given time, however, it is possible to change which primary node is the primary definition node. When it is
important to make a distinction between the primary definition node and all other primary nodes that are not the primary definition node, the latter are
referred to as non-MDN nodes .

The primary definition node has the following significance:

The publication is initially created in the primary definition node, and the tables comprising the publication must exist in the database to be
designated as the primary definition node at the time the publication is defined.
The publication can be initially replicated to other primary nodes by means of a snapshot from the primary definition node.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 15

Each subsequent primary node added to the replication system must either: 1) contain no tables with the same schema-qualified names as the
publication tables in the primary definition node; or 2) contain all publication table definitions as they exist in the primary definition node with the
same schema-qualified names. In the first case, when you add the primary node, you select the option to replicate the publication schema from the
primary definition node. In the second case, you do not select this option.
The table rows in a primary node can be reloaded from the primary definition node. The primary node tables are truncated and the rows reloaded by a
snapshot from the primary definition node.

Once the multi-master replication system is defined, changes (inserts, updates, and deletions) to rows of the publication tables on any primary node are
synchronized to all other primary nodes on either an on demand or scheduled basis.

Generally, changes must not be made to the table definitions in any of the primary nodes including the primary definition node. If such changes are made,
they are not propagated to other nodes in the multi-master replication system unless they are made using the DDL change replication feature described in
Replicating DDL Changes. If changes are made to tables without using the DDL change replication feature, there is a risk that future replication attempts
may fail.

Figure 2-7: In a multi-master replication system, table rows can be updated at any primary nodeFigure 2-7: In a multi-master replication system, table rows can be updated at any primary node

3.2.5 Asynchronous

xDB Replication Server performs replications asynchronously. The systems hosting the databases do not always have to be running continuously in order
for successful replication to occur. If one system goes offline, replication resumes when it comes back online if there is still pending data to replicate.

In addition you can create a schedule for your replication system. xDB Replication Server initiates and performs replications regularly according to the
assigned schedule. This allows you to run the replication system unattended. See Creating a Schedule for directions on creating a schedule.

3.2.6 Snapshot and Synchronization Overview

xDB Replication Server performs two different types of replications. These two main types are called snapshot replication and synchronization replication.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 16

In either method, the source tables refer to the tables from which the replication data is originating (the publication in a single-master replication system,
or the primary node whose changes are being replicated to another primary node in a multi-master replication system).

The target tables are the tables that are receiving the replication data from the source tables (the subscription tables in a single-master replication system,
or the primary node receiving changes from another primary node in a multi-master replication system).

In snapshot replication, all existing rows in the target tables are deleted using the database system’s TRUNCATE command. The tables are then
completely reloaded from the source tables of the publication.

In synchronization replication, only the changes (inserts, updates, and deletions) to the rows in the source tables since the last replication are applied to
the target tables.

NoteNote

Deletion of all rows in a source table executed by the SQL TRUNCATE command results in replication to the target tables only if the log-based
method of synchronization replication is used. If the trigger-based method of synchronization replication is used, execution of the TRUNCATE
command on a source table does not replicate the effect to the target tables. You must perform a snapshot from the source table to the target
tables if the trigger-based method is used. (The difference between the trigger-based method and the log-based method is discussed as follows.)

Synchronization replication is implemented using two different methods – the trigger-based method and the log-based method.

In the trigger-based method changes to rows in the source tables result in the firing of row-based triggers. These triggers record the changes in shadow
tables. The changes recorded in the shadow tables are then periodically extracted from the shadow tables, converted to an in-memory data structure, and
applied to the target tables by means of SQL statements executed using JDBC. See Synchronization Replication with the Trigger-Based Method for
information on the trigger-based method.

In the log-based method changes to rows in the source tables are extracted from the Write-Ahead Log segments (WAL files) using asynchronous streaming
replication implemented by the logical decoding feature available in Postgres database servers. The extracted changes are converted to an in-memory data
structure and applied to the target tables by means of SQL statements executed using JDBC. See Synchronization Replication with the Log-Based Method
for information on the log-based method.

In a multi-master replication system, the manner in which changes accumulated on all primary nodes are replicated to all other primary nodes is
conceptually done in groups identified by the source primary node with the changes to be replicated. See Multi-Master Parallel Replication for information
on this process and the improvement for the log-based method with parallel replication.

In a single-master replication system, the very first replication to a newly created subscription must always be done by a snapshot. Subsequent replications
can be done by snapshot or by synchronization provided that the publication is not defined as a snapshot-only publication as discussed in Snapshot-Only
Publications.

In a multi-master replication system, the very first replication from the primary definition node to a newly added primary node must always be done by a
snapshot. Subsequent replications between primary nodes occur by synchronization. However, it is possible to perform subsequent snapshots from the
primary definition node to any other primary node.

3.2.7 Snapshot-Only Publications

When a publication is created in a single-master replication system, the publication can be defined as a snapshot-only publication. Replication from a
snapshot-only publication can only be done using the snapshot replication method. Synchronization replication is not permitted on a snapshot-only
publication.

A snapshot-only publication cannot be created in a multi-master replication system.

See Performance Considerations for a discussion of the advantages of using a snapshot-only publication.

3.2.8 Snapshot Replication

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 17

In snapshot replication, the target tables are completely reloaded from the source tables. The database system’s truncate operation is used to delete all
rows from the target tables.

For Oracle and SQL Server only:For Oracle and SQL Server only: Oracle and SQL Server target tables are loaded using JDBC batches of INSERT statements.

For Postgres only:For Postgres only: In general, Postgres target tables are loaded using the JDBC COPY command since using truncation and COPY is generally faster than if
you were to execute an SQL DELETE statement against the entire table and then add the rows using JDBC batches of INSERT statements. If the COPY
command fails, the publication server retries the snapshot using JDBC batches of INSERT statements.

If the target table (regardless of database type) contains a large object data type such as BYTEA , BLOB , or CLOB then rows are loaded one at a time per
batch using an INSERT statement. This is to avoid a heap space error resulting from potentially large rows. Loading time can be decreased by allowing
multiple inserts per batch, which is done by adjusting the configuration option lobBatchSize described in Optimizing Snapshot Replication.

NoteNote

Advanced Server supports a number of aliases for data types. Such aliases that translate to BYTEA are treated as large object data types. See
the Database Compatibility for Oracle Developers Reference Guide for a listing of Advanced Server data types. (See the Database Compatibility
for Oracle Developer’s Guide for Advanced Server version 9.5 or earlier versions.)

Under certain circumstances, the corresponding Postgres target table created for certain types of Oracle partitioned tables is a set of inherited tables. In
these cases, the SQL DELETE statement is used on the inherited child tables instead of truncation. See Replicating Oracle Partitioned Tables for
additional information on replicating Oracle partitioned tables.

A server configuration option is available that forces the snapshot replication process to use the Oracle database link utility instead of JDBC COPY to
populate the Postgres target tables from an Oracle publication. Oracle database link provides an additional performance improvement over JDBC COPY .
See Optimizing Snapshot Replication for information on using the Oracle database link option.

See Optimizing Snapshot Replication for information on various configuration options to optimize snapshot replication.

3.2.9 Synchronization Replication with the Trigger-Based Method

If a publication in a single-master replication system is created that will be used in synchronization replications with the trigger-based method, the
publication server installs an insert trigger, an update trigger, and a delete trigger on each publication table. In a multi-master replication system, each
replicated table in each primary node employing the trigger-based method has an insert trigger, an update trigger, and a delete trigger.

Oracle and SQL Server databases can only be used as publication databases with the trigger-based method. Additionally, Oracle and SQL Server databases
can be used as subscription databases with the WAL-based replication method.

The publication server also creates a shadow table for each source table on which triggers have been created. A shadow table is a table used by xDB
Replication Server to record the changes (inserts, updates, and deletions) made to a given source table. A shadow table records three types of record
images:

For each row inserted into the source table, the shadow table records the image of the inserted row.

For each existing row that is updated in the source table, the shadow table records the after image of the updated row.

For each row deleted from the source table, the shadow table records the primary key value of the deleted row.

NoteNote

In a multi-master replication system, the before image of an updated row is also stored in the shadow table in order to perform update conflict
detection. See Conflict Resolution for information on conflict detection in a multi-master replication system.

After each change on the source table, one of the insert, update, or delete triggers is executed. These are row triggers, so for each row affected by the
change, the trigger executes. Each execution of the trigger records a row of the appropriate type (insert, update, or deletion) in the shadow table of the

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 18

corresponding source table.

Though changes made to the source tables since the last replication occurred are applied to the target tables using SQL INSERT, UPDATE , and
DELETE statements, the actual SQL statements run against the target tables are not the same SQL statements that were run against the source tables.

When synchronization replication occurs, the publication server executes JDBC batches of SQL statements (also referred to as transaction sets) against the
target tables. The batches contain an INSERT statement for each shadow table row recording an insert operation, an UPDATE statement for each
shadow table row recording an update operation, and a DELETE statement for each shadow table row recording a delete operation. Each batch is
executed in one transaction.

Shadow table rows that were applied to target tables can be viewed as shadow table history in the xDB Replication Console (see Shadow Table History).

NoteNote

A single SQL statement executed against a source table may result in many rows recorded in a shadow table, and therefore, many SQL
statements executed against the target table. For example, if a single UPDATE statement affects 10 rows in the source table, 10 rows will be
inserted into the shadow table – one for each row in the source table that was updated. When the publication server applies the changes to the
target table, 10 UPDATE statements will be executed.

NoteNote

For greater efficiency, when changes to the source tables consist of SQL statements that each affect a large number of rows, the publication
server may employ the use of prepared SQL statements. See Optimizing Synchronization Replication for directions on how to control the usage of
prepared SQL statements as well as information on various other configuration options to optimize synchronization replication.

3.2.10 Synchronization Replication with the Log-Based Method

In PostgreSQL 9.4 a feature has been introduced called logical decoding (also called logical replication or changeset extraction). This feature provides the
capability to extract data manipulation language (DML) changes from the Write-Ahead Log segments (WAL files) in a readable format.

For information on logical decoding see the PostgreSQL Core Documentation located at:

https://www.postgresql.org/docs/current/static/logicaldecoding.html

The key significance of this feature is the ability to capture data changes to the publication tables without impacting the online transaction processing rate
against these tables that occurs when using the trigger-based method. The trigger-based method results in the firing of row-level triggers whenever data
changes occur, then inserting these data changes into shadow tables for temporary storage before applying the changes to the target databases.

Thus, extracting data changes using logical decoding can be beneficial for improving database server throughput and replication latency.

However, note that the logical decoding interface streams changes for all tables in a given database, which may have a performance overhead associated
with it. For example, if a database contains 100 tables, and the user is interested in replicating only a small subset of these tables, say only 20 tables in a
single publication, the logical decoding protocol will stream changes for all 100 tables to the publication server. The publication server eventually filters
out the changes for the irrelevant 80 tables. However, this results in network overhead caused by the additional changeset load that is not required by the
replication system.

Using logical decoding to extract changes from a publication database during xDB synchronization replication is referred to as the log-based method.

The following sections describe the basic requirements and concepts for the log-based method of synchronization replication.

3.2.10.1 Requirements and Restrictions

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 19

https://www.postgresql.org/docs/current/static/logicaldecoding.html

The following are the general requirements and restrictions when using the log-based method for any database of a single-master or multi-master
replication system:

The selection of either the trigger-based method or the log-based method is a characteristic applicable to only the publication database. The choice
is made when defining the primary database of a single-master replication system (see Section Adding a Publication Database) or the primary
definition node of a multi-master replication system (see Adding the Primary definition node).
The logical decoding feature, and hence the log-based method, is supported beginning with PostgreSQL version 9.4. Therefore, in order to use the
log-based method for a publication database, that publication database must be running under PostgreSQL version 9.4 or later, or under Advanced
Server version 9.4 or later.
In a single-master replication system, whether the primary database uses the trigger-based method or the log-based method has no additional
impact on the rules for choosing the subscription database. For example, even if the log-based method is chosen for the primary database, the
subscription database may be running on Postgres version 9.4 as well as any supported, earlier version of Postgres, as well as Oracle or SQL Server.
In a single-master replication system, the primary database may contain one or more publications (that is, named sets of tables for replication). This
is applicable to a primary database using either the trigger-based method or the log-based method.
It is permissible to have multiple, single-master replication systems running under a publication server where some primary databases may use the
trigger-based method while others use the log-based method.
In a multi-master replication system, the selection of either the trigger-based method or the log-based method on the primary definition node
determines the method for all other primary nodes. In other words, if the trigger-based method is chosen for the primary definition node, then all
other primary nodes will use the trigger-based method. If the log-based method is chosen for the primary definition node, then all other primary
nodes will use the log-based method.
As a consequence of the restriction described in the preceding bullet point, in order to use the log-based method for a multi-master replication
system, all of the primary nodes of the system must be running under Postgres version 9.4 or later, and all such Postgres database clusters must be
configured to use logical decoding for the log-based method.

Selection of the log-based method for any database impacts the configuration of the Postgres database cluster containing that database.

If you plan to use the log-based method with any publication database running under a Postgres database server, the following configuration parameter
settings are required in the configuration file, postgresql.conf , of that Postgres database server:

wal_level. Set to logical.
max_wal_senders. Specifies the maximum number of concurrent connections (that is, the maximum number of simultaneously running WAL

sender processes). Set at minimum, to the total number of primary databases of single-master replication systems and primary nodes of multi-
master replication systems on this database server that will use the log-based method.
max_replication_slots. Specifies the maximum number of replication slots. If the database server supports both single-master replication

systems and multi-master replication systems, then max_replication_slots must be set at minimum to the sum of the requirements for both
replication systems. For support of SMR systems, the minimum requirement is the total number of primary databases of the single-master
replication systems that will use the log-based method. For support of MMR systems, the minimum requirement is the total number of primary nodes
in the multi-master replication system multiplied by the number of primary nodes residing on this database server. For information, see Replication
Origin.
track_commit_timestamp. Set to on . This configuration parameter applies only to Postgres database servers of version 9.5 and later. See

Configuration Parameter and Table Setting Requirements for additional information.

Also, see Enabling Synchronization Replication with the Log-Based Method for setting these parameters for a single-master replication system. See
Enabling Synchronization Replication with the Log-Based Method for a multi-master replication system.

In addition, the pg_hba.conf configuration file of the Postgres database server must contain an entry permitting REPLICATION access for each
database using the log-based method running on the database server. The access must be permitted to the publication database user specified when
creating the publication database definition using the xDB Replication Console (See Adding a Publication Database for a single-master replication system
or Adding the Primary definition node for a multi-master replication system) or the xDB Replication Server Command Line Interface (CLI) (see Adding a
Publication Database (addpubdb)).

See Postgres Server Authentication for setting REPLICATION access for a single-master replication system. See Verifying Host Accessibility for a multi-
master replication system.

For configuration options in the publication server configuration file that are specifically applicable to the log-based method see Log-Based Method of
Synchronization Options.

3.2.10.2 Logical Replication Slots

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 20

When using the log-based method on a publication database, the underlying logical decoding framework exposes the data changes (the changeset stream)
by means of a logical replication slot.

A logical replication slot represents a changeset stream and applies to a single database. The xDB Replication Server assigns a unique identifier, called the
slot name, to each logical replication slot it creates in the form xdb_dboid_pubid where dboid is the publication database object identifier (OID) and
pubid is the publication ID assigned by the xDB Replication Server. All slot names are unique within a Postgres database cluster.

Thus, for each single-master replication system using the log-based method, a replication slot is required for the publication database of each such system.

For a multi-master replication system using the log-based method, each primary node requires a replication slot.

The maximum number of replication slots permitted for a database server is controlled by the max_replication_slots configuration parameter in
the postgresql.conf file. Therefore this configuration parameter must be set to a large enough value to account for all publication databases defined
with the log-based method of single-master replication systems running on the database server as well as all primary nodes of a multi-master replication
system defined with the log-based method running on the database server. Additional replication slots are required to support the usage of replication
origin (see Replication Origin). See Enabling Synchronization Replication with the Log-Based Method for additional information on configuration
parameters for single-master replication systems. See Enabling Synchronization Replication with the Log-Based Method for multi-master replication
systems.

3.2.10.3 Streaming Replication with the WAL Sender Process

The changeset stream is accessible to the xDB publication server by the WAL sender processWAL sender process (walsender) using the streaming replication protocol.

The xDB publication server connects using the walsender interface through which changes are streamed on a continual basis. The continuous
streaming eliminates the need for explicitly polling for changes.

The following are the basic synchronization steps using the log-based method:

1. A streaming replication connection to the database server is opened using libpq to establish a walsender communication channel.
2. A separate thread is used to monitor data changes streamed through the walsender interface.
3. As the data changes become available, they are transformed to populate an in-memory cache.
4. On the next scheduled interval, the in-memory cached data changes are applied to each of the target databases in JDBC batches of SQL statements

(referred to as transaction sets) in the same manner as described in Synchronization Replication with the Trigger-Based Method for the trigger-based
method. If one or more target database servers are not accessible, the data changes are saved in a local file on the host running the publication
server. See In-Memory Caching and Persistence for information on in-memory caching and data persistence.

5. The value of the WAL segment’s log sequence number (LSN) identifying the last set of applied changes based on the last replicated transaction is
updated. The update is confirmed to the database server.

6. The applied data changes are cleared from the in-memory cache.
7. Steps 3 through 6 are repeated.

NoteNote

A single SQL statement executed against a source table may result in many rows modified and returned in the changeset stream, and therefore,
many SQL statements executed against the target table. For example, if a single UPDATE statement affects 10 rows in the source table, 10 rows
will be returned in the changeset stream – one for each row in the source table that was updated. When the publication server applies the
changes to the target table, 10 UPDATE statements will be executed.

3.2.10.4 Replication Origin

Starting with Postgres version 9.5, a feature called replication origin has been introduced to the logical decoding framework. Replication origin allows an
application to identify, label, and mark certain aspects of a logical decoding session.

For information on replication origin see the PostgreSQL Core Documentation located at:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 21

https://www.postgresql.org/docs/current/static/replication-origins.html

For the log-based method of synchronization replication, this provides performance improvement provided that the primary nodes are running under
Postgres version 9.5 or later.

As previously described, the log-based method uses the WAL files to obtain the changes applied to the publication tables. After the changes are retrieved
through the walsender interface, the publication server applies the set of changes to the other primary nodes using transaction sets consisting of JDBC
batches of SQL statements. When these changes are applied to the tables in the other target primary nodes, the same changes are also recorded in the WAL
files of each database server hosting the target primary nodes.

These redundant or replayed changes are included in the changeset stream received by the publication server. These replayed changes must be ignored
and not applied since they are duplicates of all changes that have already been applied to the target tables through the JDBC batches.

The replayed changes result in performance overhead as all such changes are transmitted over the network from the database server to the publication
server, and then the publication server must discard such redundant changes.

With the replication origin feature, the publication server is able to set up the logical decoding sessions so that these replayed changes are not included in
the changeset stream transmitted over the network to the publication server thus eliminating this performance overhead.

The following are the conditions under which replication origin is used:

Replication origin applies to multi-master replication systems only, not to single-master replication systems.
Replication origin eliminates streaming of replayed changes only from Postgres versions 9.5 or later. Replayed changes are still included in the
changeset stream from Postgres version 9.4, but are discarded by the publication server. Thus multi-master replication systems consisting of both
Postgres versions 9.4 and 9.5 utilize the replication origin advantage on the 9.5 database servers.
The max_replication_slots configuration parameter must be set at a certain minimal level to ensure that the publication server can create
the additional replication slots for replication origin.

For each primary node database, in addition to the replication slot used for the changeset stream, an additional number of replication slots is required –
one additional slot corresponding to every other primary node to support the replication origin usage. Thus, for each primary node, the total number of
replication slots required is equal to the total number of primary nodes in the entire MMR system.

Therefore, for a given database server (that is, a Postgres database cluster containing primary node databases), the total number of replication slots
required is equal to the total number of primary nodes in the entire MMR system multiplied by the number of primary node databases residing within the
given database cluster.

For example, assume the usage of a 6-node multi-master replication system using three database clusters as follows:

Database cluster #1 contains 3 primary node databases.
Database cluster #2 contains 2 primary node databases.
Database cluster #3 contains 1 primary node database.

The total number of primary nodes is six. Multiply the number of primary node databases in each database cluster by six to give the required minimum
setting for max_replication_slots for that database cluster.

The following table shows the required, minimum settings for max_replication_slots as well as max_wal_senders .

Table 2-1: Replication Origin Configuration Parameter SettingsTable 2-1: Replication Origin Configuration Parameter Settings

Postgres Database ServerPostgres Database Server max_wal_sendersmax_wal_senders max_replication_slotsmax_replication_slots

Cluster #1 (3 primary nodes)
3

18

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 22

https://www.postgresql.org/docs/current/static/replication-origins.html

Cluster #2 (2 primary nodes)
2

12

Cluster #3 (1 primary node)
1

6

If the max_replication_slots parameter is not set to a high enough value, synchronization replication still succeeds, but without the replication
origin performance advantage.

The publication server log file contains the following warning in such cases:

WARNING: Failed to setup replication origin ``xdb_MMRnode_c_emp_pub_6``. Reason: ERROR: could not find free
replication state slot for replication origin with OID 4
 Hint: Increase max_replication_slots and try again.

The following example shows some of the replication slot information for a 3-primary node system running on a single database cluster.

The following shows the maximum allowable number of replication slots:

SHOW max_replication_slots;

max_replication_slots

 9
(1 row)

The number should be sufficiently greater than the number of replication slots and replication origins currently allocated.

The following displays the replication slots:

SELECT slot_name, slot_type, database, active FROM pg_replication_slots ORDER BY 1;

 slot_name | slot_type | database | active
-------------+-----------+-----------+--------
 xdb_47877_5 | logical | MMRnode_a | t
 xdb_47878_5 | logical | MMRnode_b | t
 xdb_47879_5 | logical | MMRnode_c | t
(3 rows)

The following shows the replication origins.

SELECT * FROM pg_replication_origin ORDER BY 2;

 roident | roname
---------+--------------------------
 5 | xdb_MMRnode_a_emp_pub_39
 2 | xdb_MMRnode_a_emp_pub_6
 1 | xdb_MMRnode_b_emp_pub_1
 6 | xdb_MMRnode_b_emp_pub_39
 3 | xdb_MMRnode_c_emp_pub_1
 4 | xdb_MMRnode_c_emp_pub_6
(6 rows)

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 23

The replication origin name is assigned in the format xdb_srcdbname_pubname_remotedbid where srcdbname is the source database name,
pubname is the publication name, and remotedbid is the publication database ID of a remote database.

The replication slots are in the active state when the publication server is running. The replication slots are deactivated when the publication server is shut
down.

The replication slots and replication origin sessions are deleted from the database cluster when their corresponding primary nodes are removed from the
multi-master replication system using the xDB Replication Console or the xDB Replication Server CLI.

Should some situation occur where the replication slots are not properly deleted when required, see Dropping Replication Slots for Log-Based
Synchronization Replication for instructions on manually deleting them.

3.2.10.5 In-Memory Caching and Persistence

The data changes are fetched and stored in memory buffers to optimize the data replication process. This avoids the overhead associated with repeatedly
fetching the same set of changes from the database server when there are multiple target databases.

This approach is sufficient as long as all of the target databases are accessible during a replication event and the data fits within the available cache.

However, if one or more of the target databases is unavailable due to network connectivity problems, server down time, etc. the in-memory data changes
must be persisted for later retrieval when the target databases becomes available for synchronization with the source database.

The xDB Replication Server architecture utilizes Java object serializatio to persist the in-memory state of the data. Object serialization is the
conversion of object data and other relevant information to a sequence of bytes that can then be stored in a file.

The following are examples that can result in the eviction of in-memory data to persistent storage:

Before the next replication event occurs, the in-memory cache is filled with the data changes and needs to be evicted to accommodate a new set of
changes.
In the replication system, there are multiple target databases. During a synchronization event, all of the changes available in the cache are applied
successfully to some of the target databases. However one or more of the other target databases cannot be accessed. All of the applied changes held
in memory must be persisted and retained so that these changes can be reloaded and applied when the inaccessible databases becomes available.

The cache size corresponds to the heap size configured for the publication server by the -Xmxnnnm setting of the JAVA_HEAP_SIZE parameter in the
xDB Startup Configuration file. See xDB Replication Configuration File for information on the xDB Startup Configuration file.

The persistence I/O overhead can be minimized by increasing the heap size value and defining a more frequent synchronization interval such as for every
few seconds. See Creating a Schedule for information on setting a replication schedule.

The data changes are persisted in a local file on the host running the publication server. The file is stored in the directory XDB_HOME/xdata .

Each time persistence occurs, a new file is created. After the files have been processed, they are periodically removed from disk.

3.2.11 Multi-Master Parallel Replication

For a multi-master replication system, transactions can be replicated from one primary node to another by one of the synchronization methods described in
the previous sections – either the trigger-based method (see Synchronization Replication with the Trigger-Based Method) or the log-based method (see
Synchronization Replication with the Log-Based Method).

For a single replication event to be considered finished and complete, transactions that have occurred on all primary nodes since the previous replication
event must be successfully replicated to all other primary nodes by the configured synchronization method.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 24

This consists of a series of multiple replication sets, each identified by a primary node acting as the source primary node, which contains the transactions
that needs to be replicated to all other primary nodes acting as the target primary nodes. So for a multi-master replication system consisting of n number of
primary nodes, there will be n such replication sets – each with a different primary node acting as the source.

Since the initial support of multi-master replication systems in xDB Replication Server version 5.0, such a series of multiple replication sets were always
initiated in a strictly serial manner. That is, the transaction replication from a source primary node to all target primary nodes must be completed before the
start of the transaction replication from the next primary node to all other target primary nodes, and so on.

For example, consider a 3-primary node system consisting of primary node A, primary node B, and primary node C.

If applications have applied transactions to tables in all three primary nodes and then a synchronization replication event is initiated either on demand by
the xDB Replication Console, an xDB Replication Server CLI command, or by a scheduled replication, the transactions are replicated in the following
manner:

1. Transactions that were made on primary node A are replicated to primary node B and primary node C.
2. When Step 1 has been completed, transactions that were made on primary node B are replicated to primary node A and primary node C.
3. When Step 2 has been completed, transactions that were made on primary node C are replicated to primary node A and primary node B.

The time to complete the entire replication event, referred to as the latency time, is basically the sum of the replication times where each primary node acts
as the source (that is, the sum of the times for steps 1, 2, and 3).

For the log-based method, this latency time has been reduced by the implementation of parallel replication whereby each replication set from a given
primary node acting as the source, executes and runs simultaneously with all other replication sets where the other primary nodes act as the source.

Thus, a replication set from a primary node is not waiting for others to complete before it can start so steps 1, 2, and 3 all run simultaneously instead of one
after the other.

NoteNote

The parallel replication applies only to the log-based method and not for the trigger-based method.

There is no required configuration setting to enable the use of parallel replication for the log-based MMR system.

NoteNote

In addition to parallel replication, optimization of replicating from a given primary node to all other primary nodes (that is, within the context of a
single replication set) has been implemented with the use of multiple threads. This is referred to as parallel synchronization. Parallel
synchronization applies to both the trigger-based and log-based methods. See Parallel Synchronization for information on parallel
synchronization.

3.2.12 Table Filters

Table filters specify the selection criteria for rows in publication tables or views that are to be included during replications to subscriptions from the
publication database in a single-master replication system or between primary nodes in a multi-master replication system. Rows that do not satisfy the
selection criteria are excluded from replications to subscriptions or primary nodes on which these table filters have been enabled.

Implementing Table Filters

Implementing table filters is a two-part process. First, a set of available table filters must be defined. This can be done during the process of creating the
publication by defining specific, named rules applicable to selected publication tables or views expressed in the form of SQL WHERE clauses.

Once a set of available table filters have been defined, they must be enabled only on those subscription tables of a single-master replication system or
primary node tables of a multi-master replication system where filtering is to occur during replication to those particular target tables. No filtering occurs
during replication to a target subscription table or primary node table if no filters have been specifically enabled on that table in the subscription or primary

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 25

node.

It is strongly recommended that a snapshot replication be performed to the subscriptions or primary nodes that contain tables on which the filtering criteria
has changed either by the addition of filter rules, the removal of filter rules, or the modification of existing filter rules.

A snapshot ensures that the content of the subscription tables or primary node tables is consistent with the updated filtering criteria.

NoteNote

(For MMR only): When using table filters in a multi-master replication system, the primary definition node, which provides the source of the table
content for a snapshot, should contain a superset of all the data contained in the other primary nodes of the multi-master replication system. This
ensures that the target of a snapshot receives all of the data that satisfies any filtering criteria enabled on the other primary nodes.

On the contrary, if the primary definition node contains only a subset of all the data contained in the other primary nodes, then a snapshot to another
primary node may not result in the complete set of data that is required for that target primary node.

Effects of Table Filtering

A filter enabled on a table only affects the results from snapshot or synchronization replications targeted to that table by the xDB Replication Server.
Filtering has no effect on changes made directly on the target table by external user applications such as an SQL command line utility.

Filtering has the following effects on a targeted, filtered table.

NoteNote

In the following discussion, a result set refers to the set of rows in a table satisfying the selection criteria of an UPDATE or DELETE statement
executed on that table.

In a snapshot replication, a row from the source table of the snapshot is inserted into the target table if the row satisfies the filtering criteria. Otherwise the
row is excluded from insertion into the target table.

When an INSERT statement is executed on a source table followed by a synchronization replication, the row is inserted into the target table of the
synchronization if the row satisfies the filtering criteria. Otherwise the row is excluded from insertion into the target table.

When an UPDATE statement is executed on a source table followed by a synchronization replication, the UPDATE result set of the source table
determines the action on the target table of the synchronization as follows.

If a row in the result set has no corresponding row in the target table with the same primary key value, and the updated row in the result set satisfies
the filtering criteria, then the row is inserted into the target table. (That is, a row that was previously non-existent in the target table is added
because the updated row in the source table now satisfies the filtering criteria.)
If a row in the result set has a corresponding row in the target table with the same primary key value, and the updated row in the result set satisfies
the filtering criteria, then the row in the target table is updated accordingly. (That is, the update is applied to an existing, matching row in the target
table that still satisfies the filtering criteria after the update.)
If a row in the result set has a corresponding row in the target table with the same primary key value, and the updated row in the result set no longer
satisfies the filtering criteria, then the corresponding row in the target table is deleted. (That is, an existing, matching row in the target table no
longer satisfies the filtering criteria after the update, so the row is removed from the target table.)

When a DELETE statement is executed on a source table followed by a synchronization replication, the DELETE result set of the source table determines
the action on the target table of the synchronization as follows.

If a row in the result set has a corresponding row in the target table with the same primary key value, then the row with that primary key value is
deleted from the target table. (That is, an existing, matching row in the target table is removed.)
If a row in the result set has no corresponding row in the target table with the same primary key value, then no action is taken on the target table for
that row. (That is, there is no existing, matching row in the target table, so there is no row to remove from the target table.)

Thus, regardless of whether the transaction on the source table is an INSERT , UPDATE , or DELETE statement, the goal of a table filter is to ensure
that all rows in the target table satisfy the filter rule.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 26

Table Settings and Restrictions for Table Filters

This section lists specific table settings and restrictions on the use of table filters.

REPLICA IDENTITY Setting for Filtering in a Log-Based Replication SystemREPLICA IDENTITY Setting for Filtering in a Log-Based Replication System

For replication systems using the log-based method of synchronization replication, a publication table on which a filter is to be defined must have the
REPLICA IDENTITY option set to FULL .

NoteNote

This REPLICA IDENTITY FULL setting is not required for tables in single-master, snapshot-only publications, See Snapshot-Only
Publications for information on snapshot-only publications.

This setting is done with the ALTER TABLE command as shown by the following:

ALTER TABLE schema.table_name REPLICA IDENTITY FULL

For additional information see the ALTER TABLE SQL command in the PostgreSQL Core Documentation located at:

https://www.postgresql.org/docs/current/static/sql-altertable.html

For example, for a publication table named edb.dept , use the following ALTER TABLE command:

ALTER TABLE edb.dept REPLICA IDENTITY FULL;

The REPLICA IDENTITY setting can be displayed by the PSQL utility using the \d+ command:

edb=# \d+ edb.dept
 Table "edb.dept"
 Column | Type | Modifiers | Storage | Stats target | Description
--------+-----------------------+-----------+----------+--------------+-------------
 deptno | numeric(2,0) | not null | main | |
 dname | character varying(14) | | extended | |
 loc | character varying(13) | | extended | |
Indexes:
 "dept_pk" PRIMARY KEY, btree (deptno)
 "dept_dname_uq" UNIQUE CONSTRAINT, btree (dname)
Referenced by:
 TABLE "emp" CONSTRAINT "emp_ref_dept_fk" FOREIGN KEY (deptno) REFERENCES dept(deptno)
 TABLE "jobhist" CONSTRAINT "jobhist_ref_dept_fk" FOREIGN KEY (deptno) REFERENCES dept(deptno) ON DELETE
SET NULL
Replica Identity: FULL

The REPLICA IDENTITY FULL setting is required on tables in the following databases of a log-based replication system:

In a single-master replication system, table filters are defined in the primary database. Thus, the publication tables in the primary database requiring
filter definitions must be altered to a REPLICA IDENTITY FULL setting, but only if the publication is not a snapshot-only publication. See
Snapshot-Only Publications for information on snapshot-only publications.
In a multi-master replication system, table filters are defined in the primary definition node. Thus, publication tables in the primary definition node
requiring filter definitions must be altered to a REPLICA IDENTITY FULL setting.
In a multi-master replication system, non-MDN nodes should not have their tables’ REPLICA IDENTITY option set to FULL unless transactions
are expected to be targeted on those non-MDN nodes, and the transactions are to be filtered when they are replicated to the other primary nodes.

The REPLICA IDENTITY FULL setting on a source table ensures that certain types of transactions on the source table result in the proper updates to
the target tables on which filters have been enabled.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 27

https://www.postgresql.org/docs/current/static/sql-altertable.html

NoteNote

In addition to table filtering requirements, the REPLICA IDENTITY FULL setting may be required on publication tables for other reasons in
xDB Replication Server. See Configuration Parameter and Table Setting Requirements for additional requirements.

Filtering Restrictions on Data TypesFiltering Restrictions on Data Types

Table filters are not supported on binary data type columns. A binary data type is the Postgres data type BYTEA . In addition, table filters are not supported
on Advanced Server columns with data types BINARY , VARBINARY , BLOB , LONG RAW , and RAW as these are alias names for the BYTEA data
type.

Filtering Restrictions on OperatorsFiltering Restrictions on Operators

XDB supports modulus operator (denoted by %) to define a filter clause. However, the following restrictions apply:

You can have only a single filter condition using the modulus operator

You cannot use it with any other conditions using AND or OR operators

XDB supports the modulus filter in the following formats:

deptno%3=0

@deptno%3=0

Roadmap for Further Instructions

The specific details on implementing table filtering depend upon whether you are using a single-master replication system or a multi-master replication
system. The following is a roadmap to the relevant sections for each type of replication system.

For using table filters in a single-master replication system see the following sections:

Section Adding a Publication for information on defining the initial set of table filters that are to be available for selective enablement on
subscriptions
Section Adding a Subscription for information on enabling available table filters on a newly created subscription
Section Updating the Set of Available Table Filters in a Publication for information on adding, removing, or modifying rules comprising the set of
available table filters
Section Enabling/Disabling Table Filters on a Subscription for information on changing which table filters have been enabled on an existing
subscription

For using table filters in a multi-master replication system see the following sections:

Section Adding a Publication for information on defining the initial set of table filters that are to be available for selective enablement on primary
nodes
Section Creating Additional Primary nodes for information on enabling available table filters on a newly created primary node
Section Updating the Set of Available Table Filters in a Publication for information on adding, removing, or modifying rules comprising the set of
available table filters
Section Enabling/Disabling Table Filters on a Subscription for information on changing which table filters have been enabled on an existing primary
node

3.3 xDB Replication Server Components and Architecture

This section describes the components and architecture of xDB Replication Server. Section Physical Components describes the executable programs, files,

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 28

and databases that comprise xDB Replication Server. Section Logical Components defines the logical components of a replication system and how they
correspond to the programs and databases. Section xDB Replication System Examples illustrates some examples of replication systems.

3.3.1 Physical Components

xDB Replication Server is not a single, executable program, but rather a set of programs along with data stores containing configuration information and
metadata that work together to form a replication system.

The following diagram illustrates the components of xDB Replication Server and how they are used to form a complete, basic, single-master replication
system.

Figure 2-8: xDB Replication Server - physical view (single-master replication system)Figure 2-8: xDB Replication Server - physical view (single-master replication system)

The following diagram illustrates the components of xDB Replication Server and how they are used to form a complete, basic, multi-master replication
system.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 29

Figure 2 9: xDB Replication Server - physical view (multi-master replication system)Figure 2 9: xDB Replication Server - physical view (multi-master replication system)

The minimal configuration of xDB Replication Server for a basic replication system consists of the following software components:

Publication server.Publication server. The program that configures the publication database and primary nodes for replication and performs replication.
Subscription server.Subscription server. The program that configures the subscription database for replication and initiates replication. The subscription server is used
only in single-master replication systems.
xDB Replication Configuration file.xDB Replication Configuration file. Text file containing connection and authentication information used by the publication server and subscription
server upon startup to connect to a publication database designated as the controller database. Also used to authenticate registration of the
publication server and subscription server from the user interface when creating a replication system.
xDB Startup Configuration file.xDB Startup Configuration file. Text file containing installation and configuration information used for the Java Runtime Environment when the
publication server and subscription server are started.

The entire replication system is completed with the addition of the following components:

User interfaces for configuring and maintaining the replication system
One or more publication databases for a single-master replication system
One or more subscription databases for a single-master replication system
One primary definition node for a multi-master replication system
One or more additional primary nodes for a multi-master replication system

The user interface, publication server, subscription server, publication database, subscription database, and primary nodes can all run on the same host or
on separate, networked hosts.

Any number of user interfaces can be used at any time to access any number of publication servers and subscription servers on the network as long as the
network locations, user names, and passwords of the publication and subscription servers are known.

Any number of publication and subscription databases can participate in a single-master replication system.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 30

Any number of primary nodes can participate in a multi-master replication system.

The following sections describe each component in more detail.

Publication Server

The publication server creates and manages the metadata for publications. When a publication is created, the publication server creates database objects
in the control schema of the publication database to record metadata about the publication.

Whenever a primary node is added to a multi-master replication system, the publication server creates database objects in the control schema of the
primary node for recording metadata. For non-MDN nodes, the publication server also calls EnterpriseDB’s Migration Toolkit to create the publication table
definitions if so chosen at primary node creation time.

NoteNote

See Control Schema and Control Schema Objects for information on the control schema.

The publication server is also responsible for performing a replication. For snapshot replications, the publication server calls EnterpriseDB’s Migration
Toolkit to perform the snapshot.

For single-master synchronization replications, the publication server uses the Java Database Connectivity (JDBC) interface to apply changes to the
subscription table rows based on changes that have been recorded in either one of two ways: a) If the publication database is running under Postgres
version 9.4 or later and the logical decoding option has been chosen when creating the publication, changes are obtained from the Postgres WAL files using
a logical replication slot, or b) In all other circumstances, changes are recorded in metadata tables (called shadow tables) in the publication database by
row-based triggers that fire upon any insert, update, or deletion to the publication table rows.

For multi-master synchronization replications, the publication server performs the same process as for single-master synchronizations, but does so for each
primary node pair combination in the multi-master replication system.

The publication server may run on the same host as the other xDB Replication Server components, or it may run on a separate, networked host.

Subscription Server

NoteNote

The subscription server is required only for single-master replication systems. The subscription server does not need to be running, nor even
installed if only multi-master replication systems are in use.

The subscription server creates and manages the metadata for subscriptions. When a subscription is created, the subscription server creates database
objects in the control schema of the publication database to record metadata about the subscription.

When a subscription is created, the subscription server calls EnterpriseDB’s Migration Toolkit to create the subscription table definitions in the subscription
database. The rows in the subscription tables are not populated until a replication occurs. Rows are populated by actions of the publication server.

The subscription server is also responsible for initiating a replication as a result of manual user action through the user interface, or a schedule created for
the subscription. The subscription server initiates a call to the publication server that manages the associated publication. The publication server then
performs the actual replication.

The subscription server may run on the same host as the other xDB Replication Server components, or it may run on a separate, networked host.

When the subscription server is started, it uses the information in the xDB Replication Configuration file found on its host to connect to the designated
controller database.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 31

xDB Replication Configuration File

The xDB Replication Configuration file contains the connection and authentication information used by any publication server or subscription server
running on the host containing the file.

Specifically, the xDB Replication Configuration file is accessed in the following circumstances:

When a publication server or subscription server is started on the host.
When a publication server or subscription server is registered during the process of creating a replication system. Registration of a publication
server or subscription server is done using the xDB Replication Console or the xDB Replication Server Command Line Interface.

The following table contains a brief description of the parameters in the xDB Replication Configuration file.

Table 2-2: xDB Replication Configuration FilexDB Replication Configuration FileTable 2-2: xDB Replication Configuration FilexDB Replication Configuration File

ParameterParameter DescriptionDescription

admin_user xDB administrator user name (the admin user name) for registering a publication server or a subscription server on this host
containing the xDB Replication Configuration file

admin_pass
word

Encrypted password of the admin user

database Database name of the controller database

user Database user name of the controller database

password Encrypted password of the controller database user

port Port number on which the database server of the controller database listens for requests

host IP address of the host running the database server of the controller database

type Database type of the controller database such as oracle, enterprisedb, etc.

The xDB Replication Server product creates the content of this file as follows:

The xDB Replication Configuration file and some of its initial content are created when you install a publication server or subscription server on a
host during the xDB Replication Server installation process.
Parameters admin_user and admin_password are determined during the xDB Replication Server installation process. See Chapter
Installation and Uninstallation for how the content of these parameters are determined.
Parameters database, user, password, port, host, and type are set with the connection and authentication information of the
first publication database definition you create with the xDB Replication Console or xDB Replication Server CLI. This database is designated as the
controller database. See Controller Database for information on the controller database. See Adding a Publication Database for creating a
publication database definition for a single-master replication system. See Adding the Primary definition node for creating the publication database
definition for a multi-master replication system.

The following is an example of the content of an xDB Replication Configuration file:

#xDB Replication Server Configuration Properties
#Tue May 26 13:45:37 GMT-05:00 2015
port=1521
admin_password=ygJ9AxoJEX854elcVIJPTw\=\=
user=pubuser
admin_user=admin
type=oracle
password=ygJ9AxoJEX854elcVIJPTw\=\=
database=xe
host=192.168.2.23

NoteNote

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 32

The passwords for the admin user name and the controller database user name are encrypted. Should you change either of these passwords, you
must modify the corresponding password parameters in the xDB Replication Configuration file to contain the encrypted form of the new
password. See Encrypting the Password in the xDB Replication Configuration File for directions on how to generate the encrypted form of a
password.

See Post-Installation Host Environment for the file system location of the xDB Replication Configuration file.

xDB Startup Configuration File

The xDB Startup Configuration file contains installation and configuration information primarily used by the Java Runtime Environment (JRE) when any
publication server or subscription server is started up on the host containing the file.

The content of the file is created by the xDB Replication Server installer when you install xDB Replication Server.

The following is an example of the content of an xDB Startup Configuration file:

#!/bin/sh

JAVA_EXECUTABLE_PATH="/usr/bin/java"
JAVA_MINIMUM_VERSION=1.8
JAVA_BITNESS_REQUIRED=64
JAVA_HEAP_SIZE="-Xms256m -Xmx1536m"
PUBPORT=9051
SUBPORT=9052

The following table contains a brief description of the parameters in the xDB Startup Configuration file.

Table 2-3: xDB Startup Configuration FileTable 2-3: xDB Startup Configuration File

ParameterParameter DescriptionDescription

JAVA_EXECUTABLE_P
ATH

Directory path to the Java runtime program used to start and run the publication and subscription servers

JAVA_MINIMUM_VERS
ION

The earliest JRE version that can be used by the publication and subscription servers

JAVA_BITNESS_REQU
IRED

The bitness of the Java virtual machine required by the installed publication and subscription servers

JAVA_HEAP_SIZE In -Xmsnnnm nnn specifies the minimum Java heap size in megabytes. In -Xmxnnnm nnn specifies the maximum
Java heap size in megabytes

PUBPORT Port number on which the publication server listens for requests

SUBPORT Port number on which the subscription server listens for requests

The JAVA_EXECUTABLE_PATH parameter specifies the location of the Java runtime program as identified by the xDB Replication Server installer during
the installation process. The setting of this parameter may be subsequently changed to a different JRE installation if so desired.

The JAVA_MINIMUM_VERSION parameter specifies the earliest version of the Java Runtime Environment that can be used with xDB Replication Server.
This setting must not be changed.

The JAVA_BITNESS_REQUIRED parameter must not be altered. If the installed value is modified, or if it does not match the bitness of the Java virtual
machine as identified by JAVA_EXECUTABLE_PATH , a number of errors may occur, which include failure of the publication and subscription servers to
start and registration failure of the xDB Replication Server product.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 33

See Setting Heap Memory Size for the Publication and Subscription Servers for information on setting the JAVA_HEAP_SIZE parameter.

See Firewalls and Access to Ports Setting Heap Memory Size for the Publication and Subscription Servers for information on the PUBPORT and
SUBPORT parameters.

After making any modifications to the xDB Startup Configuration file, the publication server and subscription server must be restarted.

See Post-Installation Host Environment for the file system location of the xDB Startup Configuration file.

xDB Replication Console

The xDB Replication Console is the graphical user interface program you can use to create and control all aspects of a replication system.

Through a single xDB Replication Console, you can configure and operate a replication system running on the same host on which the xDB Replication
Console is installed, or you can configure and operate replication systems where the xDB Replication Server components are distributed on different hosts
in a networked environment.

Figure 2-10: xDB Replication Consoles accessing multiple hostsFigure 2-10: xDB Replication Consoles accessing multiple hosts

In the preceding figure, there are two Postgres installations running on two networked hosts, each with its own xDB Replication Server installation. Each
host is running a publication server and a subscription server.

The xDB Replication Console on each host can access and manage the replication systems on the other host if given the network IP address, port number,
user name, and password with which the publication server and subscription server were installed with on the remote host. See Chapter Introduction to the
xDB Replication Console for information on the user interface of the xDB Replication Console.

xDB Replication Server Command Line Interface

xDB Replication Server Command Line Interface (CLI) is a command line driven alternative to the xDB Replication Console graphical user interface,
providing equivalent functionality for creating and controlling all aspects of a replication system.

Automation of replication system operations can be done by embedding xDB Replication Server CLI commands in scripts such as Bash for Linux.

xDB Replication Server CLI is installed whenever you choose to install the xDB Replication Console.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 34

Chapter xDB Replication Server Command Line Interface provides directions for using xDB Replication Server CLI.

Publication Database

The publication database contains the tables and views used in a publication. The publication database may be running on the same host or on a different
host than where the publication server is running as long as the hosts are accessible to each other by a network.

Each publication database also contains a control schema, which is a collection of database objects containing metadata on all replication systems, both
single-master and multi-master, controlled by the publication server connected to this publication database. See Control Schema and Control Schema
Objects for information on the control schema.

In a multi-master replication system, all primary nodes are considered publication databases.

A database plays the roles of both a publication database and a subscription database if it contains publications and subscriptions.

Subscription Database

NoteNote

The subscription database applies only to single-master replication systems.

The subscription database contains the tables created from a subscription. The subscription database may be running on the same host or on a different
host than where the subscription server is running as long as the hosts are accessible to each other by a network.

A subscription database can also serve as a publication source for replicating to a third server if desired. This configuration is referred to as cascading
replication.

A database plays the roles of both a publication database and a subscription database if it contains publications and subscriptions such as in the cascaded
replication scenario.

Primary node

In a multi-master replication system, the databases containing the set of tables (the publication) for which row changes are to be replicated are called
primary nodes. The primary nodes may be running on the same host or on different hosts than where the publication server is running as long as the hosts
are accessible to each other by a network.

Each primary node also contains a control schema, which is a collection of database objects containing metadata on all replication systems, both single-
master and multi-master, controlled by the publication server connected to this primary node. See Control Schema and Control Schema Objects for
information on the control schema. The primary nodes may be running under the same, or under multiple database server instances (Postgres database
clusters).

Primary definition node

The first node added to create a multi-master replication system is initially designated the primary definition node. This node must contain the table
definitions (and optionally, the initial set of rows) that are to be included in the publication.

As subsequent databases are added as primary nodes to the replication system, the table definitions and initial row sets can optionally be propagated from
the primary definition node to the newly added primary nodes.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 35

After the multi-master replication system is defined, it is possible to reassign the role of the primary definition node to another primary node in the multi-
master replication system. The significance of this reassignment is that snapshots can be taken from the newly appointed primary definition node to other
primary nodes. This could be beneficial if the data in the old primary definition node becomes corrupt or out-of-sync with the other primary nodes and needs
to be completely refreshed by a snapshot from another primary node.

As with all primary nodes, the primary definition node contains a control schema, which is a collection of database objects containing metadata on all
replication systems, both single-master and multi-master, controlled by the publication server connected to this primary node. See Control Schema and
Control Schema Objects for information on the control schema.

Control Schema and Control Schema Objects

The control schema is a conceptual term referring to the collection of metadata database objects that define the logical and physical structure of, and
enable the operation and maintenance of xDB Replication Server single-master and multi-master replication systems.

These metadata database objects, referred to as control schema objects consist of tables, sequences, functions, procedures, triggers, packages, etc.

The control schema objects store metadata such as type of replication system (single-master or multi-master), network location, database type, connection
and authentication information for publication databases, subscription databases, and primary nodes, names of publications and the tables and views they
contain, names of subscriptions and the publications to which they are subscribed, replication transaction status, replication scheduling, replication
history cleanup scheduling, replication history, etc.

Each publication database in a trigger-based, single-master replication system also contains control schema objects with the changes that have been made
to rows in the publication and the status of whether or not those changes have been applied to the subscription tables.

Similarly, for a multi-master replication system, each trigger-based primary node contains control schema objects with the changes that have been made
to rows in the publication residing on that primary node, and the statuses of whether or not those changes have been applied to the other primary nodes in
the multi-master replication system.

NoteNote

For log-based single-master and multi-master replication systems, changes are extracted from the database server WAL files instead of being
stored in control schema objects. See Synchronization Replication with the Log-Based Method for information on the log-based method.

The actual, physical database schemas implementing the control schema to which the control schema objects belong varies depending upon the database
type (Oracle, SQL Server, or Postgres) and how the database was initially configured for use by xDB Replication Server.

The following points should be noted about the control schema:

The control schema and its control schema objects are created in every publication database of both single-master and multi-master replication
systems. That is, all master (publication) databases of single-master replication systems and all primary nodes of multi-master replication systems.
When a new primary database is added for a single-master replication system or a new primary node for a multi-master replication system, a
snapshot operation is used to replicate the control schema to the newly added publication database assuming there is an existing controller
database. See Controller Database for information regarding the controller database.
Updates to the configuration of a single-master replication system or a multi-master replication system made by the xDB Replication Console or the
xDB Replication Server Command Line Interface are synchronized between the control schemas on all publication databases to ensure that the
metadata is consistent across all publication databases.
The secondary (subscription) database of single-master replication systems contains one, single table as its metadata database object. The term,
subscription metadata object, is specifically used to refer to this database object in the subscription database. The general terms, control schema
and control schema objects refer to the database objects in the publication databases.
The control schema objects in all databases controlled by the same given publication server generally contain the same information. This allows any
such database to provide the information needed by xDB Replication Server to control all single-master and multi-master replication systems
running under that given publication server.
Should a certain publication database of a replication system go offline due to database server problems, network connectivity issues, etc., the other
replication systems running under the same publication server are still functional since the other publication databases can provide the control
schema information required to run all replication systems.

Controller Database

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 36

In the xDB Replication Configuration file, the connection and authentication information for one publication database is included and as such, designated
as the controller database.

As with all publication databases, the controller database contains the control schema with the replication system information for all single-master and
multi-master replication systems run by the publication server that accesses that xDB Replication Configuration file.

The controller database serves as the primary provider of the replication system information to the publication server and the subscription server. Thus,
upon initial startup, the publication server and subscription server attempt to connect to the designated controller database. This controller database then
provides the metadata information for all replication systems.

Should the initial connection to the controller database fail for some reason, you can manually edit the xDB Replication Configuration file to provide the
connection and authentication information for another publication database. Then upon startup of the publication server and subscription server, the
control schema of this alternate publication database is used to provide the replication system information.

The initial controller database is determined by the first publication database definition created by the xDB Replication Console or the xDB Replication
Server CLI either for a single-master or multi-master replication system. The publication server records the connection and authentication information in
the xDB Replication Configuration file.

If you wish to delete the publication database definition of the current controller database, you must first designate another publication database, defined
under the same publication server, as the controller using the xDB Replication Console. See Switching the Controller Database for directions on switching
the controller to another publication database.

The following are some points regarding the controller database:

The database server running the controller database must be running and accessible before starting the publication server and subscription server.
For a single-master replication system, the publication server under which the publication database and publication are defined and the
subscription server under which the subscription database and the subscription related to the publication are defined, must both connect to the
same the controller database. This gives the publication server and the subscription server access to the same control schema.
When changes are made to the metadata maintained by the control schema in the controller database, these changes are replicated by the
publication server to the control schemas of all other publication databases. This ensures that the metadata of all single-master and multi-master
systems are complete and consistent in the control schemas of all publication databases. This allows you to switch the controller database at some
later point in time. See Switching the Controller Database for information on switching the controller database.

NoteNote

If the controller database is an Oracle or a SQL Server publication database, then a second Oracle or SQL Server publication database cannot be
added to create a second single-master replication system. In order for xDB Replication Server to run more than one single-master replication
systems consisting of Oracle or SQL Server publication databases, a Postgres publication database must be designated as the controller
database.

Once you have multiple Oracle or SQL Server publication databases set up in single-master replication systems with a Postgres controller database, do not
switch the controller database to an Oracle or SQL Server publication database.

3.3.2 Logical Components

This section discusses the logical components of a replication system, how they are related to each other, and how they correspond to the programs and
databases in a replication system.

The logical components are created when you build a replication system using the xDB Replication Console or the xDB Replication Server CLI. The logical
components are stored as part of the replication system metadata in the control schema of the publication databases.

Creating a replication system requires the following steps:

Register a publication server
Create a publication database definition
Create a publication

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 37

For a single-master replication system, you then perform the following:

Register a subscription server
Create a subscription database definition
Create a subscription

For a multi-master replication system, you create additional primary nodes by creating additional publication database definitions.

Each of these steps creates a logical component that is represented by a node in the replication tree of the xDB Replication Console. See Chapter
Introduction to the xDB Replication Console for a description of the xDB Replication Console. A brief description of these components is given in the
following sections.

Publication Server

The first step in creating a publication is to identify the publication server that is to be used to manage the publication. This process is called registering the
publication server.

Using the xDB Replication Console or the xDB Replication Server CLI, a publication server is registered by giving the IP address and port number of the host
on which the publication server is running, along with the admin user name and password stored in the xDB Replication Configuration file located on the
host running the publication server. (This information is determined during the publication server installation process.)

When viewed in the xDB Replication Console, a registered publication server appears under the top level Replication Servers node in the replication tree. All
publication related logical components are created subordinate to a registered publication server and appear underneath it in the replication tree.

Section Registering a Publication Server gives directions for registering a publication server for a single-master replication system. See Registering a
Publication Server for a multi-master replication system.

Replication System Type (SMR/MMR)

Subordinate to a registered publication server, two nodes representing the replication system type appear. One is identified by the label SMR for single-
master replication and the other has the label MMR for multi-master replication.

If you are creating a single-master replication system, you proceed to add logical components under the SMR type node.

If you are creating a multi-master replication system, you proceed to add logical components under the MMR type node.

Publication Database Definition

Subordinate to one of the Replication System Type nodes under a registered publication server, one or more publication database definitions can be
created.

A publication database definition identifies a database whose tables and views are to be used in a publication. The identify information consists of the
database server IP address, port number, a database user name and password, and the database identifier.

The publication server uses this information to connect to the publication database in order to create the replication system control schema in the
publication database and perform the replications.

Though the process of creating a publication database definition is similar for single-master and multi-master replication systems, their usage within the
replication system is somewhat different.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 38

In a single-master replication system, a publication database definition identifies the storage area of one or more publications, each of which is eventually
associated with its own subscription in a primary-to-secondary relationship.

In a multi-master replication system, each publication database definition subordinate to the MMR type node of a given publication server identifies a
primary node in a single, multi-master replication system.

NoteNote

Currently, there can only be one multi-master replication system per publication server.

Section Adding a Publication Database discusses creating a publication database definition for a single-master replication system. See Adding the Primary
definition node and Creating Additional Primary nodes for a multi-master replication system.

Publication

Subordinate to a publication database definition in a single-master replication system, one or more publications can be defined. A publication contains a
list of tables and views that are to be replicated to a subscription database.

In a single-master replication system, the database user name specified in the publication database definition of the publication’s parent, as viewed in the
replication tree, must have the SELECT object privilege on any table or view that is to be included in the publication.

Subordinate to a publication database definition in a multi-master replication system, one and only one publication can be defined. The publication
contains the list of tables that are to be replicated and kept synchronized in the primary nodes of the multi-master replication system.

In a multi-master replication system, the database user name specified in the publication database definition of the publication’s parent, as viewed in the
replication tree, must have superuser privileges and be the owner of all tables to be included in the publication.

Section Adding a Publication discusses creating a publication for a single-master replication system. See Adding a Publication for a multi-master
replication system.

Subscription Server

NoteNote

The subscription server applies only to single-master replication systems. You do not register a subscription server when creating a multi-master
replication system.

The first step in creating a subscription is to identify the subscription server that is to be used to manage the subscription. This process is called registering
the subscription server.

Using the xDB Replication Console or the xDB Replication Server CLI, a subscription server is registered by giving the IP address and port number of the
host on which the subscription server is running, along with the admin user name and password stored in the xDB Replication Configuration file located on
the host running the subscription server. (This information is determined during the subscription server installation process.)

When viewed in the xDB Replication Console, a registered subscription server appears under the top level Replication Servers node in the replication tree.
All subscription related logical components are created subordinate to a registered subscription server and appear underneath it in the replication tree.
Section Registering a Subscription Server gives directions for registering a subscription server.

Subscription Database Definition

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 39

NoteNote

The subscription database definition applies only to single-master replication systems. You do not create a subscription database definition when
creating a multi-master replication system.

Subordinate to a registered subscription server, one or more subscription database definitions can be created.

A subscription database definition identifies a database to which a publication’s tables and views are to be replicated. The identify information consists of
the database server IP address, port number, a database user name and password, and the database identifier.

The subscription server uses this information to connect to the subscription database to create the table definitions.

The publication server also uses this information to connect to the subscription database when it performs replications.

Section Adding a Subscription Database discusses creating a subscription database definition.

Subscription

NoteNote

The subscription applies only to single-master replication systems. You do not create a subscription when creating a multi-master replication
system.

Subordinate to a subscription database definition, one or more subscriptions can be defined. A subscription associates a publication to a subscription
database to which the publication’s tables and views are to be replicated.

Each subscription can be associated with one and only one publication.

Section Adding a Subscription discusses creating a subscription.

3.3.3 xDB Replication System Examples

This section contains examples of replication systems and how the logical components are used to define them.

In the accompanying diagrams, the logical components, represented by nodes in the replication tree of the xDB Replication Console, are superimposed on
physical component diagrams. The logical components are shaded in yellow to aid in identifying them in the diagrams.

Oracle to PostgreSQL or Advanced Server Replication

The following is an illustration of a basic Oracle to PostgreSQL or Advanced Server single-master replication system. A single publication in Oracle
contains tables from two schemas that are replicated to a database residing in either PostgreSQL or Advanced Server.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 40

Figure 2-11: Oracle to PostgreSQL or Advanced Server replicationFigure 2-11: Oracle to PostgreSQL or Advanced Server replication

The following describes the logical components in the preceding diagram: * The publication server to be used is identified by registering its network
location, user name, and password.

A publication database definition is created subordinate to the SMR type node under the publication server. The Oracle database user name pubuser
is specified in the definition along with the database network location and database identifier. When you create a user named pubuser in Oracle,
a schema named pubuser is automatically created by Oracle at the same time. The publication server creates the control schema objects in the
pubuser control schema for the replication system’s metadata when you create the publication database definition.

A publication named pub is created subordinate to the publication database definition. The publication consists of table A in schema S1 and
tables B and C in schema S2 .
The subscription server to be used is identified by registering its network location, user name, and password.
A subscription database definition is created subordinate to the subscription server. The Postgres database user name subuser is specified in the
definition along with the database network location and database identifier.
A subscription named sub is created subordinate to the subscription database definition. When the subscription is created, the subscription server
creates schemas named S1 and S2 in the subscription database. The table definitions for tables A, B , and C are also created at this time.
When replication occurs, the publication server populates these tables with rows from the publication.

The following screen capture shows how the logical components of this replication system appear in the xDB Replication Console replication tree.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 41

Figure 2-12: Oracle to Postgres replication treeFigure 2-12: Oracle to Postgres replication tree

See Chapter Introduction to the xDB Replication Console for an introduction to the xDB Replication Console.

SQL Server to PostgreSQL or Advanced Server Replication

The following is an illustration of a basic SQL Server to PostgreSQL or Advanced Server single-master replication system. A single publication in SQL Server
contains tables from two schemas that are replicated to a database residing in either PostgreSQL or Advanced Server.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 42

Figure 2-13: SQL Server to PostgreSQL or Advanced Server replicationFigure 2-13: SQL Server to PostgreSQL or Advanced Server replication

The following describes the logical components in the preceding diagram:

The publication server to be used is identified by registering its network location, user name, and password.
A publication database definition is created subordinate to the SMR type node under the publication server. The SQL Server login pubuser is
specified in the definition along with the database network location and database identifier. The schema pubuser was created during the publication
database preparation step as described in SQL Server Publication Database. The pubuser schema along with the control schema consisting of
three physical schemas _edb_replicator_pub , _edb_replicator_sub , and _edb_scheduler are populated with the control schema
objects for the replication system’s metadata when you create the publication database definition.
A publication named pub is created subordinate to the publication database definition. The publication consists of table A in schema S1 and
tables B and C in schema S2 .
The subscription server to be used is identified by registering its network location, user name, and password.
A subscription database definition is created subordinate to the subscription server. The Postgres database user name subuser is specified in the
definition along with the database network location and database identifier.
A subscription named sub is created subordinate to the subscription database definition. When the subscription is created, the subscription server
creates schemas named S1 and S2 in the subscription database. The table definitions for tables A, B , and C are also created at this time.
When replication occurs, the publication server populates these tables with rows from the publication.

The following screen capture shows how the logical components of this replication system appear in the xDB Replication Console replication tree.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 43

Figure 2-14: SQL Server to Postgres replication treeFigure 2-14: SQL Server to Postgres replication tree

See Chapter Introduction to the xDB Replication Console for an introduction to the xDB Replication Console.

Advanced Server to Oracle Replication

The following is an illustration of a basic Advanced Server to Oracle single-master replication system. A single publication in an Advanced Server database
contains tables from two schema that are replicated to an Oracle database.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 44

Figure 2-15: Advanced Server to Oracle replicationFigure 2-15: Advanced Server to Oracle replication

The following describes the logical components in the preceding diagram:

The publication server to be used is identified by registering its network location, user name, and password.
A publication database definition is created subordinate to the SMR type node under the publication server. The Postgres database user name
pubuser is specified in the definition along with the database network location and database identifier. The publication server creates the control

schema consisting of three physical schemas _edb_replicator_pub , _edb_replicator_sub , and _edb_scheduler and populates
them with the control schema objects for the replication system’s metadata when you create the publication database definition.
A publication named pub is created subordinate to the publication database definition. The publication consists of table A in schema S1 and
tables B and C in schema S2 .
The subscription server to be used is identified by registering its network location, user name, and password.
A subscription database definition is created subordinate to the subscription server. The Oracle database user name subuser is specified in the
definition along with the database network location and database identifier.
A subscription named sub is created subordinate to the subscription database definition. When you create a user named subuser in Oracle, a
schema named subuser is automatically created by Oracle at the same time. The table definitions for tables A, B, and C are created in schema
subuser when you create subscription sub. When replication occurs, the publication server populates these tables with rows from the

publication.

The following screen capture shows how the logical components of this replication system appear in the xDB Replication Console replication tree.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 45

Figure 2-16: Advanced Server to Oracle replication treeFigure 2-16: Advanced Server to Oracle replication tree

See Chapter Introduction to the xDB Replication Console for an introduction to the xDB Replication Console.

PostgreSQL to Oracle Replication

The following is an illustration of a basic PostgreSQL to Oracle single-master replication system. A single publication in a PostgreSQL database contains
tables from two schemas that are replicated to an Oracle database. WAL based method as well as trigger-based method is supported in this type of
replication.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 46

Figure 2-16: PostgreSQL to Oracle replicationFigure 2-16: PostgreSQL to Oracle replication

The following describes the logical components in the preceding diagram:

The publication server to be used is identified by registering its network location, user name, and password.
A publication database definition is created subordinate to the SMR type node under the publication server. The Postgres database user name
pubuser is specified in the definition along with the database network location and database identifier. The publication server creates the control
schema consisting of three physical schemas _edb_replicator_pub, _edb_replicator_sub, and _edb_scheduler and populates them with the control
schema objects for the replication system’s metadata when you create the publication database definition.
A publication named pub is created subordinate to the publication database definition. The publication consists of table A in schema S1 and tables B
and C in schema S2.
The subscription server to be used is identified by registering its network location, user name, and password.
A subscription database definition is created subordinate to the subscription server. The Oracle database user name subuser is specified in the
definition along with the database network location and database identifier.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 47

A subscription named sub is created subordinate to the subscription database definition. When you create a user named subuser in Oracle, a schema
named subuser is automatically created by Oracle at the same time. The table definitions for tables A, B, and C are created in schema subuser when
you create subscription sub. When replication occurs, the publication server populates these tables with rows from the publication.

The following screen capture shows how the logical components of this replication system appear in the xDB Replication Console replication tree.

Figure 2-17: PostgreSQL to Oracle replication treeFigure 2-17: PostgreSQL to Oracle replication tree

PostgreSQL or Advanced Server to SQL Server Replication

The following is an illustration of a basic PostgreSQL or Advanced Server to SQL Server single-master replication system. A single publication in a
PostgreSQL or Advanced Server database contains tables from two schemas that are replicated to a SQL Server database.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 48

Figure 2-18: PostgreSQL or Advanced Server to SQL Server replicationFigure 2-18: PostgreSQL or Advanced Server to SQL Server replication

The following describes the logical components in the preceding diagram:

The publication server to be used is identified by registering its network location, user name, and password.
A publication database definition is created subordinate to the SMR type node under the publication server. The Postgres database user name
pubuser is specified in the definition along with the database network location and database identifier. The publication server creates the control

schema consisting of three physical schemas _edb_replicator_pub , _edb_replicator_sub , and _edb_scheduler and populates
them with the control schema objects for the replication system’s metadata when you create the publication database definition.
A publication named pub is created subordinate to the publication database definition. The publication consists of table A in schema S1 and
tables B and C in schema S2 .
The subscription server to be used is identified by registering its network location, user name, and password.
A subscription database definition is created subordinate to the subscription server. The SQL Server login subuser is specified in the definition
along with the database network location and database identifier.
A subscription named sub is created subordinate to the subscription database definition. When the subscription is created, the subscription server
creates schemas named S1 and S2 in the subscription database. The table definitions for tables A, B , and C are also created at this time.
When replication occurs, the publication server populates these tables with rows from the publication.

The following screen capture shows how the logical components of this replication system appear in the xDB Replication Console replication tree.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 49

Figure 2-19: Postgres to SQL Server replication treeFigure 2-19: Postgres to SQL Server replication tree

See Introduction to the xDB Replication Console for an introduction to the xDB Replication Console.

Postgres Multi-Master Replication

The following is an illustration of a basic Postgres multi-master replication system. A publication in a Postgres primary definition node contains tables from
two schemas that are initially replicated to two other Postgres primary nodes. The tables in all three primary nodes can then be updated and synchronized
with each other.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 50

Figure 2-20: Postgres multi-master replication systemFigure 2-20: Postgres multi-master replication system

The following describes the logical components in the preceding diagram:

The publication server to be used is identified by registering its network location, user name, and password.
A publication database definition is created subordinate to the MMR type node under the publication server. This first publication database
definition identifies the primary definition node. The Postgres database user name MMRuser_a is specified in the definition along with the
database network location and database identifier. The publication server creates the control schema consisting of three physical schemas
_edb_replicator_pub , _edb_replicator_sub , and _edb_scheduler and populates them with the control schema objects for the

replication system’s metadata when you create the publication database definition.
A publication named pub is created subordinate to the publication database definition. The publication consists of table A in schema S1 and
tables B and C in schema S2 .
A second primary node is added by creating another publication database definition subordinate to the MMR type node of the publication server
under which the primary definition node resides. The Postgres database user name MMRuser_b is specified in the definition along with the
database network location and database identifier to create the second primary node.
When you add the second primary node, you can choose to have the publication server create schemas S1 and S2 and the table definitions for A,
B , and C for you, or you could have manually created the schemas and table definitions beforehand. The publication server creates the control
schema consisting of three physical schemas _edb_replicator_pub , _edb_replicator_sub, and _edb_scheduler under which it creates the

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 51

control schema objects to store the primary node’s metadata. When defining the primary node, you can choose to have the publication server
populate these tables with rows from the publication at this time, or you can defer table loading to a later point in time.
A third primary node is added in a similar manner using the Postgres database user name MMRuser_c .

The following screen capture shows how the logical components of this replication system appear in the xDB Replication Console replication tree.

Figure 2-21: Postgres multi-master replication treeFigure 2-21: Postgres multi-master replication tree

See Chapter Introduction to the xDB Replication Console for an introduction to the xDB Replication Console.

3.4 Designing a Replication System

This section presents the general steps, design considerations, and best practices for designing a replication system before you begin the actual
implementation.

3.4.1 General Steps

The following steps provide a general guideline for implementing a replication system.

Step 1:Step 1: Determine if xDB Replication Server is the right solution for your requirements and you have chosen the best solution for your particular needs. xDB

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 52

Replication Server can be used to implement single-master or multi-master replication systems. For single-master replication systems, the distinguishing
characteristic of xDB Replication Server is its ability to replicate from an Oracle database to a PostgreSQL or Advanced Server database, from a SQL Server
database to a PostgreSQL or Advanced Server database, from an Advanced Server database to an Oracle database, or from a PostgreSQL or Advanced
Server database to a SQL Server database.

Step 2:Step 2: Plan the general strategy of how you will use xDB Replication Server. Will the single-master or multi-master model best suit your needs? (See Why
Use Replication for use case examples of single-master and multi-master replication systems.) Will you be replicating from Oracle to Postgres, from SQL
Server to Postgres, from Advanced Server to Oracle, or from Postgres to SQL Server? Will you be replicating between PostgreSQL and/or Advanced Server
databases? How often will you need to replicate the data? Will replication be done on an ad hoc basis or does it need to occur regularly according to a
schedule?

Step 3:Step 3: Plan the logistics of your replication system. How many tables do you expect to replicate and what are their sizes in total number of bytes and
number of rows? What percentage of rows do you expect to have been changed on each table between each replication? Are your database servers required
to run on dedicated machines?

Step 4:Step 4: Design your replication system. Determine whether your replication system will be distributed or will run on a single host. Determine the
publications and subscriptions you will need and their tables and views. Make sure your publication tables meet the requirements for an xDB Replication
Server publication. See Design Considerations and Restrictions on Replicated Database Objects for details.

Step 5:Step 5: Implement and test your replication system in a test environment. Try out your replication system on a subset of your publication data to ensure the
replication process works as expected. Make sure the resulting replicated tables can be used as expected in your application. Establish preliminary metrics
on how long the replication process will be expected to take in your full production environment.

Step 6:Step 6: Implement and test your replication system in your production environment.

3.4.2 Design Considerations

Keep the following points in mind when designing a replication system:

Multi-master replication is supported only on PostgreSQL databases. In addition, Advanced Server databases must be running in the same
compatibility mode – either all Oracle or all PostgreSQL.
An Oracle table can be a member of at most one publication if all publications are subordinate to one publication database definition. However, an
Oracle table can be a member of multiple publications if each publication is subordinate to a different publication database definition.
A Postgres table can be a member of at most one publication.
Each table used in a publication must have a primary key with the exception of tables in snapshot-only publications, which do not require a primary
key.
Make sure table definitions are well established before creating publications. Unless the DDL change replication feature is used as described in
Section Replicating DDL Changes, if a table definition is changed, any publication containing the table along with its associated subscription must
be deleted and recreated, otherwise replication may fail. The same applies for the table definitions in a primary definition node and its associated
primary nodes. Replication failures can be seen in the replication history.
Views can be members of snapshot-only publications. In the subscription database, a view is replicated as a table.
A publication may have multiple subscriptions.
A subscription can be associated with at most one publication.
A database can contain both publications and subscriptions.
A given publication server can support only one multi-master replication system. All primary nodes created subordinate to a given publication server
are assumed to be part of the same multi-master replication system.
A table that is created as a result of a subscription can be used in another publication. Thus, a publication can replicate data to a subscription which
in turn, can be used in a publication to replicate to another subscription, thus creating a cascaded replication architecture.
There are restrictions on the combinations and configurations of database servers that can be used for a publication and its subscription. See
Advanced Server Compatibility Configuration Modes for details on these restrictions.
All replication system components must be running in order for replication to occur, or before performing any configuration, operation, or
modification in the replication system. (The xDB Replication Console is used for the configuration and modification of a replication system. The xDB
Replication Console does not need to be running in order for replication to occur.)
In general, the order of creation of a replication system is as follows:

Create the required physical databases, database user names, tables, and views to be used in the replication system.
Define the replication system logical components using the xDB Replication Console or xDB Replication Server CLI.
Perform replication.

In general, the order of removal of a single-master replication system is as follows:
Remove the replication system logical components using the xDB Replication Console or xDB Replication Server CLI starting with the
subscriptions (Subscription nodes) and then their parent components (Subscription Database nodes).

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 53

Unregister the subscription server if you no longer have any need for it.
Repeat the same process for the publications.
After all replication system logical components have been removed (except for possibly the publication server and subscription server) you
can drop any of the physical database objects in Oracle, SQL Server, or Postgres. Do not drop the control schema objects manually, for
example by using an SQL command line utility. Doing so may cause the xDB Replication Console and xDB Replication Server CLI to become
inoperable. (See Deleting the Control Schema and Control Schema Objects if this problem occurs.) Deleting the replication system logical
components using the xDB Replication Console or xDB Replication Server CLI automatically drops the control schema objects from the
physical database.

The order of removal of a multi-master replication system is as follows:
Remove the replication system logical components using the xDB Replication Console or xDB Replication Server CLI starting with the
publication database definitions of the non-MDN nodes.
Remove the publication from under the primary definition node.
Remove the publication database definition of the primary definition node.
After all replication system logical components have been removed (except for possibly the publication server) you can drop any of the
physical database objects in Postgres. Do not drop the control schema objects manually, for example by using an SQL command line utility.
Doing so may cause the xDB Replication Console and xDB Replication Server CLI to become inoperable.

3.4.3 Restrictions on Replicated Database Objects

When a subscription is created in a single-master replication system, the table definitions and most database objects and attributes associated with the
publication tables are created in the subscription database by the subscription server.

If you so choose, the same process can automatically occur when a primary node is added to a multi-master replication system. The table definitions and
most database objects and attributes associated with the publication tables can be created in the newly added primary node by the publication server.

The following is a list of database objects and table attributes that are replicated from the publication in either a single-master or multi-master replication
system.

Tables
Views (for snapshot-only publications) created as tables in the subscription database
Primary keys
Not null constraints
Unique constraints
Check constraints
Indexes

NoteNote

Foreign key constraints are not replicated by the publication or subscription server in a single-master replication system. However, in a multi-
master replication system, foreign key constraints are replicated from the primary definition node to other primary nodes.

NoteNote

Sequences (database objects created by the CREATE SEQUENCE statement) are not replicated from the publication database to the
subscription databases in a single-master replication system. Sequences are also not replicated from the primary definition node to other primary
nodes in a multi-master replication system.

xDB Replication Server does have some restrictions on the types of tables it can replicate.

Restrictions on Oracle Database Objects

Certain types of Oracle partitioned tables can be replicated. See Replicating Oracle Partitioned Tables for details.

Oracle global temporary tables cannot be replicated.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 54

Oracle tables that include the following data types cannot be replicated:

BFILE
BINARY_DOUBLE
BINARY_FLOAT
MLSLABEL
LONG
LONG RAW

Oracle tables with the following data types can be used in snapshot-only publications, but cannot be used in synchronization replications:

BLOB
CLOB
NCLOB
RAW

Columns with following data types cannot be added to a filter for a PostgreSQL or EDB Postgres Advanced Server database:

money
bit
bit varying

Restrictions on SQL Server Database Objects

SQL Server tables that include the following data types cannot be replicated:

GEOGRAPHY
GEOMETRY
SQL_VARIANT

NoteNote

See Replicating the SQL Server SQL_VARIANT Data Type for a method to replicate tables containing the SQL_VARIANT data type under certain
conditions.

SQL Server tables with the following data types can be used in snapshot-only publications, but cannot be used in synchronization replications:

BINARY
IMAGE
NTEXT
NVARCHAR(max)
TEXT
TIMESTAMP
VARBINARY
VARBINARY(max)

Restrictions on Postgres Database Objects

For replicating Postgres partitioned tables see Replicating Postgres Partitioned Tables for details. Postgres tables with the following data types in a column
that is part of the primary key cannot be replicated:

BLOB

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 55

BYTEA
RAW

PostgreSQL or EDB Postgres Advanced Server database tables that include the following data types cannot be replicated to the Oracle database:

JSON
JSONB

Geometry data types
tsvector , tsquery , txid_snapshot , pg_lsn
cidr , inet , mcaddress , mcaddress8 , uuid , money
ENUM , ARRAY , range data type (such as int4range , tstzrange , numrange , daterange)

Any user-defined data type (that is, defined as CREATE TYPE type_name)

Postgres tables that include OID based large objects cannot be replicated. For information on OID based large objects see pg_largeobject in the
PostgreSQL Core Documentation.

Postgres tables that include any geometric data types such as POINT, POLYGON, etc., cannot be replicated to an Oracle subscription database.

Postgres tables that include the following data types cannot be replicated to a SQL Server subscription database:

ABSTIME
ACLITEM
CHKPASS

Geometric data types (such as LINE , PATH , POLYGON)
CIRCLE
CUBE
JSON
JSONB
ROWID
tsvector , tsquery , txid_snapshot , pg_lsn
SEG
Any ARRAY data type (that is, defined as data_type[])
ENUM , composite type, range data type (such as int4range , tstzrange , numrange , daterange), mcaddress8

Any user-defined data type (that is, defined as CREATE TYPE type_name)

NoteNote

Tables containing columns of datatype mcaddress8 can be replicated from PostgreSQL to PostgreSQL. However, replication from PostgreSQL
to EDB Postgres Advanced Server and between EDB Postgres Advanced Servers is not supported.

Restrictions on Range Data TypesRestrictions on Range Data Types

Postgres data types called range types were first supported in PostgreSQL version 9.2 and Advanced Server version 9.2. Built-in range types refer to the
following built-in data types: int4range, int8range, numrange, tsrange, tstzrange , and daterange .

Postgres tables containing the built-in range types can be included in the publication of a single-master or multi-master replication system.

However, this results in the following restrictions on the subscription databases of a single-master replication system or the additional primary nodes of a
multi-master replication system:

If a publication table of a single-master replication system contains any built-in range types, then a database can be added as a subscription
database only if the database server of the intended subscription database is Postgres version 9.2 or later.
If a publication table of the primary definition node in a multi-master replication system contains any built-in range types, then a database can be
added as an additional primary node only if the database server of this intended primary node is Postgres version 9.2 or later.

Custom range types constructed with the CREATE TYPE AS RANGE command are not supported in xDB Replication Server.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 56

https://www.postgresql.org/docs/current/static/catalog-pg-largeobject.html

3.4.4 Performance Considerations

This section discusses provides some general guidelines on performance considerations.

When to Use Snapshot or Synchronization

Generally, synchronization would be the quickest replication method since it only applies changes to the target tables since the last replication occurred.

However, if a large percentage of rows are changed between each replication, there may be a point where it would be faster to completely reload the target
tables using a snapshot than to execute individual SQL statements on a large percentage of rows as would be done for synchronization replication.
Experimentation may be necessary to determine if, and at what point a snapshot would be faster.

Snapshot replication may be an option for tables with the following characteristics:

Tables are relatively small in size
A large percentage of rows are changed between replications

Synchronization replication is the better option for tables with the following characteristics:

Tables are large in size
A small percentage of rows are changed between replications

In a single-master replication system, if you find that one group of tables consistently replicates faster using snapshot replication, then these tables can be
made part of a snapshot-only publication while the remaining tables can be members of a publication that uses synchronization replication.

When to Use On Demand Replication

The xDB Replication Console and xDB Replication Server CLI both give you the capability to immediately start a replication. This is called an on demand
replication.

On demand replication can be performed at any time regardless of whether or not there is an existing schedule. An on demand replication does not change
the date and time when the next replication is scheduled to occur according to an existing schedule.

If a publication is a snapshot-only publication, then the only type of on demand replication that can be performed on this publication is a snapshot.

If a publication is not a snapshot-only publication, you can perform an on demand replication using either the snapshot method or the synchronization
method.

When you are in the development and testing phases of your replication system, you would typically use on demand replication so that you can immediately
force the replication to occur and analyze the results.

When your replication system is ready for production, a schedule would typically be used so that replications can occur unattended at regular time
intervals. See Creating a Schedule for directions on creating a schedule.

There may be other situations where you would want to force a replication to take place ahead of its normal schedule. Reasons for performing an on
demand replication may include the following:

The number of changes to the source tables is growing at a faster rate than usual, and you do not want to wait for the regularly scheduled
synchronization time to replicate all of the accumulated changes.
You have set up your replication system to perform synchronizations, but on this occasion there have been an unusually large number of changes
made to the source tables, and you would rather perform a snapshot of all source tables rather than execute a large number of SQL statements
against the target tables.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 57

Changes have been made directly to the rows of the target tables so that they no longer have the same content as their source table counterparts.
You can perform an on demand snapshot replication to reload all rows of the target tables from your current set of source tables.

NoteNote

In a multi-master replication system, on demand snapshots can only be made from the primary definition node to another primary node.

See On Demand Replication for directions on performing an on demand replication for a single-master replication system. See On Demand Replication for
a multi-master replication system.

3.4.5 Distributed Replication

xDB Replication Server provides the flexibility of allowing you to run the replication system’s components on separate machines on a network.

In fact xDB Replication Server is designed so that it is possible to set up replication systems where each of the components (publication server,
subscription server, publication database, subscription database, and primary nodes) may all run on the same host, each component may run on its own
separate host, or any combination of components may run on any number of hosts.

However, for practical purposes, there are two basic scenarios. The simplest case is where all components are on the same host. The other case is where
you have the Oracle or SQL Server database server running on a host separate from the rest of the replication system components.

This section discusses the advantages and disadvantages of each scenario.

Single Host

The simplest implementation of a replication system is when all replication components run on a single host. This means that the PostgreSQL or Advanced
Server installation, the complete xDB Replication Server installation (publication server and subscription server), and the Oracle or SQL Server database
server reside on the same machine.

The Postgres publication or subscription database as the case may be, can reside in the initial database cluster that is created when Postgres is installed on
the host.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 58

Figure 2-22: Single host replication systemFigure 2-22: Single host replication system

The advantages of a single host replication system are the following:

There is a performance advantage since there is no network over which to push replication data, especially if large snapshots are involved.
Configuration is much simpler. When creating the replication system logical components, the IP addresses of all components are the same.

The disadvantages of a single host replication system are the following:

The replication system and the database servers all consume the resources of one machine, which can adversely affect database application
performance.
The publication and subscription databases may be in different geographic locations, thereby requiring multiple networked hosts.
Your site may require the use of a dedicated host for the Oracle or SQL Server database server so xDB Replication Server could not reside on the
same machine.

Single-Master Replication Distributed Hosts

xDB Replication Server allows you to build a replication system with either or both of the publication database and the subscription database on separate
hosts. This is illustrated in the following diagram:

Figure 2-23: Oracle database server on distributed hostFigure 2-23: Oracle database server on distributed host

The same remote distribution can be used for the subscription database instead of, or in addition to the publication database.

The advantages of a distributed host replication system are the following:

The replication system and the database servers can each consume the resources of their own machines, which can be individually selected and
tuned.
The publication and subscription databases can be in different geographic locations.
You can enforce stronger database security if only the database server is allowed to run on a host.

The disadvantages of a distributed host replication system are the following:

There may be a performance disadvantage since there is a network over which to push replication data, especially if large snapshots are involved.
Installation is more complex if the Postgres database must run on a different host than xDB Replication Server. This involves installing Postgres on

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 59

two separate hosts.
Configuration is more complex. The network and firewalls must be properly configured to allow the distributed components to communicate. When
creating the replication system logical components, the correct IP addresses of all components must be used. In addition, the correct IP addresses
must be kept up-to-date in the replication system control schema should they change in the networked environment.

Multi-Master Replication Distributed Hosts

In a multi-master replication system, the Postgres database servers running the primary nodes can be running on a single or multiple hosts. The following
example illustrates two primary nodes running on database servers on separate hosts as well as a primary node running on the same database server as the
publication server.

Figure 2-24: Multi-master replication on distributed hosts

4 Installation and Uninstallation

This chapter describes how to install and uninstall xDB Replication Server.

Installation of xDB Replication Server can be accomplished a number of different ways:

Using a graphical user interface
Running the xDB Replication Server installer program from the command line console in text or unattended mode
Installing the xDB RPM package using the Yum package manager

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 60

The most common installation of xDB Replication Server is done with the graphical user interface invoked by Stack Builder or StackBuilder Plus depending
upon whether you are using PostgreSQL or Advanced Server.

For PostgreSQL. Install xDB Replication Server using Stack Builder after you have installed PostgreSQL.
For Advanced Server. Install xDB Replication Server using StackBuilder Plus after you have installed Advanced Server.

For circumstances in which you do not wish to use the graphical user interface, the xDB Replication Server installer program can be downloaded from the
EnterpriseDB website, and then invoked in text or unattended mode as well as the graphical user interface mode. See Installing from the Command Line for
instructions on installing xDB Replication Server from the command line.

The xDB Replication Server product is also available as an RPM package in which case the Yum package manager is used for installation. See Installing the
xDB RPM Package for instructions on installing xDB Replication Server from the RPM package.

Section Installing With Stack Builder or StackBuilder Plus describes the installation of xDB Replication Server through the graphical user interface of Stack
Builder or StackBuilder Plus.

NoteNote

If you have an older version of xDB Replication Server and existing replication systems, review Section Upgrading to xDB Replication Server 6.2
before installing xDB Replication Server.

If you later decide you wish to remove xDB Replication Server from your system see Section Uninstalling xDB Replication Server for directions on
uninstalling xDB Replication Server if you initially installed it with the graphical user interface or by invoking the installer program from the command line.
See Uninstalling the xDB RPM Package for directions on uninstalling xDB Replication Server that was installed from the RPM package.

4.1 Installing With Stack Builder or StackBuilder Plus

Stack Builder and StackBuilder Plus are programs used to download and install add-on products and updates to PostgreSQL and Advanced
Server. Stack Builder is used for PostgreSQL. StackBuilder Plus is used for Advanced Server.

Stack Builder and StackBuilder Plus are very similar in functionality and look-and-feel, differing primarily in the list of products offered.

This section demonstrates the installation of xDB Replication Server using StackBuilder Plus for Advanced Server. Steps are noted where the installation
process differs for installation on PostgreSQL using Stack Builder.

Step 1:Step 1: You must have Java Runtime Environment (JRE) version 1.8 or later installed on the hosts where you intend to install any xDB Replication Server
component (xDB Replication Console, publication server, or subscription server). Any Java product such as Oracle Java or OpenJDK may be used.

Follow the directions for your host operating system to install Java runtime.

For Windows only:For Windows only: Be sure the system environment variable, JAVA_HOME , is set to the JRE installation directory of the JRE version and bitness (32-bit or
64-bit) you wish to use with the xDB Replication Server. The xDB Replication Server installer for a Windows platform contains both the 32-bit and 64-bit
versions. The JAVA_HOME setting determines whether the 32-bit or the 64-bit version of xDB Replication Server is installed. (If JAVA_HOME is not set,
then the first JRE version encountered in the Path system environment variable determines the xDB Replication Server version to be installed.)

NoteNote

For Advanced Server versions prior to 9.3, a Java runtime is supplied and installed as part of the Advanced Server installation process, however,
you must still have pre-installed a separate Java runtime system on your host. The xDB Replication Server installation process does not utilize the
Java runtime supplied with Advanced Server.

NoteNote

After installation of xDB Replication Server has completed, the path to your Java runtime program is stored in the xDB Startup Configuration file
used by xDB Replication Server. Verify that the path to your Java runtime program set in the xDB Startup Configuration file is correct. See Post-
Installation Host Environment for the location of this file.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 61

Step 2:Step 2: From the host’s application menu, open the Postgres menu and choose Stack Builder or StackBuilder Plus .

Figure 3-1: Postgres application menuFigure 3-1: Postgres application menu

Step 3 (For Linux only):Step 3 (For Linux only): Depending upon your Linux host, a dialog box or a prompt appears requesting the root account’s password. Enter the root password
and click the OK button.

Figure 3-2: Enter root account passwordFigure 3-2: Enter root account password

Step 4:Step 4: The StackBuilder Plus welcome screen appears. Select your Postgres installation from the drop-down list and click the Next button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 62

Figure 3-3: StackBuilder Plus welcome screenFigure 3-3: StackBuilder Plus welcome screen

Step 5 (For Advanced Server):Step 5 (For Advanced Server): Expand the EnterpriseDB Tools node and check the box for Replication Server. Click the Next button.

NoteNote

Though the following images show Replication Server v6.0, use the same process for Replication Server v6.2.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 63

Figure 3-4: StackBuilder Plus applicationsFigure 3-4: StackBuilder Plus applications

Step 5 (For PostgreSQL):Step 5 (For PostgreSQL): Expand the Registration-Required and Trial Products node, and then expand the EnterpriseDB Tools node. Check the box for
Replication Server under the EnterpriseDB Tools list and click the Next button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 64

Figure 3-5: Stack Builder applicationsFigure 3-5: Stack Builder applications

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 65

Figure 3-6: EnterpriseDB Tools for PostgreSQLFigure 3-6: EnterpriseDB Tools for PostgreSQL

Step 6 (For Advanced Server only):Step 6 (For Advanced Server only): In the Account Registration screen, either enter your email address and password for your EnterpriseDB user
account if you have one, or click the link in which case you will be directed to the registration page of the EnterpriseDB website where you can create an
account. Click the Next button.

NoteNote

(For PostgreSQL only): Proceed to Step 7. If you are using PostgreSQL, account registration occurs later in the process.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 66

Figure 3-7: EnterpriseDB account registrationFigure 3-7: EnterpriseDB account registration

Step 7:Step 7: Verify that Replication Server appears in the list of selected packages. Click the Next button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 67

Figure 3-8: Selected packagesFigure 3-8: Selected packages

An information box appears showing the download progress of the Replication Server package. This may take a few minutes.

Figure 3-9: Downloading progressFigure 3-9: Downloading progress

Step 8:Step 8: When downloading of the Replication Server package completes, the following screen appears that starts the installation of xDB Replication Server.
Click the Next button.

NoteNote

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 68

You can check the Skip Installation box if you wish to install xDB Replication Server some other time.

Figure 3-10: Start installationFigure 3-10: Start installation

Step 9:Step 9: Select the installation language and click the OK button.

Figure 3-11: Installation languageFigure 3-11: Installation language

Step 10:Step 10: In the Setup xDB Replication Server screen, click the Next button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 69

Figure 3-12: Setup xDB Replication ServerFigure 3-12: Setup xDB Replication Server

Step 11:Step 11: Read the license agreement. If you accept the agreement, select the accept radio button and click the Next button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 70

Figure 3-13: License agreementFigure 3-13: License agreement

Step 12:Step 12: Browse to a directory where you want the xDB Replication Server components installed, or allow it to install the components in the default
location shown. Click the Next button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 71

Figure 3-14: Installation directoryFigure 3-14: Installation directory

Step 13:Step 13: If you do not want a particular xDB Replication Server component installed on this particular host, uncheck the box Next to the component
name. Click the Next button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 72

Figure 3-15: Select componentsFigure 3-15: Select components

Step 14:Step 14: In the Account Registration screen select the radio button that applies to you. Click the Next button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 73

Figure 3-16: Account registrationFigure 3-16: Account registration

If you do not have an EnterpriseDB user account, you will be directed to the registration page of the EnterpriseDB website.

If you already have an EnterpriseDB user account, enter the email address and password for your EnterpriseDB user account as shown in the following
screen. Click the Next button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 74

Figure 3-17: My EnterpriseDB accountFigure 3-17: My EnterpriseDB account

Step 15:Step 15: Enter information for the xDB administrator.

NoteNote

From this point on, it is suggested that you record the values you enter on these screens as they will be needed during the publication and
subscription server registration process.

Enter values for the following fields:

Admin User. The xDB administrator user name to authenticate certain usage of the xDB Replication Server such as registering a publication
server or a subscription server running on this host. Any alphanumeric string may be entered for the admin user name. The default admin user name
is admin.
Admin Password. Password of your choice for the xDB administrator given in the Admin User field.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 75

Figure 3-18: xDB admin user informationFigure 3-18: xDB admin user information

The admin user and the admin password (in encrypted form) are saved to the xDB Replication Configuration file named /etc/edb-repl.conf
(XDB_HOME\etc\edb-repl.conf on Windows hosts). Click the Next button.

Step 16 (Only if publication server is a selected component):Step 16 (Only if publication server is a selected component): Enter an available port on which the publication server will run. Default port number is 9051.
Click the Next button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 76

Figure 3-19: Publication server detailsFigure 3-19: Publication server details

Step 17 (Only if subscription server is a selected component):Step 17 (Only if subscription server is a selected component): Enter an available port on which the subscription server will run. Default port number is 9052.
Click the Next button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 77

Figure 3-20: Subscription server detailsFigure 3-20: Subscription server details

Step 18:Step 18: For the operating system account under which the publication server or subscription server is to run, enter postgres (enterprisedb if you
are using Advanced Server installed in Oracle compatible configuration mode).

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 78

Figure 3-21: Publication/subscription server operating system accountFigure 3-21: Publication/subscription server operating system account

Step 19:Step 19: On the Ready to Install screen, click the Next button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 79

Figure 3-22: Ready to installFigure 3-22: Ready to install

An information box appears showing the installation progress of the xDB Replication Server selected components. This may take a few minutes.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 80

Figure 3-23: Installation progressFigure 3-23: Installation progress

Step 20:Step 20: When installation has completed the following screen appears. Click the Finish button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 81

Figure 3-24: xDB Replication Server installation completionFigure 3-24: xDB Replication Server installation completion

Step 21:Step 21: On the StackBuilder Plus Installation Complete screen, click the Finish button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 82

Figure 3-25: StackBuilder Plus installation completeFigure 3-25: StackBuilder Plus installation complete

Successful installation of xDB Replication Server results in the creation of directory structures and files in your host environment as described in Section
Post-Installation Host Environment.

Step 22:Step 22: Install a JDBC driver. See Installing a JDBC driver for more information.

4.2 Installing from the Command Line

The section provides directions for installing xDB Replication Server from the Linux or Windows command line console.

There are basically three ways of performing command line installation.

Text.Text. Include the --mode text parameter when invoking the installer to perform an installation from the command line during which you are
prompted for user input.
Unattended.Unattended. Include the --mode unattended parameter when invoking the installer to perform an installation without user input. In this case,
required parameters must be specified on the command line when invoking the installer or the --optionfile parameter must be used to specify
a file containing the parameter settings.
Extract Only.Extract Only. Invoke the installer with the --extract-only parameter to only extract the files when you do not hold the root privileges required
to perform a complete installation.

The xDB Replication Server installer program can either be downloaded directly from the EnterpriseDB website or by using Stack Builder or StackBuilder
Plus.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 83

The installer program name may vary depending upon how you obtained it. The following are some examples illustrating command line installation.

NoteNote

For additional detailed information on how to install EnterpriseDB products, see [EDB Postgres Advanced Server

installation for Linux](/epas/latest/epas_inst_linux/)

NoteNote

You must have Java Runtime Environment (JRE) version 1.8 or later installed on the hosts where you intend to install any xDB Replication Server
component (xDB Replication Console, publication server, or subscription server). Any Java product such as Oracle Java or OpenJDK may be used.

Follow the directions for your host operating system to install Java runtime.

The following example shows how to start the xDB Replication Server installation in text mode.

$./xdbreplicationserver-6.2.0-alpha-1-linux-x64.run --mode text
Language Selection

Please select the installation language
[1] English - English
 .
 .
Please choose an option [1] :
--
Welcome to the Postgres Plus xDB Replication Server Setup Wizard.
 .
 .

The following example shows how to start the installation in unattended mode with an options file.

$ su root
Password:
$./xdbreplicationserver-6.2.0-alpha-1-linux-x64.run --optionfile /home/user/xdb_config

The following is the content of the options file, xdb_config .

mode=unattended
existing-user=user@xyz.com
existing-password=password
installer-language=en
prefix=/opt/PostgreSQL/EnterpriseDB-xDBReplicationServer
enable-components=repconsole,pubserver,subserver
admin_user=admin
admin_password=password
pubport=9051
subport=9052
serviceaccount=enterprisedb
servicepassword=password

The following is a list of the parameters that may be specified when running the installer program. Most parameters have a default value if the parameter is
not specified.

ParametersParameters

--help

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 84

Display the list of valid options.

--version

Display the product version information.

--extract-only { yes | no }

Specify yes or 1 to extract the xDB Replication Server components and files without performing installation. Specify no or 0 to perform the
installation of xDB Replication Server as well. The default is no or 0 .

--unattendedmodeui { none | minimal | minimalWithDialogs }

Specify the extent to which a user interface should be displayed during unattended installation. Specify none if no progress bars are to be
displayed. Specify minimal if progress bars are to be displayed. Specify minimalWithDialogs if progress bars are to be displayed with dialog
boxes if errors occur. The default is minimal .

--optionfile filename

Use the specified file containing installation configuration parameters in parameter=value format.

--mode { qt | gtk | xwindow | text | unattended }

Specify the installation mode. Specify qt to use the Qt graphical toolkit. Specify gtk to use the Gtk graphical toolkit (for Linux only). Specify
xwindow to use the X Windows graphical toolkit (for Linux only). Specify text for installation in a command line console (for Linux only). Specify

unattended to perform installation without requesting user input. The default is qt.

--debugtrace debug_logfile

Specify this parameter to create a debug log file.

--debuglevel { 0 | 1 | 2 | 3 | 4 }

Specify the amount of detail to be written to the debug log file. Higher values provide more detail. The default level is 2.

--existing-user edb_user_account

Specify your EnterpriseDB user account. (This is the email address used as your identifier when you created an account on the registration page
of the EnterpriseDB website.)

--existing-password edb_user_password

Specify the password of your EnterpriseDB user account.

--installer-language { en | zh_CN | zh_TW | ja | ko }

Specify the installation language. Specify en for English. Specify zh_CN for Chinese Simplified. Specify zh_TW for Traditional Chinese.
Specify ja for Japanese. Specify ko for Korean. The default is en .

--prefix installation_directory

The directory where the xDB Replication Server components are to be installed. The default is /opt/PostgreSQL/EnterpriseDB-
xDBReplicationServer for Linux systems. The default is C:\Program Files\edb\EnterpriseDB-xDBReplicationServer for
Windows systems.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 85

--enable-components {[repconsole] [,pubserver] [,subserver]}

Specify the xDB Replication Server components to be installed. Specify repconsole for the xDB Replication Console and the xDB Replication
Server Command Line Interface. Specify pubserver for the xDB publication server. Specify subserver for the xDB subscription server. At
least one component must be included in this comma-separated list. The default is repconsole,pubserver,subserver .

--disable-components {[repconsole] [,pubserver] [,subserver]}

Specify the xDB Replication Server components to exclude from installation. The default is an empty list.

--admin_user admin_user

The xDB administrator user name to authenticate certain usage of the xDB Replication Server such as registering a publication server or a
subscription server running on this host. Any alphanumeric string may be entered for the admin user name. The default admin user name is
admin.

--admin_password admin_password

Password of your choice for the xDB administrator. There is no default for this parameter.

--pubport port

Port number for the publication server. The default is 9051.

--subport port

Port number for the subscription server. The default is 9052.

--serviceaccount account_name

The operating system account under which the publication server or subscription server is to run. The default is postgres .

--servicepassword account_password

The password for the operating system account. There is no default for this parameter.

Successful installation of xDB Replication Server results in the creation of directory structures and files in your host environment as described in Section
Post-Installation Host Environment.

Before using Replication Server, you must download and install JDBC drivers. See Installing a JDBC driver for details.

4.3 Installing the xDB RPM Package on x86-64

xDB Replication Server is supplied as an RPM package available in the EDB Yum Repository. Use the Yum package manager to install xDB Replication
Server from the RPM package.

For information about using Yum, see the Yum project website located at:

http://yum.baseurl.org/

To request credentials to the EDB Yum Repository, visit the following website:

https://www.enterprisedb.com/repository-access-request

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 86

http://yum.baseurl.org/
https://www.enterprisedb.com/repository-access-request

For information about using the EDB Yum Repository see Installing EDB Postgres Advanced Server.

NoteNote

Although the following primarily describes the installation of xDB Replication Server version 6.2, access to the RPM packages for prior xDB
Replication Server versions are also described in order to differentiate the installation of these different versions.

Each xDB Replication Server component is available as an individual RPM package. Thus, you can install all xDB Replication Server components with a
single yum install command, or you may choose to install selected, individual components by installing only those particular RPM packages.

The following table lists the RPM packages and the xDB Replication Server component it contains.

Table 3 1: xDB Replication Server Component RPM PackagesTable 3 1: xDB Replication Server Component RPM Packages

Package NamePackage Name xDB Replication Server ComponentxDB Replication Server Component

ppas-xdb All components

ppas-xdb-console xDB Replication Console and the xDB Replication Server Command Line Interface

ppas-xdb-publisher Publication server

ppas-xdb-subscriber Subscription server

ppas-xdb-libs Library files required by all components

The Advanced Server server libs package must be available for access by Yum when installing any xDB RPM package component. The edb-asxx-server-libs
package is a component of the Advanced Server repository package for version 10 or later. Step 3 shows how to enable access to the Advanced Server
repository so Yum can access its server libs package.

NoteNote

You might have to enable the [extras] repository definition in the CentOS-Base.repo file (located in /etc/yum.repos.d) .

To install any of the packages, invoke the following command as the root account:

yum install package_name

package_name is any of the packages listed under the Package Name column of the preceding table.

For example to install all xDB components, invoke the following:

yum install ppas-xdb --exclude edb-xdb

To install only the xDB Replication Console and xDB Replication Server Command Line Interface, invoke the following:

yum install ppas-xdb-console

To install only the publication server, invoke the following:

yum install ppas-xdb-publisher

NoteNote

Though all xDB components are dependent upon and thus require installation of the server libs package, by using Yum, the dependency on the
server libs is recognized when any xDB component is installed. Yum automatically installs the server libs package from the enabled Advanced
Server repository along with your selected xDB RPM package.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 87

https://www.enterprisedb.com/docs/epas/latest/epas_inst_linux/installing_epas_using_edb_repository

The following are the steps to perform a complete xDB Replication Server installation with all xDB components.

Step 1:Step 1: You must have Java Runtime Environment (JRE) version 1.8 or later installed on the hosts where you intend to install any xDB Replication Server
component (xDB Replication Console, publication server, or subscription server). Any Java product such as Oracle Java or OpenJDK may be used.

Follow the directions for your host operating system to install Java runtime.

NoteNote

When Replication Server is installed on a machine where Java is not present, the JDK is installed as part of the installation process. Since in this
case the JDK was installed via Replication Server as its dependency, if you subsequently remove the JDK, Replication Server is also removed.

If Java 1.8 or greater exists before installing Replication Server, the installed Replication Server is not removed on removal of the JDK.

Step 2:Step 2: From the EDB Yum Repository, click on the following link to download the repository RPM for all the EnterpriseDB RPMs.:

https://yum.enterprisedb.com/

As the root account, run the following command to install this repository configuration package:

On RHEL or CentOS 7:On RHEL or CentOS 7:

yum -y install https://yum.enterprisedb.com/edb-repo-rpms/edb-repo-latest.noarch.rpm

On RHEL or Rocky Linux or AlmaLinux 8:On RHEL or Rocky Linux or AlmaLinux 8:

dnf -y install https://yum.enterprisedb.com/edb-repo-rpms/edb-repo-latest.noarch.rpm

Step 3:Step 3: In the directory /etc/yum.repos.d , the repository configuration file edb.repo is created, which a text file is containing a list of
EnterpriseDB repositories, each denoted by an entry starting with the text [repository_name] .

Access to the packages in any of these repositories is accomplished by enabling the repository by editing the following in the repository entry:

Using your requested credentials for the EDB Yum Repository, substitute the user name and password for the <username>:<password>
placeholders of the baseurl parameter.
Change the setting of the enabled parameter to enabled=1 .

For example, to access the server libs package from the repository for Advanced Server version 14, enable the following entry:

[edbas96]
name=EnterpriseDB Advanced Server 14 $releasever - $basearch
baseurl=http://<username>:<password>@yum.enterprisedb.com/14/redhat/rhel-$releasever-$basearch
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/ENTERPRISEDB-GPG-KEY

To enable the appropriate repository for installing the desired version of xDB Replication Server, enable one of the following entries:

To install version 6.2, enable the entry for [enterprisedb-xdb60].
To install a prior version, enable the entry for [enterprisedb-tools].

Whichever version is chosen, be sure the other entries are disabled (that is, the parameter setting is enabled=0 for the non-selected entries).

For example, to access xDB Replication Server version 6.2, enable the following entry:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 88

https://yum.enterprisedb.com/

[enterprisedb-xdb60]
name=EnterpriseDB XDB 6.2 $releasever - $basearch
baseurl=http://<username>:<password>@yum.enterprisedb.com/xdb60/redhat/rhel-$releasever-$basearch
enabled=0
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/ENTERPRISEDB-GPG-KEY

Step 4:Step 4: Install the xDB Replication Server RPM package.

The following syntax installs the xDB RPM package:

yum install ppas-xdb --exclude edb-xdb

The following is an example:

yum install ppas-xdb --exclude edb-xdb
Loaded plugins: fastestmirror, langpacks
Loading mirror speeds from cached hostfile
* base: centos.excellmedia.net
* extras: centos.excellmedia.net
* updates: centos.excellmedia.net
base | 3.6 kB 00:00:00
edb
| 2.5 kB 00:00:00
extras
| 2.9 kB 00:00:00
updates
| 2.9 kB 00:00:00
edb/7/x86_64/primary_db
| 452 kB 00:00:03
Resolving Dependencies
--> Running transaction check
---> Package ppas-xdb.x86_64 0:6.2.12-1.rhel7 will be installed
--> Processing Dependency: ppas-xdb-subscriber for package: ppas-xdb-6.2.12-1.rhel7.x86_64
--> Processing Dependency: ppas-xdb-publisher for package: ppas-xdb-6.2.12-1.rhel7.x86_64
--> Processing Dependency: ppas-xdb-console for package: ppas-xdb-6.2.12-1.rhel7.x86_64
--> Running transaction check
---> Package ppas-xdb-console.x86_64 0:6.2.12-1.rhel7 will be installed
--> Processing Dependency: ppas-xdb-libs for package: ppas-xdb-console-6.2.12-1.rhel7.x86_64
---> Package ppas-xdb-publisher.x86_64 0:6.2.12-1.rhel7 will be installed
--> Processing Dependency: ppas-libs for package: ppas-xdb-publisher-6.2.12-1.rhel7.x86_64
--> Processing Dependency: libpq.so.5()(64bit) for package: ppas-xdb-publisher-6.2.12-1.rhel7.x86_64
---> Package ppas-xdb-subscriber.x86_64 0:6.2.12-1.rhel7 will be installed
--> Running transaction check
---> Package ppas-xdb-libs.x86_64 0:6.2.12-1.rhel7 will be installed
---> Package ppas95-server-libs.x86_64 0:9.5.24.30-1.rhel7 will be installed
--> Processing Dependency: libmemcached.so.11()(64bit) for package: ppas95-server-libs-9.5.24.30-
1.rhel7.x86_64
--> Running transaction check
---> Package libmemcached.x86_64 0:1.0.16-5.el7 will be installed
--> Finished Dependency Resolution

Dependencies Resolved
==
Package Arch Version
Repository Size
==
Installing:
ppas-xdb x86_64 6.2.12-1.rhel7
edb 7.2 k

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 89

Installing for dependencies:
libmemcached x86_64 1.0.16-5.el7
base 237 k
ppas-xdb-console x86_64 6.2.12-1.rhel7
edb 1.6 M
ppas-xdb-libs x86_64 6.2.12-1.rhel7
edb 14 M
ppas-xdb-publisher x86_64 6.2.12-1.rhel7
edb 40 k
ppas-xdb-subscriber x86_64 6.2.12-1.rhel7
edb 11 k
ppas95-server-libs x86_64 9.5.24.30-1.rhel7
edb 499 k

Transaction Summary
==
Install 1 Package (+6 Dependent packages)

Total download size: 16 M
Installed size: 21 M
Is this ok [y/d/N]: y
Downloading packages:
warning: /var/cache/yum/x86_64/7/base/packages/libmemcached-1.0.16-5.el7.x86_64.rpm: Header V3 RSA/SHA256
Signature, key ID f4a80eb5: NOKEY] 230 kB/s | 212 kB 00:01:11 ETA
Public key for libmemcached-1.0.16-5.el7.x86_64.rpm is not installed
(1/7): libmemcached-1.0.16-5.el7.x86_64.rpm
| 237 kB 00:00:02
warning: /var/cache/yum/x86_64/7/edb/packages/ppas-xdb-6.2.12-1.rhel7.x86_64.rpm: Header V4 RSA/SHA1
Signature, key ID 7e30651c: NOKEY] 215 kB/s | 237 kB 00:01:16 ETA
Public key for ppas-xdb-6.2.12-1.rhel7.x86_64.rpm is not installed
(2/7): ppas-xdb-6.2.12-1.rhel7.x86_64.rpm
| 7.2 kB 00:00:02
(3/7): ppas-xdb-console-6.2.12-1.rhel7.x86_64.rpm
| 1.6 MB 00:00:08
(4/7): ppas-xdb-publisher-6.2.12-1.rhel7.x86_64.rpm
| 40 kB 00:00:00
(5/7): ppas-xdb-subscriber-6.2.12-1.rhel7.x86_64.rpm
| 11 kB 00:00:00
(6/7): ppas95-server-libs-9.5.24.30-1.rhel7.x86_64.rpm
| 499 kB 00:00:01
(7/7): ppas-xdb-libs-6.2.12-1.rhel7.x86_64.rpm
14 MB 00:00:22

Total
663 kB/s | 16 MB 00:00:25
Retrieving key from file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-7
Importing GPG key 0xF4A80EB5:
Userid : "CentOS-7 Key (CentOS 7 Official Signing Key) <security@centos.org>"
Fingerprint: 6341 ab27 53d7 8a78 a7c2 7bb1 24c6 a8a7 f4a8 0eb5
Package : centos-release-7-5.1804.el7.centos.x86_64 (@anaconda)
From : /etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-7
Is this ok [y/N]: y
Retrieving key from file:///etc/pki/rpm-gpg/ENTERPRISEDB-GPG-KEY
Importing GPG key 0x7E30651C:
Userid : "EnterpriseDB Inc. (EnterpriseDB Yum Repositories) <packages@enterprisedb.com>"
Fingerprint: ca40 9f7c 635f 2ae5 6c9e 8b34 e5ed e919 7e30 651c
Package : edb-repo-20-2.noarch (installed)
From : /etc/pki/rpm-gpg/ENTERPRISEDB-GPG-KEY
Is this ok [y/N]: y
Running transaction check

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 90

Running transaction test
Transaction test succeeded
Running transaction
Installing : ppas-xdb-libs-6.2.12-1.rhel7.x86_64
1/7
Installing : ppas-xdb-subscriber-6.2.12-1.rhel7.x86_64
2/7
Installing : ppas-xdb-console-6.2.12-1.rhel7.x86_64
3/7
Installing : libmemcached-1.0.16-5.el7.x86_64
4/7
Installing : ppas95-server-libs-9.5.24.30-1.rhel7.x86_64
5/7
Installing : ppas-xdb-publisher-6.2.12-1.rhel7.x86_64
6/7
Installing : ppas-xdb-6.2.12-1.rhel7.x86_64
7/7
Verifying : libmemcached-1.0.16-5.el7.x86_64
1/7
Verifying : ppas-xdb-libs-6.2.12-1.rhel7.x86_64
2/7
Verifying : ppas95-server-libs-9.5.24.30-1.rhel7.x86_64
3/7
Verifying : ppas-xdb-publisher-6.2.12-1.rhel7.x86_64
4/7
Verifying : ppas-xdb-subscriber-6.2.12-1.rhel7.x86_64
5/7
Verifying : ppas-xdb-console-6.2.12-1.rhel7.x86_64
6/7
Verifying : ppas-xdb-6.2.12-1.rhel7.x86_64
7/7

Installed:
ppas-xdb.x86_64 0:6.2.12-1.rhel7

Dependency Installed:
libmemcached.x86_64 0:1.0.16-5.el7 ppas-xdb-console.x86_64 0:6.2.12-1.rhel7 ppas-xdb-
libs.x86_64 0:6.2.12-1.rhel7 ppas-xdb-publisher.x86_64 0:6.2.12-1.rhel7
ppas-xdb-subscriber.x86_64 0:6.2.12-1.rhel7 ppas95-server-libs.x86_64 0:9.5.24.30-1.rhel7

Complete!

The xDB Replication Server is installed in directory location /usr/ppas-xdb-x.x where x.x is the xDB Replication Server version number as shown
by the following:

[root@localhost ppas-xdb-6.2]# pwd
/usr/ppas-xdb-6.2
[root@localhost ppas-xdb-6.2]# ls -l
total 84
drwxr-xr-x 2 root root 4096 Feb 23 16:05 bin
drwxr-xr-x 3 root root 4096 Feb 23 16:05 etc
drwxr-xr-x 4 root root 4096 Feb 23 16:05 lib
drwxr-xr-x 2 root root 4096 Feb 23 16:05 share
drwx------ 2 enterprisedb enterprisedb 4096 Feb 20 22:17 xdata
-r--r--r-- 1 enterprisedb enterprisedb 64035 Feb 20 20:40 xdb_3rd_party_licenses.txt

Successful installation of xDB Replication Server results in the creation of directory structures and files in your host environment as described in Section
Post-Installation Host Environment.

NoteNote

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 91

Neither the publication server nor the subscription server are running immediately following installation. If after reviewing the remaining steps,
you wish to start the publication server, see Registering a Publication Server. For starting the subscription server see Registering a Subscription
Server.

Step 5:Step 5: Install a JDBC driver. See Installing a JDBC driver for more information.

Step 6:Step 6: In the xDB Replication Configuration file /etc/edb-repl.conf , you can either use the default password (edb) as the admin user password,
or you can substitute a password of your choice. If you want to use your own password, see Encrypting the Password in the xDB Replication Configuration
File on how to generate the encrypted form of the password. Place the encrypted password in the admin_password parameter of the xDB Replication
Configuration file. The default admin user name is set to admin and can be changed as well. See xDB Replication Configuration File for information on the
xDB Replication Configuration file.

Step 7:Step 7: The JAVA_EXECUTABLE_PATH parameter in the xDB Startup Configuration file should be set so that the Java runtime program can be accessed
upon startup of the publication server and subscription server. If the publication server or subscription server startup fails due to inaccessibility to the Java
program, be sure to set the path to your Java runtime program in the xDB Startup Configuration file. See xDB Startup Configuration File for information on
the xDB Startup Configuration file. See Post-Installation Host Environment for the location of this file.

Updating an RPM Installation

If you have an existing xDB RPM installation, you can use yum to upgrade your repository configuration file and update to a more recent product version. To
update the edb.repo file, assume superuser privileges and enter:

yum upgrade edb-repo

yum will update the edb.repo file to enable access to the current EDB repository, configured to connect with the credentials specified in your
edb.repo file. Then, you can use yum to upgrade any installed packages:

yum upgrade ppas-xdb* --exclude edb-xdb*

4.4 Installing the RHEL 8 xDB RPM Package on IBM Power (ppc64le)

There are two steps to completing an installation:

Setting up the repository
Installing the package

For each step, you must be logged in as superuser.

To log in as a superuser:

sudo su -

Setting up the Repository

1. To register with EDB to receive credentials for the EDB repository, visit: Repository Access Request.

2. Set up the EDB repository:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 92

https://www.enterprisedb.com/repository-access-request

dnf -y install https://yum.enterprisedb.com/edbrepos/edb-repo-latest.noarch.rpm

This creates the /etc/yum.repos.d/edb.repo configuration file.

3. Add your EDB credentials to the edb.repo file:

sed -i "s@<username>:<password>@USERNAME:PASSWORD@" /etc/yum.repos.d/edb.repo

Where USERNAME:PASSWORD is the username and password available from your EDB account.

4. Install the EPEL repository and refresh the cache:

dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
dnf makecache

5. Enable the codeready-builder-for-rhel-8-*-rpms repository since EPEL packages may depend on packages from it:

ARCH=$(/bin/arch)
subscription-manager repos --enable "codeready-builder-for-rhel-8-${ARCH}-rpms"

6. Disable the built-in PostgreSQL module:

dnf -qy module disable postgresql

Installing the Package

dnf -y install edb-xdb

NoteNote

When Replication Server is installed on a machine where Java is not present, the JDK is installed as part of the installation process. Since in this
case the JDK was installed via Replication Server as its dependency, if you subsequently remove the JDK, Replication Server is also removed.

If Java 1.8 or greater exists before installing Replication Server, the installed Replication Server is not removed on removal of the JDK.

Initial configuration

Before using Replication Server, you must download and install JDBC drivers. See Installing a JDBC driver for details.

4.5 Installing Replication Server on an SLES Host

On SLES 12 x86_64

You can use the zypper package manager to install the xDB Replication Server on an SLES 12 host. zypper will attempt to satisfy package dependencies

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 93

https://www.enterprisedb.com/user

as it installs a package, but requires access to specific repositories that are not hosted at EnterpriseDB.

Before installing xDB, use the following commands to add EnterpriseDB repository configuration files to your SLES host:

zypper addrepo https://zypp.enterprisedb.com/suse/epas96-sles.repo
zypper addrepo https://zypp.enterprisedb.com/suse/epas-sles-tools.repo
zypper addrepo https://zypp.enterprisedb.com/suse/epas-sles-dependencies.repo

Each command creates a repository configuration file in the /etc/zypp/repos.d directory. The files are named:

edbas96suse.repo
edbasdependencies.repo
edbastools.repo

After creating the repository configuration files, use the zypper refresh command to refresh the metadata on your SLES host to include the
EnterpriseDB repositories:

/etc/zypp/repos.d # zypper refresh
Repository 'SLES12-12-0' is up to date.
Repository 'SLES12-Pool' is up to date.
Repository 'SLES12-Updates' is up to date.
Retrieving repository 'EDB Postgres Advanced Server 14 12 - x86_64' metadata -----------------------[\]
Authentication required for 'https://zypp.enterprisedb.com/14/suse/suse-12-x86_64'
User Name:
Password:
Retrieving repository 'EDB Postgres Advanced Server 14 12 - x86_64'
metadata...................................[done]
Building repository 'EDB Postgres Advanced Server 14 12 - x86_64' cache..........................[done]
All repositories have been refreshed.
...

When prompted for a User Name and Password, provide your connection credentials for the EnterpriseDB repository. If you need credentials, visit the
following website:

https://www.enterprisedb.com/repository-access-request

Before installing EDB Postgres Advanced Server or supporting components, you must also add SUSEConnect and the SUSE Package Hub extension to the
SLES host, and register the host with SUSE, allowing access to SUSE repositories. Use the commands:

zypper install SUSEConnect
SUSEConnect -p PackageHub/12/x86_64
SUSEConnect -p sle-sdk/12/x86_64

For detailed information about registering a SUSE host, visit:

https://www.suse.com/support/kb/doc/?id=7016626

Then add the Java repository and update the repository metadata: Please note that only OpenJDK (version 1.8) is supported on SLES hosts of Java
components. Before using an RPM installer to add Advanced Server or a supporting component that requires Java, use zypper to add supporting repository
locations to your system.

Use the commands:

zypper addrepo "http://download.opensuse.org/repositories/Java:/Factory/SLE_12_SP2/Java:Factory.repo"
zypper addrepo "http://download.opensuse.org/repositories/server:/Kolab:/3.3/SLE_12/server:Kolab:3.3.repo"
zypper refresh

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 94

https://www.enterprisedb.com/repository-access-request
https://www.suse.com/support/kb/doc/?id=7016626

NoteNote

When Replication Server is installed on a machine where Java is not present, the JDK is installed as part of the installation process. Since in this
case the JDK was installed via Replication Server as its dependency, if you subsequently remove the JDK, Replication Server is also removed.

If Java 1.8 or greater exists before installing Replication Server, the installed Replication Server is not removed on removal of the JDK.

Then, you can use the zypper utility to install the xDB Replication Server components:

zypper install ppas-xdb*

NoteNote

Before starting the publication server and subscription server, the /etc/hosts file must contain an entry for the host name that associates it
to the host IP address as shown by the following example where 192.168.187.133 is the IP address and linux-dm8s is the host name:

192.168.187.133 linux-dm8s

On SLES 12 ppc64le

There are two steps to completing an installation:

Setting up the repository
Installing the package

For each step, you must be logged in as superuser.

To log in as a superuser:
sudo su -

Before setting up the repository, you need to register with EDB. To receive credentials for the EDB repository, visit: Repository Access Request.

Setting up the Repository

Setting up the repository is a one time task. If you have already set up your repository, you do not need to perform these steps.

Install the repository configuration and enter your EDB repository
credentials when prompted
zypper addrepo https://zypp.enterprisedb.com/suse/edb-sles.repo

Install SUSEConnect to register the host with SUSE, allowing access to
SUSE repositories
zypper install SUSEConnect

Register the host with SUSE, allowing access to SUSE repositories
Replace 'REGISTRATION_CODE' and 'EMAIL' with your SUSE registration
information
SUSEConnect -r 'REGISTRATION_CODE' -e 'EMAIL'

Activate the required SUSE modules
SUSEConnect -p PackageHub/12.5/ppc64le
SUSEConnect -p sle-sdk/12.5/ppc64le

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 95

https://www.enterprisedb.com/repository-access-request

Refresh the metadata
zypper refresh

Installing the Package

zypper -n install ppas-xdb

Initial configuration

Before using Replication Server, you must download and install JDBC drivers. See Installing a JDBC driver for details.

4.6 Installing a JDBC driver

Choosing and installing a JDBC driver

Which JDBC driver you use depends on what database you're using. If you're using:

EDB Postgres Advanced ServerEDB Postgres Advanced Server, use the EDB JDBC driver. To download the latest driver, see EDB Connectors on the EDB Downloads page. For
installation instructions, see Installing and configuring EDB JDBC Connector.

PostgreSQLPostgreSQL, use the PostgreSQL JDBC driver. To download the latest supported driver (Java 8), see the JDBC drivers section on the PostgreSQL
Downloads page.

OracleOracle, use the freely available Oracle JDBC driver.

Microsoft SQL ServerMicrosoft SQL Server, use the freely available jTDS driver.

Configuring the driver

After downloading the driver, create a symlink in the XDB-install-folder/lib/jdbc directory that points to the location where you installed the
driver.

For Linux, create a symlink for the driver using these naming conventions:

Driver symlink name

EDB edb-jdbc18.jar

PostgreSQL postgresql.jar

Oracle ojdbc.jar

jTDS jtds.jar

For interactive installers, the drivers need to be copied to the XDB-install-folder/lib/jdbc directory and renamed using the same naming

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 96

https://enterprisedb.com/software-downloads-postgres#edb-connectors
https://www.enterprisedb.com/docs/jdbc_connector/latest/04_installing_and_configuring_the_jdbc_connector/
https://jdbc.postgresql.org/download/
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://jtds.sourceforge.net/index.html

conventions.

Retaining the driver in an upgrade

When upgrading from a previous version of Replication Server, any drivers in XDB-install-folder/lib/jdbc are retained. Check that the retained
drivers are at the minimum supported or later version:

Driver Minimum supported version

EDB edb-jdbc17.jar

PostgreSQL postgresql-42.2.12.jre7.jar

Oracle ojdbc7.jar

jTDS jtds-1.3.1.jar

If your drivers are no longer supported, then you must replace them with the latest available version and follow the instructions in Configuring the driver.

4.7 Post-Installation Host Environment

On Linux hosts where you installed xDB Replication Server with the graphical user interface or from the command line, you should now have a publication
server daemon and a subscription server daemon running on your computer assuming you chose to install the publication server and subscription server
components. If you installed the xDB RPM package, you must start the publication server and the subscription server based upon the instructions in Section
Registering a Publication Server for the publication server and Registering a Subscription Server for the subscription server. On Windows systems, the
publication server and subscription server run as services named Publication Service and Subscription Service .

The Postgres application menu contains a new item for the xDB Replication Console.

NoteNote

On some Linux systems, you may have to restart the server before you can see the xDB Replication Console choice in the application menu. If the
xDB Replication Console choice is still unavailable in the application menu, it can be started by invoking the script
XDB_HOME/bin/runRepConsole.sh .

NoteNote

For xDB Replication Server installed from an xDB RPM package, the xDB Replication Console is started by invoking the script
XDB_HOME/bin/runRepConsole.sh .

The following files are created that you may need during the configuration process.

Table 3-2: Post-Installation FilesTable 3-2: Post-Installation Files

File Name Location Description

edb-repl.conf (Linux) /etc xDB Replication Configuration file

edb-repl.conf (Windows) XDB_HOME\etc xDB Replication Configuration file

edb-xdbpubserver (Linux) /etc/init.d Start, stop, or restart the publication server

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 97

edb-
xdbpubserver.service
(Linux)

/usr/lib/systemd/system Start, stop, or restart the publication server (CentOS 7, RHEL 7, Rocky
Linux 8, AlmaLinux 8, RHEL 8)

edb-xdbsubserver (Linux) /etc/init.d Start, stop, or restart the subscription server

edb-
xdbsubserver.service
(Linux)

/usr/lib/systemd/system Start, stop, or restart the subscription server (CentOS 7, RHEL 7, Rocky
Linux 8, AlmaLinux 8, RHEL 8)

xdb_pubserver.conf XDB_HOME/etc Publication server configuration file

xdb_subserver.conf XDB_HOME/etc Subscription server configuration file

xdbReplicationServer-
xx.config

XDB_HOME/etc/sysconfig xDB Startup Configuration file

pubserver.log (Linux) /var/log/xdb-x.x Publication server log file

pubserver.log (Windows)
POSTGRES_HOME\.enterprised
b\xdb\x.x

Publication server log file

subserver.log (Linux) /var/log/xdb-x.x Subscription server log file

subserver.log (Windows)
POSTGRES_HOME\.enterprised
b\xdb\x.x

Subscription server log file

edb-xdbpubserver.log
(Linux)

/var/log/edb/xdbpubserver Publication services startup log file

edb-xdbsubserver.log
(Linux)

/var/log/edb/xdbsubserver Subscription services startup log file

servers.xml USER_HOME/.enterprisedb/xd
b/x.x

Server login file

Post-Installation FilesPost-Installation Files

NoteNote

XDB_HOME is the directory where xDB Replication Server is installed.

NoteNote

POSTGRES_HOME is the home directory of the postgres operating system account (enterprisedb for Advanced Server installed in Oracle
compatible configuration mode).

NoteNote

The publication and subscription services startup log files (edb-xdbpubserver.log and edb-xdbsubserver.log) are not generated
for Windows and Mac OS X operating systems.

NoteNote

USER_HOME is the home directory of the operating system account in use.

NoteNote

The xDB Replication Server version number is represented by x.x or by xx (for example 6.2 or 62).

4.8 Uninstalling xDB Replication Server

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 98

Uninstalling xDB Replication Server results in the removal of the publication server, the subscription server, the xDB Replication Console, the xDB
Replication Server Command Line Interface, the xDB Replication Configuration file, the xDB Startup Configuration file, the publication server configuration
file, and the subscription server configuration file.

Uninstalling xDB Replication Server does not remove any databases used as primary nodes, publication databases, or subscription databases.

Use the xDB Replication Console or the xDB Replication Server Command Line Interface to delete any existing single-master or multi-master replication
systems before you uninstall xDB Replication Server, otherwise the control schema objects created in the publication databases or primary nodes will
remain in those databases. These control schema objects must then be deleted manually such as by using an SQL command line utility.

If you installed xDB Replication Server using the xDB Replication Server installer program invoked from Stack Builder or StackBuilder Plus as described in
Section Installing With Stack Builder or StackBuilder Plus or you invoked the xDB Replication Server installer program from the command line as described
in Section Installing from the Command Line, uninstall xDB Replication Server by invoking the uninstall-xdbreplicationserver script as
described in this section.

If you installed xDB Replication Server from the RPM package, uninstall it using the Yum package manager. See Section Uninstalling the xDB RPM Package
for information.

For Linux only:For Linux only: The following steps are for uninstalling xDB Replication Server from a Linux host.

Step 1:Step 1: As the root account, run the XDB_HOME/uninstall-xdbreplicationserver script from the directory where you installed xDB Replication
Server.

$ su root
Password:
$ cd /opt/PostgreSQL/EnterpriseDB-xDBReplicationServer
$./uninstall-xdbreplicationserver

Step 2:Step 2: Click the Yes button to confirm uninstallation of xDB Replication Server.

Figure 3-26: Confirm xDB Replication Server uninstallationFigure 3-26: Confirm xDB Replication Server uninstallation

Step 3:Step 3: The Uninstallation Completed dialog box appears when the process has completed. Click the OK button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 99

Figure 3-27: Uninstallation completedFigure 3-27: Uninstallation completed

For Windows only:For Windows only: The following steps are for uninstalling xDB Replication Server from a Windows host.

Step 1:Step 1: From the Windows Control Panel , select Uninstall a Program .

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 100

Figure 3-28: Uninstall a programFigure 3-28: Uninstall a program

Step 2:Step 2: Select the xDB Replication Server product in the list of programs to uninstall or change. Click the Uninstall/Change button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 101

Figure 3-29: Uninstall or change a programFigure 3-29: Uninstall or change a program

Step 3:Step 3: Click the Yes button to confirm uninstallation of xDB Replication Server.

Figure 3-30: Confirm xDB Replication Server uninstallationFigure 3-30: Confirm xDB Replication Server uninstallation

Step 4:Step 4: The Uninstallation Completed dialog box appears when the process has completed. Click the OK button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 102

Figure 3-31: Uninstallation completedFigure 3-31: Uninstallation completed

Uninstalling in Text or Unattended ModeUninstalling in Text or Unattended Mode

Uninstallation of xDB Replication Server can also be done without the use of the graphical user interface. This is illustrated by the following examples.

The following shows how to uninstall xDB Replication Server in text mode.

$ su root
Password:
$./uninstall-xdbreplicationserver --mode text
Do you want to uninstall xDB Replication Server and all of its modules? [Y/n]: y

--
Uninstall Status

 Uninstalling xDB Replication Server
 0% ______________ 50% ______________ 100%
 ###

Info: Uninstallation completed
Press [Enter] to continue :

The following shows how to uninstall xDB Replication Server in unattended mode.

$ su root
Password:
$./uninstall-xdbreplicationserver --mode unattended

4.9 Uninstalling the xDB RPM Package

If you installed xDB Replication Server from the RPM package, you can uninstall any xDB component by invoking the yum remove package_name command
as the root account where package_name is any xDB Replication Server component RPM package as listed in the table in Section Installing the xDB RPM

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 103

Package.

All xDB Replication Server components can be removed by the following command:

yum remove ppas-xdb*

An example is shown by the following:

yum update ppas-xdb
Loaded plugins: fastestmirror, langpacks
Loading mirror speeds from cached hostfile
* base: centos.excellmedia.net
* extras: centos.excellmedia.net
* updates: centos.excellmedia.net
No packages marked for update
[root@localhost yum.repos.d]# pwd
/etc/yum.repos.d
[root@localhost yum.repos.d]# ls
CentOS-Base.repo CentOS-CR.repo CentOS-Debuginfo.repo CentOS-fasttrack.repo CentOS-Media.repo CentOS-
Sources.repo CentOS-Vault.repo edb.repo
[root@localhost yum.repos.d]# vi edb.repo
[root@localhost yum.repos.d]# yum remove ppas-xdb*
Loaded plugins: fastestmirror, langpacks
Resolving Dependencies
--> Running transaction check
---> Package ppas-xdb.x86_64 0:6.2.12-1.rhel7 will be erased
---> Package ppas-xdb-console.x86_64 0:6.2.12-1.rhel7 will be erased
---> Package ppas-xdb-libs.x86_64 0:6.2.12-1.rhel7 will be erased
---> Package ppas-xdb-publisher.x86_64 0:6.2.12-1.rhel7 will be erased
---> Package ppas-xdb-subscriber.x86_64 0:6.2.12-1.rhel7 will be erased
--> Finished Dependency Resolution

Dependencies Resolved

===
==
Package Arch Version
Repository Size
===
==
Removing:
ppas-xdb x86_64 6.2.12-1.rhel7
@edb 0.0
ppas-xdb-console x86_64 6.2.12-1.rhel7
@edb 3.4 M
ppas-xdb-libs x86_64 6.2.12-1.rhel7
@edb 16 M
ppas-xdb-publisher x86_64 6.2.12-1.rhel7
@edb 130 k
ppas-xdb-subscriber x86_64 6.2.12-1.rhel7
@edb 4.9 k

Transaction Summary
===
==
Remove 5 Packages

Installed size: 19 M
Is this ok [y/N]: y
Downloading packages:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 104

Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
Erasing : ppas-xdb-6.2.12-1.rhel7.x86_64
1/5
Erasing : ppas-xdb-subscriber-6.2.12-1.rhel7.x86_64
2/5
Erasing : ppas-xdb-console-6.2.12-1.rhel7.x86_64
3/5
Erasing : ppas-xdb-publisher-6.2.12-1.rhel7.x86_64
4/5
Erasing : ppas-xdb-libs-6.2.12-1.rhel7.x86_64
5/5
Verifying : ppas-xdb-subscriber-6.2.12-1.rhel7.x86_64
1/5
Verifying : ppas-xdb-console-6.2.12-1.rhel7.x86_64
2/5
Verifying : ppas-xdb-6.2.12-1.rhel7.x86_64
3/5
Verifying : ppas-xdb-publisher-6.2.12-1.rhel7.x86_64
4/5
Verifying : ppas-xdb-libs-6.2.12-1.rhel7.x86_64
5/5

Removed:
ppas-xdb.x86_64 0:6.2.12-1.rhel7 ppas-xdb-console.x86_64 0:6.2.12-1.rhel7 ppas-xdb-
libs.x86_64 0:6.2.12-1.rhel7 ppas-xdb-publisher.x86_64 0:6.2.12-1.rhel7
ppas-xdb-subscriber.x86_64 0:6.2.12-1.rhel7

Complete!

5 Introduction to the xDB Replication Console

The xDB Replication Console is the graphical user interface that you use to configure and manage the replication system. The equivalent functionality can
also be done using the xDB Replication Server CLI utility. See Chapter xDB Replication Server Command Line Interface for information on the xDB
Replication Server CLI.

The xDB Replication Console window consists of the following main areas:

Menu Bar. Menus for the replication system components
Tool Bar. Icons for quick access to dialog boxes
Replication Tree. Replication system components represented as nodes in an inverted tree
Information Window. Tabbed window with information about a highlighted node in the replication tree

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 105

Figure 4-1: xDB Replication Console windowFigure 4-1: xDB Replication Console window

The options that are available on the menu bar and tool bar are dependent upon the node highlighted in the replication tree. Only those options relevant to
the highlighted node are available in the menu bar and tool bar.

The content of the information window applies to the highlighted node as well.

xDB Replication Console Tool Bar

This section describes when the various tool bar icons are activated. The operations associated with the tool bar are described in Creating a Publication and
Creating a Subscription for single-master replication. For multi-master replication see Creating a Publication.

NoteNote

The publication server must be running in order to use tools relevant to publications. Similarly, the subscription server must be running in order
to use tools relevant to subscriptions.

Refresh

The Refresh icon is always activated. Click the Refresh icon if the replication tree or information window does not appear to display the latest
information after performing an operation. Clicking the Refresh icon ensures that the latest information is shown in the replication tree and in the
information window.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 106

Figure 4-2: Refresh iconFigure 4-2: Refresh icon

Create Publication

The Create Publication icon is activated when a Publication Database node is highlighted in the replication tree.

Figure 4-3: Create Publication iconFigure 4-3: Create Publication icon

Publication Management

The Remove Publication icon, Add Publication Tables icon, and Remove Publication Tables icon are activated when a Publication
node is highlighted in the replication tree.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 107

Figure 4-4: Remove Publication, Add Publication Tables, and Remove Publication Tables iconsFigure 4-4: Remove Publication, Add Publication Tables, and Remove Publication Tables icons

Create Subscription

The Create Subscription icon is activated when a Subscription Database node is highlighted in the replication tree.

Figure 4-5: Create Subscription iconFigure 4-5: Create Subscription icon

Subscription Management

The Remove Subscription icon, Snapshot icon, Synchronize icon, Configure Schedule icon, and Remove Schedule icon are
activated when a Subscription node is highlighted in the replication tree.

Figure 4-6: Remove Subscription, Snapshot, Synchronize, Configure Schedule, and Remove Schedule iconsFigure 4-6: Remove Subscription, Snapshot, Synchronize, Configure Schedule, and Remove Schedule icons

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 108

Saving Server Login Information

When you use the xDB Replication Console to create a replication system, you will need to register a publication server and a subscription server. During
this process you are given the option to save the server’s login information. This section describes what happens if you select this option.

The following discussion applies to both publication servers and subscription servers. These are generically referred to as servers in this discussion.

Server Login File

If you choose to save the login information, the server’s network location (IP address and port number), admin user name, and password are stored in a
server login file in a hidden location under the home directory of the operating system account with which you have opened the xDB Replication Console.
See Post-Installation Host Environment for the location of this file.

The following shows the Register Publication Server dialog box where the option to save login information is presented as a check box. In this example
192.168.2.22 entered in the Host field, 9051 entered in the Port field, admin entered in the User Name field, and an encrypted form of the

password entered in the Password field are saved in the server login file for this publication server if the admin user name and password validation are
successful.

The values for User Name and Password that you enter are validated against the admin user name and password in the xDB Replication Configuration file
residing on host 192.168.2.22 , in this case. The admin user name and password must successfully authenticate before registration of the publication
server and saving of the publication server’s login information in the server login file occur. See xDB Replication Configuration File for information on the
xDB Replication Configuration file.

Figure 4-7: Save login information option for a publication serverFigure 4-7: Save login information option for a publication server

See Registering a Publication Server for more information on the purpose of these fields and the process of registering a publication server.

The following shows the Register Subscription Server dialog box. In this example 192.168.2.22 entered in the Host field, 9052 entered in the Port
field, admin entered in the User Name field, and an encrypted form of the password entered in the Password field are saved in the server login file for this
subscription server if the admin user name and password validation are successful.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 109

Figure 4-8: Save login information option for a subscription serverFigure 4-8: Save login information option for a subscription server

See Registering a Subscription Server for more information on the purpose of these fields and the process of registering a subscription server.

Saving server login information gives you the convenience of immediate access to the publication server and any of its subordinate publications, or access
to the subscription server and any of its subordinate subscriptions. That is, when you open the xDB Replication Console, the Publication Server nodes of
saved publication servers immediately appear in the replication tree allowing you to perform administrative tasks on its subordinate publications.

Similarly, the Subscription Server nodes of saved subscription servers immediately appear in the replication tree allowing you to perform administrative
tasks on its subordinate subscriptions.

If you did not save server login information, the server nodes would not be visible in the replication tree. You would have to re-enter the server’s network
location, admin user name, and password. In other words, you would have to register the server each time you open the xDB Replication Console.

NoteNote

Each operating system account on a given host has its own server login file. Thus, the servers that are saved and appear in the xDB Replication
Console when opened is independently determined for each operating system account.

Security Risks of Saved Server Login Information

The preceding section discussed the benefits of saving server login information. The security risk associated with it is if unauthorized persons gain access
to your operating system account, they could then potentially open the xDB Replication Console on your host using your operating system account.

If the login information of publication servers or subscription servers is saved, the corresponding Publication Server nodes or Subscription Server nodes
immediately appear in the xDB Replication Console with no request for authentication information.

This allows an unauthorized person to perform any operation on the exposed publications and subscriptions including the potential to completely delete
the replication system.

NoteNote

The publication database and subscription database cannot be deleted, but unauthorized replications could be forced to occur.

Thus, it is important that operating system accounts are secure on hosts that have access to an xDB Replication Console and a replication system.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 110

6 Single-Master Replication Operation

This chapter describes how to configure and run xDB Replication Server for single-master replication systems.

For configuration and management of your replication system, the xDB Replication Console graphical user interface is used to illustrate the steps and
examples in this chapter. The same steps can be performed from the operating system command line using the xDB Replication Server Command Line
Interface (CLI). The commands of the xDB Replication Server CLI utility are described in Chapter xDB Replication Server Command Line Interface.

6.1 Prerequisite Steps

Certain steps must be taken to prepare the host environments as well as the publication and subscription database servers before beginning the process of
building a single-master replication system. This section describes these steps.

6.1.1 Setting Heap Memory Size for the Publication and Subscription Servers

The publication server and the subscription server are configured to run with a default set of heap size parameters. Either the default settings for 32-bit
platforms or the default settings for 64-bit platforms are set by parameter JAVA_HEAP_SIZE when xDB Replication Server is installed.

This parameter is configured in the xDB Startup Configuration file. See xDB Startup Configuration File for information on the xDB Startup Configuration
file.

The following is an example of the xDB Startup Configuration file.

#!/bin/sh

JAVA_EXECUTABLE_PATH="/usr/bin/java"
JAVA_MINIMUM_VERSION=1.8
JAVA_BITNESS_REQUIRED=64
JAVA_HEAP_SIZE="-Xms256m -Xmx1536m"
PUBPORT=9051
SUBPORT=9052

On a 32-bit system, the initial heap size is set to 128 megabytes (-Xms128m) and the maximum limit is set to 512 megabytes (-Xmx512m). On a 64-bit
system the initial heap size is 256 megabytes (-Xms256m) and the maximum limit is 1536 megabytes (-Xmx1536m).

Typically, these values can handle the average workloads. However, depending upon the average row size and pending backlog of replication updates, it
may be beneficial to increase the default heap size settings.

The default values can be modified by changing the JAVA_HEAP_SIZE parameter setting in the xDB Startup Configuration file. Be sure to restart the
publication server and the subscription server (see Registering a Publication Server and Registering a Subscription Server) after making such changes.

The heap size value should conform to the available RAM on the host running the publication server or subscription server. The basic guideline is that the
maximum heap size should not exceed 25% of the total RAM size.

The following factors should also be considered.

If both the publication server and subscription server are running on the same host, then the minimum and recommended RAM capacity are shown by the
following.

Minimum RAM SizeMinimum RAM Size. For a 32-bit system, use 4 gigabytes; for a 64-bit system use 8 gigabytes.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 111

Recommended RAM SizeRecommended RAM Size. For a 32-bit system, use 8 gigabytes; for a 64-bit system use 16 gigabytes.

By default, both the publication server and subscription server are started and both are required for single-master replication systems. However if only
multi-master replication systems are to be configured and used, then the subscription server is not needed. In such cases, the subscription server should be
stopped to avoid redundant use of memory.

If both the publication server and the subscription server are running on the same host, then each server reserves its own heap buffer. Thus, the total heap
size for both the publication and subscription servers, obtained by adding the maximum heap size for both servers, should comply with the available RAM
on the host.

Tuning heap size and configuration parameters for larger rows

When one or more publication tables contain a large size column, for example, XMLType (Oracle/EPAS data type), it is essential to adjust specific
parameters to avoid Out Of Memory errors. The XMLType column is stored in Large Objects (LOBs). The LOB storage maintains content accuracy to the
original XML. So it retains and stores all the white spaces present in the XML. This data occupies large space when it is loaded and held in-memory by xDB
as part of the replication process.

Tune the following parameters to reduce the data maintained in the memory for XMLType and other large-size columns:

Increase HEAP size between 4GB to 8GB depending on the maximum size of large column(4GB for column size below 30MB, 6GB for column size
between 30 and 100 BM, and 8GB for column size > 100 MB).
Set the configuration parameter txSetMaxSize to a lower value (10 to 50) depending on the average size of row data. For a large column
(>100MB), set txSetMaxSize to less than or equal to 5.
Set the configuration parameter syncBatchSize to a lower value (4 to 10 (rows)) depending on the size of the column data. For a very large
column (>100MB), set syncBatchSize to less than 4.

NoteNote

Higher values of txSetMaxSize and syncBatchSize boost the performance of the replication process; however, increasing it to a
relatively larger value might result in an Out of Memory error. These values need to be tuned based on the column size.

6.1.2 Enabling Synchronization Replication with the Log-Based Method

This section applies only to Postgres database servers of version 9.4 and later. If you plan to use the log-based method of synchronization replication with
any publication database running under the Postgres database server, the following configuration parameter settings are required in the configuration file,
postgresql.conf, of the Postgres database server:

wal_level . Set to logical .
max_wal_senders . Specifies the maximum number of concurrent connections (that is, the maximum number of simultaneously running WAL

sender processes). Set at minimum, to the number of SMR publication databases on this database server that will use the log-based method. In
addition, if MMR primary nodes are to run on this database server, also add the number of MMR primary nodes that will use the log-based method.
max_replication_slots . Specifies the maximum number of replication slots. Set at minimum, to the number of SMR publication databases

on this database server that will use the log-based method. In addition, if MMR primary nodes are to run on this database server with the log-based
method, see Replication Origin for information on the additional number of replication slots required.

See Synchronization Replication with the Log-Based Method for information on the log-based method of synchronization replication.

The Postgres database server must be restarted after altering any of these configuration parameters.

In addition, the pg_hba.conf file requires an entry for each publication database user of publication databases that are to use the log-based method.
Such database users must be included as a replication database user in the pg_hba.conf file. See Postgres Server Authentication for additional
information.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 112

6.1.3 Enabling Access to the Database Servers

The following sections describe configuration steps required to use xDB Replication Server on various types of database servers.

The following section describes the steps to enable access to Oracle. See Section Enabling Access to SQL Server for enabling access to SQL Server.

No special steps are required to enable access to a Postgres database server.

Enabling Access to Oracle

NoteNote

The directions in this section apply only if Oracle will be used as the publication or subscription database.

An Oracle JDBC driver jar file such as, ojdbc7.jar , must be accessible to the Java virtual machine (JVM) on the host running the publication server and
the subscription server. If the publication server and subscription server are running on separate hosts, the Oracle JDBC driver must be accessible to the
JVM on each host. Oracle JDBC driver version ojdbc7 or later must be used.

Step 1:Step 1: Download the Oracle JDBC driver, for example, ojdbc7.jar , from the Oracle download site to the host that will be running the publication
server.

Step 2:Step 2: Copy file ojdbc7.jar to the directory XDB_HOME/lib/jdbc.

$ su root
Password:
$ cd /usr/edb/xdb/lib/jdbc
$ cp /home/user/Downloads/ojdbc5.jar .
$ ls -l
total 4032
-rw-rw-r-- 1 root root 355655 Jan 25 02:38 edb-jdbc14.jar
-rw-rw-r-- 1 root root 716209 Jan 25 02:38 edb-jdbc17.jar
-rw-rw-r-- 1 root root 317816 Jan 25 02:38 jtds-1.3.1.jar
-rw-r--r-- 1 root root 2091137 Jan 28 16:45 ojdbc5.jar
-rw-rw-r-- 1 root root 642809 Jan 25 02:38 postgresql-9.4-1201.jdbc4.jar

NoteNote

You may also copy the ojdbc7.jar file to the jre/lib/ext subdirectory of the location where you installed your Java runtime
environment.

NoteNote

Make sure to set the ODBC driver permission to a minimum of 644 .

NoteNote

Make sure to copy xdb6.jar along with ojdbc7.jar at /opt/PostgreSQL/EnterpriseDB-
xDBReplicationServer/lib/jdbc/ if one or more tables in Oracle Publication contins an XMLType column when using Oracle to EDB
Postgres Advanced Server/PostgreSQL replication.

Step 3:Step 3: If the subscription server is running on a different host than the publication server, repeat steps 1 and 2 for the subscription server host.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 113

Enabling Access to SQL Server

NoteNote

The directions in this section apply only if SQL Server will be used as the publication or subscription database.

The jTDS JDBC driver jar file jtds-1.3.1.jar must be accessible to the Java virtual machine (JVM) on the host running the publication server and the
subscription server. If the publication server and subscription server are running on separate hosts, the jTDS JDBC driver must be accessible to the JVM
on each host.

When you install xDB Replication Server, the jtds-1.3.1.jar file is placed in the directory XDB_HOME/lib/jdbc so there is no manual
configuration needed for this requirement.

Step 1:Step 1: Be sure SQL Server Authentication mode is enabled on your SQL Server database engine. SQL Server Authentication mode allows the use of SQL
Server logins such as the built-in system administrator login, sa.

Using the default settings for SQL Server installation, only Windows Authentication mode is enabled, which utilizes the accounts of the Windows operating
system for authentication.

In order to permit SQL Server Authentication mode, you must change the authentication mode to Mixed Mode Authentication, which permits both Windows
Authentication and SQL Server Authentication.

This can be done using SQL Server Management Studio. Refer to the appropriate SQL Server documentation for using SQL Server Management Studio.

Step 2:Step 2: Be sure SQL Server is accepting TCP/IP connections. In the SQL Server Configuration Manager, under SQL Server Network Configuration, be sure
the TCP/IP protocol for the SQL Server instance is set to Enabled. The typical, default SQL Server instance names are MSSQLSERVER or SQLEXPRESS .

Step 3 (Required only for a SQL Server publication database):Step 3 (Required only for a SQL Server publication database): Be sure SQL Server Agent is enabled and running. SQL Server Agent is a Windows service that
controls job scheduling and execution with SQL Server.

xDB Replication Server uses SQL Server Agent for certain operations such as for scheduled shadow table history cleanup (see Section Scheduling Shadow
Table History Cleanup).

SQL Server Agent can be started by using SQL Server Configuration Manager. Refer to the appropriate SQL Server documentation for using SQL Server
Configuration Manager.

6.1.4 Preparing the Publication Database

This section discusses the preparation of a database that contains tables and views that will become members of publications.

The tables and views to be used for any given publication must all reside in the same database. This database becomes the publication database of that
publication. A publication database user name must be created or already exist with the following characteristics:

The publication database user can connect to the publication database.
The publication database user has the privileges to create control schema objects to store metadata used for controlling and tracking the replication
process.
The publication database user can read the tables and views that are to become members of publications.
For publications that will use synchronization replication with the trigger-based method, the publication database user can create triggers on the
publication tables. (For Oracle, the publication database user must have trigger creation privilege even for snapshot-only publications, though
triggers will only be created for publications using synchronization replication.)

The examples used throughout the rest of this user’s guide are based on the following:

The publication database user name is pubuser .
The tables and view used in publications reside in a schema named edb.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 114

Three tables named dept, emp , and jobhist are members of schema edb .
One view named salesemp is a member of schema edb . This view is a SELECT statement over the emp table.
The Oracle system identifier (SID) of the publication database is xe . The SQL Server publication database name is edb. The Postgres publication
database name is edb . (The cases of Oracle as the publication database, SQL Server as the publication database, and Postgres as the publication
database are presented with examples in this section.)

For preparing an Oracle publication database, see the next section. For preparing a SQL Server publication database, see SQL Server Publication Database.
For preparing a Postgres publication database, see Postgres Publication Database.

Oracle Publication Database

NoteNote

(For Oracle 12c): The Oracle 12c multitenant architecture introduces the concept of the container database (CDB), which can contain multiple
pluggable databases (PDBs). A pluggable database can be used as a publication database or a subscription database in a single-master
replication system.

Oracle 12c still supports the usage of a single database referred to as a non-container database (non-CDB) that is compatible with Oracle versions prior to
12c. An Oracle 12c non-container database can also be used as a publication database or a subscription database in a single-master replication system.

The setup instructions for using an Oracle 12c publication database or subscription database are the same as for previous Oracle versions. Any special
distinctions are indicated by a note within the instructions.

Step 1:Step 1: Create a database user name for the publication database user. The publication database user name must have a password, and it must have the
ability to create a database session. The publication database user becomes the owner of the control schema objects that will be created in the publication
database to track, control, and record the replication process and history.

NotesNotes

(For Oracle 12c Pluggable Database): The publication database user can be an Oracle local user or a common user. The local user exists
within and has access to only a single, user-created pluggable database (PDB), which is to be used as the publication database. Common
user names typically begin with C## or c## and can access multiple pluggable databases.

(For Oracle 12c Pluggable Database): Creation and granting of privileges for a local user must be done while connected to the pluggable
database to be used as the publication database. Creation of a common user must be done within the Oracle 12c root container
CDB$ROOT . Granting of privileges to the common user must be done while connected to the pluggable database to be used as the

publication database.

(For Oracle 12c Non-Container Database): Creation and granting of privileges to the publication database user are performed in the same
manner as for Oracle versions prior to 12c.

If you enable flashback functionality for the Oracle published table, you must also give the publication database user flashback privileges
for the table.

GRANT flashback ON schema_name.table_name to pubuser;

When creating the publication database definition, the publication database user name is entered in the Publication Service – Add Database dialog box
(see Adding a Publication Database).

CREATE USER pubuser IDENTIFIED BY password;
GRANT CONNECT TO pubuser;

Step 2:Step 2: Grant the privileges needed to create the control schema objects. The control schema objects are created in the schema owned by, and with the
same name as the publication database user. That is, the publication database user’s schema is the control schema for an Oracle publication database.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 115

GRANT RESOURCE TO pubuser;

Step 3:Step 3: Grant the privileges required to create triggers on the publication tables. The CREATE ANY TRIGGER privilege must be granted to the
publication database user.

GRANT CREATE ANY TRIGGER TO pubuser;

Step 4:Step 4: Grant the privileges required to lock publication tables when creating triggers. The LOCK ANY TABLE privilege must be granted to the
publication database user.

GRANT LOCK ANY TABLE TO pubuser;

Step 5 (For Oracle 12c onward):Step 5 (For Oracle 12c onward): Grant the privileges required to access tablespaces. The GRANT UNLIMITED TABLESPACE privilege must be granted
to the publication database user. This requirement applies to both a pluggable database and a non-container database.

GRANT UNLIMITED TABLESPACE TO pubuser;

Step 6 (For Oracle 19c onward):Step 6 (For Oracle 19c onward): CREATE JOB privilege is necessary for the publication database user to schedule a job.

This requirement applies to both pluggable as well as non-container databases.

GRANT CREATE JOB TO pubuser;

Step 7:Step 7: The publication database user must be able to read the tables and views that are to be included in publications.

GRANT SELECT ON edb.dept TO pubuser;
GRANT SELECT ON edb.emp TO pubuser;
GRANT SELECT ON edb.jobhist TO pubuser;
GRANT SELECT ON edb.salesemp TO pubuser;

Step 8 (Optional):Step 8 (Optional): Create one or more group roles containing the required privileges to access the tables and views of the publications that will be needed
by application users.

Using roles is convenient if you wish to add new application users who need privileges to select, insert, update , or delete from any of the
publication tables. A role containing the required privileges can then be granted to the new users instead of granting each privilege individually to each
user.

The following example shows the creation of the role and the granting of the privileges on the publication tables to the role:

CREATE ROLE appgroup;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.dept TO appgroup;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.emp TO appgroup;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.jobhist TO appgroup;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.salesemp TO appgroup;

The following example shows the creation of a new user and the granting of the new role to the user:

CREATE USER appuser IDENTIFIED BY password;
GRANT CREATE SESSION TO appuser;
GRANT appgroup TO appuser;

SQL Server Publication Database

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 116

In SQL Server, an application gains access to the database server by supplying a SQL Server login and its associated password.

When an application connects to a particular database, the application assumes the identity and privileges of a database user that has been defined in that
database. The database users in any given database are independent of database users in other databases with respect to their properties such as their role
memberships and privileges. In fact, the same database user name can be defined in more than one database, each with its own distinct properties.

In each database, a database user can be mapped to a SQL Server login. When an application connects to a database using a SQL Server login to which a
database user has been mapped, the application assumes the identity and privileges of that database user.

When using a SQL Server database as the publication database, a number of database users must be defined and mapped to a SQL Server login according
to the following rules:

A SQL Server login must exist that is to be used by the publication server to connect to SQL Server. The SQL Server login and password are specified
when creating the publication database definition.
In the publication database, a database user must exist that is to be the creator and owner of the control schema objects. This database user must be
mapped to the SQL Server login used by the publication server.
A schema must exist to contain certain control schema objects. The database user, described in the preceding bullet point, must either own this
schema or have certain privileges on this schema so that the database user can create and update the control schema objects in this schema. This
schema is one physical schema component of the overall control schema and must also be defined as the default schema of that database user. The
other physical schemas comprising the overall control schema are always created by the publication server as _edb_replicator_pub ,
_edb_replicator_sub , and _edb_scheduler .

The SQL Server database users that update the data in the application tables that are to be replicated must have certain privileges on the control
schema objects. When an update on a replicated table occurs, a trigger fires that accesses and updates certain control schema objects. The
appropriate privileges must be granted to SQL Server database users who require update access to the application tables.
A database user must exist in the msdb database that is mapped to the SQL Server login used by the publication server. This database user must
have certain privileges to execute jobs in the dbo schema of the msdb database. (The msdb database is used by SQL Server Agent to schedule alerts
and jobs. SQL Server Agent runs as a Windows service.)

This example uses the following SQL Server login, database users, and mappings to comply with the aforementioned rules:

The publication tables reside in database edb .
The database user owning the schema containing the publication tables and the publication tables, themselves, is edb .
The SQL Server login used by the publication server to connect to SQL Server is pubuser .
The database user owning the control schema objects and mapped to SQL Server login pubuser in database edb is pubuser .
The control schema used to contain certain control schema objects created by the publication server is pubuser. Other control schema objects are
always created in _edb_replicator_pub , _edb_replicator_sub , and _edb_scheduler .
The database user mapped to SQL Server login pubuser in database msdb is pubuser_msdb .

NoteNote

The sqlcmd utility program is used to execute the SQL statements in these examples. The USE command establishes the database to which the
subsequent statements are to apply. The GO command executes the preceding SQL statements as a batch. Placement of the GO command within
a stream of SQL statements sometimes has significance depending upon the particular SQL statements.

Step 1:Step 1: Create a SQL Server login for the xDB Replication Server publication database user. The login must have a password.

When creating the publication database definition, the SQL Server login is entered in the Publication Service – Add Database dialog box (see Section
Adding a Publication Database.

USE primary;
GO
CREATE LOGIN pubuser WITH PASSWORD = 'password';
GO

Step 2:Step 2: Create the database user and its required privileges for job scheduling in database msdb :

USE msdb;
GO
CREATE USER pubuser_msdb FOR LOGIN pubuser;

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 117

GO
GRANT EXECUTE ON SCHEMA :: dbo TO pubuser_msdb;
GRANT SELECT ON SCHEMA :: dbo TO pubuser_msdb;
GO

Step 3:Step 3: Create the database user for the control schema object creation and ownership. The control schema objects are created in the publication database
to track, control, and record the replication process and history. This example assumes some of the control schema objects are to be created in the schema
named pubuser .

NoteNote

The schema name you specify in the WITH DEFAULT_SCHEMA clause must be the schema you choose in Step 5. This schema does not have to
exist before using it in the CREATE USER FOR LOGIN WITH DEFAULT_SCHEMA statement.

USE edb;
GO
CREATE USER pubuser FOR LOGIN pubuser WITH DEFAULT_SCHEMA = pubuser;
GO

NoteNote

The remaining steps assume that the commands are given in the publication database (that is, the USE edb command has been previously given
to establish the publication database edb as the current database.)

Step 4:Step 4: Grant the database level privileges needed by the publication database user to create the control schema objects.

GRANT CREATE TABLE TO pubuser;
GRANT CREATE PROCEDURE TO pubuser;
GRANT CREATE FUNCTION TO pubuser;
GRANT CREATE SCHEMA TO pubuser;
GO

Step 5:Step 5: Choose the control schema where some of the control schema objects are to reside.

To create the control schema objects in a new schema owned by the publication database user and created exclusively for this purpose (recommended
approach) issue the following command:

CREATE SCHEMA pubuser AUTHORIZATION pubuser;
GO

Alternatively, to create the control schema objects in an existing schema such as in the same schema containing the publication tables (that is, schema
edb in this example) use the following commands:

GRANT ALTER ON SCHEMA :: edb TO pubuser;
GRANT EXECUTE ON SCHEMA :: edb TO pubuser;
GRANT SELECT ON SCHEMA :: edb TO pubuser;
GRANT INSERT ON SCHEMA :: edb TO pubuser;
GRANT UPDATE ON SCHEMA :: edb TO pubuser;
GRANT DELETE ON SCHEMA :: edb TO pubuser;
GO

Step 6:Step 6: Grant the privileges required to create triggers on the publication tables. The publication database user must have the ALTER privilege on the
publication tables.

GRANT ALTER ON edb.dept TO pubuser;

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 118

GRANT ALTER ON edb.emp TO pubuser;
GRANT ALTER ON edb.jobhist TO pubuser;
GO

Step 7:Step 7: The publication database user must be able to read the tables and views that are to be included in publications.

GRANT SELECT ON edb.dept TO pubuser;
GRANT SELECT ON edb.emp TO pubuser;
GRANT SELECT ON edb.jobhist TO pubuser;
GRANT SELECT ON edb.salesemp TO pubuser;
GO

Step 8 (Optional):Step 8 (Optional): Create one or more group roles containing the required privileges to access the tables and views of the publications that will be needed
by application users.

NoteNote

Creation of these roles can only be done after the SQL Server publication database definition has been created using the xDB Replication Console
or xDB Replication Server CLI. (For example, see Adding a Publication Database for the xDB Replication Console usage.)

Using roles is convenient if you wish to add new application users who need privileges to select, insert, update, or delete from any of the publication tables.
A role containing the required privileges can then be granted to the new users instead of granting each privilege individually to each user.

In addition to privileges on the publication tables, any user performing an insert, update, or delete operation on any of the publication tables requires
privileges to certain control schema objects of the publication.

The following example shows the creation of the role appgroup and the granting of privileges on the publication tables to the role. The example assumes
that in Step 5, schema pubuser was chosen as the control schema to store some of the control schema objects.

CREATE ROLE appgroup AUTHORIZATION edb;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.dept TO appgroup;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.emp TO appgroup;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.jobhist TO appgroup;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.salesemp TO appgroup;
GRANT EXECUTE ON SCHEMA :: _edb_replicator_pub TO appgroup;
GRANT SELECT ON SCHEMA :: _edb_replicator_pub TO appgroup;
GRANT INSERT ON SCHEMA :: _edb_replicator_pub TO appgroup;
GRANT UPDATE ON SCHEMA :: _edb_replicator_pub TO appgroup;
GRANT INSERT ON SCHEMA :: pubuser TO appgroup;
GO

The following example shows the creation of a new login and database user, and the addition of the database user as a member of the role in order to
inherit its privileges:

CREATE LOGIN applogin WITH PASSWORD = 'password', DEFAULT_DATABASE = edb;
CREATE USER appuser FOR LOGIN applogin WITH DEFAULT_SCHEMA = edb;
EXEC sp_addrolemember @rolename = 'appgroup', @membername = 'appuser';
GO

NoteNote

(Granting privileges to individual users): As previously described, each application database user that is to modify the data in any of the
publication tables must be granted certain privileges on the publication tables and the control schema objects. Using a group role for this
purpose as described earlier in this step helps simplify this process.

Individual database users can be granted the privileges to access the publication tables and the controls schema objects in a similar fashion.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 119

The following example shows the creation of a new login and database user, and the granting of the privileges on the publication tables and the control
schema objects to the user:

CREATE LOGIN newlogin WITH PASSWORD = 'password', DEFAULT_DATABASE = edb;
CREATE USER newuser FOR LOGIN newlogin WITH DEFAULT_SCHEMA = edb;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.dept TO newuser;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.emp TO newuser;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.jobhist TO newuser;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.salesemp TO newuser;
GRANT EXECUTE ON SCHEMA :: _edb_replicator_pub TO newuser;
GRANT SELECT ON SCHEMA :: _edb_replicator_pub TO newuser;
GRANT INSERT ON SCHEMA :: _edb_replicator_pub TO newuser;
GRANT UPDATE ON SCHEMA :: _edb_replicator_pub TO newuser;
GRANT INSERT ON SCHEMA :: pubuser TO newuser;
GO

NoteNote

Instead of using the preceding statements, which grant privileges at the schema level, a more granular level of privileges can be issued at the
database object level using the following statements:

CREATE LOGIN newlogin WITH PASSWORD = 'password', DEFAULT_DATABASE = edb;
CREATE USER newuser FOR LOGIN newlogin WITH DEFAULT_SCHEMA = edb;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.dept TO newuser;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.emp TO newuser;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.jobhist TO newuser;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.salesemp TO newuser;
GRANT INSERT ON pubuser.rrst_edb_dept TO newuser;
GRANT INSERT ON pubuser.rrst_edb_emp TO newuser;
GRANT INSERT ON pubuser.rrst_edb_jobhist TO newuser;
GO

In addition, depending upon the version of SQL Server, grant the following additional privileges.

For SQL Server 2008:For SQL Server 2008: Grant the following privileges:

GRANT EXECUTE ON _edb_replicator_pub.nextval TO newuser;
GRANT SELECT ON _edb_replicator_pub.rrep_tx_seq TO newuser;
GRANT INSERT ON _edb_replicator_pub.rrep_tx_seq TO newuser;
GO

For SQL Server 2012, 2014:For SQL Server 2012, 2014: Grant the following privileges:

GRANT UPDATE ON _edb_replicator_pub.rrep_tx_seq TO newuser;
GRANT UPDATE ON _edb_replicator_pub.rrep_txset_seq TO newuser;
GRANT UPDATE ON _edb_replicator_pub.rrep_common_seq TO newuser;
GO

Using this approach, however, requires you to issue additional privileges for each application table that is later added to the publication.

Postgres Publication Database

When creating the publication database definition, a database user name must be specified that has the following characteristics:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 120

The database user can connect to the publication database.
The database user has superuser privileges. Superuser privileges are required because the database configuration parameter
session_replication_role is altered by the database user to replica for snapshot operations involving replication of the control schema from one
publication database to another.
The database user must have the ability to modify the system catalog tables in order to disable foreign key constraints on the control schema tables
for snapshot operations involving replication of the control schema from one publication database to another. See Disabling Foreign Key Constraints
for Snapshot Replications for more information on this requirement.

Step 1:Step 1: Create a database superuser for the publication database user. The publication database user name must have a password, and it must have the
ability to create a database session. The publication database user becomes the owner of the control schema objects that will be created in the publication
database to track, control, and record the replication process and history.

When creating the publication database definition, the publication database user name is entered in the Publication Service – Add Database
dialog box , see Adding a Publication Database.

CREATE ROLE pubuser WITH LOGIN SUPERUSER PASSWORD 'password';

Step 2 (Optional):Step 2 (Optional): Create one or more group roles containing the required privileges to access the tables and views of the publications that will be needed
by application users.

NoteNote

The process described in this step is applicable to Postgres publications in both single-master and multi-master replication systems.

Using roles is convenient if you wish to add new application users who need privileges to select, insert, update, or delete from any of the publication tables.
A role containing the required privileges can then be granted to the new users instead of granting each privilege individually to each user.

Any user performing an insert, update , or delete operation on any of the publication tables requires privileges on the publication tables and its
schema as well as to certain control schema objects of the publication. These control schema objects reside under schema _edb_replicator_pub .

The following example shows the creation of the role appgroup and the granting of privileges on the publication tables to the role.

CREATE ROLE appgroup;
GRANT USAGE ON SCHEMA edb TO appgroup;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.dept TO appgroup;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.emp TO appgroup;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.jobhist TO appgroup;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.salesemp TO appgroup;

In addition, for the log-based method of synchronization replication, if the TRUNCATE command is to be permitted on the publication tables, grant the
following additional privileges:

GRANT TRUNCATE ON edb.dept TO appgroup;
GRANT TRUNCATE ON edb.emp TO appgroup;
GRANT TRUNCATE ON edb.jobhist TO appgroup;

Also for the log-based method of synchronization replication for usage of the TRUNCATE command, grant the following privileges after creation of the
publication database definition. See Adding a Publication Database for information on creating the publication database definition for a single-master
replication system. For a multi-master replication system, Adding the Primary definition node.

GRANT USAGE ON SCHEMA _edb_replicator_pub TO appgroup;
GRANT INSERT ON _edb_replicator_pub.rrep_wal_events_queue TO appgroup;

Finally, grant the group role to the desired database users. The following example shows the creation of a new user and the granting of the role to the user:

CREATE ROLE appuser WITH LOGIN PASSWORD 'password';

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 121

GRANT appgroup TO appuser;

NoteNote

(Granting privileges to roles after publication creation): Roles for containing publication table privileges should be created before you create the
publication. (See Adding a Publication for information on creating a publication for a single-master replication system. For a multi-master
replication system, see Adding a Publication.)

When you create the publication, the privileges that have been granted on the publication tables to roles that exist at the time, are applied to the control
schema objects for those roles. So for the preceding example, the privileges required on the control schema objects for any publication created using
edb.dept , edb.emp , edb.jobhist , or edb.salesemp are granted to role appgroup when you create that publication.

If, however, you create a role after the publication is created, you must explicitly grant the necessary privileges on the publication tables and control
schema objects to the new role.

When using the trigger-based method of synchronization replication, a role must be granted the following privileges on the control schema objects:

USAGE privilege on schema _edb_replicator_pub .
USAGE privilege on sequence rrep_tx_seq .
INSERT privileges on the shadow tables corresponding to publication tables in which the role will be inserting, updating, or deleting rows. Shadow

tables follow the naming convention rrst_schema_table . Note that shadow tables exist only if the trigger-based method of synchronization is
to be used.

The following example shows the creation of a new role and the granting of the privileges on the publication tables and the control schema objects to the
role for the trigger-based method of synchronization replication:

CREATE ROLE newuser WITH LOGIN PASSWORD 'password';
GRANT USAGE ON SCHEMA edb TO newuser;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.dept TO newuser;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.emp TO newuser;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.jobhist TO newuser;
GRANT USAGE ON SCHEMA _edb_replicator_pub TO newuser;
GRANT USAGE ON SEQUENCE _edb_replicator_pub.rrep_tx_seq TO newuser;
GRANT INSERT ON _edb_replicator_pub.rrst_edb_dept TO newuser;
GRANT INSERT ON _edb_replicator_pub.rrst_edb_emp TO newuser;
GRANT INSERT ON _edb_replicator_pub.rrst_edb_jobhist TO newuser;

When using the log-based method a role needs access to the publication tables and to certain control schema objects as well under certain circumstances.

When using the log-based method of synchronization replication, a role must be granted the following privileges on the control schema objects if the role is
to be permitted to use the TRUNCATE command on the publication tables:

USAGE privilege on schema _edb_replicator_pub .
INSERT privilege on table _edb_replicator_pub.rrep_wal_events_queue .

The following example shows the creation of a new role and the granting of the privileges on the publication tables to the role for the log-based method of
synchronization replication:

CREATE ROLE newuser WITH LOGIN PASSWORD 'password';
GRANT USAGE ON SCHEMA edb TO newuser;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.dept TO newuser;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.emp TO newuser;
GRANT SELECT, INSERT, UPDATE, DELETE ON edb.jobhist TO newuser;

In addition, if the TRUNCATE command is to be permitted on the publication tables, grant the following additional privileges:

GRANT TRUNCATE ON edb.dept TO newuser;

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 122

GRANT TRUNCATE ON edb.emp TO newuser;
GRANT TRUNCATE ON edb.jobhist TO newuser;
GRANT USAGE ON SCHEMA _edb_replicator_pub TO newuser;
GRANT INSERT ON _edb_replicator_pub.rrep_wal_events_queue TO newuser;

6.1.5 Preparing the Subscription Database

This section discusses the preparation of a database that will be used as a subscription database.

The tables and views in a given publication must all be replicated to the same database. This database is called the subscription database. A subscription
database user name must be created with the following characteristics:

The subscription database user can connect to the subscription database.
The subscription database user has the privileges to create database objects for the replicated tables and views from publications.
The subscription database user has the privileges necessary to execute the TRUNCATE command on the replicated tables.

See Postgres Subscription Database for preparation of a Postgres subscription database. See Oracle Subscription Database for preparation of an Oracle
subscription database. See SQL Server Subscription Database for preparation of a SQL Server subscription database.

Postgres Subscription Database

A database user name must be chosen or created to serve as the subscription database user. The user name must have a password. The subscription
database user becomes the owner of the replicated database objects.

When creating the subscription database definition, the subscription database user name is entered in the Subscription Service – Add Database dialog box
(see Adding a Subscription Database).

The subscription database user must also have the ability to run the TRUNCATE command on the subscription tables. This requires the following:

The subscription database user must have superuser privileges.
The subscription database user must have the ability to modify the system catalog tables in order to disable foreign key constraints on subscription
tables. (See appendix Disabling Foreign Key Constraints for Snapshot Replications for more information on this requirement.)

You have the following two choices for choosing the subscription database user name:

Use the Postgres user name postgres created upon installation of PostgreSQL (enterprisedb for Advanced Server installed in Oracle compatible
configuration mode) for the subscription database user name. If you choose this option, skip Step 1 and proceed to Step 2.
Create a new subscription database user name. For this option, proceed to Step 1.

Step 1:Step 1: Create a superuser as the subscription database user.

CREATE ROLE subuser WITH LOGIN SUPERUSER PASSWORD 'password';

Step 2:Step 2: Create or choose the subscription database.

The names of the schemas containing the publication tables and views become the names of the Postgres schemas for the subscription tables. The
subscription server creates these schemas in the subscription database when the subscription is created. If schemas with these names already exist in the
subscription database, the existing schemas will be used to store the subscription tables.

For a SQL Server publication database:For a SQL Server publication database: If the schema containing the publication tables and views in SQL Server is named dbo , then the subscription server
creates a schema named dbo_sql in the Postgres subscription database for the subscription tables. (Schema dbo is a special reserved schema in
Postgres.)

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 123

The existing schemas must not contain any tables or views with the same names as the publication tables and views. The subscription server returns an
error if there are already identically named tables or views. You must delete or rename these tables and views before the subscription can be created.

A new subscription database owned by the subscription database user subuser can be created with the following:

CREATE DATABASE subdb OWNER subuser;

Oracle Subscription Database

Step 1 (Optional):Step 1 (Optional): If you do not have an existing database that you want to use as your subscription database, create a new database. This step can be fairly
complicated. Refer to the appropriate Oracle documentation for performing this task.

Step 2:Step 2: Create a database user name for the subscription database user. The subscription database user name must have a password, and it must have the
ability to create a database session. The subscription database user becomes the owner of the replicated database objects.

NoteNote

(For Oracle 12c Pluggable Database): The subscription database user can be an Oracle local user or a common user. The local user exists within
and has access to only a single, user-created pluggable database (PDB), which is to be used as the subscription database. Common user names
typically begin with C## or c## and can access multiple pluggable databases.

NoteNote

(For Oracle 12c Pluggable Database): Creation and granting of privileges for a local user must be done while connected to the pluggable
database to be used as the subscription database. Creation of a common user must be done within the Oracle 12c root container CDB$ROOT .
Granting of privileges to the common user must be done while connected to the pluggable database to be used as the subscription database.

NoteNote

(For Oracle 12c Non-Container Database): Creation and granting of privileges to the subscription database user are performed in the same
manner as for Oracle versions prior to 12c.

When creating the subscription database definition, the subscription database user name is entered in the Subscription Service – Add Database dialog box
(see Adding a Subscription Database).

CREATE USER subuser IDENTIFIED BY password;
GRANT CONNECT TO subuser;

Step 3:Step 3: Grant the privileges needed to create the replicated database objects.

The replicated database objects are created in the schema owned by, and with the same name as the subscription database user.

GRANT RESOURCE TO subuser;

Step 4 (For Oracle 12c only):Step 4 (For Oracle 12c only): Grant the privileges required to access tablespaces. The GRANT UNLIMITED TABLESPACE privilege must be granted to
the subscription database user. This requirement applies to both a pluggable database and a non-container database.

GRANT UNLIMITED TABLESPACE TO subuser;

SQL Server Subscription Database

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 124

Step 1:Step 1: Create or choose the subscription database.

The names of the schemas containing the publication tables and views become the names of the SQL Server schemas for the subscription tables. The
subscription server creates these schemas in the subscription database when the subscription is created. If schemas with these names already exist in the
subscription database, the existing schemas will be used to store the subscription tables.

NoteNote

If the schema containing the publication tables and views is named public, then the subscription server creates a schema named public_sql
in the SQL Server subscription database for the subscription tables.

The existing schemas must not contain any tables or views with the same names as the publication tables and views. The subscription server returns an
error if there are already identically named tables or views. You must delete or rename these tables and views before the subscription can be created.

A new subscription database can be created as shown by the following:

USE primary;
GO
CREATE DATABASE subdb;
GO

Step 2:Step 2: Create a SQL Server login for the subscription database user. The login must have a password.

When creating the subscription database definition, the SQL Server login is entered in the Subscription Service – Add Database dialog box (see Adding a
Subscription Database).

CREATE LOGIN subuser WITH PASSWORD = 'password';
GO

Step 3:Step 3: In the subscription database, a database user must exist that is to be the creator and owner of the subscription tables. This database user must be
mapped to the SQL Server login created in Step 2.

In this example, the database user is given the same name as the SQL Server login subuser .

USE subdb;
GO
CREATE USER subuser FOR LOGIN subuser;
GO

Step 4:Step 4: Grant the database level privileges needed by the subscription database user to create the schema and tables for the subscription.

GRANT CREATE SCHEMA TO subuser;
GRANT CREATE TABLE TO subuser;
GO

6.1.6 Verifying Host Accessibility

If more than one computer is used to host the components of the replication system, each computer must be able to communicate with the others on a
network. There are a number of different aspects of this topic as discussed in the following sections.

Firewalls and Access to Ports

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 125

Verify that the firewalls on the hosts allow access from the other hosts running replication system components. Refer to the directions for your host’s
operating system to enable accessibility.

In addition if you are running the xDB Replication Console or the xDB Replication Server CLI on a different host than where the publication server or
subscription server are running, be sure the firewall on the host running these servers allows access to the ports used by the publication server and
subscription server.

The xDB Replication Console and xDB Replication Server CLI access the publication server and the subscription server using Java Remote Method
Invocation (RMI) through the designated ports.

The publication server uses the port number you specified on the Publication Server Details screen in Step 16 of Installing With Stack Builder or
StackBuilder Plus as well the port offset by a value of 2 greater than this specified port number. So for a default publication server installation, access is
required for port numbers 9051 and 9053 .

The subscription server uses the port number you specified on the Subscription Server Details screen in Step 17 of Installing With Stack Builder or
StackBuilder Plus as well as the port offset by a value of 2 greater than this specified port number. So for a default subscription server installation, access
is required for port numbers 9052 and 9054 .

When you install xDB Replication Server, the port numbers you specify for the publication server and the subscription server are stored in the xDB Startup
Configuration file as shown by the following example. See xDB Startup Configuration File for information on the xDB Startup Configuration file.

#!/bin/sh

JAVA_EXECUTABLE_PATH="/usr/bin/java"
JAVA_MINIMUM_VERSION=1.8
JAVA_BITNESS_REQUIRED=64
JAVA_HEAP_SIZE="-Xms256m -Xmx1536m"
PUBPORT=9051
SUBPORT=9052

If you want to use different port numbers, modify the PUBPORT and SUBPORT entries in the xDB Startup Configuration file and restart the publication
server and subscription server.

NoteNote

If you change the port numbers for the publication server or subscription server for which there are existing replication systems, there are
additional updates you must perform upon these existing replication systems.See Subscription Server Network Location for changes that must be
made for the publication server metadata in the control schema if the port number used by the subscription server has been changed. See
Updating a Subscription for changes that must be made for the subscription metadata in the control schema if the port number used by the
publication server has been changed.

Network IP Addresses

When configuring a replication system, you must supply the network location of various components such as the publication server, subscription server,
publication database server, and subscription database server. This information, consisting of the component’s IP address and port number, is stored in the
control schema.

When one component needs to access another, it refers to the network location stored in the control schema.

During replication system configuration it is strongly suggested that you supply the actual network IP address of each component and avoid the usage of
the loopback address, localhost or 127.x.x.x , even if all components are running on the same host.

You can obtain the network IP address using the following command:

For Linux only:For Linux only: Use the /sbin/ifconfig command.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 126

For Windows only:For Windows only: Open a Command Prompt window and use the ipconfig command.

The loopback address works as long as the communicating components are on the same host, but if at some future point, you decide to move a component
to a different host on the network, the loopback address stored as the component’s network address in the control schema will no longer work for the
component trying to make the connection.

For Linux only:For Linux only: You may need to modify the /etc/hosts file so that a host’s network IP address is associated with the host’s name.

NoteNote

For an alternative to modifying the /etc/hosts file see Assigning an IP Address for Remote Method Invocation.

The default configuration on Linux systems associates the host name with the loopback address in the /etc/hosts file as shown by the following
example:

127.0.0.1 localhost.localdomain localhost

This is also verified by using the hostname -i command, which returns the IP address associated with the host name:

$ hostname -i
127.0.0.1

In these circumstances, certain xDB Replication Server components will have trouble locating its other components on the network as in the following
cases:

When the user interface attempts to connect to the publication server or subscription server
When the subscription server attempts to connect to the publication server

If the loopback address 127.x.x.x is returned such as in the preceding example, edit the /etc/hosts file so that the network IP address is
associated with the host name instead.

The following example shows the modified /etc/hosts file so that the host name localhost is now associated with the network IP address 192.168.2.22
instead of the loopback address 127.0.0.1 :

#127.0.0.1 localhost.localdomain localhost
192.168.2.22 localhost.localdomain localhost
::1 localhost6.localdomain6 localhost6

On some Linux systems, you may need to restart the network service after you have modified the /etc/hosts file. This may be done a number of
different ways depending upon the Linux system you are using as shown by the following variations:

service network restart
/etc/init.d/networking restart
sudo /etc/init.d/networking restart

The following example illustrates the service network command:

$ su root
Password:
$ service network restart
Shutting down loopback interface: [OK]
Bringing up loopback interface: [OK]

Use the following command for CentOS 7 or RHEL 7 and Rocky Linux 8 or AlmaLinux 8 or RHEL 8:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 127

systemctl restart network

The hostname -i command now returns the network IP address of the host:

$ hostname -i
192.168.2.22

Postgres Server Authentication

#postgres-server-authentication

A Postgres database server uses the host-based authentication file, pg_hba.conf , to control access to the databases in the database server. You need to
modify the pg_hba.conf file in the following locations:

On each Postgres database server that contains a Postgres publication database
On each Postgres database server that contains a Postgres subscription database

In a default Postgres installation, this file is located in the directory POSTGRES_INSTALL_HOME/data .

The modifications needed to the pg_hba.conf file for each of the aforementioned cases are discussed in the following sections.

Postgres Publication DatabasePostgres Publication Database

For a Postgres publication database, the following is needed to allow access to the publication database:

host pub_dbname pub_dbuser pub_ipaddr/32 md5
host pub_dbname pub_dbuser sub_ipaddr/32 md5

The value you substitute for pub_dbname is the name of the Postgres publication database you intend to use. The value you substitute for
pub_dbuser is the publication database user name you created in Step 1 of Postgres Publication Database.

For a Postgres publication database named edb , the resulting pg_hba.conf file appears as follows:

TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only
local all all md5
IPv4 local connections:
host edb pubuser 192.168.2.22/32 md5
host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5
Allow replication connections from localhost, by a user with the
replication privilege.
#local replication enterprisedb md5
#host replication enterprisedb 127.0.0.1/32 md5
#host replication enterprisedb ::1/128 md5

NoteNote

The preceding example assumes the publication server and the subscription server are running on the same host, hence the single entry for
database edb . If the publication server and subscription server are running on separate hosts, then the pg_hba.conf file on the publication
database server would look like the following:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 128

TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only
local all all md5
IPv4 local connections:
host edb pubuser 192.168.2.22/32 md5
host edb pubuser 192.168.2.24/32 md5
host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5
Allow replication connections from localhost, by a user with the
replication privilege.
#local replication enterprisedb md5
#host replication enterprisedb 127.0.0.1/32 md5
#host replication enterprisedb ::1/128 md5

In addition, the preceding examples assume publication database edb is using the trigger-based method of synchronization replication. If the log-based
method is used, the pg_hba.conf file must contain an additional entry with the DATABASE field set to replication for pub_dbname , pub_dbuser ,
and pub_ipaddr to allow replication connections from the publication server on the host on which it is running.

The following shows a modification of the preceding example with this additional entry as the last line in the file:

TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only
local all all md5
IPv4 local connections:
host edb pubuser 192.168.2.22/32 md5
host edb pubuser 192.168.2.24/32 md5
host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5
Allow replication connections from localhost, by a user with the
replication privilege.
#local replication enterprisedb md5
#host replication enterprisedb 127.0.0.1/32 md5
#host replication enterprisedb ::1/128 md5
host replication pubuser 192.168.2.22/32 md5

See Synchronization Replication with the Log-Based Method and Enabling Synchronization Replication with the Log-Based Method for additional
information on synchronization replication with the log-based method.

Reload the configuration file after making the modifications.

Choose Reload Configuration (Expert Configuration, then Reload Configuration on Advanced Server) from the Postgres application menu. This will put the
modified pg_hba.conf file into effect.

Postgres Subscription DatabasePostgres Subscription Database

For a Postgres subscription database, the following entries are needed to allow access to the subscription database:

host sub_dbname sub_dbuser pub_ipaddr/32 md5
host sub_dbname sub_dbuser sub_ipaddr/32 md5

The values you substitute for sub_dbuser and sub_dbname are the subscription database user name and the subscription database name you created in
steps 1 and 2 of Postgres Subscription Database.

For a Postgres subscription database named subdb , the resulting pg_hba.conf file appears as follows:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 129

TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only
local all all md5
IPv4 local connections:
host subdb subuser 192.168.2.22/32 md5
host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5
Allow replication connections from localhost, by a user with the
replication privilege.
#local replication enterprisedb md5
#host replication enterprisedb 127.0.0.1/32 md5
#host replication enterprisedb ::1/128 md5

NoteNote

The preceding example assumes that the publication server and the subscription server are running on the same host hence, only one entry is
needed for database subdb . If the publication server and subscription server are running on separate hosts, then the pg_hba.conf file on
the subscription database server looks like the following:

TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only
local all all md5
IPv4 local connections:
host subdb subuser 192.168.2.22/32 md5
host subdb subuser 192.168.2.24/32 md5
host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5
Allow replication connections from localhost, by a user with the
replication privilege.
#local replication enterprisedb md5
#host replication enterprisedb 127.0.0.1/32 md5
#host replication enterprisedb ::1/128 md5

Reload the configuration file after making the modifications.

Choose Reload Configuration (Expert Configuration, then Reload Configuration on Advanced Server) from the Postgres application menu. This will put the
modified pg_hba.conf file into effect.

6.2 Creating a Publication

Creating your first publication requires the following steps:

Registering the publication server
Adding the publication database
Creating a publication by choosing the tables and views for the publication along with creating any optional filter clauses

Once the publication database has been added, as many publications can be created as there are available tables and views that are readable by the
publication database user and that meet the criteria outlined in Design Considerations and Restrictions on Replicated Database Objects.

6.2.1 Registering a Publication Server

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 130

When you register a publication server, you are identifying the network location, admin user name, and password of a specific, running, publication server
instance that you want to use to manage all aspects of the publications you will be creating subordinate to it.

It is important that you record the login information for the publication server as you must always use this same publication server instance to manage all
publications created subordinate to it as represented in the xDB Replication Console replication tree.

Step 1:Step 1: Start the publication server if it is not already running.

NoteNote

If you are using Oracle publication or subscription databases, and the publication server has not been restarted since copying the Oracle JDBC
driver to the lib/jdbc subdirectory of your xDB Replication Server installation, you must restart the publication server.

For Linux only:For Linux only: You can verify the publication server is running by using the systemctl command for CentOS 7 or RHEL 7 and CentOS or RHEL 8, and
the service command for previous Linux versions.

Use the following command for CentOS 7 or RHEL 7 and CentOS 8 or RHEL 8:

systemctl status edb-xdbpubserver

Use the following command for previous Linux versions:

service edb-xdbpubserver status

If the publication server is running and you wish to restart it, use the restart option.

For CentOS 7 or RHEL 7 and CentOS 8 or RHEL 8:

systemctl restart edb-xdbpubserver

For previous Linux versions:For previous Linux versions:

service edb-xdbpubserver restart

If the publication server is not running, use the start option.

For CentOS 7 or RHEL 7 and CentOS 8 or RHEL 8:

systemctl start edb-xdbpubserver

For previous Linux versions:For previous Linux versions:

service edb-xdbpubserver start

Similarly, use the stop option to stop the publication server.

For Windows only:For Windows only: Open Control Panel, System and Security, Administrative Tools, and then Services. The publication server runs as a service named
Publication Service for xDB Replication Server.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 131

Figure 5-1: Windows publication serviceFigure 5-1: Windows publication service

Use the Start or Restart link for the service.

If the publication server fails to start, see Publication and Subscription Server Startup Failures for information.

Step 2: Register the publication server. Open the xDB Replication Console from the system’s application menu. For xDB Replication Server installed from an
xDB RPM package, the xDB Replication Console is started by invoking the script XDB_HOME/bin/runRepConsole.sh .

Figure 5-2: xDB Replication Console menu optionFigure 5-2: xDB Replication Console menu option

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 132

Figure 5-3: xDB Replication ConsoleFigure 5-3: xDB Replication Console

Step 3:Step 3: Select the top level Replication Servers node. From the File menu, choose Publication Server , and then choose Register Server .
Alternatively, click the secondary mouse button on the Replication Servers node and choose Register Publication Server. The Register Publication Server
dialog box appears.

Enter the values you supplied during the installation of xDB Replication Server unless otherwise specified.

Host . Network IP address of the host running the publication server. This is the network IP address used for pub_ipaddr in the
pg_hba.conf file in Postgres Server Authentication. (Do not use localhost for this field.)
Port . Port number the publication server is using. This is the port number you specified on the Publication Server Details screen in Step 16 of

Postgres Server Authentication.
User Name . Admin user name that is used to authenticate your usage of this publication server. This is the user name you specified on the xDB

Admin User Details screen in Step 15 of Installing With Stack Builder or StackBuilder Plus.
Password . Password of the admin user given in the User Name field.
Save login information . Check this box if you do not want to re-register the publication server each time you open the xDB Replication

Console. See Saving Server Login Information for additional information on the advantages and disadvantages of saving server login information.

NoteNote

The user name and password combination you enter is authenticated against the admin user name and password in the xDB Replication
Configuration file residing on the host with the IP address you enter in the Host field.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 133

Figure 5-4: Register Publication Server dialog boxFigure 5-4: Register Publication Server dialog box

Click the Register button after you have filled in the fields. A Publication Server node appears in the replication tree of the xDB Replication Console.
Expand the Publication Server node to expose the SMR and MMR type nodes.

Figure 5-5: Replication tree after registering a publication serverFigure 5-5: Replication tree after registering a publication server

Continue to build the single-master replication system under the SMR type node.

6.2.2 Adding a Publication Database

The database in which publications are to reside must be identified to xDB Replication Server. This is done by creating a publication database definition.

After the publication database definition is created, a Publication Database node representing that publication database definition appears in the
replication tree of the xDB Replication Console. Publications that are to contain tables and views residing within this database can then be created under
the Publication Database node.

You must enter database connection information such as the database server network address, database identifier, and database login user name and
password when you create the publication database definition. The connection information is used by the publication server to access the publication
tables and views when it performs replication.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 134

Step 1:Step 1: Make sure the database server in which the publication database resides is running and accepting client connections.

Step 2:Step 2: Select the SMR type node under the Publication Server node. From the Publication menu, choose Publication Database, and then choose Add
Database. Alternatively, click the secondary mouse button on the SMR type node and choose Add Database. The Publication Service – Add Database dialog
box appears.

Step 3:Step 3: Fill in the following fields:

Database Type. Select Oracle, SQL Server, PostgreSQL, or Postgres Plus Advanced Server for the type of publication database. For an
Advanced Server Oracle compatible installation, select the Postgres Plus Advanced Server option. For PostgreSQL or an Advanced Server
PostgreSQL compatible installation, select the PostgreSQL option.
Host. IP address of the host on which the publication database server is running.
Port. Port on which the publication database server is listening for connections.
User. The publication database user name created in Step 1 of Preparing the Publication Database.
Password. Password of the database user.
Service ID (For Oracle). Enter the Oracle System Identifier (SID) of the Oracle instance running the publication database if the SID radio

button is selected. Enter the net service name of a connect descriptor as defined in the TNSNAMES.ORA file if the Service Name radio button is
selected. Note (For Oracle 12c Pluggable Database): Use the service name.
Database (For Postgres or SQL Server). Enter the Postgres or SQL Server database name.
URL Options (For SSL connectivity). Enter the URL options to establish SSL connectivity to the publication database. See Using

Secure Sockets Layer (SSL) Connections for information on using SSL connections.
Changeset Logging (For Postgres). Select Table Triggers to use the trigger-based method of synchronization replication. Select WAL

Stream to use the log-based method of synchronization replication. See Synchronization Replication with the Trigger-Based Method for information
on the trigger-based method. See Synchronization Replication with the Log-Based Method for information on the log-based method.

Figure 5-6: Publication Service - Add Database dialog boxFigure 5-6: Publication Service - Add Database dialog box

NoteNote

If the controller database is an Oracle or a SQL Server publication database, then a second Oracle or SQL Server publication database cannot be
added to create a second single-master replication system. In order for xDB Replication Server to run more than one single-master replication
systems consisting of Oracle or SQL Server publication databases, a Postgres publication database must be designated as the controller
database. See Controller Database for information on the controller database.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 135

The following is the Publication Service – Add Database dialog box for a Postgres database that shows the Changeset Logging option for selecting
either the trigger-based method or the log-based method of synchronization replication.

Figure 5-7: Publication Service - Add Database dialog box for PostgresFigure 5-7: Publication Service - Add Database dialog box for Postgres

Step 4:Step 4: Click the Test button. If Test Result: Success appears, click the OK button, then click the Save button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 136

Figure 5-8: Successful publication database testFigure 5-8: Successful publication database test

If an error message appears investigate the cause of the error, correct the problem, and repeat steps 1 through 4.

When the publication database definition is successfully saved, a Publication Database node is added to the replication tree under the Publication Server
node.

Figure 5-9: Replication tree after adding a publication databaseFigure 5-9: Replication tree after adding a publication database

For Oracle only:For Oracle only: Multiple Oracle databases can be added as publication databases by completing the Add Database dialog box for each database. It is also
permissible to add the same Oracle database as two or more distinct publication database definitions if you use different publication database user names
for each publication database definition.

For Postgres or SQL Server:For Postgres or SQL Server: Multiple Postgres or SQL Server databases can be added as publication databases by completing the Add Database dialog box
for each database. However, unlike Oracle, a given Postgres or SQL Server database can only be added once as a publication database definition.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 137

6.2.3 Adding a Publication

Subordinate to a publication database definition, you create publications that contain tables and views of the database identified in the publication
database definition.

Step 1:Step 1: Select the Publication Database node. From the Publication menu, choose Create Publication. Alternatively, click the secondary mouse button on
the Publication Database node and choose Create Publication. The Create Publication dialog box appears.

Step 2:Step 2: Fill in the following fields under the Create Publication tab:

Publication Name. Enter a name that is unique amongst all publications.
Snapshot-only replication. Check the box if replication is to be done by snapshot only. Tables included in a snapshot-only publication do

not require a primary key. Tables included in publications on which synchronization replication is to be used must have primary keys.
Publish. Check the boxes next to the tables that are to be included in the publication. If the Snapshot-Only Replication box is checked, then

views appear in the Publish list as well. Alternatively or in addition, click the Use Wildcard Selection button to use wildcard pattern matching for
selecting publication tables.
Select All. Check this box if you want to include all tables and views in the Available Tables list in the publication.
Use Wildcard Selection. Click this button to use the wildcard selector to choose tables for the publication. See Selecting Tables with the

Wildcard Selector for information on the wildcard selector.

Figure 5-10: Create Publication dialog boxFigure 5-10: Create Publication dialog box

If you wish to use table filters during replications from this publication, follow the directions in the next step to define the initial set of available table
filters, otherwise go on to Step 4.

Step 3 (Optional):Step 3 (Optional): Table filters consist of a set of filter rules that control the selection criteria for rows replicated to the subscription tables during a
snapshot or a synchronization replication.

NoteNote

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 138

See Table Settings and Restrictions for Table Filters for table setup requirements for a log-based replication system as well as general
restrictions on the use of table filters.

A filter rule consists of a filter name and a SQL WHERE clause (omitting the WHERE keyword) called the filter clause, which you specify for a table or view
that defines the selection criteria for rows that are to be included during a replication.

Multiple filter rules may be defined for each table or view in the publication. If no filter rule is defined for a given table or view, then no filtering can be later
enabled on a corresponding subscription table associated with that publication table.

After filter rules have been defined for a publication table or view, you can later choose whether or not to enable those filter rules on any subscription that
you associate with that publication in accordance with the following rules.

At most one filter rule can be enabled on a given table in a given subscription.
The same filter rule may be enabled on the same given table in several, different subscriptions.
Different filter rules may be enabled on the same given table but in different subscriptions.

If you want to define table filters on the publication tables or views, click the Table Filters tab. Select the table or view from the Table/View drop-down list
for which you wish to add a filter rule. Click the Add Filter button.

In the Filter dialog box, enter a descriptive filter name and the filter clause to select the rows you want to replicate. The filter name and filter clause
must meet the following conditions:

For any given table or view, each filter rule must be assigned a unique filter name.
For any given table or view, the filter clauses must have different syntaxes (that is, the filtering criteria must be different).

In the following example a filter rule is defined on the DEPT table so only rows where the deptno column contains 10, 20, or 30 are included in
replications. All other rows are excluded from replication.

Figure 5-11: Adding a filter rule for the DEPT tableFigure 5-11: Adding a filter rule for the DEPT table

The following shows a rule added to the EMP table by choosing EDB.EMP from the Table/View drop-down list and then entering the selection criteria for

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 139

only rows with deptno containing 10 in the Filter dialog box.

Figure 5-12: Adding a filter rule for the EMP tableFigure 5-12: Adding a filter rule for the EMP table

Repeating this process, additional filter rules can be added for the EMP table. The following shows the complete set of available filter rules defined for the
DEPT and EMP tables.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 140

Figure 5-13: Set of all available filter rulesFigure 5-13: Set of all available filter rules

To remove a filter rule, click the primary mouse button on the filter rule you wish to remove so the entry is highlighted and then click the Remove Filter
button.

You may also modify the filter name or filter clause of a filter rule listed in the Table Filters tab by double-clicking on the cell of the filter name or filter
clause you wish to change. When the cursor appears in the cell, enter the text for the desired change.

When creating a subscription, you may selectively enable these table filters on the corresponding subscription tables. See Adding a Subscription for
information on creating a subscription.

Step 4:Step 4: Click the Create button. If Publication Created Successfully appears, click the OK button, otherwise investigate the error and make the
necessary corrections.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 141

Figure 5-14: Publication created successfullyFigure 5-14: Publication created successfully

Upon successful publication creation, a Publication node is added to the replication tree.

Figure 5-15: Replication tree after adding a publicationFigure 5-15: Replication tree after adding a publication

6.2.4 Control Schema Objects Created for a Publication

After you have added a publication database definition and publications you will find the following control schema objects have been created in addition to
your original publication tables and views:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 142

In the publication database, control schema objects are created to control and manage the xDB replication systems. How the control schema objects
are organized under the actual, physical database schemas depends upon the publication database server type (that is, whether it is Oracle, SQL
Server, or Postgres).
If the publication is not a snapshot-only publication, that is synchronization replication is permitted, and synchronization replication is implemented
using the trigger-based method, then three triggers and one shadow table are created for each publication table as part of the control schema.
If the publication is using synchronization replication with the log-based method, then a single trigger is created for each publication table as part of
the control schema.

The following sections list the control schema objects found in an Oracle, SQL Server, and Postgres publication database.

Do not manually delete any of these database objects as the replication system control schema will become corrupted.

When you remove publications and publication database definitions using the xDB Replication Console or xDB Replication Server CLI, the control schema
objects are deleted during the removal process.

Oracle Control Schema Objects

The control schema objects created in the publication database user’s schema (that is, the control schema) are shown in the following output:

SQL> CONNECT pubuser/password
Connected.
SQL> SET PAGESIZE 9999
SQL> SELECT table_name FROM user_tables ORDER BY table_name;

TABLE_NAME

RREP_LOCK
RREP_MMR_PUB_GROUP
RREP_MMR_TXSET
RREP_PROPERTIES
RREP_PUBLICATION_SUBSCRIPTIONS
RREP_PUBLICATION_TABLES
RREP_TABLES
RREP_TXSET
RREP_TXSET_HEALTH
RREP_TXSET_LOG
RREP_TX_MONITOR
RREP_TX_MONITOR_TEMP
RRST_EDB_DEPT
RRST_EDB_EMP
SCH_PUB_BLOB_TRIGGERS
SCH_PUB_CALENDARS
SCH_PUB_CRON_TRIGGERS
SCH_PUB_FIRED_TRIGGERS
SCH_PUB_JOB_DETAILS
SCH_PUB_JOB_LISTENERS
SCH_PUB_LOCKS
SCH_PUB_PAUSED_TRIGGER_GRPS
SCH_PUB_SCHEDULER_STATE
SCH_PUB_SIMPLE_TRIGGERS
SCH_PUB_TRIGGERS
SCH_PUB_TRIGGER_LISTENERS
SCH_SUB_BLOB_TRIGGERS
SCH_SUB_CALENDARS
SCH_SUB_CRON_TRIGGERS
SCH_SUB_FIRED_TRIGGERS
SCH_SUB_JOB_DETAILS
SCH_SUB_JOB_LISTENERS

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 143

SCH_SUB_LOCKS
SCH_SUB_PAUSED_TRIGGER_GRPS
SCH_SUB_SCHEDULER_STATE
SCH_SUB_SIMPLE_TRIGGERS
SCH_SUB_TRIGGERS
SCH_SUB_TRIGGER_LISTENERS
XDB_CLEANUP_CONF
XDB_CONFLICTS
XDB_CONFLICTS_OPTIONS
XDB_EVENTS
XDB_EVENTS_STATUS
XDB_MMR_PUB_GROUP
XDB_PUBLICATIONS
XDB_PUBLICATION_FILTER
XDB_PUBLICATION_FILTER_RULE
XDB_PUBLICATION_SUBSCRIPTIONS
XDB_PUBTABLES_IGNOREDCOLS
XDB_PUB_DATABASE
XDB_PUB_REPLOG
XDB_PUB_TABLE_REPLOG
XDB_SUBSCRIPTIONS
XDB_SUBSCRIPTION_TABLES
XDB_SUB_DATABASE
XDB_SUB_SERVERS
XDB_TABLES

57 rows selected.

SQL> SELECT sequence_name FROM user_sequences ORDER BY sequence_name;

SEQUENCE_NAME

RREP_COMMON_SEQ
RREP_TXSET_SEQ
RREP_TX_SEQ

SQL> SELECT DISTINCT name FROM user_source WHERE type = 'PACKAGE';

NAME

RREP_PKG

SQL> SELECT trigger_name FROM user_triggers ORDER BY trigger_name;

TRIGGER_NAME

RRPD_EDB_DEPT
RRPD_EDB_EMP
RRPI_EDB_DEPT
RRPI_EDB_EMP
RRPU_EDB_DEPT
RRPU_EDB_EMP
SCH_PUB_BLOB_TRIGGERS_TRIGGER
SCH_PUB_CALENDARS_TRIGGER
SCH_PUB_CRON_TRIGGERS_TRIGGER
SCH_PUB_JOB_DETAILS_TRIGGER
SCH_PUB_JOB_LISTENERS_TRIGGER
SCH_PUB_SIMPLE_TRIGGERS_TRIG
SCH_PUB_TRIGGERS_TRIG
SCH_PUB_TRIGGER_LISTENERS_TRIG
SCH_SUB_BLOB_TRIGGERS_TRIGGER

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 144

SCH_SUB_CALENDARS_TRIGGER
SCH_SUB_CRON_TRIGGERS_TRIGGER
SCH_SUB_JOB_DETAILS_TRIGGER
SCH_SUB_JOB_LISTENERS_TRIGGER
SCH_SUB_SIMPLE_TRIGGERS_TRIG
SCH_SUB_TRIGGERS_TRIG
SCH_SUB_TRIGGER_LISTENERS_TRIG
XDB_CLEANUP_CONF_TRIGGER
XDB_CONFLICTS_OPTIONS_TRIGGER
XDB_CONFLICTS_TRIGGER
XDB_MMR_PUB_GROUP_TRIGGER
XDB_PUBLICATIONS_TRIGGER
XDB_PUBLICATION_FILTER_TRIGGER
XDB_PUBLICATION_SUBSCRIPT_TRIG
XDB_PUBLIC_FILTER_RULE_TRIGGER
XDB_PUBTABLES_IGNOREDCOLS_TRIG
XDB_PUB_DATABASE_TRIGGER
XDB_PUB_REPLOG_TRIGGER
XDB_PUB_TABLE_REPLOG_TRIGGER
XDB_SUBSCRIPTIONS_TRIGGER
XDB_SUBSCRIPTION_TABLES_TRIG
XDB_SUB_DATABASE_TRIGGER
XDB_SUB_SERVERS_TRIGGER
XDB_TABLES_TRIGGER

39 rows selected.

SQL> SELECT type_name, typecode FROM user_types;

TYPE_NAME TYPECODE
------------------------------ ------------------------------
RREP_SYNCID_ARRAY COLLECTION

Note the following in the preceding output.

The tables named according to the convention RRST_schema_table from the SELECT statement on user_tables are found only for
synchronization publications. In this example, these tables are RRST_EDB_DEPT and RRST_EDB_EMP .
The triggers named according to the convention RRPD_schema_table, RRPI_schema_table , and RRPU_schema_table from the SELECT
statement on user_triggers are found only for synchronization publications. In this example, these triggers are RRPU_EDB_DEPT ,
RRPI_EDB_DEPT , RRPD_EDB_DEPT , RRPI_EDB_EMP , RRPU_EDB_EMP , and RRPD_EDB_EMP .

The following example shows what the same set of queries would look like if the publication was a snapshot-only publication:

SQL> CONNECT pubuser/password
Connected.
SQL> SET PAGESIZE 9999
SQL> SELECT table_name FROM user_tables ORDER BY table_name;

TABLE_NAME

RREP_LOCK
RREP_MMR_PUB_GROUP
RREP_MMR_TXSET
RREP_PROPERTIES
RREP_PUBLICATION_SUBSCRIPTIONS
RREP_PUBLICATION_TABLES
RREP_TABLES
RREP_TXSET
RREP_TXSET_HEALTH
RREP_TXSET_LOG

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 145

RREP_TX_MONITOR
RREP_TX_MONITOR_TEMP
SCH_PUB_BLOB_TRIGGERS
SCH_PUB_CALENDARS
SCH_PUB_CRON_TRIGGERS
SCH_PUB_FIRED_TRIGGERS
SCH_PUB_JOB_DETAILS
SCH_PUB_JOB_LISTENERS
SCH_PUB_LOCKS
SCH_PUB_PAUSED_TRIGGER_GRPS
SCH_PUB_SCHEDULER_STATE
SCH_PUB_SIMPLE_TRIGGERS
SCH_PUB_TRIGGERS
SCH_PUB_TRIGGER_LISTENERS
SCH_SUB_BLOB_TRIGGERS
SCH_SUB_CALENDARS
SCH_SUB_CRON_TRIGGERS
SCH_SUB_FIRED_TRIGGERS
SCH_SUB_JOB_DETAILS
SCH_SUB_JOB_LISTENERS
SCH_SUB_LOCKS
SCH_SUB_PAUSED_TRIGGER_GRPS
SCH_SUB_SCHEDULER_STATE
SCH_SUB_SIMPLE_TRIGGERS
SCH_SUB_TRIGGERS
SCH_SUB_TRIGGER_LISTENERS
XDB_CLEANUP_CONF
XDB_CONFLICTS
XDB_CONFLICTS_OPTIONS
XDB_EVENTS
XDB_EVENTS_STATUS
XDB_MMR_PUB_GROUP
XDB_PUBLICATIONS
XDB_PUBLICATION_FILTER
XDB_PUBLICATION_FILTER_RULE
XDB_PUBLICATION_SUBSCRIPTIONS
XDB_PUBTABLES_IGNOREDCOLS
XDB_PUB_DATABASE
XDB_PUB_REPLOG
XDB_PUB_TABLE_REPLOG
XDB_SUBSCRIPTIONS
XDB_SUBSCRIPTION_TABLES
XDB_SUB_DATABASE
XDB_SUB_SERVERS
XDB_TABLES

55 rows selected.

SQL> SELECT sequence_name FROM user_sequences ORDER BY sequence_name;

SEQUENCE_NAME

RREP_COMMON_SEQ
RREP_TXSET_SEQ
RREP_TX_SEQ

SQL> SELECT DISTINCT name FROM user_source WHERE type = 'PACKAGE';

NAME

RREP_PKG

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 146

SQL> SELECT trigger_name FROM user_triggers ORDER BY trigger_name;

TRIGGER_NAME

SCH_PUB_BLOB_TRIGGERS_TRIGGER
SCH_PUB_CALENDARS_TRIGGER
SCH_PUB_CRON_TRIGGERS_TRIGGER
SCH_PUB_JOB_DETAILS_TRIGGER
SCH_PUB_JOB_LISTENERS_TRIGGER
SCH_PUB_SIMPLE_TRIGGERS_TRIG
SCH_PUB_TRIGGERS_TRIG
SCH_PUB_TRIGGER_LISTENERS_TRIG
SCH_SUB_BLOB_TRIGGERS_TRIGGER
SCH_SUB_CALENDARS_TRIGGER
SCH_SUB_CRON_TRIGGERS_TRIGGER
SCH_SUB_JOB_DETAILS_TRIGGER
SCH_SUB_JOB_LISTENERS_TRIGGER
SCH_SUB_SIMPLE_TRIGGERS_TRIG
SCH_SUB_TRIGGERS_TRIG
SCH_SUB_TRIGGER_LISTENERS_TRIG
XDB_CLEANUP_CONF_TRIGGER
XDB_CONFLICTS_OPTIONS_TRIGGER
XDB_CONFLICTS_TRIGGER
XDB_MMR_PUB_GROUP_TRIGGER
XDB_PUBLICATIONS_TRIGGER
XDB_PUBLICATION_FILTER_TRIGGER
XDB_PUBLICATION_SUBSCRIPT_TRIG
XDB_PUBLIC_FILTER_RULE_TRIGGER
XDB_PUBTABLES_IGNOREDCOLS_TRIG
XDB_PUB_DATABASE_TRIGGER
XDB_PUB_REPLOG_TRIGGER
XDB_PUB_TABLE_REPLOG_TRIGGER
XDB_SUBSCRIPTIONS_TRIGGER
XDB_SUBSCRIPTION_TABLES_TRIG
XDB_SUB_DATABASE_TRIGGER
XDB_SUB_SERVERS_TRIGGER
XDB_TABLES_TRIGGER

33 rows selected.

SQL> SELECT type_name, typecode FROM user_types;

TYPE_NAME TYPECODE
------------------------------ ------------------------------
RREP_SYNCID_ARRAY COLLECTION

NoteNote

The RREP_SYNCID_ARRAY collection type is found only in an Oracle publication database.

SQL Server Control Schema Objects

Most of the control schema objects are created in schemas _edb_replicator_pub , _edb_replicator_sub , and _edb_scheduler .
Additional control schema objects are created in the schema you chose in Step 5 of SQL Server Publication Database. The following examples assume the
schema of your choosing is pubuser . The publication tables are dept and emp located in the edb schema.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 147

The following query lists the control schema objects located in the aforementioned schemas:

1> USE edb;
2> GO
Changed database context to 'edb'.
1> SELECT s.name + '.' + o.name "Object Name", o.type_desc "Object Type"
2> FROM sys.objects o,
3> sys.schemas s
4> WHERE s.name IN ('_edb_replicator_pub', '_edb_replicator_sub',
5> '_edb_scheduler', 'pubuser')
6> AND o.type IN ('U','P','FN')
7> AND o.schema_id = s.schema_id
8> ORDER BY 1, 2;
9> GO
Object Name Object Type
-- ---------------------
_edb_replicator_pub.nextval SQL_STORED_PROCEDURE
_edb_replicator_pub.rrep_common_seq USER_TABLE
_edb_replicator_pub.rrep_lock USER_TABLE
_edb_replicator_pub.rrep_MMR_pub_group USER_TABLE
_edb_replicator_pub.rrep_MMR_txset USER_TABLE
_edb_replicator_pub.rrep_properties USER_TABLE
_edb_replicator_pub.rrep_publication_subscriptions USER_TABLE
_edb_replicator_pub.rrep_publication_tables USER_TABLE
_edb_replicator_pub.rrep_tables USER_TABLE
_edb_replicator_pub.rrep_tx_monitor USER_TABLE
_edb_replicator_pub.rrep_tx_seq USER_TABLE
_edb_replicator_pub.rrep_txset USER_TABLE
_edb_replicator_pub.rrep_txset_health USER_TABLE
_edb_replicator_pub.rrep_txset_log USER_TABLE
_edb_replicator_pub.rrep_txset_seq USER_TABLE
_edb_replicator_pub.sp_createsequence SQL_STORED_PROCEDURE
_edb_replicator_pub.sp_dropsequence SQL_STORED_PROCEDURE
_edb_replicator_pub.xdb_cleanup_conf USER_TABLE
_edb_replicator_pub.xdb_conflicts USER_TABLE
_edb_replicator_pub.xdb_conflicts_options USER_TABLE
_edb_replicator_pub.xdb_events USER_TABLE
_edb_replicator_pub.xdb_events_status USER_TABLE
_edb_replicator_pub.xdb_MMR_pub_group USER_TABLE
_edb_replicator_pub.xdb_pub_database USER_TABLE
_edb_replicator_pub.xdb_pub_replog USER_TABLE
_edb_replicator_pub.xdb_pub_table_replog USER_TABLE
_edb_replicator_pub.xdb_publication_filter USER_TABLE
_edb_replicator_pub.xdb_publication_filter_rule USER_TABLE
_edb_replicator_pub.xdb_publication_subscriptions USER_TABLE
_edb_replicator_pub.xdb_publications USER_TABLE
_edb_replicator_pub.xdb_pubtables_ignoredcols USER_TABLE
_edb_replicator_pub.xdb_sub_servers USER_TABLE
_edb_replicator_sub.rrep_common_seq USER_TABLE
_edb_replicator_sub.xdb_sub_database USER_TABLE
_edb_replicator_sub.xdb_subscription_tables USER_TABLE
_edb_replicator_sub.xdb_subscriptions USER_TABLE
_edb_replicator_sub.xdb_tables USER_TABLE
_edb_scheduler.sch_pub_BLOB_TRIGGERS USER_TABLE
_edb_scheduler.sch_pub_CALENDARS USER_TABLE
_edb_scheduler.sch_pub_CRON_TRIGGERS USER_TABLE
_edb_scheduler.sch_pub_FIRED_TRIGGERS USER_TABLE
_edb_scheduler.sch_pub_JOB_DETAILS USER_TABLE
_edb_scheduler.sch_pub_JOB_LISTENERS USER_TABLE
_edb_scheduler.sch_pub_LOCKS USER_TABLE
_edb_scheduler.sch_pub_PAUSED_TRIGGER_GRPS USER_TABLE

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 148

_edb_scheduler.sch_pub_SCHEDULER_STATE USER_TABLE
_edb_scheduler.sch_pub_SIMPLE_TRIGGERS USER_TABLE
_edb_scheduler.sch_pub_TRIGGER_LISTENERS USER_TABLE
_edb_scheduler.sch_pub_TRIGGERS USER_TABLE
_edb_scheduler.sch_sub_BLOB_TRIGGERS USER_TABLE
_edb_scheduler.sch_sub_CALENDARS USER_TABLE
_edb_scheduler.sch_sub_CRON_TRIGGERS USER_TABLE
_edb_scheduler.sch_sub_FIRED_TRIGGERS USER_TABLE
_edb_scheduler.sch_sub_JOB_DETAILS USER_TABLE
_edb_scheduler.sch_sub_JOB_LISTENERS USER_TABLE
_edb_scheduler.sch_sub_LOCKS USER_TABLE
_edb_scheduler.sch_sub_PAUSED_TRIGGER_GRPS USER_TABLE
_edb_scheduler.sch_sub_SCHEDULER_STATE USER_TABLE
_edb_scheduler.sch_sub_SIMPLE_TRIGGERS USER_TABLE
_edb_scheduler.sch_sub_TRIGGER_LISTENERS USER_TABLE
_edb_scheduler.sch_sub_TRIGGERS USER_TABLE
pubuser.CleanupShadowTables SQL_STORED_PROCEDURE
pubuser.ConfigureCleanUpJob SQL_STORED_PROCEDURE
pubuser.ConfigureCreateTxSetJob SQL_STORED_PROCEDURE
pubuser.CreateMultiTxSet SQL_STORED_PROCEDURE
pubuser.CreateTableLogTrigger SQL_STORED_PROCEDURE
pubuser.CreateTxSet SQL_STORED_PROCEDURE
pubuser.CreateTxSet_old SQL_STORED_PROCEDURE
pubuser.CreateUniTxSet SQL_STORED_PROCEDURE
pubuser.GetNewTxsCount SQL_STORED_PROCEDURE
pubuser.getPackageVersionNumber SQL_SCALAR_FUNCTION
pubuser.JobCleanup SQL_STORED_PROCEDURE
pubuser.JobCreateTxSet SQL_STORED_PROCEDURE
pubuser.LoadPubTableList SQL_STORED_PROCEDURE
pubuser.RemoveCleanupJob SQL_STORED_PROCEDURE
pubuser.RemoveCreateTxSetJob SQL_STORED_PROCEDURE
pubuser.rrst_edb_dept USER_TABLE
pubuser.rrst_edb_emp USER_TABLE

(78 rows affected)

Note (For SQL Server 2012, 2014):Note (For SQL Server 2012, 2014): The following database objects from the preceding list are no longer created as part of the control schema when the
publication database is SQL Server 2012 or 2014:

Object Name Object Type
-- ---------------------
_edb_replicator_pub.nextval SQL_STORED_PROCEDURE
_edb_replicator_pub.rrep_common_seq USER_TABLE
_edb_replicator_pub.rrep_tx_seq USER_TABLE
_edb_replicator_pub.rrep_txset_seq USER_TABLE
_edb_replicator_pub.sp_createsequence SQL_STORED_PROCEDURE
_edb_replicator_pub.sp_dropsequence SQL_STORED_PROCEDURE
_edb_replicator_sub.rrep_common_seq USER_TABLE

SQL Server versions 2012 and 2014 support creation of sequence objects that can now perform the functionality previously provided by the preceding list of
objects. The following are the sequence objects that are now used when the publication database is SQL Server 2012 or 2014:

1> USE edb;
2> GO
Changed database context to 'edb'.
1> SELECT s.name + '.' + o.name "Object Name", o.type_desc "Object Type"
2> FROM sys.objects o,
3> sys.schemas s
4> WHERE s.name IN ('_edb_replicator_pub', '_edb_replicator_sub',
5> '_edb_scheduler', 'pubuser')

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 149

6> AND o.type IN ('SO')
7> AND o.schema_id = s.schema_id
8> ORDER BY 1, 2;
9> GO
Object Name Object Type
-- ---------------------
_edb_replicator_pub.rrep_common_seq SEQUENCE_OBJECT
_edb_replicator_pub.rrep_tx_seq SEQUENCE_OBJECT
_edb_replicator_pub.rrep_txset_seq SEQUENCE_OBJECT

(3 rows affected)

The following is a continuation of the list of control schema objects for all SQL Server versions:

1> USE edb;
2> GO
Changed database context to 'edb'.
1> SELECT s.name + '.' + o.name "Trigger Name", o.type_desc "Object Type"
2> FROM sys.objects o,
3> sys.schemas s
4> WHERE s.name IN ('_edb_replicator_pub', '_edb_replicator_sub',
5> '_edb_scheduler', 'pubuser')
6> AND o.type = 'TR'
7> AND o.schema_id = s.schema_id
8> ORDER BY 1;
9> GO
Trigger Name Object Type
-- --------------
_edb_replicator_pub.xdb_cleanup_conf_trigger SQL_TRIGGER
_edb_replicator_pub.xdb_conflicts_options_trigger SQL_TRIGGER
_edb_replicator_pub.xdb_conflicts_trigger SQL_TRIGGER
_edb_replicator_pub.xdb_MMR_pub_group_trigger SQL_TRIGGER
_edb_replicator_pub.xdb_pub_database_trigger SQL_TRIGGER
_edb_replicator_pub.xdb_pub_replog_trigger SQL_TRIGGER
_edb_replicator_pub.xdb_pub_table_replog_trigger SQL_TRIGGER
_edb_replicator_pub.xdb_public_filter_rule_trigger SQL_TRIGGER
_edb_replicator_pub.xdb_publication_filter_trigger SQL_TRIGGER
_edb_replicator_pub.xdb_publication_subscription_triggers SQL_TRIGGER
_edb_replicator_pub.xdb_publications_trigger SQL_TRIGGER
_edb_replicator_pub.xdb_pubtables_ignoredcols_trig SQL_TRIGGER
_edb_replicator_pub.xdb_sub_servers_trigger SQL_TRIGGER
_edb_replicator_sub.xdb_sub_database_trigger SQL_TRIGGER
_edb_replicator_sub.xdb_subscription_tables_trig SQL_TRIGGER
_edb_replicator_sub.xdb_subscriptions_trigger SQL_TRIGGER
_edb_replicator_sub.xdb_tables_trigger SQL_TRIGGER
_edb_scheduler.sch_pub_blob_triggers_trigger SQL_TRIGGER
_edb_scheduler.sch_pub_calendars_trigger SQL_TRIGGER
_edb_scheduler.sch_pub_cron_triggers_trigger SQL_TRIGGER
_edb_scheduler.sch_pub_job_details_trigger SQL_TRIGGER
_edb_scheduler.sch_pub_job_listeners_trigger SQL_TRIGGER
_edb_scheduler.sch_pub_simple_triggers_trigger SQL_TRIGGER
_edb_scheduler.sch_pub_trigger_listeners_trigger SQL_TRIGGER
_edb_scheduler.sch_pub_triggers_trigger SQL_TRIGGER
_edb_scheduler.sch_sub_blob_triggers_trigger SQL_TRIGGER
_edb_scheduler.sch_sub_calendars_trigger SQL_TRIGGER
_edb_scheduler.sch_sub_cron_triggers_trigger SQL_TRIGGER
_edb_scheduler.sch_sub_job_details_trigger SQL_TRIGGER
_edb_scheduler.sch_sub_job_listeners_trigger SQL_TRIGGER
_edb_scheduler.sch_sub_simple_triggers_trigger SQL_TRIGGER
_edb_scheduler.sch_sub_trigger_listeners_trigger SQL_TRIGGER

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 150

_edb_scheduler.sch_sub_triggers_trigger SQL_TRIGGER

(33 rows affected)

For non-snapshot only publication tables, triggers are created that reside in the schema containing the publication tables as shown by the following:

1> USE edb;
2> GO
Changed database context to 'edb'.
1> SELECT s.name + '.' + o.name "Trigger Name"
2> FROM sys.objects o,
3> sys.schemas s
4> WHERE s.name = 'edb'
5> AND o.type = 'TR'
6> AND o.name LIKE 'rr%'
7> AND o.schema_id = s.schema_id
8> ORDER BY 1;
9> GO
Trigger Name

edb.rrpd_edb_dept
edb.rrpd_edb_emp
edb.rrpi_edb_dept
edb.rrpi_edb_emp
edb.rrpu_edb_dept
edb.rrpu_edb_emp

(6 rows affected)

Finally, some jobs are created in the msdb database after the subscription is created as shown by the following:

1> USE msdb;
2> GO
Changed database context to 'msdb'.
1> SELECT j.name "Job Name"
2> FROM msdb.dbo.sysjobs j,
3> primary.dbo.syslogins l
4> WHERE l.name = 'pubuser'
5> AND j.name LIKE 'rrep%'
6> AND j.owner_sid = l.sid
7> ORDER BY 1;
8> GO
Job Name

rrep_cleanup_job_edb
rrep_txset_job_edb

(2 rows affected)

Postgres Control Schema Objects

The control schema objects are created in three schemas named _edb_replicator_pub , _edb_replicator_sub , and _edb_scheduler .

The control schema objects contained in _edb_replicator_pub are shown by the following:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 151

edb=# SET search_path TO _edb_replicator_pub;
SET
edb=# \dt
 List of relations
 Schema | Name | Type | Owner
---------------------+--------------------------------+-------+---------
 _edb_replicator_pub | rrep_lock | table | pubuser
 _edb_replicator_pub | rrep_MMR_pub_group | table | pubuser
 _edb_replicator_pub | rrep_MMR_txset | table | pubuser
 _edb_replicator_pub | rrep_properties | table | pubuser
 _edb_replicator_pub | rrep_publication_subscriptions | table | pubuser
 _edb_replicator_pub | rrep_publication_tables | table | pubuser
 _edb_replicator_pub | rrep_tables | table | pubuser
 _edb_replicator_pub | rrep_tx_monitor | table | pubuser
 _edb_replicator_pub | rrep_txset | table | pubuser
 _edb_replicator_pub | rrep_txset_health | table | pubuser
 _edb_replicator_pub | rrep_txset_log | table | pubuser
 _edb_replicator_pub | rrep_wal_events_queue | table | pubuser
 _edb_replicator_pub | rrst_edb_dept | table | pubuser
 _edb_replicator_pub | rrst_edb_emp | table | pubuser
 _edb_replicator_pub | xdb_cleanup_conf | table | pubuser
 _edb_replicator_pub | xdb_conflicts | table | pubuser
 _edb_replicator_pub | xdb_conflicts_options | table | pubuser
 _edb_replicator_pub | xdb_events | table | pubuser
 _edb_replicator_pub | xdb_events_status | table | pubuser
 _edb_replicator_pub | xdb_MMR_pub_group | table | pubuser
 _edb_replicator_pub | xdb_pub_database | table | pubuser
 _edb_replicator_pub | xdb_pub_replog | table | pubuser
 _edb_replicator_pub | xdb_pub_table_replog | table | pubuser
 _edb_replicator_pub | xdb_publication_filter | table | pubuser
 _edb_replicator_pub | xdb_publication_filter_rule | table | pubuser
 _edb_replicator_pub | xdb_publication_subscriptions | table | pubuser
 _edb_replicator_pub | xdb_publications | table | pubuser
 _edb_replicator_pub | xdb_pubtables_ignoredcols | table | pubuser
 _edb_replicator_pub | xdb_sub_servers | table | pubuser
(29 rows)

edb=# \ds
 List of relations
 Schema | Name | Type | Owner
---------------------+-----------------+----------+---------
 _edb_replicator_pub | rrep_common_seq | sequence | pubuser
 _edb_replicator_pub | rrep_tx_seq | sequence | pubuser
 _edb_replicator_pub | rrep_txset_seq | sequence | pubuser
(3 rows)

edb=# SELECT nspname, pkgname FROM edb_package pk, pg_namespace ns
edb-# WHERE nspname IN ('_edb_replicator_pub', '_edb_replicator_sub')
edb-# AND pk.pkgnamespace = ns.oid;
 nspname | pkgname
---------------------+----------
 _edb_replicator_pub | rrep_pkg
(1 row)

edb=# SELECT nspname, funname, typname FROM pg_function fn, pg_namespace ns,
edb-# pg_type ty
edb-# WHERE nspname = '_edb_replicator_pub'
edb-# AND ns.oid = fn.funnamespace
edb-# AND ty.oid = fn.funrettype
edb-# ORDER BY typname, funname;
 nspname | funname | typname

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 152

---------------------+--+---------
 _edb_replicator_pub | capturetruncateevent | trigger
 _edb_replicator_pub | erep_filter_rule_delete_trigger_tgfunc | trigger
 _edb_replicator_pub | erep_pub_database_trigger_tgfunc | trigger
 _edb_replicator_pub | erep_publication_delete_trigger_tgfunc | trigger
 _edb_replicator_pub | xdb_cleanup_conf_trigger_tgfunc | trigger
 _edb_replicator_pub | xdb_conflicts_options_trigger_tgfunc | trigger
 _edb_replicator_pub | xdb_conflicts_trigger_tgfunc | trigger
 _edb_replicator_pub | xdb_MMR_pub_group_trigger_tgfunc | trigger
 _edb_replicator_pub | xdb_pub_database_trigger_tgfunc | trigger
 _edb_replicator_pub | xdb_pub_replog_trigger_tgfunc | trigger
 _edb_replicator_pub | xdb_pub_table_replog_trigger_tgfunc | trigger
 _edb_replicator_pub | xdb_publication_filter_rule_trigger_tgfunc | trigger
 _edb_replicator_pub | xdb_publication_filter_trigger_tgfunc | trigger
 _edb_replicator_pub | xdb_publication_subscriptions_trigger_tgfunc | trigger
 _edb_replicator_pub | xdb_publications_trigger_tgfunc | trigger
 _edb_replicator_pub | xdb_pubtables_ignoredcols_trigger_tgfunc | trigger
 _edb_replicator_pub | xdb_sub_servers_trigger_tgfunc | trigger
 _edb_replicator_pub | getpackageversionnumber | varchar
(18 rows)

The control schema objects contained in _edb_replicator_sub are shown by the following:

edb=# SET search_path TO _edb_replicator_sub;
SET
edb=# \dt
 List of relations
 Schema | Name | Type | Owner
---------------------+-------------------------+-------+---------
 _edb_replicator_sub | xdb_sub_database | table | pubuser
 _edb_replicator_sub | xdb_subscription_tables | table | pubuser
 _edb_replicator_sub | xdb_subscriptions | table | pubuser
 _edb_replicator_sub | xdb_tables | table | pubuser
(4 rows)

edb=# \ds
 List of relations
 Schema | Name | Type | Owner
---------------------+-----------------+----------+---------
 _edb_replicator_sub | rrep_common_seq | sequence | pubuser
(1 row)

edb=# SELECT nspname, funname, typname FROM pg_function fn, pg_namespace ns,
edb-# pg_type ty
edb-# WHERE nspname = '_edb_replicator_sub'
edb-# AND ns.oid = fn.funnamespace
edb-# AND ty.oid = fn.funrettype
edb-# ORDER BY typname, funname;
 nspname | funname | typname
---------------------+--+---------
 _edb_replicator_sub | xdb_sub_database_trigger_tgfunc | trigger
 _edb_replicator_sub | xdb_subscription_tables_trigger_tgfunc | trigger
 _edb_replicator_sub | xdb_subscriptions_trigger_tgfunc | trigger
 _edb_replicator_sub | xdb_tables_trigger_tgfunc | trigger
(4 rows)

The control schema objects contained in _edb_scheduler are shown by the following:

edb=# SET search_path TO _edb_scheduler;

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 153

SET
edb=# \dt
 List of relations
 Schema | Name | Type | Owner
----------------+-----------------------------+-------+---------
 _edb_scheduler | sch_pub_blob_triggers | table | pubuser
 _edb_scheduler | sch_pub_calendars | table | pubuser
 _edb_scheduler | sch_pub_cron_triggers | table | pubuser
 _edb_scheduler | sch_pub_fired_triggers | table | pubuser
 _edb_scheduler | sch_pub_job_details | table | pubuser
 _edb_scheduler | sch_pub_job_listeners | table | pubuser
 _edb_scheduler | sch_pub_locks | table | pubuser
 _edb_scheduler | sch_pub_paused_trigger_grps | table | pubuser
 _edb_scheduler | sch_pub_scheduler_state | table | pubuser
 _edb_scheduler | sch_pub_simple_triggers | table | pubuser
 _edb_scheduler | sch_pub_trigger_listeners | table | pubuser
 _edb_scheduler | sch_pub_triggers | table | pubuser
 _edb_scheduler | sch_sub_blob_triggers | table | pubuser
 _edb_scheduler | sch_sub_calendars | table | pubuser
 _edb_scheduler | sch_sub_cron_triggers | table | pubuser
 _edb_scheduler | sch_sub_fired_triggers | table | pubuser
 _edb_scheduler | sch_sub_job_details | table | pubuser
 _edb_scheduler | sch_sub_job_listeners | table | pubuser
 _edb_scheduler | sch_sub_locks | table | pubuser
 _edb_scheduler | sch_sub_paused_trigger_grps | table | pubuser
 _edb_scheduler | sch_sub_scheduler_state | table | pubuser
 _edb_scheduler | sch_sub_simple_triggers | table | pubuser
 _edb_scheduler | sch_sub_trigger_listeners | table | pubuser
 _edb_scheduler | sch_sub_triggers | table | pubuser
(24 rows)

edb=# SELECT nspname, funname, typname FROM pg_function fn, pg_namespace ns,
edb-# pg_type ty
edb-# WHERE nspname = '_edb_scheduler'
edb-# AND ns.oid = fn.funnamespace
edb-# AND ty.oid = fn.funrettype
edb-# ORDER BY typname, funname;
 nspname | funname | typname
----------------+--+---------
 _edb_scheduler | sch_pub_blob_triggers_trigger_tgfunc | trigger
 _edb_scheduler | sch_pub_calendars_trigger_tgfunc | trigger
 _edb_scheduler | sch_pub_cron_triggers_trigger_tgfunc | trigger
 _edb_scheduler | sch_pub_job_details_trigger_tgfunc | trigger
 _edb_scheduler | sch_pub_job_listeners_trigger_tgfunc | trigger
 _edb_scheduler | sch_pub_simple_triggers_trigger_tgfunc | trigger
 _edb_scheduler | sch_pub_trigger_listeners_trigger_tgfunc | trigger
 _edb_scheduler | sch_pub_triggers_trigger_tgfunc | trigger
 _edb_scheduler | sch_sub_blob_triggers_trigger_tgfunc | trigger
 _edb_scheduler | sch_sub_calendars_trigger_tgfunc | trigger
 _edb_scheduler | sch_sub_cron_triggers_trigger_tgfunc | trigger
 _edb_scheduler | sch_sub_job_details_trigger_tgfunc | trigger
 _edb_scheduler | sch_sub_job_listeners_trigger_tgfunc | trigger
 _edb_scheduler | sch_sub_simple_triggers_trigger_tgfunc | trigger
 _edb_scheduler | sch_sub_trigger_listeners_trigger_tgfunc | trigger
 _edb_scheduler | sch_sub_triggers_trigger_tgfunc | trigger
(16 rows)

In addition, triggers and trigger functions are created in the schema containing the publication tables if the trigger-based method of synchronization
replication is used.

edb=# SET search_path TO edb;

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 154

SET
edb=# \df rr*
 List of functions
 Schema | Name | Result data type | Argument data types | Type
--------+----------------------+------------------+---------------------+---------
 edb | rrpd_edb_dept_tgfunc | trigger | | trigger
 edb | rrpd_edb_emp_tgfunc | trigger | | trigger
 edb | rrpi_edb_dept_tgfunc | trigger | | trigger
 edb | rrpi_edb_emp_tgfunc | trigger | | trigger
 edb | rrpu_edb_dept_tgfunc | trigger | | trigger
 edb | rrpu_edb_emp_tgfunc | trigger | | trigger
(6 rows)

If the log-based method of synchronization replication is used, the following triggers are created on the publication tables:

edb=# SELECT t.tgname AS "Trigger Name", c.relname AS "Table Name",
edb-# f.funname AS "Trigger Function"
edb-# FROM pg_trigger t, pg_function f, pg_class c
edb-# WHERE tgname LIKE 'rrpt%'
edb-# AND t.tgfoid = f.oid
edb-# AND t.tgrelid = c.oid
edb-# ORDER BY t.tgname;
 Trigger Name | Table Name | Trigger Function
---------------+------------+----------------------
 rrpt_edb_dept | dept | capturetruncateevent
 rrpt_edb_emp | emp | capturetruncateevent
(2 rows)

These triggers are used to support synchronization replication of the TRUNCATE command when the log-based method is used.

6.3 Creating a Subscription

Creating your first subscription requires the following steps:

Registering the subscription server
Adding the subscription database
Creating a subscription by choosing the publication to which to subscribe

Multiple subscriptions can be created in a subscription database. More than one subscription can also be created to subscribe against the same publication.

6.3.1 Registering a Subscription Server

When you register a subscription server, you are identifying the network location, admin user name, and password of a specific, running, subscription
server instance that you want to use to manage all aspects of the subscriptions you will be creating subordinate to it.

It is important that you record the login information for the subscription server as you must always use this same subscription server instance to manage all
subscriptions created subordinate to it as represented in the xDB Replication Console replication tree.

Step 1:Step 1: Start the subscription server if it is not already running. Repeat the same process as in Step 1 of Registering a Publication Server.

NoteNote

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 155

If you are using Oracle publication or subscription databases, and the subscription server has not been restarted since copying the Oracle JDBC
driver to the lib/jdbc subdirectory of your xDB Replication Server installation, you must restart the subscription server.

For Linux only:For Linux only: Use the systemctl command for CentOS 7 or RHEL 7 and Rocky Linux 8 or AlmaLinux 8 or RHEL 8, and the service command for
previous Linux versions to start, stop, or restart edb-xdbsubserver for the subscription server. See Registering a Publication Server for information on
how these commands are used.

For Windows only:For Windows only: Open Control Panel, System and Security, Administrative Tools, and then Services. Use the Start or Restart link for the service named
Subscription Service for xDB Replication Server.

Figure 5-16: Windows subscription serviceFigure 5-16: Windows subscription service

If the subscription server fails to start, see Publication and Subscription Server Startup Failures for information.

Step 2:Step 2: Register the subscription server. Open the xDB Replication Console from the system’s application menu. For xDB Replication Server installed from
an xDB RPM package, the xDB Replication Console is started by invoking the script XDB_HOME/bin/runRepConsole.sh .

Step 3:Step 3: Select the top level Replication Servers node. From the File menu, choose Subscription Server, and then choose Register Server .
Alternatively, click the secondary mouse button on the Replication Servers node and choose Register Subscription Server. The Register
Subscription Server dialog box appears.

Enter the values you supplied during the installation of xDB Replication Server unless otherwise specified.

Host. Network IP address of the host running the subscription server. This is the network IP address used for sub_ipaddr in the
pg_hba.conf file in Postgres Server Authentication. (Do not use localhost for this field.)
Port. Port number the subscription server is using. This is the port number you specified on the Subscription Server Details screen in Step 17 of

Installing With Stack Builder or StackBuilder Plus.
User Name. Admin user name that is used to authenticate your usage of this subscription server. This is the user name you specified on the xDB

Admin User Details screen in Step 15 of Installing With Stack Builder or StackBuilder Plus.
Password. Password of the admin user given in the User Name field.
Save login information. Check this box if you do not want to re-register the subscription server each time you open the xDB Replication

Console. See Saving Server Login Information for additional information on the advantages and disadvantages of saving server login information.

NoteNote

The user name and password combination you enter is authenticated against the admin user name and password in the xDB Replication
Configuration file residing on the host with the IP address you enter in the Host field.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 156

Figure 5-17: Register Subscription Server dialog boxFigure 5-17: Register Subscription Server dialog box

Click the Register button after you have filled in the fields. A Subscription Server node appears in the replication tree of the xDB Replication Console.

Figure 5-18: Replication tree after registering a subscription serverFigure 5-18: Replication tree after registering a subscription server

6.3.2 Adding a Subscription Database

The database in which subscriptions are to reside must be identified to xDB Replication Server. This is done by creating a subscription database definition.

After the subscription database definition is created, a Subscription Database node representing that subscription database definition appears in the
replication tree of the xDB Replication Console. Subscriptions created subordinate to this subscription database definition will have their publications
replicated to the database identified by the subscription database definition.

You must enter database connection information such as the database server network address, database identifier, and database login user name and
password when you create the subscription database definition. The connection information is used by the subscription server to create the subscription
table definitions and by the publication server to perform replications.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 157

Note the following restriction on the subscription database:

For Oracle only.For Oracle only. There must be no existing tables or views owned by the Oracle subscription database user that has the same name as a table or view
in a publication that will be replicated to this database. For example, if the Oracle subscription database user name is subuser , and if a Postgres
publication contains a table with the name dept, then the Oracle subscription database must not have an existing table or view with the schema-
qualified name subuser.dept at the time you create the subscription.
For Postgres only.For Postgres only. There must be no existing tables or views with the same schema-qualified name as a table or view in a publication that will be
replicated to this database. For example, if the publication contains a table with the schema-qualified name edb.dept , then the Postgres
subscription database must not have an existing table or view with the schema-qualified name edb.dept at the time you create the subscription.

NoteNote

If the SQL Server publication schema name is dbo, the subscription tables are created under a schema named dbo_sql in Postgres.

For SQL Server only.For SQL Server only. There must be no existing tables or views with the same schema-qualified name as a table or view in a publication that will be
replicated to this database. For example, if the publication contains a table with the schema-qualified name edb.dept , then the SQL Server
subscription database must not have an existing table or view with the schema-qualified name edb.dept at the time you create the subscription.

NoteNote

If the Postgres publication schema name is public, the subscription tables are created under a schema named public_sql in SQL Server.

NoteNote

A database that has been added as a publication database can also be used as a subscription database.

Step 1:Step 1: Make sure the database server in which the subscription database resides is running and accepting client connections.

Step 2:Step 2: Select the Subscription Server node. From the Subscription menu, choose Subscription Database, and then choose Add Database. Alternatively,
click the secondary mouse button on the Subscription Server node and choose Add Database. The Subscription Service – Add Database
dialog box appears.

Step 3:Step 3: Fill in the following fields:

Database Type. Select Oracle, SQL Server, PostgreSQL, or Postgres Plus Advanced Server for the type of subscription database. For an Advanced
Server Oracle compatible installation, select the Postgres Plus Advanced Server option. For PostgreSQL or an Advanced Server PostgreSQL
compatible installation, select the PostgreSQL option.
Host . IP address of the host on which the subscription database server is running.
Port . Port on which the subscription database server is listening for connections.
User . The subscription database user name chosen in Postgres Subscription Database for a Postgres subscription database or the database user

name created in Step 2 of Oracle Subscription Database for an Oracle subscription database or the database user name created in Step 2 of SQL
Server Subscription Database for a SQL Server subscription database.
Password . Password of the database user.
Service ID (For Oracle) . Enter the Oracle System Identifier (SID) of the Oracle instance running the subscription database if the SID radio

button is selected. Enter the net service name of a connect descriptor as defined in the TNSNAMES.ORA file if the Service Name radio button is
selected. Note (For Oracle 12c Pluggable Database): Use the service name.
Database (For Postgres or SQL Server) . Enter the Postgres or SQL Server database name.
URL Options (For SSL connectivity) . Enter the URL options to establish SSL connectivity to the subscription database. See Using

Secure Sockets Layer (SSL) Connections for information on using SSL connections.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 158

Figure 5-19: Subscription Service - Add Database dialog boxFigure 5-19: Subscription Service - Add Database dialog box

Step 4:Step 4: Click the Test button. If Test Result: Success appears, click the OK button, then click the Save button.

Figure 5-20: Successful subscription database testFigure 5-20: Successful subscription database test

If an error message appears investigate the cause of the error, correct the problem, and repeat steps 1 through 4.

When the subscription database definition is successfully saved, a Subscription Database node is added to the replication tree under the Subscription
Server node.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 159

Figure 5-21: Replication tree after adding a subscription databaseFigure 5-21: Replication tree after adding a subscription database

6.3.3 Adding a Subscription

Subordinate to a subscription database definition, you create subscriptions. A subscription assigns the publication that is to be replicated to the database
identified by the subscription database definition.

Step 1:Step 1: Select the Subscription Database node. From the Subscription menu, choose Create Subscription. Alternatively, click the secondary mouse button
on the Subscription Database node and choose Create Subscription. The Create Subscription dialog box appears.

Step 2:Step 2: Fill in the following fields:

Subscription Name . Enter a name for the subscription that is unique amongst all subscription names.
Host . Network IP address of the publication server that is the parent node of the publication to be subscribed to. This is the same value entered in

the Host field in Step 3 of Registering a Publication Server.
Port . Port used by the publication server. This is the same value entered in the Port field in Step 3 of Registering a Publication Server.
User Name . Admin user name of the publication server. This is the same value entered in the User Name field in Step 3 of Registering a

Publication Server.
Password . Password of the admin user. This is the same value entered in the Password field in Step 3 of Registering a Publication Server.
Publication Name . Click the Load button to get a list of available publications. Select the publication to which to subscribe.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 160

Figure 5-22: Create Subscription dialog boxFigure 5-22: Create Subscription dialog box

Step 3 (Optional):Step 3 (Optional): If you defined a set of available table filters for the publication, you have the option of enabling these filters on this subscription. See
Adding a Publication for instructions on defining table filters. If you do not wish to filter the rows that are replicated to this subscription, go to Step 4.

Click the Filter Rules tab to enable one or more filter rules on the subscription. At most one filter rule may be enabled on any given subscription table.

In the following example the filter named dept_10_20_30 is enabled on the dept table and the filter named dept_30 is enabled on the emp table of
this subscription.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 161

Figure 5-23: Enabling filter rules on a subscriptionFigure 5-23: Enabling filter rules on a subscription

Step 4:Step 4: Click the Create button. If Subscription Created Successfully appears, click the OK button, otherwise investigate the error and
make the necessary corrections.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 162

Figure 5-24: Subscription created successfullyFigure 5-24: Subscription created successfully

Upon successful subscription creation, a Subscription node is added to the replication tree.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 163

Figure 5-25: Replication tree after adding a subscriptionFigure 5-25: Replication tree after adding a subscription

The tables and views from the publication are created in the subscription database, but without any rows. Rows are populated into the subscription tables
when the first snapshot replication occurs.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 164

Figure 5-26: Table definitions in the subscription databaseFigure 5-26: Table definitions in the subscription database

6.3.4 Subscription Metadata Object

After you have added a subscription database definition you will find a single table named rrep_txset_health has been created as the subscription
metadata object.

For Oracle only:For Oracle only: The RREP_TXSET_HEALTH table is created in the subscription database user’s schema as shown in the following output:

SQL> CONNECT subuser/password

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 165

Connected.
SQL> SET PAGESIZE 9999
SQL> SELECT table_name FROM user_tables ORDER BY table_name;

TABLE_NAME

RREP_TXSET_HEALTH

For SQL Server only:For SQL Server only: The rrep_txset_health table is created in the schema named _edb_replicator_sub .

1> USE subdb;
2> GO
Changed database context to 'subdb'.
1> SELECT s.name + '.' + o.name "Object Name", o.type_desc "Object Type"
2> FROM sys.objects o,
3> sys.schemas s
4> WHERE s.name <> 'edb'
5> AND o.type IN ('U','P','FN')
6> AND o.schema_id = s.schema_id
7> ORDER BY 2, 1;
8> GO
Object Name Object Type
-------------------------------------- --------------------------------------
_edb_replicator_sub.rrep_txset_health USER_TABLE
(1 rows affected)

For Postgres only:For Postgres only: The rrep_txset_health table is created in the schema named _edb_replicator_sub .

subdb=# SET search_path TO _edb_replicator_sub;
SET
subdb=# \dt
 List of relations
 Schema | Name | Type | Owner
---------------------+-------------------+-------+---------
 _edb_replicator_sub | rrep_txset_health | table | subuser
(1 row)

In all subscription database types (Oracle, SQL Server, and Postgres) when you remove the subscription database definitions using the xDB Replication
Console or xDB Replication Server CLI, the subscription metadata object is deleted from the subscription database.

6.4 On Demand Replication

After a publication and subscription are created, there are a couple of choices for starting the replication process.

Replication can be done immediately by taking an on demand snapshot.
Replication can be scheduled to start at a later date and time by creating a schedule.

This section discusses the procedure for initiating a replication on demand. Section Creating a Schedule discusses how to create a schedule.

6.4.1 Performing Snapshot Replication

The very first replication must be performed using snapshot replication. After the first snapshot replication, subsequent replications can be done using

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 166

either the synchronization method (if the publication was not initially defined as a snapshot-only publication) or the snapshot method.

Step 1:Step 1: Select the Subscription node of the subscription for which you wish to perform snapshot replication.

Figure 5-27: Selecting a subscription for an on demand snapshotFigure 5-27: Selecting a subscription for an on demand snapshot

Step 2:Step 2: Open the Snapshot dialog box in any of the following ways:

From the Subscription menu, choose Snapshot .
Click the secondary mouse button on the Subscription node and choose Snapshot .
Click the primary mouse button on the Snapshot icon.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 167

Figure 5-28: Opening the Snapshot dialog boxFigure 5-28: Opening the Snapshot dialog box

Step 3:Step 3: Select the Verbose Output check box only if you want to display the output from the snapshot in the dialog box. This option should be left
unchecked in a network address translation (NAT) environment as a large amount of output from the snapshot may delay the response from the Snapshot
dialog box. Click the Snapshot button to start snapshot replication.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 168

Figure 5-29: Snapshot dialog boxFigure 5-29: Snapshot dialog box

Step 4:Step 4: Snapshot Taken Successfully appears if the snapshot was successful. Click the OK button. If the snapshot was not successful, scroll through the
messages in the Snapshot dialog box window if Verbose Output was selected or check the log files.

The status messages of each snapshot are saved in the Migration Toolkit log files named mtk.log[.n] (where [.n] is an optional history file count if
log file rotation is enabled) in the following directories:

For Linux:For Linux:

/var/log/xdb-x.x

For Windows:For Windows:

POSTGRES_HOME\.enterprisedb\xdb\x.x

POSTGRES_HOME is the home directory of the Windows postgres account (enterprisedb account for Advanced Server installed in Oracle compatible
configuration mode). The specific location of POSTGRES_HOME is dependent upon your version of Windows. The xDB Replication Server version number
is represented by x.x .

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 169

Figure 5-30: Successful on demand snapshotFigure 5-30: Successful on demand snapshot

The publication has now been replicated to the subscription database. A record of the snapshot is maintained in the replication history. See Viewing
Replication History for information on how to view replication history.

6.4.2 Performing Synchronization Replication

After the first snapshot replication, subsequent replications can be performed using synchronization replication if the publication was not created as a
snapshot-only publication.

Step 1:Step 1: When the trigger-based method of synchronization replication is in use, select the Subscription node of the subscription for which you wish to
perform synchronization replication.

When the log-based method of synchronization replication is in use, select the Subscription node of any subscription. For the log-based method, the
synchronization replication will be performed on all subscriptions regardless of which one is selected.

Figure 5-31: Selecting a subscription for an on demand synchronizationFigure 5-31: Selecting a subscription for an on demand synchronization

Step 2:Step 2: Open the Synchronize dialog box in any of the following ways:

From the Subscription menu, choose Synchronize .
Click the secondary mouse button on the Subscription node and choose Synchronize.
Click the primary mouse button on the Synchronize icon.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 170

Figure 5-32: Opening the Synchronize dialog boxFigure 5-32: Opening the Synchronize dialog box

Step 3:Step 3: Click the Synchronize button to start synchronization replication.

Figure 5-33: Synchronize dialog boxFigure 5-33: Synchronize dialog box

Step 4:Step 4: Subscription Synchronized Successfully appears if the synchronization was successful. Click the OK button. If the synchronization
was not successful, scroll through the messages in the Synchronize dialog box window.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 171

Figure 5-34: Successful on demand synchronizationFigure 5-34: Successful on demand synchronization

The operations that were applied to the subscription tables can be seen in the replication history. See Viewing Replication History for information on how to
view replication history.

6.5 Managing a Subscription

NoteNote

This section discusses various aspects of managing a subscription of a replication system. For a similar discussion on managing a publication of a
replication system, see Managing a Publication.

After a subscription has been created, certain aspects of the underlying replication system environment might be subsequently altered for any number of
reasons. Attributes that might change include the network location of the subscription database server, the network location of the host running the
subscription server, database or operating system user names and passwords, and so forth.

The aforementioned information is saved in the replication system metadata when a subscription is created. Changes to these attributes result in
inaccurate replication system metadata, which in turn may result in errors during subsequent replication attempts or replication system administration.

This section describes how to update the metadata stored for the subscription server, the subscription database definition, and subscriptions in order to
keep the information consistent with the actual replication system environment.

6.5.1 Updating a Subscription Server

When you register a subscription server in the xDB Replication Console, you may choose to save the subscription server’s network location (IP address and
port number), admin user name, and encrypted password in a server login file on the computer on which you are running the xDB Replication Console. See
Saving Server Login Information for information on saving the login information.

The steps described in this section show you how to update the subscription server’s login information in the server login file.

It is assumed that the xDB Replication Console is open on your computer and the subscription server whose login information you wish to alter in the server
login file, appears as a Subscription Server node in the xDB Replication Console’s replication tree.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 172

Figure 5-35: Subscription Server nodeFigure 5-35: Subscription Server node

You can perform the following actions on the server login file:

Change the subscription server’s login information (host IP address, port number, admin user name, and password) that you last saved in the server
login file.
Delete the subscription server’s login information that is currently saved in the server login file. This is the default action, which will require you to
register the subscription server again the next time you open the xDB Replication Console.
Resave the subscription server’s login information in the server login file. Each time you open the Update Subscription Server dialog box, you must
choose to save the login information if you want it recorded in the server login file.

The following steps change only the content of the server login file residing on the host under the current xDB Replication Console user’s home directory.
These changes do not alter any characteristic of the actual subscription server daemon (on Linux) or service (on Windows). These changes affect only how a
subscription server is viewed through the xDB Replication Console on this host by this user.

Step 1:Step 1:
The subscription server whose login information you want to save, change, or delete in the server login file must be running before you can make any
changes to the file. See Step 1 of Registering a Subscription Server for directions on starting the subscription server.

Step 2:Step 2: Click the secondary mouse button on the Subscription Server node and choose Update. The Update Subscription Server dialog box appears.

Figure 5-36: Update Subscription Server dialog boxFigure 5-36: Update Subscription Server dialog box

Step 3:Step 3: Complete the fields in the dialog box according to your purpose for updating the server login file:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 173

If the subscription server now runs on a host with a different IP address or port number than what is shown in the dialog box, enter the correct
information. You must also enter the admin user name and password saved in the xDB Replication Configuration file that resides on the host
identified by the IP address you entered in the Host field. Check the Save Login Information box if you want the new login information saved in the
server login file, otherwise leave the box unchecked in which case, access to the subscription server is available for the current session, but
subsequent sessions will require you to register the subscription server again.
If you want to delete previously saved login information, make sure the network location shown in the dialog box is still correct. Re-enter the admin
user name and password saved in the xDB Replication Configuration file that resides on the host identified by the IP address in the Host field. Leave
the Save Login Information box unchecked. Access to the subscription server is available for this session, but subsequent sessions will require you to
register the subscription server again.
If you want to save the current login information shown in the dialog box, make sure the network location shown in the dialog box is correct. Re-
enter the admin user name and password saved in the xDB Replication Configuration file that resides on the host identified by the IP address in the
Host field. Check the Save Login Information box.

Figure 5-37: Updated subscription server locationFigure 5-37: Updated subscription server location

Step 4:Step 4: Click the Update button. If the dialog box closes, then the update to the server login file was successful. Click the Refresh icon in the xDB
Replication Console tool bar to show the updated Subscription Server node. If an error message appears after clicking the Update button, the server
login file is not modified. Investigate and correct the cause of the error. Repeat steps 1 through 4.

6.5.2 Updating a Subscription Database

When you create a subscription database definition, you save the subscription database server’s network location (IP address and port number), the
database identifier, a database login user name, and the user’s password in the control schema accessed by the subscription server. This login information
is used whenever a session needs to be established with the subscription database. See Adding a Subscription Database for information on creating a
subscription database definition.

The steps described in this section show you how to update the subscription database login information stored in the control schema should any of these
attributes of the actual, physical database change.

NoteNote

Depending upon the database type (Oracle, SQL Server, or Postgres), certain attributes must not be changed. If you have already added
subscriptions, you must not change any attribute that alters access to the schema where the subscription tables were created.

Attributes you must not change if there are existing subscriptions include the following:

The Oracle login user name as the subscription tables already reside in this Oracle user’s schema
The database server network location if the new network location references a database server that does not access the database that already

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 174

contains the subscription tables
The database identifier if the new database identifier references a different physical database than where the subscription tables already reside

Attributes you may change include the following:

The login user name’s password to match a changed database user password
The database server network location if the corresponding location change was made to the database server that accesses the subscription database
The database identifier such as the Oracle service name, SQL Server database name, or Postgres database name if the corresponding name change
was made on the database server
All attributes may be changed if there are no existing subscriptions

Step 1:Step 1: Make sure the database server that you ultimately wish to save as the subscription database definition is running and accepting client connections.

Step 2:Step 2: Make sure the subscription server whose node is the parent of the subscription database definition you wish to change is running and has been
registered in the xDB Replication Console you are using. See Registering a Subscription Server for directions on starting and registering a subscription
server.

Step 3:Step 3: Select the Subscription Database node corresponding to the subscription database definition that you wish to update.

Figure 5-38: Selecting a subscription database definition for updateFigure 5-38: Selecting a subscription database definition for update

Step 4:Step 4: From the Subscription menu, choose Subscription Database, and then choose Update Database. Alternatively, click the secondary mouse button on
the Subscription Database node and choose Update Database. The Update Database Source dialog box appears.

Step 5:Step 5: Enter the desired changes. See Step 3 of Section Adding a Subscription Database for the precise meanings of the fields.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 175

Figure 5-39: Update Database Source dialog boxFigure 5-39: Update Database Source dialog box

Step 6:Step 6: Click the Test button. If Test Result: Success appears, click the OK button, then click the Save button.

Figure 5-40: Successful subscription database testFigure 5-40: Successful subscription database test

If an error message appears investigate the cause of the error, correct the problem, and repeat steps 1 through 6.

Step 7:Step 7: Click the Refresh icon in the xDB Replication Console tool bar to show the updated Subscription Database node and any of its subscriptions.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 176

Figure 5-41: Updated subscription databaseFigure 5-41: Updated subscription database

6.5.3 Updating a Subscription

When a subscription is created, certain attributes of the subscribed publication are stored as part of the metadata for the subscription in the control
schema. These include the following:

The network IP address of the host running the publication server that is the parent of the subscribed publication
The port number of the publication server

If the preceding attributes of the publication server change in the replication system environment, then the corresponding subscription metadata must also
be changed so the subscription server can communicate with the correct publication server.

The following directions show how to update the publication server network IP address and port number within the subscription server’s metadata.

Step 1:Step 1: Make sure the subscription server whose node is the parent of the subscription you wish to change is running and has been registered in the xDB
Replication Console you are using. See Registering a Subscription Server for directions on starting and registering a subscription server.

Step 2:Step 2: Select the Subscription node whose attributes you wish to update.

Figure 5-42: Selecting a subscription to updateFigure 5-42: Selecting a subscription to update

Step 3:Step 3: From the Subscription menu, choose Update Subscription. Alternatively, click the secondary mouse button on the Subscription node and

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 177

choose Update Subscription. The Update Subscription dialog box appears.

Figure 5-43: Update Subscription dialog boxFigure 5-43: Update Subscription dialog box

Step 4:Step 4: If the publication server now runs on a host with a different IP address or port number than what is shown in the dialog box, enter the correct
information. You must also enter the admin user name and password saved in the xDB Replication Configuration file that resides on the host on which the
publication server is running. Click the Update button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 178

Figure 5-44: Subscription successfully updatedFigure 5-44: Subscription successfully updated

Step 5:Step 5: If Subscription Updated Successfully appears, click the OK button, otherwise investigate the error and make the necessary corrections.

Step 6:Step 6: If the publication server with the new network location manages publications subscribed to by other subscriptions, repeat steps 1 through 5 for
these other subscriptions.

6.5.4 Enabling/Disabling Table Filters on a Subscription

Table filters must first be defined in a set of available table filters in the publication before they can be enabled on a subscription. See Adding a Publication
for information on defining table filters in a single-master replication system.

The following are the steps for enabling or disabling table filters on an existing subscription.

Step 1:Step 1: Make sure the publication server whose node is the parent of the publication associated with the subscription you wish to change is running and
has been registered in the xDB Replication Console you are using. See Registering a Publication Server for directions on starting and registering a
publication server. Make sure the subscription server whose node is the parent of the subscription you wish to change is running and has been registered in
the xDB Replication Console you are using. See Registering a Subscription Server for directions on starting and registering a subscription server.

Step 2:Step 2: Select the Subscription node of the subscription on which you wish to enable or disable individual filter rules.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 179

Figure 5-45: Selecting a subscription on which to enable or disable filter rulesFigure 5-45: Selecting a subscription on which to enable or disable filter rules

Step 3:Step 3: Open the Filter Rules tab in any of the following ways:

Choose Update Filter Rule from the Subscription menu.
Click the secondary mouse button on the Subscription node and choose Update Filter Rule .

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 180

Figure 5-46: Opening the Filter Rules tab on a subscriptionFigure 5-46: Opening the Filter Rules tab on a subscription

Step 4:Step 4: In the Filter Rules tab check or uncheck the boxes to specify the filter rules to enable or disable on the subscription. At most one filter rule
may be enabled any given subscription table. Click the Update button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 181

Figure 5-47: Filter Rules tabFigure 5-47: Filter Rules tab

Step 5:Step 5: A confirmation box appears presenting a warning message and a recommendation to perform a snapshot replication to any subscription on which
you changed the filtering criteria.

Click the Ok button in the confirmation box to proceed with the update to the filter rule selections. Click the Cancel button to return to the Filter
Rules tab if you wish to modify your filter rule selections.

Figure 5-48: Change filter rule confirmationFigure 5-48: Change filter rule confirmation

Step 6:Step 6: If you clicked the Ok button in the preceding step, the Filter Rules updated successfully confirmation message appears if the
update was successful.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 182

Figure 5-49: Successful update of filter rulesFigure 5-49: Successful update of filter rules

If you clicked the Cancel button in the preceding step, the Filter Rules tab reopens. You can modify your filter rule selections by repeating Step 4,
or you can click the Cancel button in the Filter Rules tab to abort the filter rule updates on the subscription.

Step 7:Step 7: It is strongly recommended that a snapshot replication be performed to the subscription that contains tables on which the filtering criteria has
changed.

A snapshot ensures that the content of the subscription tables is consistent with the updated filtering criteria. See Performing Snapshot Replication for
information on performing a snapshot replication.

6.5.5 Removing a Subscription

After a subscription is removed, replication can no longer occur for the publication that was associated with it until the publication is subscribed to with a
new subscription.

Removing a subscription does not delete the subscription tables in the subscription database. It removes the identity and association of these tables to xDB
Replication Server so the tables remain in the database until the DBA deletes them with DROP TABLE SQL statements.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 183

Step 1:Step 1: Make sure the subscription server whose node is the parent of the subscription you wish to remove is running and has been registered in the xDB
Replication Console you are using. See Registering a Subscription Server for directions on starting and registering a subscription server.

Step 2:Step 2: Select the Subscription node of the subscription that you wish to remove.

Figure 5-50: Selecting a subscription to removeFigure 5-50: Selecting a subscription to remove

Step 3:Step 3: Remove the subscription in any of the following ways:

Choose Remove Subscription from the Subscription menu.
Click the secondary mouse button on the Subscription node and choose Remove Subscription .
Click the primary mouse button on the Remove Subscription icon.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 184

Figure 5-51: Removing the subscription using the toolbarFigure 5-51: Removing the subscription using the toolbar

Step 4:Step 4: In the Remove Subscription confirmation box, click the Yes button.

Figure 5-52: Remove Subscription confirmationFigure 5-52: Remove Subscription confirmation

The Subscription node no longer appears under the Subscription Database node.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 185

Figure 5-53: Replication tree after removing a subscriptionFigure 5-53: Replication tree after removing a subscription

6.5.6 Removing a Subscription Database

Deleting a subscription database definition from xDB Replication Server is equivalent to removing its Subscription Database node. Before a Subscription
Database node can be removed, all subscriptions under that Subscription Database node must be removed. See Removing a Subscription for removing a
subscription.

Removing a Subscription Database node does not delete the physical database from the database server. It removes the identity and association of the
database to xDB Replication Server so no further replications can create or update tables in the database unless there are other subscription database
definitions in xDB Replication Server with the same host and database identifier. The physical database can only be removed using the database
management system’s database removal procedures.

Step 1:Step 1: Make sure the subscription server whose node is the parent of the subscription database definition you wish to remove is running and has been
registered in the xDB Replication Console you are using. See Registering a Subscription Server for directions on starting and registering a subscription
server.

Step 2:Step 2: Select the Subscription Database node that you wish to remove.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 186

Figure 5-54: Selecting a subscription database definition for removalFigure 5-54: Selecting a subscription database definition for removal

Step 3:Step 3: From the Subscription menu, choose Subscription Database , then Remove Database . Alternatively, click the secondary mouse
button on the Subscription Database node and choose Remove Subscription. The Remove Subscription Database confirmation box appears.

Step 4:Step 4: In the Remove Subscription Database confirmation box, click the Yes button.

Figure 5-55: Remove Subscription Database confirmationFigure 5-55: Remove Subscription Database confirmation

The Subscription Database node no longer appears under the Subscription Server node.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 187

Figure 5-56: Replication tree after removal of a subscription databaseFigure 5-56: Replication tree after removal of a subscription database

6.6 Performing Controlled Switchover

Controlled switchover is the exchanging of roles between a publication database and a subscription database. That is, the tables that were formerly
publications become the subscription tables. The former subscription tables now become the publications.

Controlled switchover is useful for situations where the publication database must be taken offline such as for periodic maintenance. After the switchover,
applications connect to the former subscription database to perform their queries and updates, while the former publication database is kept synchronized
by replication.

Updates for replication are accumulated in shadow tables that are created on the former subscription tables during the controlled switchover procedure.
When the former publication database is online, it is synchronized as the target of replication.

When you determine that you want to reverse the roles again so that the original publication database directly receives queries and updates from
applications, and the original subscription database receives updates by replication, you perform the controlled switchover procedure once again,
switching the roles back.

NoteNote

This discussion assumes that the trigger-based method of synchronization replication is used by the publication database. If the publication
database employs the log-based method, then it must be determined if the current subscription database meets the criteria for using the log-
based method if that is so desired when it is switched to the role of the publication database. If the subscription database does not meet the
criteria, then the trigger-based method must be implemented and used. See Synchronization Replication with the Log-Based Method for
information on the log-based method and the necessary configuration steps that must be performed if the log-based method is to be used.

Controlled Switchover Overview

When you perform controlled switchover, you are modifying the replication system so that the database identified and referenced in the control schema as
the publication database is the physical database that was originally defined as the subscription database.

Similarly, the database identified and referenced in the control schema as the subscription database is changed to the physical database on which the
publication was originally defined.

You must also create the database objects on the former subscription database that xDB Replication Server uses to capture and store updates for
replication. In order to accomplish the controlled switchover, the following tasks must be performed:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 188

Copy the control schema of the publication database (that is, all control schema objects, shadow tables, sequences, triggers, and a package) to the
subscription database.
Copy the control schema of the subscription database to the publication database.
Update certain control schema tables so as to exchange the connection information for the publication database and subscription database. These
updates must be made in the control schema of all publication databases to ensure consistency of the control schema across all publication
databases.
Modify the xDB Replication Configuration file to reference a new controller database if the former publication database was the designated
controller database.

Controlled Switchover Steps

This section describes the steps for performing a controlled switchover.

The following assumptions are made about the replication system environment:

Node 1 is the server where the publication database originally resides. Its network IP address is 192.168.2.19.
Node 2 is the server where the subscription database originally resides. Its network IP address is 192.168.2.20.

The publication and subscription databases have the same name.
You use the publication database user for the role of the subscription database user and the subscription database user for the role of the
publication database user in the switched environment.
The publication server and subscription server are running on the same host (node 1).

Step 1:Step 1: Stop all transaction processing against the publication database.

Step 2:Step 2: Perform an on demand synchronization replication or a snapshot replication (for snapshot-only publications) in order to replicate any pending
updates in the publication database shadow tables to the subscription database.

Step 3:Step 3: Stop the publication server and the subscription server.

Step 4:Step 4: Review the prerequisites in Section Prerequisite Steps to ensure that the subscription database and its host can be used in the role of a publication
database, and the publication database and its host can be used in the role of a subscription database.

For practical purposes, the following items are the most likely to be affected:

The publication database user must be a superuser with system catalog modification privileges to allow it to act as the new subscription database
user.
Additional entries may be needed in the pg_hba.conf files.

Step 5:Step 5: Create a backup of schemas _edb_replicator_pub , _edb_replicator_sub , and _edb_scheduler from the publication database on
node 1. Delete these schemas from the publication database on node 1 after the backup has been made.

Step 6:Step 6: Create a backup of the replication triggers and their corresponding trigger functions on the publication tables on node 1. For the trigger-based
method, these triggers are named with prefixes of rrpd_, rrpi_ and rrpu_ . The trigger functions are named with the same prefixes. For the log-
based method, a trigger for each table is prefixed with rrpt_ . The function is named capturetruncateevent .

Delete or disable these triggers on node 1.

Step 7:Step 7: Create a backup of schema _edb_replicator_sub from the subscription database on node 2.

Delete this schema from the subscription database on node 2 after the backup has been made.

Step 8:Step 8: Restore the backups of schemas _edb_replicator_pub , _edb_replicator_sub , and _edb_scheduler` created in Step 5 to the
subscription database on node 2. Also restore the backup of the replication triggers and trigger functions created in Step 6 to the subscription database on
node 2.

Step 9:Step 9: Restore the backup of schema _edb_replicator_sub created in Step 7 to the publication database on node 1.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 189

Step 10:Step 10: Update the control schema objects so that the publication database definition references the new publication database (that is, the former
subscription database) on node 2 and the subscription database definition references the new subscription database (that is, the former publication
database) on node 1.

The connection information that may require updating includes the following:

Host IP address
Port number
User name
Password

These updates must be made in the control schema of all publication databases to ensure consistency of the control schema information should the
controller database be switched at some later point in time.

For example, the following shows the update to the publication database definition so that its network IP address is now node 2 (192.168.2.20).

UPDATE _edb_replicator_pub.xdb_pub_database SET db_host = '192.168.2.20';

The following shows the update to the subscription database definition so that its network IP address is now node 1 (192.168.2.19).

UPDATE _edb_replicator_sub.xdb_sub_database SET db_host = '192.168.2.19';

Step 11:Step 11: If you decide to use a publication server or subscription server on a new host, perform the following step, otherwise go to Step 12.

The following example assumes you decide to use the publication server and subscription server running on node 2. Update the subscription metadata to
the new location of the publication server managing its associated publication.

UPDATE _edb_replicator_sub.xdb_subscriptions SET pub_server_ip = '192.168.2.20';

Update the publication metadata to the new location of the subscription server managing its associated subscription.

UPDATE _edb_replicator_pub.xdb_sub_servers SET sub_server_ip = '192.168.2.20';

Step 12:Step 12: Edit the xDB Replication Configuration file on the publication server and subscription server host so that it contains the controller database
connection and authentication information for the new publication database now running on node 2.

The following is the modified xDB Replication Configuration file with the network location and authentication information of the new controller database
now running on node 2.

#xDB Replication Server Configuration Properties
#Fri Jan 30 17:34:06 GMT-05:00 2015
port=5444
admin_password=ygJ9AxoJEX854elcVIJPTw\=\=
user=enterprisedb
admin_user=enterprisedb
type=enterprisedb
database=edb
password=ygJ9AxoJEX854elcVIJPTw\=\=
host=192.168.2.20

Step 13:Step 13: Update the pg_hba.conf files of the database servers to allow access to the subscription database now on node 1 and the publication database

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 190

now on node 2 in accordance with Section Postgres Server Authentication.

Step 14:Step 14: When using the log-based method, create a replication slot on the database server that now contains the publication database.

Use the following query to obtain the slot name from the database server that was previously running the publication database, but is now the subscription
database server:

SELECT slot_name FROM pg_replication_slots WHERE plugin = 'test_decoding';
 slot_name

 xdb_47919_5
(1 row)

Create a new replication slot on the database server that is now running the publication database, but was previously the subscription database server. The
slot name from the previous query is used when creating the new replication slot.

SELECT pg_create_logical_replication_slot('xdb_47919_5', 'test_decoding');
pg_create_logical_replication_slot

 (xdb_47919_5,0/37A1270)
(1 row)

You may choose to keep the replication slot on the database server that now contains the subscription database, particularly if you plan to switch the
publication and subscription databases back to their original roles at some future point. This eliminates the necessity for recreating the replication slot
since it will still exist, but will be inactive until the publication is switched back to that database server.

Alternatively, you can delete the replication slot from the database server that now contains the subscription database. The replication slot is deleted with
the following command:

SELECT pg_drop_replication_slot('xdb_47919_5');

See Dropping Replication Slots for Log-Based Synchronization Replication for additional information on deleting the replication slot if the
pg_drop_replication_slot function is not successful. If you switch back the databases to their original roles, you will just have to recreate the replication
slot on the publication database server as previously described in this step.

Step 15:Step 15: The controlled switchover is now complete. Start the publication server and the subscription server.

Step 16:Step 16: After confirming that the publication tables are consistent with the subscription tables, the first replication operation must be a snapshot. After
performing a snapshot, synchronization replications may be performed.

6.7 Performing Failover

Failover is the replacement of the publication database by the subscription database should a failure occur on the publication database or its host. Failover
is considered an irreversible action so the subscription database permanently takes over the role of the publication database.

Generally, the same steps must be followed to perform a failover as was discussed for a controlled switchover in section Performing Controlled Switchover.
However, the following points must also be taken into consideration:

If the control schema objects on the publication database (that is, schemas _edb_replicator_pub , _edb_replicator_sub ,
_edb_scheduler , and their objects) cannot be salvaged or restored from a backup, then performing a failover may only be possible with the

assistance of EnterpriseDB Technical Support Services.
Pending updates not yet applied to the subscription may have been lost. The chances of this are greater if the interval between synchronizations is
long.

If you determine that a failover is possible, follow the steps for a controlled switchover.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 191

6.8 Optimizing Performance

Once you have become familiar with setting up and managing your replication system, you will often look for ways to optimize the performance of
replications. This section discusses various publication server and subscription server configuration options available to improve the performance of
snapshot and synchronization replications.

The publication server and subscription server configuration options are set in the publication server and subscription server configuration files,
respectively. See Publication and Subscription Server Configuration Options for a detailed explanation of how to set the configuration options in these
files.

NoteNote

Most of these configuration options are applicable to multi-master replication systems as well. Options applicable to multi-master replication
systems are those that apply to the publication server and are not specific to a database product other than Postgres (such as an Oracle feature).

6.8.1 Optimizing Snapshot Replication

This section discusses configuration options for improving snapshot replication performance.

NoteNote

The options described in this section apply to the publication server only and are set in the publication server configuration file unless otherwise
specified.

copyViaDBLinkOra

When the copyViaDBLinkOra option is set to true, the Oracle database link API, dblink_ora , is used instead of JDBC COPY to populate Advanced
Server subscription tables from an Oracle publication during snapshot replication.

Oracle database link provides an additional performance improvement over JDBC COPY.

NoteNote

The Oracle database link API feature is not available with PostgreSQL, therefore the copyViaDBLinkOra option is not applicable to PostgreSQL
subscription tables.

NoteNote

Prior to using dblink_ora with xDB Replication Server, there are a number of required configuration steps that must be performed in
Advanced Server. For Advanced Server versions 9.3 or earlier, see the readme text file, README-dblink_ora_setup.txt located in the
POSTGRES_INSTALL_HOME/doc/contrib directory for directions. For Advanced Server versions 9.4 or later, see Chapter dblink_ora in the

Database Compatibility for Oracle Developer’s Guide for directions.

copyViaDBLinkOra={true | false}

The default value is false.

useFastCopy

Set the useFastCopy option to true to skip Write-Ahead Log (WAL) logging during COPY operations in order to optimize data transfer speed.

The archive_mode configuration parameter in the postgresql.conf file of the target Postgres database server must be off (thereby disabling

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 192

archiving of WAL data) in order to use the useFastCopy option.

useFastCopy={true | false}

The default value is false.

cpBatchSize

Use the cpBatchSize option to set the batch size (in Megabytes) that is used in the JDBC COPY operation during a snapshot. Increase the value of this
option for large publication tables.

This option is influential when Postgres is the subscription database since the JDBC COPY operation is used to load Postgres subscription tables.

This option has no effect when Oracle or SQL Server is the subscription database. To tune loading of Oracle or SQL Server tables alter the batchSize
option.

cpBatchSize=n

The default value for n is 8 .

batchSize

The batchSize option controls the number of INSERT statements in a JDBC batch.

This option is particularly significant when Oracle or SQL Server is the subscription database since tables of these database types are loaded using JDBC
batches of INSERT statements.

For a Postgres subscription database, tables are loaded using JDBC COPY , however, if the COPY operation fails for some reason, then table loading is
retried using JDBC batches of INSERT statements as in the case of Oracle and SQL Server.

batchSize=n

The default value for n is 100.

skipAnalyze

Set the skipAnalyze option to true if you want to skip execution of the ANALYZE command after loading Postgres subscription tables. The ANALYZE
command gathers statistical information on the table contents. These statistics are used by the query planner.

skipAnalyze={true | false}

The default value is false.

snapshotParallelLoadCount

NoteNote

To apply this option to a single-master replication system, it must be set for the subscription server within the subscription server configuration
file. To apply this option to a multi-master replication system, it must be set for the publication server within the publication server configuration
file.

The snapshotParallelLoadCount option controls the number of threads used to perform snapshot data replication in parallel mode. The default
behavior is to use a single thread. However, if the target system architecture contains multi-CPUs/cores you can specify a value greater than 1,
normally equal to the CPU/core count, to fully utilize the system resources.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 193

snapshotParallelLoadCount=n

The default value is 1.

lobBatchSize

If a table contains a column with a data type typically used for large objects such as BYTEA, BLOB, or CLOB, there is a greater possibility that a heap space
error may occur because of a potentially large amount of data (hundreds of megabytes) brought into memory. In order to minimize the possibility of this
error, a snapshot replication loads tables containing a large object data type, one row at a time using a single INSERT statement per batch.

If however, the large object data type column is known to contain relatively small amounts of data, you can increase the speed of a snapshot replication by
increasing the value of the lobBatchSize option to allow a greater number of rows (specified by n) in each batch.

lobBatchSize=n

The default value is 1.

6.8.2 Optimizing Synchronization Replication

This section discusses configuration options for improving synchronization replication performance.

In addition, for configuration options specifically applicable to publication databases configured with the log-based method of synchronization replication,
see Specifying a Custom URL for an Oracle JDBC Connection.

NoteNote

The options described in this section apply to the publication server only and are set in the publication server configuration file.

6.8.2.1 Using Prepared SQL Statements

When synchronization replication occurs, the changes recorded in the shadow tables are applied to the subscription tables in JDBC batch updates. Within
each batch, changes may be applied using either an individual SQL statement for each change; or a set of changes may be applied using a single, prepared
SQL statement. A prepared SQL statement is parsed and compiled only once, but it can be executed multiple times using different values for certain
components of the SQL statement in each execution. A SQL statement that is not prepared is parsed, compiled, and executed only once.

Prepared statements are useful only if the same type of SQL statement (INSERT, UPDATE or DELETE) is executed repeatedly and consecutively with
the same target table, but with different values. If there is a sequence of consecutive changes that occur to the same table using the same operation such
as inserting a set of rows into the same table populating the same columns, the publication server may apply these changes using a prepared statement.
Otherwise, each change is applied with its own individual SQL statement.

There are a number of server configuration options that control the characteristics of the JDBC batch along with if, when, and how often prepared
statements are used. These are discussed in the following sections.

defaultBatchUpdateMode

The defaultBatchUpdateMode option controls whether the default mode is to use individual SQL statements in the JDBC batch update (this mode of
operation is referred to as BUS) or to use prepared SQL statements in the JDBC batch update (this mode of operation is referred to as BUP).

defaultBatchUpdateMode={BUS | BUP}

The default value is BUS.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 194

switchBatchUpdateMode

The switchBatchUpdateMode option controls whether or not the publication server dynamically switches between BUS mode and BUP mode during
the replication process depending upon the type and sequence of updates it encounters in the shadow tables for the trigger-based method or the changeset
stream for the log-based method.

switchBatchUpdateMode={true | false}

The default value is true.

This means using the default settings of defaultBatchUpdateMode=BUS and switchBatchUpdateMode=true , the publication server starts out
by applying updates with individual SQL statements. When it encounters a stream of consecutive changes that can all be processed in a single prepared
statement, it will switch to using prepared SQL statements.

NoteNote

If you want a certain batch update mode used throughout all synchronization replications applied by a given publication server without switching
update modes, set the defaultBatchUpdateMode option to the desired mode in combination with switchBatchUpdateMode=false. For example, if
you only want prepared statements used, set the following options:

defaultBatchUpdateMode=BUP

switchBatchUpdateMode=false

NoteNote

When Oracle is the subscription database, synchronization replication always occurs in BUP mode as if the preceding two options were always
set. The reason for this is so large columns of TEXT data type from Postgres publications can successfully replicate to Oracle CLOB columns. In
BUS mode an individual Oracle SQL statement has a string literal maximum length of 4000 characters. This limitation does not occur for
prepared SQL statements that are used in BUP mode.

busBatchThresholdCount

The busBatchThresholdCount option sets the number of consecutive updates of the same type that must be encountered in the shadow tables for
the trigger-based method or the changeset stream for the log-based method before the publication server switches from BUS mode to BUP mode if
dynamic switching is permitted (that is switchBatchUpdateMode=true).

busBatchThresholdCount=n

The default value for n is 5.

The number of consecutive changes using the same table and SQL statement type must exceed the specified value n before a prepared statement is used.

Setting this threshold to a low value will encourage higher use of prepared statements while setting it to a high value will limit the use of prepared
statements.

If changes to the publication were made using many SQL statements where each statement affected more than one row, then it may be beneficial to lower
busBatchThresholdCount to encourage the use of prepared statements on the multiple shadow table rows resulting from each individual change on the
publication.

bupBatchThresholdCount and bupBatchThresholdRepeatLimit

If BUP mode is employed, but the number of updates using the same prepared statement is low causing frequent switches to a new prepared statement, it
may be more beneficial to use individual SQL statements (BUS mode).

For example, the following sequence of updates would be better processed in BUS mode:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 195

INSERT INTO emp
INSERT INTO dept
INSERT INTO emp
INSERT INTO dept
DELETE FROM emp
UPDATE emp
UPDATE dept
INSERT INTO emp
INSERT INTO dept
DELETE FROM dept
INSERT INTO emp
DELETE FROM emp
INSERT INTO dept

However, in the following sequence, it is better to use BUP mode. Updates 1 thru 3 are batched in one prepared statement, 4 thru 7 in another prepared
statement, 8 in its own prepared statement, and then 9 thru 15 in one prepared statement.

1. INSERT INTO emp
2. INSERT INTO emp
3. INSERT INTO emp
4. UPDATE dept
5. UPDATE dept
6. UPDATE dept
7. UPDATE dept
8. INSERT INTO emp
9. INSERT INTO dept
10. INSERT INTO dept
11. INSERT INTO dept
12. INSERT INTO dept
13. INSERT INTO dept
14. INSERT INTO dept
15. INSERT INTO dept

The bupBatchThresholdCount option is used in combination with the bupBatchThresholdRepeatLimit option to control the frequency of
mode switches based on the volatility of expected update types to the publication.

bupBatchThresholdCount=m

The default value for m is 5.

bupBatchThresholdRepeatLimit=n

The default value for n is 10.

Each time the same prepared SQL statement is consecutively executed, an internal batch counter is incremented. If this batch count falls below
bupBatchThresholdCount for the number of executions of a given prepared statement, then a second internal repeat counter is incremented by one. If
the repeat counter eventually reaches bupBatchThresholdRepeatLimit, the update mode is switched from BUP to BUS .

Thus, if there are frequent, consecutive changes of prepared SQL statements (as measured against bupBatchThresholdRepeatLimit), each of
which is executed a small number of times (as measured against bupBatchThresholdCount), then the mode of execution changes back to individual
SQL statements instead of prepared statements.

NoteNote

The publication server changes back to prepared statements when the threshold set by busBatchThresholdCount is met.

The following example illustrates the processing of up dates when bupBatchThresholdCount is set to 3 and bupBatchThresholdRepeatLimit is set to 4. A
change to the “query domain” referred to in this example means a different statement type (INSERT, UPDATE, or DELETE) or a different target table are

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 196

encountered in the next update, thus requiring the use of a different prepared SQL statement.

1. INSERT INTO emp
2. INSERT INTO emp
3. INSERT INTO dept

At this point the query domain is changed after the first two updates (change from table emp to dept) and the number of executions of the prior
prepared statement (2) is less than bupBatchThresholdCount , so the repeat counter is set to 1.

4. INSERT INTO dept
5. INSERT INTO dept
6. INSERT INTO dept
7. INSERT INTO emp

The query domain is changed again (change from table dept to emp), but this time the number of executions (4) for the same query domain (updates 3 thru
6) exceeds bupBatchThresholdCount so the repeat counter is reset to 0.

8. INSERT INTO emp
9. UPDATE emp

The query domain is changed again (INSERT statement to UPDATE statement) and the number of executions (2) is less than
bupBatchThresholdCount , so the repeat counter is incremented to 1.

10. UPDATE emp
11. INSERT INTO dept
12. DELETE FROM dept
13. INSERT INTO emp

The query domain is changed between updates 10 and 11, between updates 11 and 12, and between updates 12 and 13. At this point, the repeat counter
has been incremented 3 more times to a value of 4. This now equals bupBatchThresholdRepeatLimit , so processing is changed from BUP mode
to BUS mode.

6.8.2.2 Parallel Synchronization

Parallel synchronization takes advantage of multi-CPUs or cores in the system architecture by using multiple threads to apply transaction sets in parallel.
Parallel synchronization is applied in two ways:

Multiple threads are used to load data for multiple tables in parallel from the source database. Each thread opens a separate connection therefore
you will observe multiple connections with the source database. The pooling framework is used to cache the connections. After the threads are
finished with the data load, the idle connections are returned to the pool and remain there for a period of 3 minutes before being removed from the
pool (as long as these are not reused).
Changes are applied to multiple target databases in parallel. A transaction set from the source database is loaded only once. The target databases
are updated in parallel from this loaded transaction set. When this transaction set has been applied to all targets (either successfully, or with
failures on some targets), the next transaction set is loaded and applied in parallel. This aspect of parallel synchronization is particularly relevant to
multi-master replication systems.

The following configuration options affect the usage of parallel synchronization.

syncLoadThreadLimit

The syncLoadThreadLimit option controls the maximum number of threads used to load data from source publication tables during parallel
synchronization. The default count is 4. However, depending on the target system architecture (specifically, multi-CPUs/cores) you can choose to specify a
custom count, normally equal to the CPU/core count, to fully utilize the system resources.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 197

syncLoadThreadLimit=n

The default value is 4.

dataSyncThreadCount

The dataSyncThreadCount option controls the maximum number of threads used to apply incremental changes during synchronization replication to
the target secondary databases (for single-master replication systems) or to the target primary nodes (for multi-master replication systems) in parallel
mode. The default behavior (when dataSyncThreadCount is set to 0) is to use as many threads as there are target nodes.

However, depending on the target system architecture (specifically, multi-CPUs/cores) you can choose to specify a custom count, normally equal to the
CPU/core count, to fully utilize the system resources.

dataSyncThreadCount=n

The default value is 0.

targetDBQueryTimeout

The targetDBQueryTimeout option controls the timeout interval (in milliseconds) before an attempt by the publication server to apply a transaction
set on a target database is aborted by the database server (typically due to a lock acquired by another application on one or more of the target tables).

The targetDBQueryTimeout option sets the default lock timeout value to 10 minutes. Change the 10 minute default value to a higher value if you
want to allow a longer wait time before the transaction is aborted. Change the value to 0 if you want to turn off usage of the targetDBQueryTimeout
option in which case the timeout interval is controlled by the setting of the Postgres database server statement_timeout configuration parameter.

A higher value of targetDBQueryTimeout delays processing of subsequent transaction sets on other target databases because if a transaction set is
blocked, the next transaction set cannot be loaded until:

1. the lock is released and the blocked transaction set can then be applied to completion, or
2. the targetDBQueryTimeout interval is exceeded.

If a timeout occurs, the waiting transaction set is marked as aborted for the particular blocked target database. The remaining pending transaction sets in
this synchronization session are skipped for this target database, but are applied to all other target databases once the timeout interval has been
exceeded. The aborted and skipped transaction sets are tried again when the next synchronization replication event occurs.

So for example, in a 3-node cluster with ten pending transaction sets, assume transaction set 1 is loaded and begins replicating to nodes 2 and node 3.
Now, another application acquires a lock on one or more tables in node 2, putting the updates to these tables in a wait state. Replication of transaction set
1 can run to completion on node 3, but if the wait time exceeds the targetDBQueryTimeout interval, the database server cancels transaction set 1 on node 2.
Replication of this transaction set to node 2 is marked as aborted in the xDB Replication Server metadata.

Transaction set 2 can now be loaded and run against node 3. Execution of transaction set 2 against node 2 is skipped since transaction sets must be applied
in order and transaction set 1 was not successfully applied to node 2. Transaction sets 3 thru 10 are loaded and applied in order against node 3, but skipped
for node 2.

In the next synchronization replication, transaction set 2 is tried again on node 2. If the lock has been released and the transaction set is applied
successfully, the remaining transaction sets 3 thru 10 are applied to node 2. Finally, synchronization replication continues with any new transaction sets.

targetDBQueryTimeout=n

The default value is 600000.

6.8.2.3 Other Synchronization Configuration Options

The following are other configuration options affecting synchronization replication.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 198

syncBatchSize

The syncBatchSize option controls the number of statements in a synchronization replication JDBC batch.

syncBatchSize=n

The default value for n is 100.

syncFetchSize

The syncFetchSize option controls how many rows are fetched from the publication database in one network round-trip. For example, if there are
1000 pending row changes, the default fetch size requires 5 database round-trips. Using a fetch size of 500 retrieves all changes in 2 round trips. Fine tune
the performance by using a fetch size that conforms to the average data volume consumed by rows fetched in one round trip.

syncFetchSize=n

The default value for n is 200.

txSetMaxSize

The txSetMaxSize option defines the maximum number of transactional rows that can be grouped in a single transaction set. The publication server
loads and processes the changes by fetching as many rows in memory as grouped in a single transaction set.

A higher value is expected to boost performance. However a very large value might result in an out of memory error. Increase/decrease the value
in accordance with the average row size (low/high).

txSetMaxSize=n

The default value for n is 10000.

enablePerformanceStats

Set enablePerformanceStats option to true only if you need to conduct performance testing and analyze the replication statistics. When enabled,
the publication server creates additional triggers on the publication tables in each primary node. The triggers produce transaction statistics that are
recorded in the MMR_transaction_history table in the control schema. This option should be disabled in a production environment to avoid performance
overhead.

enablePerformanceStats={true | false}

The default value is false.

7 Multi-Master Replication Operation

This chapter describes how to configure and run xDB Replication Server for multi-master replication systems.

For configuration and management of your replication system, the xDB Replication Console graphical user interface is used to illustrate the steps and
examples in this chapter. The same steps can be performed from the operating system command line using the xDB Replication Server Command Line
Interface (CLI). The commands of the xDB Replication Server CLI utility are described in Chapter xDB Replication Server Command Line Interface.

7.1 Prerequisite Steps

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 199

Certain steps must be taken to prepare the host environments as well as the database servers used as primary nodes before beginning the process of
building a multi-master replication system. This section describes these steps.

Setting Heap Memory Size for the Publication Server

Replication speed and efficiency can be affected by the heap memory size set for the publication server. The xDB Startup Configuration file sets a
parameter controlling the minimum and maximum heap size allocated for the publication server. See Setting Heap Memory Size for the Publication and
Subscription Servers for guidelines and information on setting this parameter.

Enabling Synchronization Replication with the Log-Based Method

This section applies only to Postgres database servers of version 9.4 and later. If you plan to use the log-based method of synchronization replication with
any primary node running under a given Postgres database server, the following configuration parameter settings are required in the configuration file,
postgresql.conf , of each such Postgres database server:

wal_level. Set to logical.
max_wal_senders. Specifies the maximum number of concurrent connections (that is, the maximum number of simultaneously running WAL

sender processes). Set at minimum, to the number of MMR primary nodes on this database server that will use the log-based method. In addition, if
SMR publication databases are to run on this database server, also add the number of SMR publication databases that will use the log-based
method.
max_replication_slots. Specifies the maximum number of replication slots. For support of MMR systems, the minimum is the total number

of primary nodes in the multi-master replication system multiplied by the number of primary nodes residing on this database server. For information,
see Replication Origin. In addition, if SMR publication databases are to run on this database server, also add the number of SMR publication
databases that will use the log-based method.
track_commit_timestamp. Set to on. This configuration parameter applies only to Postgres database servers of version 9.5 or later. See

Configuration Parameter and Table Setting Requirements for additional information.

See Synchronization Replication with the Log-Based Method for information on the log-based method of synchronization replication.

The Postgres database server must be restarted after altering any of these configuration parameters.

In addition, the pg_hba.conf file requires an entry for each publication database user of primary nodes that are to use the log-based method. Such
database users must be included as a replication database user in the pg_hba.conf file. See verify_host_accessibility for additional information.

Preparing the Primary definition node

This section discusses the preparation of a database to be used as the primary definition node.

When creating the publication database definition for the primary definition node, a database user name must be specified that has the following
characteristics:

The database user can connect to the primary definition node.
The database user has superuser privileges. Superuser privileges are required because the database configuration parameter
session_replication_role is altered by the database user when the primary definition node receives updates from other primary nodes during a
synchronization replication. The database user temporarily changes session_replication_role to replica to prevent the triggers on the publication
tables from firing. This session change also occurs for snapshot operations involving replication of the control schema from one publication
database to another.
The database user must have the ability to modify the system catalog tables in order to disable foreign key constraints on the publication tables for
snapshots targeted to the publication, as well as for the control schema tables for snapshot operations involving the replication of the control
schema from one publication database to another. (See appendix Disabling Foreign Key Constraints for Snapshot Replications for more information
on this requirement.)

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 200

The examples used throughout the rest of this user’s guide are based on the following primary definition node:

The database user name for the primary definition node is pubuser .
The tables used in the publication reside in a schema named edb .
Three tables named dept, emp, and jobhist are members of schema edb .
The database name of the primary definition node is edb .

The following steps illustrate the preparation of the primary definition node database user.

Step 1:Step 1: Create a user name with login and superuser privileges for the primary definition node. This user becomes the owner of xDB Replication Server
metadata database objects that will be created in the primary definition node to track, control, and record the replication process and history. The xDB
Replication Server metadata database objects are created in a schema named _edb_replicator_pub .

When creating the publication database definition, the database user name is entered in the Publication Service – Add Database dialog box (see Adding the
Primary definition node).

CREATE ROLE pubuser WITH LOGIN SUPERUSER PASSWORD 'password';

Step 2 (Optional):Step 2 (Optional): If users are to access the data in the publication tables residing on this primary node, it is convenient to have one or more “group” roles
containing the required privileges to access these tables. Privileges must also be granted on the control schema objects to users who are to perform
inserts, updates, or deletions on the publication tables.

When adding new users, granting these users membership in these roles gives them the privileges to access the publication tables. This eliminates the need
to grant these privileges individually to each new user.

See Step 2 of Postgres Publication Database for information on creating such roles.

Preparing Additional Primary nodes

The following steps illustrate the creation of a database user and a database for an additional primary node.

When creating the publication database definition for an additional primary node, a database user name must be specified that has the following
characteristics:

The database user can connect to the primary node.
The database user has superuser privileges. Superuser privileges are required because the database configuration parameter
session_replication_role is altered by the database user when the primary node receives updates from other primary nodes during a synchronization
replication. The database user temporarily changes session_replication_role to replica to prevent the triggers on the publication tables from firing.
This session change also occurs for snapshot operations involving replication of the control schema from one publication database to another.
The database user must have the ability to modify the system catalog tables in order to disable foreign key constraints on the publication tables for
snapshots targeted to the publication, as well as for the control schema tables for snapshot operations involving the replication of the control
schema from one publication database to another. (See appendix Disabling Foreign Key Constraints for Snapshot Replications for more information
on this requirement.)
If the additional primary node is to reside on a different database server instance (that is, on a different host or port number) than the primary
definition node, then the same database user name should be used for this additional primary node as used for the primary definition node unless
the publication server configuration option skipTablePrivileges is changed from its default value of false to true. See Skipping Grants of
Table Level User Privileges on MMR Target Tables for information on skipTablePrivileges .

There are also two possible options available with respect to how the publication tables are to be created in the primary node:

Allow the publication server to create the publication table definitions in the primary node by copying the definitions from the primary definition
node at the time you add the publication database definition for the primary node.
Define the publication tables in the primary node beforehand by running SQL DDL statements in the PSQL command line utility program or by
using Postgres Enterprise Manager Client to create the tables.

If you create the table definitions manually as described in the second bullet point, be sure the publication tables are defined identically to the tables in
the primary definition node including schema names, table names, number of columns, column names, column data types, column lengths, primary key

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 201

definitions, unique constraints, foreign key constraints, etc.

The examples used throughout the rest of this user’s guide are based on the following:

The database user name of the second primary node is MMRuser .
The database name of the second primary node is MMRnode .

Step 1:Step 1: Create a database user name for the primary node. This user becomes the owner of xDB Replication Server metadata database objects that will be
created in the primary node to track, control, and record the replication process and history. The xDB Replication Server metadata database objects are
created in a schema named _edb_replicator_pub .

When creating the publication database definition for the primary node, the database user name is entered in the Publication Service – Add Database
dialog box (see Creating Additional Primary nodes).

CREATE ROLE MMRuser WITH LOGIN SUPERUSER PASSWORD 'password';

Step 2: Create a database that will be used as the primary node if such a database does not already exist.

CREATE DATABASE MMRnode;

Verifying Host Accessibility

If more than one computer is used to host the components of the replication system, each computer must be able to communicate with the others on a
network. There are a number of different aspects to this topic.

For a discussion of firewalls and access to ports see Firewalls and Access to Ports.
For a discussion of network IP addresses see Network IP Addresses.

A Postgres database server uses the host-based authentication file, pg_hba.conf , to control access to the databases in the database server.

You need to modify the pg_hba.conf file on each Postgres database server that contains a primary node.

In a default Postgres installation, this file is located in the directory POSTGRES_INSTALL_HOME/data .

The modification needed to the pg_hba.conf file is discussed in the following section.

Primary nodesPrimary nodes

On each database server running a primary node, the following is needed to allow access to the database:

host primarynode_db primarynode_user pub_ipaddr/32 md5

The value you substitute for primarynode_db is the name of the database you intend to use as the primary node. The value you substitute for
primarynode_user is the database user name you created in Step 1 of Preparing the Primary definition node or Step 1 of Section Preparing Additional

Primary nodes.

For two primary nodes using databases named edb and MMRnode running on the same database server, the resulting pg_hba.conf file appears as
follows:

TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only
local all all md5

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 202

IPv4 local connections:
host edb pubuser 192.168.2.22/32 md5
host MMRnode MMRuser 192.168.2.22/32 md5
host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5
Allow replication connections from localhost, by a user with the
replication privilege.
#local replication enterprisedb md5
#host replication enterprisedb 127.0.0.1/32 md5
#host replication enterprisedb ::1/128 md5

If the primary node using database MMRnode with database user name MMRuser is running on a separate host than where database edb is running,
the pg_hba.conf file on the database server with database MMRnode would look like the following:

TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only
local all all md5
IPv4 local connections:
host MMRnode MMRuser 192.168.2.22/32 md5
host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5
Allow replication connections from localhost, by a user with the
replication privilege.
#local replication enterprisedb md5
#host replication enterprisedb 127.0.0.1/32 md5
#host replication enterprisedb ::1/128 md5

The preceding examples assume databases edb and MMRnode are using the trigger-based method of synchronization replication. If the log-based
method is used, the pg_hba.conf file must contain additional entries with the DATABASE field set to replication for primarynode_user and
pub_ipaddr to allow replication connections from the publication server on the host on which it is running.

The following shows a modification of the first example with these additional entries as the last two lines in the file:

TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only
local all all md5
IPv4 local connections:
host edb pubuser 192.168.2.22/32 md5
host MMRnode MMRuser 192.168.2.22/32 md5
host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5
Allow replication connections from localhost, by a user with the
replication privilege.
#local replication enterprisedb md5
#host replication enterprisedb 127.0.0.1/32 md5
#host replication enterprisedb ::1/128 md5
host replication pubuser 192.168.2.22/32 md5
host replication MMRuser 192.168.2.22/32 md5

See sections Synchronization Replication with the Log-Based Method and Enabling Synchronization Replication with the Log-Based Method for additional
information on synchronization replication with the log-based method.

Reload the configuration file after making the modifications.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 203

Choose Reload Configuration (Expert Configuration, then Reload Configuration on Advanced Server) from the Postgres application menu. This will
put the modified pg_hba.conf file into effect.

7.2 Creating a Publication

Creating a publication requires the following steps:

Registering the publication server
Adding the primary definition node
Creating a publication by choosing the tables for the publication along with the conflict resolution options
Defining table filters to be enabled on any primary nodes

Registering a Publication Server

Registering a publication server is done in a manner identical to single-master replication. See Registering a Publication Server for directions on registering
a publication server.

Figure 6-1: Replication tree after registering a publication serverFigure 6-1: Replication tree after registering a publication server

After you have successfully registered a publication server, the replication tree of the xDB Replication Console displays a Publication Server node under
which are the SMR and MMR type nodes.

Continue to build the multi-master replication system under the MMR type node.

Adding the Primary definition node

The first database to be identified to xDB Replication Server is the primary definition node. This is done by creating a publication database definition
subordinate to the MMR type node under the Publication Server node.

After the publication database definition is created, a Publication Database node representing the primary definition node appears in the replication tree of
the xDB Replication Console. A publication containing tables residing within this database can then be created under the Publication Database node.

You must enter database connection information such as the database server network address, database identifier, and database login user name and

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 204

password when you create the publication database definition. The connection information is used by the publication server to access the publication
tables when it performs replication.

Step 1:Step 1: Make sure the database server for the primary definition node is running and accepting client connections.

Step 2:Step 2: Select the MMR type node under the Publication Server node. From the Publication menu, choose Publication Database , and then
choose Add Database . Alternatively, click the secondary mouse button on the MMR type node and choose Add Database. The Publication
Service – Add Database dialog box appears.

Step 3:Step 3: Fill in the following fields:

Database Type . Select PostgreSQL or Postgres Plus Advanced Server for the primary definition node. For an Advanced Server Oracle compatible
installation, select the Postgres Plus Advanced Server option. For PostgreSQL or an Advanced Server PostgreSQL compatible installation, select the
PostgreSQL option.
Host . IP address of the host on which the primary definition node is running.
Port . Port on which the primary definition node is listening for connections.
User . The database user name for the primary definition node created in Step 1 of Preparing the Primary definition node.
Password . Password of the database user.
Database . Enter the database name of the primary definition node.
URL Options (For SSL connectivity) . Enter the URL options to establish SSL connectivity to the primary definition node. See Using

Secure Sockets Layer (SSL) Connections for information on using SSL connections.
Changeset Logging (For Postgres) . Select Table Triggers to use the trigger-based method of synchronization replication. Select WAL

Stream to use the log-based method of synchronization replication. See Synchronization Replication with the Trigger-Based Method for information
on the trigger-based method. See Synchronization Replication with the Log-Based Method for information on the log-based method.
Node Priority Level . An integer from 1 to 10, which is the priority level assigned to this primary node for conflict resolution based on node

priority. The highest priority is 1 while the lowest is 10. See Conflict Resolution Strategies for information on conflict resolution strategies. The
default is 1 for the primary definition node.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 205

Figure 6-2: Publication Service - Add Database dialog box for the primary definition nodeFigure 6-2: Publication Service - Add Database dialog box for the primary definition node

Step 4:Step 4: Click the Test button. If Test Result: Success appears, click the OK button, then click the Save button.

Figure 6-3: Successful primary definition node testFigure 6-3: Successful primary definition node test

If an error message appears investigate the cause of the error, correct the problem, and repeat steps 1 through 4.

When the publication database definition is successfully saved, a Publication Database node is added to the replication tree under the MMR type node of
the Publication Server node.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 206

Figure 6-4: Replication tree after adding the primary definition nodeFigure 6-4: Replication tree after adding the primary definition node

The label MDN appears at the end of the node in the replication tree and in addition, the MDN field is set to Yes in the Property window to indicate this is
the primary definition node.

Adding a Publication

Subordinate to the primary definition node, you create a publication that contains tables of the database.

Step 1:Step 1: Select the Publication Database node. From the Publication menu, choose Create Publication . Alternatively, click the secondary
mouse button on the Publication Database node and choose Create Publication. The Create Publication dialog box appears.

Step 2:Step 2: Fill in the following fields under the Create Publication tab:

Publication Name . Enter a name that is unique amongst all publications.
Publish . Check the boxes next to the tables that are to be included in the publication. Alternatively or in addition, click the Use Wildcard
Selection button to use wildcard pattern matching for selecting publication tables.
Select All . Check this box if you want to include all tables in the Available Tables list in the publication.
Use Wildcard Selection . Click this button to use the wildcard selector to choose tables for the publication. See Selecting Tables with the

Wildcard Selector for information on the wildcard selector.

Figure 6-5: Create Publication dialog boxFigure 6-5: Create Publication dialog box

If you wish to use table filters during replications between primary nodes in this multi-master replication system, follow the directions in the next step to
define the initial set of available table filters, otherwise go on to Step 4.

Step 3 (Optional):Step 3 (Optional): Table filters consist of a set of filter rules that control the selection criteria for rows replicated between primary nodes during a snapshot
or a synchronization replication.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 207

NoteNote

See Table Settings and Restrictions for Table Filters for table setup requirements for a log-based replication system as well as general
restrictions on the use of table filters.

A filter rule consists of a filter name and a SQL WHERE clause (omitting the WHERE keyword) called the filter clause, which you specify for a table that
defines the selection criteria for rows that are to be included during a replication.

Multiple filter rules may be defined for each table in the publication. If no filter rule is defined for a given table, then no filtering can be later enabled on
that corresponding table in any primary node of the multi-master replication system.

After filter rules have been defined for a publication table, you can later choose whether or not to enable those filter rules on any primary node in the
replication system in accordance with the following rules.

At most one filter rule can be enabled on a given table in a given primary node.
The same filter rule may be enabled on the same given table in several, different primary nodes.
Different filter rules may be enabled on the same given table but in different primary nodes.

If you want to define table filters on the publication tables, click the Table Filters tab. Select the table from the Table/View drop-down list for which you
wish to add a filter rule. Click the Add Filter button.

In the Filter dialog box, enter a descriptive filter name and the filter clause to select the rows you want to replicate. The filter name and filter clause
must meet the following conditions:

For any given table, each filter rule must be assigned a unique filter name.
For any given table, the filter clauses must have different syntaxes (that is, the filtering criteria must be different).

In the following example a filter rule is defined on the dept table so only rows where the deptno column contains 10, 20, or 30 are included in
replications. All other rows are excluded from replication.

Figure 6-6: Adding a filter rule for the dept tableFigure 6-6: Adding a filter rule for the dept table

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 208

The following shows a rule added to the emp table by choosing edb.emp from the Table/View drop-down list and then entering the selection criteria for
only rows with deptno containing 10 in the Filter dialog box.

Figure 6-7: Adding a filter rule for the emp tableFigure 6-7: Adding a filter rule for the emp table

Repeating this process, additional filter rules can be added for the emp table. The following shows the complete set of available filter rules defined for the
dept and emp tables.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 209

Figure 6-8: Set of all available filter rulesFigure 6-8: Set of all available filter rules

To remove a filter rule, click the primary mouse button on the filter rule you wish to remove so the entry is highlighted and then click the Remove
Filter button.

You may also modify the filter name or filter clause of a filter rule listed in the Table Filters tab by double-clicking on the cell of the filter name or filter
clause you wish to change. When the cursor appears in the cell, enter the text for the desired change.

When creating additional primary nodes, you may selectively enable these table filters on the corresponding tables in the additional primary nodes. See
Creating Additional Primary nodes for information on creating additional primary nodes.

NoteNote

To enable table filters on the primary definition node under which you are currently creating the publication, you must first switch the role of the
primary definition node to a different primary node (see Switching the Primary definition node), and then follow the directions in Section
Enabling/Disabling Table Filters on a Primary node to enable the table filters.

This completes the process of defining table filters. The next step is changing conflict resolution options.

If you wish to change the conflict resolution options from their default settings, follow the directions in the next step, otherwise go on to Step 5.

Step 4 (Optional):Step 4 (Optional): If you want to modify or see the current conflict resolution options, click the Conflict Resolution Options tab. For each table,
you can select the primary conflict resolution strategy and a standby strategy by clicking the primary mouse button over the appropriate box to expose a
drop-down list of choices.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 210

Figure 6-9: Conflict Resolution Options tabFigure 6-9: Conflict Resolution Options tab

If during synchronization replication, conflicting changes are pending against the same row from different primary nodes, the conflict resolution strategy
determines which of the conflicting changes is accepted and replicated to all primary nodes. The conflicting changes that are not accepted are discarded.

If the selection from the Conflict Resolution Strategy column does not resolve the conflict, the selection from the Standby Conflict Resolution Strategy
column is applied. If neither strategy resolves the conflict, the event is marked as Pending in the Conflict History tab. See Viewing Conflict History for
information on viewing conflict history.

An example of a conflict is when the same column of the same row is changed by transactions in two different primary nodes. Depending upon the conflict
resolution strategy in effect for the table, one of the transactions is accepted and replicated to all primary nodes. The other transaction is discarded and not
replicated to any primary node.

The following is a brief summary of each conflict resolution strategy:

Earliest Timestamp . The conflicting change with the earliest timestamp is accepted and replicated to all other primary nodes. All other
conflicting changes are discarded.
Latest Timestamp . The conflicting change with the latest timestamp is accepted and replicated to all other primary nodes. All other conflicting

changes are discarded.
Node Priority . The conflicting change occurring on the primary node with the highest priority level is accepted and replicated to all other

primary nodes. All other conflicting changes are discarded.
Custom . Update/update conflicts are resolved with a PL/pgSQL custom conflict handling program.
Manual . The conflict remains unresolved. Conflicting changes remain applied in each primary node where they originated, but are not replicated

to other primary nodes. The proper adjustments must be manually applied in each primary node.

See Conflict Resolution Strategies for more information on conflict resolution strategies.

Step 5:Step 5: If you expect update/update conflicts, then set the REPLICA IDENTITY option to FULL on those tables where the conflicts are expected to
occur. See Configuration Parameter and Table Setting Requirements for additional information.

Step 6:Step 6: Click the Create button. If Publication Created Successfully appears, click the OK button, otherwise investigate the error and
make the necessary corrections.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 211

Figure 6-10: Publication created successfullyFigure 6-10: Publication created successfully

Upon successful publication creation, a Publication node is added to the replication tree.

Figure 6-11: Replication tree after adding a publicationFigure 6-11: Replication tree after adding a publication

7.3 Creating Additional Primary nodes

Once you have created the primary definition node, you add additional databases to the multi-master replication system by defining additional primary

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 212

nodes.

This is done by creating additional publication database definitions subordinate to the MMR type node under the Publication Server node that contains the
primary definition node.

After the publication database definition is created, a Publication Database node representing the primary node appears in the replication tree of the xDB
Replication Console. The publication that was defined under the primary definition node appears under the Publication Database node.

You must enter database connection information such as the database server network address, database identifier, and database login user name and
password when you create the publication database definition. The connection information is used by the publication server to access the publication
tables when it performs replication.

Step 1:Step 1: Make sure the database server for the primary definition node is running and accepting client connections.

Step 2:Step 2: Select the MMR type node under the same Publication Server node that contains the primary definition node. From the Publication menu, choose
Publication Database, and then choose Add Database. Alternatively, click the secondary mouse button on the MMR type node and choose Add Database.
The Publication Service – Add Database dialog box appears.

Step 3:Step 3: Fill in the following fields:

Database Type. Select PostgreSQL or Postgres Plus Advanced Server for the primary node. For an Advanced Server Oracle compatible
installation, select the Postgres Plus Advanced Server option. For PostgreSQL or an Advanced Server PostgreSQL compatible installation, select the
PostgreSQL option.
Host. IP address of the host on which the primary node is running.
Port. Port on which the primary node is listening for connections.
User. The database user name for the primary node created in Step 1 of Preparing Additional Primary nodes.
Password. Password of the database user.
Database. Enter the database name of the primary node.
URL Options (For SSL connectivity). Enter the URL options to establish SSL connectivity to the primary node. See Using Secure

Sockets Layer (SSL) Connections for information on using SSL connections.
Changeset Logging (For Postgres). This setting is predetermined by the selection on the primary definition node (see Adding the

Primary definition node). Table Triggers is for the trigger-based method of synchronization replication. WAL Stream is for the log-based method of
synchronization replication. See Synchronization Replication with the Trigger-Based Method for information on the trigger-based method. See
Synchronization Replication with the Log-Based Method for information on the log-based method.
Node Priority Level. An integer from 1 to 10, which is the priority level assigned to this primary node for conflict resolution based on node

priority. The highest priority is 1 while the lowest is 10. See Conflict Resolution Strategies for information on conflict resolution strategies. As each
additional primary node is added, the default priority level number increases assigning a lower priority level to each additional node.
Replicate Publication Schema. Check this box if you want the publication server to create the publication table definitions in the new

primary node by copying the definitions from the primary definition node. If you do not check this box, it is assumed that you have already created
the table definitions in the primary node. If you are using the offline snapshot technique to create this primary node, do not check this box. See
Loading Tables From an External Data Source (Offline Snapshot) for information on using an offline snapshot.
Perform Initial Snapshot. Check this box if you want the publication server to perform a snapshot from the primary definition node to this

primary node when you click the Save button. If you do not check this box, the tables on the primary node will not be loaded until you perform a
replication at some later time. If you are using the offline snapshot technique to create this primary node, you should have already loaded the table
rows. Therefore do not check this box unless you want to reload the data. See Loading Tables From an External Data Source (Offline Snapshot) for
information on using an offline snapshot.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 213

Figure 6-12: Publication Service - Add Database dialog box for an additional primary nodeFigure 6-12: Publication Service - Add Database dialog box for an additional primary node

NoteNote

Unless you intend to use the offline snapshot technique (see Loading Tables From an External Data Source (Offline Snapshot), it is suggested
that you check the Perform Initial Snapshot box. An initial snapshot replication must be performed from the primary definition node to every
other primary node before performing synchronization replications on demand (see Performing Synchronization Replication) or by a schedule
(see Creating a Schedule). If a newly added primary node did not undergo an initial snapshot, any subsequent synchronization replication may
fail to apply the transactions to that primary node. The initial snapshot can also be taken by performing an on demand snapshot (see Performing
Snapshot Replication).

Step 4:Step 4: Click the Test button. If Test Result: Success appears, click the OK button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 214

Figure 6-13: Successful primary node testFigure 6-13: Successful primary node test

If an error message appears investigate the cause of the error, correct the problem, and repeat steps 1 through 4.

Step 5 (Optional):Step 5 (Optional): If you defined a set of available table filters for the publication, you have the option of enabling these filters on this primary node. See
Adding a Publication for instructions on defining table filters. If you do not wish to filter the rows that are replicated to this primary node, go to Step 6.

NoteNote

See Table Settings and Restrictions for Table Filters for table setup requirements for a log-based replication system as well as general
restrictions on the use of table filters.

Click the Filter Rules tab to apply one or more filter rules to the primary node. At most one filter rule may be enabled on any given table in the
primary node.

In the following example the filter named dept_10_20_30 is enabled on the dept table and the filter named dept_30 is enabled on the emp table of
this primary node.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 215

Figure 6-14: Enabling filter rules on a primary nodeFigure 6-14: Enabling filter rules on a primary node

Step 6:Step 6: Check the Perform Initial Snapshot box if you want the publication server to perform a snapshot from the primary definition node to this primary
node when you click the Save button. If you do not check this box, the tables on the primary node will not be loaded until you perform a replication at some
later time.

If you are using the offline snapshot technique to create this primary node, you should have already loaded the table rows. Therefore do not check this box
unless you want to reload the data. See Loading Tables From an External Data Source (Offline Snapshot) for information on using an offline snapshot.

If you do check the Perform Initial Snapshot check box, the Verbose Output check box appears as shown by the following:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 216

Figure 6-15: Initial snapshot with verbose output optionFigure 6-15: Initial snapshot with verbose output option

If you skipped the enabling of table filters as described in Step 5, and you checked the Perform Initial Snapshot check box after Step 4, the
Verbose Output check box is displayed as well:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 217

Figure 6-16: Initial snapshot with verbose output optionFigure 6-16: Initial snapshot with verbose output option

Select the Verbose Output check box only if you want to display the output from the snapshot in the dialog box. This option should be left unchecked
in a network address translation (NAT) environment as a large amount of output from the snapshot may delay the response from the Snapshot dialog box.

Click the Save button.

When the publication database definition is successfully saved, a Publication Database node is added to the replication tree under the MMR type node of
the Publication Server node.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 218

Figure 6-17: Replication tree after adding an additional primary nodeFigure 6-17: Replication tree after adding an additional primary node

Unlike the primary definition node, the label MDN does not appear at the end of the node in the replication tree. The MDN field is set to No in the Property
window to indicate this is not the primary definition node.

In addition, a Publication node appears under the newly added primary node. This Publication node represents the publication in the primary definition
node, which is replicated to the primary node.

If in Step 6, you checked the Perform Initial Snapshot check box, an initial snapshot replication is performed. If you checked the Verbose
Output check box, the log of the snapshot is displayed as well.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 219

Figure 6-18: Adding a primary node with an initial snapshotFigure 6-18: Adding a primary node with an initial snapshot

If the snapshot is successful, the replicated tables in the primary node are loaded with the rows from the publication tables of the primary definition node.

Step 7: If you expect update/update conflicts, then set the REPLICA IDENTITY option to FULL on those tables where the conflicts are expected to
occur. See Configuration Parameter and Table Setting Requirements for additional information.

Step 8 (Optional): If users are to access the data in the publication tables residing on this primary node, it is convenient to have one or more group roles
containing the required privileges to access these tables. For the trigger-based method, privileges must also be granted on the control schema objects to
users who are to perform inserts, updates, or deletions on the publication tables. When using the log-based method a user needs access to the publication
tables and to certain control schema objects as well under certain circumstances.

When adding new users, granting these users membership in these roles gives them the privileges to access the publication tables. This eliminates the need
to grant these privileges individually to each new user.

After you perform the replication of the publication schema as shown in Step 3, you can grant the required privileges needed to access the publication
tables and its control schema objects. See Step 2 of Postgres Publication Database for information on how this can be accomplished.

7.4 Control Schema Objects Created in Primary nodes

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 220

Creation of primary nodes results in the creation of control schema objects in each primary node database.

See Control Schema Objects Created for a Publication for the control schema objects created in each primary node.

Do not delete any of these control schema objects as the replication system metadata will become corrupted.

When you remove a primary node using the xDB Replication Console or xDB Replication Server CLI, all of its control schema objects are deleted from that
primary node database.

7.5 On Demand Replication

After a primary definition node, its publication, and additional primary nodes are created, there are a couple of choices for starting the replication process.

Replication can be done immediately by performing an initial on demand snapshot after which synchronization replication may be performed.
Replication can be scheduled to start at a later date and time by creating a schedule.

This section discusses the procedure for initiating a replication on demand. Section Creating a Schedule discusses how to create a schedule.

Performing Snapshot Replication

A snapshot replication occurs from the primary definition node to a selected primary node.

When you create a primary node for the first time, you have the option of performing an initial snapshot (see Step 3 of Creating Additional Primary nodes).
You can perform snapshots to this primary node at any later point in time according to the following steps.

Step 1:Step 1: Select the Publication node under the primary node for which you wish to perform snapshot replication.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 221

Figure 6-19: Selecting a primary node publication for an on demand snapshotFigure 6-19: Selecting a primary node publication for an on demand snapshot

Step 2:Step 2: Open the Snapshot dialog box in any of the following ways:

Click the secondary mouse button on the Publication node and choose Snapshot.
Click the primary mouse button on the Snapshot icon.

**Figure 6-20: Opening the Snapshot dialog box*Figure 6-20: Opening the Snapshot dialog box

Step 3:Step 3: Select the Verbose Output check box only if you want to display the output from the snapshot in the dialog box. This option should be left
unchecked in a network address translation (NAT) environment as a large amount of output from the snapshot may delay the response from the Snapshot
dialog box. Click the Snapshot button to start snapshot replication.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 222

Figure 6-21: Snapshot dialog boxFigure 6-21: Snapshot dialog box

Step 4:Step 4: Snapshot Taken Successfully appears if the snapshot was successful. Click the OK button. If the snapshot was not successful, scroll through
the messages in the Snapshot dialog box window if Verbose Output was selected or check the log files.

The status messages of each snapshot are saved in the Migration Toolkit log files named mtk.log[.n] (where [.n] is an optional history file count if
log file rotation is enabled) in the following directories:

For Linux:For Linux:

/var/log/xdb-x.x

For Windows:For Windows:

POSTGRES_HOME\.enterprisedb\xdb\x.x

POSTGRES_HOME is the home directory of the Windows postgres account (enterprisedb account for Advanced Server installed in Oracle compatible
configuration mode). The specific location of POSTGRES_HOME is dependent upon your version of Windows. The xDB Replication Server version number is
represented by x.x .

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 223

Figure 6-22: Successful on demand snapshotFigure 6-22: Successful on demand snapshot

The publication has now been replicated from the primary definition node to the selected primary node. A record of the snapshot is maintained in the
replication history. See Viewing Replication History for information on how to view replication history.

Performing Synchronization Replication

NoteNote

Be sure an initial snapshot replication has been performed from the primary definition node to every other primary node in the multi-master
replication system. If a newly added primary node did not undergo an initial snapshot, any subsequent synchronization replication may fail to
apply the transactions to that primary node. The initial snapshot could be taken when the primary node is first added (see Creating Additional
Primary nodes) or by performing an on demand snapshot (see Performing Snapshot Replication).

When synchronization replication is performed in a multi-master replication system, a series of synchronization operations occur between every primary
node pair in the replication system.

For example, if a replication system consists of primary nodes A, B, and C, synchronization is applied to the following node pairs whenever synchronization
replication is initiated:

Changes on node A are applied to node B.
Changes on node A are applied to node C.
Changes on node B are applied to node A.
Changes on node B are applied to node C.
Changes on node C are applied to node A.
Changes on node C are applied to node B.

There may be circumstances where changes made on different nodes result in conflicts. Section Conflict Resolution discusses the types of conflicts that
may occur and how they can be resolved.

The following steps describe how to initiate on demand synchronization replication.

Step 1:Step 1: Select the Publication node under any primary node. Regardless of the primary node chosen, synchronization is applied to every primary node pair
in the replication system.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 224

Figure 6-23: Selecting a primary node publication for an on demand synchronizationFigure 6-23: Selecting a primary node publication for an on demand synchronization

Step 2:Step 2: Open the Synchronize dialog box in any of the following ways:

Click the secondary mouse button on the Publication node and choose Synchronize .
Click the primary mouse button on the Synchronize icon.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 225

Figure 6-24: Opening the Synchronize dialog boxFigure 6-24: Opening the Synchronize dialog box

Step 3:Step 3: Click the Synchronize button to start synchronization replication.

Figure 6-25: Synchronize dialog boxFigure 6-25: Synchronize dialog box

Step 4:Step 4: Publication Synchronized Successfully(()) appears if the synchronization was successful. Click the OK button. If the

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 226

synchronization was not successful, an error message is displayed.

Figure 6-26: Successful on demand synchronizationFigure 6-26: Successful on demand synchronization

The operations that were applied to the publication tables can be seen in the replication history. See Viewing Replication History for information on how to
view replication history.

Conflicting changes that were encountered can be seen in the conflict history. See Viewing Conflict History for information on how to view conflict history.

7.6 Conflict Resolution

There are certain situations where synchronization replication may result in data conflicts arising from the row changes that took place on different primary
nodes.

Conflict resolution deals with the topic of the types of conflicts that might occur, the strategies for dealing with conflicts, and the options available for
automatically resolving such conflicts.

7.6.1 Configuration Parameter and Table Setting Requirements

Depending upon the multi-master replication system environment, certain configuration settings may be required in order for the conflict resolution
process to operate properly.

The following are required only for the log-based method. These do not apply to the trigger-based method.

track_commit_timestamp . Any Postgres 10 and later database server containing a primary node must have its
track_commit_timestamp configuration parameter enabled. The track_commit_timestamp parameter is located in the
postgresql.conf file. If track_commit_timestamp is not enabled, then update/update conflicts are not automatically resolved

such as by using the earliest timestamp of the conflicting transactions. As a result, these conflicting transactions are left in a pending state. See
Automatic Conflict Resolution Example for an example of how update/update conflicts are automatically resolved.
REPLICA IDENTITY FULL. If update/update conflicts are expected to occur on a given publication table, then the REPLICA
IDENTITY setting for the table must be set to FULL on every primary node. The case where update transactions occur on separate primary nodes,
but updating different columns in the same row, is not considered an update/update conflict. However, if REPLICA IDENTITY is not set to

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 227

FULL , then this case will be recorded as an update/update conflict .

The REPLICA IDENTITY option is set to FULL using the ALTER TABLE command as shown by the following:

ALTER TABLE schema.table_name REPLICA IDENTITY FULL

The following is an example of the ALTER TABLE command:

ALTER TABLE edb.dept REPLICA IDENTITY FULL;

The REPLICA IDENTITY setting can be displayed by the PSQL utility using the \d+ command:

edb=# \d+ edb.dept
 Table "edb.dept"
 Column | Type | Modifiers | Storage | Stats target | Description
--------+-----------------------+-----------+----------+--------------+-------------
 deptno | numeric(2,0) | not null | main | |
 dname | character varying(14) | | extended | |
 loc | character varying(13) | | extended | |
Indexes:
 "dept_pk" PRIMARY KEY, btree (deptno)
 "dept_dname_uq" UNIQUE CONSTRAINT, btree (dname)
Referenced by:
 TABLE "emp" CONSTRAINT "emp_ref_dept_fk" FOREIGN KEY (deptno) REFERENCES dept(deptno)
 TABLE "jobhist" CONSTRAINT "jobhist_ref_dept_fk" FOREIGN KEY (deptno) REFERENCES dept(deptno) ON DELETE
SET NULL
Replica Identity: FULL

NoteNote

In addition to conflict resolution requirements, the REPLICA IDENTITY FULL setting may be required on publication tables for other
reasons in xDB Replication Server. See Table Settings and Restrictions for Table Filters for additional requirements.

7.6.2 Conflict Types

The types of conflicts can be summarized as follows:

Uniqueness Conflict. A uniqueness conflict occurs when the same value is used for a primary key or unique column in an insert transaction
on two or more primary nodes. This is also referred to as an insert/insert conflict.
Update Conflict. An update transaction modifies a column value in the same row on two or more primary nodes. For example, an employee

address column is updated on primary node A, and another user updates the address column for the same employee on primary node B. The
timestamps of when the transactions occur on each node could be different, but both transactions occur in a time interval during which
synchronization has not yet occurred. Thus when synchronization does take place, both conflicting transactions are to be applied. This is also
referred to as an update/update conflict.
Delete Conflict. The row corresponding to an update transaction on the source node is not found on the target node as the row has already

been deleted on the target node. This is referred to as an update/delete conflict. Conversely, if there is a delete transaction on the source node and
an update transaction for the same row on the target node, this case is referred to as a delete/update conflict. Finally, in the case where the
row corresponding to a delete transaction on the source node is not found on the target node as the row has already been deleted on the target node
is referred to as a delete/delete conflict .

The following table definition is used to illustrate conflict resolution examples:

CREATE TABLE addrbook (
 id SERIAL PRIMARY KEY,

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 228

 name VARCHAR(20),
 address VARCHAR(50)
);

The following table illustrates an example of a uniqueness conflict.

Table 6-1: Uniqueness ConflictTable 6-1: Uniqueness Conflict

Timestamp
t1

Action

Node A:Node A: INSERT INTO addrbook (name, address)
VALUES ('A', 'ADDR A');

Node A:Node A: INSERT INTO addrbook (name, address)
VALUES ('B', 'ADDR B');

Primary node A

id = 1, name = 'A',
address = 'ADDR A'

id = 2, name = 'B',
address = 'ADDR B'

Primary node B

t2 Node B:Node B: INSERT INTO addrbook (name, address)
VALUES ('C', 'ADDR C');

id = 1, name = 'A',
address = 'ADDR A'

id = 2, name = 'B',
address = 'ADDR B'

id = 1, name = 'C', address = 'ADDR C'

t3 Synchronization pushes Node A changes to
Node B

Row change for INSERT tx id = 1 on Node A results in
unique key conflict on Node B

id = 1, name = 'C', address = 'ADDR C'

id = 1, name = 'A', address = 'ADDR A'

The following table illustrates an example of an update conflict.

Table 6-2: Update ConflictTable 6-2: Update Conflict

Timestamp
t0 Action

Primary node
A
id = 2,
address =
'ADDR B'

Primary node B

id = 2, address = 'ADDR B'

t1 Node A:Node A: UPDATE addrbook SET address = 'ADDR B1' WHERE id =
2;

id = 2,
address =
'ADDR B1''ADDR B1'

id = 2, address = 'ADDR B'

t2 Node B:Node B: UPDATE addrbook SET address = 'ADDR B2' WHERE id =
2; Synchronization pushes Node A changes to Node B

id = 2,
address =
'ADDR B1'

id = 2, address = 'ADDR B2''ADDR B2'

t3 Synchronization pushes Node A changes to Node B Current value of address on Node B not equal oldCurrent value of address on Node B not equal old
value on Node A ('ADDR B2' <> 'ADDR B')value on Node A ('ADDR B2' <> 'ADDR B')

The following table illustrates an example of a delete conflict.

Table 6-3: Delete ConflictTable 6-3: Delete Conflict

Timestamp
t0 Action

Primary node A

id = 2, address =
'ADDR B'

Primary node B

id = 2, address = 'ADDR B'

t1 Node A:Node A: UPDATE addrbook SET address =
'ADDR B1' WHERE id = 2;

id = 2, address =
'ADDR B1''ADDR B1'

id = 2, address = 'ADDR B'

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 229

t2 Node B:Node B: DELETE FROM addrbook WHERE id = 2; id = 2, address =
'ADDR B1'

Row with id = 2 deletedRow with id = 2 deleted

t3 Synchronization pushes Node A changes to
Node B

The row with id = 2 is already deleted on target Node B, henceThe row with id = 2 is already deleted on target Node B, hence
update from Node A fails.update from Node A fails.

7.6.3 Conflict Detection

This section discusses the synchronization process and conflict detection.

When synchronization replication occurs, either on demand or on a scheduled basis, each of the primary node changes is pushed to the other primary
nodes. See Multi-Master Parallel Replication for information on this process.

Using a 3-node example the following describes the conflict detection process.

The replication server loads the first set of pending transactions from primary node A. Transactions are processed on a transaction set basis. (The
same process is used for single-master replication.) All pending transactions are grouped in one or more transaction sets to avoid loading a very
large chunk of rows in memory that may result in an out of heap space issue.
For an update transaction, the replication server queries the first target primary node B to load the related row. If the old column value on the source
primary node A is different than the current column value on target primary node B, the transaction is marked as an update/update conflict. If a
related row is not found on the target primary node, it is marked as an update/delete conflict.
For a delete transaction, the replication server queries the target primary node to load the related row. If a related row is not found on the target
primary node, the transaction is marked as a delete/delete conflict.
When a conflict is detected, the conflict information such as the transaction ID, conflict type, and conflict detection timestamp are logged in the
conflict table on the target primary node.
For a conflicting transaction, the replication server checks if any conflict resolution strategy has been selected for the specific table. If a strategy is
found, it is applied accordingly and the conflict status is marked as resolved. If a strategy cannot be applied, the conflict status is marked as
unresolved (also called pending).
If no conflict is detected, the transactional change is replicated to the target primary node and the transaction status for that target node is marked
as completed in the source primary node control schema. A transaction status mapping for each target primary node is maintained on all primary
nodes. For example node A contains two mappings of status – one for node B and another for node C.
All of these prior steps are repeated to process and replicate all pending transaction sets available on primary node A to primary node B.
Next, the publication server proceeds to replicate primary node A pending transactional changes to the next target primary node, C.
Once the primary node A changes are replicated to nodes B and C, the publication server replicates the pending changes available on primary node B
to nodes A and C.
Finally, the primary node C changes are replicated to nodes A and B.

7.6.4 Conflict Resolution Strategies

A number of built-in conflict resolution options are available to support automatic conflict resolution. The conflict resolution options are applicable to
update/update and delete/delete conflicts.

Uniqueness (insert/insert), update/delete , and delete/update conflicts are marked unresolved and must be manually reconciled.

The following are the built-in, automatic conflict resolution options.

Earliest Timestamp. When the earliest timestamp option is selected, the relevant rows involved in an update conflict from the source and
target primary nodes are compared based on the timestamp of when the update occurred on that particular node. The row change that occurred
earliest is applied. The row changes with the later timestamps are discarded.
Latest Timestamp . Same approach as earliest timestamp except the row change with the latest timestamp is accepted. The row changes with

earlier timestamps are discarded.
Node Priority. The row change of the primary node with the highest node priority level is applied while the lower priority level primary node

changes are discarded. The node priority level is an integer in the range of 1 to 10, inclusive where 1 is the highest priority level and 10 is the lowest
priority level.
Custom. Custom conflict handling applies to update/update conflicts only. You must supply a PL/pgSQL program to resolve any conflicts that

occur resulting from an update/update conflict. See Custom Conflict Handling for information on using custom conflict handling.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 230

The delete/delete conflict is always resolved implicitly regardless of the conflict resolution option in effect. The net impact of a delete/delete
conflict is the removal of a given row, and the row in question has already been removed the from the source and target nodes.

For the earliest timestamp and latest timestamp conflict resolution strategies, the transaction timestamp is tracked in a column with data type
TIMESTAMP in the shadow table.

Once selected, the conflict resolution strategy for a given table can later be changed to a different strategy (see Updating the Conflict Resolution Options).

7.6.5 Conflict Prevention – Uniqueness Case

Since there is no automatic built-in resolution strategy for the uniqueness conflict, this section discusses strategies to avoid this problem that would be
implemented by the DBA. This discussion is based on a realm of numeric values generated by a sequence such as for a unique primary key.

The following are possible strategies:

Node specific sequence rangeNode specific sequence range. A sequence range is reserved for each primary node. For example, primary node A would have MINVALUE = 1 and
MAXVALUE = 1000 , primary node B would have MINVALUE = 1001 and MAXVALUE = 2000 , and so on for other nodes. This ensures that a

unique ID is always generated across all primary nodes.
Start value variationStart value variation. Each node is assigned a different start value. For example, primary node A would have a START value of 1, node B would have 2,
and node C would have 3. An increment greater than or equal to the number of nodes guarantees unique IDs as shown in Table 6 4.
Common sequenceCommon sequence. All nodes share a common sequence object, however this has the major disadvantage of slowing down transaction processing
due to network round-trips associated with each ID generation.
MMR-ready sequenceMMR-ready sequence. This is a technique that enhances the use of sequences and provides a more flexible, reliable approach for a distributed,
multiple database architecture as is inherent in a multi-master replication system. This approach is recommended over the previously listed
sequence techniques. See Conflict Prevention with an MMR-Ready Sequence for information on an MMR-ready sequence.

Table 6-4: Sequence With Start Value VariationTable 6-4: Sequence With Start Value Variation

Sequence Clause Primary node A Primary node
B

Primary node
C

START WITH 1 2 3

INCREMENT BY 5 5 5

Generated IDs 1, 6, 11, 16, … 2, 7, 12, 17, … 3, 8, 13, 18, …

7.6.6 Conflict Prevention with an MMR-Ready Sequence

To prevent uniqueness conflicts in a multi-master replication system, an MMR-ready sequence can be used to generate unique identifiers for each row of
publication tables that do not have an inherent, unique identifier.

An MMR-ready sequence incorporates a function and a sequence to return BIGINT data type, integer values. These values combine a user-assigned,
unique database identifier for each primary node with a sequence generated within that primary node.

A publication table requiring an MMR-ready sequence can be altered to include a BIGINT NOT NULL column with a default value returned by the
function.

An MMR-ready sequence satisfies the following characteristics:

Uniqueness . The combination of the unique, database identifier with the sequence ensures that each row in a given table will have a unique
value across all primary nodes.
Clustered index support . An MMR-ready sequence does not impair the usage of a clustered index to provide retrieval efficiency. MMR-

ready sequence values are returned in a typical, ordered sequence – not as random values such as if the universally unique identifier (UUID) were

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 231

used.
Effective migration support . Tables already utilizing a sequence can be modified to use an MMR-ready sequence with minimal impact on

existing primary keys and foreign keys.
Reliability and maintainability . In summary, an MMR-ready sequence provides a reliable and maintainable method to avoid

uniqueness conflicts.

The following sections provide the steps for creating an MMR-ready sequence followed by an example. The conversion process for existing sequences is
described in Section Converting a Standard Sequence to an MMR-Ready Sequence.

7.6.6.1 Creating an MMR-Ready Sequence

The following are the steps to create an MMR-ready sequence in a database to participate as a primary node in a multi-master replication system.

Begin these steps with the database to be used as the primary definition node.

Step 1:Step 1: Assign a unique, database identifier as an integer from 1 to 1024, inclusive. Thus, a maximum of 1024 databases can be uniquely identified in a
multi-master replication system with an MMR-ready sequence.

Issue the following commands to create and set the database identifier:

ALTER DATABASE dbname SET cluster.unique_db_id TO db_id;
SET cluster.unique_db_id TO db_id;

Use a different db_id value for each database.

Step 2:Step 2: Create a sequence to uniquely identify each table row within the database.

CREATE SEQUENCE seq_name START WITH 1 INCREMENT BY 1 NO CYCLE;

Multiple sequences can be created if it is desired to use separate sequences for multiple tables within the publication. Be sure that the same sequence
name is used across all databases for the same given table.

A publication table column that uses an MMR-ready sequence will include a DEFAULT clause referencing the sequence name in a function call. The
publication table definition must be consistent across all primary nodes by referencing the same sequence name in the function call.

Step 3:Step 3: Create the following function that returns the next MMR-ready sequence value when a row is inserted into the table. This function is referenced by
the DEFAULT clause of the publication table column.

CREATE OR REPLACE FUNCTION MMR_sequence_nextval (
 seq_id VARCHAR
)
RETURNS bigint
LANGUAGE sql
AS
$function$
SELECT (
 (SELECT current_setting('cluster.unique_db_id'))::bigint
 << 52)::bigint +
 nextval($1::regclass);
$function$;

The sequence name created in Step 2 is specified as the seq_id input argument when the function is added to the DEFAULT clause of the publication
table column.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 232

This function performs a bitwise shift left operation (<< 52) on the database identifier (cluster.unique_db_id), thus significantly increasing its
numeric value. The next sequence value is then added to this number. Thus, all rows inserted in the table on a given database fall within a numeric range
determined by the shifted, database identifier value.

Step 4 (Optional):Step 4 (Optional): Create the following function to obtain the current MMR-ready sequence value.

CREATE OR REPLACE FUNCTION MMR_sequence_currval (
 seq_id VARCHAR
)
RETURNS bigint
LANGUAGE sql
AS
$function$
SELECT (
 (SELECT current_setting('cluster.unique_db_id'))::bigint
 << 52)::bigint +
 currval($1::regclass);
$function$;

The MMR_sequence_nextval function must be invoked in the current session before calling the MMR_sequence_currval function.

Step 5:Step 5: Add or modify the publication table column that is to use the MMR-ready sequence. The column data type must be BIGINT . The
MMR_sequence_nextval function is specified in the DEFAULT clause as shown in the following example for column id.

CREATE TABLE table_name (
 id BIGINT NOT NULL PRIMARY KEY
 DEFAULT MMR_sequence_nextval('seq_name'),
 field VARCHAR2(20)
);

The column will also typically be the primary key.

Step 6:Step 6: Repeat steps 1 through 4 for the other databases to be added as primary nodes.

NoteNote

Step 5 is omitted for the additional primary nodes as the publication table definitions are replicated from the primary definition node to the
additional primary nodes when they are created as described in Creating Additional Primary nodes.

Step 7:Step 7: Create the complete, multi-master replication system as described in Chapter Multi-Master Replication Operation.

7.6.6.2 MMR-Ready Sequence Example

The following is an example of a 3-primary node system using an MMR-ready sequence. The databases to be used as the primary nodes are MMRnode_a ,
MMRnode_b , and MMRnode_c . A publication table named MMR_seq_tbl uses the MMR-ready sequence.

The following commands are invoked in database MMRnode_a , which will be the primary definition node:

ALTER DATABASE MMRnode_a SET cluster.unique_db_id TO 1;
SET cluster.unique_db_id TO 1;

CREATE SEQUENCE MMR_seq START WITH 1 INCREMENT BY 1 NO CYCLE;

CREATE OR REPLACE FUNCTION MMR_sequence_nextval (

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 233

 seq_id VARCHAR
)
RETURNS bigint
LANGUAGE sql
AS
$function$
SELECT (
 (SELECT current_setting('cluster.unique_db_id'))::bigint
 << 52)::bigint +
 nextval($1::regclass);
$function$;

CREATE OR REPLACE FUNCTION MMR_sequence_currval (
 seq_id VARCHAR
)
RETURNS bigint
LANGUAGE sql
AS
$function$
SELECT (
 (SELECT current_setting('cluster.unique_db_id'))::bigint
 << 52)::bigint +
 currval($1::regclass);
$function$;

CREATE TABLE MMR_seq_tbl (
 id BIGINT NOT NULL PRIMARY KEY
 DEFAULT MMR_sequence_nextval('MMR_seq'),
 field VARCHAR2(20)
);

On MMRnode_b and MMRnode_c , the commands to create different settings for the configuration parameter cluster.unique_db_id are run as well as
the commands to create the sequence and the functions.

On MMRnode_b the following commands are invoked.

NoteNote

Cluster.unique_db_id is set to 2.

ALTER DATABASE MMRnode_b SET cluster.unique_db_id TO 2;
SET cluster.unique_db_id TO 2;

CREATE SEQUENCE MMR_seq START WITH 1 INCREMENT BY 1 NO CYCLE;

CREATE OR REPLACE FUNCTION MMR_sequence_nextval (
 seq_id VARCHAR
)
RETURNS bigint
LANGUAGE sql
AS
$function$
SELECT (
 (SELECT current_setting('cluster.unique_db_id'))::bigint
 << 52)::bigint +
 nextval($1::regclass);
$function$;

CREATE OR REPLACE FUNCTION MMR_sequence_currval (
 seq_id VARCHAR

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 234

)
RETURNS bigint
LANGUAGE sql
AS
$function$
SELECT (
 (SELECT current_setting('cluster.unique_db_id'))::bigint
 << 52)::bigint +
 currval($1::regclass);
$function$;

On MMRnode_c the following commands are invoked.

NoteNote

The cluster.unique_db_id is set to 3.

ALTER DATABASE MMRnode_c SET cluster.unique_db_id TO 3;
SET cluster.unique_db_id TO 3;

CREATE SEQUENCE MMR_seq START WITH 1 INCREMENT BY 1 NO CYCLE;

CREATE OR REPLACE FUNCTION MMR_sequence_nextval (
 seq_id VARCHAR
)
RETURNS bigint
LANGUAGE sql
AS
$function$
SELECT (
 (SELECT current_setting('cluster.unique_db_id'))::bigint
 << 52)::bigint +
 nextval($1::regclass);
$function$;

CREATE OR REPLACE FUNCTION MMR_sequence_currval (
 seq_id VARCHAR
)
RETURNS bigint
LANGUAGE sql
AS
$function$
SELECT (
 (SELECT current_setting('cluster.unique_db_id'))::bigint
 << 52)::bigint +
 currval($1::regclass);
$function$;

The multi-master replication system is created with the Replicate Publication Schema and the Perform Initial Snapshot options selected when creating the
additional primary nodes, MMRnode_b and MMRnode_c .

The resulting primary nodes are shown in the xDB Replication Console.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 235

Figure 6-27: Publication table with MMR-ready sequenceFigure 6-27: Publication table with MMR-ready sequence

NoteNote

The Default Value property of the id column uses the MMR_sequence_nextval function.

The following INSERT commands are invoked on MMRnode_a :

INSERT INTO MMR_seq_tbl (field) VALUES ('MMRnode_a - Row 1');
INSERT INTO MMR_seq_tbl (field) VALUES ('MMRnode_a - Row 2');
INSERT INTO MMR_seq_tbl (field) VALUES ('MMRnode_a - Row 3');

The following INSERT commands are invoked on MMRnode_b :

INSERT INTO MMR_seq_tbl (field) VALUES ('MMRnode_b - Row 1');
INSERT INTO MMR_seq_tbl (field) VALUES ('MMRnode_b - Row 2');
INSERT INTO MMR_seq_tbl (field) VALUES ('MMRnode_b - Row 3');

The following INSERT commands are invoked on MMRnode_c :

INSERT INTO MMR_seq_tbl (field) VALUES ('MMRnode_c - Row 1');
INSERT INTO MMR_seq_tbl (field) VALUES ('MMRnode_c - Row 2');
INSERT INTO MMR_seq_tbl (field) VALUES ('MMRnode_c - Row 3');

A synchronization replication is performed.

No uniqueness conflicts occur as a unique value is generated for the id primary key column as shown by the following results on MMRnode_a :

MMRnode_a=# SELECT * FROM MMR_seq_tbl ORDER BY id;
 id | field
-------------------+-------------------
 4503599627370497 | MMRnode_a - Row 1
 4503599627370498 | MMRnode_a - Row 2
 4503599627370499 | MMRnode_a - Row 3
 9007199254740993 | MMRnode_b - Row 1

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 236

 9007199254740994 | MMRnode_b - Row 2
 9007199254740995 | MMRnode_b - Row 3
 13510798882111489 | MMRnode_c - Row 1
 13510798882111490 | MMRnode_c - Row 2
 13510798882111491 | MMRnode_c - Row 3
(9 rows)

The same query on MMRnode_b shows the same set of rows:

MMRnode_b=# SELECT * FROM MMR_seq_tbl ORDER BY id;
 id | field
-------------------+-------------------
 4503599627370497 | MMRnode_a - Row 1
 4503599627370498 | MMRnode_a - Row 2
 4503599627370499 | MMRnode_a - Row 3
 9007199254740993 | MMRnode_b - Row 1
 9007199254740994 | MMRnode_b - Row 2
 9007199254740995 | MMRnode_b - Row 3
 13510798882111489 | MMRnode_c - Row 1
 13510798882111490 | MMRnode_c - Row 2
 13510798882111491 | MMRnode_c - Row 3
(9 rows)

The same results are present on MMRnode_c :

MMRnode_c=# SELECT * FROM MMR_seq_tbl ORDER BY id;
 id | field
-------------------+-------------------
 4503599627370497 | MMRnode_a - Row 1
 4503599627370498 | MMRnode_a - Row 2
 4503599627370499 | MMRnode_a - Row 3
 9007199254740993 | MMRnode_b - Row 1
 9007199254740994 | MMRnode_b - Row 2
 9007199254740995 | MMRnode_b - Row 3
 13510798882111489 | MMRnode_c - Row 1
 13510798882111490 | MMRnode_c - Row 2
 13510798882111491 | MMRnode_c - Row 3
(9 rows)

7.6.6.3 Converting a Standard Sequence to an MMR-Ready Sequence

If you have an existing application with tables that use a standard sequence such as with the SERIAL data type, these tables can be modified to use the
MMR-ready sequence for incorporation into a multi-master replication system. The basic conversion process is the following:

Update the sequence values in the existing rows with MMR-ready sequence compatible values.
Alter the column definition to be compatible with the MMR-ready sequence including modification or addition of the DEFAULT clause to use the
MMR-ready sequence function to supply the default values for subsequent inserts.

To perform the conversion of existing sequence values, first, create the unique database identifier as described in Step 1 of section Creating an MMR-Ready
Sequence.

Use the following function to update the existing primary key and foreign key values that are required to be converted.

CREATE OR REPLACE FUNCTION MMR_sequence_convert (
 old_seq_value bigint

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 237

)
RETURNS bigint
LANGUAGE sql
AS
$function$
SELECT (
 (SELECT current_setting('cluster.unique_db_id'))::bigint
 << 52)::bigint + $1;
$function$;

The function input argument is the old sequence value and the function returns the new MMR-ready sequence value.

The function input and return arguments are data type BIGINT so the existing sequence columns must be altered accordingly before using the function.

Finally, the sequence columns must include the clauses BIGINT NOT NULL DEFAULT MMR_sequence_nextval('seq_name') to supply MMR-
ready sequence values for future inserts.

See Creating an MMR-Ready Sequence for information on creating the objects required for an MMR-ready sequence.

7.6.6.4 Conversion to an MMR-Ready Sequence Example

This section describes a basic example of how two tables with standard sequences used as primary keys as well as a parent-child relationship by a foreign
key constraint can be converted to use the MMR-ready sequence, then employed in a multi-master replication system.

The tables are defined as follows:

CREATE TABLE MMR_seq_tbl (
 id SERIAL PRIMARY KEY,
 field VARCHAR2(20)
);

CREATE TABLE MMR_seq_child_tbl (
 id SERIAL PRIMARY KEY,
 field VARCHAR2(20),
 parent_id INTEGER CONSTRAINT MMR_seq_tbl_fk
 REFERENCES MMR_seq_tbl(id)
);

NoteNote

The foreign key constraint between columns MMR_seq_child_tbl.parent_id and MMR_seq_tbl.id .

The tables are populated with an initial set of rows:

INSERT INTO MMR_seq_tbl (field) VALUES ('MMRnode_a - Row 1');
INSERT INTO MMR_seq_tbl (field) VALUES ('MMRnode_a - Row 2');
INSERT INTO MMR_seq_tbl (field) VALUES ('MMRnode_a - Row 3');

INSERT INTO MMR_seq_child_tbl (field, parent_id) VALUES ('MMRnode_a - Row 1-1', 1);
INSERT INTO MMR_seq_child_tbl (field, parent_id) VALUES ('MMRnode_a - Row 1-2', 1);
INSERT INTO MMR_seq_child_tbl (field, parent_id) VALUES ('MMRnode_a - Row 2-1', 2);
INSERT INTO MMR_seq_child_tbl (field, parent_id) VALUES ('MMRnode_a - Row 2-2', 2);
INSERT INTO MMR_seq_child_tbl (field, parent_id) VALUES ('MMRnode_a - Row 3-1', 3);
INSERT INTO MMR_seq_child_tbl (field, parent_id) VALUES ('MMRnode_a - Row 3-2', 3);

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 238

The resulting table content is the following:

edb=# SELECT * FROM MMR_seq_tbl;
 id | field
----+-------------------
 1 | MMRnode_a - Row 1
 2 | MMRnode_a - Row 2
 3 | MMRnode_a - Row 3
(3 rows)

edb=# SELECT * FROM MMR_seq_child_tbl;
 id | field | parent_id
----+---------------------+-----------
 1 | MMRnode_a - Row 1-1 | 1
 2 | MMRnode_a - Row 1-2 | 1
 3 | MMRnode_a - Row 2-1 | 2
 4 | MMRnode_a - Row 2-2 | 2
 5 | MMRnode_a - Row 3-1 | 3
 6 | MMRnode_a - Row 3-2 | 3
(6 rows)

Prior to performing the conversion, obtain the current, maximum sequence value of the sequence to be converted to an MMR-ready sequence. In this
example the value is 6 as seen in the id column of table MMR_seq_child_tbl .

This value is needed to set a newly created sequence that is to be used for the MMR-ready sequence, to a large enough starting value to avoid uniqueness
conflict with the converted sequence values of the existing rows.

Converting Existing Standard Sequence ValuesConverting Existing Standard Sequence Values

In order to convert the existing sequence values in columns MMR_seq_tbl.id , MMR_seq_child_tbl.id , and
MMR_seq_child_tbl.parent_id the following steps are performed.

Permit deferred updates to the foreign key constraint.

ALTER TABLE MMR_seq_child_tbl ALTER CONSTRAINT MMR_seq_tbl_fk DEFERRABLE INITIALLY DEFERRED;

Create the function to perform the sequence conversion.

CREATE OR REPLACE FUNCTION MMR_sequence_convert (
 old_seq_value bigint
)
RETURNS bigint
LANGUAGE sql
AS
$function$
SELECT (
 (SELECT current_setting('cluster.unique_db_id'))::bigint
 << 52)::bigint + $1;
$function$;

Change the sequence columns to data type BIGINT so they are large enough for the MMR-ready sequence.

ALTER TABLE MMR_seq_tbl ALTER COLUMN id SET DATA TYPE BIGINT;
ALTER TABLE MMR_seq_child_tbl ALTER COLUMN id SET DATA TYPE BIGINT;
ALTER TABLE MMR_seq_child_tbl ALTER COLUMN parent_id SET DATA TYPE BIGINT;

Set the unique database identifier to be used by the MMR-ready sequence.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 239

ALTER DATABASE MMRnode_a SET cluster.unique_db_id TO 1;
SET cluster.unique_db_id TO 1;

Update the primary key and foreign key values with the MMR_sequence_convert function.

The updates affecting the foreign key constraint must be performed within the same transaction to avoid a foreign key violation error.

BEGIN TRANSACTION;
 UPDATE MMR_seq_tbl SET id = MMR_sequence_convert (id);
 UPDATE MMR_seq_child_tbl SET parent_id = MMR_sequence_convert (parent_id);
 UPDATE MMR_seq_child_tbl SET id = MMR_sequence_convert (id);
COMMIT;

Reset the foreign key constraint back to its original setting – for example:

ALTER TABLE MMR_seq_child_tbl ALTER CONSTRAINT MMR_seq_tbl_fk NOT DEFERRABLE;

After the conversion to the MMR-ready sequence, the table content is as follows:

edb=# SELECT * FROM MMR_seq_tbl;
 id | field
------------------+-------------------
 4503599627370497 | MMRnode_a - Row 1
 4503599627370498 | MMRnode_a - Row 2
 4503599627370499 | MMRnode_a - Row 3
(3 rows)

edb=# SELECT * FROM MMR_seq_child_tbl;
 id | field | parent_id
------------------+---------------------+------------------
 4503599627370497 | MMRnode_a - Row 1-1 | 4503599627370497
 4503599627370498 | MMRnode_a - Row 1-2 | 4503599627370497
 4503599627370499 | MMRnode_a - Row 2-1 | 4503599627370498
 4503599627370500 | MMRnode_a - Row 2-2 | 4503599627370498
 4503599627370501 | MMRnode_a - Row 3-1 | 4503599627370499
 4503599627370502 | MMRnode_a - Row 3-2 | 4503599627370499
(6 rows)

The parent-child foreign key relationship between columns MMR_seq_child_tbl.parent_id and MMR_seq_tbl.id is maintained.

The primary key id values incorporate the old sequence values, but are increased by the addition of the 52-bit shifted, database identifier value.

Setting Up the MMR-Ready SequenceSetting Up the MMR-Ready Sequence

The steps as described in Section Creating an MMR-Ready Sequence are now performed on the databases to be used as primary nodes. For database
MMRnode_a that contains the converted tables, a new sequence is created with a starting value of 7 to avoid a primary key uniqueness conflict with the
existing rows. In the original tables, the maximum used sequence value was 6. When a sequence number is transformed to an MMR-ready sequence value,
the same result is returned if the same database identifier is used with the same original number.

CREATE SEQUENCE MMR_seq START WITH 7 INCREMENT BY 1 NO CYCLE;

Create the function to return the MMR-ready sequence value.

CREATE OR REPLACE FUNCTION MMR_sequence_nextval (
 seq_id VARCHAR
)

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 240

RETURNS bigint
LANGUAGE sql
AS
$function$
SELECT (
 (SELECT current_setting('cluster.unique_db_id'))::bigint
 << 52)::bigint +
 nextval($1::regclass);
$function$;

Alter the primary key columns to use the function to return the default value.

ALTER TABLE MMR_seq_tbl ALTER COLUMN id SET DEFAULT MMR_sequence_nextval('MMR_seq');
ALTER TABLE MMR_seq_child_tbl ALTER COLUMN id SET DEFAULT MMR_sequence_nextval('MMR_seq');

Repeat the MMR-ready sequence setup process for the other primary nodes.

ALTER DATABASE MMRnode_b SET cluster.unique_db_id TO 2;
SET cluster.unique_db_id TO 2;

CREATE SEQUENCE MMR_seq START WITH 1 INCREMENT BY 1 NO CYCLE;

CREATE OR REPLACE FUNCTION MMR_sequence_nextval (
 seq_id VARCHAR
)
RETURNS bigint
LANGUAGE sql
AS
$function$
SELECT (
 (SELECT current_setting('cluster.unique_db_id'))::bigint
 << 52)::bigint +
 nextval($1::regclass);
$function$;

Repeat the process for MMRnode_c .

ALTER DATABASE MMRnode_c SET cluster.unique_db_id TO 3;
SET cluster.unique_db_id TO 3;

CREATE SEQUENCE MMR_seq START WITH 1 INCREMENT BY 1 NO CYCLE;

CREATE OR REPLACE FUNCTION MMR_sequence_nextval (
 seq_id VARCHAR
)
RETURNS bigint
LANGUAGE sql
AS
$function$
SELECT (
 (SELECT current_setting('cluster.unique_db_id'))::bigint
 << 52)::bigint +
 nextval($1::regclass);
$function$;

Tables After Initial Multi-Master Replication System CreationTables After Initial Multi-Master Replication System Creation

The multi-master replication system is created using databases MMRnode_a , MMRnode_b , and MMRnode_c in a similar manner as described in

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 241

Section MMR-Ready Sequence Example.

After the system is created with the initial snapshot, MMRnode_a, MMRnode_b , and MMRnode_c all contain identical content. The following is the
table content:

MMRnode_a=# SELECT * FROM MMR_seq_tbl;
 id | field
------------------+-------------------
 4503599627370497 | MMRnode_a - Row 1
 4503599627370498 | MMRnode_a - Row 2
 4503599627370499 | MMRnode_a - Row 3
(3 rows)

MMRnode_a=# SELECT * FROM MMR_seq_child_tbl;
 id | field | parent_id
------------------+---------------------+------------------
 4503599627370497 | MMRnode_a - Row 1-1 | 4503599627370497
 4503599627370498 | MMRnode_a - Row 1-2 | 4503599627370497
 4503599627370499 | MMRnode_a - Row 2-1 | 4503599627370498
 4503599627370500 | MMRnode_a - Row 2-2 | 4503599627370498
 4503599627370501 | MMRnode_a - Row 3-1 | 4503599627370499
 4503599627370502 | MMRnode_a - Row 3-2 | 4503599627370499
(6 rows)

Subsequent Row Insertions and SynchronizationSubsequent Row Insertions and Synchronization

The following rows are inserted on MMRnode_a :

INSERT INTO MMR_seq_tbl (field) VALUES ('MMRnode_a - Row 4');
INSERT INTO MMR_seq_child_tbl (field, parent_id) VALUES ('MMRnode_a - Row 4-1', 4503599627370503);

MMRnode_a=# SELECT * FROM MMR_seq_tbl ORDER BY id;
 id | field
------------------+-------------------
 4503599627370497 | MMRnode_a - Row 1
 4503599627370498 | MMRnode_a - Row 2
 4503599627370499 | MMRnode_a - Row 3
 4503599627370503 | MMRnode_a - Row 4
(4 rows)

MMRnode_a=# SELECT * FROM MMR_seq_child_tbl ORDER BY id;
 id | field | parent_id
------------------+---------------------+------------------
 4503599627370497 | MMRnode_a - Row 1-1 | 4503599627370497
 4503599627370498 | MMRnode_a - Row 1-2 | 4503599627370497
 4503599627370499 | MMRnode_a - Row 2-1 | 4503599627370498
 4503599627370500 | MMRnode_a - Row 2-2 | 4503599627370498
 4503599627370501 | MMRnode_a - Row 3-1 | 4503599627370499
 4503599627370502 | MMRnode_a - Row 3-2 | 4503599627370499
 4503599627370504 | MMRnode_a - Row 4-1 | 4503599627370503
(7 rows)

The following rows are inserted on MMRnode_b :

INSERT INTO MMR_seq_tbl (field) VALUES ('MMRnode_b - Row 1');
INSERT INTO MMR_seq_child_tbl (field, parent_id) VALUES ('MMRnode_b - Row 1-1', 9007199254740993);

MMRnode_b=# SELECT * FROM MMR_seq_tbl ORDER BY id;
 id | field

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 242

------------------+-------------------
 4503599627370497 | MMRnode_a - Row 1
 4503599627370498 | MMRnode_a - Row 2
 4503599627370499 | MMRnode_a - Row 3
 9007199254740993 | MMRnode_b - Row 1
(4 rows)

MMRnode_b=# SELECT * FROM MMR_seq_child_tbl ORDER BY id;
 id | field | parent_id
------------------+---------------------+------------------
 4503599627370497 | MMRnode_a - Row 1-1 | 4503599627370497
 4503599627370498 | MMRnode_a - Row 1-2 | 4503599627370497
 4503599627370499 | MMRnode_a - Row 2-1 | 4503599627370498
 4503599627370500 | MMRnode_a - Row 2-2 | 4503599627370498
 4503599627370501 | MMRnode_a - Row 3-1 | 4503599627370499
 4503599627370502 | MMRnode_a - Row 3-2 | 4503599627370499
 9007199254740994 | MMRnode_b - Row 1-1 | 9007199254740993
(7 rows)
The following rows are inserted on MMRnode_c:
INSERT INTO MMR_seq_tbl (field) VALUES ('MMRnode_c - Row 1');
INSERT INTO MMR_seq_child_tbl (field, parent_id) VALUES ('MMRnode_c - Row 1-1', 13510798882111489);

MMRnode_c=# SELECT * FROM MMR_seq_tbl ORDER BY id;
 id | field
-------------------+-------------------
 4503599627370497 | MMRnode_a - Row 1
 4503599627370498 | MMRnode_a - Row 2
 4503599627370499 | MMRnode_a - Row 3
 13510798882111489 | MMRnode_c - Row 1
(4 rows)

MMRnode_c=# SELECT * FROM MMR_seq_child_tbl ORDER BY id;
 id | field | parent_id
-------------------+---------------------+-------------------
 4503599627370497 | MMRnode_a - Row 1-1 | 4503599627370497
 4503599627370498 | MMRnode_a - Row 1-2 | 4503599627370497
 4503599627370499 | MMRnode_a - Row 2-1 | 4503599627370498
 4503599627370500 | MMRnode_a - Row 2-2 | 4503599627370498
 4503599627370501 | MMRnode_a - Row 3-1 | 4503599627370499
 4503599627370502 | MMRnode_a - Row 3-2 | 4503599627370499
 13510798882111490 | MMRnode_c - Row 1-1 | 13510798882111489
(7 rows)

After a synchronization replication is performed, there are no uniqueness conflicts. The following shows the synchronized, consistent tables in the primary
nodes:

Content of MMRnode_a after synchronization:

MMRnode_a=# SELECT * FROM MMR_seq_tbl ORDER BY id;
 id | field
-------------------+-------------------
 4503599627370497 | MMRnode_a - Row 1
 4503599627370498 | MMRnode_a - Row 2
 4503599627370499 | MMRnode_a - Row 3
 4503599627370503 | MMRnode_a - Row 4
 9007199254740993 | MMRnode_b - Row 1
 13510798882111489 | MMRnode_c - Row 1
(6 rows)

MMRnode_a=# SELECT * FROM MMR_seq_child_tbl ORDER BY id;

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 243

 id | field | parent_id
-------------------+---------------------+-------------------
 4503599627370497 | MMRnode_a - Row 1-1 | 4503599627370497
 4503599627370498 | MMRnode_a - Row 1-2 | 4503599627370497
 4503599627370499 | MMRnode_a - Row 2-1 | 4503599627370498
 4503599627370500 | MMRnode_a - Row 2-2 | 4503599627370498
 4503599627370501 | MMRnode_a - Row 3-1 | 4503599627370499
 4503599627370502 | MMRnode_a - Row 3-2 | 4503599627370499
 4503599627370504 | MMRnode_a - Row 4-1 | 4503599627370503
 9007199254740994 | MMRnode_b - Row 1-1 | 9007199254740993
 13510798882111490 | MMRnode_c - Row 1-1 | 13510798882111489
(9 rows)

Content of MMRnode_b after synchronization:

MMRnode_b=# SELECT * FROM MMR_seq_tbl ORDER BY id;
 id | field
-------------------+-------------------
 4503599627370497 | MMRnode_a - Row 1
 4503599627370498 | MMRnode_a - Row 2
 4503599627370499 | MMRnode_a - Row 3
 4503599627370503 | MMRnode_a - Row 4
 9007199254740993 | MMRnode_b - Row 1
 13510798882111489 | MMRnode_c - Row 1
(6 rows)

MMRnode_b=# SELECT * FROM MMR_seq_child_tbl ORDER BY id;
 id | field | parent_id
-------------------+---------------------+-------------------
 4503599627370497 | MMRnode_a - Row 1-1 | 4503599627370497
 4503599627370498 | MMRnode_a - Row 1-2 | 4503599627370497
 4503599627370499 | MMRnode_a - Row 2-1 | 4503599627370498
 4503599627370500 | MMRnode_a - Row 2-2 | 4503599627370498
 4503599627370501 | MMRnode_a - Row 3-1 | 4503599627370499
 4503599627370502 | MMRnode_a - Row 3-2 | 4503599627370499
 4503599627370504 | MMRnode_a - Row 4-1 | 4503599627370503
 9007199254740994 | MMRnode_b - Row 1-1 | 9007199254740993
 13510798882111490 | MMRnode_c - Row 1-1 | 13510798882111489
(9 rows)

Content of MMRnode_c after synchronization:

MMRnode_c=# SELECT * FROM MMR_seq_tbl ORDER BY id;
 id | field
-------------------+-------------------
 4503599627370497 | MMRnode_a - Row 1
 4503599627370498 | MMRnode_a - Row 2
 4503599627370499 | MMRnode_a - Row 3
 4503599627370503 | MMRnode_a - Row 4
 9007199254740993 | MMRnode_b - Row 1
 13510798882111489 | MMRnode_c - Row 1
(6 rows)

MMRnode_c=# SELECT * FROM MMR_seq_child_tbl ORDER BY id;
 id | field | parent_id
-------------------+---------------------+-------------------
 4503599627370497 | MMRnode_a - Row 1-1 | 4503599627370497
 4503599627370498 | MMRnode_a - Row 1-2 | 4503599627370497
 4503599627370499 | MMRnode_a - Row 2-1 | 4503599627370498

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 244

 4503599627370500 | MMRnode_a - Row 2-2 | 4503599627370498
 4503599627370501 | MMRnode_a - Row 3-1 | 4503599627370499
 4503599627370502 | MMRnode_a - Row 3-2 | 4503599627370499
 4503599627370504 | MMRnode_a - Row 4-1 | 4503599627370503
 9007199254740994 | MMRnode_b - Row 1-1 | 9007199254740993
 13510798882111490 | MMRnode_c - Row 1-1 | 13510798882111489
(9 rows)

7.6.7 Automatic Conflict Resolution Example

This example illustrates a scenario where a transaction change originating from the first primary node is successfully applied to the second primary node,
but conflicts with the third primary node. The conflict is resolved automatically.

The conflict resolution option is set to latest timestamp.

Table 6-5: Automatic Conflict Resolution ExampleTable 6-5: Automatic Conflict Resolution Example

TimestampTimestamp ActionAction PrimaryPrimary
node Anode A

PrimaryPrimary
node Bnode B

PrimaryPrimary
node Cnode C

t0

id = 2,
address
=
'ADDR'

id = 2,
address
=
'ADDR'

id = 2,
address
= 'ADDR'

t1 Node A:Node A: UPDATE addrbook SET address = 'ADDR A' WHERE id = 2;

id = 2,
address
= 'ADDR'ADDR
A'A'

id = 2,
address
=
'ADDR'

id = 2,
address
= 'ADDR'

t2 Node C:Node C: UPDATE addrbook SET address = 'ADDR C' WHERE id = 2;

id = 2,
address
= 'ADDR
A'

id = 2,
address
=
'ADDR'

id = 2,
address
= 'ADDR'ADDR
C'C'

t3 Synchronization pushes Node A changes to Node B. Changes successfully applied.

id = 2,
address
= 'ADDR
A'

id = 2,
address
= 'ADDR'ADDR
A'A'

id = 2,
address
= 'ADDR
C'

t4
Synchronization pushes Node A changes to Node C. Current address on Node C <> old
value on Node A ('ADDR C' <> 'ADDR') hence conflict detected. Latest change on
Node C accepted and Node A change discarded.

id = 2,
address
= 'ADDR
A'

id = 2,
address
= 'ADDR
A'

id = 2,
address
= 'ADDR'ADDR
C'C'

t5 No changes on Node B. Node C changes pushed to Node A that is successfully applied
(Node A change already marked as discarded and hence is overwritten.)

id = 2,
address
= 'ADDR'ADDR
C'C'

id = 2,
address
= 'ADDR
A'

id = 2,
address
= 'ADDR
C'

t6 Node C changes pushed to Node B that is successfully applied. All nodes are in sync and
have consistent state.

id = 2,
address
= 'ADDR
C'

id = 2,
address
= 'ADDR'ADDR
C'C'

id = 2,
address
= 'ADDR
C'

There are a few situations where an update/update conflict may not be properly resolved according to the selected resolution options. These
exceptions are described by the following.

Update/Update Conflict on Column Where New Value is Identical to Original ValueUpdate/Update Conflict on Column Where New Value is Identical to Original Value

If there is an update to a publication table where the updated column value happens to be the same as the original column value, and then an
update/update conflict occurs involving that column, there is the possibility that the final value of this column is not set according to the chosen conflict

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 245

resolution option in one of the conflicting primary nodes. This is a known limitation.

For example, consider the following row in the dept table:

deptno | dname | loc
--------+------------+--------
 40 | OPERATIONS | BOSTON
First, the following UPDATE statement is given in the primary definition node:
edb=# UPDATE dept SET dname = 'OPERATIONS', loc = 'BEDFORD' WHERE deptno = 40;
UPDATE 1
edb=# SELECT * FROM dept WHERE deptno = 40;
 deptno | dname | loc
--------+------------+---------
 40 | OPERATIONS | BEDFORD
(1 row)

NoteNote

The original value, OPERATIONS, of column dname is the same as the value to which it is changed in the UPDATE statement.

The following UPDATE statement is then given in a second primary node:

MMRnode=# UPDATE dept SET dname = 'LOGISTICS', loc = 'CAMBRIDGE' WHERE deptno = 40;
UPDATE 1
MMRnode=# SELECT * FROM dept WHERE deptno = 40;
 deptno | dname | loc
--------+-----------+-----------
 40 | LOGISTICS | CAMBRIDGE
(1 row)

After a synchronization replication using the earliest timestamp conflict resolution option, the row in the primary definition node retains the update
performed on it as expected since the update on the primary definition node occurred first.

edb=# SELECT * FROM dept WHERE deptno = 40;
 deptno | dname | loc
--------+------------+---------
 40 | OPERATIONS | BEDFORD
(1 row)

However the value of column dname in the second primary node remains set to LOGISTICS. It was not reverted back to the value OPERATIONS from the
primary definition node as would normally be expected on a conflicting column. Note that as expected, the value in column loc is reverted from
CAMBRIDGE back to the primary definition node value of BEDFORD .

MMRnode=# SELECT * FROM dept WHERE deptno = 40;
 deptno | dname | loc
--------+-----------+---------
 40 | LOGISTICS | BEDFORD
(1 row)

Update/Update Conflict on Primary Key ColumnsUpdate/Update Conflict on Primary Key Columns

An update/update conflict on the primary key column may not be consistently resolved according to the selected resolution option. That is, the column
values may differ for the same row across multiple primary nodes following the synchronization replication.

In addition, this conflict may not appear under the Conflict History tab in the xDB Replication Console. Even if a conflict resolution entry does appear under
the Conflict History tab, the actual primary key values may not be consistent across the nodes as implied by the conflict resolution.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 246

7.6.8 Custom Conflict Handling

For update/update conflicts, custom conflict handling utilizes a PL/pgSQL function to resolve the conflict. If you are using Advanced Server, a Stored
Procedure Language (SPL) function can be used as well. When an update/update conflict is detected the function is called. How you set a certain
parameter in the function determines the outcome of the conflict.

You must provide the function and add it to the primary definition node using a utility such as PSQL or pgAdmin (Postgres Enterprise Manager Client in
Advanced Server).

7.6.8.1 Custom Conflict Handling Function

An update/update conflict occurs if there is at least one conflicting column in the table.

A column is considered a conflicting column if it is updated on more than one primary node in the same synchronization. Even if the new, updated value for
the column is identical in the conflicting update transactions, the fact that the same column was updated on more than one primary node makes it a
conflicting column.

Each publication table must have its own custom conflict handling function to handle custom resolution for update/update conflicts on that particular
publication table.

Custom conflict handling is designed to provide one of the following three outcomes based upon the setting of the resolution_code parameter, which is
described later in this section.

Columns are to be set to the source node.Columns are to be set to the source node. When the resolution_code parameter of the function is set to a value of 1, the resultant setting of all
columns in both conflicting nodes is obtained from the source node of the replication.
Columns are to be set to the target node.Columns are to be set to the target node. When the resolution_code parameter of the function is set to a value of 2, the resultant setting of all
columns in both conflicting nodes is obtained from the target node of the replication.
The function logic sets the column.The function logic sets the column. When the resolution_code parameter of the function is set to a value of 3, the resultant setting of the first
conflicting column is obtained from the value returned in the source parameter coded within the function logic. The resultant setting of all other
column values is obtained from the source node of the replication.

The following is an example of a custom conflict handling function where the conflicting columns are set to the target node.

CREATE OR REPLACE FUNCTION edb.custom_conflict_dept (
 INOUT source _edb_replicator_pub.rrst_edb_dept,
 IN target _edb_replicator_pub.rrst_edb_dept,
 IN conflict_column VARCHAR(255),
 OUT resolution_message VARCHAR(255),
 OUT resolution_code INTEGER
)
AS
$$
DECLARE
BEGIN
 resolution_code := 2;
 resolution_message := 'Custom conflict handling: Target node wins on edb.dept ';
END;
$$
LANGUAGE plpgsql;

If the multi-master replication system is configured with the log-based method of synchronization replication the shadow tables of the INOUT source and
IN target parameters are replaced with the actual publication tables as shown by the following:

CREATE OR REPLACE FUNCTION edb.custom_conflict_dept (

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 247

 INOUT source edb.dept,
 IN target edb.dept,
 IN conflict_column VARCHAR(255),
 OUT resolution_message VARCHAR(255),
 OUT resolution_code INTEGER
)
AS
$$
DECLARE
BEGIN
 resolution_code := 2;
 resolution_message := 'Custom conflict handling: Target node wins on edb.dept ';
END;
$$
LANGUAGE plpgsql;

The following is an example of a custom conflict handling function where the function logic determines the value of the first conflicting column.

CREATE OR REPLACE FUNCTION edb.custom_conflict_emp (
 INOUT source _edb_replicator_pub.rrst_edb_emp,
 IN target _edb_replicator_pub.rrst_edb_emp,
 IN conflict_column VARCHAR(255),
 OUT resolution_message VARCHAR(255),
 OUT resolution_code INTEGER
)
AS
$$
DECLARE
BEGIN
 resolution_code := 3;
 source.ename := 'Unknown';
 source.job := 'Unknown';
 source.mgr := 0;
 source.hiredate := '2013-01-01';
 source.sal := 0;
 source.comm := 0;
 resolution_message := 'Custom conflict handling: Defaults set on edb.emp';
END;
$$
LANGUAGE plpgsql;

In this example, only the first conflicting column (based upon the column order within the table) is set to the value coded in the function. All other
assignments to the source parameter are ignored. These other columns are set to the source node.

The following is a description of the function parameters.

ParametersParameters

source

INOUT parameter of the record type of the shadow table in schema _edb_replicator_pub of the primary definition node on which
conflicts are to be resolved. If the log-based method of synchronization replication is used, specify the actual publication table instead of the
shadow table. The input values are the column values from the source node. When resolution_code is set to a value of 3, set the columns in this
parameter to the values that are to be used for the final outcome.

target

IN parameter of the record type of the shadow table in schema _edb_replicator_pub of the primary definition node on which conflicts are
to be resolved. If the log-based method of synchronization replication is used, specify the actual publication table instead of the shadow table.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 248

The input values are the column values from the target node.

conflict_column

IN parameter of type VARCHAR(255) containing the name of the column on which the update/update conflict has occurred. If more than one
column is involved in the conflict, the name of the first conflicting column is returned.

resolution_message

OUT parameter of type VARCHAR(255) containing any informative message to be written to the publication server log file. The publication server
configuration option logging.level must be set to at least the INFO level in order for the messages to appear in the publication server log file. See
Section Post Installation Host Environment for the location of the publication server log file.

resolution_code

OUT parameter of type INTEGER that you set to one of the following values to determine how to resolve the conflict: 1 to use the column values of
the source node of the replication for the final outcome, 2 to use the column values of the target node of the replication for the final outcome, or
3 to use the value set for the source INOUT parameter of the first conflicting column as the final outcome for that column.

7.6.8.2 Adding a Custom Conflict Handling Function

The following are the steps to add a custom conflict handling function to the primary definition node.

Step 1:Step 1: The publication under the primary definition node must exist before adding the function to the primary definition node. See Adding a Publication for
information on creating the publication.

Step 2:Step 2: Add the function to the primary definition node. The following example shows the addition of the function using PSQL.

edb=# \i /home/user/custom_conflict_dept.sql
CREATE FUNCTION

Step 3:Step 3: Open the Conflict Resolution Options tab in any of the following ways:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 249

Figure 6-28: Opening the Conflict Resolution Options tabFigure 6-28: Opening the Conflict Resolution Options tab

From the Publication menu, choose Update Publication , then Conflict Resolution Options .
Click the secondary mouse button on the Publication node, choose Update Publication , and then choose Conflict Resolution
Options .

Step 4:Step 4: For the table on which you want to use custom conflict handling, select Custom from the appropriate drop-down list. In the Custom Handler text
box, enter the schema and function name used in the CREATE FUNCTION statement.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 250

Figure 6-29: Setting conflict resolution to custom conflict handlingFigure 6-29: Setting conflict resolution to custom conflict handling

Step 5:Step 5: Click the Update button, and then click OK in response to the Conflict Resolution Options Updated Successfully
confirmation message.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 251

Figure 6-30: Successfully updated conflict resolution optionsFigure 6-30: Successfully updated conflict resolution options

NoteNote

If the multi-master replication system uses custom conflict handling, and you subsequently switch the role of the primary definition node to
another primary node, you must re-add the functions to the new primary definition node. That is, you must repeat Step 2 on the new primary
definition node.

NoteNote

If you wish to delete the multi-master replication system, before removing the publication you must drop all custom conflict handling functions
from the primary definition node.

The following example shows the deletion of a custom conflict function.

DROP FUNCTION
edb.custom_conflict_dept(_edb_replicator_pub.rrst_edb_dept,_edb_replicator_pub.rrst_edb_dept,varchar);

7.6.8.3 Custom Conflict Handling Examples

This section contains examples using custom conflict handling functions.

Setting Columns from the Source or TargetSetting Columns from the Source or Target

The following example shows the effect of custom conflict handling using the custom conflict handling function named custom_conflict_dept
shown in Section Custom Conflict Handling Function. This function sets the target node as the winner of update/update conflicts on the dept table.

The following update is made on the primary definition node, edb :

edb=# UPDATE dept SET loc = 'PORTLAND' WHERE deptno = 50;
UPDATE 1
edb=# SELECT * FROM dept;
 deptno | dname | loc
--------+-------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | ADVERTISING | PORTLAND
(5 rows)

The following update is made on a second primary node, MMRnode :

MMRnode=# UPDATE dept SET loc = 'LOS ANGELES' WHERE deptno = 50;
UPDATE 1
MMRnode=# SELECT * FROM dept;
 deptno | dname | loc
--------+-------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | ADVERTISING | LOS ANGELES
(5 rows)

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 252

After a synchronization replication, the update/update conflict is detected and resolved as shown in the Conflict History tab:

Figure 6-31: Conflict resolved by custom conflict handlingFigure 6-31: Conflict resolved by custom conflict handling

In the source primary node the loc column of department 50 loses the value set in its UPDATE statement. The column is reset to the value from the target
primary node.

edb=# SELECT * FROM dept;
 deptno | dname | loc
--------+-------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | ADVERTISING | LOS ANGELES
(5 rows)

In the target primary node the loc column of department 50 retains the value set from its UPDATE statement.

MMRnode=# SELECT * FROM dept;
 deptno | dname | loc
--------+-------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | ADVERTISING | LOS ANGELES
(5 rows)

The target node wins the conflict as determined by the setting of the resolution_code parameter to a value of 2 in the custom conflict handling function.

Setting Columns from the Function LogicSetting Columns from the Function Logic

The following example shows the effect of custom conflict handling using the custom conflict handling function named custom_conflict_emp shown
in Section Custom Conflict Handling Function. This function sets values coded in the function as the winner of update/update conflicts on the emp table.

The following is the row from the emp table prior to the update:

edb=# edb=# SELECT * FROM emp WHERE empno = 9001;
 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+----------+------+--------------------+---------+---------+--------
 9001 | SMITH | SALESMAN | 7698 | 31-OCT-13 00:00:00 | 8000.00 | 4000.00 | 30
(1 row)

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 253

The following update is made in the primary definition node, edb :

edb=# UPDATE emp SET ename = 'JONES', mgr = 7900, sal = 8500, comm = 5000 WHERE empno = 9001;
UPDATE 1
edb=# SELECT * FROM emp WHERE empno = 9001;
 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+----------+------+--------------------+---------+---------+--------
 9001 | JONES | SALESMAN | 7900 | 31-OCT-13 00:00:00 | 8500.00 | 5000.00 | 30
(1 row)

The following update is made in a second primary node, MMRnode :

MMRnode=# UPDATE emp SET ename = 'ROGERS', mgr = 7788, sal = 9500, comm = 5000 WHERE empno = 9001;
UPDATE 1
MMRnode=# SELECT * FROM emp WHERE empno = 9001;
 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+----------+------+--------------------+---------+---------+--------
 9001 | ROGERS | SALESMAN | 7788 | 31-OCT-13 00:00:00 | 9500.00 | 5000.00 | 30
(1 row)

After the synchronization replication the primary node, edb , contains the following values for the conflicting row:

edb=# SELECT * FROM emp WHERE empno = 9001;
empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+---------+----------+------+--------------------+---------+---------+--------
 9001 | Unknown | SALESMAN | 7900 | 31-OCT-31 00:00:00 | 8500.00 | 5000.00 | 30
(1 row)

After the synchronization replication the primary node, MMRnode , contains the following values for the conflicting row:

MMRnode=# SELECT * FROM emp WHERE empno = 9001;
empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+---------+----------+------+--------------------+---------+---------+--------
 9001 | Unknown | SALESMAN | 7900 | 31-OCT-31 00:00:00 | 8500.00 | 5000.00 | 30
(1 row)

The value of the first conflicting column is determined by the custom conflict handling function for both primary nodes.

Setting Columns Using the Source and Target Shadow TablesSetting Columns Using the Source and Target Shadow Tables

The following example shows how values from the source and target shadow tables can be used to set the final values in the conflicting column.

NoteNote

As this custom conflict handling function uses a column (rrep_old_quantity in this example) that is a column of the shadow table and not
of the actual publication table, this particular solution cannot be used for a publication using the log-based method of synchronization
replication.

For this example, the following table is used, which contains product inventory.

CREATE TABLE inventory (
 item_id NUMERIC PRIMARY KEY,
 name VARCHAR(20),
 quantity INTEGER
);
INSERT INTO inventory VALUES (1, 'LaserJet Printer 610', 50);

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 254

INSERT INTO inventory VALUES (2, 'Scanner 510', 10);
INSERT INTO inventory VALUES (3, 'LCD', 20);

When products are purchased at different locations, resulting in an inventory reduction on several primary nodes, the remaining inventory must be properly
updated on all primary nodes to reflect the reduction in all locations. The custom conflict handling function is coded to properly record the remaining
inventory if changes to the same item are made in several locations.

The following example uses primary definition node, edb , and a second primary node, MMRnode . Initially, the inventory table has the same contents on
both primary nodes.

edb=# SELECT * FROM inventory;
 item_id | name | quantity
---------+----------------------+----------
 1 | LaserJet Printer 610 | 50
 2 | Scanner 510 | 10
 3 | LCD | 20
(3 rows)

After creation of the primary nodes, the following shows the resulting shadow table structures in the primary definition node:

edb=# \d _edb_replicator_pub.rrst_edb_inventory;
 Table "_edb_replicator_pub.rrst_edb_inventory"
 Column | Type | Modifiers
-------------------------+-----------------------------+---------------------------
 rrep_sync_id | numeric | not null
 rrep_common_id | numeric |
 rrep_operation_type | character(1) |
 rrep_tx_timestamp | timestamp without time zone | default current_timestamp
 item_id | numeric |
 name | character varying(20) |
 quantity | integer |
 rrep_old_item_id | numeric |
 rrep_old_name | character varying(20) |
 rrep_old_quantity | integer |
 rrep_tx_conflict_status | character(1) |
Indexes:
 "rrst_edb_inventory_pkey" PRIMARY KEY, btree (rrep_sync_id)

Similarly, in the second primary node the same shadow table is created.

MMRnode=# \d _edb_replicator_pub.rrst_edb_inventory
 Table "_edb_replicator_pub.rrst_edb_inventory"
 Column | Type | Modifiers
-------------------------+-----------------------------+---------------------------
 rrep_sync_id | numeric | not null
 rrep_common_id | numeric |
 rrep_operation_type | character(1) |
 rrep_tx_timestamp | timestamp without time zone | default current_timestamp
 item_id | numeric |
 name | character varying(20) |
 quantity | integer |
 rrep_old_item_id | numeric |
 rrep_old_name | character varying(20) |
 rrep_old_quantity | integer |
 rrep_tx_conflict_status | character(1) |
Indexes:
 "rrst_edb_inventory_pkey" PRIMARY KEY, btree (rrep_sync_id)

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 255

For an update transaction, the shadow table contains the column values before the update was made on the publication table (columns with names
rrep_old_column_name) and the values after the update was applied (columns named identically to the publication table column names).

The custom conflict handling function uses both the current and old values of the quantity columns from the source and target shadow tables as shown by
the following.

CREATE OR REPLACE FUNCTION edb.custom_conflict_inventory (
 INOUT source _edb_replicator_pub.rrst_edb_inventory,
 IN target _edb_replicator_pub.rrst_edb_inventory,
 IN conflict_column VARCHAR(255),
 OUT resolution_message VARCHAR(255),
 OUT resolution_code INTEGER
)
AS
$$
DECLARE
BEGIN
 source.quantity := source.rrep_old_quantity
 - ((source.rrep_old_quantity - source.quantity)
 + (target.rrep_old_quantity - target.quantity));
 resolution_code := 3;
 resolution_message := 'Custom conflict handling: Quantity adjusted';
END;
$$
LANGUAGE plpgsql;

Assume two items with item_id of 1 are purchased on the primary definition node:

edb=# UPDATE inventory SET quantity = quantity - 2 WHERE item_id = 1;
UPDATE 1
edb=# SELECT * FROM inventory WHERE item_id = 1;
 item_id | name | quantity
---------+----------------------+----------
 1 | LaserJet Printer 610 | 48
(1 row)

Also assume one item with item_id of 1 is purchased from the second primary node:

MMRnode=# UPDATE inventory SET quantity = quantity - 1 WHERE item_id = 1;
UPDATE 1
MMRnode=# SELECT * FROM inventory WHERE item_id = 1;
 item_id | name | quantity
---------+----------------------+----------
 1 | LaserJet Printer 610 | 49
(1 row)

After the synchronization replication and invocation of the custom conflict handling function, the quantity column for item_id 1 is correctly set to 47 in
both primary nodes:

edb=# SELECT * FROM inventory WHERE item_id = 1;
 item_id | name | quantity
---------+----------------------+----------
 1 | LaserJet Printer 610 | 47
(1 row)

edb=# \c MMRnode MMRuser
Password for user MMRuser:
You are now connected to database "MMRnode" as user "MMRuser".

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 256

MMRnode=# SET search_path TO edb;
SET
MMRnode=# SELECT * FROM inventory WHERE item_id = 1;
 item_id | name | quantity
---------+----------------------+----------
 1 | LaserJet Printer 610 | 47
(1 row)

7.6.9 Manual Conflict Resolution for the Trigger-Based Method

NoteNote

The manual conflict resolution discussion in this section applies only to multi-master replication systems configured with the trigger-based
method of synchronization replication. See Manual Conflict Resolution for the Log-Based Method for information on manual conflict resolution
for multi-master replication systems configured with the log-based method of synchronization replication.

As discussed in Section Conflict Prevention – Uniqueness Case there is no built-in, automatic conflict resolution strategy for the uniqueness
(insert/insert) conflict. If a uniqueness conflict occurs, then you must modify rows in the publication tables containing the conflict as well as modify
rows in the control schema tables in the primary nodes to resolve the conflict.

Similarly, manual correction must be used for update/delete and delete/update conflicts. In addition, if the conflict resolution option is set to
Manual (see Section Updating the Conflict Resolution Options) and a conflict occurs, this conflict must also be resolved in a manual fashion.

This section describes the updates you must make to the publication tables and the control schema tables in the primary nodes.

This discussion is divided into the following topics:

Finding Conflicts. Locating unresolved conflicts
Conflict Resolution Preparation. Helpful setup steps to aid in the manual conflict resolution process
Overview of Correction Strategies. Overview of the methods you can use to perform the corrections
Manual Publication Table Correction. Manual correction of the publication tables
Correction Using New Transactions. Using new transactions to bring all primary nodes to a consistent state
Correction Using Shadow Table Transactions. Using existing shadow table transactions to bring all primary nodes to a consistent state

The following sections describe these topics in detail.

7.6.9.1 Finding Conflicts

Conflicts can be found using the Conflict History tab as described in Section Viewing Conflict History. The following is an example of the Conflict
History tab. Click the Refresh button to reveal all of the latest conflicts.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 257

Figure 6-32: Conflict History tab for trigger-based methodFigure 6-32: Conflict History tab for trigger-based method

The Source DB and Target DB columns provide the IP address and database names of the source and target primary nodes involved in the conflict.

Click the View Data link to show the details of the transactions involved in a particular conflict as shown by the following:

Figure 6-33: Conflict Details windowFigure 6-33: Conflict Details window

You can also obtain this information from a SQL query rather than from the xDB Replication Console graphical user interface. The following query can be

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 258

run from a primary node to display information regarding pending (unresolved) conflicts:

SELECT DISTINCT
 conflict_type,
 t.table_name,
 pk_value,
 d1.db_host AS src_db_host,
 d1.db_port AS src_db_port,
 d1.db_name AS src_db_name,
 src_rrep_sync_id,
 d2.db_host AS target_db_host,
 d2.db_port AS target_db_port,
 d2.db_name AS target_db_name,
 target_rrep_sync_id,
 c.notes
FROM _edb_replicator_pub.xdb_conflicts c
 JOIN _edb_replicator_pub.xdb_pub_database d1 ON c.src_db_id = d1.pub_db_id
 JOIN _edb_replicator_pub.xdb_pub_database d2 ON c.target_db_id = d2.pub_db_id
 JOIN _edb_replicator_pub.rrep_tables t ON c.table_id = t.table_id
WHERE resolution_status = 'P'
ORDER BY t.table_name;

Example output from the query is shown by the following:

-[RECORD 1]-------+--
conflict_type | II
table_name | dept
pk_value | deptno=50
src_db_host | 192.168.2.22
src_db_port | 5444
src_db_name | edb
src_rrep_sync_id | 2
target_db_host | 192.168.2.22
target_db_port | 5444
target_db_name | MMRnode
target_rrep_sync_id | 0
notes | ERROR: duplicate key value violates unique constraint "dept_pk"
 | Detail: Key (deptno)=(50) already exists.
-[RECORD 2]-------+--
conflict_type | II
table_name | dept
pk_value | deptno=50
src_db_host | 192.168.2.22
src_db_port | 5444
src_db_name | MMRnode
src_rrep_sync_id | 1
target_db_host | 192.168.2.22
target_db_port | 5444
target_db_name | edb
target_rrep_sync_id | 0
notes | ERROR: duplicate key value violates unique constraint "dept_pk"
 | Detail: Key (deptno)=(50) already exists.
-[RECORD 3]-------+--
conflict_type | DU
table_name | emp
pk_value |
src_db_host | 192.168.2.22
src_db_port | 5444
src_db_name | edb
src_rrep_sync_id | 5

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 259

target_db_host | 192.168.2.22
target_db_port | 5444
target_db_name | MMRnode
target_rrep_sync_id | 4

7.6.9.2 Conflict Resolution Preparation

The following describes the setup of a database user with certain properties enabling you to modify the publication table rows for the purpose of manual
conflict resolution.

Manual conflict resolution typically requires modification of rows in one or more publication tables to correct erroneous entries. Such changes can be done
using a utility such as PSQL or pgAdmin (Postgres Enterprise Manager Client in Advanced Server).

Manual publication table corrections must usually be isolated – that is, these modifications must be limited to the publication tables you are directly
changing and must not be replicated to the other primary nodes as would normally occur in the multi-master replication system.

To prevent replication of changes to a publication table from occurring, the xDB Replication Server insert, update, and delete triggers on the publication
tables must be prevented from firing when you make these corrections to the publication table rows. If any of the insert, update, or delete triggers fire, an
entry is added to the publication table’s shadow table. This entry results in a transaction replicated to the other primary nodes the next time
synchronization replication occurs.

To prevent the triggers on the publication tables from firing, during the session in which you modify the publication table rows, the database server
configuration parameter session_replication_role must be set to a value of replica . (The default setting of session_replication_role is
origin in which case the triggers will fire.)

The suggested method to ensure the replica setting is in effect is to create a database user with a default session setting of replica for this
parameter. Whenever you connect to a database with this database user, the replica setting will be in effect during this session.

Connect to a primary node with this database user whenever you plan to make manual corrections to the publication tables in that particular node that are
not to be replicated to the other primary nodes.

In the following example database superuser MMRmaint is created and altered for this purpose:

MMRnode_a=# CREATE ROLE MMRmaint WITH LOGIN SUPERUSER PASSWORD 'password';
CREATE ROLE
MMRnode_a=# ALTER ROLE MMRmaint SET session_replication_role TO replica;
ALTER ROLE

When connected to a database with this database user, you can confirm this setting is in effect during the session by issuing the following command:

MMRnode_a=# SHOW session_replication_role;
 session_replication_role

 replica
(1 row)

7.6.9.3 Overview of Correction Strategies

Before you begin manual resolution correction, it is important to determine the extent of the inconsistencies that may have occurred in the publication
tables across the primary nodes of the replication system.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 260

The Conflict History tab and the SQL query described in Section Finding Conflicts can help determine the source of an initial conflict.

However, once this conflict has occurred, your replication system may have processed and replicated additional transactions during that synchronization
operation. Some of these subsequent replications may have succeeded as expected, but others may have failed or produced unexpected results as a
consequence of the prior conflict.

If you have a replication schedule in effect, additional synchronization operations can occur, which may create additional conflicts.

Therefore, when you have discovered that a conflict has occurred, it is strongly recommended that you stop the publication server. Use the stop option of
the Linux scripts or Windows services described in Step 1 of Section Registering a Publication Server.

In this way, you can carefully analyze the content of the publication tables in question as well as any pending transactions in the shadow tables to
determine the best course of action to take without the interference of continuing updates by a running replication system.

When analyzing your tables you must determine the following:

Which publication tables contain inconsistent rows across primary nodes (that is, missing rows on some primary nodes, or rows with different
column values for the same primary key on different primary nodes).
Which pending transactions in the shadow tables have not been applied to the publication tables across all primary nodes. Pending transactions are
denoted by a value of P in the rrep_tx_conflict_status column of the shadow table.
Which transactions on the publication tables have occurred and are recorded in the shadow tables following the initial conflict, and whether or not
these transactions have been applied completely and correctly to the publication tables across all primary nodes. These transactions may not be
marked as pending. Instead their rrep_tx_conflict_status column could be set to null meaning that no specific conflict was detected
during replication, or the transaction has not yet been replicated. These transactions can be identified because they have a later
rrep_tx_timestamp value than the transactions causing the initial conflict.

The general steps to resolving the problem following this analysis are the following:

Step 1:Step 1: Make the necessary manual corrections to the rows in the publication tables across all primary nodes to get them into an initial, consistent state so
each publication table has the same set of identical rows across primary nodes. This may be to a state before the conflicting transactions occurred,
depending upon what you determine to be the easiest course of action for fully resolving the conflict.

Step 2:Step 2: Apply or reapply transactions (either from your application or from the shadow tables) so that all publication tables across all primary nodes are
updated consistently according to the desired, expected result of what has been recorded in the shadow tables.

Step 3:Step 3: In the shadow tables, update certain indicators for conflicting entries to show that these were resolved in Step 2.

Step 4:Step 4: In the control schema, update certain indicators for the conflicting entries to show that these conflicts have been resolved. This update changes the
Resolution Status of these entries to Resolved in the Conflict History tab. These entries will no longer appear in the SQL query described in Section Finding
Conflicts.

Perform the Step 4 updates to the control schema of the controller database. The currently designated controller database can be determined from the
content of the xDB Replication Configuration file (see Section xDB Replication Configuration File). The publication server ensures that the control schema
changes made on the controller database are replicated to the control schemas of all publication databases to maintain metadata consistency across all
publication databases.

Step 5:Step 5: Resume operation of your replication system. Start the publication server and recreate the replication schedule if you were using one.

For accomplishing steps 1 and 2, use some combination of the following methods. Which methods you use depend upon the state of your publication tables
and the extent of pending transactions that need to be applied from the shadow tables.

Manual Publication Table Correction. Use a utility such as PSQL or pgAdmin (Postgres Enterprise Manager Client in Advanced Server) to manually
correct the rows in the publication tables across all primary nodes without replicating these changes. Use the database user with
session_replication_role set to replica for this purpose.

Correction Using New Transactions. Rerun your application on one primary node to create new transactions that you will allow to replicate to all
other primary nodes. Use this method after you have ensured that all publication tables are in a consistent state across all primary nodes.
Correction Using Shadow Table Transactions. Force the synchronization of transactions already recorded in the shadow tables. Use this method if
there are many shadow table transactions that need to be applied, and it is simpler to force the synchronization of these transactions rather than
reissuing the transactions from your application.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 261

Each of these methods is described in more detail in the following sections.

For purposes of illustration, the following replication environment is used.

A 3-node multi-master replication system has been established. The primary node names are MMRnode_a (the primary definition node and the
controller database), MMRnode_b , and MMRnode_c .
The publication is named emp_pub and uses the dept and emp tables that have been used as examples throughout this document.
The conflict used to illustrate the first two conflict resolution methods is a uniqueness conflict occurring on the dept table on primary key column
deptno on value 50 resulting from the INSERT statements shown by the following:

On MMRnode_a , the following statement is run:

INSERT INTO dept VALUES (50, 'FINANCE', 'CHICAGO');

On MMRnode_b , the following statement is run:

INSERT INTO dept VALUES (50, 'MARKETING', 'LOS ANGELES');

A synchronization replication is then performed.

The following is the content of table dept on MMRnode_a :

MMRnode_a=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | FINANCE | CHICAGO
(5 rows)

The following is the content of table dept on MMRnode_b :

MMRnode_b=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | MARKETING | LOS ANGELES
(5 rows)

The following is the content of table dept on MMRnode_c :

MMRnode_c=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

The Conflict History tab shows the following entry:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 262

Figure 6-34: Conflict History tab with a uniqueness conflictFigure 6-34: Conflict History tab with a uniqueness conflict

The following is the output from the SQL query described in Section Finding Conflicts.

-[RECORD 1]-------+--
conflict_type | II
table_name | dept
pk_value | deptno=50
src_db_host | 192.168.2.22
src_db_port | 5444
src_db_name | MMRnode_a
src_rrep_sync_id | 2
target_db_host | 192.168.2.22
target_db_port | 5444
target_db_name | MMRnode_b
target_rrep_sync_id | 0
notes | ERROR: duplicate key value violates unique constraint "dept_pk"
 | Detail: Key (deptno)=(50) already exists.
-[RECORD 2]-------+--
conflict_type | II
table_name | dept
pk_value | deptno=50
src_db_host | 192.168.2.22
src_db_port | 5444
src_db_name | MMRnode_b
src_rrep_sync_id | 1
target_db_host | 192.168.2.22
target_db_port | 5444
target_db_name | MMRnode_a
target_rrep_sync_id | 0
notes | ERROR: duplicate key value violates unique constraint "dept_pk"
 | Detail: Key (deptno)=(50) already exists.

The following sections describe the application of different methods to resolve this conflict.

7.6.9.4 Manual Publication Table Correction

The first step required in all manual conflict resolutions is to ensure all publication tables are consistent across all primary nodes – that is, all
corresponding tables have the same rows with the same column values.

Once this state is achieved, you can then reapply transactions that may have failed to replicate successfully.

In the preceding example, the inconsistencies are the following:

Primary nodes MMRnode_a and MMRnode_b each contain a row with primary key value 50, but the other column values in the row are different.
Primary node MMRnode_c does not have a row with primary key value 50.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 263

Assuming that the correct state of the dept table should be the one in MMRnode_b, the following options are available to correct the state of all primary
nodes:

Manually correct the dept table in MMRnode_a and MMRnode_c . That is, update the row in MMRnode_a so it has the correct values, and insert
the missing row in MMRnode_c . The dept table on all nodes is now consistent and up-to-date.
Manually delete the row with primary key value 50 from the table on both MMRnode_a and MMRnode_b . This brings the dept table on all primary
nodes back to a prior, consistent state. Then, with the multi-master replication system running, perform the insert transaction again using the
correct column values on any one of the primary nodes.
Manually delete the incorrect row with primary key value 50 from the table on MMRnode_a . Leave the correct row in the table in MMRnode_b .
This simulates the state where the correct transaction was run on MMRnode_b , is recorded in the shadow table, but has not yet been replicated,
and the incorrect transaction was never run on MMRnode_a . Update the shadow table entry in MMRnode_a to indicate that it is discarded and to
ensure it is not included in any future synchronizations. Update the metadata for the shadow table entry in MMRnode_b to force its inclusion in the
next synchronization. Perform a synchronization replication so the accepted shadow table entry in MMRnode_b is replicated to MMRnode_a and
MMRnode_c .

After the publication table rows are corrected, update the appropriate control schema table in the publication database currently designated as the
controller database to indicate that the conflict has been resolved.

Each of the methods outlined in the preceding bullet points are described in more detail in the following sections. (The method described by the third bullet
point is illustrated using a slightly more complex example on the emp table.)

The method outlined by the first bullet point is accomplished as follows.

Step 1:Step 1: Manually correct the rows in the publication tables with session_replication_role set to replica .

On MMRnode_a , correct the erroneous row:

MMRnode_a=# SHOW session_replication_role;
 session_replication_role

 replica
(1 row)

MMRnode_a=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | FINANCE | CHICAGO
(5 rows)

MMRnode_a=# UPDATE dept SET dname = 'MARKETING', loc = 'LOS ANGELES' WHERE deptno = 50;
UPDATE 1
MMRnode_a=# SELECT * FROM dept ORDER BY deptno;
 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | MARKETING | LOS ANGELES
(5 rows)

On MMRnode_c , insert the missing row:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 264

MMRnode_c=# SHOW session_replication_role;
 session_replication_role

 replica
(1 row)

MMRnode_c=# INSERT INTO dept VALUES (50, 'MARKETING', 'LOS ANGELES');
INSERT 0 1
MMRnode_c=# SELECT * FROM dept ORDER BY deptno;
 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | MARKETING | LOS ANGELES
(5 rows)

The dept table on MMRnode_a and MMRnode_c now match the content of the table on MMRnode_b :

MMRnode_b=# SELECT * FROM dept ORDER BY deptno;
 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | MARKETING | LOS ANGELES
(5 rows)

Step 2:Step 2: Update the shadow table entries for the conflicting transactions in the primary nodes to indicate that the conflict has been resolved. In each primary
node where a transaction occurred that is involved in the conflict, inspect the shadow table for the publication table in question. Shadow tables are located
in each primary node in schema _edb_replicator_pub . Shadow tables follow the naming convention rrst_schema_table where schema is the
name of the schema containing the publication table and table is the name of the publication table.

Note the following points regarding shadow tables:

A row in a shadow table corresponds to an INSERT, UPDATE , or DELETE statement that is applied to the corresponding publication tables in
the other primary nodes. A shadow table row does not necessarily correspond to the SQL statement issued by the user application. For example, a
SQL statement issued by a user application that includes a WHERE clause using a range such as greater than or less than, results in multiple,
individual entries in the shadow table for each individual row in the result set of the application’s SQL statement.
The primary key of a shadow table is a program generated, positive integer in column rrep_sync_id . The rrep_sync_id values are unique
amongst all shadow tables within a given primary node. Therefore, the rrep_sync_id values for conflicting transactions may or may not have
the same value across primary nodes as this depends upon how many prior transactions were recorded in the shadow tables of each primary node.
A shadow table entry for a transaction involved in a conflict that has not yet been resolved contains a value of P (pending) in column
rrep_tx_conflict_status . If a transaction is not involved in a conflict, this column is set to null. (The vast majority of shadow table entries

should have null in this column.) If a transaction was involved in a conflict that was resolved automatically by the publication server, and this
transaction was accepted as being correct, this column contains C (complete/accepted). If a transaction was involved in a conflict that was resolved
automatically, and this transaction was deemed incorrect, this column contains D (discarded).

To find the shadow table entries involved in a conflict, use the Conflict History tab or SQL query as described in Section Finding Conflicts and shown by the
following output:

-[RECORD 1]-------+--
conflict_type | II
table_name | dept
pk_value | deptno=50
src_db_host | 192.168.2.22
src_db_port | 5444

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 265

src_db_name | MMRnode_a
src_rrep_sync_id | 2
target_db_host | 192.168.2.22
target_db_port | 5444
target_db_name | MMRnode_b
target_rrep_sync_id | 0
notes | ERROR: duplicate key value violates unique constraint "dept_pk"
 | Detail: Key (deptno)=(50) already exists.
-[RECORD 2]-------+--
conflict_type | II
table_name | dept
pk_value | deptno=50
src_db_host | 192.168.2.22
src_db_port | 5444
src_db_name | MMRnode_b
src_rrep_sync_id | 1
target_db_host | 192.168.2.22
target_db_port | 5444
target_db_name | MMRnode_a
target_rrep_sync_id | 0
notes | ERROR: duplicate key value violates unique constraint "dept_pk"
 | Detail: Key (deptno)=(50) already exists.

You can then query the shadow table in the desired primary node on its rrep_sync_id value.

The following query is performed on the shadow table for the dept table in MMRnode_a on rrep_sync_id value 2 obtained from field
src_rrep_sync_id of RECORD 1 in the preceding output.

MMRnode_a=# SELECT * FROM _edb_replicator_pub.rrst_edb_dept WHERE rrep_sync_id = 2;
-[RECORD 1]-----------+--------------------------
rrep_sync_id | 2
rrep_common_id |
rrep_operation_type | I
rrep_tx_timestamp | 25-AUG-15 11:39:35.590648
deptno | 50
dname | FINANCE
loc | CHICAGO
rrep_old_deptno |
rrep_old_dname |
rrep_old_loc |
rrep_tx_conflict_status | P

A similar query can locate the pending shadow table entry in MMRnode_b by querying on the key value obtained from field src_rep_sync_id: of
RECORD 2:

MMRnode_b=# SELECT * FROM _edb_replicator_pub.rrst_edb_dept WHERE rrep_sync_id = 1;
-[RECORD 1]-----------+--------------------------
rrep_sync_id | 1
rrep_common_id |
rrep_operation_type | I
rrep_tx_timestamp | 25-AUG-15 11:39:57.980469
deptno | 50
dname | MARKETING
loc | LOS ANGELES
rrep_old_deptno |
rrep_old_dname |
rrep_old_loc |
rrep_tx_conflict_status | P

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 266

NoteNote

To be certain no pending transactions are overlooked, you should examine the shadow tables in all primary nodes that may have been involved in
the conflict and search for entries where rrep_tx_conflict_status is set to P .

The following shows the rrep_tx_conflict_status column marked P (pending) in the Postgres Enterprise Manager Client.

Figure 6-35: Shadow table entry with pending conflictFigure 6-35: Shadow table entry with pending conflict

Modify column rrep_tx_conflict_status by changing the value to D (discarded) to show that the pending conflict has been resolved. A value of D
also ensures that the shadow table entry will not be replicated during any future synchronization replications.

Make this change to the shadow tables in both MMRnode_a and MMRnode_b .

Figure 6-36: Discarded shadow table entryFigure 6-36: Discarded shadow table entry

Be sure to qualify the row with the correct rrep_sync_id value if you perform the update using a SQL statement such as in the following:

UPDATE _edb_replicator_pub.rrst_edb_dept SET rrep_tx_conflict_status = 'D' WHERE rrep_sync_id = 1;

There is no shadow table entry in MMRnode_c , since an insert transaction was not performed in that primary node by the application.

Step 3:Step 3: In the control schema of the publication database currently designated as the controller database, modify the entries in the xdb_conflicts
table to indicate the conflict has been resolved. Table xdb_conflicts is located in schema _edb_replicator_pub .

NoteNote

The entries in table xdb_conflicts only affect the data that appears in the Conflict History tab and the SQL query described in Section
Finding Conflicts. Changing entries in xdb_conflicts has no effect on future replication operations, but provides a way to keep a record of how
past conflicts were resolved.

Note the following points regarding the xdb_conflicts table:

A row in the xdb_conflicts table appears as an entry in the Conflict History tab.
The primary key of the xdb_conflicts table is comprised of columns src_db_id, target_db_id , src_rrep_sync_id , and
target_rrep_sync_id . Column src_db_id contains a unique identifier for the primary node in which a transaction occurred that results in a

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 267

conflict when replicated to the primary node identified by target_db_id. src_rrep_sync_id is the shadow table identifier of the transaction on
the source primary node involved in the conflict while target_rrep_sync_id is the shadow table identifier of the transaction on the target primary
node that is involved in the conflict. Note: For uniqueness (insert/insert) conflicts, the target_rrep_sync_id value is always set to 0. For a
given uniqueness conflict, there are two entries in the xdb_conflicts table. The src_rrep_sync_id value in each of the two entries corresponds
to the shadow table identifiers – one for the shadow table identifier associated with the source primary node, the other for the shadow table
identifier associated with the target primary node.
Table xdb_pub_database in the control schema associates the database identifiers src_db_id and target_db_id with the primary node
attributes such as the database name, IP address, and port.
Column table_id is the identifier of the publication table on which the conflict occurred. Association of the table_id value with the publication
table attributes such as its name, schema, and shadow table is found in each primary node in _edb_replicator_pub.rrep_tables .
For uniqueness (insert/insert) conflicts only, column pk_value contains text indicating the primary key value that resulted in the conflict. The text is
formatted as column_name=value. If the primary key is composed of two or more columns, each column and value pair is separated by the keyword
AND such as column_1=value_1 AND column_2=value_2. This provides the primary key of the row in the publication table designated by table_id
that resulted in the conflict. Note: Only uniqueness (insert/insert) conflicts contain the column_name=value text in the pk_value column. The
pk_value column is null for all other conflict types (that is, update/update, delete/update, update/delete, and delete/delete conflicts).
Column resolution_status indicates the status of the conflict. Possible values are P (pending) or C (completed – the conflict has been resolved). This
status appears in the Resolution Status column of the Conflict History tab.
Column win_db_id can be used to record the database identifier of the primary node that contains the winning (accepted) transaction. This
information appears in the Winning DB column of the Conflict History tab.
Column win_rrep_sync_id can be used to record the shadow table identifier of the winning transaction.

The following shows the Conflict History tab prior to updating the xdb_conflicts table.

Figure 6-37: Pending uniqueness conflictFigure 6-37: Pending uniqueness conflict

The conflict entry for synchronization from MMRnode_a to MMRnode_b can be located in xdb_conflicts with the following query for this example:

MMRnode_a=# SELECT * FROM _edb_replicator_pub.xdb_conflicts
MMRnode_a-# WHERE src_db_id = 1
MMRnode_a-# AND target_db_id = 4
MMRnode_a-# AND src_rrep_sync_id = 2
MMRnode_a-# AND target_rrep_sync_id = 0;
-[RECORD 1]-------+--
src_db_id | 1
target_db_id | 4
src_rrep_sync_id | 2
target_rrep_sync_id | 0
table_id | 31
conflict_time | 25-AUG-15 10:40:23.685738
resolution_status | P
resolution_strategy |
resolution_time |
alert_status |
conflict_type | II
win_db_id | 0
win_rrep_sync_id | 0
notes | ERROR: duplicate key value violates unique constraint "dept_pk"
 | Detail: Key (deptno)=(50) already exists.
 pk_value | deptno=50

The conflict entry for synchronization from MMRnode_b to MMRnode_a can be located in xdb_conflicts with the following query for this example:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 268

MMRnode_a=# SELECT * FROM _edb_replicator_pub.xdb_conflicts
MMRnode_a-# WHERE src_db_id = 4
MMRnode_a-# AND target_db_id = 1
MMRnode_a-# AND src_rrep_sync_id = 1
MMRnode_a-# AND target_rrep_sync_id = 0;
-[RECORD 1]-------+--
src_db_id | 4
target_db_id | 1
src_rrep_sync_id | 1
target_rrep_sync_id | 0
table_id | 31
conflict_time | 25-AUG-15 10:40:23.726889
resolution_status | P
resolution_strategy |
resolution_time |
alert_status |
conflict_type | II
win_db_id | 0
win_rrep_sync_id | 0
notes | ERROR: duplicate key value violates unique constraint "dept_pk"
 | Detail: Key (deptno)=(50) already exists.
pk_value | deptno=50

For uniqueness (insert/insert) conflicts only, the following query can be used to display both of the preceding entries:

MMRnode_a=# SELECT * FROM _edb_replicator_pub.xdb_conflicts
MMRnode_a-# WHERE pk_value = 'deptno=50'
MMRnode_a-# AND conflict_type = 'II'
MMRnode_a-# AND resolution_status = 'P';
-[RECORD 1]-------+--
src_db_id | 1
target_db_id | 4
src_rrep_sync_id | 2
target_rrep_sync_id | 0
table_id | 31
conflict_time | 25-AUG-15 10:40:23.685738
resolution_status | P
resolution_strategy |
resolution_time |
alert_status |
conflict_type | II
win_db_id | 0
win_rrep_sync_id | 0
notes | ERROR: duplicate key value violates unique constraint "dept_pk"
 | Detail: Key (deptno)=(50) already exists.
pk_value | deptno=50
-[RECORD 2]-------+--
src_db_id | 4
target_db_id | 1
src_rrep_sync_id | 1
target_rrep_sync_id | 0
 table_id | 31
 conflict_time | 25-AUG-15 10:40:23.726889
 resolution_status | P
 resolution_strategy |
 resolution_time |
 alert_status |
 conflict_type | II
 win_db_id | 0
 win_rrep_sync_id | 0

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 269

 notes | ERROR: duplicate key value violates unique constraint "dept_pk"
 | Detail: Key (deptno)=(50) already exists.
 pk_value | deptno=50

These entries appear in the Postgres Enterprise Manager Client as shown by the following:

Figure 6-38: Pending conflict in xdb_conflictsFigure 6-38: Pending conflict in xdb_conflicts

Change the value in column resolution_status from P (pending) to C (completed) to indicate this conflict has been resolved. The value in winning_db_id is
changed to 4 to indicate primary node MMRnode_b contains the winning transaction. The value in winning_rrep_sync_id is changed to the value
of rrep_sync_id for the shadow table entry of the transaction in MMRnode_b since this is the one deemed to be correct.

The SQL statement to perform this update for the MMRnode_a to the MMRnode_b synchronization conflict is the following:

UPDATE _edb_replicator_pub.xdb_conflicts SET
 resolution_status = 'C',
 win_db_id = 4,
 win_rrep_sync_id = 1
WHERE src_db_id = 1
 AND target_db_id = 4
 AND src_rrep_sync_id = 2
 AND target_rrep_sync_id = 0;

The SQL statement to perform this update for the MMRnode_b to the MMRnode_a synchronization conflict is the following:

UPDATE _edb_replicator_pub.xdb_conflicts SET
 resolution_status = 'C',
 win_db_id = 4,
 win_rrep_sync_id = 1
WHERE src_db_id = 4
 AND target_db_id = 1
 AND src_rrep_sync_id = 1
 AND target_rrep_sync_id = 0;

For uniqueness (insert/insert) conflicts only, the following SQL statement can be used to update both of the preceding entries simultaneously:

UPDATE _edb_replicator_pub.xdb_conflicts SET
 resolution_status = 'C',
 win_db_id = 4,
 win_rrep_sync_id = 1
WHERE pk_value = 'deptno=50'
 AND conflict_type = 'II'
 AND resolution_status = 'P';

The following are the updated xdb_conflicts entries:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 270

Figure 6-39: Resolved conflict in xdb_conflictsFigure 6-39: Resolved conflict in xdb_conflicts

When viewed in the Conflict History tab, the entries now show Resolved instead of Pending in the Resolution Status column, and the Winning DB column
shows the address of primary node MMRnode_b .

Figure 6-40: Resolved uniqueness conflictFigure 6-40: Resolved uniqueness conflict

7.6.9.5 Correction Using New Transactions

Another method for bringing all the publication tables to a consistent state is by removing any changes caused by the conflicting transactions and then
issuing new, corrected transactions at one primary node, which you allow the multi-master replication system to synchronize to all other primary nodes.

Referring back to the uniqueness conflict on the dept table, instead of correcting the erroneous row and inserting the row into the primary node where it is
missing as described in Section Manual Publication Table Correction, you can delete the conflicting rows from all primary nodes, then insert the correct row
in one primary node and let the multi-master replication system synchronize the correct row to all primary nodes.

Step 1:Step 1: Manually delete the inserted row from the publication tables in all primary nodes with session_replication_role set to replica .

On MMRnode_a , delete the erroneous row:

MMRnode_a=# SHOW session_replication_role;
 session_replication_role

 replica
(1 row)

 MMRnode_a=# SELECT * FROM dept;
 deptno | dname | loc
 --------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | FINANCE | CHICAGO
 (5 rows)

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 271

MMRnode_a=# DELETE FROM dept WHERE deptno = 50;
DELETE 1
MMRnode_a=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

On MMRnode_b , delete the row even though the transaction created the correct result:

MMRnode_b=# SHOW session_replication_role;
 session_replication_role

 replica
(1 row)

MMRnode_b=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | MARKETING | LOS ANGELES
(5 rows)

MMRnode_b=# DELETE FROM dept WHERE deptno = 50;
DELETE 1
MMRnode_b=# SELECT * FROM dept;
deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

On MMRnode_c , no changes are required as the conflicting transaction did not insert a new row into the table on this node:

MMRnode_c=# SET search_path TO edb;
SET
MMRnode_c=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

Step 2:Step 2: Rerun the transaction on one primary node with the multi-master replication system running and with session_replication_role set to the
default (origin).

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 272

For this example, the correct INSERT statement is executed on MMRnode_a : On MMRnode_a :

MMRnode_a=# SHOW session_replication_role;
 session_replication_role

 origin
(1 row)

MMRnode_a=# INSERT INTO dept VALUES (50, 'MARKETING', 'LOS ANGELES');
INSERT 0 1
MMRnode_a=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | MARKETING | LOS ANGELES
(5 rows)

Step 3:Step 3: Perform synchronization replication.

The same rows now appear in the publication table on all primary nodes. On MMRnode_a ;

MMRnode_a=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | MARKETING | LOS ANGELES
(5 rows)

On MMRnode_b :

MMRnode_b=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | MARKETING | LOS ANGELES
(5 rows)

On MMRnode_c :

MMRnode_c=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | MARKETING | LOS ANGELES

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 273

(5 rows)

Step 4:Step 4: Update the shadow table entries for the conflicting transactions in the primary nodes to indicate that the conflict has been resolved as in Step 2 of
Section Manual Publication Table Correction.

Change the rrep_tx_conflict_status column from P (pending) to D (discarded) on all primary nodes.

The resulting change for the shadow table on MMRnode_a is as follows.

Figure 6-41: Discarded shadow table entryFigure 6-41: Discarded shadow table entry

NoteNote

The second entry for the accepted transaction you ran in Step 2 where rrep_tx_conflict_status is set to null indicating there was no
conflict.

The resulting change for the shadow table on MMRnode_b is as follows.

Figure 6-42: Discarded shadow table entryFigure 6-42: Discarded shadow table entry

There is no shadow table entry in MMRnode_c , since an insert transaction was not performed in that primary node by the application.

Step 5:Step 5: In the control schema of the publication database currently designated as the controller database, modify the entries in the xdb_conflicts
table to indicate the conflict has been resolved as in Step 3 of Section Manual Publication Table Correction.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 274

Figure 6-43 - Resolved conflict in xdb_conflictsFigure 6-43 - Resolved conflict in xdb_conflicts

7.6.9.6 Correction Using Shadow Table Transactions

The final method for bringing all publication tables to a consistent state is by removing changes caused by the conflicting transactions and then modifying
the publication table’s metadata in such a way that the next synchronization results in the replication of transactions already stored in the shadow tables.

Such transactions may not have been successfully replicated to all the other primary nodes in a prior synchronization for various reasons.

The following is an example of such a case:

Applications on two primary nodes insert rows with the same primary key value. This will result in a uniqueness conflict when synchronization
replication occurs.
Following the insert on one primary node, the application continues to apply updates to the newly inserted row. These updates are successfully
applied to the row on this primary node and are recorded in the shadow table on this node.
Synchronization replication is performed.
Since there is a uniqueness conflict, the rows with the conflicting primary key value are not replicated into the publication tables on the other
primary nodes.
However, the conflicting row on the primary node that was not directly updated will receive those update transactions by the replication, resulting in
possibly inconsistent, updated rows on the two primary nodes.

Instead of manually inserting the missing row into the other primary nodes and manually changing the incorrect row; or instead of rerunning the
application to reapply the correct insert and updates, the following option provides a way to reapply the transactions already recorded in the shadow table
of the winning primary node.

The example used to illustrate this method is based upon the following transactions on the emp table.

In MMRnode_b , the following row is inserted:

INSERT INTO emp (empno,ename,job,deptno) VALUES (9001,'SMITH','ANALYST',20);

In MMRnode_c , the following row is inserted with the same primary key value 9001 in the empno column:

INSERT INTO emp (empno,ename,job,deptno) VALUES (9001,'JONES','SALESMAN',30);
In MMRnode_c, this is followed by a series of updates to the newly inserted row:
UPDATE emp SET mgr = 7698 WHERE empno = 9001;
UPDATE emp SET sal = 9500 WHERE empno = 9001;
UPDATE emp SET comm = 5000 WHERE empno = 9001;

Synchronization replication is performed. The resulting content of the emp table is as follows:

On MMRnode_a the conflicting row has not been replicated:

MMRnode_a=# SELECT * FROM emp;
 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+---------+---------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 275

 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(14 rows)

On MMRnode_b the conflicting row inserted on this node remains, but is updated with the transactions replicated from MMRnode_c :

MMRnode_b=# SELECT * FROM emp;
 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+---------+---------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
 9001 | SMITH | ANALYST | 7698 | | 9500.00 | 5000.00 | 20
(15 rows)

On MMRnode_c the conflicting row inserted on this node remains along with the updates performed on this node:

MMRnode_c=# SELECT * FROM emp;
 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+---------+---------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
 9001 | JONES | SALESMAN | 7698 | | 9500.00 | 5000.00 | 30
(15 rows)

In this example, it is assumed that the desired, correct row is on MMRnode_c .

The following are the steps to reproduce the correct row, currently on MMRnode_c , to the other primary nodes by synchronizing the shadow table entries
that resulted from the original insert and updates to this row on MMRnode_c .

Step 1:Step 1: Manually delete the inserted row from the publication tables on all primary nodes except for MMRnode_c , which has the correct row. Be sure
session_replication_role is set to replica .

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 276

On MMRnode_a , this row does not exist:

MMRnode_a=# SELECT * FROM emp WHERE empno = 9001;
 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+-----+-----+----------+-----+------+--------
(0 rows)

On MMRnode_b , delete the erroneous row:

MMRnode_a=# SHOW session_replication_role;
 session_replication_role

 replica
(1 row)

MMRnode_b=# DELETE FROM emp WHERE empno = 9001;
DELETE 1

On MMRnode_c , the correct, accepted row is left intact:

MMRnode_c=# SELECT * FROM emp WHERE empno = 9001;
 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+----------+------+----------+---------+---------+--------
 9001 | JONES | SALESMAN | 7698 | | 9500.00 | 5000.00 | 30
(1 row)

Step 2:Step 2: On the primary nodes containing the conflicting row that is to be discarded, mark the shadow table entry for that row as discarded. This indicates
the conflict on this row has been resolved and ensures this shadow table entry is not replicated in the future.

Change the rrep_tx_conflict_status column from P (pending) to D (discarded) on the losing node, MMRnode_b as shown by the following:

Figure 6-44: Losing shadow table entryFigure 6-44: Losing shadow table entry

Step 3:Step 3: On winning node MMRnode_c , inspect the shadow table for the emp publication table.

The objective is to use the shadow table entries for the insert and three update transactions that were previously run on this node to replicate to the other
primary nodes during the next synchronization.

The leftmost columns of the shadow table appear as follows:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 277

Figure 6-45: Shadow table with multiple transactionsFigure 6-45: Shadow table with multiple transactions

Make note of the rrep_sync_id values for these four entries, which are 1, 2, 3, and 4 in this example.

The following shows the rightmost columns of the shadow table from the prior figure. Note the contents of column rrep_tx_conflict_status
furthest to the right.

Figure 6-46: Shadow table with multiple transactions (continued)Figure 6-46: Shadow table with multiple transactions (continued)

Make sure the rrep_tx_conflict_status column is null for these four entries. In this case, for the insert transaction, you will need to change the
P (pending) value to null.

The resulting change for the rrep_tx_conflict_status column in the shadow table on MMRnode_c is shown by the following:

Figure 6-47: Shadow table transactions set to replicateFigure 6-47: Shadow table transactions set to replicate

Step 4:Step 4: In order to replicate these four shadow table entries during the next synchronization, one or more entries must be added to the control schema
table _edb_replicator_pub.rrep_MMR_txset on MMRnode_c to indicate pending status for synchronization to the target primary nodes
(MMRnode_a and MMRnode_b) of the four shadow table entries identified by the rrep_sync_id values of 1, 2, 3, and 4 noted in Step 3.

First, you must identify the pub_id and target db_id values that are to be associated with the pending transactions. To do so, invoke the following

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 278

query substituting the rrep_sync_id values for sync_id in the query:

SELECT pub_id, db_id AS target_db_id
 FROM _edb_replicator_pub.rrep_MMR_txset
 WHERE start_rrep_sync_id <= sync_id
 AND end_rrep_sync_id >= sync_id;

In this example, there are four values to be substituted for sync_id , which are 1, 2, 3, and 4.

The results are the following:

MMRnode_c=# SELECT pub_id, db_id AS target_db_id
MMRnode_c-# FROM _edb_replicator_pub.rrep_MMR_txset
MMRnode_c-# WHERE start_rrep_sync_id <= 1 AND end_rrep_sync_id >= 1;
 pub_id | target_db_id
--------+--------------
 3 | 1
 3 | 4
(2 rows)

MMRnode_c=# SELECT pub_id, db_id AS target_db_id
MMRnode_c-# FROM _edb_replicator_pub.rrep_MMR_txset
MMRnode_c-# WHERE start_rrep_sync_id <= 2 AND end_rrep_sync_id >= 2;
 pub_id | target_db_id
--------+--------------
 3 | 1
 3 | 4
(2 rows)

MMRnode_c=# SELECT pub_id, db_id AS target_db_id
MMRnode_c-# FROM _edb_replicator_pub.rrep_MMR_txset
MMRnode_c-# WHERE start_rrep_sync_id <= 3 AND end_rrep_sync_id >= 3;
 pub_id | target_db_id
--------+--------------
 3 | 1
 3 | 4
(2 rows)

MMRnode_c=# SELECT pub_id, db_id AS target_db_id
MMRnode_c-# FROM _edb_replicator_pub.rrep_MMR_txset
MMRnode_c-# WHERE start_rrep_sync_id <= 4 AND end_rrep_sync_id >= 4;
 pub_id | target_db_id
--------+--------------
 3 | 1
 3 | 4
(2 rows)

The results indicate that the previously executed synchronization that attempted to apply the shadow table transactions identified by the rrep_sync_id
values of 1, 2, 3, and 4 were all for the publication identified by pub_id of 3. The target primary nodes were identified by db_id of 1 (for MMRnode_a)
and db_id of 4 (for MMRnode_b).

Thus, at least two entries must be inserted into the control schema table _edb_replicator_pub.rrep_MMR_txset on MMRnode_c . At least one
entry is required for the target db_id of 1 and at least one entry for the target db_id of 4.

Since each entry in _edb_replicator_pub.rrep_MMR_txset consists of a range of rrep_sync_id values (identified by columns
start_rrep_sync_id and end_rrep_sync_id) and the desired shadow table rrep_sync_id values happen to be contiguous (1 thru 4), a

single entry can encompass the four rrep_sync_id values for a single target database.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 279

Thus, in this example, a total of two entries can be added to _edb_replicator_pub.rrep_MMR_txset – one for each target database.

NoteNote

If there were multiple, non-contiguous rrep_sync_id values required for synchronization (for example, 1, 2, 5, and 6), then multiple entries
would be required for each target database. The entries would specify rrep_sync_id ranges to collectively cover all of the non-contiguous
values, but omitting rrep_sync_id values that are not to be included in the synchronization (for example, one entry for 1 through 2 and a
second entry for 5 through 6).

Step 5:Step 5: Insert the entries into the _edb_replicator_pub.rrep_MMR_txset control schema table as identified in the preceding step.

The two INSERT statements invoked on MMRnode_c are the following:

INSERT INTO _edb_replicator_pub.rrep_MMR_txset (set_id, pub_id, db_id, status, start_rrep_sync_id,
end_rrep_sync_id)
 values (nextval('_edb_replicator_pub.rrep_txset_seq'),3,1,'P',1,4);

INSERT INTO _edb_replicator_pub.rrep_MMR_txset (set_id, pub_id, db_id, status, start_rrep_sync_id,
end_rrep_sync_id)
 values (nextval('_edb_replicator_pub.rrep_txset_seq'),3,4,'P',1,4);

A query of the _edb_replicator_pub.rrep_MMR_txset metadata table displays the following:

MMRnode_c=# SELECT set_id, pub_id, db_id AS target_db_id, status,
MMRnode_c-# start_rrep_sync_id, end_rrep_sync_id
MMRnode_c-# FROM _edb_replicator_pub.rrep_MMR_txset;
 set_id | pub_id | target_db_id | status | start_rrep_sync_id | end_rrep_sync_id
--------+--------+--------------+--------+--------------------+------------------
 1 | 3 | 1 | C | 1 | 4
 1 | 3 | 4 | C | 1 | 4
 2 | 3 | 1 | P | 1 | 4
 3 | 3 | 4 | P | 1 | 4
(4 rows)

There are now two new entries with pending status (P), one for target db_id 1, the other for target db_id 4. Both entries cover the rrep_sync_id
range of 1 through 4.

The two entries with completed status (C) are from the synchronization attempt that initially produced the conflict.

Step 6:Step 6: Perform synchronization replication.

The insert and three update transactions recorded in the rrst_edb_emp shadow table on MMRnode_c are replicated to the other primary nodes.

On MMRnode_a:
MMRnode_a=# SELECT * FROM emp WHERE empno = 9001;
 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+----------+------+----------+---------+---------+--------
 9001 | JONES | SALESMAN | 7698 | | 9500.00 | 5000.00 | 30
(1 row)
On MMRnode_b:
MMRnode_b=# SELECT * FROM emp WHERE empno = 9001;
 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+----------+------+----------+---------+---------+--------
 9001 | JONES | SALESMAN | 7698 | | 9500.00 | 5000.00 | 30
(1 row)

These rows now match the row created by the original transactions on MMRnode_c:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 280

MMRnode_c=# SELECT * FROM emp WHERE empno = 9001;
 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+----------+------+----------+---------+---------+--------
 9001 | JONES | SALESMAN | 7698 | | 9500.00 | 5000.00 | 30
(1 row)

Step 7:Step 7: In the control schema of the publication database currently designated as the controller database, modify the entries in the xdb_conflicts table to
indicate the conflict has been resolved as in Step 3 of Section Manual Publication Table Correction.

For a uniqueness (insert/insert) conflict only, the following query on the xdb_conflicts table in the controller database can display the conflicts:

MMRnode_a=# SELECT * FROM _edb_replicator_pub.xdb_conflicts
MMRnode_a-# WHERE pk_value = 'empno=9001'
MMRnode_a-# AND conflict_type = 'II'
MMRnode_a-# AND resolution_status = 'P';
-[RECORD 1]-------+---
src_db_id | 4
target_db_id | 56
src_rrep_sync_id | 1
target_rrep_sync_id | 0
table_id | 32
conflict_time | 25-AUG-15 15:27:20.928679
resolution_status | P
resolution_strategy |
resolution_time |
alert_status |
conflict_type | II
win_db_id | 0
win_rrep_sync_id | 0
notes | ERROR: duplicate key value violates unique constraint "emp_pk"
 | Detail: Key (empno)=(9001) already exists.
pk_value | empno=9001
-[RECORD 2]-------+---
src_db_id | 56
target_db_id | 4
src_rrep_sync_id | 1
target_rrep_sync_id | 0
table_id | 32
conflict_time | 25-AUG-15 15:27:20.970959
resolution_status | P
resolution_strategy |
resolution_time |
alert_status |
conflict_type | II
win_db_id | 0
win_rrep_sync_id | 0
notes | ERROR: duplicate key value violates unique constraint "emp_pk"
 | Detail: Key (empno)=(9001) already exists.
pk_value | empno=9001

The following SQL statement changes the value in column resolution_status from P (pending) to C (completed) to indicate this conflict has been
resolved. The value in winning_db_id is changed to 56 to indicate primary node MMRnode_c contains the winning transaction. The value in
winning_rrep_sync_id is changed to the value of rrep_sync_id for the shadow table entry of the INSERT transaction in MMRnode_c since

this is the one deemed to be correct.

UPDATE _edb_replicator_pub.xdb_conflicts SET
 resolution_status = 'C',
 win_db_id = 56,
 win_rrep_sync_id = 1

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 281

WHERE pk_value = 'empno=9001'
 AND conflict_type = 'II'
 AND resolution_status = 'P';

When viewed in the Conflict History tab, the entry now shows Resolved in the Resolution Status column, and the Winning DB column shows the address of
primary node MMRnode_c .

Figure 6-48: Resolved uniqueness conflictFigure 6-48: Resolved uniqueness conflict

7.6.10 Manual Conflict Resolution for the Log-Based Method

NoteNote

The manual conflict resolution discussion in this section applies only to multi-master replication systems configured with the log-based method
of synchronization replication. See Manual Conflict Resolution for the Trigger-Based Method for information on manual conflict resolution for
multi-master replication systems configured with the trigger-based method of synchronization replication.

As discussed in Section Conflict Prevention - Uniqueness Case there is no built-in, automatic conflict resolution strategy for the uniqueness
(insert/insert) conflict. If a uniqueness conflict occurs, then you must modify rows in the publication tables containing the conflict as well as modify
rows in the control schema tables in the primary nodes to resolve the conflict.

Similarly, manual correction must be used for update/delete and delete/update conflicts. In addition, if the conflict resolution option is set to Manual (see
Updating the Conflict Resolution Options) and a conflict occurs, this conflict must also be resolved in a manual fashion.

This section describes the updates you must make to the publication tables and the control schema tables in the primary nodes.

This discussion is divided into the following topics:

Finding Conflicts. Locating unresolved conflicts
Conflict Resolution Concept for the Log-Based Method. Basic concept on how to run transactions to apply corrections
Overview of Correction Strategies. Overview of the methods you can use to perform the corrections
Manual Publication Table Correction. Manual correction of the publication tables
Correction Using New Transactions. Using new transactions to bring all primary nodes to a consistent state

The following sections describe these topics in detail.

7.6.10.1 Finding Conflicts

Conflicts can be found using the Conflict History tab as described in Section Viewing Conflict History. The following is an example of the Conflict
History tab. Click the Refresh button to reveal all of the latest conflicts.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 282

Figure 6-49: Conflict History tab for log-based methodFigure 6-49: Conflict History tab for log-based method

NoteNote

The View Data link and Conflict Details window displayed for multi-master replication systems configured with the trigger-
based method of synchronization replication are not available for multi-master replication systems configured with the log-based method of
synchronization replication.

The Source DB and Target DB columns provide the IP address and database names of the source and target primary nodes involved in the conflict.

You can also obtain this information from a SQL query rather than from the xDB Replication Console graphical user interface. The following query can be
run from a primary node to display information regarding pending (unresolved) conflicts:

SELECT DISTINCT
 conflict_type,
 t.table_name,
 pk_value,
 d1.db_host AS src_db_host,
 d1.db_port AS src_db_port,
 d1.db_name AS src_db_name,
 src_rrep_sync_id,
 d2.db_host AS target_db_host,
 d2.db_port AS target_db_port,
 d2.db_name AS target_db_name,
 target_rrep_sync_id,
 c.notes
FROM _edb_replicator_pub.xdb_conflicts c
 JOIN _edb_replicator_pub.xdb_pub_database d1 ON c.src_db_id = d1.pub_db_id
 JOIN _edb_replicator_pub.xdb_pub_database d2 ON c.target_db_id = d2.pub_db_id
 JOIN _edb_replicator_pub.rrep_tables t ON c.table_id = t.table_id
WHERE resolution_status = 'P'
ORDER BY t.table_name;

Example output from the query is shown by the following:

-[RECORD 1]-------+-------------
conflict_type | II
table_name | dept
pk_value | deptno=50
src_db_host | 192.168.2.22

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 283

src_db_port | 5444
src_db_name | edb
src_rrep_sync_id | 41939160
target_db_host | 192.168.2.22
target_db_port | 5444
target_db_name | MMRnode
target_rrep_sync_id | 42289824
notes |
-[RECORD 2]-------+-------------
conflict_type | DU
table_name | emp
pk_value | empno=9003
src_db_host | 192.168.2.22
src_db_port | 5444
src_db_name | edb
src_rrep_sync_id | 41940704
target_db_host | 192.168.2.22
target_db_port | 5444
target_db_name | MMRnode
target_rrep_sync_id | 42292848
notes |

7.6.10.2 Conflict Resolution Concept for the Log-Based Method

Manual conflict resolution typically requires modification of rows in one or more publication tables to correct erroneous entries. Such changes can be done
using a utility such as PSQL or pgAdmin (Postgres Enterprise Manager Client in Advanced Server).

Manual publication table corrections must usually be isolated – that is, these modifications must be limited to the publication tables you are directly
changing and must not be replicated to the other primary nodes as would normally occur in the multi-master replication system.

To prevent the xDB Replication Server from replicating changes to one or more publication tables during a synchronization operation, the changes to the
publication tables must be made within a transaction block that includes a reference to an xDB control schema table. This reference to the xDB control
schema table causes the xDB Replication Server to skip the transaction block when performing a synchronization replication.

NoteNote

Not every xDB control schema table prevents this replication of a transaction block. Use the SQL UPDATE statement as shown by the
following.

The SQL UPDATE statement shown in the following transaction block is to be included to prevent replication of other publication table changes
appearing within the same transaction block:

BEGIN;
UPDATE _edb_replicator_pub.rrep_properties SET value = current_timestamp WHERE key = 'last_mcr_timestamp';

One or more SQL statements to correct publication tables

END;

When such a transaction block is executed within a primary node, the insert, update, or deletion of rows to any publication table within the transaction
block are not replicated to any other primary node by the xDB Replication Server when the next synchronization replication occurs.

As many such transaction blocks can be run on any primary node as necessary to change the publication table rows to resolve the conflicts. The resulting
changes are isolated to the primary node on which the transaction block is run, so each primary node can be independently corrected.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 284

7.6.10.3 Overview of Correction Strategies

Before you begin manual resolution correction, it is important to determine the extent of the inconsistencies that may have occurred in the publication
tables across the primary nodes of the replication system.

The Conflict History tab and the SQL query described in Section Finding Conflicts can help determine the source of an initial conflict.

However, once this conflict has occurred, your replication system may have processed and replicated additional transactions during that synchronization
operation. Some of these subsequent replications may have succeeded as expected, but others may have failed or produced unexpected results as a
consequence of the prior conflict.

If you have a replication schedule in effect, additional synchronization operations can occur, which may create additional conflicts.

Therefore, when you have discovered that a conflict has occurred, it is strongly recommended that you stop the publication server. Use the stop option of
the Linux scripts or Windows services described in Step 1 of Section Registering a Publication Server. In this way, you can carefully analyze the content of
the publication tables in question to determine the best course of action to take without the interference of continuing updates by a running replication
system.

When analyzing your tables you must determine which publication tables contain inconsistent rows across primary nodes (that is, missing rows on some
primary nodes, or rows with different column values for the same primary key on different primary nodes).

The general steps to resolving the problem following this analysis are the following:

Step 1:Step 1: Make the necessary manual corrections to the rows in the publication tables across all primary nodes to get them into an initial, consistent state so
each publication table has the same set of identical rows across primary nodes. This may be to a state before the conflicting transactions occurred,
depending upon what you determine to be the easiest course of action for fully resolving the conflict.

Step 2:Step 2: Apply transactions (either from your application or from transaction blocks as defined in Section Conflict Resolution Concept for the Log-Based
Method) so that all publication tables across all primary nodes are updated consistently according to the desired, expected result.

Step 3:Step 3: In the control schema, update certain indicators for the conflicting entries to show that these conflicts have been resolved. This update changes the
Resolution Status of these entries to Resolved in the Conflict History tab. These entries will no longer appear in the SQL query described in Section Finding
Conflicts.

Perform the Step 3 updates to the control schema of the controller database. The currently designated controller database can be determined from the
content of the xDB Replication Configuration file (see Section xDB Replication Configuration File). The publication server ensures that the control schema
changes made on the controller database are replicated to the control schemas of all publication databases to maintain metadata consistency across all
publication databases.

Step 4:Step 4: Resume operation of your replication system. Start the publication server and recreate the replication schedule if you were using one.

For accomplishing steps 1 and 2, use some combination of the following methods. Which methods you use depends upon the state of your publication
tables.

Manual Publication Table Correction. Use a utility such as PSQL or pgAdmin (Postgres Enterprise Manager Client in Advanced Server) to manually
correct the rows in the publication tables across all primary nodes without replicating these changes. Apply these manual corrections within the
transaction block described in Section Conflict Resolution Concept for the Log-Based Method.
Correction Using New Transactions. Rerun your application on one primary node to create new transactions that you will allow to replicate to all
other primary nodes. Use this method after you have ensured that all publication tables are in a consistent state across all primary nodes.

Each of these methods is described in more detail in the following sections.

For purposes of illustration, the following replication environment is used.

A 3-node multi-master replication system has been established. The primary node names are MMRnode_a (the primary definition node and the
controller database), MMRnode_b , and MMRnode_c .
The publication is named emp_pub and uses the dept and emp tables that have been used as examples throughout this document.
The conflict used to illustrate the conflict resolution methods is a uniqueness conflict occurring on the dept table on primary key column deptno

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 285

on value 50 resulting from the INSERT statements shown by the following:

On MMRnode_a , the following statement is run:

INSERT INTO dept VALUES (50, 'FINANCE', 'CHICAGO');
On MMRnode_b, the following statement is run:
INSERT INTO dept VALUES (50, 'MARKETING', 'LOS ANGELES');

A synchronization replication is then performed.

The following is the content of table dept on MMRnode_a :

MMRnode_a=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | FINANCE | CHICAGO
(5 rows)

The following is the content of table dept on MMRnode_b :

MMRnode_b=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | MARKETING | LOS ANGELES
(5 rows)

The following is the content of table dept on MMRnode_c :

MMRnode_c=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

The Conflict History tab shows the following entry:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 286

Figure 6-49: Conflict History tab for log-based methodFigure 6-49: Conflict History tab for log-based method

The following is the output from the SQL query described in Section Finding Conflicts.

-[RECORD 1]-------+--
conflict_type | II
table_name | dept
pk_value | deptno=50
src_db_host | 192.168.2.22
src_db_port | 5444
src_db_name | MMRnode_a
src_rrep_sync_id | 2
target_db_host | 192.168.2.22
target_db_port | 5444
target_db_name | MMRnode_b
target_rrep_sync_id | 0
notes | ERROR: duplicate key value violates unique constraint "dept_pk"
 | Detail: Key (deptno)=(50) already exists.
-[RECORD 2]-------+--
conflict_type | II
table_name | dept
pk_value | deptno=50
src_db_host | 192.168.2.22
src_db_port | 5444
src_db_name | MMRnode_b
src_rrep_sync_id | 1
target_db_host | 192.168.2.22
target_db_port | 5444
target_db_name | MMRnode_a
target_rrep_sync_id | 0
notes | ERROR: duplicate key value violates unique constraint "dept_pk"
 | Detail: Key (deptno)=(50) already exists.

The following sections describe the application of different methods to resolve this conflict.

7.6.10.4 Manual Publication Table Correction

The first step required in all manual conflict resolutions is to ensure all publication tables are consistent across all primary nodes – that is, all
corresponding tables have the same rows with the same column values.

Once this state is achieved, you can then reapply transactions that may have failed to replicate successfully.

In the preceding example, the inconsistencies are the following:

Primary nodes MMRnode_a and MMRnode_b each contain a row with primary key value 50, but the other column values in the row are different.
Primary node MMRnode_c does not have a row with primary key value 50.

Assuming that the correct state of the dept table should be the one in MMRnode_b , the following options are available to correct the state of all primary
nodes:

Manually correct the dept table in MMRnode_a and MMRnode_c . That is, update the row in MMRnode_a so it has the correct values, and insert
the missing row in MMRnode_c . The dept table on all nodes is now consistent and up-to-date.
Manually delete the row with primary key value 50 from the table on both MMRnode_a and MMRnode_b . This brings the dept table on all primary
nodes back to a prior, consistent state. Then, with the multi-master replication system running, perform the insert transaction again using the
correct column values on any one of the primary nodes.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 287

After the publication table rows are corrected, update the appropriate control schema table in the publication database currently designated as the
controller database to indicate that the conflict has been resolved.

Each of the methods outlined in the preceding bullet points are described in more detail in the following sections.

The method outlined by the first bullet point is accomplished as follows.

Step 1:Step 1: Manually correct the rows in the publication tables with SQL statements incorporated within a transaction block as described in Section Conflict
Resolution Concept for the Log-Based Method.

On MMRnode_a , correct the erroneous row by running the following transaction block:

BEGIN;
UPDATE _edb_replicator_pub.rrep_properties SET value = current_timestamp
 WHERE key = 'last_mcr_timestamp';
UPDATE edb.dept SET dname = 'MARKETING', loc = 'LOS ANGELES'
 WHERE deptno = 50;
COMMIT;

This is shown by the following:

MMRnode_a=# BEGIN;
BEGIN
MMRnode_a=# UPDATE _edb_replicator_pub.rrep_properties SET value = current_timestamp
MMRnode_a-# WHERE key = 'last_mcr_timestamp';
UPDATE 1
MMRnode_a=# UPDATE edb.dept SET dname = 'MARKETING', loc = 'LOS ANGELES'
MMRnode_a-# WHERE deptno = 50;
UPDATE 1
MMRnode_a=# COMMIT;
COMMIT
MMRnode_a=# SELECT * FROM edb.dept;
 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | MARKETING | LOS ANGELES
(5 rows)

On MMRnode_c , insert the missing row with the following transaction block:

BEGIN;
UPDATE _edb_replicator_pub.rrep_properties SET value = current_timestamp
 WHERE key = 'last_mcr_timestamp';
INSERT INTO edb.dept VALUES (50,'MARKETING','LOS ANGELES');
COMMIT;

This is shown by the following:

MMRnode_c=# BEGIN;
BEGIN
MMRnode_c=# UPDATE _edb_replicator_pub.rrep_properties SET value = current_timestamp
MMRnode_c-# WHERE key = 'last_mcr_timestamp';
UPDATE 1
MMRnode_c=# INSERT INTO edb.dept VALUES (50,'MARKETING','LOS ANGELES');

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 288

INSERT 0 1
MMRnode_c=# COMMIT;
COMMIT
MMRnode_c=# SELECT * FROM edb.dept;
 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | MARKETING | LOS ANGELES
(5 rows)

The dept table on MMRnode_a and MMRnode_c now match the content of the table on MMRnode_b :

Step 2:Step 2: In the control schema of the publication database currently designated as the controller database, modify the entry in the xdb_conflicts table to
indicate the conflict has been resolved. Table xdb_conflicts is located in schema _edb_replicator_pub .

NoteNote

The entries in table xdb_conflicts only affect the data that appears in the Conflict History tab and the SQL query described in Section
Finding Conflicts. Changing entries in xdb_conflicts has no effect on future replication operations, but provides a way to keep a record of
how past conflicts were resolved.

Note the following points regarding the xdb_conflicts table:

A row in the xdb_conflicts table appears as an entry in the Conflict History tab.

The primary key of the xdb_conflicts table is coMMRised of columns src_db_id , target_db_id , src_rrep_sync_id , and
target_rrep_sync_id . Column src_db_id contains a unique identifier for the primary node in which a transaction occurred that results

in a conflict when replicated to the primary node identified by target_db_id. src_rrep_sync_id is the identifier of the transaction on the source
primary node involved in the conflict while target_rrep_sync_id is the identifier of the transaction on the target primary node that is involved
in the conflict.

NoteNote

The src_rrep_sync_id and target_rrep_sync_id values are used internally by xDB Replication Server and are not needed for
the manual conflict resolution process.

Table xdb_pub_database in the control schema associates the database identifiers src_db_id and target_db_id with the primary node
attributes such as the database name, IP address, and port.

Column table_id is the identifier of the publication table on which the conflict occurred. Association of the table_id value with the publication table
attributes such as its name and schema is found in each primary node in _edb_replicator_pub.rrep_tables .

Column pk_value contains text indicating the primary key value that resulted in the conflict. The text is formatted as column_name=value . If
the primary key is composed of two or more columns, each column and value pair is separated by the keyword AND such as column_1=value_1 AND
column_2=value_2. This provides the primary key of the row in the publication table designated by table_id that resulted in the conflict.

Column resolution_status indicates the status of the conflict. Possible values are P (pending) or C (completed – the conflict has been resolved). This
status appears in the Resolution Status column of the Conflict History tab.

Column win_db_id can be used to record the database identifier of the primary node that contains the “winning” (accepted) transaction. This
information appears in the Winning DB column of the Conflict History tab.

The following shows the Conflict HistoryConflict History tab prior to updating the xdb_conflicts table.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 289

Figure 6-51: Pending uniqueness conflictFigure 6-51: Pending uniqueness conflict

The entry for the pending insert/insert conflict on the deptno primary key value of 50 can be located in xdb_conflicts with the following query for this
example:

MMRnode_a=# SELECT * FROM _edb_replicator_pub.xdb_conflicts
MMRnode_a-# WHERE pk_value = 'deptno=50'
MMRnode_a-# AND conflict_type = 'II'
MMRnode_a-# AND resolution_status = 'P';
-[RECORD 1]-------+--------------------------
src_db_id | 1
target_db_id | 22
src_rrep_sync_id | 44713808
target_rrep_sync_id | 44718040
table_id | 31
conflict_time | 21-AUG-15 15:34:55.134171
resolution_status | P
resolution_strategy |
resolution_time |
alert_status |
conflict_type | II
win_db_id | 0
win_rrep_sync_id | 0
notes |
pk_value | deptno=50

This entry appears in the Postgres Enterprise Manager Client as shown by the following:

Figure 6-52: Pending conflict in xdb_conflictsFigure 6-52: Pending conflict in xdb_conflicts

Change the value in column resolution_status from P (pending) to C (completed) to indicate this conflict has been resolved. The value in winning_db_id is
changed to 22 to indicate primary node MMRnode_b contains the winning transaction.

The SQL statement to perform this update for the MMRnode_a to the MMRnode_b synchronization conflict is the following:

UPDATE _edb_replicator_pub.xdb_conflicts SET
 resolution_status = 'C',
 win_db_id = 22
WHERE pk_value = 'deptno=50'
 AND conflict_type = 'II'

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 290

 AND resolution_status = 'P';

The following is the updated xdb_conflicts entry:

Figure 6-53: Resolved conflict in xdb_conflictsFigure 6-53: Resolved conflict in xdb_conflicts

When viewed in the Conflict HistoryConflict History tab, the entry now shows Resolved instead of Pending in the Resolution StatusResolution Status column, and the Winning DBWinning DB column
shows the address of primary node MMRnode_b .

Figure 6-54: Resolved uniqueness conflictFigure 6-54: Resolved uniqueness conflict

7.6.10.5 Correction Using New Transactions

Another method for bringing all the publication tables to a consistent state is by removing any changes caused by the conflicting transactions and then
issuing new, corrected transactions at one primary node, which you allow the multi-master replication system to synchronize to all other primary nodes.

Referring back to the uniqueness conflict on the dept table, instead of correcting the erroneous row and inserting the row into the primary node where it is
missing as described in Section Manual Publication Table Correction, you can delete the conflicting rows from all primary nodes, then insert the correct row
in one primary node and let the multi-master replication system synchronize the correct row to all primary nodes.

Step 1:Step 1: Manually delete the inserted row from the publication tables in all primary nodes using the transaction block described in Section Conflict
Resolution Concept for the Log-Based Method.

On MMRnode_a , delete the erroneous row with the following transaction block:

BEGIN;
UPDATE _edb_replicator_pub.rrep_properties SET value = current_timestamp
 WHERE key = 'last_mcr_timestamp';
DELETE FROM edb.dept WHERE deptno = 50;
COMMIT;
This is shown by the following:
MMRnode_a=# BEGIN;
BEGIN
MMRnode_a=# UPDATE _edb_replicator_pub.rrep_properties SET value = current_timestamp
MMRnode_a-# WHERE key = 'last_mcr_timestamp';
UPDATE 1
MMRnode_a=# DELETE FROM edb.dept WHERE deptno = 50;

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 291

DELETE 1
MMRnode_a=# COMMIT;
COMMIT
MMRnode_a=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

On MMRnode_b , delete the row even though the transaction created the correct result:

MMRnode_b=# BEGIN;
BEGIN
MMRnode_b=# UPDATE _edb_replicator_pub.rrep_properties SET value = current_timestamp
MMRnode_b-# WHERE key = 'last_mcr_timestamp';
UPDATE 1
MMRnode_b=# DELETE FROM edb.dept WHERE deptno = 50;
DELETE 1
MMRnode_b=# COMMIT;
COMMIT
MMRnode_b=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

On MMRnode_c , no changes are required as the conflicting transaction did not insert a new row into the table on this node:

MMRnode_c=# SET search_path TO edb;
SET
MMRnode_c=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

Step 2:Step 2: Rerun the correct transaction on one primary node with the multi-master replication system running. Do not run this within the transaction block
described in Section Conflict Resolution Concept for the Log-Based Method as the objective is to synchronize it to all primary nodes.

For this example, the correct INSERT statement is executed on MMRnode_a :

On MMRnode_a :

MMRnode_a=# INSERT INTO dept VALUES (50, 'MARKETING', 'LOS ANGELES');
INSERT 0 1
MMRnode_a=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 292

 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | MARKETING | LOS ANGELES
(5 rows)

Step 3:Step 3: Perform synchronization replication.

The same rows now appear in the publication table on all primary nodes.

On MMRnode_a ;

MMRnode_a=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | MARKETING | LOS ANGELES
(5 rows)

On MMRnode_b ;

MMRnode_b=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | MARKETING | LOS ANGELES
(5 rows)

On MMRnode_c;

MMRnode_c=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | MARKETING | LOS ANGELES
(5 rows)

Step 4:Step 4: In the control schema of the publication database currently designated as the controller database, modify the entry in the xdb_conflicts table
to indicate the conflict has been resolved as in Step 2 of Section Conflict Resolution Concept for the Log-Based Method.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 293

Figure 6-55: Resolved conflict in xdb_conflictsFigure 6-55: Resolved conflict in xdb_conflicts

7.7 Viewing Conflict History

Conflict history shows the following types of events that occurred during synchronization replication:

Uniqueness conflicts where two or more primary nodes attempted to insert a row with the same primary key value or unique column value.
Update/update conflicts where two or more primary nodes attempted to update the same column of the same row
Update/delete and delete/update conflicts where one primary node attempted to update a row that was deleted by another primary node.

See Section Conflict Resolution for more information on conflict resolution.

NoteNote

The conflict history can be viewed from the Publication node under any primary node in the multi-primary replication system. The history shows
conflicts on all publication tables of all primary nodes that occurred during synchronization, and hence, the history appears the same regardless
of the primary node under which it is viewed.

NoteNote

For uniqueness (insert/insert) conflicts the number of entries appearing under the Conflict History tab differs when the trigger-based
method of synchronization replication is used as compared to the log-based method. If the trigger-based method is used, a single insert/insert
conflict appears as two entries in the conflict history. Each entry differs in that the source and target database fields for the two conflicting
primary nodes are interchanged. If the same conflict occurs when the log-based method is used, only one entry appears in the conflict history.

The following steps describe how to view the conflict history.

Step 1:Step 1: Select any Publication node under a Database node representing a primary node. Tabs labeled General, Realtime Monitor,
Replication History , and Conflict History appear.

Figure 6-56: Selecting a publication on which to view conflict historyFigure 6-56: Selecting a publication on which to view conflict history

Step 2:Step 2: Click the Conflict History tab to show conflict history. Click Refresh to ensure all the conflicts are listed.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 294

Figure 6-57: Conflict History tabFigure 6-57: Conflict History tab

Step 3:Step 3: Use the Conflict Display Criteria drop-down list to display only conflicts of the chosen status.

Figure 6-58: Selecting conflict history by statusFigure 6-58: Selecting conflict history by status

Step 4:Step 4: Click the View Data link to show the details of a particular conflict.

NoteNote

The View Data link and Conflict Details window are available only for multi-primary replication systems configured with the trigger-
based method of synchronization replication. There is no View Data link or Conflict Details window for multi-primary replication
systems configured with the log-based method of synchronization replication.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 295

Figure 6-59: Conflict Details windowFigure 6-59: Conflict Details window

7.8 Updating the Conflict Resolution Options

A current conflict resolution option on a publication table can be changed. See Section Conflict Resolution for information on conflict resolution.

Step 1:Step 1: Make sure the publication server whose node is the parent of the publication you wish to change is running and has been registered in the xDB
Replication Console you are using. See Section Registering a Publication Server for directions on starting and registering a publication server.

Step 2:Step 2: Select the Publication node under the Publication Database node representing the primary definition node.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 296

Figure 6-60: Selecting a publication in which to update conflict resolution optionsFigure 6-60: Selecting a publication in which to update conflict resolution options

Step 3:Step 3: Open the Conflict Resolution Options dialog box in any of the following ways:

From the Publication menu, choose Update Publication , then Conflict Resolution Options .
Click the secondary mouse button on the Publication node, choose Update Publication , and then choose Conflict Resolution
Options .

Figure 6-61: Opening the Conflict Resolution Options dialog boxFigure 6-61: Opening the Conflict Resolution Options dialog box

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 297

Step 4:Step 4: For each table, you can select the primary conflict resolution strategy and a standby strategy by clicking the master mouse button over the
appropriate box to expose a drop-down list of choices.

Figure 6-62: Updating conflict resolution strategiesFigure 6-62: Updating conflict resolution strategies

Step 5:Step 5: Click the Update button, and then click OK in response to Conflict Resolution Options Updated Successfully.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 298

Figure 6-63: Successfully updated conflict resolution optionsFigure 6-63: Successfully updated conflict resolution options

7.9 Enabling/Disabling Table Filters on a Primary node

Table filters must first be defined in a set of available table filters in the publication before they can be enabled on a primary node. See Section Adding a
Publication for information on defining table filters in a multi-master replication system.

NoteNote

See Section Table Settings and Restrictions for Table Filters for table setup requirements for a log-based replication system as well as general
restrictions on the use of table filters.

The following are the steps for enabling or disabling table filters on an existing primary node.

Step 1:Step 1: Make sure the publication server whose node is the parent of the primary nodes of the replication system is running and has been registered in the
xDB Replication Console you are using. See Section Registering a Publication Server for directions on starting and registering a publication server.

Step 2:Step 2: Select the Publication Database node corresponding to the primary node on which you wish to enable or disable individual filter rules.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 299

Figure 6-64: Selecting a primary node on which to enable or disable filter rulesFigure 6-64: Selecting a primary node on which to enable or disable filter rules

Step 3:Step 3: Click the secondary mouse button on the Publication Database node and choose Update Filter Rule .

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 300

Figure 6-65: Opening the Filter Rules tab on a primary nodeFigure 6-65: Opening the Filter Rules tab on a primary node

NoteNote

If you wish to enable or disable filter rules on the current primary definition node, you must first switch the role of the primary definition node to
another primary node in order to expose the Update Filter Rule option in the primary node context menu. See Section Switching the Primary
definition node for directions on switching the primary definition node.

The primary node you choose as the new primary definition node should contain a superset of, or at least an equivalent set of data as the current primary
definition node. The reason for this is to ensure that the former primary definition node contains the complete set of data satisfying the filtering criteria
after you take a snapshot from the new primary definition node to the former primary definition node on which you just enabled the table filters.

Step 4:Step 4: In the Filter Rules tab check or uncheck the boxes to specify the filter rules to enable or disable on the primary node. At most one filter rule
may be enabled on any given table. Click the Save button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 301

Figure 6-66: Filter Rules tabFigure 6-66: Filter Rules tab

Step 5:Step 5: A confirmation box appears presenting a warning message and a recommendation to perform a snapshot replication to any primary node on which
you changed the filtering criteria.

Click the Ok button in the confirmation box to proceed with the update to the filter rule selections. Click the Cancel button to return to the Filter Rules tab
if you wish to modify your filter rule selections.

Figure 6-67: Change filter rule confirmationFigure 6-67: Change filter rule confirmation

Step 6:Step 6: If you clicked the Ok button in the preceding step, the Filter Rules updated successfully confirmation message appears if the update was
successful.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 302

Figure 6-68: Successful update of filter rulesFigure 6-68: Successful update of filter rules

If you clicked the Cancel button in the preceding step, the Filter Rules tab reopens. You can modify your filter rule selections by repeating Step 4, or you
can click the Cancel button in the Filter Rules tab to abort the filter rule updates on the primary node.

Step 7:Step 7: It is strongly recommended that a snapshot replication be performed to the primary node that contains tables on which the filtering criteria has
changed.

A snapshot ensures that the content of the primary node tables is consistent with the updated filtering criteria. See Section Performing Snapshot
Replication for information on performing a snapshot replication.

NoteNote

The primary definition node, which provides the source of the table content for a snapshot, should contain a superset of all the data contained in
the other primary nodes of the multi-master replication system. This ensures that the target of the snapshot receives all of the data that satisfies
the updated filtering criteria.

On the contrary, if the primary definition node contains only a subset of all the data contained in the other primary nodes, then a snapshot to another
primary node may not result in the complete set of data that is required for that target primary node.

7.10 Switching the Primary definition node

After the multi-master replication system is created, you can switch the role of the primary definition node with another primary node.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 303

Step 1:Step 1: Make sure the publication server whose node is the parent of the primary nodes of the replication system is running and has been registered in the
xDB Replication Console you are using. See Section Registering a Publication Server for directions on starting and registering a publication server.

Step 2:Step 2: Select the Publication Database node corresponding to the primary node that you wish to set as the primary definition node.

Step 3:Step 3: Click the secondary mouse button on the Publication Database node and choose Set as MDN .

Step 4:Step 4: In the Set as MDN confirmation box, click the Yes button.

Step 5:Step 5: The selected master node is now the master definition node.

Step 6:Step 6: The value Yes in the MDN field of the Property window indicates this database is the primary definition node.

The new primary definition node is moved to the top of the replication tree in the xDB Replication Console.

You should now perform a synchronization replication to ensure that the new primary definition node is synchronized with the other primary nodes. See
Performing Synchronization Replication for directions on performing a synchronization replication.

7.11 Ensuring High Availability

In a multi-master replication system, the primary nodes participating in replication can reside on separate physical hosts. If any primary node goes offline,
the primary nodes on the other hosts continue to synchronize transactions amongst themselves thereby ensuring consistency of the publication tables on
the remaining active primary nodes. When an offline primary node is brought back online, pending transactions involving that primary node are
synchronized with the other primary nodes of the replication system. No transaction data is lost between the primary nodes.

Thus, an inherent characteristic of multi-master replication systems is that each primary node serves as a backup for the other nodes, and any such node
can provide consistent publication data to applications.

Similarly, the complete, multi-master replication system configuration information (that is, the control schema and its control schema objects) is stored in
each publication database (that is, every primary node) of the multi-master replication system.

Thus, should any primary node go offline, the configuration information stored in the control schema is always available to the publication server in order to
continue operation of the replication system.

Though every publication database contains a copy of the control schema, the publication database designated as the controller database has special
significance to the operation of the replication system.

The significance of the controller database and its proper usage to ensure high availability of the replication system are discussed in the following sections.

Significance of the Controller Database

At any given point in time during operation of the replication system, one of the publication databases of the primary nodes is designated as the controller
database.

The controller database can be identified in either of the following ways:

In the xDB Replication Console, when a primary node is selected, the Controller database field in the Property window is set to Yes if this primary
node is the current controller database.
In the xDB Replication Configuration file, the authentication and connection parameters are set to the controller database. See Section xDB
Replication Configuration File for information on the xDB Replication Configuration file.

When a replication system is in use, the xDB Replication Server, and particularly, the publication server component, accesses the currently designated

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 304

controller database for any configuration information.

Any changes that you make to the replication system configuration using the xDB Replication Console or the xDB Replication Server CLI are first updated in
the control schema of the controller database, and then replicated by the xDB Replication Server to the other publication databases to keep such
information consistent.

NoteNote

Replication history may take a longer period of time to replicate from the controller database to the other publication databases, therefore it is
possible that some replication history may be lost if access to the controller database fails, and a switchover is made to another publication
database to act as the controller database. See Section Viewing Replication History for information on replication history.

Therefore it is important that the controller database be accessible whenever the replication system is use.

There may be circumstances where access to the controller database cannot be maintained such as scheduled maintenance that must be performed on the
database server hosting the controller database or an unexpected network or system problem.

Such circumstances are addressed in the following sections.

Automatic Switchover of the Controller Database

If the publication server is currently running with its connection to the controller database, and that database suddenly becomes inaccessible such as with
a network or system problem, the xDB Replication Server automatically performs a connection to another online publication database to act as the
controller database.

Thus, there is no apparent disruption in the operation of the xDB Replication Server.

The controller database authentication and connection information is modified accordingly in the xDB Replication Configuration file (see Section xDB
Replication Configuration File). Thus, any subsequent startups of the publication and subscription servers use this newly designated controller database.

The controller database can be subsequently changed to use another publication database as described in sections Switching an Active Controller
Database and Restarting with an Alternate Controller Database.

Switching an Active Controller Database

If at some point, the database server hosting the controller database must be taken offline for maintenance or some other reasons you can switch the role
of the controller database to another publication database.

If the publication server is currently running, this switch can be made using the xDB Replication Console (see Section Switching the Controller Database) or
the xDB Replication Server CLI (see Section Setting the Controller (setascontroller)).

After the switch has occurred, you can take the former controller database offline. Any pending transactions involving the former controller database will
be applied after it is brought back online.

If the publication server is not running, you can still change the controller database so that the publication server connects to a newly designated controller
database when the publication server is started. See Section Restarting with an Alternate Controller Database for information on this method.

Restarting with an Alternate Controller Database

If for some reason the currently designated controller database cannot be accessed by the publication server, certain symptoms may occur such as the

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 305

following:

The xDB Replication Console is unresponsive or the xDB Replication Server CLI commands fail unpredictably.
The publication server is not running and it cannot be successfully started.

If it is determined that the controller database is inaccessible, then you can switch the controller database role to another publication database by editing
the xDB Replication Configuration file so it contains the connection information of another primary node in the replication system. See Section xDB
Replication Configuration File for information on the xDB Replication Configuration file.

After the xDB Replication Configuration file has been modified, restart the publication server along with the subscription server if you are using that as well.
See Section Registering a Publication Server for instructions on starting the publication server. See Section Registering a Subscription Server for
instructions on starting the subscription server.

7.12 Optimizing Performance

Various publication server configuration options are available to optimize the performance of multi-master replication systems.

Almost all publication server performance related configuration options for single-master replication systems are equally applicable to multi-master
replication systems (except when they are database produce specific, such as for Oracle).

The publication server configuration options are set in the publication server configuration file. See Section Publication and Subscription Server
Configuration Options for a detailed explanation of how to set the configuration options in this file.

In addition, for configuration options specifically applicable to publication databases configured with the log-based method of synchronization replication,
see Section Log-Based Method of Synchronization Options.

The following are some additional configuration options applicable to multi-master replication systems only.

uniquenessConflictDetection

The uniquenessConflictDetection option determines if uniqueness conflict needs to be detected at data load time or should be deferred to when
data is applied against a target primary node. Possible values are EAGER and LAZY . Set it to EAGER if there is a high probability of duplicate inserts
across primary nodes.

When the number of primary nodes is equal to two, then the conflict detection is performed in the default LAZY mode.

When the number of primary nodes is greater than two, then the conflict detection is always performed in EAGER mode. (A LAZY mode setting is ignored.)
This is primarily required to avoid removing the already replicated conflicted changes from a target node, which otherwise is an expensive option.

uniquenessConflictDetection={EAGER | LAZY}

The default value is LAZY when the number of primary nodes is two.

skipConflictDetection

The skipConflictDetection option controls whether or not to skip conflict detection during synchronization replication. The default is false and
should be changed only when the probability of data conflict across primary nodes is zero. For example if each primary node operates on an independent
set of data then turning on this option iMMRoves the replication time.

skipConflictDetection={true | false}

The default value is false.

deadlockRetryCount

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 306

In a multi-master replication system, if a deadlock is detected on a target primary node, the deadlockRetryCount option controls the number of times
the publication server attempts to retry application of the changes in the current replication cycle after waiting for the number of milliseconds specified by
deadlockWaitTime . Set deadlockRetryCount to 0 to turn off this option in which case the failed changes are attempted in the next replication

cycle.

deadlockRetryCount=n

The default value for n is 1.

deadlockWaitTime

The deadlockWaitTime option is used with the deadlockRetryCount option to set the wait time in milliseconds before the publication server
attempts to retry application of the changes on the target primary node.

deadlockRetryCount=n `

The default value for n is 1000.

8 Common Operations

This chapter describes configuration and maintenance operations of xDB Replication Server that are common to both single-master and multi-master
replication systems.

For configuration and management of your replication system, the xDB Replication Console graphical user interface is used to illustrate the steps and
examples in this chapter. The same steps can be performed from the operating system command line using the xDB Replication Server Command Line
Interface (CLI). The commands of the xDB Replication Server CLI utility are described in Chapter xDB Replication Server Command Line Interface.

NoteNote

Though most steps described in this chapter apply to both single-master and multi-master replication systems, those steps that apply only to
single-master replication systems are noted with For SMR only. Those steps that apply only to multi-master replication systems are noted with
For MMR only.

8.1 Selecting Tables with the Wildcard Selector

When selecting tables for creating a publication for a single-master replication system (see Adding a Publication) or a multi-master replication system (see
Adding a Publication), there may be cases where the number of available tables for selection is so large that simply choosing them from a checklist
becomes a difficult and time-consuming process.

This difficulty can also be encountered when adding tables to an existing publication (see Adding Tables to a Publication) or deleting tables from an
existing publication (see Removing Tables from a Publication).

In such cases, the wildcard selector provides the capability to choose a set of tables by using pattern matching similar to the technique used by the SQL
statement LIKE clause.

Wildcard Selector Patterns

Pattern matching as performed by the wildcard selector is the process in which the eligible tables for an operation are returned in a filtered list if
their schema and table name combination match a character string called a pattern. Matching a pattern means that the schema and table name combined

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 307

in a string formatted as schema_name.table_name matches the pattern, character by character, according to the rules designated for the characters
appearing in the pattern.

If the schema_name.table_name string matches the pattern, then the schema and table are displayed in the filtered list for that pattern, which is the
Available Tables field of the Wildcard Selector dialog box. You can then selectively choose the tables from the filtered list to be added to a

local list, which contains the potential, candidate tables for the operation for which you are using the wildcard selector.

Similarly, you can remove tables from the local list that had been previously selected if you decide that you do not want these particular tables applied for
the operation.

With the exception of characters called wildcards, characters appearing in a pattern require that the character in the corresponding position in the
schema_name.table_name string must match the pattern character in a case insensitive manner (that is, the letters A or a, match both A and a).

The pattern characters called wildcard characters or simply wildcards are interpreted in a special manner when compared to the corresponding character
position of the schema_name.table_name character string.

Interpretation of pattern characters is described by the following:

? – Single-character wildcard specifies that any single character may exist in its position of the pattern. (The SQL LIKE clause uses the underscore
character (_) for this purpose.)
% - Multi-character wildcard specifies that any combination of multiple characters, including the absence of any character, may exist in its position

of the pattern.
[abc...] – List wildcard specifies that any one of the characters listed within the brackets may exist in its position of the pattern.
[a-d] – Range wildcard specifies that any one character that is greater than or equal to the character preceding the hyphen (-) and less than or

equal to the character following the hyphen may exist in its position of the pattern.
[abcd-f...] – List and range combination wildcard specifies that any character that matches any of the list or range wildcard descriptions as

described in the previous two bullet points may exist in its position of the pattern.
Any character specified in the pattern other than ?, %, [,], and the characters enclosed within the square brackets of a list or range wildcard
must exist in its position of the pattern. Pattern matching of such characters is case insensitive (for example, a pattern of edb.dept matches a
schema and table with the name EDB.Dept).
NOT pattern, !pattern, ! pattern – Exclusive pattern specifies that tables that match the pattern string indicated by pattern are

omitted from the filtered list. Tables that do not match pattern are included in the filtered list. The keyword NOT may be in uppercase, lowercase, or
mixed case, but must be followed by a single space character preceding pattern. !pattern specifies that pattern immediately follows the exclamation
point (!) with no intervening space character. ! pattern specifies that a single space character exists between pattern and the exclamation point (!).
pattern* - Specify the asterisk (*) immediately following the pattern with no intervening space character if you want to include tables in the

filtered list that match pattern and have been previously selected (that is, the local list tables) along with tables that have not been selected. In the
filtered list, each previously selected, local list table is displayed with a check mark in its check box. Each filtered list table that was not previously
selected has no check mark in its check box. By default when the asterisk is omitted, only tables that have not been previously selected are returned
in the filtered list. Using the asterisk is useful for removing currently selected tables from the local list.

The wildcard pattern definitions and examples can be seen from a help screen displayed by clicking the secondary mouse button on the Filter Pattern text
field of the Wildcard Selector dialog box:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 308

Figure 7-1: Filter Pattern Help screenFigure 7-1: Filter Pattern Help screen

The following section describes the basic steps for using the wildcard selector.

Using the Wildcard Selector

This section describes the basic process of using the wildcard selector. The following terms are used in the Wildcard Selector dialog box and the description

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 309

of the wildcard selector feature:

Calling Dialog Box . This is the dialog box of the operation from which you invoke the Wildcard Selector dialog box. The final set of tables
from the wildcard selector is applied to the operation managed by the calling dialog box. Possible calling dialog boxes are the Create Publication
dialog box (see Adding a Publication for a single-master replication system or Adding a Publication for a multi-master replication system), the Add
Tables dialog box (see Adding Tables to a Publication), and the Remove Tables dialog box (see Section Removing Tables from a Publication).
Table List . This is the list of currently selected tables displayed in the calling dialog box. Each selected table has a check mark in its check box.
Local List . This is a temporary, internal copy of the table list managed by the wildcard selector. The wildcard selector allows you to add tables

to the local list and to remove tables from the local list. When you click the Done button of the Wildcard Selector dialog box, the local list becomes
the table list. In other words, the local list tables appear as the selected tables of the calling dialog box.
Unselected Tables . These are the tables eligible for, but have not been selected for the operation with which you are using the wildcard

selector. When you click the Filter List button, the unselected tables that match the filter pattern are listed in the Available Tables field of the
Wildcard Selector dialog box. To list all unselected tables, use the percent sign (%) for the filter pattern.
Selected Tables . These are the tables you have selected for the operation with which you are using the wildcard selector. That is, these are the

tables comprising the local list. To display selected tables that match a filter pattern, add the asterisk character (*) immediately after the filter
pattern. Each selected table has a check mark in its check box.

The following describes the steps for using the wildcard selector.

Step 1:Step 1: Prior to opening the Wildcard Selector dialog box, you may start selecting tables from the list of available tables of the calling dialog box by adding
a check mark to the check box of each such table.

From the calling dialog box, click the Use Wildcard Selection button to open the Wildcard Selector dialog box.

The tables that you have preselected are included in the local list used by the wildcard selector to manage the addition or removal of tables.

For example, the following is the Create Publication dialog box from which the wildcard selector can be used:

Figure 7-2: Invoking the wildcard selector from a calling dialog boxFigure 7-2: Invoking the wildcard selector from a calling dialog box

Step 2:Step 2: The Available Tables field displays the filtered list matching the pattern used in the Filter Pattern text field.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 310

When the Wildcard Selector dialog box is initially opened, the default filter pattern is the percent sign (%), which returns all eligible, unselected tables.

Figure 7-3: Wildcard Selector dialog boxFigure 7-3: Wildcard Selector dialog box

Step 3:Step 3: Enter a pattern in the Filter Pattern text field to narrow down your desired table selection. Click the Filter List button to display the
tables that match the pattern.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 311

Figure 7-4: Tables matching a filter patternFigure 7-4: Tables matching a filter pattern

Step 4:Step 4: Select tables from the Available Tables list that you want to add to the local list by placing a check mark in each such table’s check box. You
can also click the Select All check box to select all tables and then individually deselect certain tables by removing its check mark.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 312

Figure 7-5: Tables selected for the local listFigure 7-5: Tables selected for the local list

Step 5:Step 5: Click the Apply Selections to Local List button to add the selected tables to the local list.

The following example shows that the selected tables have been removed from the Available Tables list after the Apply Selections to Local List button was
clicked since they are no longer unselected.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 313

Figure 7-6: Selected tables added to the local listFigure 7-6: Selected tables added to the local list

NoteNote

You can click the Cancel button at any time to terminate the wildcard selector without applying the local list changes to the table list of the
calling dialog box.

Step 6:Step 6: As many times as desired, repeat steps 3 through 5 using the filter patterns needed to add all of your desired tables to the local list.

The following example shows a second filter pattern and the returned filter list.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 314

Figure 7-7: Tables matching a second filter patternFigure 7-7: Tables matching a second filter pattern

All tables are then selected from this filtered list by clicking the Select All check box.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 315

Figure 7-8: Select all tablesFigure 7-8: Select all tables

The Apply Selections to Local List button is clicked to add all tables to the local list. After applying the selections, there are no unselected
tables remaining that match the filter pattern.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 316

Figure 7 9 – All filter list tables added to the local listFigure 7 9 – All filter list tables added to the local list

By using the asterisk after the pattern, you can display previously selected tables comprising the local list. Each selected table has a check mark its check
box.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 317

Figure 7-10: Display selected and unselected tables matching the filter patternFigure 7-10: Display selected and unselected tables matching the filter pattern

You can remove selected tables from the local list by clicking on each such table’s check box to remove the check mark.

The following filter pattern includes the tables to be removed from the local list.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 318

Figure 7-11: List selected tables to be removedFigure 7-11: List selected tables to be removed

The check marks are removed from the selected tables to be removed from the local list.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 319

Figure 7-12: Deselect tables to be removed from the local listFigure 7-12: Deselect tables to be removed from the local list

The removal of the deselected tables from the local list occurs along with the addition of any newly selected tables when you click the Apply
Selections to Local List button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 320

Figure 7-13: Deselected tables removed from the local list now shown as unselectedFigure 7-13: Deselected tables removed from the local list now shown as unselected

The deselected tables still appear in the Available Tables list since they still match the pattern, but as unselected tables (that is, with no check mark in each
such table’s check box).

Step 7:Step 7: When the local list contains all of your desired, selected tables, click the Done button. The Wildcard Selector dialog box closes, and the local list
becomes the list of selected tables displayed by the calling dialog box.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 321

Figure 7-14: Create Publication calling dialog box with applied local listFigure 7-14: Create Publication calling dialog box with applied local list

Figure 7-15: Create Publication calling dialog box with applied local list (continued)Figure 7-15: Create Publication calling dialog box with applied local list (continued)

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 322

Alternatively, if you decide that you do not wish to apply the local list, click the Cancel button. The local list changes are discarded and the table list of
the calling dialog box remains unchanged.

Step 8:Step 8: You can invoke the wildcard selector again and repeat the process to add tables to, or remove tables from the table list by beginning with Step 1.

The following example verifies that if you were to invoke the wildcard selector a second time, the local list includes the table list created from the prior
closure of the wildcard selector.

Figure 7-16: Local list includes selected tables from the calling dialog box table listFigure 7-16: Local list includes selected tables from the calling dialog box table list

Step 9:Step 9: When the calling dialog box contains the complete list of your desired tables, click the appropriate button of the calling dialog box to complete the
operation with the selected tables.

The following shows the publication created from the selected tables.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 323

Figure 7-17: Publication created with the selected tablesFigure 7-17: Publication created with the selected tables

8.2 Creating a Schedule

A schedule establishes recurring points in time when replication is to occur.

NoteNote

(For MMR only): Be sure an initial snapshot replication has been performed from the primary definition node to every other primary node in the
multi-master replication system. If a newly added primary node did not undergo an initial snapshot, any subsequent synchronization replication
initiated by a schedule may fail to apply the transactions to that primary node. The initial snapshot could be taken when the primary node is first
added (see Creating Additional Primary nodes) or by performing an on demand snapshot (see Performing Snapshot Replication).

In a single-master replication system, once a schedule is created the subscription server initiates replications according to the schedule until either the
schedule is changed or removed. In a multi-master replication system, the publication server handles this process.

See Managing a Schedule for changing or removing a schedule.

When a scheduled replication is to take place, all components of the replication system must be running:

Publication database server
Subscription database server (applies only to single-master replication systems)
Publication server
Subscription server (applies only to single-master replication systems)

If any of the preceding components are not running at the time of a scheduled replication, then replication does not occur at that point in time. The
replication occurs at the next scheduled replication time when all applicable replication system components are running.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 324

For synchronization replications with the trigger-based method, changes that have occurred on the source tables that were not replicated due to a skipped,
scheduled replication are maintained as pending transactions in the shadow tables of the source database.

For synchronization replications with the log-based method, changes that have been extracted from the WAL files to in-memory structures, but have not
been applied are persisted using Java object serialization to files on the host running the publication server.

All changes since the last successful replication are applied whenever the next scheduled replication occurs. Thus, accumulated changes are never lost
due to a missed replication.

For snapshot replications, skipped, scheduled replications present no problem since a snapshot replication replaces all of the data in the target tables with
the current source data.

Step 1 (For SMR only):Step 1 (For SMR only): Select the Subscription node of the subscription for which you wish to create a schedule.

Figure 7-18: Selecting a subscription on which to set a scheduleFigure 7-18: Selecting a subscription on which to set a schedule

Step 1 (For MMR only):Step 1 (For MMR only): Select the Publication Database node designated as the controller database. (The Controller database field in the Property window
is set to Yes for the controller database.)

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 325

Figure 7-19: Selecting the controller database on which to set a scheduleFigure 7-19: Selecting the controller database on which to set a schedule

Step 2 (For SMR only):Step 2 (For SMR only): Open the Scheduled Task Wizard dialog box in any of the following ways:

Figure 7-20: Opening the Scheduled Task Wizard dialog box on a subscriptionFigure 7-20: Opening the Scheduled Task Wizard dialog box on a subscription

From the Subscription menu, choose Schedule , then Configure Schedule .
Click the secondary mouse button on the Subscription node and choose Configure Schedule .
Click the primary mouse button on the Configure Schedule icon.

Step 2 (For MMR only):Step 2 (For MMR only): Open the Scheduled Task Wizard dialog box in any of the following ways:

Click the secondary mouse button on the Publication Database node and choose Configure Schedule .

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 326

Click the primary mouse button on the Configure Schedule icon .

Figure 7-21: Opening the Scheduled Task Wizard dialog box on the controller databaseFigure 7-21: Opening the Scheduled Task Wizard dialog box on the controller database

Step 3:Step 3: In the Scheduled Task Wizard dialog box, select the radio button for either synchronization replication or snapshot replication.

NoteNote

If the publication associated with this subscription is a snapshot-only publication, then only Snapshot may be chosen.

NoteNote

In a multi-master replication system, only Synchronize may be chosen.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 327

Figure 7-22: Scheduled Task Wizard dialog boxFigure 7-22: Scheduled Task Wizard dialog box

Step 4:Step 4: Select the radio button for the scheduled replication frequency, or select Cron Expression to write your own cron expression. The frequency
choices have the following meanings:

Continuously . Schedules replication to run continuously at an interval in seconds that you specify. Select this option if the source tables
change frequently during the day and the target tables must be kept up-to-date throughout the course of the day.
Daily . Schedules replication to run once a day at the time you choose. Select this option if the target tables need to be refreshed daily.
Weekly . Schedules replication to run once a day at the time you choose, but only on the specific days of the week you choose. Select this option if

you need more flexibility than a daily schedule, and the target tables do not have to be refreshed every day.
Monthly . Schedules replication to run one day per month on the day of the month and time you choose, but only on the specific months you

choose. Select this option if updates to the source tables are not very frequent, and the target tables can be out-of-date by a month or more. The
Monthly option allows you to schedule replication for as frequently as once a month or infrequently as once a year.
Cron Expression. Provides additional flexibility for specifying a schedule beyond the four preceding radio button choices. See appendix Writing a

Cron Expression for directions on writing a cron expression.

The following example shows the selection of a weekly schedule.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 328

Figure 7-23: Selecting a weekly scheduleFigure 7-23: Selecting a weekly schedule

Step 5:Step 5: After completing the Scheduled Task Wizard dialog box, click the Next button.

Step 6:Step 6: Your selected schedule will appear. Click the Finish button to accept the schedule.

Figure 7-24: Scheduled Task Wizard summaryFigure 7-24: Scheduled Task Wizard summary

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 329

If you click the Refresh icon, you will see the schedule properties in the General tab.

Figure 7-25: Information window with the replication scheduleFigure 7-25: Information window with the replication schedule

8.3 Managing a Schedule

Once a schedule has been created, xDB Replication Server performs replications according to the schedule until the schedule is updated or removed.

The updating or removal of a schedule has no effect on a replication that has already been started. If a replication is in progress when the schedule is
updated or removed, the in progress replication continues until completion.

Updating a Schedule

The following steps illustrate how to change an existing schedule.

Step 1 (For SMR only):Step 1 (For SMR only): Make sure the subscription server whose node is the parent of the subscription you wish to change is running and has been
registered in the xDB Replication Console you are using. See Registering a Subscription Server for directions on starting and registering a subscription
server.

Step 1 (For MMR only):Step 1 (For MMR only): Make sure the publication server whose node is the parent of the controller database you wish to change is running and has been
registered in the xDB Replication Console you are using. See Registering a Publication Server for directions on starting and registering a publication server.

Step 2 (For SMR only):Step 2 (For SMR only): Select the Subscription node of the subscription for which you wish to update the schedule.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 330

Figure 7-26: Selecting a subscription whose schedule is to be updatedFigure 7-26: Selecting a subscription whose schedule is to be updated

Step 2 (For MMR only):Step 2 (For MMR only): Select the Publication Database node designated as the controller database for which you wish to update the schedule.

Figure 7-27: Selecting the controller database whose schedule is to be updatedFigure 7-27: Selecting the controller database whose schedule is to be updated

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 331

Step 3 (For SMR only):Step 3 (For SMR only): Open the Scheduled Task Wizard dialog box in any of the following ways:

From the subscription menu, choose Schedule , then Configure Schedule .
Click the secondary mouse button on the Subscription node and choose Configure Schedule .
Click the primary mouse button on the Configure Schedule icon.

Step 3 (For MMR only):Step 3 (For MMR only): Open the Scheduled Task Wizard dialog box in any of the following ways:

Click the secondary mouse button on the Publication Database node and choose Configure Schedule .
Click the primary mouse button on the Configure Schedule icon.

Figure 7-28: Opening the Scheduled Task Wizard dialog box from the tool barFigure 7-28: Opening the Scheduled Task Wizard dialog box from the tool bar

Step 4:Step 4: The Configure Scheduler confirmation box appears. Click the Yes button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 332

Figure 7-29: Configure Scheduler confirmationFigure 7-29: Configure Scheduler confirmation

Step 5:Step 5: In the Scheduled Task Wizard dialog box, create the new schedule. See Step 3 of Section Creating a Schedule for details on how to create a new
schedule.

Figure 7-30: Scheduled Task Wizard dialog boxFigure 7-30: Scheduled Task Wizard dialog box

Removing a Schedule

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 333

If you no longer wish replication to take place automatically, you must remove the schedule. You can always re-add a schedule or perform on demand
replication.

Step 1 (For SMR only):Step 1 (For SMR only): Make sure the subscription server whose node is the parent of the subscription you wish to change is running and has been
registered in the xDB Replication Console you are using. See Section Registering a Subscription Server for directions on starting and registering a
subscription server.

Step 1 (For MMR only):Step 1 (For MMR only): Make sure the publication server whose node is the parent of the controller database you wish to change is running and has been
registered in the xDB Replication Console you are using. See Section Registering a Publication Server for directions on starting and registering a
publication server.

Step 2 (For SMR only):Step 2 (For SMR only): Select the Subscription node of the subscription for which you wish to remove the schedule.

Figure 7-31: Selecting a subscription for removal of a scheduleFigure 7-31: Selecting a subscription for removal of a schedule

Step 2 (For MMR only):Step 2 (For MMR only): Select the Publication Database node designated as the controller database for which you wish to remove the schedule.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 334

Figure 7-32: Selecting the controller database for removal of a scheduleFigure 7-32: Selecting the controller database for removal of a schedule

Step 3 (For SMR only):Step 3 (For SMR only): Remove the schedule in any of the following ways:

From the Subscription menu, choose Schedule, then Remove Schedule.
Click the secondary mouse button on the Subscription node and choose Remove Schedule.
Click the primary mouse button on the Remove Schedule icon.

Step 3 (For MMR only):Step 3 (For MMR only): Remove the schedule in any of the following ways:

Click the secondary mouse button on the Publication Database node and choose Remove Schedule.
Click the primary mouse button on the Remove Schedule icon.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 335

Figure 7-33: Removing the scheduleFigure 7-33: Removing the schedule

Step 4:Step 4: In the Removing Schedule confirmation box, click the Yes button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 336

Figure 7-34: Removing Schedule confirmationFigure 7-34: Removing Schedule confirmation

If you click the Refresh icon in the tool bar, you will notice that schedule information no longer appears in the information window.

Figure 7-35: Information window after schedule removalFigure 7-35: Information window after schedule removal

8.4 Viewing Replication History

A summary of replications performed on each subscription or primary node can be viewed in the xDB Replication Console. A detailed replication history
showing each insert, update, and deletion made against each target table can be viewed as well. See Section Synchronization Replication with the Trigger-
Based Method for a discussion on how changes are applied to target tables for the target-based method of synchronization replication. See
Synchronization Replication with the Log-Based Method for information on the log-based method of synchronization replication.

NoteNote

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 337

(For SMR Only): The replication history can be viewed from the Publication node as well as from the Subscription node. The history shown for a
Publication node is actually the exact same set of inserts, updates, and deletions made on the subscription tables by the publication server
during synchronization. The history shown for a Publication node does not show the actual SQL statements processed on the publication tables
that originated from user applications.

NoteNote

(For MMR only): The replication history can be viewed from the Publication node under any primary node in the multi-master replication system.
The history shown includes inserts, updates, and deletions made on all publication tables of all primary nodes by the publication server during
synchronization, and hence, the history appears the same regardless of the primary node under which the history is viewed.

All Replication History

Replication history shows the following types of events that occur on a given subscription or primary node:

Snapshot replications
Synchronization replications where at least one change (insert, update, or deletion) was applied to a target table
Synchronization replications where no updates were applied to any of the target tables since the last restart of the publication server

The following steps describe how to view the replication history of the events in the preceding list.

Step 1 (For SMR only):Step 1 (For SMR only): Select the node beneath the Subscription node. Tabs labeled General, Realtime Monitor , and Replication History
appear.

Figure 7-36: Selecting a subscription on which to view replication historyFigure 7-36: Selecting a subscription on which to view replication history

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 338

Step 1 (For MMR only):Step 1 (For MMR only): Select any Publication node under a Database node representing a primary node. Tabs labeled General, Realtime
Monitor, Replication History , and Conflict History appear.

Figure 7-37: Selecting a publication on which to view replication historyFigure 7-37: Selecting a publication on which to view replication history

Step 2:Step 2: Click the Replication History tab to show a history of replications.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 339

Figure 7-38: Replication History tabFigure 7-38: Replication History tab

NoteNote

Every snapshot replication and each synchronization replication with at least one update produces a history record that is maintained in
replication history tables in the control schema. Over time the size of the replication history tables will grow. Replication history records can be
periodically deleted. See Section Cleaning Up Replication History for information on cleaning up replication history.

Hiding Synchronizations With Zero Transaction Counts

You may notice synchronization replications with transaction counts of zero. These records indicate that there were no changes to synchronize at the time
the replication occurred. For scheduled replications that occur frequently, this may result in a large number of lines in the Replication History tab,
thus obscuring the more meaningful replications with non-zero transaction counts as shown below.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 340

Figure 7-39: Replication history with zero transaction countsFigure 7-39: Replication history with zero transaction counts

While viewing the Replication History tab, you can hide the records with zero transaction counts as follows:

Step 1:Step 1: Check the Show History With Transactions Count > 0 check box located at the bottom of the Replication History tab.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 341

Figure 7-40: Setting replication history to hide zero transaction count recordsFigure 7-40: Setting replication history to hide zero transaction count records

Step 2:Step 2: The next time the Replication History tab refreshes, only the replications with non-zero transaction counts appear in the Replication
History .

NoteNote

Zero transaction count replication records are maintained in the publication server memory. By default, they are not permanently stored on disk.
Therefore when the publication server is shut down, the in-memory zero transaction count replication records are no longer available.

When the publication server starts running again, zero transaction count replication records will appear on the Replication History tab as zero
transaction count replications occur.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 342

If you wish to permanently store zero transaction count replication records to disk, set the publication server configuration option
persistZeroTxRepEvent to true. See Section Replacing Null Characters for further information.

Shadow Table History

Expanding the nodes under the Subscription node of a single-master replication system, or the Publication node of a multi-master replication system
provides more information about the subscription or publication.

Step 1:Step 1: Select a table to reveal tabs that contain general information about the table and the replication history of the table. Expand a Table node to reveal
the columns in the table.

Figure 7-41: Table properties and columnsFigure 7-41: Table properties and columns

Step 2:Step 2: Click the Replication History tab to show a history of replications for this table.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 343

Figure 7-42: Table replication history tabFigure 7-42: Table replication history tab

Step 3:Step 3: Click the View Data link to show a list of each change made to the table during the synchronization replication. The Synchronize History
window shows two update operations followed by one insert operation against the emp target table that correspond to the following set of SQL
statements executed on the emp source table:

UPDATE emp SET hiredate = TO_DATE('07-JUN-15'), mgr = 7698 WHERE empno IN (9001, 9002);
INSERT INTO emp (empno, ename, job, mgr, deptno) VALUES (9003, 'JOHNSON', 'SALESMAN', 7698, 30);

Figure 7-43: Synchronize History windowFigure 7-43: Synchronize History window

NoteNote

Since all insert, update, and delete operations on all source tables are recorded in shadow tables, the size of the shadow tables may grow
considerably over time for volatile source tables. The rows shown in the Synchronize History window are obtained from these shadow tables.
Rows in the shadow tables can be periodically deleted. See Cleaning Up Shadow Table History for information on cleaning up the shadow tables.

8.5 Managing History

xDB Replication Server maintains three types of history:

Shadow Table History. Records of each change (insert, update, or delete) that was applied to each target table during synchronization replications

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 344

using the trigger-based method. There is no shadow table history for synchronization replications using the log-based method.
Replication History. Summary records of each replication.
Event History. Records of each change that was applied to various control schema tables.

The size of the control schema tables that store these history records grows over time, and thus there are a number of methods referred to as cleanup to
delete such history records.

Shadow table history cleanup information is described in sections Scheduling Shadow Table History Cleanup and Cleaning Up Shadow Table History. For
replication history cleanup, see Cleaning Up Replication History.

For event history cleanup, see Cleaning Up Event History.

Scheduling Shadow Table History Cleanup

A preference can be set for each publication database definition to determine if and when shadow table history cleanup should be scheduled for all
publications appearing under its corresponding Publication Database node. Shadow table history cleanup has no benefit for snapshot-only publications so
if all of your publications under a Publication Database node are snapshot-only publications, then scheduled shadow table history cleanup should be
disabled following steps 1 through 4.

Replication history is not deleted by scheduling shadow table history cleanup. Whenever a new publication database definition is created, there is a
scheduled default setting of every Sunday at 12:00 AM midnight for shadow table history cleanup.

NoteNote

A configuration option is available to force shadow table history cleanup after every synchronization replication. See Forcing Immediate Shadow
Table Cleanup for information on this option.

NoteNote

The cleanup of certain processed rows in the shadow tables may be delayed beyond the next scheduled cleanup, but will eventually be removed
in subsequent cleanup events.

For Oracle only:For Oracle only: For scheduling of shadow table history cleanup on an Oracle publication database, the Oracle DBMS_JOB package on the Oracle database
server is used. The time you specify in the schedule for cleanup is passed and stored in DBMS_JOB without time zone translation.

For example, assume the publication server is running on a host in New York and the Oracle publication database is on a server in California, which has a 3-
hour time difference. If you set shadow table history cleanup to run at 12:00 AM midnight according to the New York based publication server, the cleanup
job on the California based Oracle database will start at 12:00 AM midnight Pacific Time (in California), which would be 3:00 AM Eastern Time (in New
York).

For SQL Server only:For SQL Server only: For scheduling of shadow table history cleanup on a SQL Server publication database, SQL Server Agent is used on the host running
SQL Server. The time you specify in the schedule for cleanup is passed to SQL Server Agent without time zone translation. The effect is the same as
described for Oracle in the preceding example.

For Postgres only:For Postgres only: For scheduling of shadow table history cleanup on a Postgres publication database, the Quartz scheduler is used on the host running the
publication server based on the location of the controller database.

For example, assume the publication server is running on a host in New York and the Postgres publication database on which cleanup is to be scheduled is
also the controller database and is on a host in California. If you set shadow table history cleanup to run at 12:00 AM midnight according to the New York
based publication server, the cleanup job on the California based Postgres database will start at 12:00 AM midnight Pacific Time (in California), which
would be 3:00 AM Eastern Time (in New York).

By contrast, assume the publication server is running on a host in New York along with the controller database, and the Postgres publication database on
which cleanup is to be scheduled is on a host in California. If you set shadow table history cleanup to run at 12:00 AM midnight according to the New York
based publication server and controller database, the cleanup job on the California based Postgres database will start at 12:00 AM midnight Eastern Time
(in New York), which would be 9:00 PM Pacific Time (in California).

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 345

For Oracle only:For Oracle only: The cleanup job on an Oracle publication database runs independently of the publication server, so the cleanup job will run regardless of
whether or not the publication server is running.

For Postgres only:For Postgres only: The publication server must be running in order for the cleanup job to run on a Postgres publication database.

NoteNote

An alternative to using the Quartz scheduler when Postgres is the publication database, is to use pgAgent job scheduling instead. See Using
pgAgent Job Scheduling for information on how to use pgAgent job scheduling and the advantages, thereof.

The following steps show how to alter the default setting.

Step 1:Step 1: Make sure the publication server whose node is the parent of the publication database definition whose cleanup scheduling preference you want to
set is running and has been registered in the xDB Replication Console you are using. See Registering a Publication Server for directions on starting and
registering a publication server.

Step 2:Step 2: Select the Publication Database node for which you want to set the cleanup scheduling preference.

Figure 7-44: Selecting the publication database for cleanup schedulingFigure 7-44: Selecting the publication database for cleanup scheduling

Step 3:Step 3: From the Publication menu, choose Preferences . Alternatively, click the secondary mouse button on the Publication Database node and
choose Preferences . The Publication Server Preferences dialog box appears.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 346

Figure 7-45: Publication Server Preferences dialog boxFigure 7-45: Publication Server Preferences dialog box

Step 4:Step 4: In the Publication Server Preferences dialog box, uncheck the box if you do not want to run a scheduled shadow table history cleanup
job. Click the OK button and skip the remaining steps.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 347

Figure 7-46: Disabled schedule for shadow table history cleanupFigure 7-46: Disabled schedule for shadow table history cleanup

Step 5:Step 5: If you want to schedule shadow table history cleanup, make sure the Run Cleanup Job check box is selected. Select the radio button for the cleanup
frequency. The frequency choices have the following meanings:

Every number of minutes/hours. Schedules shadow table history cleanup to run continuously at an interval in either minutes or hours that you
specify. Select this option if there are huge volumes of updates to the publication tables during the course of the day, every day.
Every Day at hour of day. Schedules shadow table history cleanup to run once a day on the hour you choose. Select this option if updates to the
publication tables are frequent enough to require more than once a week cleanup, but not needed more than once a day.
Every selected day of week at hour of day. Schedules shadow table history cleanup to run once a week on the day and at the hour you choose. Select
this option if updates to the publication tables are infrequent and you do not want to run cleanup manually.
Cron Expression. Provides additional flexibility for specifying a schedule beyond the three preceding radio button choices. See appendix Writing a
Cron Expression for directions on writing a cron expression.

NoteNote

A configuration option is available to force shadow table history cleanup after every synchronization replication. See Forcing Immediate Shadow
Table Cleanup for information on this option.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 348

Figure 7-47: Cleanup Job dialog boxFigure 7-47: Cleanup Job dialog box

Step 6:Step 6: Click the OK button to accept the schedule.

Cleaning Up the Shadow Table History

Non snapshot-only publications (that is, publications on which synchronization replications occur) whose tables experience frequent changes should have
their shadow table history cleaned up periodically, otherwise the amount of disk space consumed by the shadow tables in the publication database may
grow too rapidly.

When shadow table history is cleaned up, the rows in the following xDB Replication Server metadata tables are deleted:

RREP_TXSET
RREP_TXSET_LOG
RRST_schema_table

For Oracle only:For Oracle only: When Oracle is the publication database, these tables are located in the publication database in the schema of the publication database
user.

For SQL Server only: When SQL Server is the publication database, these tables are located in the publication database in the schema you chose during

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 349

Step 5 of Section SQL Server Publication Database.

For Postgres only:For Postgres only: When Postgres is the publication database, these tables are located in the publication database in schema _edb_replicator_pub .
Shadow table history cleanup can be scheduled to run periodically (see Scheduling Shadow Table History Cleanup) or it can be run on demand.

NoteNote

The cleanup of certain processed rows in the shadow tables may not occur during an on demand cleanup or may be delayed beyond the next
scheduled cleanup, but will eventually be removed in subsequent cleanup events.

The following are the steps to run shadow table history cleanup on demand for a chosen publication.

Step 1:Step 1: Make sure the publication server whose node is the parent of the publication whose shadow table history you wish to clean up is running and has
been registered in the xDB Replication Console you are using. See Registering a Publication Server for directions on starting and registering a publication
server.

Step 2:Step 2: Select the Publication node of the publication for which you want to clean up the shadow table history.

Figure 7-48: Selecting a publication for shadow table history cleanupFigure 7-48: Selecting a publication for shadow table history cleanup

Step 3:Step 3: From the Publication menu, choose Cleanup Shadow Table History . Alternatively, click the secondary mouse button on the
Publication node and choose Cleanup Shadow Table History . The Cleanup Synchronization History confirmation box appears.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 350

Figure 7-49: Cleaning up shadow table historyFigure 7-49: Cleaning up shadow table history

Step 4:Step 4: Click the Yes button in the Cleanup Synchronization History confirmation box.

Figure 7-50: Cleanup Synchronization History confirmationFigure 7-50: Cleanup Synchronization History confirmation

Step 5:Step 5: Click the Yes button in response to Shadow Table’s Transaction History Removed Successfully .

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 351

Figure 7-51: Successful cleanup of shadow table historyFigure 7-51: Successful cleanup of shadow table history

After shadow table history cleanup, if you click the View Data link of the Replication History tab, an information message appears stating that
there is no synchronization history to view.

Figure 7-52: View Data link after shadow table history cleanupFigure 7-52: View Data link after shadow table history cleanup

Cleaning Up Replication History

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 352

Cleaning up replication history deletes rows from the following tables in the control schema:

xdb_pub_replog
xdb_pub_table_replog

The following are the steps to run replication history cleanup for a chosen publication.

Step 1:Step 1: Make sure the publication server whose node is the parent of the publication whose replication history you wish to cleanup is running and has been
registered in the xDB Replication Console you are using. See Registering a Publication Server for directions on starting and registering a publication server.

Step 2:Step 2: Select the Publication node of the publication for which you want to clean up replication history.

Figure 7-53: Selecting a publication for replication history cleanupFigure 7-53: Selecting a publication for replication history cleanup

Step 3:Step 3: From the Publication menu, choose Cleanup Replication History . Alternatively, click the secondary mouse button on the
Publication node and choose Cleanup Replication History. The Cleanup Replication History confirmation box appears.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 353

Figure 7-54: Cleaning up replication historyFigure 7-54: Cleaning up replication history

Step 4:Step 4: Click the Yes button in the Cleanup Replication History confirmation box.

Figure 7-55: Cleanup Replication History confirmationFigure 7-55: Cleanup Replication History confirmation

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 354

Step 5:Step 5: Click the Yes button in response to Replication History Has Been Removed.

Figure 7-56: Successful cleanup of replication historyFigure 7-56: Successful cleanup of replication history

After replication history cleanup, if you click the Replication History tab, no history records appear.

Figure 7-57: Replication History tab after replication history cleanupFigure 7-57: Replication History tab after replication history cleanup

Cleaning Up Event History

Unlike shadow table history (Section Cleaning Up Shadow Table History) and replication history (Section Cleaning Up Replication History), event history is

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 355

neither viewable nor removable using the xDB Replication Console.

Event history is a recording of various updates to the control schema tables that occur during xDB Replication Server processing. Hence, the event history
content grows significantly over time.

The tables containing event history, and thus the tables to be cleaned up are the following:

xdb_events
xdb_events_status

In addition, the replication history tables are cleaned up as well. These tables can also be manually cleaned up as described in Section Cleaning Up
Replication History.

xdb_pub_replog
xdb_pub_table_replog

For Oracle, these tables are located in the schema of the publication database user.

For SQL Server and Postgres, these tables are located in schema _edb_replicator_pub .

The event history and replication history data in the control schema are deleted on a scheduled, daily basis at 12 AM, thus reducing the number of rows in
tables xdb_events, xdb_events_status, xdb_pub_replog , and xdb_pub_table_replog .

Publication server configuration option historyCleanupDaysThreshold provides the capability to designate how old the completed data must
reach before its removal. The default setting is that completed data must be older than seven days before it is deleted during the daily 12 AM cleanup
process.

In order to cleanup all completed event and replication history regardless of its age, set historyCleanupDaysThreshold to a value of 0, then
restart the publication server. The cleanup occurs during the next scheduled 12 AM cleanup process.

See Setting Event History Cleanup Threshold for the historyCleanupDaysThreshold option.

8.6 Managing a Publication

After a publication has been created, certain aspects of the underlying replication system environment might be subsequently altered for any number of
reasons. Attributes that might change include the network location of the publication database server, the network location of the host running the
publication server, database or operating system user names and passwords, and so forth.

The aforementioned information is saved in the replication system metadata when a publication is created. Changes to these attributes result in inaccurate
replication system metadata, which in turn may result in errors during subsequent replication attempts or replication system administration.

This section describes how to update the metadata stored for the publication server, the publication database definition, and publications in order to keep
the information consistent with the actual replication system environment.

8.6.1 Updating a Publication Server

There are two aspects of metadata related to the publication server that may need to be updated depending upon the change in the host environment:

If the network location (IP address or port number), admin user name, or password of the publication server changes, and if you have saved this
information in the server login file, you need to update the server login file with the new information.
If the network location (IP address or port number) of a subscription server changes, then for each publication server managing a publication
associated with a subscription of the changed subscription server, you must update the publication server’s metadata with the subscription server’s

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 356

new network location. This type of update applies only to single-master replication systems.

The first type of update is discussed in the following section. The second type of update is discussed in Section Subscription Server Network Location.

Publication Server Login File

When you register a publication server in the xDB Replication Console, you may choose to save the publication server’s network location, admin user name,
and encrypted password in a server login file on the computer on which you are running the xDB Replication Console. See Saving Server Login Information
for information on saving the login information.

The steps described in this section show you how to update the publication server’s login information in the server login file.

It is assumed that the xDB Replication Console is open on your computer and the publication server whose login information you wish to alter in the server
login file, appears as a Publication Server node in the xDB Replication Console’s replication tree.

Figure 7-58: Publication Server nodeFigure 7-58: Publication Server node

You can perform the following actions on the server login file:

Change the publication server’s login information (host IP address, port number, admin user name , and password) that you last
saved in the server login file.
Delete the publication server’s login information that is currently saved in the server login file. This is the default action, which will require you to
register the publication server again the next time you open the xDB Replication Console.
Resave the publication server’s login information in the server login file. Each time you open the Update Publication Server dialog box, you must
choose to save the login information if you want it recorded in the server login file.

The following steps change only the content of the server login file residing on the host under the current xDB Replication Console user’s home directory.
These changes do not alter any characteristic of the actual publication server daemon (on Linux) or service (on Windows). These changes affect only how a
publication server is viewed through the xDB Replication Console on this host by this user.

Step 1:Step 1: The publication server whose login information you want to save, change, or delete in the server login file must be running before you can make any
changes to the file. See Step 1 of Section Registering a Publication Server for directions on starting the publication server.

Step 2:Step 2: Click the secondary mouse button on the Publication Server node and choose Update. The Update Publication Server dialog box appears.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 357

Figure 7-59: Update Publication Server dialog boxFigure 7-59: Update Publication Server dialog box

Step 3:Step 3: Complete the fields in the dialog box according to your purpose for updating the server login file:

If the publication server now runs on a host with a different IP address or port number than what is shown in the dialog box, enter the correct
information. You must also enter the admin user name and password saved in the xDB Replication Configuration file that resides on the host
identified by the IP address you entered in the Host field. Check the Save Login Information box if you want the new login information saved in the
server login file, otherwise leave the box unchecked in which case, access to the publication server is available for the current session, but
subsequent sessions will require you to register the publication server again.
If you want to delete previously saved login information, make sure the network location shown in the dialog box is still correct. Re-enter the admin
user name and password saved in the xDB Replication Configuration file that resides on the host identified by the IP address in the Host field. Leave
the Save Login Information box unchecked. Access to the publication server is available for this session, but subsequent sessions will require you to
register the publication server again.
If you want to save the current login information shown in the dialog box, make sure the network location shown in the dialog box is correct. Re-
enter the admin user name and password saved in the xDB Replication Configuration file that resides on the host identified by the IP address in the
Host field. Check the Save Login Information box.

Figure 7-60: Updated publication server locationFigure 7-60: Updated publication server location

Step 4:Step 4: Click the Update button. If the dialog box closes, then the update to the server login file was successful. Click the Refresh icon in the xDB
Replication Console tool bar to show the updated Publication Server node.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 358

If an error message appears after clicking the Update button, the server login file is not modified. Investigate and correct the cause of the error. Repeat
steps 1 through 4.

Subscription Server Network Location

NoteNote

This section applies only to single-master replication systems.

Part of the metadata stored for each publication server is the network location of subscription servers that manage subscriptions associated with the
publication server’s publications.

This network information enables the publication server to communicate with the subscription server.

If the network location of a subscription server changes after subscriptions have been created, the publication server metadata must be updated with the
new network location, otherwise a communication failure occurs between the publication server and the subscription server that is made apparent by the
following message that appears when you open the xDB Replication Console.

Figure 7-61: Subscription server connection failureFigure 7-61: Subscription server connection failure

The following are the steps to update the subscription server network location within a publication server’s metadata.

Step 1:Step 1: The publication server whose metadata you want to change must be running. See Step 1 of Section Registering a Publication Server for directions
on starting the publication server.

Step 2:Step 2: Click the secondary mouse button on the Publication Server node and choose Update Subscription Servers. The Update Subscription
Servers dialog box appears.

NoteNote

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 359

If the error message box reappears, click the OK button and repeat Step 2.

Figure 7-62: Update Subscription Servers dialog boxFigure 7-62: Update Subscription Servers dialog box

Step 3:Step 3: Enter the new network location for each subscription server in the list whose network location has changed.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 360

Figure 7-63: Updated subscription server locationFigure 7-63: Updated subscription server location

Step 4:Step 4: Click the Update button. If the dialog box closes, then the update to the publication server’s metadata was successful.

If an error message appears, investigate and correct the cause of the error. Repeat steps 1 through 4.

Step 5:Step 5: If the subscription server with the new network location manages subscriptions associated with publications in other publication servers, repeat
steps 1 through 4 for these other publication servers.

8.6.2 Updating a Publication Database

When you create a publication database definition, you save the publication database server’s network location (IP address and port number), the database
identifier, a database login user name, and the user’s password in the control schema accessed by the publication server. This login information is used
whenever a session needs to be established with the publication database. See Adding a Publication Database for information on creating a publication
database definition for a single-master replication system. See sections Adding the Primary definition node and Creating Additional Primary nodes for a
multi-master replication system.

The steps described in this section show you how to update the publication database login information stored in the control schema should any of these
attributes of the actual, physical database change.

NoteNote

Depending upon the database type (Oracle, SQL Server, or Postgres), certain attributes must not be changed. You must not change any attribute

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 361

that alters access to the schema where the control schema objects were created when you originally added this publication database definition.
See Control Schema Objects Created for a Publication for the location of the control schema objects.

Attributes you must not change include the following:

The Oracle login user name of an Oracle publication database as the control schema objects already reside in this Oracle user’s schema
The database server network location if the new network location references a database server that does not access the publication database where
the control schema objects are stored
The database identifier if the new database identifier references a different physical database than where the control schema objects are stored

Attributes you may change include the following:

The login user name’s password to match a changed database user password
The database server network location if the corresponding location change was made to the database server that accesses the publication database
The database identifier such as the Oracle service name, SQL Server database name, or Postgres database name if the corresponding name change
was made on the database server

Step 1:Step 1: Make sure the database server that you ultimately wish to save as the publication database definition is running and accepting client connections.

Step 2:Step 2: Make sure the publication server whose node is the parent of the publication database definition you wish to change is running and has been
registered in the xDB Replication Console you are using. See Registering a Publication Server for directions on starting and registering a publication server.

Step 3:Step 3: Select the Publication Database node corresponding to the publication database definition that you wish to update.

Figure 7-64: Selecting a publication database definition for updateFigure 7-64: Selecting a publication database definition for update

Step 4:Step 4: From the Publication menu, choose Publication Database , and then choose Update Database . Alternatively, click the secondary
mouse button on the Publication Database node and choose Update Database. The Update Database Source dialog box appears.

Step 5:Step 5: Enter the desired changes. See Step 3 of Adding a Publication Database for the precise meanings of the fields for a single-master replication
system. See sections Adding the Primary definition node and Creating Additional Primary nodes for a multi-master replication system.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 362

Figure 7-65: Update Database Source dialog box for a single-master replication systemFigure 7-65: Update Database Source dialog box for a single-master replication system

Step 6:Step 6: Click the Test button. If Test Result: Success appears, click the OK button, then click the Save button.

Figure 7-66: Successful publication database testFigure 7-66: Successful publication database test

If an error message appears investigate the cause of the error, correct the problem, and repeat steps 1 through 6.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 363

Step 7:Step 7: Restart the publication server. See Registering a Publication Server for directions on restarting the publication server.

Step 8:Step 8: Click the Refresh icon in the xDB Replication Console tool bar to show the updated Publication Database node and any of its publications.

Figure 7-67: Updated publication databaseFigure 7-67: Updated publication database

8.6.3 Updating a Publication

Existing publications can be updated in the following ways:

Tables can be added to the publication
Tables can be removed from the publication
Filter rules can be updated on publication tables

Adding Tables to a Publication

For a single-master replication system, you can add tables to a publication, even while there are existing subscriptions associated with the publication.
Similarly for a multi-master replication system, you can add tables to a publication while there are additional primary nodes in the replication system.

The following are the steps to add tables to an existing publication.

Step 1:Step 1: Make sure the publication server whose node is the parent of the publication you wish to change is running and has been registered in the xDB
Replication Console you are using. See Registering a Publication Server for directions on starting and registering a publication server.

Step 2 (For SMR only):Step 2 (For SMR only): Select the Publication node of the publication to which you wish to add tables.

Step 2 (For MMR only):Step 2 (For MMR only): Select the Publication node under the Publication Database node representing the primary definition node.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 364

Figure 7-68: Selecting a publication to which to add tablesFigure 7-68: Selecting a publication to which to add tables

Step 3:Step 3: Open the Add Tables dialog box in any of the following ways:

From the Publication menu, choose Update Publication, then Add Tables.
Click the secondary mouse button on the Publication node, choose Update Publication, and then choose Add Tables.
Click the primary mouse button on the Add Publication Tables icon.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 365

Figure 7-69: Opening the Add Tables dialog boxFigure 7-69: Opening the Add Tables dialog box

Step 4:Step 4: Fill in the following fields in the Add Tables tab of the Add Tables dialog box:

Add. Check the boxes next to the table names from the Available Tables list that are to be added to the publication. If the publication is a snapshot-
only publication, then views would appear in the Available Tables list as well. The Available Tables list contains only tables and views that are not
already members of other publications under the same Publication Database node. Alternatively or in addition, click the Use Wildcard
Selection button to use wildcard pattern matching for selecting tables to be added to the publication.
Select All. Check this box if you want to include all tables and views in the Available Tables list in the publication.
Use Wildcard Selection. Click this button to use the wildcard selector to choose tables for the publication. See Selecting Tables with the Wildcard
Selector for information on the wildcard selector.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 366

Figure 7-70: Add Tables dialog boxFigure 7-70: Add Tables dialog box

If you wish to omit certain rows of the publication tables or views from being replicated follow the directions in the next step to create a filter, otherwise go
on to Step 6.

Step 5 (Optional):Step 5 (Optional): If you want to filter the rows of the publication tables or views, click the Table Filters tab. Define filter rules by entering a unique,
descriptive filter name and an appropriate SQL WHERE clause in the Filter dialog box to select the rows you want to replicate.

For a single-master replication system, see Adding a Publication for information on defining table filters on a publication table.

For a multi-master replication system, see Adding a Publication.

Step 6 (For SMR only):Step 6 (For SMR only): Click the Add Tables button. If Publication Updated Successfully appears, click the OK button, otherwise investigate the error
and make the necessary corrections.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 367

Figure 7-71: Successfully added tables to publicationFigure 7-71: Successfully added tables to publication

Step 6 (For MMR only):Step 6 (For MMR only): Click the Add Tables button. The Data Sync Check dialog box appears warning you that synchronization replication is
performed before the table is added.

If you wish to perform synchronization at some later point in time then add the table, click the No button.

If you wish to proceed, click the Yes button. If Publication Updated Successfully appears, click the OK button, otherwise investigate the error and make
the necessary corrections.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 368

Figure 7-72: Data Sync Check dialog boxFigure 7-72: Data Sync Check dialog box

Step 7:Step 7: The replication tree appears as follows with the newly added table under the Publication node. Click the Refresh icon. The newly added table
appears under the Subscription nodes of a single-master replication system or the additional primary nodes of a multi-master replication system.

Figure 7-73: Publication and subscription with added tableFigure 7-73: Publication and subscription with added table

Step 8 (For MMR only):Step 8 (For MMR only): If you want to modify or see the default conflict resolution options assigned to the newly added table, follow the directions in

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 369

Section Updating the Conflict Resolution Options.

Step 9 (Optional):Step 9 (Optional): If you defined table filters on the newly added table, and you wish to use these filters on any subscriptions or primary nodes, you must
enable the filters on the table within the desired subscriptions or primary nodes.

For a single-master replication system, see Enabling/Disabling Table Filters on a Subscription <enable_filters_on_subscription> for directions on enabling
table filters on a subscription.

For a multi-master replication system, see Enabling/Disabling Table Filters on a Primary node for directions on enabling table filters on a primary node.

Removing Tables from a Publication

You can remove one or more tables from a publication, but only if the following condition is true:

The tables to be removed are not parent tables referenced by foreign key constraints of child tables that are not selected for removal as well.

Figure 7-74: Entity relationship diagram of tables with foreign key constraintsFigure 7-74: Entity relationship diagram of tables with foreign key constraints

In the preceding entity relationship diagram, the emp table has a foreign key constraint referencing the dept table, and the jobhist table has two
foreign key constraints. One constraint references the emp table and the other references the dept table.

If all three tables are in the publication, then you can remove the following combinations of tables:

Remove the jobhist table only.
Remove both the jobhist table and the emp table.

Step 1:Step 1: Make sure the publication server whose node is the parent of the publication you wish to change is running and has been registered in the xDB
Replication Console you are using. See Registering a Publication Server for directions on starting and registering a publication server.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 370

Step 2 (For SMR only):Step 2 (For SMR only): Select the Publication node of the publication from which you wish to remove tables.

Step 2 (For MMR only):Step 2 (For MMR only): Select the Publication node under the Publication Database node representing the primary definition node.

Figure 7-75: Selecting a publication from which to remove tablesFigure 7-75: Selecting a publication from which to remove tables

Step 3:Step 3: Open the Remove Tables dialog box in any of the following ways:

From the Publication menu, choose Update Publication , then Remove Tables .
Click the secondary mouse button on the Publication node, choose Update Publication , and then choose Remove Tables .
Click the primary mouse button on the Remove Publication Tables icon.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 371

Figure 7-76: Opening the Remove Tables dialog box by clicking the toolbar iconFigure 7-76: Opening the Remove Tables dialog box by clicking the toolbar icon

Step 4:Step 4: Use the Remove Tables dialog box as follows:

Figure 7-77: Remove Tables dialog boxFigure 7-77: Remove Tables dialog box

Remove. Check the boxes next to the table names from the Available Tables list that are to be removed from the publication. If the publication is a
snapshot-only publication, then views would appear in the Available Tables list as well. Alternatively or in addition, click the Use Wildcard
Selection button to use wildcard pattern matching for selecting tables to be removed from the publication.
Use Wildcard Selection. Click this button to use the wildcard selector to choose tables to remove from the publication. See Selecting Tables with the
Wildcard Selector for information on the wildcard selector.

Step 5:Step 5: Click the Remove button, then click the Yes button of the confirmation box.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 372

Figure 7-78: Remove Tables confirmationFigure 7-78: Remove Tables confirmation

Step 6:Step 6: Click the OK button in response to Tables Removed Successfully.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 373

Figure 7-79: Successfully removed tables from publicationFigure 7-79: Successfully removed tables from publication

The replication tree appears as follows without the removed table under the Publication node.

Figure 7-80: Publication minus removed tableFigure 7-80: Publication minus removed table

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 374

8.6.4 Updating the Set of Available Table Filters in a Publication

Once a set of available table filters has been defined in the publication of a single-master replication system or a multi-master replication system, the set
can subsequently be updated by adding new filter rules, removing existing filter rules, or modifying existing filter rules.

NoteNote

See Table Settings and Restrictions for Table Filters for table setup requirements for a log-based replication system as well as general
restrictions on the use of table filters.

See Adding a Publication for information on using table filters in a single-master replication system and Section Adding a Publication for a multi-master
replication system. Updating the set of available table filters in a publication has the following implications:

After you have added new filter rules to a publication, you must then enable these newly added filter rules on the subscriptions or primary nodes on
which you want these filter rules to have an effect. See Enabling/Disabling Table Filters on a Subscription for directions on enabling filter rules on a
subscription. See Section Enabling/Disabling Table Filters on a Primary node for enabling filter rules on a primary node.
After you have removed existing filter rules from a publication, the removed filter rules are automatically deleted from any associated subscription
or primary node on which they had been enabled. That is, you do not need to modify the subscriptions or primary nodes to disable the filter rules
once they have been removed from the publication.
After you have modified existing filter rules (that is, changed the filter name or filter clause), the modifications are automatically applied to any
subscriptions or primary nodes on which the filter rules had been enabled. That is, you do not need to make any changes in the associated
subscriptions or primary nodes.

After your updates to the set of available table filters in the publication have been completed, and the filter rules have been enabled or disabled on the
target subscriptions or primary nodes, a snapshot replication should be performed on any subscription or primary node affected by an updated filter rule to
ensure that the content of the targeted subscription tables or primary node tables is consistent with the current set of filter rules enabled on those tables.

The following are the steps to update the set of available filter rules in a publication.

Step 1:Step 1: Make sure the publication server whose node is the parent of the publication you wish to change is running and has been registered in the xDB
Replication Console you are using. See Registering a Publication Server for directions on starting and registering a publication server.

Step 2 (For SMR only):Step 2 (For SMR only): Select the Publication node of the publication in which you wish to update the set of available table filters.

Step 2 (For MMR only):Step 2 (For MMR only): Select the Publication node under the Publication Database node representing the primary definition node.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 375

Figure 7-81: Selecting a publication in which to update the set of available table filtersFigure 7-81: Selecting a publication in which to update the set of available table filters

Step 3:Step 3: Open the Update FiltersUpdate Filters dialog box in any of the following ways:

From the PublicationPublication menu, choose Update PublicationUpdate Publication, then Update FiltersUpdate Filters.
Click the secondary mouse button on the Publication node, choose Update PublicationUpdate Publication, and then choose Update FiltersUpdate Filters.

Figure 7-82: Opening the Update Filters dialog boxFigure 7-82: Opening the Update Filters dialog box

Step 4:Step 4: The set of all available filter rules defined in the publication are listed under the Table FiltersTable Filters tab.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 376

Figure 7-83: Set of all available filter rulesFigure 7-83: Set of all available filter rules

To add a new filter rule, from the Table/View drop-down list select the table or view for which you wish to add a filter and click the Add Filter button. Fill in
the information in the dialog box that appears. (See Adding a Publication for more details on adding individual filter rules in a single-master replication
system. See Adding a Publication for a multi-master replication system.)

To remove a filter rule, click the primary mouse button on the filter rule you wish to remove so the entry is highlighted and click the Remove Filter button.
You may also modify the filter name or filter clause of a filter rule listed in the Table Filters tab by double-clicking on the cell of the filter name or filter
clause you wish to change. When the cursor appears in the cell, enter the text for the desired change.

When you are satisfied with the updated set of available table filters, click the Update button.

Step 5:Step 5: A confirmation box appears presenting a warning message and a recommendation to perform a snapshot replication to any subscription or primary
node on which you intend to enable the change in filtering criteria.

Click the OkOk button in the confirmation box to proceed with the update to the filter rules. Click the CancelCancel button to return to the Filter RulesFilter Rules tab if you wish
to modify your filter rule updates.

Figure 7-84: Change filter rule confirmationFigure 7-84: Change filter rule confirmation

Step 6:Step 6: You may selectively enable any new filter rules to the corresponding tables of the associated subscriptions or primary nodes. See
Enabling/Disabling Table Filters on a Subscription for information on enabling table filters on a subscription. See Enabling/Disabling Table Filters on a
Primary node for enabling table filters on a primary node.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 377

8.6.5 Validating a Publication

Once a publication is created, do not directly change the definitions of the tables belonging to the publication. Doing so may cause a failure during the
replication process. Examples of table definitions that must not be altered include:

Adding or removing columns to a table
Renaming columns
Changing the data types of columns
Changing the lengths of columns
Changing a not nullable column to nullable or a nullable column to not nullable
Adding or removing uniqueness constraints
Adding or removing check constraints

In a single-master replication system, xDB Replication Server does not propagate table definition changes to the subscription tables once the subscription
tables are created. Rows that may be allowed in an altered publication table may be illegal in the unaltered subscription table and will cause an error
during replication.

Similarly, in a multi-master replication system, table definition changes are not propagated from one primary node to another except when a new primary
node is added, and you choose to replicate the schema definition from the primary definition node.

In addition, for synchronization replication with the trigger-based method, triggers are generated on the publication tables that use certain attributes of
these tables. If the table definition is changed, the trigger may no longer function properly.

NoteNote

Do not change the triggers generated by xDB Replication Server. If it becomes necessary to regenerate the triggers, you must remove the
associated publication and then recreate the publication.

NoteNote

Certain table definition changes can be made and propagated by xDB Replication Server by using the DDL change replication feature. See Section
Replicating DDL Changes for information on the DDL change replication feature.

If you do not use the DDL change replication feature, then the following general steps must be taken if table definition changes are made.

In a single-master replication system, if changes were made to the definitions of one or more publication tables, the resolution to the problem must be
handled on a case by case basis as it depends upon the type of changes that were made. In the worst case scenario, the subscription and publication must
be removed and recreated as follows:

Remove the subscription that is associated with the publication. See Removing a Subscription for directions to remove a subscription.
Remove the subscription tables from the subscription database. This is done with SQL DROP TABLE statements in the database system.
Remove the publication. See Removing a Publication for directions to remove a publication.
Re-add the publication. See Adding a Publication for directions to add a publication.
Re-add the subscription. See Adding a Subscription for directions to add a subscription.

In a multi-master replication system, if changes were made to the definitions of one or more publication tables on one or more primary nodes, the
resolution to the problem involves:

Making sure the table definitions are updated on all primary nodes so that they are identical, or updating the table definition on the primary
definition node so it can be replicated to the other primary nodes.
Recreating the publication database definitions of the primary nodes.

The general steps are the following:

Remove the publication database definitions of all primary nodes except for the primary definition node. See Removing a Publication Database for
directions to remove a publication database definition.
Remove the publication. See Removing a Publication for directions to remove a publication.
Remove the publication database definition of the primary definition node. See Removing a Publication Database for directions to remove a
publication database definition.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 378

At this point all of the triggers, shadow tables, and metadata have been removed from the primary nodes.
With respect to the publication table definitions, you can either:

Update the table definitions on all primary nodes so that they are identical, or
Assume the table definitions on the primary definition node are up-to-date, and delete the out-of-date table definitions on all other primary
nodes.

Re-add the publication database definition for the primary definition node. See Adding the Primary definition node for directions to add the primary
definition node.
Re-add the publication. See Adding a Publication for directions to add a publication.
Re-add additional primary nodes. See Creating Additional Primary nodes for directions to add an additional primary node. When creating a primary
node, uncheck the Replicate Publication Schema check box if you have already created the table definitions on all primary nodes. Check
the Replicate Publication Schema check box if you want to propagate the table definitions from the primary definition node to all other
primary nodes. A snapshot reloads the primary node tables from the primary definition node.

Validating a Single Publication

xDB Replication Server provides a way to verify that certain characteristics of publication tables have not been altered since the publication was created.
Note: This validation feature is only available for publications using the trigger-based method of synchronization replication. This validation feature is not
available for publications using the log-based method of synchronization replication.

The validation operation described here and in Section Validating All Publications can check for the following types of table modifications:

Addition of columns to a table
Removal of columns from a table
Renaming of columns

NoteNote

In a multi-master replication system, publication tables in only the primary definition node are validated. The validation operation does not check
if table definitions have changed in other primary nodes.

The following steps show how to validate a single publication:

Step 1:Step 1: Make sure the publication server whose node is the parent of the publication you wish to validate is running and has been registered in the xDB
Replication Console you are using. See Registering a Publication Server for directions on starting and registering a publication server.

Step 2 (For SMR only):Step 2 (For SMR only): Select the Publication node of the publication you want to validate.

Step 2 (For MMR only):Step 2 (For MMR only): Select the Publication node under the Publication Database node representing the primary definition node.

Step 3:Step 3: From the Publication menu, choose Validate Publication . Alternatively, click the secondary mouse button on the Publication node
and choose Validate Publication .

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 379

Figure 7-85: Validating a selected publicationFigure 7-85: Validating a selected publication

Step 4:Step 4: If All Schema of Published Tables in Publication 'publication_name' Are Up-To-Date appears, click the OK button. If an error appears, determine
which tables were changed and what changes were made to the table definitions. These issues need to be resolved on a case by case basis as discussed
earlier in this section.

Figure 7-86: Successful validation of all tables in the selected publicationFigure 7-86: Successful validation of all tables in the selected publication

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 380

Validating All Publications

All publications under a single Publication Database node can be validated in one operation.

NoteNote

This validation feature is only available for publications using the trigger-based method of synchronization replication. This validation feature is
not available for publications using the log-based method of synchronization replication.

NoteNote

In a multi-master replication system, publication tables in only the primary definition node are validated. The validation operation does not check
if table definitions have changed in other primary nodes.

Step 1:Step 1: Make sure the publication server whose node is the parent of the publications you wish to validate is running and has been registered in the xDB
Replication Console you are using. See Registering a Publication Server for directions on starting and registering a publication server.

Step 2 (For SMR only):Step 2 (For SMR only): Select the Publication Database node under which you want to validate all publications.

Step 2 (For MMR only):Step 2 (For MMR only): Select the Publication Database node representing the primary definition node.

Step 3:Step 3: From the Publication menu, choose Validate All Publications . Alternatively, click the secondary mouse button on the Publication
Database node and choose Validate All Publications .

Figure 7-87: Validating all publications subordinate to a selected publication databaseFigure 7-87: Validating all publications subordinate to a selected publication database

Step 4:Step 4: If there were no modified tables, click the OK button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 381

Figure 7-88: Successful validation of all tables in all publications subordinate to a selected publication databaseFigure 7-88: Successful validation of all tables in all publications subordinate to a selected publication database

If there were modified tables, a list of publications that contain the modified tables is displayed. Determine which tables were changed and what changes
were made to the table definitions. These issues need to be resolved on a case by case basis as discussed earlier in this section.

Figure 7-89: List of publications with modified tablesFigure 7-89: List of publications with modified tables

8.6.6 Removing a Publication

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 382

In a single-master replication system, a publication can be removed before its associated subscriptions are removed. See Removing a Subscription for
directions to remove a subscription.

In a multi-master replication system, the publication is removed from under the Publication Database node representing the primary definition node.
Before a publication can be removed, all non-MDN nodes must be removed. See Removing a Publication Database for directions to remove a publication
database definition of a primary node.

Removing a publication does not delete the publication tables in the publication database. It removes the identity and association of these tables to xDB
Replication Server so the tables remain in the database until the DBA deletes them with the DROP TABLE SQL statement.

The publication database user name is also left intact along with some of the xDB Replication Server metadata database objects. Shadow tables and
triggers associated with the publication tables that were created by the publication server are deleted when the publication is removed. The remaining
metadata database objects are deleted when the publication database definition is removed.

Step 1:Step 1: Make sure the publication server whose node is the parent of the publication you wish to remove is running and has been registered in the xDB
Replication Console you are using. See Registering a Publication Server for directions on starting and registering a publication server.

Step 2 (For SMR only):Step 2 (For SMR only): Select the Publication node of the publication that you wish to remove.

Step 2 (For MMR only):Step 2 (For MMR only): Select the Publication node under the Publication Database node representing the primary definition node.

Figure 7-90: Selecting a publication to removeFigure 7-90: Selecting a publication to remove

Step 3:Step 3: Remove the publication in any of the following ways:

Choose Remove Publication from the Publication menu.
Click the secondary mouse button on the Publication node and choose Remove Publication .
Click the primary mouse button on the Remove Publication icon.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 383

Figure 7-91: Removing the publication using the menu barFigure 7-91: Removing the publication using the menu bar

Step 4:Step 4: In the Remove Publication confirmation box, click the Yes button.

Figure 7-92: Remove Publication confirmationFigure 7-92: Remove Publication confirmation

The Publication node no longer appears under the Publication Database node.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 384

Figure 7-93: Replication tree after removing a publicationFigure 7-93: Replication tree after removing a publication

8.6.7 Removing a Publication Database

Deleting a publication database definition from xDB Replication Server is equivalent to removing its Publication Database node.

If the Publication Database node to be removed is currently designated as the controller database, and there are additional publication databases in other
single-master or multi-master replication systems, then you must first switch the controller database role to another publication database. See Switching
the Controller Database for information on switching the controller database.

If the Publication Database node to be removed is the only remaining publication database (that is, there are no other single-master or multi-master
replication systems), then this database can remain as the controller database since there is no other publication database available to be designated as
the controller database. However, any existing subscription database definition must be removed before removing the last Publication Database node.

In a single-master replication system, before a Publication Database node can be removed, all publications under that Publication Database node must be
removed. See Removing a Publication for directions on removing a publication.

In a multi-master replication system, removing a Publication Database node representing a primary node (other than the primary definition node),
eliminates that node’s future participation in the replication system. Synchronization replications no longer involve tables in the removed primary node.

In a multi-master replication system, removing the Publication Database node representing the primary definition node removes the remaining metadata
database objects of that particular multi-master replication system, effectively removing the multi-master replication system (except for the database
objects comprising the publication tables).

Removing the Publication Database node representing the primary definition node entails the following steps:

If the multi-master replication system is the only xDB replication system (that is, there are no single-master replication systems), then switch the
controller database to the primary definition node if the designated controller database is not currently the same database as the primary definition
node.
If there are one or more single-master replication systems in addition to the multi-master replication system, switch the controller database to a
Postgres publication database of a single-master replication system. If none of the single-master publication databases is of type Postgres, and
there are more than one Oracle or SQL Server publication databases, then you must create a Postgres publication database for a single-master
replication system just for the purpose of designating it as the controller database.
All Publication Database nodes representing non-MDN nodes must be removed. Repeat the process described in this section for each such primary
node.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 385

The publication under the Publication Database node representing the primary definition node must be removed. See Removing a Publication for
directions on removing a publication.
Remove the Publication Database node representing the primary definition node using the process described in this section.

Removing a Publication Database node does not delete the physical database from the database server. It removes the identity and association of the
database to xDB Replication Server so no further replications can originate from tables in the database unless there are other publication database
definitions in xDB Replication Server with the same host and database identifier. The physical database can only be removed using the database
management system’s database removal procedures.

The publication database user name is also left intact.

All xDB Replication Server metadata database objects created for that publication database definition are deleted.

For Oracle and SQL Server:For Oracle and SQL Server: All metadata database objects under the publication database user’s schema are deleted.

For Postgres only:For Postgres only: The schema _edb_replicator_pub and all of its database objects are deleted from the publication database.

The following are the steps to remove the Publication Database node and equivalently, the publication database definition:

Step 1:Step 1: Make sure the publication server whose node is the parent of the publication database definition you wish to remove is running and has been
registered in the xDB Replication Console you are using. See Registering a Publication Server for directions on starting and registering a publication server.

Step 2:Step 2: Select the Publication Database node that you wish to remove.

Figure 7-94: Selecting a publication database definition for removalFigure 7-94: Selecting a publication database definition for removal

Step 3:Step 3: From the Publication menu, choose Publication Database, then Remove Database. Alternatively, click the secondary mouse button on the
Publication Database node and choose Remove Database. The Remove PublicationRemove Publication Database confirmation box appears.

Step 4:Step 4: In the Remove Publication DatabaseRemove Publication Database confirmation box, click the YesYes button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 386

Figure 7-95: Remove Publication Database confirmationFigure 7-95: Remove Publication Database confirmation

The Publication Database node no longer appears under the Publication Server node.

Figure 7-96: Replication tree after removing a publication databaseFigure 7-96: Replication tree after removing a publication database

8.7 Switching the Controller Database

The controller database is designated in the xDB Replication Configuration file and determines the publication database to which the publication server
and subscription server initially connect upon startup. See Controller Database for information on the controller database. See xDB Replication
Configuration File for information on the xDB Replication Configuration file.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 387

The current controller database cannot be removed from a replication system unless it is the last publication database remaining subordinate to the
publication server. (That is, there are no other publication databases managed by the publication server.)

If there are more than one publication databases, and you wish to remove the publication database currently designated as the controller database, you
must first set another publication database as the controller, and then you can remove the publication database previously designated as the controller.

The publication database used as the controller can be the primary database of any single-master replication system or any primary node of a multi-master
replication system. Any database type (Oracle, SQL Server, or Postgres) is acceptable as the controller database.

NoteNote

If the controller database is an Oracle or a SQL Server publication database, then a second Oracle or SQL Server publication database cannot be
added to create a second single-master replication system. In order for xDB Replication Server to run more than one single-master replication
systems consisting of Oracle or SQL Server publication databases, a Postgres publication database must be designated as the controller
database.

Once you have multiple Oracle or SQL Server publication databases set up in single-master replication systems with a Postgres controller database, do not
switch the controller database to an Oracle or SQL Server publication database.

Upon switching the controller database, the publication server updates the xDB Replication Configuration file so the parameters user, password, host, port,
database, and type are set to the connection and authentication settings for the selected publication database.

The following are the steps to set another publication database as the controller database.

Step 1:Step 1: Make sure the publication server whose node is the parent of the publication databases is running and has been registered in the xDB Replication
Console you are using. See Registering a Publication Server for directions on starting and registering a publication server.

Step 2:Step 2: Select the Publication Database node corresponding to the publication database that you wish to set as the controller database.

Figure 7-97: Selecting the publication database to set as the controller databaseFigure 7-97: Selecting the publication database to set as the controller database

Step 3: Click the secondary mouse button on the Publication Database node and choose Set as Controller database.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 388

Figure 7-98: Setting the controller databaseFigure 7-98: Setting the controller database

Step 4: In the Set as Controller database confirmation box, click the Yes button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 389

Figure 7-99: Set as Controller database confirmationFigure 7-99: Set as Controller database confirmation

Step 5: The selected publication database has now been set as the controller database.

Figure 7-100: Publication database promoted to controller databaseFigure 7-100: Publication database promoted to controller database

Step 6: The value Yes in the Controller database field of the Property window indicates this database is the controller database.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 390

Figure 7-101: Controller database indicated by ‘Yes’ in the Property windowFigure 7-101: Controller database indicated by ‘Yes’ in the Property window

The following shows the xDB Replication Configuration file after the controller database has been switched to the primary node database MMRnode_b .

#xDB Replication Server Configuration Properties
#Thu Oct 15 14:42:35 GMT-05:00 2015
port=5444
admin_password=ygJ9AxoJEX854elcVIJPTw\=\=
user=MMRuser
admin_user=admin
type=enterprisedb
database=MMRnode_b
password=ygJ9AxoJEX854elcVIJPTw\=\=
host=192.168.2.22

8.8 Replicating DDL Changes

Once a replication system has been created and is in operation, there may be occasions where it is necessary to make changes to the publication table
definitions. These data definition language (DDL) changes may include the following:

Adding new columns to a table
Renaming existing columns
Modifying a column data type
Modifying a column constraint
Removing columns

NoteNote

See Validating a Publication for information on dealing with other types of table definition changes.

Table definition changes are generally implemented using the SQL ALTER TABLE statement, which is issued in an SQL command line utility program
such as PSQL.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 391

The DDL change replication feature accepts one or more ALTER TABLE statements. The statements may be provided by means of a text file or by
entering them directly into the Alter Publication Table dialog box. The latter can be done by copying and pasting the statements into the dialog box, or by
directly typing in the statements. The DDL change replication feature then performs the following actions:

Applies the ALTER TABLE statements to the appropriate target table in the publication and subscription databases of a single-master replication
system, or in all primary nodes (including the primary definition node) of a multi-master replication system.
For the trigger-based method of synchronization replication, modifies the insert/update/delete triggers that add data into the shadow table
whenever a transaction occurs on the target table.
For the trigger-based method of synchronization replication, modifies the shadow table to properly accommodate the target table changes.

The DDL change replication feature is supported for Oracle and SQL Server subscription databases as well as Postgres subscription databases. However,
the publication database must always be a Postgres database.

The syntax of the ALTER TABLE statement accepted by the DDL change replication features is as follows:

ALTER TABLE schema.table_name action

where action can be any of the following:

Rename an existing column:

RENAME [COLUMN] column_name TO new_column_name

Add a column to the table:

ADD [COLUMN] column_name data_type
[DEFAULT dflt_expr]
[column_constraint_1 [column_constraint_2] ...]

Drop a column from the table:

DROP [COLUMN] column_name [RESTRICT]

Change the data type of a column:

ALTER [COLUMN] column_name [SET DATA] TYPE data_type
[COLLATE "collation"]
[USING data_type_expr]

Set the DEFAULT value of a column:

ALTER [COLUMN] column_name SET DEFAULT dflt_expr

NoteNote

The SET DEFAULT clause is not supported when Oracle or SQL Server is the subscription database.

Drop the DEFAULT value of a column:

ALTER [COLUMN] column_name DROP DEFAULT

NoteNote

The DROP DEFAULT clause is not supported when Oracle or SQL Server is the subscription database.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 392

Set the column to reject null values:

ALTER [COLUMN] column_name SET NOT NULL

NoteNote

The SET NOT NULL clause is not supported when SQL Server is the subscription database.

Allow the column to accept null values:

ALTER [COLUMN] column_name DROP NOT NULL

NoteNote

The DROP NOT NULL clause is not supported when SQL Server is the subscription database.

The following restrictions apply to the manner in which the ALTER TABLE statements are specified whether it is in a text file or entered directly into the
dialog box:

Each ALTER TABLE statement must be terminated by a semicolon and begin on a separate line.
Although the Postgres ALTER TABLE statement allows multiple actions per statement, the xDB DDL change replication feature permits only one
action per ALTER TABLE statement.
The target table of all ALTER TABLE statements must be the same.
The DROP COLUMN action cannot be specified for a column that comprises part of the table’s primary key.

ParametersParameters

schema

The name of the schema containing table_name. This value is case-sensitive.

table_name

The name of the table containing the column to be added, modified, or dropped. This value is case-sensitive.

column_name

The name of the column to be added, modified, or dropped.

new_column_name

The new name of the column specified in the RENAME COLUMN clause.

data_type

The data type of the column.

dflt_expr

An expression for the default value of the column.

column_constraint_n

A column constraint such as a UNIQUE or CHECK constraint. For additional information on column constraints see the CREATE TABLE SQL

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 393

command in the PostgreSQL Core Documentation located at:

https://www.postgresql.org/docs/current/static/sql-createtable.html

RESTRICT

In the DROP COLUMN clause, do not drop the column if there are objects dependent upon it. This is the default. Note: You cannot specify the
CASCADE option as it is not supported by the DDL change replication feature.

collation

Collation assigned to the column. If omitted, the column data type’s default collation is used. Examples of collation are default, C, POSIX, en_US,
en_GB, or de_DE.

data_type_expr

An expression specifying how the column value with the new data type is to be converted from the column value with the old data type. This
expression may reference other columns in the same table. If omitted, the default conversion is an assignment cast from the old data type to the
new data type.

ExamplesExamples

The following are examples of ALTER TABLE statements that can be used by the DDL change replication feature.

The following set of ALTER TABLE statements, either specified by a text file or entered directly into the dialog box, adds columns to the edb.emp table.

ALTER TABLE edb.emp ADD COLUMN gender CHAR(1) CHECK(gender IN ('M','F'));
ALTER TABLE edb.emp ADD COLUMN gradelevel VARCHAR2(4);
ALTER TABLE edb.emp ADD COLUMN title VARCHAR2(10);

The following ALTER TABLE statement changes the data type length of the title column and sets its values with the USING data_type_expr clause .

ALTER TABLE edb.emp
 ALTER COLUMN title SET DATA TYPE VARCHAR(25) USING
 CASE job
 WHEN 'CLERK' THEN 'ADMINISTRATIVE ASSISTANT'
 WHEN 'ANALYST' THEN 'R & D SPECIALIST'
 WHEN 'SALESMAN' THEN 'MARKETING REPRESENTATIVE'
 WHEN 'MANAGER' THEN 'SUPERVISOR'
 WHEN 'PRESIDENT' THEN 'CHIEF EXECUTIVE OFFICER'
 END;

The following query shows the values assigned to the title column after the DDL change replication feature applies the preceding ALTER TABLE statement
to the edb.emp table. This change to the title column and assignment of values occurs in all the subscription databases of a single-master replication
system or in all the primary nodes of a multi-master replication system.

edb=# SELECT empno, ename, job, title FROM emp;
 empno | ename | job | title
-------+--------+-----------+--------------------------
 7369 | SMITH | CLERK | ADMINISTRATIVE ASSISTANT
 7499 | ALLEN | SALESMAN | MARKETING REPRESENTATIVE
 7521 | WARD | SALESMAN | MARKETING REPRESENTATIVE
 7566 | JONES | MANAGER | SUPERVISOR
 7654 | MARTIN | SALESMAN | MARKETING REPRESENTATIVE
 7698 | BLAKE | MANAGER | SUPERVISOR
 7782 | CLARK | MANAGER | SUPERVISOR
 7788 | SCOTT | ANALYST | R & D SPECIALIST

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 394

https://www.postgresql.org/docs/current/static/sql-createtable.html

 7839 | KING | PRESIDENT | CHIEF EXECUTIVE OFFICER
 7844 | TURNER | SALESMAN | MARKETING REPRESENTATIVE
 7876 | ADAMS | CLERK | ADMINISTRATIVE ASSISTANT
 7900 | JAMES | CLERK | ADMINISTRATIVE ASSISTANT
 7902 | FORD | ANALYST | R & D SPECIALIST
 7934 | MILLER | CLERK | ADMINISTRATIVE ASSISTANT
(14 rows)

The following set of ALTER TABLE statements drops the columns that were added in the first example.

ALTER TABLE edb.emp DROP COLUMN gender;
ALTER TABLE edb.emp DROP COLUMN gradelevel;
ALTER TABLE edb.emp DROP COLUMN title;

The DDL change replication feature can be invoked from either the xDB Replication Console (see DDL Change Replication Using the xDB Replication
Console) or the xDB Replication Server CLI (see Replicating DDL Changes (replicateddl) The next section describes the process that occurs during DDL
change replication.

8.8.1 DDL Change Replication Process

The DDL statement is executed in a controlled manner such that the target table is exclusively locked (by the default setting of configuration option
ddlChangeTableLock) during the course of the operation. This is done to avoid loss of any transactions while the replication triggers and shadow

table are modified by the DDL change replication process. Only one target table is locked at a time while DDL change replication takes place on that table,
its triggers, and shadow table.

If there is a backlog of pending transactions, it is recommended to perform an explicit synchronization replication before performing DDL change
replication to avoid prolonging the DDL change replication process for a longer period of time.

DDL change replication should be performed when the OLTP rate is very low (near zero).

NoteNote

Exclusive acquisition of each target table during the DDL change replication process can be turned off by setting ddlChangeTableLock to
false. However, this should be done only when there are no write transactions taking place against the target table, otherwise transactions may
not be recorded by the replication system. See DDL Change Replication Table Locking for additional information on the
ddlChangeTableLock configuration option.

The following is the series of steps that occur during the DDL change replication process.

The publication server performs a health check across all databases in the replication system to ensure they can be accessed. If any database is not
available the DDL change replication process is aborted with a notification to the user.
If the publication server configuration option ddlChangeTableLock is set to its default value of true, an exclusive table lock is requested on the
table to which the DDL change is to be applied. If another application already has a lock on the table, there is a wait time of 2 minutes after which the
DDL change replication process is aborted if the lock is not released before then. If ddlChangeTableLock is set to false, an exclusive table lock
is not requested.
The DDL statement is executed against the target table. The replication triggers and shadow table are modified accordingly. If an error occurs, the
user is informed and the operation is aborted. If ddlChangeTableLock is set to true, the exclusive lock is released.
The preceding two bullet points are repeated on the target table for each database in the replication system.
The in-memory table metadata definition is refreshed to reflect the DDL change. The user is informed of successful completion of the operation.
If an error occurs during the prior steps, any changes up to that point are rolled back so that the publication table, replication triggers, and shadow
table are reverted back to their original state prior to the start of this operation. If one or more databases goes down before completion of the
operation, the publication is marked as dirty to avoid further replication events.

NoteNote

When you execute the alterDDL command, non-MDN nodes shouldn't have any CDC changes during that window for MMR setup. If there are any

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 395

CDC changes, it may result in data loss and a break in replication.

NoteNote

The replicateDDL command performs an implicit synchronization operation that replicates any backlog changes before applying the DDL
changes. When continuous data becomes available for replication, this operation may take a long time to complete.

8.8.2 DDL Change Replication Using the xDB Replication Console

DDL change replication can be applied using the xDB Replication Console as follows.

Step 1:Step 1: If you plan to use a file to supply the ALTER TABLE statements to a publication table, prepare the text file. Make sure this text file is accessible by
the operating system account with which you will open the xDB Replication Console.

Alternatively, you can copy and paste, or directly type in the ALTER TABLE statements into the Alter Publication Table dialog box without having to save
the statements in a file.

Step 2:Step 2: Make sure the publication server whose node is the parent of the publication containing the table you wish to change is running and has been
registered in the xDB Replication Console you are using. See Registering a Publication Server for directions on starting and registering a publication server.

Step 3:Step 3: Under the publication database of a single-master replication system, or under the primary definition node of a multi-master replication system,
open the Alter Publication Table dialog box by clicking the secondary mouse button on the Table node of the table to be modified and choose Alter Table.

Figure 7-102: Selecting a table to alterFigure 7-102: Selecting a table to alter

Step 4:Step 4: In the Alter Publication Table dialog box, if you saved the ALTER TABLE statements in a text file, make sure the DDL Script File option
is selected, browse for this file, and click the OK button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 396

Figure 7-103: Alter Publication Table dialog box with DDL script fileFigure 7-103: Alter Publication Table dialog box with DDL script file

Alternatively, if you are directly entering the ALTER TABLE statements, select the DDL Script option instead of the DDL Script File option. Directly type
in, or copy and paste the ALTER TABLE statements from your source into the text box. Click the OK button.

Figure 7-104: Alter Publication Table dialog box with copy and pasteFigure 7-104: Alter Publication Table dialog box with copy and paste

Step 5:Step 5: If the DDL replicated successfully message box appears, the DDL change was successful across all databases. Click the OK button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 397

Figure 7-105: DDL replicated successfullyFigure 7-105: DDL replicated successfully

If DDL replication was not successful, the problem must be investigated and resolved on a case by case basis. Factors to look for include the following:

Were the modifications in the ALTER TABLE statements successfully applied to the target table in each database of the replication system?
For the trigger-based method, were the replication triggers on the target table modified to account for the ALTER TABLE statements?
For the trigger-based method, was the shadow table RRST_schema_table located in the _edb_replicator_pub schema in each database
of the replication system modified to account for the ALTER TABLE statements?

If it is apparent that the replication system is not in a consistent state regarding the table definitions, see the beginning of Section Validating a Publication
for guidance on how to deal with such issues.

8.9 Loading Tables From an External Data Source (Offline Snapshot)

There may be circumstances when you want to initially load your target tables (subscription tables of a single-master replication system, or non-MDN nodes
of a multi-master replication system) using a method other than the snapshot replication functionality of xDB Replication Server. This is referred to as
using an offline snapshot.

For example, you might initially load the tables by running the Migration Toolkit from the command line or by using a backup from an external data source.
When you load the target tables using an offline snapshot, special preparations must be taken to account for the following deviations from the default
target table creation and loading process:

In the typical, default scenario xDB Replication Server creates the target table definitions when you define the subscription in a single-master
replication system, or add an additional primary node in a multi-master replication system. When using an offline snapshot, creation of the target
table definitions is expected to be your responsibility. You must therefore prevent xDB Replication Server from creating the target table definitions.
In the typical, default scenario xDB Replication Server performs synchronization replication using batches of SQL statements. If any statement in a
batch results in an error, all statements in the batch are rolled back. When using an offline snapshot, if there is the possibility that the external data
source used to load the target tables already has transactions applied to it that are also recorded in the shadow tables of the source tables, then you
must perform the first synchronization replication in non-batch mode. This is because the batch of synchronization transactions may include SQL
statements that have already been applied to the target, which may result in a statement failure in certain cases.

This section discusses how to deal with the preceding two points for both a single-master and a multi-master replication system.

First, non-batch mode synchronization and why it must be used in certain cases is explained in more detail in the following section.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 398

Non-Batch Mode Synchronization

Synchronization replications are done in batches of updates, each batch committed in a separate transaction. Therefore if any single update in a batch fails,
all the updates in the batch are rolled back.

This process has the following implications.

Prior to and during the time when the offline snapshot is in progress, there may be updates to the source tables, which are recorded in the source tables’
shadow tables. After the offline snapshot completes, there may be additional updates to the source tables that are also recorded in the shadow tables.

Since xDB Replication Server has no knowledge of the external data source used to load the target tables, it is unknown to xDB Replication Server whether
or not any of the updates made to the source tables during or after the offline snapshot, have already been included in the data used to load the target
tables.

As a result, the shadow tables may include a mixture of duplicate updates that have already been applied to the target tables, as well as new updates that
have not been applied to the target tables.

If you then perform synchronization replication, the publication server attempts to apply all updates recorded in the shadow tables in batches.

If one of the updates had been an insertion of a new row, and this new row is already in the target table loaded from the offline snapshot, a duplicate key
error results when the publication server attempts to apply the batch containing the INSERT statement for this row. The duplicate key error forces the
rollback of the entire batch. This causes the exclusion of updates in the batch that may not yet have been carried over to the target tables. The source tables
and target tables are now inconsistent since there were updates to the source tables that have not been applied to the target tables.

NoteNote

The effects of applying UPDATE and DELETE statements in the batch to a target table that already has been changed by these updates does
not cause the same problem as repeated application of INSERT statements. The UPDATE statement would just change the row to the same values
a second time. When a DELETE statement affects no rows, this is not considered an error by the database server, and therefore, no rollback of the
batch occurs.

The solution to the potential rollback of a batch is to apply the shadow table updates in non-batch mode. That is, each SQL statement is individually
committed. In that way, if an insertion of a row fails due to a duplicate key error, that statement alone is rolled back. The error does not affect the other
shadow table updates that must be applied since all updates are enclosed within their own, individual transactions.

The batchInitialSync configuration option controls whether the first synchronization replication occurs in batch or non-batch mode. If you are using
an offline snapshot in an active replication system where updates are occurring to the source tables and transactions are thus accumulating in the shadow
tables for the trigger-based method, it is advisable to set batchInitialSync to false to perform the first synchronization replication in non-batch
mode.

NoteNote

An offline snapshot cannot be used to add a subscription or a primary node to an active replication system that uses the log-based method. For
the log-based method, offline snapshots can only be used to initially configure the system, and not to update it with additional nodes after the
publication database or primary node is actively receiving transactions.

If you are using offline snapshots to initially create the entire replication system that has yet to be activated, and the content of the offline snapshots are all
assumed to be consistent for the source and target tables, then batchInitialSync can be left with its default setting of true since it is assumed that
the first synchronization replication will not apply any duplicate updates.

Offline Snapshot Configuration Options

The following are the configuration options that you need to modify when using an offline snapshot.

NoteNote

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 399

These options apply to the publication server only.

offlineSnapshot

The offlineSnapshot option must be set to true before creating the subscription for a single-master replication system, or before adding
the primary node for a multi-master replication system.

offlineSnapshot={true | false}

The default value is false.

When set to true, the offlineSnapshot option prevents the usual creation of the subscription schema and table definitions when the
subscription is defined in a single-master replication system since it is assumed that you are creating the subscription table definitions and
loading them from an external source other than the publication.

When adding the primary node in a multi-master replication system, leave the Replicate Publication Schema and Perform Initial Snapshot boxes
unchecked (see Creating Additional Primary nodes).

When offlineSnapshot is set to true, this has the direct effect within the control schema by setting column has_initial_snapshot to a value
of O indicating an offline snapshot is used for the target subscription or primary node represented by the row. Column has_initial_snapshot is set
in table xdb_publication_subscriptions for a single-master replication system and in table xdb_MMR_pub_group for a multi-
master replication system.

The setting of has_initial_snapshot influences the behavior of the batchInitialSync option as explained in the following section.

After the first replication completes to the target subscription or primary node, has_initial_snapshot is changed to Y by xDB Replication Server.

batchInitialSync

The batchInitialSync option is used to control whether the first synchronization after loading the target tables from an offline snapshot is
done in batch mode (the default) or non-batch mode.

Set the batchInitialSync option to false to perform synchronization replication in non-batch mode.

The offlineSnapshot configuration option must have first been set to true prior to creating the subscription or adding the additional primary node.
A non-batch mode synchronization occurs only if batchInitialSync is false and the has_initial_snapshot column in the control schema is set to a
value of O as described for the offlineSnapshot option.

batchInitialSync={true | false}

The default value is true.

Single-Master Replication Offline Snapshot

An offline snapshot can be used to initially load the subscription tables of a single-master replication system. For a publication that is intended to have
multiple subscriptions, it is possible to create some of the subscriptions using the default xDB Replication Server snapshot replication process as described
in Section Performing Snapshot Replication, while other subscriptions can be created from an offline snapshot.

The following steps describe how to create a subscription from an offline snapshot.

Step 1:Step 1: Register the publication server, add the publication database definition, and create the publication as described in Section Creating a Publication.

Step 2:Step 2: Register the subscription server and add the subscription database definition as described in sections Registering a Subscription Server and Adding
a Subscription Database, respectively.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 400

NoteNote

Steps 3 and 4 must be performed before creating the subscription. Steps 3 through 9 can be repeated each time you wish to create an additional
subscription from an offline snapshot.

Step 3:Step 3: Modify the publication server configuration file if these options are not already set as described by the following:

Change the offlineSnapshot option to true. When the publication server is restarted, offlineSnapshot set to true has the effect that:
1) creating a subscription does not create the schema and subscription table definitions in the subscription database as is done with the default
setting, and 2) creating a subscription sets a column in the control schema indicating an offline snapshot is used to load this subscription.
Set the batchInitialSync option to the appropriate setting for your particular situation as discussed at the end of Section Non-Batch Mode
Synchronization.

Step 4:Step 4: Restart the publication server if the publication server configuration file was modified in Step 3. See Section Registering a Publication Server for
directions on restarting a publication server.

Step 5:Step 5: In the subscription database, create the schema, the subscription table definitions, and load the subscription tables from your offline data source.
The subscription database user name used in Section Adding a Subscription Database must have full privileges over the database objects created in this
step. Also review the beginning of Section Adding a Subscription Database regarding the rules as to how xDB Replication Server creates the subscription
definitions from the publication for each database type as you must follow these same conventions when you create the target definitions manually.

Step 6:Step 6: Add the subscription as described in Section Adding a Subscription.

Step 7:Step 7: Perform an on demand synchronization replication. See Performing Synchronization Replication for directions on performing an on demand
synchronization replication.

Step 8:Step 8: If you are not planning to load any other subscriptions using an offline snapshot at this time, change the offlineSnapshot option back to false
and the batchInitialSync option to true in the publication server configuration file.

Step 9:Step 9: Restart the publication server if you modified the publication server configuration file in Step 8.

Multi-Master Replication Offline Snapshot

An offline snapshot can be used to initially load the primary nodes of a multi-master replication system. It is possible to load some of the primary nodes
using the xDB Replication Server snapshot replication functionality when defining the primary node as described in Section Creating Additional Primary
nodes or by using an on demand snapshot as described in Section Performing Snapshot Replication, while other primary nodes can be loaded from an
offline snapshot.

NoteNote

Offline snapshots are not supported for a multi-master replication system that is actively in use. Any changes on an active primary node will be
lost during the offline snapshot process of dumping or restoring the data of another node.

The following steps describe how to create a primary node from an offline snapshot.

Step 1:Step 1: Register the publication server, add the primary definition node, and create the publication as described in Section Creating a Publication.

NoteNote

The following steps must be performed before adding a primary node that is to be loaded by an offline snapshot. Steps 2 through 10 can be
repeated each time you wish to create an additional primary node from an offline snapshot.

Step 2:Step 2: Be sure there is no schedule defined on the replication system, otherwise remove the schedule for the duration of the following steps. See
Removing a Schedule for directions on removing a schedule.

Step 3:Step 3: Modify the publication server configuration file if these options are not already set as described by the following:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 401

Change the offlineSnapshot option to true. When the publication server is restarted, offlineSnapshot set to true has the effect that
adding a primary node sets a column in the control schema indicating an offline snapshot is used to load this primary node.
Set the batchInitialSync option to the appropriate setting for your particular situation as discussed at the end of Section Non-Batch Mode
Synchronization.

Step 4:Step 4: Restart the publication server if the publication server configuration file was modified in Step 3. See Section Registering a Publication Server for
directions on restarting a publication server.

Step 5:Step 5: In the database to be used as the new primary node, create the schema, the table definitions, and load the tables from your offline data source.

Step 6:Step 6: Add the primary node as described in Section Creating Additional Primary nodes with options Replicate Publication Schema and Perform Initial
Snapshot unchecked.

Step 7:Step 7: Perform an initial on demand synchronization. See Section Performing Synchronization Replication for directions on performing an on demand
synchronization.

Step 8:Step 8: If you are not planning to load any other primary nodes using an offline snapshot at this time, change the offlineSnapshot option back to
false and the batchInitialSync option to true in the publication server configuration file.

Step 9:Step 9: Restart the publication server if you modified the publication server configuration file in Step 8.

Step 10:Step 10: Re-add the schedule if one had been removed in Step 2. See Section Creating a Schedule for directions on creating a schedule.

8.10 Replicating Postgres Partitioned Tables

Both PostgreSQL and Advanced Server support partitioned tables, which can be replicated with xDB Replication Server in either a single-master or multi-
master replication system.

The following are the various partitioning techniques:

Advanced Server partitioning compatible with Oracle databases
Postgres declarative partitioning (applies to both PostgreSQL and Advanced Server version 10 and later)
Postgres table inheritance (applies to both PostgreSQL and Advanced Server)

If you are using Advanced Server, partitioned tables can be created using the CREATE TABLE statement with partitioning syntax compatible with Oracle
databases. For information on partitioning compatible with Oracle databases, see Database Compatibility: Table Partitioning in the EDB Postgres Advanced
Server documentation.

If you are using version 10 or later of PostgreSQL or Advanced Server, declarative partitioning can be used to create partitioned tables. The CREATE
TABLE syntax for creating a declarative partitioned table is similar to the partitioning compatible with Oracle databases, but the individual partitions of
the declarative partitioned table must be separately created with their own CREATE TABLE statements.

For information on declarative partitioning and table inheritance, see the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/ddl-partitioning.html

Regardless of the partitioning method, the resulting partitioned table is comprised of a parent table with a set of child tables.

Replication of these Postgres partitioned tables in a single-master or multi-master replication system is accomplished in the same manner.

Note the following general restrictions when the publication contains a partitioned table:

SQL Server cannot be used as a subscription database.
When using table inheritance, the subscription databases must be Postgres – they cannot be Oracle or SQL Server.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 402

https://www.enterprisedb.com/docs/epas/latest/epas_compat_table_partitioning/
https://www.postgresql.org/docs/current/static/ddl-partitioning.html

All three partitioning techniques are illustrated on the emp table used as an example throughout this document. The partitioned table is then used in a
publication of a multi-master replication system in the following sections:

For creating a publication in Postgres 9.x, see Creating a Postgres 9.x Partitioned Table Publication.
For creating a publication in Postgres 10 or later, see Section Creating a Postgres Version 10 or Later Partitioned Table Publication.

The following creates the partitioned table in Advanced Server using partitioning compatible with Oracle databases:

CREATE TABLE emp (
 empno NUMERIC(4) PRIMARY KEY,
 ename VARCHAR(10),
 job VARCHAR(9),
 mgr NUMERIC(4),
 hiredate DATE,
 sal NUMERIC(7,2),
 comm NUMERIC(7,2),
 deptno NUMERIC(2)
)
PARTITION BY LIST(deptno)
(
 PARTITION dept_10 VALUES (10),
 PARTITION dept_20 VALUES (20),
 PARTITION dept_30 VALUES (30)
);
-- Load the 'emp' table
--
INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);
INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-81',1600,300,30);
INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'22-FEB-81',1250,500,30);
INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'02-APR-81',2975,NULL,20);
INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'28-SEP-81',1250,1400,30);
INSERT INTO emp VALUES (7698,'BLAKE','MANAGER',7839,'01-MAY-81',2850,NULL,30);
INSERT INTO emp VALUES (7782,'CLARK','MANAGER',7839,'09-JUN-81',2450,NULL,10);
INSERT INTO emp VALUES (7788,'SCOTT','ANALYST',7566,'19-APR-87',3000,NULL,20);
INSERT INTO emp VALUES (7839,'KING','PRESIDENT',NULL,'17-NOV-81',5000,NULL,10);
INSERT INTO emp VALUES (7844,'TURNER','SALESMAN',7698,'08-SEP-81',1500,0,30);
INSERT INTO emp VALUES (7876,'ADAMS','CLERK',7788,'23-MAY-87',1100,NULL,20);
INSERT INTO emp VALUES (7900,'JAMES','CLERK',7698,'03-DEC-81',950,NULL,30);
INSERT INTO emp VALUES (7902,'FORD','ANALYST',7566,'03-DEC-81',3000,NULL,20);
INSERT INTO emp VALUES (7934,'MILLER','CLERK',7782,'23-JAN-82',1300,NULL,10);

The following creates the partitioned table in PostgreSQL or Advanced Server 10 or later using declarative partitioning:

NoteNote

When creating a declarative partitioned table that is to be replicated using xDB Replication Server, the PRIMARY KEY constraint must be included
in the CREATE TABLE statements of the individual partitions, not in the CREATE TABLE statement of the parent table to be partitioned.

CREATE TABLE emp (
 empno NUMERIC(4),
 ename VARCHAR(10),
 job VARCHAR(9),
 mgr NUMERIC(4),
 hiredate DATE,
 sal NUMERIC(7,2),
 comm NUMERIC(7,2),
 deptno NUMERIC(2)
)
PARTITION BY LIST(deptno);

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 403

--
-- Create the partitions
--
-- The partitions must contain the PRIMARY KEY constraint
--
CREATE TABLE emp_dept_10 PARTITION OF emp (empno PRIMARY KEY)
 FOR VALUES IN (10);
CREATE TABLE emp_dept_20 PARTITION OF emp (empno PRIMARY KEY)
 FOR VALUES IN (20);
CREATE TABLE emp_dept_30 PARTITION OF emp (empno PRIMARY KEY)
 FOR VALUES IN (30);
--
-- Load the 'emp' table
--
INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);
INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-81',1600,300,30);
INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'22-FEB-81',1250,500,30);
INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'02-APR-81',2975,NULL,20);
INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'28-SEP-81',1250,1400,30);
INSERT INTO emp VALUES (7698,'BLAKE','MANAGER',7839,'01-MAY-81',2850,NULL,30);
INSERT INTO emp VALUES (7782,'CLARK','MANAGER',7839,'09-JUN-81',2450,NULL,10);
INSERT INTO emp VALUES (7788,'SCOTT','ANALYST',7566,'19-APR-87',3000,NULL,20);
INSERT INTO emp VALUES (7839,'KING','PRESIDENT',NULL,'17-NOV-81',5000,NULL,10);
INSERT INTO emp VALUES (7844,'TURNER','SALESMAN',7698,'08-SEP-81',1500,0,30);
INSERT INTO emp VALUES (7876,'ADAMS','CLERK',7788,'23-MAY-87',1100,NULL,20);
INSERT INTO emp VALUES (7900,'JAMES','CLERK',7698,'03-DEC-81',950,NULL,30);
INSERT INTO emp VALUES (7902,'FORD','ANALYST',7566,'03-DEC-81',3000,NULL,20);
INSERT INTO emp VALUES (7934,'MILLER','CLERK',7782,'23-JAN-82',1300,NULL,10);

The following creates the partitioned table in PostgreSQL or Advanced Server using table inheritance:

--
-- Create the parent table
--
CREATE TABLE emp (
 empno NUMERIC(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR(10),
 job VARCHAR(9),
 mgr NUMERIC(4),
 hiredate DATE,
 sal NUMERIC(7,2),
 comm NUMERIC(7,2),
 deptno NUMERIC(2)
);
--
-- Create the child tables
--
CREATE TABLE emp_dept_10 (
 CHECK (deptno = 10)
) INHERITS (emp);
CREATE TABLE emp_dept_20 (
 CHECK (deptno = 20)
) INHERITS (emp);
CREATE TABLE emp_dept_30 (
 CHECK (deptno = 30)
) INHERITS (emp);

ALTER TABLE emp_dept_10 ADD CONSTRAINT emp_dept_10_pk PRIMARY KEY (empno);
ALTER TABLE emp_dept_20 ADD CONSTRAINT emp_dept_20_pk PRIMARY KEY (empno);
ALTER TABLE emp_dept_30 ADD CONSTRAINT emp_dept_30_pk PRIMARY KEY (empno);

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 404

--
-- Create the trigger function to insert into the proper child by deptno
--
CREATE OR REPLACE FUNCTION emp_insert_trigger()
RETURNS TRIGGER AS $$
BEGIN
 IF NEW.deptno = 10 THEN
 INSERT INTO emp_dept_10 VALUES (NEW.*);
 ELSIF NEW.deptno = 20 THEN
 INSERT INTO emp_dept_20 VALUES (NEW.*);
 ELSIF NEW.deptno = 30 THEN
 INSERT INTO emp_dept_30 VALUES (NEW.*);
 ELSE
 RAISE EXCEPTION 'Department # out of range.';
 END IF;
 RETURN NULL;
END;
$$
LANGUAGE plpgsql;
--
-- Create the trigger
--
CREATE TRIGGER insert_emp_trigger
 BEFORE INSERT ON emp
 FOR EACH ROW EXECUTE PROCEDURE emp_insert_trigger();
--
-- Load the 'emp' table
--
INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);
INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-81',1600,300,30);
INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'22-FEB-81',1250,500,30);
INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'02-APR-81',2975,NULL,20);
INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'28-SEP-81',1250,1400,30);
INSERT INTO emp VALUES (7698,'BLAKE','MANAGER',7839,'01-MAY-81',2850,NULL,30);
INSERT INTO emp VALUES (7782,'CLARK','MANAGER',7839,'09-JUN-81',2450,NULL,10);
INSERT INTO emp VALUES (7788,'SCOTT','ANALYST',7566,'19-APR-87',3000,NULL,20);
INSERT INTO emp VALUES (7839,'KING','PRESIDENT',NULL,'17-NOV-81',5000,NULL,10);
INSERT INTO emp VALUES (7844,'TURNER','SALESMAN',7698,'08-SEP-81',1500,0,30);
INSERT INTO emp VALUES (7876,'ADAMS','CLERK',7788,'23-MAY-87',1100,NULL,20);
INSERT INTO emp VALUES (7900,'JAMES','CLERK',7698,'03-DEC-81',950,NULL,30);
INSERT INTO emp VALUES (7902,'FORD','ANALYST',7566,'03-DEC-81',3000,NULL,20);
INSERT INTO emp VALUES (7934,'MILLER','CLERK',7782,'23-JAN-82',1300,NULL,10);

The following illustrates the types of SQL queries that can be made on the parent and child tables to show which tables actually contain the rows.

Querying the parent table, emp, with the asterisk appended to the table name in the SELECT statement, shows the rows in the parent and child tables. This
is the default behavior if the asterisk is omitted.

```text
edb=# SELECT * FROM emp*;
 empno | ename  |    job    | mgr  |      hiredate      |   sal   |  comm   | deptno
-------+--------+-----------+------+--------------------+---------+---------+--------
  7782 | CLARK  | MANAGER   | 7839 | 09-JUN-81 00:00:00 | 2450.00 |         |     10
  7839 | KING   | PRESIDENT |      | 17-NOV-81 00:00:00 | 5000.00 |         |     10
  7934 | MILLER | CLERK     | 7782 | 23-JAN-82 00:00:00 | 1300.00 |         |     10
  7369 | SMITH  | CLERK     | 7902 | 17-DEC-80 00:00:00 |  800.00 |         |     20
  7566 | JONES  | MANAGER   | 7839 | 02-APR-81 00:00:00 | 2975.00 |         |     20
  7788 | SCOTT  | ANALYST   | 7566 | 19-APR-87 00:00:00 | 3000.00 |         |     20
  7876 | ADAMS  | CLERK     | 7788 | 23-MAY-87 00:00:00 | 1100.00 |         |     20

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 405



  7902 | FORD   | ANALYST   | 7566 | 03-DEC-81 00:00:00 | 3000.00 |         |     20
  7499 | ALLEN  | SALESMAN  | 7698 | 20-FEB-81 00:00:00 | 1600.00 |  300.00 |     30
  7521 | WARD   | SALESMAN  | 7698 | 22-FEB-81 00:00:00 | 1250.00 |  500.00 |     30
  7654 | MARTIN | SALESMAN  | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 |     30
  7698 | BLAKE  | MANAGER   | 7839 | 01-MAY-81 00:00:00 | 2850.00 |         |     30
  7844 | TURNER | SALESMAN  | 7698 | 08-SEP-81 00:00:00 | 1500.00 |    0.00 |     30
  7900 | JAMES  | CLERK     | 7698 | 03-DEC-81 00:00:00 |  950.00 |         |     30
(14 rows)

The following queries show how the rows are physically divided amongst the child tables. The use of the ONLY  keyword results in rows only in the
specified table of the SELECT  statement, and not from any of its children.

edb=# SELECT * FROM ONLY emp;
 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+-----+-----+----------+-----+------+--------
(0 rows)

edb=# SELECT * FROM ONLY emp_dept_10;
 empno | ename  |    job    | mgr  |      hiredate      |   sal   | comm | deptno
-------+--------+-----------+------+--------------------+---------+------+--------
  7782 | CLARK  | MANAGER   | 7839 | 09-JUN-81 00:00:00 | 2450.00 |      |     10
  7839 | KING   | PRESIDENT |      | 17-NOV-81 00:00:00 | 5000.00 |      |     10
  7934 | MILLER | CLERK     | 7782 | 23-JAN-82 00:00:00 | 1300.00 |      |     10
(3 rows)

edb=# SELECT * FROM ONLY emp_dept_20;
 empno | ename |   job   | mgr  |      hiredate      |   sal   | comm | deptno
-------+-------+---------+------+--------------------+---------+------+--------
  7369 | SMITH | CLERK   | 7902 | 17-DEC-80 00:00:00 |  800.00 |      |     20
  7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 |      |     20
  7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 |      |     20
  7876 | ADAMS | CLERK   | 7788 | 23-MAY-87 00:00:00 | 1100.00 |      |     20
  7902 | FORD  | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 |      |     20
(5 rows)

edb=# SELECT * FROM ONLY emp_dept_30;
 empno | ename  |   job    | mgr  |      hiredate      |   sal   |  comm   | deptno
-------+--------+----------+------+--------------------+---------+---------+--------
  7499 | ALLEN  | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 |  300.00 |     30
  7521 | WARD   | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 |  500.00 |     30
  7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 |     30
  7698 | BLAKE  | MANAGER  | 7839 | 01-MAY-81 00:00:00 | 2850.00 |         |     30
  7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 |    0.00 |     30
  7900 | JAMES  | CLERK    | 7698 | 03-DEC-81 00:00:00 |  950.00 |         |     30
(6 rows)

Section Creating a Postgres Version 10 or Later Partitioned Table Publication shows creation of the publication when using partitioning compatible with
Oracle databases or declarative partitioning on a Postgres 10 or later database server.

Creating a Postgres Version 10 or Later Partitioned Table Publication

The following describes creating the publication using either partitioning compatible with Oracle databases or Postgres declarative partitioning on a
Postgres 10 or later database server.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 406



NoteNote

If you are using table inheritance, you must still use the process described in Section Creating a Postgres 9.x Partitioned Table Publication even
when creating the publication on a Postgres 10 or later database server.

The following restrictions apply when the publication contains a table with partitioning compatible with Oracle databases or declarative partitioning:

The log-based method of synchronization replication must be selected for the publication database. The trigger-based method cannot be used.
In a single-master replication system, the subscription databases must be Postgres version 10 or later. Oracle and SQL Server cannot be used as a
subscription database.
In a multi-master replication system, all primary nodes must be Postgres version 10 or later with the same compatibility mode as the primary
definition node (that is, either compatible with native PostgreSQL or compatible with Oracle databases). For more information on the multi-master
replication system compatibility modes, see Permitted MMR Database Server Configurations.

Follow the directions in Section Creating a Publication to create a primary definition node along with a publication containing the partitioned table. (For a
single-master replication system, create the publication database along with the publication according to the directions in Section Creating a Publication.)

When creating the publication, only the parent table appears and is selected.

Figure 7-109: Creating a publication for a Postgres 10 or later partitioned tableFigure 7-109: Creating a publication for a Postgres 10 or later partitioned table

The following shows the resulting replication tree for the partitioned table in the primary definition node:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 407



Figure 7-110: Publication containing a Postgres 10 or later partitioned tableFigure 7-110: Publication containing a Postgres 10 or later partitioned table

Create additional primary nodes as described in Section Creating Additional Primary nodes. (For a single-master replication system, create the subscription
database and subscription according to the directions in Section Creating a Subscription.)

The following shows the resulting multi-master replication system after you have added an additional primary node.

Figure 7-111: MMR system with a Postgres 10 or later partitioned tableFigure 7-111: MMR system with a Postgres 10 or later partitioned table

The partitioned table can now be kept synchronized on the primary nodes of the multi-master replication system.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 408



8.11          Using Secure Sockets Layer (SSL) Connections

Publication server and subscription server connections to Postgres publication databases, Postgres subscription databases, and Postgres primary nodes can
be accomplished using secure sockets layer (SSL) connectivity.

xDB Replication Server does not support SSL connections to Oracle and SQL Server databases used within any xDB replication system.

For a single-master replication system, the following connections can be made to Postgres databases enabled with SSL:

Publication server connection to the publication database and to the subscription databases.
Subscription server connection to the subscription databases.
Migration Toolkit connection to the publication and subscription databases.

For a multi-master replication system, the following connections can be made to Postgres databases enabled with SSL:

Publication server connection to the primary definition node and the non-MDN nodes.
Migration Toolkit connection to the primary definition node and the non-MDN nodes.

NoteNote

SSL connections are not used from the xDB Replication Console or the xDB Replication Server Command Line Interface. The xDB user interfaces
communicate with the publication server and subscription server, which in turn connect to the publication/subscription databases or primary
nodes.

NoteNote

The Migration Toolkit connection using SSL occurs within the context of the publication server and subscription server SSL connections.
Therefore, there are no separate steps that you need to perform for the Migration Toolkit SSL connection.

Using SSL requires various prerequisite configuration steps performed on the database servers involved with the SSL connections as well as on the Java
truststore and keystore on the hosts running the publication server and subscription server.

The Java truststore is the file containing the Certificate Authority (CA) certificates with which the Java client (the publication server and subscription
server) uses to verify the authenticity of the server to which it is initiating an SSL connection.

The Java keystore is the file containing private and public keys and their corresponding certificates. The keystore is required for client authentication to the
server, which is used for xDB Replication Server SSL connections.

The following is material to which you can refer to for guidance in setting up the SSL connections:

See the section on secure TCP connections with SSL in Chapter 17 Server Setup and Operation in the PostgreSQL Core Documentation located at:

https://www.postgresql.org/docs/current/static/ssl-tcp.html

for information on setting up SSL connectivity to Postgres database servers.

For information on JDBC client connectivity using SSL see the section on configuring the client in Chapter 4 Using SSL in the The PostgreSQL JDBC
Interface (https://jdbc.postgresql.org/documentation/94/ssl.html).

The following sections provide additional information for the configuration steps of using SSL with the xDB Replication Server.

Configuring SSL on a Postgres database server (Section Configuring SSL on a Postgres Database Server)
Configuring SSL on a JDBC client for the publication and subscription servers (Section Configuring SSL for the Publication Server and Subscription
Server)
Requesting SSL connection to the xDB Replication Server databases (Section Requesting SSL Connection to the xDB Replication Server Databases)

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 409

https://www.postgresql.org/docs/current/static/ssl-tcp.html
https://jdbc.postgresql.org/documentation/94/ssl.html


Configuring SSL on a Postgres Database Server

This section provides an example of configuring SSL on a Postgres database server to demonstrate the use of SSL with xDB Replication Server. A self-
signed certificate is used for this purpose.

Step 1:Step 1: Create the certificate signing request (CSR).

In the following example the generated certificate signing request file is server.csr . The private key is generated as file server.key.

$ openssl req -new -text -nodes -subj 
'/C=US/ST=Massachusetts/L=Bedford/O=EnterpriseDB/OU=XDB/emailAddress=support@enterprisedb.com/CN=enterprisedb
' -keyout server.key -out server.csr
Generating a 1024 bit RSA private key
......................................................++++++
.++++++
writing new private key to 'server.key'
-----

NoteNote

When creating the certificate, the value specified for the common name field (designated as CN=enterprisedb in this example) must be the
database user name that is specified in the User field of the Add Database or Update Database dialog box used when defining the publication
database (see Adding a Publication Database), subscription database (see Adding a Subscription Database), or primary nodes (see Adding the
Primary definition node) and Creating Additional Primary nodes).

Alternatively, user name maps can be used as defined in the pg_ident.conf  file to permit more flexibility for the common name and database user
name. Steps 8 and 9 describe the use of user name maps.

Step 2:Step 2: Generate the self-signed certificate.

The following generates a self-signed certificate to file server.crt  using the certificate signing request file, server.csr , and the private key, 
server.key , as input.

$ openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt
Signature ok
subject=/C=US/ST=Massachusetts/L=Bedford/O=EnterpriseDB/OU=XDB/emailAddress=support@enterprisedb.com/CN=enterpr
isedb
Getting Private key

Step 3:Step 3: Make a copy of the server certificate (server.crt ) to be used as the root Certificate Authority (CA) file (root.crt ).

$ cp server.crt root.crt

Step 4:Step 4: Delete the now redundant certificate signing request ( server.csr ).

$ rm server.csr

Step 5:Step 5: Move or copy the certificate and private key files to the Postgres database server data directory, POSTGRES_INSTALL_HOME/data .

$ mv root.crt /var/lib/edb/as14/data
$ mv server.crt /var/lib/edb/as14/data
$ mv server.key /var/lib/edb/as14/data

Step 6:Step 6: Set the file ownership and permissions on the certificate files and private key file.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 410



Set the ownership to the operating system account that owns the data subdirectory of the Postgres database server, which is either enterprisedb  or 
postgres  depending upon the chosen installation mode (Oracle compatible or PostgreSQL compatible) when you installed your Postgres database

server.

$ chown enterprisedb root.crt server.crt server.key
$ chgrp enterprisedb root.crt server.crt server.key
$ chmod 600 root.crt server.crt server.key
$ ls -l
total 140
        .
        .
        .
-rw------- 1 enterprisedb enterprisedb  1346 Mar 15 09:31 root.crt
-rw------- 1 enterprisedb enterprisedb  1346 Mar 15 09:30 server.crt
-rw------- 1 enterprisedb enterprisedb  1704 Mar 15 09:28 server.key

Step 7:Step 7: In the postgresql.conf  file, make the following modifications.

ssl = on                               # (change requires restart)
ssl_cert_file = 'server.crt'           # (change requires restart)
ssl_key_file = 'server.key'            # (change requires restart)
ssl_ca_file = 'root.crt'               # (change requires restart)

Step 8:Step 8: Modify the pg_hba.conf  file to enable SSL usage on the desired publication, subscription, or primary node databases.

In the pg_hba.conf  file, the hostssl  type indicates the entry is used to validate SSL connection attempts from the client (the publication server and
the subscription server).

The authentication method is set to cert with the option clientcert=1 in order to require an SSL certificate from the client against which authentication is
performed using the common name of the certificate (enterprisedb in this example).

The map=sslusers  option specifies that a mapping named sslusers  defined in the pg_ident.conf  file is to be used for authentication. This
mapping allows a connection to the database if the common name from the certificate and the database user name attempting the connection match the 
SYSTEM-USERNAME/PG-USERNAME  pair listed in the pg_ident.conf  file.

The following is an example of the settings in the pg_hba.conf  file if the publication and subscription databases (edb and subnode) must use SSL
connections.

# TYPE  DATABASE        USER            ADDRESS                 METHOD

# "local" is for Unix domain socket connections only
local   all             all                                     md5
# IPv4 local connections for for Postgres v13:
hostssl   edb,subnode   all  192.168.2.0/24   cert clientcert=verify-ca map=sslusers

# IPv4 local connections for for Postgres v14:
hostssl   edb,subnode   all  192.168.2.0/24   cert clientcert=verify-full map=sslusers

Step 9:Step 9: The following shows the user name maps in the pg_ident.conf file related to the pg_hba.conf  file by the map=sslusers  option. These user
name maps permit you to specify database user names pubuser, subuser, MMRuser, or enterprisedb in the User field of the Add Database or Update
Database dialog box when adding the publication, subscription, or primary node databases in the xDB Replication Console.

In other words, these are the permitted set of database user names that can be used by the publication server and subscription server to connect to the
publication, subscription, or primary node databases.

# MAPNAME       SYSTEM-USERNAME         PG-USERNAME
sslusers        enterprisedb            pubuser

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 411



sslusers        enterprisedb            subuser
sslusers        enterprisedb            MMRuser
sslusers        enterprisedb            enterprisedb

Step 10:Step 10: Restart the Postgres database server after you have made the changes to the Postgres configuration files.

Configuring SSL for the Publication Server and Subscription Server

After you have configured SSL on the Postgres database server, the following steps provide an example of generating a certificate and keystore file for the
publication server and subscription server (the JDBC clients).

Before you begin, configure the client for SSL with trigger mode.

If you are using PostgreSQL, on the SSL-enabled Postgres database server:

Make the following client/cert files available on the publication/subscription server using an SSL connection:

postgresql.crt
postgresql.pk8
root.crt

In our example, we use the copy of this self-signed certificate and key generated for the database server on the client side.

The default location of these files is {user.home}/.postgresql(e.g/var/lib/edb/.postgresql/) . The file location can be
overridden using SSL connection parameters or Postgres SSL environmental variables, see Setting Non-default Paths using Environment Variables
for more information.

NoteNote

If you used the Linux interactive installer, and set the operating system username as:

postgres , your {user.home}  path is /var/lib/pgsql/
enterprisedb , your {user.home}  path is /var/lib/edb/ , which is the same path created from an RPM installation.

Copy and rename the files:

$ cd /var/lib/pgsql/.postgresql/
$ cp /var/lib/pgsql/14/data/server.crt postgresql.crt
$ cp /var/lib/pgsql/14/data/root.crt .
$ cp /var/lib/pgsql/14/data/server.key postgresql.key
$ openssl pkcs8 -topk8 -inform PEM -in postgresql.key -outform DER -out postgresql.pk8 -v1 PBE-MD5-DES 
-nocrypt

NoteNote

This completes the SSL configuration for the PostgreSQL publication server and subscription server.

If you are using EDB Postgres Advanced Server, on the SSL-enabled Postgres database server:

Make the following client/cert files available on the publication/subscription server using an SSL connection:

xdb.keystore
xdb_pkcs.p12

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 412



Step 1:Step 1: Using files server.crt  and server.key located under the Postgres database server data subdirectory, create copies of these files and move them
to the host where the publication server and subscription server are running.

cp server.crt xdb.crt
cp server.key xdb.key

For this example, assume file xdb.crt  is a copy of server.crt  and xdb.key  is a copy of server.key .

Step 2:Step 2: Create a copy of xdb.crt .

$ cp xdb.crt xdb_root.crt
$ ls -l
total 12
-rw-r--r-- 1 user user 1346 Mar 15 09:58 xdb.crt
-rw-r--r-- 1 user user 1704 Mar 15 09:58 xdb.key
-rw-r--r-- 1 user user 1346 Mar 15 10:00 xdb_root.crt

Step 3:Step 3: Create a Distinguished Encoding Rules (DER) format of file xdb_root.crt . The generated DER  format of this file is xdb_root.crt.der .
The DER  format of the file is required for the keytool program in the next step.

$ openssl x509 -in xdb_root.crt -out xdb_root.crt.der -outform der
$ ls -l
total 16
-rw-r--r-- 1 user user 1346 Mar 15 09:58 xdb.crt
-rw-r--r-- 1 user user 1704 Mar 15 09:58 xdb.key
-rw-r--r-- 1 user user 1346 Mar 15 10:00 xdb_root.crt
-rw-rw-r-- 1 user user  954 Mar 15 10:05 xdb_root.crt.der

Step 4:Step 4: Use the keytool program to create a keystore file (xdb.keystore ) using xdb_root.crt.der  as the input. This process adds the certificate of
the Postgres database server to the keystore file.

The keytool program can be found under the bin subdirectory of the Java Runtime Environment installation.

You will be prompted for a new password. Save this password for the next step.

$ /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.322.b06-1.el7_9.x86_64/jre/bin/keytool -keystore xdb.keystore -
alias xdbstore -import -file xdb_root.crt.der
Enter keystore password:
Re-enter new password:
Owner: CN=enterprisedb, EMAILADDRESS=support@enterprisedb.com, OU=XDB, O=EnterpriseDB, L=Bedford, 
ST=Massachusetts, C=US
Issuer: CN=enterprisedb, EMAILADDRESS=support@enterprisedb.com, OU=XDB, O=EnterpriseDB, L=Bedford, 
ST=Massachusetts, C=US
Serial number: d7e9966b48e91523
Valid from: Tue Mar 15 08:30:37 GMT-05:00 2016 until: Wed Mar 15 08:30:37 GMT-05:00 2017
Certificate fingerprints:
   MD5:  5D:32:AB:47:A2:44:48:84:0B:CA:EC:9E:C9:28:CE:64
   SHA1: 31:14:C4:0A:E6:93:AA:2C:3E:4B:09:77:AB:94:DB:71:CB:58:99:D9
   SHA256: 2B:EA:59:35:E6:5B:07:07:30:96:D4:80:B0:E1:13:5B:5E:45:97:2E:D0:5C:4F:D8:2F:A6:23:DA:F8:30:D6:17
   Signature algorithm name: SHA1withRSA
   Version: 1
Trust this certificate? [no]:  yes
Certificate was added to keystore
$ ls -l
total 20
-rw-r--r-- 1 user user 1346 Mar 15 09:58 xdb.crt
-rw-r--r-- 1 user user 1704 Mar 15 09:58 xdb.key

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 413



-rw-rw-r-- 1 user user 1019 Mar 15 10:18 xdb.keystore
-rw-r--r-- 1 user user 1346 Mar 15 10:00 xdb_root.crt
-rw-rw-r-- 1 user user  954 Mar 15 10:05 xdb_root.crt.der

Step 5:Step 5: Generate the encrypted form of the new password specified in the preceding step.

The encrypted password must be specified with the sslTrustStorePassword  configuration option of the publication server configuration file for
publication server SSL connections and the subscription server configuration file for subscription server SSL connections. (See Publication and
Subscription Server Configuration Options for information on the publication server and subscription server configuration files.)

Encrypt the password using the xDB Replication Server CLI encrypt command. The following example shows this process encrypting the password
contained in file infile.

$ export PATH=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.322.b06-1.el7_9.x86_64/jre/bin:$PATH
$ cd /opt/PostgreSQL/EnterpriseDB-xDBReplicationServer/bin
$ java -jar edb-repcli.jar -encrypt -input ~/infile -output ~/pwdfile
$ cat ~/pwdfile
LGn6+AagiXqumxVHlOKk3w==

Step 6:Step 6: Create a PKCS #12  format of the keystore file (xdb_pkcs.p12 ) using files xdb.crt  and xdb.key  as input.

You will be prompted for a new password. Save this password for the next step.

$ openssl pkcs12 -export -in xdb.crt -inkey xdb.key -out xdb_pkcs.p12
Enter Export Password:
Verifying - Enter Export Password:
$ ls -l
total 24
-rw-r--r-- 1 user user 1346 Mar 15 09:58 xdb.crt
-rw-r--r-- 1 user user 1704 Mar 15 09:58 xdb.key
-rw-rw-r-- 1 user user 1019 Mar 15 10:18 xdb.keystore
-rw-rw-r-- 1 user user 2557 Mar 15 10:34 xdb_pkcs.p12
-rw-r--r-- 1 user user 1346 Mar 15 10:00 xdb_root.crt
-rw-rw-r-- 1 user user  954 Mar 15 10:05 xdb_root.crt.der

Step 7:Step 7: Generate the encrypted form of the new password specified in the preceding step.

The encrypted password must be specified with the sslKeyStorePassword configuration option of the publication server configuration file for publication
server SSL connections and the subscription server configuration file for subscription server SSL connections.

Encrypt the password using the xDB Replication Server CLI encrypt command.

$ export PATH=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.322.b06-1.el7_9.x86_64/jre/bin:$PATH
$ cd /opt/PostgreSQL/EnterpriseDB-xDBReplicationServer/bin
$ java -jar edb-repcli.jar -encrypt -input ~/infile -output ~/pwdfile
$ cat ~/pwdfile
LGn6+AagiXqumxVHlOKk3w==

Step 8:Step 8: Copy files xdb.keystore  and xdb_pkcs.p12  to a directory location where they are to be accessed by the publication server and subscription
server.

Step 9:Step 9: In the publication server and subscription server configuration files, set the location of file xdb.keystore  with the sslTrustStore  option
and the location of file xdb_pkcs.p12  with the sslKeyStore  option.

The following shows the SSL configuration options set for the files generated in this example.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 414



sslTrustStore=/tmp/sslclient/xdb.keystore
sslTrustStorePassword=LGn6+AagiXqumxVHlOKk3w==
sslKeyStore=/tmp/sslclient/xdb_pkcs.p12
sslKeyStorePassword= ygJ9AxoJEX854elcVIJPTw==

The encrypted sslTrustStorePassword  is obtained from Step 5 after being specified for the keytool program in Step 4.

The encrypted sslKeyStorePassword  is obtained from Step 7 after being specified for the openssl pkcs12 program in Step 6.

Section Summary of SSL Configuration Options contains a summary of the publication server and subscription server configuration options for SSL
connections.

Step 10:Step 10: Restart the publication and subscription servers.

Configuring publication/subscription server in case of WAL stream changeset loggingConfiguring publication/subscription server in case of WAL stream changeset logging

In the case of WAL stream changeset logging, while adding a publication or a subscription database that accepts only ssl connection, xDB validates if the
database server is configured for logical replication using libpq  connection.

NoteNote

Ownership depends on the Replication Server service account user. If you have installed Replication Server using the native packages from the
EDB repository, the default account user is enterprisedb so ownership needs be given to the enterprisedb user.

chown enterprisedb postgresql.key

For the SSL connection, libpq  must have the certificates and key as given in the following table along with the client certs and key you set up for trigger
mode. The default directory is ${user.home}/.postgresql .

NoteNote

If you are using EDB Postgres Advanced Server, you need to add and configure the following files, in addition to adding and configuring the 
xdb.keystore  and xdb_pkcs  files, which you added and configured in an earlier step.

If you are using PostgreSQL, you need to add and configure the following files, in addition to adding and configuring postgresql.pk8 , which
you added and configured in an earlier step.

Table 7-1: libpq/Client SSL File UsageTable 7-1: libpq/Client SSL File Usage

File Name Contents Description

~/.postgresql/postgre
sql.crt

Client certificate Requested by the server.

~/.postgresql/postgre
sql.key

Client private key Proves that the client certificate is sent by the owner. However, does not indicate that the
certificate owner is trustworthy.

~/.postgresql/root.cr
t

Trusted certificate
authorities (CA)

Checks that the server certificate is signed by a trusted certificate authority.

Make sure that the name of the certificates and key is same as given in the above table.

Execute the following commands to change the permission of the certificates in ${user.home}/.postgresql .

chmod 0644 root.crt postgresql.crt
chmod 0600 postgresql.key

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 415



chown postgres postgresql.key

To setup different source and target database types (for example, source database =POSTGRESQL  and target database =enterprisedb ) follow the
steps below:

1. Generate the certificate for POSTGRESQL  database and follow the table 7-1 for placing certificate files in the default directory.

2. Copy these certificates in EDB Postgres Advanced Server data directory.

[root@localhost data]# cp /var/lib/pgsql/14/data/root.crt .
[root@localhost data]# cp /var/lib/pgsql/14/data/server.crt .
[root@localhost data]# cp /var/lib/pgsql/14/data/server.key .

3. Execute the following commands to change the permissions of the certificates in the EDB Postgres Advanced Server data directory.

[root@localhost data]# sudo chown enterprisedb root.crt server.crt server.key
[root@localhost data]# sudo chgrp enterprisedb root.crt server.crt server.key
[root@localhost data]# sudo chmod 600 root.crt server.crt server.key

Using different databases for the source and target

Follow these steps if you are using different databases for the source and target; for example, if you are using PostgreSQL for your source database and
EDB Postgres Advanced Server for your target database.

NoteNote

The commands in this section assume CN=db user name .

1. Generate the certificate for the PostgreSQL database. See Configuring SSL on a Postgres database server.

2. Configure SSL for Replication Server. See the steps for PostgreSQL in Configuring SSL for the publication server and subscription server.

3. Create the same user in EDB Postgres Advanced Server which is same as the CN value used to generate the certificate for the PostgreSQL database.
For example if CN=postgres  if specified as shown in following command then the postgres  role should be created in EDB Postgres Advanced
Server.

openssl req -new -text -nodes -subj 
'/C=US/ST=Massachusetts/L=Bedford/O=EnterpriseDB/OU=XDB/emailAddress=muhammad.imtiaaz@enterprisedb.com/CN=
postgres' -keyout server.key -out server.csr

Create the user:

CREATE ROLE postgres LOGIN SUPERUSER PASSWORD 'edb';

If you specified map=sslusers  for PostgreSQL and EDB Postgres Advanced Server in pg_hba.conf , add the following to pg_ident.conf
using the same user name for both PostgreSQL and EDB Postgres Advanced Server:

cat /var/lib/pgsql/14/data/pg_ident.conf
# ----------------------------------
# MAPNAME       SYSTEM-USERNAME         PG-USERNAME
sslusers        postgres                postgres

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 416



4. Copy the certificates from the PostgreSQL data directory to the EDB Postgres Advanced Server data directory:

cd /var/lib/edb/as14/data
[root@localhost data]# cp /var/lib/pgsql/14/data/root.crt .
[root@localhost data]# cp /var/lib/pgsql/14/data/server.crt .
[root@localhost data]# cp /var/lib/pgsql/14/data/server.key .

5. Restart the EDB Postgres Advanced Server service.

systemctl restart edb-as-14.service

6. Change the permissions of the certificates in the EDB Postgres Advanced Server data directory.

[root@localhost data]# sudo chown enterprisedb root.crt server.crt server.key
[root@localhost data]# sudo chgrp enterprisedb root.crt server.crt server.key
[root@localhost data]# sudo chmod 600 root.crt server.crt server.key

7. Make the required configuration changes for EDB Postgres Advanced Server see Configuring SSL on a Postgres database server and restart the
service:

systemctl restart edb-as-14.service

Requesting SSL Connection to the xDB Replication Server Databases

Once SSL connectivity has been configured, a URL option must be supplied when configuring a single-master or multi-master replication system for those
databases to which an SSL connection is intended to be used.

The SSL URL option informs Java to use SSL when the publication server or subscription server attempts to connect to an xDB Replication Server database
(publication, subscription, or primary node database) on which the SSL URL option has been set to true.

The configuration steps where these options are specified are as follows:

For using SSL connections in a single-master replication system, the URL options must be specified as shown in Section Adding a Publication
Database for the publication database and in Section Adding a Subscription Database for the subscription databases.
For using SSL connections in a multi-master replication system, the URL options must be specified as shown in Section Adding the Primary
definition node for the primary definition node and in Section Creating Additional Primary nodes for the non-MDN nodes.

Earlier we created self-signed certificates for the database server by specifying the value of the CN field as the database user name (for example, postgres
or enterprisedb, and so on). In this case, we use the “verify-ca” value for sslmode parameter to indicate the server certificate is validated against the CA. We
do this because the hostname given in the command Add Database or Update Database could not be verified against CN value present certificate, which is
the database user name.

For publication, subscription, and primary node databases, in the URL Options field of the Add Database or Update Database dialog box, enter the following:

ssl=true&sslmode=verify-ca

NoteNote

When a server certificate is created with the hostname as the CN value there is no need to specify sslmode=verify-ca .

You can specify the ssl=true&sslmode=verify-ca  URL option on the Add Database dialog box.

NoteNote

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 417



If you no longer wish to use an SSL connection to an xDB Replication Server database, you must completely delete the ssl=true  text from the
URL Options field of the Add Database or Update Database dialog box. Simply changing true to false does not have the effect of disabling the SSL
option.

Setting Non-default Paths using Environment Variables

You can override the default paths of certificates and keys by setting the non-default paths in a terminal using the environment variables PGSSLKEY,
PGSSLCERT, and PGSSLROOTCERT. You then need to export the paths in a terminal before running any Replication Server CLI command or launching the
EPRS Replication Console. For example:

$ export PGSSLKEY=/home/postgresql.pk8
$ export PGSSLCERT=/home/postgresql.crt
$ export PGSSLROOTCERT=/home/root.crt

After setting and exporting the environment variables, from the same terminal, you may either run the Replication Server CLI command or launch the EPRS
Replication Console.

Setting Non-default Paths using SSL Connection Parameters

Non-default paths of certificates and keys can be overridden using SSL connection parameters sslrootcert, sslcert, and sslkey. You need to specify these
parameter values in urlOptions:

-urloptions "ssl=true&sslmode=verify-
ca&sslcert=/home/postgresql.crt&sslkey=/home/postgresql.pk8&sslrootcert=/home/root.crt"

You set urlOptions using either the:

Replication Server CLI using the addpubdb/addsubdb command
EPRS Replication Console while adding the publication and subscription database

Summary of SSL Configuration Options

The following is a summary of the publication server and subscription server configuration options that are applicable to SSL connections.

sslTrustStoreType

The sslTrustStoreType option specifies the truststore format. Set this option to the Java truststore format of the client.

sslTrustStoreType=truststore_format

The default value for truststore_format is jks for the JKS truststore file format.

sslTrustStore

The xDB Replication Server uses the default Java truststore for SSL connectivity.

The typical default location of the truststore is in directory JAVA_HOME/jre/lib/security  or JAVA_HOME/lib/security  in a file named 
cacerts . ( JAVA_HOME  is the Java installation directory.)

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 418



Specify the full directory path to the truststore file with this option. sslTrustStore=truststore_file

sslTrustStorePassword

Encrypt the password for the Java system truststore using the xDB Replication Server CLI encrypt command (see Encrypting Passwords) and specify the
encrypted password with the sslTrustStorePassword  option.

sslTrustStorePassword=encrypted_password

sslKeyStoreType

The sslKeyStoreType  option specifies the keystore format. Set this option to the Java keystore format of the client.

sslKeyStoreType=keystore_format

The default value for keystore_format is pkcs12 for the PKCS #12 keystore file format.

sslKeyStore

Specify the full directory path to the keystore file with this option.

sslKeyStore=keystore_file

sslKeyStorePassword

Encrypt the password for the Java system keystore using the xDB Replication Server CLI encrypt command (see Encrypting Passwords) and specify the
encrypted password with the sslKeyStorePassword option.

sslKeyStorePassword=encrypted_password

9          xDB Replication Server Command Line Interface

This chapter discusses the syntax and usage of the xDB Replication Server Command Line Interface (CLI). This utility program is a command line driven
alternative to the xDB Replication Console.

The steps for creating a replication system using the xDB Replication Server CLI are no different than those required when using the xDB Replication
Console. The logical components of the replication system must be created in the same order, with the same sets of attributes as when creating the
replication system with the xDB Replication Console.

You should understand the concepts and steps presented in chapters overview, and Single-Master Replication Operation (for single-master replication) or
Multi-Master Replication Operation (for multi-master replication) before building a replication system using the xDB Replication Server CLI. There are no
restrictions on using both the xDB Replication Console and the xDB Replication Server CLI to build and manage the same replication system.

In Section xDB Replication Server CLI Commands, the syntax and examples are given for each xDB Replication Server CLI command run individually. Where
applicable, the discussion of a command contains a reference back to its xDB Replication Console counterpart where a detailed description of the affected
component and its attributes can be found.

9.1          Prerequisite Steps

This section describes the installation and setup required prior to using the xDB Replication Server CLI.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 419



The xDB Replication Server CLI is included if the xDB Replication Console component is chosen when installing xDB Replication Server. The xDB
Replication Server CLI is a Java application found in directory XDB_HOME/bin .

Step 1:Step 1: Follow the installation steps given in Chapter Installation and Uninstallation to install xDB Replication Server.

Step 2:Step 2: Follow the prerequisite steps given in Section Prerequisite Steps for single-master replication systems or Section Prerequisite Steps for multi-
master replication systems.

Step 3:Step 3: Set the Java Runtime Environment as described by the following discussion.

On the host from which you intend to run the xDB Replication Server CLI, the Java Runtime Environment (JRE) must be present and the Java runtime bin
directory must be included in the path of the operating system user name that will be used to run xDB Replication Server CLI.

The xDB Startup Configuration file, xdbReplicationServer-xx.config , contains the path of the JRE runtime  program that was detected
during the installation of xDB Replication Server. The following is an example of the xDB Startup Configuration file (see Post-Installation Host Environment
for the location of this file.)

#!/bin/sh

JAVA_EXECUTABLE_PATH="/usr/bin/java"
JAVA_MINIMUM_VERSION=1.8
JAVA_BITNESS_REQUIRED=64
JAVA_HEAP_SIZE="-Xms256m -Xmx1536m"
PUBPORT=9051
SUBPORT=9052

For example, using the JRE path shown in the preceding configuration file, enter the following on the command line or add it to your profile:

export PATH=/usr/bin:$PATH

On Windows systems , open the Properties  dialog box of My Computer , choose Advanced System Settings , and then click on 
Environment Variables . Edit the Path system environment variable to include the Java Runtime Environment  bin directory. Alternatively,

you can set the path for just the current session when you open the Command Prompt window as in the following example:

SET Path=C:\Program Files\Java\jre1.8.0_45\bin;%Path%

9.2          General Usage

This section explains the general usage rules for the xDB Replication Server CLI.

Running xDB Replication Server CLI

You can run the xDB Replication Server CLI from any host on which you can run the xDB Replication Console. The xDB Replication Server CLI is run by
executing the java runtime program and specifying the following arguments to the java program:

The path to the xDB Replication Server CLI jar file edb-repcli.jar
An xDB Replication Server CLI command
One or more publication names or subscription names if the command acts on a publication or subscription
Parameters and their values that are applicable to the command

The Java jar file edb-repcli.jar  is located in directory XDB_HOME/bin .

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 420



Each xDB Replication Server CLI command has the following general syntax:

-command [ { pubname | subname } ...]
         ``[ -parameter [ value ] ...] ...

In the preceding syntax diagram, command is the name of an xDB Replication Server CLI command. The command name must be prefixed by a hyphen
character (-). If the command acts on a publication, the name of the publication represented by pubname is specified. If the command acts on a
subscription, the subscription name represented by subname is specified. Certain commands may allow the specification of more than one publication
name or more than one subscription name.

Depending upon the command, one or more parameters may follow. Each parameter name must have a hyphen prefix. You may need to specify one or more
values for each given parameter.

If a command takes more than one parameter, the order in which the parameters are specified makes no difference. Each parameter must be followed only
by the values that pertain to it.

Command names and parameter names are all case sensitive and must be given as shown in Section Getting Help.

The general, complete, execution syntax that you enter at the command line prompt has the following format:

java -jar XDB_HOME/bin/edb-repcli.jar
  -command [ { pubname | subname } ...]
           [ -parameter [ value ] ...] ...

The preceding syntax must be entered as one logical line on the command line. It is broken up into multiple lines in the preceding syntax diagram for the
purpose of clarity.

NoteNote

You can continue a command onto the next physical line if you enter the operating system’s continuation character (for example, the backslash
character ( \ ) in Linux or the caret character (^ ) in Windows) before pressing the Enter key.

Getting Help

If you execute the xDB Replication Server CLI with the help command, xDB Replication Server CLI will list a syntax summary of all commands. See Getting
Help for details on the help command.

Supplying the Publication or Subscription Server Login Information

This section discusses the syntax and usage of an xDB Replication Server CLI parameter, required by many commands, named repsvrfile . Using
parameter repsvrfile is the xDB Replication Server CLI equivalent for the process of registering the publication server or the subscription server in the xDB
Replication Console.

Section Registering a Publication Server discusses how the first step in building a replication system is to register the publication server. In the xDB
Replication Console, the registered publication server appears as a node in the replication tree. The Publication Server node provides a context to which you
can add other logical components of the replication system.

When using the xDB Replication Server CLI, there is no replication tree image available with which to relate the other logical components of the replication
system. Instead, whenever you execute an xDB Replication Server CLI command that requires the context of a publication server or subscription server, you
must specify the publication server’s login information or the subscription server’s login information by means of the repsvrfile  parameter.

The repsvrfile  parameter takes as its value, the path to a text file that contains the login information of either the publication server instance or the

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 421



subscription server instance that you want to use. The general xDB Replication Server CLI command syntax including the repsvrfile  parameter is
shown in the following diagram:

-command [ { pubname | subname } ...]
         [ -parameter [ value ] ...] ...
         [ -repsvrfile repsvrfile ]
         [ -parameter [ value ] ...] ...

The xDB Replication Server CLI command to be executed is represented by command. If required, publication names represented by pubname or
subscription names represented by subname are specified next. The path to the text file containing either the publication server or subscription server login
information is represented by repsvrfile . The parameters and their values that are used with command are denoted by parameter and value.

The order on the command line in which -repsvrfile repsvrfile and -parameter and its values are given does not matter. For example, -repsvrfile repsvrfile
can be given as the first parameter on the command line, the last parameter on the command line, or somewhere in between other parameters.

The following is an example of repsvrfile  for a publication server:

host=localhost
port=9051
user=admin
# Password is in encrypted form.
password=ygJ9AxoJEX854elcVIJPTw==

The following is an example of repsvrfile  for a subscription server:

host=localhost
port=9052
user=admin
# Password is in encrypted form.
password=ygJ9AxoJEX854elcVIJPTw==

These files can be located in any directory as long as they can be read by the operating system user running the xDB Replication Server CLI.

In your file, be sure to replace the values of the following fields with the values for your publication server or subscription server:

Host
Port
User
Password

This is the same information with which you would need to register the publication server or subscription server if you were using the xDB Replication
Console. See Registering a Publication Server for additional information on registering the publication server. See Registering a Subscription Server for
information on registering the subscription server.

The following example illustrates how the repsvrfile  parameter is used along with the printpublist  command.

$ java -jar edb-repcli.jar -printpublist -repsvrfile ~/pubsvrfile.prop
Printing publications ...
analysts_managers
dept_emp
emp_pub

Using Encrypted Passwords in Text Files

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 422



When using the xDB Replication Server CLI, text files are used to store certain information, which may include user names and passwords. An example is
the files containing publication server and subscription server login information used with the repsvrfile  parameter.

In the file specified with parameter repsvrfile , the password field must be set to a password in encrypted form. Using an encrypted password prevents
unauthorized personnel from accessing the publication server or subscription server using the values of user and password if the file was somehow
compromised. (The encrypted password cannot be used to access the publication server or subscription server from its dialog box in the xDB Replication
Console.)

See Encrypting Passwords for directions on generating an encrypted password using the encrypt command.

Running xDB Replication Server CLI Using a Parameter File

The paramfile  command allows you to run an xDB Replication Server CLI command and its parameters that have been coded into a text file. This
technique is useful if you want to save the command and its parameters for repeated executions.

The syntax for executing paramfile  is shown by the following:

java -jar XDB_HOME/bin/edb-repcli.jar
  -paramfile cmdparamfile

The syntax of the xDB Replication Server CLI command and its parameters coded into text file cmdparamfile  is the same as if given at the command
line prompt as shown by the following:

-command [ { pubname | subname } ...]
         [ -parameter [ value ] ...] ...
         [ -repsvrfile repsvrfile ]
         [ -parameter [ value ] ...] ...

Using the paramfile command has the following restrictions:

Only one xDB Replication Server CLI command can be coded into the parameter file cmdparamfile .
The parameters to be used with the xDB Replication Server CLI command must all be included in cmdparamfile . You cannot code some of the
parameters into cmdparamfile and give other parameters on the command line.

The following example creates an Advanced Server publication database definition using a parameter file named addpubdb_advsvr .

The following is the content of parameter file addpubdb_advsvr :

-addpubdb
  -repsvrfile /home/user/pubsvrfile.prop
  -dbtype enterprisedb
  -dbhost 192.168.2.4
  -dbport 5444
  -dbuser pubuser
  -dbpassword ygJ9AxoJEX854elcVIJPTw==
  -database edb
  -repgrouptype s

For Windows only: The -repsvrfile  directory path can be specified with either the forward slash or backslash character. Enclose the entire directory
path in double quotation marks if a directory name contains space characters:

-addpubdb
  -repsvrfile "C:\Users\User Name\repcli\pubsvrfile.prop"

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 423



  -dbtype enterprisedb
  -dbhost 192.168.2.23
  -dbport 5444
  -dbuser pubuser
  -dbpassword ygJ9AxoJEX854elcVIJPTw==
  -database edb
  -repgrouptype s

NoteNote

Unlike entering the xDB Replication Server CLI command and its parameters directly at the command line prompt, when coded into a text file, no
continuation characters are needed to continue onto the following lines.

The following shows the execution of the paramfile  command:

$ java -jar edb-repcli.jar -paramfile ~/addpubdb_advsvr
Adding Publication Database...
Publication database added successfully. Publication Database id:1

Testing the Command Exit Status

After executing an xDB Replication Server CLI command, you can test the exit status to determine if the command execution was successful.

An exit status of 0 indicates successful execution. A non-zero exit status indicates a failure has occurred.

For Linux only:For Linux only: The environment variable, $?, contains the exit status. The following example shows the 0 exit status upon the successful execution of the 
addpubdb  command contained in the addpubdb_advsvr  parameter file described in Section Running xDB Replication Server CLI Using a Parameter

File.

$ java -jar edb-repcli.jar -paramfile ~/addpubdb_advsvr
Adding publication database...
Publication database added successfully. Publication database id:1
$ echo $?
0

On the other hand, the following example shows a non-zero exit status when the command failed with an error.

Table 8-1: Replication Server CLI Exit Status CodesTable 8-1: Replication Server CLI Exit Status Codes

Exit Status Description

0 Success

201 Invalid command

202 I/O error

203 Decryption failed

204 Authentication failed

205 Publication service failure

206 Remote exception

207 Subscription service failure

$ java -jar edb-repcli.jar -paramfile ~/addpubdb_advsvr

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 424



Adding publication database...
Error:The connection attempt failed.
$ echo $?
200

For Windows only:For Windows only: The environment variable, %ERRORLEVEL%,  contains the exit status.

The following shows the exit status upon successful command execution on a Windows system.

C:\Users>java -jar C:\\"Program Files"\PostgreSQL\EnterpriseDB-xDBReplicationServer\bin\edb-repcli.jar -
paramfile addpubdb_advsvr
Adding publication database...
Publication database added successfully. Publication database id:1

C:\Users>ECHO %ERRORLEVEL%
0

The following shows the exit status upon unsuccessful command execution on a Windows system.

C:\Users>java -jar C:\\"Program Files"\PostgreSQL\EnterpriseDB-xDBReplicationServer\bin\edb-
repcli.jar -paramfile addpubdb_advsvr
Adding publication database...
Error:FATAL: password authentication failed for user "myuser"

C:\Users>ECHO %ERRORLEVEL%
200

9.3          xDB Replication Server CLI Commands

This section provides a description, syntax diagram, and examples of each xDB Replication Server CLI command.

Commands are presented in the order in which they will typically be used, following the order in which xDB Replication Console operations are performed.

NoteNote

Though most commands described in this section apply to both single-master and multi-master replication systems, those commands that apply
only to single-master replication systems are noted with For SMR only. Those commands that apply only to multi-master replication systems are
noted with For MMR only. The same notation is used for command parameters that may apply only to single-master replication systems or multi-
master replication systems.

For the examples used in this section, it is assumed that the xDB Replication Server CLI commands are executed after you have made XDB_HOME/bin
your current working directory, thereby eliminating the need to specify the full path of XDB_HOME/bin  for each execution of the edb-repcli.jar
file. For example, assuming xDB Replication Server is installed in the default installation directory you have issued the following command in Linux:

cd /opt/PostgreSQL/EnterpriseDB-xDBReplicationServer/bin

In Windows, the equivalent is the following:

cd C:\Program Files\edb\EnterpriseDB-xDBReplicationServer\bin

Whenever the repsvrfile  parameter appears in the examples, file ~/pubsvrfile  contains the publication server login information and is
located in the user’s home directory while ~/subsvrfile  contains the subscription server login information. For Windows, the equivalent usage is 
%HOMEPATH%\pubsvrfile and %HOMEPATH%\subsvrfile.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 425



The examples in this section were run on Linux so you will see use of the Linux continuation character, which is a backslash () , to show how an xDB
Replication Server CLI command can be continued onto the next line if you do not want to wrap the text in your terminal window. For Windows, use the
Windows continuation character, which is a caret ( ^ ).

9.3.1          Getting Help (help)

The help  command provides a syntax summary of all xDB Replication Server CLI commands.

Synopsis

-help

Examples

$ java -jar edb-repcli.jar -help
Usage: java -jar edb-repcli.jar [OPTIONS]

Where OPTIONS include:
-help   Prints out Replication CLI command-line usage
-version        Prints out Replication CLI version
-encrypt -input <file> -output <file>   Encrypts input file to output file
-repversion -repsvrfile <file>  Prints Replication Server version
                      .

9.3.2          Printing the Version Number (version)

The version  command provides the xDB Replication Server CLI’s version number.

Synopsis

-version

Examples

$ java -jar edb-repcli.jar -version
Version: 6.2.0-alpha

                      .

9.3.3          Printing the xDB Replication Server Version Number (repversion)

The repversion  command provides the xDB Replication Server’s version number.

Synopsis

-repversion -repsvrfile pubsvrfile

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 426



Parameters

pubsvrfile

The file containing the publication server login information.

Examples

$ java -jar edb-repcli.jar -repversion -repsvrfile ~/pubsvrfile.prop
6.2.0-alpha

                      .

9.3.4          Encrypting Passwords (encrypt)

The encrypt  command encrypts the text supplied in an input file and writes the encrypted result to a specified output file. Use the encrypt  command
to generate an encrypted password that can be copied into a text file that will be referenced by an xDB Replication Server CLI command that requires a user
name and the user’s password.

Synopsis

-encrypt –input infile –output pwdfile

The text in infile  is processed using the MD5 encryption algorithm, and the encrypted text is written to file pwdfile. Make sure that infile  contains
only the text that you want to encrypt and that there are no extraneous characters or empty lines before the text or after the text that you want to encrypt.

Parameters

infile

The file containing the text to be encrypted.

pwdfile

The file containing the encrypted form of the text from infile.

Examples

The file infile contains the word password .

password

The encrypt  command is then executed producing a file named pwdfile.

$ java -jar edb-repcli.jar -encrypt -input ~/infile -output ~/pwdfile

The content of file pwdfile contains the encrypted form of password .

ygJ9AxoJEX854elcVIJPTw==

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 427



9.3.5          Printing the Time the Server Has Been Running (uptime)

The uptime  command prints the time interval since the publication server has been up and running.

Synopsis

-uptime -repsvrfile pubsvrfile

Parameters

pubsvrfile

The file containing the publication server login information.

Examples

$ java -jar edb-repcli.jar -uptime -repsvrfile ~/pubsvrfile.prop
0 days 0 hours 4 minutes

9.3.6          Adding a Publication Database (addpubdb)

The addpubdb  command adds a publication database definition.

Synopsis

-addpubdb
  -repsvrfile pubsvrfile
  -dbtype { oracle | enterprisedb | postgresql | sqlserver }
  -dbhost host
  -dbport port
  -dbuser user
{ -dbpassword encrypted_pwd | -dbpassfile pwdfile }
[ -oraconnectiontype { sid | servicename } ]
  -database dbname
[ -urloptions jdbc_url_parameters ]
[ -filterrule filterid_1[,filterid_2 ] ...]
[ -repgrouptype { m | s } ]
[ -replicatepubschema { true | false } ]
[ -initialsnapshot
  [ -verboseSnapshotOutput { true | false } ] ]
[ -nodepriority priority_level ]
[ -changesetlogmode { T | W } ]

The addpubdb  command creates a new publication database definition. The addpubdb command displays a unique publication database ID that is
assigned to the newly created publication database definition. The publication database ID is used to identify the publication database definition on which
to operate when running other xDB Replication Server CLI commands.

See Adding a Publication Database for details on the database connection information that must be supplied when adding a publication database definition
for a single-master replication system. See sections Adding the Primary definition node and Creating Additional Primary nodes for a multi-master
replication system.

Parameters

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 428



pubsvrfile

The file containing the publication server login information.

-dbtype

Specify oracle if the database is an Oracle database. Specify enterprisedb if the database is an Advanced Server database in Oracle compatible
configuration mode. Specify postgresql  if the database is a PostgreSQL database or an Advanced Server database in PostgreSQL compatible
configuration mode. Specify sqlserver  if the database is a Microsoft SQL Server database.

host

The IP address of the host on which the publication database server is running.

port

The port number on which the database server is listening for connections.

user

The publication database user name.

encrypted_pwd

The encrypted password of the publication database user. See Encrypting Passwords for directions on using the encrypt command to generate an
encrypted password.

pwdfile

The file containing the encrypted password of the publication database user.

-oraconnectiontype

Specify sid  if the Oracle system ID (SID) is used to identify the publication database in the database parameter. Specify servicename  if the
Oracle service name is used to identify the publication database in the database parameter.

NoteNote

For Oracle 12c, use the service name.

dbname

The Postgres or SQL Server database name, the Oracle SID, or the Oracle service name of the publication database.

jdbc_url_parameters

Extended usage of JDBC URL parameters such as for support of SSL connectivity. (See Section Preparing Using Secure Sockets Layer (SSL)
Connections for information on SSL connectivity to the publication database.)

filterid_n

For MMR only:For MMR only: Applies to non-MDN nodes. Comma-separated list of filter IDs identifying the filter rules from the set of available table filters to
enable on the corresponding tables in the new primary node. Use the printpubfilterslist command to obtain the filter IDs for the available filter
rules in the publication (see Printing a List of Filters in a Publication). Note: There must be no white space between the comma and filter IDs.'

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 429



-repgrouptype

Specify s if this command applies to a single-master replication system. Specify m if this command applies to a multi-master replication system. If
omitted, the default is s .

-replicatepubschema

For MMR only:For MMR only: Applies to non-MDN nodes. Set this option to true if you want the publication table definitions replicated from the primary
definition node when creating a new primary node. Set this option to false if you have already created the table definitions in the new primary
node. If omitted, the default is true. Do not specify this parameter when creating the primary definition node.

NoteNote

(For MMR only): Unless you intend to use the offline snapshot technique (see Loading Tables From an External Data Source (Offline
Snapshot), it is suggested that you specify this option. An initial snapshot replication must be performed from the primary definition
node to every other primary node before performing synchronization replications on demand (see Performing a Synchronization) or by
a schedule (see Configuring a Multi-Master Schedule). If a newly added primary node did not undergo an initial snapshot, any
subsequent synchronization replication may fail to apply the transactions to that primary node. The initial snapshot can also be taken
by performing an on demand snapshot (see Take a Multi-Master Snapshot).

-initialsnapshot

For MMR only:For MMR only: Applies to non-MDN nodes. Specify this option if you want an initial snapshot replication to be performed when creating the
primary node. Omit this option if you do not want an initial snapshot replication to be performed when creating the primary node.

NoteNote

(For MMR only)(For MMR only) Unless you intend to use the offline snapshot technique (see Loading Tables From an External Data Source (Offline Snapshot)), it
is suggested that you specify this option. An initial snapshot replication must be performed from the primary definition node to every other
primary node before performing synchronization replications on demand (see Performing a Synchronization) or by a schedule (see Configuring a
Multi-Master Schedule). If a newly added primary node did not undergo an initial snapshot, any subsequent synchronization replication may fail
to apply the transactions to that primary node. The initial snapshot can also be taken by performing an on demand snapshot (see Section Take a
Multi-Master Snapshot) or by a schedule (see Configuring a Multi-Master Schedule).

-verboseSnapshotOutput

Set this option to true if you want the output from the snapshot to be displayed. Set this option to false if you do not want the snapshot output
displayed. If omitted, the default is true.

NoteNote

This option may be given only directly following the specification of the -initialsnapshot  option.

priority_level

For MMR only:For MMR only: Integer value from 1 through 10 assigning the priority level to a primary node with 1 having the highest priority and 10 having the
lowest priority.

-changesetlogmode

Specify T to use the trigger-based method of synchronization replication for this publication database. Specify W to use the log-based (WAL)
method of synchronization replication for this publication database. If omitted, the default is T.

Examples

The following example adds a publication database definition for an Oracle database. The encrypted password is given on the command line with the
dbpassword parameter. A publication database ID of 1 is assigned to the database by the publication service.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 430



$ java -jar edb-repcli.jar -addpubdb -repsvrfile ~/pubsvrfile.prop \
>   -dbtype oracle -dbhost 192.168.2.6 -dbport 1521 \
>   -dbuser pubuser -dbpassword ygJ9AxoJEX854elcVIJPTw== \
>   -oraconnectiontype sid \
>   -database xe \
>   -repgrouptype s
Adding publication database...
Publication database added successfully. Publication database id:1

The following example adds a publication database definition for an Advanced Server database. The encrypted password is read from a file named pwdfile
with the dbpassfile parameter. A publication database ID of 2 is assigned to the database by the publication service.

$ java -jar edb-repcli.jar -addpubdb -repsvrfile ~/pubsvrfile.prop \
>   -dbtype enterprisedb -dbhost 192.168.2.7 -dbport 5444 \
>   -dbuser pubuser -dbpassfile ~/pwdfile \
>   -database edb \
>   -repgrouptype s
Adding publication database...
Publication database added successfully. Publication database id:2

The following example adds a publication database definition for a primary definition node in a multi-master replication system.

$ java -jar edb-repcli.jar -addpubdb -repsvrfile ~/pubsvrfile.prop \
>   -dbtype enterprisedb -dbhost 192.168.2.6 -dbport 5444 \
>   -dbuser pubuser -dbpassword ygJ9AxoJEX854elcVIJPTw== \
>   -database edb \
>   -repgrouptype m \
>   -nodepriority 1
Adding publication database...
Publication database added successfully. Publication database id:3

The following example adds a publication database definition for a primary node (other than the primary definition node) in a multi-master replication
system where an initial snapshot is not invoked (the initialsnapshot parameter is omitted). Filter rules with filter IDs 8 and 16 are applied to this primary
node. A node priority level of 3 is assigned to the primary node.

NoteNote

A publication must be created in the primary definition node before creating additional primary nodes. See Creating a Publication for the
command to create a publication.

$ java -jar edb-repcli.jar -addpubdb -repsvrfile ~/pubsvrfile.prop \
>   -dbtype enterprisedb -dbhost 192.168.2.7 -dbport 5444 \
>   -dbuser MMRuser -dbpassword ygJ9AxoJEX854elcVIJPTw== \
>   -database MMRnode \
>   -filterrule 8,16 \
>   -repgrouptype m \
>   -nodepriority 3
Adding publication database...
Replicating publication schema...
Publication database added successfully. Publication database id:24

9.3.7          Printing Publication Database IDs (printpubdbids)

The printpubdbids  command prints the publication database IDs of the publication database definitions.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 431



Synopsis

-printpubdbids -repsvrfile pubsvrfile

Parameters

pubsvrfile

The file containing the publication server login information.

Examples

The following example lists the publication database IDs of the publication database definitions.

$ java -jar edb-repcli.jar -printpubdbids -repsvrfile ~/pubsvrfile.prop
Printing publication database ids...
2
1
24
3

9.3.8          Printing Publication Database Details (printpubdbidsdetails)

The printpubdbidsdetails  command prints the connection information for each publication database definition.

Synopsis

-printpubdbidsdetails –repsvrfile pubsvrfile

The output has the following components:

dbid:host:port:dbname:user

NoteNote

The database user’s password is not displayed.

Parameters

pubsvrfile

The file containing the publication server login information.

dbid

The publication database ID assigned to the publication database definition.

host

The IP address of the host on which the publication database server is running.

port

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 432



The port number on which the database server is listening for connections.

dbname

The Postgres or SQL Server database name, the Oracle SID, or the Oracle service name of the publication database.

user

The publication database user name.

Examples

There are four publication database definitions subordinate to the publication server identified by the content of file pubsvrfile.prop .

$ java -jar edb-repcli.jar -printpubdbidsdetails \
>   -repsvrfile ~/pubsvrfile.prop
Printing publication database ids with details...
id:host:port:database|sid:user
2:192.168.2.7:5444:edb:pubuser
1:192.168.2.6:1521:xe:pubuser
24:192.168.2.7:5444:MMRnode:MMRuser
3:192.168.2.6:5444:edb:pubuser

9.3.9          Printing the Controller Database ID (printcontrollerdbid)

The printcontrollerdbid  command prints the publication database ID of the controller database.

Synopsis

-printcontrollerdbid -repsvrfile pubsvrfile

Parameters

pubsvrfile

The file containing the publication server login information.

Examples

The following example prints the publication database ID of the controller database.

$ java -jar edb-repcli.jar -printcontrollerdbid -repsvrfile ~/pubsvrfile.prop
Printing Controller database id...
1

9.3.10          Printing the Primary definition node Database ID (printmdndbid)

For MMR only:For MMR only: The printmdndbid  command prints the publication database ID of the primary definition node.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 433



Synopsis

-printmdndbid -repsvrfile pubsvrfile

Parameters

pubsvrfile

The file containing the publication server login information.

Examples

The following example prints the publication database ID of the primary definition node.

$ java -jar edb-repcli.jar -printmdndbid -repsvrfile ~/pubsvrfile.prop
Printing MDN Publication database id...
3

9.3.11          Updating a Publication Database (updatepubdb)

The updatepubdb  command provides the ability to change the connection information for an existing publication database definition identified by its
publication database ID.

Synopsis

-updatepubdb
  -repsvrfile pubsvrfile
  -pubdbid dbid
  -dbhost host
  -dbport port
  -dbuser user
{ -dbpassword encrypted_pwd | -dbpassfile pwdfile }
[ -oraconnectiontype { sid | servicename } ]
  -database dbname
[ -urloptions jdbc_url_parameters ]
[ -nodepriority priority_level ]

The publication database definition to be updated is identified by the pubdbid  parameter.

See Adding a Publication Database for details on the database connection information that must be supplied for a publication database definition for a
single-master replication system. See sections Adding the Primary definition node and Creating Additional Primary nodes for a multi-master replication
system.

Parameters

pubsvrfile

The file containing the publication server login information.

dbid

The publication database ID of the publication database definition to be updated.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 434



host

The IP address of the host on which the publication database server is running.

port

The port number on which the database server is listening for connections.

user

The publication database user name.

encrypted_pwd

The password of the database user in encrypted form. See Encrypting Passwords for directions on using the encrypt command to generate an
encrypted password.

pwdfile

The file containing the password of the database user in encrypted form.

-oraconnectiontype

Specify sid  if the Oracle system ID (SID) is used to identify the publication database in the database parameter. Specify servicename  if the
Oracle service name is used to identify the publication database in the database parameter.

NoteNote

For Oracle 12c, use the service name.

dbname

The Postgres or SQL Server database name, the Oracle SID, or the Oracle service name of the publication database.

jdbc_url_parameters

Extended usage of JDBC URL parameters such as for support of SSL connectivity. (See Preparing Using Secure Sockets Layer (SSL) Connections
for information on SSL connectivity to the publication database.) Specification of the urloptions parameter completely replaces any existing JDBC
URL parameters that may have previously been specified with this database. Omission of the urloptions parameter deletes any existing JDBC URL
parameters that may have previously been specified with this database.

priority_level

For MMR only:For MMR only: Integer value from 1 through 10 assigning the priority level to a primary node with 1 having the highest priority and 10 having the lowest
priority.

Examples

In the following example, an existing publication database definition with publication database ID 1 is updated.

$ java -jar edb-repcli.jar -updatepubdb -repsvrfile ~/pubsvrfile.prop \
>   -pubdbid 1 \
>   -dbhost 192.168.2.6 -dbport 1521 \
>   -dbuser pubuser -dbpassfile ~/pwdfile \
>   -oraconnectiontype sid \
>   -database xe

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 435



Updating publication database ...
Publication database with ID 1 is updated successfully.

9.3.12          Removing a Publication Database (removepubdb)

The removepubdb  command removes a publication database definition.

Synopsis

-removepubdb
  –repsvrfile pubsvrfile
  –pubdbid dbid

The publication database definition to be removed is identified by the pubdbid  parameter.

See Removing a Publication Database
for additional information on removing a publication database.

Parameters

pubsvrfile

The file containing the publication server login information.

dbid

The publication database ID of the publication database definition to be removed.

Examples

The publication database definition identified by publication database ID 1  is removed.

$ java -jar edb-repcli.jar -removepubdb -repsvrfile ~/pubsvrfile.prop \
>   -pubdbid 1
Removing Publication Database...
Publication Database removed.

9.3.13          Get Tables for a New Publication (gettablesfornewpub)

The gettablesfornewpub  command lists the tables and views that are available for inclusion in a new publication from a given publication database
definition.

Synopsis

-gettablesfornewpub –repsvrfile repsvrfile –pubdbid dbid

Parameters

pubsvrfile

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 436



The file containing the publication server login information.

dbid

The publication database ID of the publication database definition whose available tables and views are to be listed.

Examples

For the publication database definition identified by publication database ID 1, the tables available for inclusion in a publication are EDB.DEPT, 
EDB.EMP , and EDB.JOBHIST . The view available for inclusion in a publication is EDB.SALESEMP .

$ java -jar edb-repcli.jar -gettablesfornewpub \
>   -repsvrfile ~/pubsvrfile.prop -pubdbid 1
Fetching tables/views list ...
[[EDB.DEPT, TABLE], [EDB.EMP, TABLE], [EDB.JOBHIST, TABLE], [EDB.SALESEMP, VIEW]]

9.3.14          Creating a Publication (createpub)

The createpub  command creates a new publication.

Synopsis

-createpub pubname
  -repsvrfile pubsvrfile
  -pubdbid dbid
  -reptype { s | t }
  -tables schema_t1.table_1 [ schema_t2.table_2 ] ...
[ -views schema_v1.view_1 [ schema_v2.view_2 ] ...]
[ -tablesfilterclause
    "ordinal_t1:filtername_t1:filterclause_t1"
  [ "ordinal_t2:filtername_t2:filterclause_t2" ] ...]
[ -viewsfilterclause
    "ordinal_v1:filtername_v1:filterclause_v1"
  [ "ordinal_v2:filtername_v2:filterclause_v2" ] ...]
[ -conflictresolution
    ordinal_t1:{ E | L | N | M | C:customhandler_t1 }
  [ ordinal_t2:{ E | L } N | M | C:customhandler_t2 } ] ...]
[ -standbyconflictresolution
    ordinal_t1:{ E | L | N | M | C:customhandler_t1 }
  [ ordinal_t2:{ E | L } N | M | C:customhandler_t2 } ] ...]
[ -repgrouptype { m | s } ]

The createpub  command adds a new publication subordinate to the publication database definition with the publication database ID given by
parameter pubdbid . If the publication is designated as snapshot-only by setting parameter reptype  to s , then any views listed after the views
parameter are ignored.

See Adding a Publication for additional information on creating a publication for a single-master replication system. See Adding a Publication for a multi-
master replication system.

NoteNote

The schema names, table names, and view names that you supply as values for the tables and views parameters are case-sensitive. Unless quoted
identifiers were used to build the database objects, Oracle names must be entered using uppercase letters (for example, EDB.DEPT ), and
Advanced Server names must be entered in lowercase letters (for example edb.dept ). See Quoted Identifiers and Default Case Translation for
additional information on quoted identifiers and case translation.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 437



Parameters

pubname

The publication name to be given to the new publication.

pubsvrfile

The file containing the publication server login information.

dbid

The publication database ID of the publication database definition subordinate to which the new publication is to be added.

-reptype

Specify s if the publication is to be a snapshot-only publication. Specify t  if the publication is to allow synchronization replications.

schema_tn

The name of the schema containing the nth table of the tables parameter list. This value is case-sensitive.

table_n

The table name of the nth table in the tables parameter list. This value is case-sensitive.

schema_vn

For SMR only:For SMR only: The name of the schema containing the nth view of the views parameter list. This value is case-sensitive.

view_n

For SMR only:For SMR only: View name of the nth view in the views parameter list. This value is case-sensitive.

ordinal_tn

The ordinal number (that is, the position in the list counting from left to right starting with 1) of a table in the tables parameter list to which an
attribute is to be applied.

filtername_tn

The filter name to be assigned to the filter rule on the table.

filterclause_tn

The filter clause to be applied to the table in the tables parameter list at the position indicated by ordinal_tn.

ordinal_vn

For SMR only:For SMR only: The ordinal number (that is, the position in the list counting from left to right starting with 1) of a view in the views parameter list to
which an attribute is to be applied.

filtername_vn

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 438



The filter name to be assigned to the filter rule on the view.

filterclause_vn

For SMR only:For SMR only: The filter clause to be applied to the view in the views parameter list at the position indicated by ordinal_vn.

-conflictresolution

For MMR only:For MMR only: For the conflict resolution option, specify E for earliest timestamp conflict resolution, L for latest timestamp conflict resolution, N
for node priority conflict resolution, M for manual conflict resolution, or C for custom conflict handling. The specified conflict resolution applies
to the table in the position given by ordinal_tn counting from left to right in the tables parameter list. If omitted the default is E.

-standbyconflictresolution

For MMR only:For MMR only: For the standby conflict resolution option, specify E for earliest timestamp conflict resolution, L for latest timestamp conflict
resolution, N for node priority conflict resolution, M for manual conflict resolution, or C for custom conflict handling. The specified conflict
resolution applies to the table in the position given by ordinal_tn counting from left to right in the tables parameter list. If omitted the default is
M.

customhandler_tn

For MMR only:For MMR only: For the conflict resolution option or the standby conflict resolution option, specify customhandler_tn as the function name with an
optional schema prefix (that is, formatted as schema.function_name) as given in the CREATE FUNCTION command for the custom conflict
handling function created for the table in the tables parameter list at the position indicated by ordinal_tn. The custom conflict handling function
must be added to the primary definition node. See Adding a Custom Conflict Handling Function for an example of adding the custom conflict
handling function using PSQL. The custom handler name option must be specified if and only if the conflict resolution option or the standby
conflict resolution option is set for custom conflict handling with the C value.

-repgrouptype

Specify s if this command applies to a single-master replication system. Specify m if this command applies to a multi-master replication system. If
omitted, the default is s.

Examples

In the following example, a publication named dept_emp is created that contains the EDB.DEPT and EDB.EMP tables of an Oracle database. The replication
method is synchronization.

$ java -jar edb-repcli.jar -createpub dept_emp \
>   -repsvrfile ~/pubsvrfile.prop \
>   -pubdbid 1 \
>   -reptype t \
>   -tables EDB.DEPT EDB.EMP
Creating publication...
Tables:[[EDB.DEPT, TABLE], [EDB.EMP, TABLE]]
Filter clause:[]
Publication created.

In the following example, a publication named salesemp is created that contains the EDB.SALESEMP view of an Oracle database. The replication method is
snapshot-only.

$ java -jar edb-repcli.jar -createpub salesemp \
>   -repsvrfile ~/pubsvrfile.prop \
>   -pubdbid 1 \
>   -reptype s \
>   -views EDB.SALESEMP
Creating publication...
Tables:[[EDB.SALESEMP, VIEW]]

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 439



Filter clause:[]
Publication created.

In the following example, a publication named analysts_managers is created that contains the edb.dept  table and employees from the edb.emp  table
who are analysts or managers. The tables are in an Advanced Server database. The replication method is snapshot-only.

$ java -jar edb-repcli.jar -createpub analysts_managers \
>   -repsvrfile ~/pubsvrfile.prop \
>   -pubdbid 2 \
>   -reptype s \
>   -tables edb.dept edb.emp \
>   -tablesfilterclause "2:jobgrade_11:job IN ('ANALYST', 'MANAGER')"
Creating publication...
Tables:[[edb.dept, TABLE], [edb.emp, TABLE]]
Filter clause:[FilterName:jobgrade_11   FilterClause:job IN ('ANALYST', 'MANAGER')      ]
Publication created.

The following example creates a publication for a multi-master replication system. One table filter is defined on table edb.dept  and three table filters
are defined on table edb.emp . Table edb.dept  is assigned node priority conflict resolution and latest timestamp as the standby conflict resolution
strategy. Table edb.emp  is assigned earliest timestamp conflict resolution and manual resolution (the default) as its standby strategy.

$ java -jar edb-repcli.jar -createpub emp_pub \
>   -repsvrfile ~/pubsvrfile.prop \
>   -pubdbid 3 \
>   -reptype t \
>   -tables edb.dept edb.emp \
>   -tablesfilterclause "1:dept_10_20_30:deptno in (10, 20, 30)" \
>     "2:dept_10:deptno = 10" \
>     "2:dept_20:deptno = 20" \
>     "2:dept_30:deptno = 30" \
>   -conflictresolution 1:N 2:E \
>   -standbyconflictresolution 1:L 2:M \
>   -repgrouptype m
Creating publication...
Tables:[[edb.dept, TABLE], [edb.emp, TABLE]]
Filter clause:[FilterName:dept_10_20_30 FilterClause:deptno in (10, 20, 30)     , FilterName:dept_10   
FilterClause:deptno = 10 , FilterName:dept_20    FilterClause:deptno = 20        , FilterName:dept_30   
FilterClause:deptno = 30 ]
Conflict Resolution Option:[ Node Priority, Earliest Timestamp ]
Standby Conflict Resolution Option:[ Latest Timestamp, Manual ]
Publication created.

9.3.15          Printing a List of Publications (printpublist)

The printpublist  command prints a list of publication names.

Synopsis

-printpublist -repsvrfile pubsvrfile
 [ -pubdbid dbid ]
 [ -printpubid ]

Parameters

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 440



pubsvrfile

The file containing the publication server login information.

dbid

If the pubdbid  parameter is specified, only the publication names subordinate to the publication database definition specified by dbid are
printed. If the pubdbid parameter is omitted, all publication names subordinate to the publication server are printed.

-printpubid

Specify this parameter to print the publication IDs as well as the publication names.

Examples

$ java -jar edb-repcli.jar -printpublist -repsvrfile ~/pubsvrfile.prop
Printing publications ...
analysts_managers
dept_emp
emp_pub
salesemp

9.3.16          Printing a List of Tables in a Publication (printpublishedtables)

The printpublishedtables  command prints a list of tables and views that belong to the given publication.

Synopsis

-printpublishedtables pubname -repsvrfile pubsvrfile

Parameters

pubname

The name of the publication whose tables and views are to be printed.

pubsvrfile

The file containing the publication server login information.

Examples

The tables belonging to publication dept_emp are printed.
$ java -jar edb-repcli.jar -printpublishedtables dept_emp \
>   -repsvrfile ~/pubsvrfile.prop
Printing tables under publication: dept_emp

EDB.DEPT
EDB.EMP

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 441



9.3.17          Printing a List of Filters in a Publication (printpubfilterslist)

The printpubfilterslist  command prints a list of table filters that are defined in the given publication.

Synopsis

-printpubfilterslist pubname -repsvrfile pubsvrfile

Parameters

pubname

The name of the publication whose table filters are to be printed.

pubsvrfile

The file containing the publication server login information.

Examples

The table filters in publication analysts_managers are printed.

$ java -jar edb-repcli.jar -printpubfilterslist analysts_managers \
>   -repsvrfile ~/pubsvrfile.prop
Printing publications ...
FilterID:47      FilterName:jobgrade_11  FilterClause:job IN ('ANALYST', 'MANAGER')

The table filters defined in publication emp_pub  are printed.

$ java -jar edb-repcli.jar -printpubfilterslist emp_pub \
>   -repsvrfile ~/pubsvrfile.prop
Printing publications ...
FilterID:8       FilterName:dept_10_20_30        FilterClause:deptno in (10, 20, 30)
FilterID:9       FilterName:dept_10      FilterClause:deptno = 10
FilterID:10      FilterName:dept_20      FilterClause:deptno = 20
FilterID:16      FilterName:dept_30      FilterClause:deptno = 30

9.3.18          Adding Tables to a Publication (addtablesintopub)

The addtablesintopub  command adds tables or views into an existing publication.

Synopsis

-addtablesintopub pubname
  -repsvrfile pubsvrfile
[ -tables schema_t1.table_1 [ schema_t2.table_2 ] ...]
[ -views schema_v1.view_1 [ schema_v2.view_2 ] ...]
[ -tablesfilterclause
    "ordinal_t1:filtername_t1:filterclause_t1"
  [ "ordinal_t2:filtername_t2:filterclause_t2" ] ...]
[ -viewsfilterclause

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 442



    "ordinal_v1:filtername_v1:filterclause_v1"
  [ "ordinal_v2:filtername_v2:filterclause_v2" ] ...]
[ -conflictresolution
    ordinal_t1:{ E | L | N | M | C:customhandler_t1 }
  [ ordinal_t2:{ E | L } N | M | C:customhandler_t2 } ] ...]
[ -standbyconflictresolution
    ordinal_t1:{ E | L | N | M | C:customhandler_t1 }
  [ ordinal_t2:{ E | L } N | M | C:customhandler_t2 } ] ...]
[ -repgrouptype { m | s } ]

The addtablesintopub  command updates an existing publication identified by pubname. The views parameter is applicable only for a snapshot-only
publication and is ignored if the publication is not defined as snapshot-only. See Adding Tables to a Publication for additional information on adding tables
to a publication.

NoteNote

The schema names, table names, and view names that you supply as values for the tables and views parameters are case-sensitive. Unless quoted
identifiers were used to build the database objects, Oracle names must be entered using uppercase letters (for example, EDB.DEPT ), and
Advanced Server names must be entered in lowercase letters (for example edb.dept ). See Quoted Identifiers and Default Case Translation for
additional information on quoted identifiers and case translation.

Parameters

pubname

The name of the publication to which tables or views are to be added.

pubsvrfile

The file containing the publication server login information.

schema_tn

The name of the schema containing the nth table of the tables parameter list. This value is case-sensitive.

table_n

The name of the nth table in the tables parameter list. This value is case-sensitive.

schema_vn

For SMR only:For SMR only: The name of the schema containing the nth view of the views parameter list. This value is case-sensitive.

view_n

For SMR only:For SMR only: The name of the nth view in the views parameter list. This value is case-sensitive.

ordinal_tn

The ordinal number (that is, the position in the list counting from left to right starting with 1) of a table in the tables parameter list to which an
attribute is to be applied.

filtername_tn

The filter name to be assigned to the filter rule on the table.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 443



filterclause_tn

The filter clause to be applied to the table in the tables parameter list at the position indicated by ordinal_tn.

ordinal_vn

For SMR only:For SMR only: The ordinal number (that is, the position in the list counting from left to right starting with 1) of a view in the views parameter list to
which an attribute is to be applied.

filtername_vn

The filter name to be assigned to the filter rule on the view.

filterclause_vn

For SMR only:For SMR only: The filter clause to be applied to the view in the views parameter list at the position indicated by ordinal_vn.

-conflictresolution

For MMR only:For MMR only: For the conflict resolution option, specify E for earliest timestamp conflict resolution, L for latest timestamp conflict resolution, N
for node priority conflict resolution, M for manual conflict resolution, or C for custom conflict handling. The specified conflict resolution applies
to the table in the position given by ordinal_tn counting from left to right in the tables parameter list. If omitted the default is E.

-standbyconflictresolution

For MMR only:For MMR only: For the standby conflict resolution option, specify E for earliest timestamp conflict resolution, L for latest timestamp conflict
resolution, N for node priority conflict resolution, M for manual conflict resolution, or C for custom conflict handling. The specified conflict
resolution applies to the table in the position given by ordinal_tn counting from left to right in the tables parameter list. If omitted the default is
M.

customhandler_tn

For MMR only:For MMR only: For the conflict resolution option or the standby conflict resolution option, specify customhandler_tn as the function name with an
optional schema prefix (that is, formatted as schema.function_name) as given in the CREATE FUNCTION command for the custom conflict
handling function created for the table in the tables parameter list at the position indicated by ordinal_tn. The custom conflict handling function
must be added to the primary definition node. See Adding a Custom Conflict Handling Function for an example of adding the custom conflict
handling function using PSQL. The custom handler name option must be specified if and only if the conflict resolution option or the standby
conflict resolution option is set for custom conflict handling with the C value.

-repgrouptype

Specify s if this command applies to a single-master replication system. Specify m if this command applies to a multi-master replication system.
Note: This parameter is not required and may be completely omitted. It is present to provide support for its usage in previous xDB Replication
Server CLI versions.

Examples

In the following example, table edb.jobhist  and view edb.salesemp  are added to an existing publication named analysts_managers.

$ java -jar edb-repcli.jar -addtablesintopub analysts_managers \
>   -repsvrfile ~/pubsvrfile.prop \
>   -tables edb.jobhist \
>   -views edb.salesemp
Adding tables to publication analysts_managers ...

Tables:[[edb.jobhist, TABLE], [edb.salesemp, VIEW]]
Filter clause:[null, null]

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 444



Publication updated successfully

9.3.19          Removing Tables from a Publication (removetablesfrompub)

The removetablesfrompub  command removes tables from a publication.

Synopsis

-removetablesfrompub pubname
  -repsvrfile pubsvrfile
[ -tables schema_t1.table_1 [ schema_t2.table_2 ] ...]
[ -views schema_v1.view_1 [ schema_v2.view_2 ] ...]

See Removing Tables from a Publication for additional information on removing tables from a publication.

NoteNote

The schema names, table names, and view names that you supply as values for the tables and views parameters are case-sensitive. Unless quoted
identifiers were used to build the database objects, Oracle names must be entered using uppercase letters (for example, EDB.DEPT ), and
Advanced Server names must be entered in lowercase letters (for example edb.dept ). See Quoted Identifiers and Default Case Translation for
additional information on quoted identifiers and case translation.

Parameters

pubname

The name of the publication from which tables or views are to be removed.

pubsvrfile

The file containing the publication server login information.

schema_tn

The name of the schema containing the nth table of the tables parameter list. This value is case-sensitive.

table_n

The name of the nth table in the tables parameter list. This value is case-sensitive.

schema_vn

The name of the schema containing the nth view of the views parameter list. This value is case-sensitive.

view_n

The name of the nth view in the views parameter list. This value is case-sensitive.

Examples

In the following example, table edb.jobhist  and view edb.salesemp  are removed from the analysts_managers publication.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 445



$ java -jar edb-repcli.jar -removetablesfrompub analysts_managers \
>   -repsvrfile ~/pubsvrfile.prop \
>   -tables edb.jobhist \
>   -views edb.salesemp

Removing tables and views from publication `analysts_managers` ...

Tables and views removed successfully

9.3.20          Adding Table Filters to a Publication (addfilter)

The addfilter  command adds the definition of table filter rules to the specified publication.

This makes the filter rules available for subsequent enablement on target subscriptions or non-MDN nodes.

Enabling a filter rule on a specified, target subscription or non-MDN node results in the filtering of data during replication from the source table to the
target table.

If the filter rule is not enabled on a target subscription or non-MDN node, then it has no impact during replication on such subscription or non-MDN node.
See Enabling Filters on a Subscription or Non-MDN Node for information on enabling table filter rules.

Synopsis

-addfilter pubname
  –repsvrfile pubsvrfile
[ -tables schema_t1.table_1 [ schema_t2.table_2 ] ...]
[ -views schema_v1.view_1 [ schema_v2.view_2 ] ...]
[ -tablesfilterclause
    "ordinal_t1:filtername_t1:filterclause_t1"
  [ "ordinal_t2:filtername_t2:filterclause_t2" ] ...]
[ -viewsfilterclause
    "ordinal_v1:filtername_v1:filterclause_v1"
  [ "ordinal_v2:filtername_v2:filterclause_v2" ] ...]

See Table Filters for additional information on table filters.

NoteNote

The schema names and table or view names that you supply as values for the tables or views parameters are case-sensitive. Unless quoted
identifiers were used to build the database objects, Oracle names must be entered using uppercase letters (for example, EDB.DEPT ), and
Advanced Server names must be entered in lowercase letters (for example edb.dept ). See Quoted Identifiers and Default Case Translation for
additional information on quoted identifiers and case translation.

Parameters

pubname

The name of the publication in which table filters are to be added.

pubsvrfile

The file containing the publication server login information.

schema_tn

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 446



The name of the schema containing the nth table of the tables parameter list. This value is case-sensitive.

table_n

The name of the nth table in the tables parameter list. This value is case-sensitive.

schema_vn

For SMR only:For SMR only: The name of the schema containing the nth view of the views parameter list. This value is case-sensitive.

view_n

For SMR only:For SMR only: The name of the nth view in the views parameter list. This value is case-sensitive.

ordinal_tn

The ordinal number (that is, the position in the list counting from left to right starting with 1) of a table in the tables parameter list to which an
attribute is to be applied.

filtername_tn

The filter name to be assigned to the filter rule on the table.

filterclause_tn

The filter clause to be applied to the table in the tables parameter list at the position indicated by ordinal_tn.

ordinal_vn

For SMR only:For SMR only: The ordinal number (that is, the position in the list counting from left to right starting with 1) of a view in the views parameter list to
which an attribute is to be applied.

filtername_vn

The filter name to be assigned to the filter rule on the view.

filterclause_vn

For SMR only:For SMR only: The filter clause to be applied to the view in the views parameter list at the position indicated by ordinal_vn .

Examples

In the following example, a table filter is added to table edb.emp  in publication analysts_managers .

$ java -jar edb-repcli.jar -addfilter analysts_managers \
>   -repsvrfile ~/pubsvrfile.prop \
>   -tables edb.emp \
>   -tablesfilterclause "1:jobgrade_9:job = 'SALESMAN'"
Creating Filter(s)
Tables:[[edb.emp, TABLE]]
Filter clause:[FilterName:jobgrade_9    FilterClause:job = 'SALESMAN'   ]
Filter(s) created successfully.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 447



9.3.21          Updating Table Filters in a Publication (updatefilter)

The updatefilter  command changes the filter clauses of the specified tables or views.

Synopsis

-updatefilter pubname
  –repsvrfile pubsvrfile
  -tablesfilterclause
    "filterid_1:filterclause_1"
  [ "filterid_2:filterclause_2" ] ...

The next, subsequent replication to any target subscriptions or non-MDN nodes on which these filter rules had been enabled reflects the changes to the
filter clauses.

See Table Filters for additional information on table filters.

Parameters

pubname

The name of the publication in which the filter clauses are to be updated.

pubsvrfile

The file containing the publication server login information.

filterid_n

Filter ID identifying the filter rule for which the filter clause is to be changed. Use the printpubfilterslist  command to obtain the filter
IDs for the available filter rules in the publication (see Printing a List of Filters in a Publication).

filterclause_n

The new filter clause to be used.

Examples

The filter clause with filter ID 26  in publication analysts_managers  is modified.

$ java -jar edb-repcli.jar -updatefilter analysts_managers \
>   -repsvrfile ~/pubsvrfile.prop \
>   -tablesfilterclause "26:job = 'CLERK'"
Updating Filter(s)
Filter clause:[26:job = 'CLERK']
Filter(s) updated successfully.

9.3.22          Removing a Table Filter from a Publication (removefilter)

The removefilter  command deletes the table filter from the specified publication.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 448



Synopsis

-removefilter pubname
  –repsvrfile pubsvrfile
  -filterid filterid

The removed filter rule no longer applies to any target subscriptions or non-MDN nodes on which the filter rule had been enabled.

See Table Filters for additional information on table filters.

Parameters

pubname

The name of the publication containing the filter rule to be removed.

pubsvrfile

The file containing the publication server login information.

filterid

Filter ID identifying the filter rule to be deleted. Use the printpubfilterslist  command to obtain the filter IDs for the filter rules in the
publication (see Printing a List of Filters in a Publication).

Examples

In the following example, the filter rule with filter ID 26  is removed from publication analysts_managers .

$ java -jar edb-repcli.jar -removefilter analysts_managers \
>   -repsvrfile ~/pubsvrfile.prop \
>   -filterid 26
Removing Filter
Filter removed successfully

9.3.23          Printing the Conflict Resolution Strategy (printconfresolutionstrategy)

For MMR only:For MMR only: The printconfresolutionstrategy  command prints the conflict resolution strategy and the standby conflict resolution strategy of
the specified table.

Synopsis

-printconfresolutionstrategy pubname
  –repsvrfile pubsvrfile
  -table schema_t.table_name

See Conflict Resolution for additional information on conflict resolution.

NoteNote

The schema name and table or view name that you supply as values for the table parameter are case-sensitive. Unless quoted identifiers were
used to build the database objects, Oracle names must be entered using uppercase letters (for example, EDB.DEPT ), and Advanced Server

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 449



names must be entered in lowercase letters (for example edb.dept ). See Quoted Identifiers and Default Case Translation for additional
information on quoted identifiers and case translation.

Parameters

pubname

The name of the publication containing the table whose conflict resolution strategy is to be printed.

pubsvrfile

The file containing the publication server login information.

schema_t

The name of the schema containing table_name . This value is case-sensitive.

table_name

The name of the table whose conflict resolution strategy is to be printed. This value is case-sensitive.

Examples

In the following example, the conflict resolution strategy on Advanced Server table edb.emp  in publication emp_pub  is printed.

$ java -jar edb-repcli.jar -printconfresolutionstrategy emp_pub \
>   -repsvrfile ~/pubsvrfile.prop \
>   -table edb.emp
Primary/Standby Conflict Resolution Strategy...
Conflict Resolution Option:[ Earliest Timestamp ]
Standby Conflict Resolution Option:[ Manual ]

9.3.24          Updating the Conflict Resolution Strategy (updateconfresolutionstrategy)

For MMR only:For MMR only: The updateconfresolutionstrategy  command changes the conflict resolution strategy or standby conflict resolution strategy of
the specified table.

Synopsis

-updateconfresolutionstrategy pubname
  –repsvrfile pubsvrfile
  -table schema_t.table_name
  -conflictresolution { E | L | N | M | C }
  -standbyconflictresolution { E | L | N | M | C }
[ -customhandlername customhandler ]

See Updating the Conflict Resolution Options for additional information on updating the conflict resolution strategy.

NoteNote

The schema name and table or view name that you supply as values for the table parameter are case-sensitive. Unless quoted identifiers were
used to build the database objects, Oracle names must be entered using uppercase letters (for example, EDB.DEPT ), and Advanced Server
names must be entered in lowercase letters (for example edb.dept). See Quoted Identifiers and Default Case Translation for additional

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 450



information on quoted identifiers and case translation.

Parameters

pubname

The name of the publication containing the table whose conflict resolution strategy is to be updated.

pubsvrfile

The file containing the publication server login information.

schema_t

The name of the schema containing table_name. This value is case-sensitive.

table_name

The name of the table whose conflict resolution strategy is to be updated. This value is case-sensitive.

-conflictresolution

For the conflict resolution option, specify E for earliest timestamp conflict resolution, L for latest timestamp conflict resolution, N for node
priority conflict resolution, M for manual conflict resolution, or C for custom conflict handling.

-standbyconflictresolution

For the standby conflict resolution option, specify E for earliest timestamp conflict resolution, L for latest timestamp conflict resolution, N for
node priority conflict resolution, M for manual conflict resolution, or C for custom conflict handling.

customhandler

For the custom handler name option, specify customhandler  as the function name with an optional schema prefix (that is, formatted as
schema.function_name) as given in the CREATE FUNCTION  command for the custom conflict handling function. The custom conflict handling
function must be added to the primary definition node. See Adding a Custom Conflict Handling Function for an example of adding the custom
conflict handling function using PSQL. The custom handler name option must be specified if and only if the conflict resolution option or the
standby conflict resolution option is set for custom conflict handling with the C value.

Examples

The conflict resolution strategy on Advanced Server table edb.emp  in publication emp_pub  is modified to use latest timestamp conflict resolution with
a standby strategy of node priority conflict resolution.

$ java -jar edb-repcli.jar -updateconfresolutionstrategy emp_pub \
>   -repsvrfile ~/pubsvrfile.prop \
>   -table edb.emp \
>   -conflictresolution L \
>   -standbyconflictresolution N
Updating Primary/Standby Conflict Resolution Strategy...
The Primary/Standby conflict resolution strategies were updated successfully.

Custom conflict handling is set for the edb.dept  table along with the custom conflict handling function edb.custom_conflict_dept .

$ java -jar edb-repcli.jar -updateconfresolutionstrategy emp_pub \
>   -repsvrfile ~/pubsvrfile.prop \
>   -table edb.dept \

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 451



>   -conflictresolution C \
>   -standbyconflictresolution N \
>   -customhandlername edb.custom_conflict_dept
Updating Primary/Standby Conflict Resolution Strategy...
The Primary/Standby conflict resolution strategies were updated successfully.

9.3.25          Setting the master definition node (setasmdn)

For MMR only:For MMR only: The setasmdn  command sets a primary node to the role of master definition node.

Synopsis

-setasmdn pubdbid
  –repsvrfile pubsvrfile

See Switching the Primary definition node for additional information on setting the primary definition node.

Parameters

pubdbid

The publication database ID of the primary node to be given the role of primary definition node.

pubsvrfile

The file containing the publication server login information.

Examples

The following example sets the primary node with publication database ID 9  as the primary definition node.

$ java -jar edb-repcli.jar -setasmdn 9 -repsvrfile ~/pubsvrfile.prop
Updating the database node to be promoted as the new MDN node.
The database has been successfully promoted as the new MDN node.

9.3.26          Setting the Controller (setascontroller)

The setascontroller  command sets a publication database to be designated as the controller database. The publication database may be the primary
database of a single-master replication system or a primary node of a multi-master replication system.

Synopsis

-setascontroller pubdbid
  –repsvrfile pubsvrfile

See Switching the Controller Database for additional information on setting the controller database.

Parameters

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 452



pubdbid

The publication database ID of the publication database to be designated as the controller database.

pubsvrfile

The file containing the publication server login information.

Examples

The following example sets the publication database with publication database ID 4  as the controller database.

$ java -jar edb-repcli.jar -setascontroller 4 -repsvrfile ~/pubsvrfile.prop
Updating the Publication database to be promoted as the new Controller database...
The Publication database has been successfully promoted as the new Controller database.

9.3.27          Validating a Publication (validatepub)

The validatepub  command checks if any of the definitions of the tables in the given publication have changed since the publication was created.

Synopsis

-validatepub pubname
  –repsvrfile pubsvrfile
  -repgrouptype { m | s }

See Validating a Publication for additional information on validating publications.

Parameters

pubname

The name of the publication whose tables are to be validated.

pubsvrfile

T he file containing the publication server login information.

-repgrouptype

Specify s  if this command applies to a single-master replication system. Specify m  if this command applies to a multi-master replication
system.

Examples

In the following example, publication dept_emp  is validated.

$ java -jar edb-repcli.jar -validatepub dept_emp \
>   -repsvrfile ~/pubsvrfile.prop -repgrouptype s
Validating publication dept_emp ...
All schema of published tables in Publication {0} are up-to-date

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 453



9.3.28          Validating All Publications (validatepubs)

The validatepubs  command checks if any of the definitions of the tables subordinate to the given publication database definition have changed since
the publication was created.

Synopsis

-validatepubs
  –repsvrfile pubsvrfile
  -pubdbid dbid
  -repgrouptype { m | s }

See Validating a Publication for additional information on validating publications.

Parameters

pubsvrfile

The file containing the publication server login information.

dbid

The publication database ID of the publication database definition under which all publication tables are to be validated.

-repgrouptype

Specify s  if this command applies to a single-master replication system. Specify m  if this command applies to a multi-master replication
system.

Examples

In the following example, the Oracle publication database definition identified by publication database ID 1  is validated.

$ java -jar edb-repcli.jar -validatepubs \
>   -repsvrfile ~/pubsvrfile.prop \
>   -pubdbid 1 -repgrouptype s
Validating all available publications ...
The schema definitions for all the non snapshot-only publications tables are in sync
with the source.
The "validatepubs" feature is not available for the following snapshot-only publications:
-  salesemp

9.3.29          Removing a Publication (removepub)

The removepub  command removes one or more publications.

Synopsis

-removepub pubname_1 [ pubname_2 ] ...
  –repsvrfile pubsvrfile
  -repgrouptype { m | s }

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 454



See Removing a Publication for additional information on removing a publication. Parameters

pubname_n

The name of a publication to be removed.

pubsvrfile

The file containing the publication server login information.

-repgrouptype

Specify s  if this command applies to a single-master replication system. Specify m  if this command applies to a multi-master replication
system.

Examples

A publication named dept_emp is removed from a single-master replication system.
$ java -jar edb-repcli.jar -removepub dept_emp \
>   -repsvrfile ~/pubsvrfile.prop -repgrouptype s
Removing publication...
Publication dept_emp unpublished successfully.

9.3.30          Replicating DDL Changes (replicateddl)

The replicateddl  command applies an ALTER TABLE  statement to a publication table in all databases of a replication system as well as updates
the xDB Replication Server insert/update/delete triggers and shadow table associated with that publication table.

Synopsis

-replicateddl pubname
  –repsvrfile pubsvrfile
  -table schema_t.table_name
  -ddlscriptfile script_file

See Replicating DDL Changes for additional information on DDL change replication.

Parameters

pubname

The name of the publication containing the table to which the ALTER TABLE  statement is to be applied.

pubsvrfile

The file containing the publication server login information.

schema_t

The name of the schema containing table_name . This value is case-sensitive.

table_name

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 455



The name of the table in the ALTER TABLE  statement whose definition is to be modified. This value is case-sensitive.

script_file

Path to the file containing the ALTER TABLE  statements.

Examples

The following example shows the addition of a column named title to table edb.emp . The ALTER TABLE  statement is in the text file 
addcolumn.sql  as shown by the following:

ALTER TABLE edb.emp ADD COLUMN title VARCHAR(20);
The replicateddl command is executed using the addcolumn.sql file to update the triggers and shadow tables 
on the primary nodes:
$ java -jar edb-repcli.jar -replicateddl emp_pub \
>   -repsvrfile ~/pubsvrfile.prop \
>   -table edb.emp \
>   -ddlscriptfile ~/addcolumn.sql
DDL changes successfully replicated to all primary nodes.

9.3.31          Adding a Subscription Database (addsubdb)

For SMR only:For SMR only: The addsubdb  command adds a subscription database definition.

Synopsis

-addsubdb
  -repsvrfile subsvrfile
  -dbtype { oracle | enterprisedb | postgresql | sqlserver }
  -dbhost host
  -dbport port
  -dbuser user
{ -dbpassword encrypted_pwd | -dbpassfile pwdfile }
[ -oraconnectiontype { sid | servicename } ]
  -database dbname
[ -urloptions jdbc_url_parameters ]

The addsubdb  command creates a new subscription database definition. The addsubdb  command displays a unique subscription database ID that is
assigned to the newly created subscription database definition. The subscription database ID is used to identify the subscription database definition on
which to operate when running other xDB Replication Server CLI commands.

See Adding a Subscription Database for details on the database connection information that must be supplied when adding a subscription database
definition.

Parameters

subsvrfile

The file containing the subscription server login information.

-dbtype

Specify oracle if the database is an Oracle database. Specify enterprisedb if the database is an Advanced Server database in Oracle compatible

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 456



configuration mode. Specify postgresql  if the database is a PostgreSQL database or an Advanced Server database in PostgreSQL compatible
configuration mode. Specify sqlserver  if the database is a Microsoft SQL Server database.

host

The IP address of the host on which the subscription database server is running.

port

The port number on which the database server is listening for connections.

user

The subscription database user name.

encrypted_pwd

The encrypted password of the subscription database user. See Encrypting Passwords for directions on using the encrypt command to generate
an encrypted password.

pwdfile

The file containing the encrypted password of the subscription database user.

-oraconnectiontype

Specify sid if the Oracle system ID (SID)  is used to identify the subscription database in the database parameter. Specify 
servicename  if the Oracle service name is used to identify the subscription database in the database parameter. Note: For Oracle 12c, use the

service name.

dbname

The Postgres or SQL Server database name, the Oracle SID , or the Oracle service name of the subscription database.

jdbc_url_parameters

Extended usage of JDBC URL parameters such as for support of SSL connectivity. (See Using Secure Sockets Layer (SSL) Connections for
information on SSL connectivity to the subscription database.)

Examples

The following example adds a subscription database definition for an Oracle database. The encrypted password is given on the command line with the 
dbpassword  parameter. A subscription database ID of 1 is assigned to the database by the subscription server.

$ java -jar edb-repcli.jar -addsubdb -repsvrfile ~/subsvrfile.prop \
>   -dbtype oracle -dbhost 192.168.2.6 -dbport 1521 \
>   -dbuser subuser -dbpassword ygJ9AxoJEX854elcVIJPTw== \
>   -oraconnectiontype sid \
>   -database xe
Adding Subscription Database...
Subscription database added successfully. Subscription Database id:1

The following example adds a subscription database definition for an Advanced Server database. The encrypted password is read from a file named pwdfile
with the dbpassfile  parameter. A subscription database ID  of 2  is assigned to the database by the subscription server.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 457



$ java -jar edb-repcli.jar -addsubdb -repsvrfile ~/subsvrfile.prop \
>   -dbtype enterprisedb -dbhost 192.168.2.7 -dbport 5444 \
>   -dbuser subuser -dbpassfile ~/pwdfile \
>   -database subdb
Adding Subscription Database...
Subscription database added successfully. Subscription Database id:2

9.3.32          Printing Subscription Database IDs (printsubdbids)

For SMR only:For SMR only: The printsubdbids  command prints the subscription database IDs of the subscription database definitions.

Synopsis

-printsubdbids -repsvrfile subsvrfile

Parameters

subsvrfile

The file containing the subscription server login information.

Examples

The following example lists the subscription database IDs of the subscription database definitions.

$ java -jar edb-repcli.jar -printsubdbids -repsvrfile ~/subsvrfile.prop
Printing subscription database ids...
1
2

9.3.33          Printing Subscription Database Details (printsubdbidsdetails)

For SMR only:For SMR only: The printsubdbidsdetails  command prints the connection information for each subscription database definition.

Synopsis

-printsubdbidsdetails –repsvrfile subsvrfile

The output has the following components:

dbid:host:port:dbname:user

NoteNote

The database user’s password is not displayed.

Parameters

subsvrfile

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 458



The file containing the subscription server login information.

dbid

The subscription database ID assigned to the subscription database definition.

host

The IP address of the host on which the subscription database server is running.

port

The port number on which the database server is listening for connections.

dbname

The Postgres or SQL Server database name, the Oracle SID, or the Oracle service name of the subscription database.

user

The subscription database user name.

Examples

The following are the subscription database definitions subordinate to the subscription server identified by the content of file subsvrfile.prop .

$ java -jar edb-repcli.jar -printsubdbidsdetails \
>   -repsvrfile ~/subsvrfile.prop
Printing subscription database ids with details...
id:host:port:database|sid:user
1:192.168.2.6:1521:xe:subuser
2:192.168.2.7:5444:subdb:subuser

9.3.34          Updating a Subscription Database (updatesubdb)

For SMR only:For SMR only: The updatesubdb  command provides the ability to change the connection information for an existing subscription database definition
identified by its subscription database ID.

Synopsis

-updatesubdb
  -repsvrfile subsvrfile
  -subdbid dbid
  -dbhost host
  -dbport port
  -dbuser user
{ -dbpassword encrypted_pwd | -dbpassfile pwdfile }
[ -oraconnectiontype { sid | servicename } ]
  -database dbname
[ -urloptions jdbc_url_parameters ]

The subscription database definition to be updated is identified by the subdbid parameter.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 459



See Adding a Subscription Database for details on the database connection information that must be supplied for a subscription database definition.

Parameters

subsvrfile

The file containing the subscription server login information.

dbid

The subscription database ID of the subscription database definition to be updated.

host

The IP address of the host on which the subscription database server is running.

port

The port number on which the database server is listening for connections.

user

The subscription database user name.

encrypted_pwd

The password of the database user in encrypted form. See Encrypting Passwords for directions on using the encrypt command to generate an
encrypted password.

pwdfile

The file containing the password of the database user in encrypted form.

-oraconnectiontype

Specify sid if the Oracle system ID (SID) is used to identify the subscription database in the database parameter. Specify servicename if the Oracle
service name is used to identify the subscription database in the database parameter. Note: For Oracle 12c, use the service name.

dbname

The Postgres or SQL Server database name, the Oracle SID, or the Oracle service name of the subscription database.

jdbc_url_parameters

Extended usage of JDBC URL parameters such as for support of SSL connectivity. (See Using Secure Sockets Layer (SSL) Connections for
information on SSL connectivity to the subscription database.) Specification of the urloptions  parameter completely replaces any existing
JDBC URL parameters that may have previously been specified with this database. Omission of the urloptions  parameter deletes any
existing JDBC URL parameters that may have previously been specified with this database.

Examples

In the following example, an existing subscription database definition with subscription database ID 2  is updated.

$ java -jar edb-repcli.jar -updatesubdb -repsvrfile ~/subsvrfile.prop \
>   -subdbid 2 \

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 460



>   -dbhost 192.168.2.7 -dbport 5444 \
>   -dbuser subuser -dbpassfile ~/pwdfile \
>   -database subdb
Updating subscription database ...
Subscription database with ID 2 is updated successfully.

9.3.35          Removing a Subscription Database (removesubdb)

For SMR only:For SMR only: The removesubdb  command removes a subscription database definition.

Synopsis

-removesubdb –repsvrfile subsvrfile –subdbid dbid

The subscription database definition to be removed is identified by the subdbid  parameter.

See Removing a Subscription Database for additional information on removing a subscription database.

Parameters

subsvrfile

The file containing the subscription server login information.

dbid

The subscription database ID of the subscription database definition to be removed.

Examples

The subscription database definition identified by subscription database ID 2  is removed.

$ java -jar edb-repcli.jar -removesubdb -repsvrfile ~/subsvrfile.prop \
>   -subdbid 2
Removing Subscription Database...
Subscription Database removed.

9.3.36          Creating a Subscription (createsub)

For SMR only:For SMR only: The createsub  command creates a new subscription.

Synopsis

-createsub subname
  -subsvrfile subsvrfile
  -subdbid dbid
  -pubsvrfile pubsvrfile
  -pubname pubname
[ -filterrule filterid_1[,filterid_2 ] ...]

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 461



The createsub  command adds a new subscription subordinate to the subscription database definition with the subscription database ID given by
parameter subdbid.

See Adding a Subscription for additional information on creating a subscription.

Parameters

subname

The subscription name to be given to the new subscription.

subsvrfile

The file containing the subscription server login information of the subscription server under which the new subscription is subordinate.

dbid

The subscription database ID of the subscription database definition subordinate to which the new subscription is to be added.

pubsvrfile

The file containing the publication server login information of the publication server under which the publication is subordinate to which the new
subscription is to be associated.

pubname

The publication to which the new subscription is to be associated.

filterid_n

Comma-separated list of filter IDs identifying the filter rules from the set of available table filters to enable on the corresponding tables in the
new subscription. Use the printpubfilterslist  command to obtain the filter IDs for the available filter rules in the publication (see
Printing a List of Filters in a Publication). Note: There must be no white space between the comma and filter IDs.

Examples

In the following example, a subscription named dept_emp_sub  is created in the Advanced Server subscription database identified by subscription
database ID 2 . The subscription is associated with a publication named dept_emp .

$ java -jar edb-repcli.jar -createsub dept_emp_sub \
>   -subsvrfile ~/subsvrfile.prop \
>   -subdbid 2 \
>   -pubsvrfile ~/pubsvrfile.prop \
>   -pubname dept_emp
Creating subscription...
Subscription created successfully

9.3.37          Printing a Subscription List (printsublist)

For SMR only:For SMR only: The printsublist  command prints a list of subscription names.

Synopsis

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 462



-printsublist -repsvrfile subsvrfile -subdbid dbid

Parameters

subsvrfile

The file containing the subscription server login information.

dbid

The subscription names subordinate to the subscription database definition specified by dbid are printed.

Examples

$ java -jar edb-repcli.jar -printsublist -repsvrfile ~/subsvrfile.prop \
>   -subdbid 2
Printing subscriptions ...
dept_emp_sub

9.3.38          Enabling Filters on a Subscription or Non-MDN Node (enablefilter)

The enablefilter  command enables one or more filter rules on a single-master replication system subscription or on a multi-master replication
system primary node other than the primary definition node.

The enablefilter  command is used when it is desired to apply a filter rule to a subscription or a non-MDN node, but the filter rule did not yet exist or it
was neglected to be included with the subscription or the non-MDN node when these components were initially created.

Synopsis

-enablefilter
  -repsvrfile pubsvrfile
{ -subname subname | -dbid dbid }
  -filterids filterid_1 [ filterid_2 ] ...

Enabling a filter rule applies it to the specified, target subscription or non-MDN node, and thus filters the data during replication from the source table to
the target table.

See Table Filters for additional information on table filters.

Before enabling a filter rule, it must have been defined in the source publication in one of several possible ways:

For SMR:For SMR:

The table filter was defined in the publication of the primary database when it was initially created either by the createpub command (see Creating a
Publication) or by the xDB Replication Console (see Adding a Publication).
The table filter was added to an existing publication using the addfilter command (see Adding Table Filters to a Publication) or by the xDB
Replication Console (see Updating the Set of Available Table Filters in a Publication).

For MMR:For MMR:

The table filter was defined in the publication of the primary definition node when it was initially created either by the createpub command (see
Creating a Publication) or by the xDB Replication Console (see Adding a Publication).
The table filter was added to an existing publication using the addfilter command (see Adding Table Filters to a Publication) or by the xDB

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 463



Replication Console (see Updating the Set of Available Table Filters in a Publication).

Enable the filter rule as follows:

For SMR:For SMR: Use the enablefilter  command or the xDB Replication Console (see Enabling/Disabling Table Filters on a Subscription).

For MMR:For MMR: Use the enablefilter  command or the xDB Replication Console (see Enabling/Disabling Table Filters on a Primary node.

Once a filter rule has been enabled, it filters the data during replication from the source table to the target table. A filter rule can subsequently be disabled
so that it no longer filters the data during replication to the target table (see Disabling Filters on a Subscription or Non-MDN Node).

Parameters

pubsvrfile

The file containing the publication server login information.

subname

For SMR only:For SMR only: The name of the subscription containing the tables on which the filter rules are to be enabled.

dbid

For MMR only:For MMR only: The publication database ID of the non-MDN node containing the tables on which the filter rules are to be enabled.

filterid_n

One or more filter IDs separated by space characters identifying the filter rules from the set of available table filters to enable on the
corresponding tables in the SMR subscription specified by subname or in the MMR non-MDN node specified by dbid . Use the 
printpubfilterslist  command to obtain the filter IDs for the available filter rules in the publication (see Printing a List of Filters in a

Publication).

Examples

In the following example, a filter rule is enabled on a subscription of a single-master replication system.

$ java -jar edb-repcli.jar -enablefilter -repsvrfile ~/pubsvrfile.prop \
>   -subname analysts_managers_sub \
>   -filterids 47
Enabling filters...
Filter rule(s) updated successfully.

In the following example, multiple filter rules are enabled on a primary node that is not the primary definition node of a multi-master replication system.

$ java -jar edb-repcli.jar -enablefilter -repsvrfile ~/pubsvrfile.prop \
>   -dbid 139 \
>   -filterids 8 16
Enabling filters...
Filter rule(s) updated successfully.

9.3.39          Disabling Filters on a Subscription or Non-MDN Node (disablefilter)

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 464



The disablefilter  command disables one or more filter rules on a single-master replication system subscription or on a multi-master replication
system primary node other than the primary definition node.

Synopsis

-disablefilter
  -repsvrfile pubsvrfile
{ -subname subname | -dbid dbid }
  -filterids filterid_1 [ filterid_2 ] ...

Disabling a filter rule prevents it from being applied to the specified, target subscription or non-mdn node, and thus does not filter the data during
replication from the source table to the target table.

See Table Filters for additional information on table filters.

Disable the filter rule as follows:

For SMR:For SMR: Use the disablefilter  command or the xDB Replication Console (see Enabling/Disabling Table Filters on a Subscription).

For MMR:For MMR: Use the disablefilter command or the xDB Replication Console. (see Enabling/Disabling Table Filters on a Primary node).

Disabling a filter rule does not remove its definition from the publication. Thus, the filter rule still exists and can still be enabled on target subscriptions or
non-MDN nodes.

To remove a filter rule so that it no longer exists, perform the following: For either SMR or MMR: Use the removefilter  command (see Removing a
Table Filter from a Publication) or the xDB Replication Console (see Updating the Set of Available Table Filters in a Publication).

Parameters

pubsvrfile

The file containing the publication server login information.

subname

For SMR only:For SMR only: The name of the subscription containing the tables on which the filter rules are to be disabled.

dbid

For MMR only:For MMR only: The publication database ID of the non-MDN node containing the tables on which the filter rules are to be disabled.

filterid_n

One or more filter IDs separated by space characters identifying the currently enabled table filters that are to be disabled in the SMR subscription
specified by subname or in the MMR non-mdn node specified by dbid.

Examples

In the following example, a filter rule is disabled on a subscription of a single-master replication system.

$ java -jar edb-repcli.jar -disablefilter -repsvrfile ~/pubsvrfile.prop \
>   -subname analysts_managers_sub \
>   -filterids 47
Disabling filters...
Filter rule(s) updated successfully.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 465



In the following example, multiple filter rules are disabled on a primary node that is not the primary definition node of a multi-master replication system.

$ java -jar edb-repcli.jar -disablefilter -repsvrfile ~/pubsvrfile.prop \
>   -dbid 139 \
>   -filterids 8 16
Disabling filters...
Filter rule(s) updated successfully.

9.3.40          Taking a Single-Master Snapshot (dosnapshot)

For SMR only:For SMR only: The dosnapshot  command performs snapshot synchronization on the specified subscription in a single-master replication system.

Synopsis

-dosnapshot subname -repsvrfile subsvrfile
[ -verboseSnapshotOutput { true | false } ]

See Performing Snapshot Replication for additional information on performing snapshot replication.

Parameters

subname

The name of the subscription for which the snapshot is to be taken.

subsvrfile

The file containing the subscription server login information.

-verboseSnapshotOutput

Set this option to true if you want the output from the snapshot to be displayed. Set this option to false if you do not want the snapshot output
displayed. If omitted, the default is true.

Examples

In the following example snapshot replication is performed on subscription dept_emp_sub .

$ java -jar edb-repcli.jar -dosnapshot dept_emp_sub \
>   -repsvrfile ~/subsvrfile.prop
Performing snapshot...
Source database connectivity info...
conn =jdbc:oracle:thin:@192.168.2.6:1521:xe
user =pubuser
password=******
Target database connectivity info...
conn =jdbc:edb://192.168.2.7:5444/subdb
user =subuser
password=******
Connecting with source Oracle database server...
Connecting with target EnterpriseDB database server...
Importing redwood schema EDB...
Table List: 'DEPT','EMP'

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 466



Loading Table Data in 8 MB batches...
Disabling FK constraints & triggers on edb.dept before truncate...
Truncating table DEPT before data load...
Disabling indexes on edb.dept before data load...
Loading Table: DEPT ...
[DEPT] Migrated 4 rows.
[DEPT] Table Data Load Summary: Total Time(s): 0.182 Total Rows: 4
Disabling FK constraints & triggers on edb.emp before truncate...
Truncating table EMP before data load...
Disabling indexes on edb.emp before data load...
Loading Table: EMP ...
[EMP] Migrated 14 rows.
[EMP] Table Data Load Summary: Total Time(s): 0.178 Total Rows: 14
Enabling FK constraints & triggers on edb.dept...
Enabling indexes on edb.dept after data load...
Enabling FK constraints & triggers on edb.emp...
Enabling indexes on edb.emp after data load...
Performing ANALYZE on EnterpriseDB database...
Data Load Summary: Total Time (sec): 1.866 Total Rows: 18 Total Size(MB): 0.0

Schema EDB imported successfully.

Migration process completed successfully.

Migration logs have been saved to /var/log/xdb-rep/build57l

******************** Migration Summary ********************
Tables: 2 out of 2
Constraints: 4 out of 4

Total objects: 6
Successful count: 6
Failure count: 0

*************************************************************
Snapshot taken successfully.

9.3.41          Take a Multi-Master Snapshot (dommrsnapshot)

For MMR only:For MMR only: The dommrsnapshot  command performs snapshot synchronization on the specified primary node in a multi-master replication system.

-dommrsnapshot pubname
  –repsvrfile pubsvrfile
  -pubhostdbid dbid
[ -verboseSnapshotOutput { true | false } ]

Parameters

pubname

The name of the publication for which the snapshot is to be taken.

pubsvrfile

The file containing the publication server login information.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 467



dbid

The publication database ID of the target primary node for the snapshot replication.

-verboseSnapshotOutput

Set this option to true if you want the output from the snapshot to be displayed. Set this option to false if you do not want the snapshot output displayed. If
omitted, the default is true.

Examples

In the following example snapshot replication is performed on publication emp_pub  to the target primary node identified by publication database ID 9 .

$ java -jar edb-repcli.jar -dommrsnapshot emp_pub \
>   -pubhostdbid 9 \
>   -repsvrfile ~/pubsvrfile.prop
Performing snapshot...
Source database connectivity info...
conn =jdbc:edb://192.168.2.6:5444/edb
user =pubuser
password=******
Target database connectivity info...
conn =jdbc:edb://192.168.2.7:5444/MMRnode
user =MMRuser
password=******
Connecting with source EnterpriseDB database server...
Connecting with target EnterpriseDB database server...
Importing enterprisedb schema edb...
Table List: 'dept','emp'
Loading Table Data in 8 MB batches...
Disabling FK constraints & triggers on edb.dept before truncate...
Truncating table dept before data load...
Disabling indexes on edb.dept before data load...
Loading Table: dept ...
[dept] Migrated 5 rows.
[dept] Table Data Load Summary: Total Time(s): 0.247 Total Rows: 5
Disabling FK constraints & triggers on edb.emp before truncate...
Truncating table emp before data load...
Disabling indexes on edb.emp before data load...
Loading Table: emp ...
[emp] Migrated 14 rows.
[emp] Table Data Load Summary: Total Time(s): 0.163 Total Rows: 14
Enabling FK constraints & triggers on edb.dept...
Enabling indexes on edb.dept after data load...
Enabling FK constraints & triggers on edb.emp...
Enabling indexes on edb.emp after data load...
Performing ANALYZE on EnterpriseDB database...
Data Load Summary: Total Time (sec): 0.8 Total Rows: 19 Total Size(MB): 0.0

Schema edb imported successfully.

Migration process completed successfully.

Migration logs have been saved to /var/log/xdb-rep/build57l

******************** Migration Summary ********************
Tables: 2 out of 2
Constraints: 4 out of 4

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 468



Total objects: 6
Successful count: 6
Failure count: 0

*************************************************************
Snapshot taken successfully.

9.3.42          Performing a Synchronization (dosynchronize)

The dosynchronize  command performs synchronization replication on the specified subscription for a single-master replication system, or for an
entire multi-master replication system.

Synopsis

-dosynchronize { subname | pubname }
  -repsvrfile { subsvrfile | pubsvrfile }
[ -repgrouptype { s | m } ]
For a single-master replication system use:
-dosynchronize subname –repsvrfile subsvrfile

For a multi-master replication system use:For a multi-master replication system use:

-dosynchronize pubname -repsvrfile pubsvrfile -repgrouptype m

NoteNote

(For SMR only): The dosynchronize  command can be used on a subscription without first having to perform a snapshot using the 
dosnapshot  command. The dosynchronize  command automatically performs the first required snapshot.

NoteNote

(For MMR only): Be sure an initial snapshot replication has been performed from the primary definition node to every other primary node in the
multi-master replication system. If a newly added primary node did not undergo an initial snapshot, any subsequent synchronization replication
may fail to apply the transactions to that primary node. The initial snapshot could be taken when the primary node is first added (see Creating
Additional Primary nodes or Section Adding a Publication Database ) or by performing an on demand snapshot (see Performing Snapshot
Replication or Section Take a Multi-Master Snapshot).

See Performing Synchronization Replication for additional information on performing synchronization replication for a single-master replication system.
See Performing Synchronization Replication for a multi-master replication system.

Parameters

subname

For SMR only:For SMR only: The name of the subscription for which synchronization replication is to be performed.

pubname

For MMR only:For MMR only: The name of the publication for which synchronization replication is to be performed.

subsvrfile

For SMR only:For SMR only: The file containing the subscription server login information.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 469



pubsvrfile

For MMR only:For MMR only: The file containing the publication server login information.

-repgrouptype

Specify s  if this command applies to a single-master replication system. Specify m  if this command applies to a multi-master replication
system. If omitted, the default is s .

Examples

In the following example, synchronization replication is performed on subscription dept_emp_sub  of a single-master replication system.

$ java -jar edb-repcli.jar -dosynchronize dept_emp_sub \
>   -repsvrfile ~/subsvrfile.prop
Performing synchronize...
Synchronize done successfully.

In the following example, synchronization replication is performed on publication emp_pub  of a multi-master replication system. Note that the -
repgrouptype m parameter is required in this case.

$ java -jar edb-repcli.jar -dosynchronize emp_pub \
>   -repsvrfile ~/pubsvrfile.prop -repgrouptype m
Performing synchronize...
Publication synchronized successfully.

9.3.43          Configuring a Single-Master Schedule (confschedule)

For SMR only:For SMR only: The confschedule  command creates a schedule as to when recurring replications are to be initiated for a single-master replication
system.

Synopsis

-confschedule subname –repsvrfile subsvrfile
{ -remove | -jobtype { s | t }
  { -realtime no_of_sec |
    -daily hour minute |
    -weekly day_of_week hour minute |
    -monthly month day_of_month hour minute |
    -cronexpr "cron_expression"
  }
}

If the remove parameter is specified, then the schedule is deleted from the subscription. No other parameters other than subname  and repsvrfile
can be specified in this case.

If the remove parameter is omitted, then the jobtype  parameter and one of parameters realtime, daily, weekly, monthly , or cronexpr
must be specified along with the subname  and repsvrfile  parameters. If there is an existing schedule for subscription subname , it will be replaced
by the new schedule. See Performing Synchronization Replication for additional information on creating a schedule.

Parameters

subname

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 470



The name of the subscription for which a replication schedule is to be created.

subsvrfile

The file containing the subscription server login information.

-remove

If the remove parameter is specified, then any existing schedule is removed from the subscription. If the remove parameter is not specified, then a
schedule is created for the subscription.

-jobtype

Specify s if the scheduled replication is to be done by snapshot. Specify t if the scheduled replication is to be done by synchronization. If the
associated publication is a snapshot-only publication, then -jobtype  s must be used.

no_of_sec

The number of seconds between scheduled replications. This can be any integer greater than 0.

hour

The hour of the day based on a 24-hour clock. This can be any integer from 0 to 23.

minute

The minute of the hour. This can be any integer from 0 to 59.

day_of_week

The day of the week. This can be any of the following values: SUN, MON, TUE, WED, THU, FRI , or SAT . This value is case insensitive so
Sun and sun will work as well as SUN.

month

The month of the year. This can be any of the following values: JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV,  or 
DEC . This value is case insensitive so Jan and jan will work as well as JAN .

day_of_month

The day of the month. This can be any integer greater than or equal to 1, and less than or equal to the number of days in month.

cron_expression

A cron expression. See appendix Section Writing a Cron Expression for information on writing a cron expression.

Examples

In the following example, a schedule is created to perform synchronization replication on subscription dept_emp_sub  once every 5 minutes.

$ java -jar edb-repcli.jar -confschedule dept_emp_sub \
>   -repsvrfile ~/subsvrfile.prop \
>   -jobtype t \
>   -realtime 300
Configuring scheduler ...

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 471



Job is successfully scheduled.

In the following example, the schedule is removed from subscription dept_emp_sub.

$ java -jar edb-repcli.jar -confschedule dept_emp_sub \
>   -repsvrfile ~/subsvrfile.prop \
>   -remove
Configuring scheduler ...
Scheduled job is removed.

9.3.44          Configuring a Multi-Master Schedule (confschedulemmr)

For MMR only:For MMR only: The confschedulemmr  command creates a schedule as to when recurring replications are to be initiated for a multi-master replication
system.

NoteNote

Be sure an initial snapshot replication has been performed from the primary definition node to every other primary node in the multi-master
replication system. If a newly added primary node did not undergo an initial snapshot, any subsequent synchronization replication initiated by a
schedule may fail to apply the transactions to that primary node. The initial snapshot could be taken when the primary node is first added (see
Creating Additional Primary nodes or Section Adding a Publication Database) or by performing an on demand snapshot (see Performing
Snapshot Replication or Section Take a Multi-Master Snapshot).

Synopsis

-confschedulemmr pubdbid -pubname pubname
  –repsvrfile pubsvrfile
{ -remove |
  { -realtime no_of_sec |
    -daily hour minute |
    -weekly day_of_week hour minute |
    -monthly month day_of_month hour minute |
    -cronexpr "cron_expression"
  }
}

If the remove parameter is specified, then the schedule is deleted from the publication. No other parameters other than pubdbid, pubname , and 
repsvrfile  can be specified in this case.

If the remove parameter is omitted, then one of parameters realtime, daily, weekly, monthly,  or cronexpr  must be specified along with
the pubdbid, pubname,  and repsvrfile  parameters. If there is an existing schedule for publication pubname , it will be replaced by the new
schedule.

See Creating a Schedule for additional information on creating a schedule.

Parameters

pubdbid

The publication database ID of the publication database definition representing the primary definition node on which to configure the schedule.

pubname

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 472



The name of the publication for which a replication schedule is to be created.

pubsvrfile

The file containing the publication server login information.

-remove

If the remove parameter is specified, then any existing schedule is removed from the publication. If the remove parameter is not specified, then a
schedule is created for the publication.

no_of_sec

The number of seconds between scheduled replications. This can be any integer greater than 0.

hour

The hour of the day based on a 24-hour clock. This can be any integer from 0 to 23.

minute

The minute of the hour. This can be any integer from 0 to 59.

day_of_week

The day of the week. This can be any of the following values: SUN, MON, TUE, WED, THU, FRI, or SAT. This value is case insensitive so Sun and sun
will work as well as SUN.

month

The month of the year. This can be any of the following values: JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV,  or 
DEC . This value is case insensitive so Jan and jan will work as well as JAN .

day_of_month

The day of the month. This can be any integer greater than or equal to 1, and less than or equal to the number of days in month.

cron_expression

A cron expression. See appendix Writing a Cron Expression for information on writing a cron expression.

Examples

In the following example, a schedule is created to perform synchronization replication on publication emp_pub  subordinate to the primary definition
node whose publication database ID  is 6 . Replication is to occur daily at 8:00 AM.

$ java -jar edb-repcli.jar -confschedulemmr 6 -pubname emp_pub \
>   -repsvrfile ~/pubsvrfile.prop \
>   -daily 8 00
Configuring scheduler ...
Job is successfully scheduled.

In the following example, the schedule is removed from publication emp_pub .

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 473



$ java -jar edb-repcli.jar -confschedulemmr 6 -pubname emp_pub \
>   -repsvrfile ~/pubsvrfile.prop \
>   -remove
Configuring scheduler ...
Scheduled job is removed.

9.3.45          Print Schedule (printschedule)

The printschedule  command prints a recurring replication schedule.

Synopsis

-printschedule { subname | pubname }
  -repsvrfile { subsvrfile | pubsvrfile }
[ -repgrouptype { s | m } ]
For a single-master replication system use:
-printschedule subname –repsvrfile subsvrfile

For a multi-master replication system use:For a multi-master replication system use:

-printschedule pubname -repsvrfile pubsvrfile -repgrouptype m

Parameters

subname

For SMR only:For SMR only: The name of the subscription for which the schedule is to be printed.

pubname

For MMR only:For MMR only: The name of the publication for which the schedule is to be printed.

subsvrfile

For SMR only:For SMR only: The file containing the subscription server login information.

pubsvrfile

For MMR only:For MMR only: The file containing the publication server login information.

-repgrouptype

Specify s if this command applies to a single-master replication system. Specify m if this command applies to a multi-master replication system. If
omitted, the default is s.

Examples

In the following example the schedule is printed for a subscription in a single-master replication system.

$ java -jar edb-repcli.jar -printschedule dept_emp_sub \
>   -repsvrfile ~/subsvrfile.prop
Printing subscription schedule ...

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 474



Job type                Synchronize

Scheduled time          2012-06-19 13:27:20

Previous fire time      2012-06-19 13:27:20

Next fire time          2012-06-19 13:32:20

In the following example the schedule is printed for a publication in a multi-master replication system. Note that the -repgrouptype m  parameter is
required in this case.

$ java -jar edb-repcli.jar -printschedule emp_pub \
>   -repsvrfile ~/pubsvrfile.prop \
>   -repgrouptype m
Printing subscription schedule ...

Job type                Synchronize

Scheduled time          2012-06-19 13:27:55

Previous fire time      Not available

Next fire time          2012-06-20 08:00:00

Cron expression         0 0 8 * * ?

9.3.46          Updating a Subscription (updatesub)

For SMR only:For SMR only: The updatesub  command allows you to update certain metadata of a given subscription. This metadata allows the subscription server to
find the host running the publication server that manages the publication associated with the subscription.

Synopsis

-updatesub subname
  -subsvrfile subsvrfile
  -pubsvrfile pubsvrfile
  -host newpubsvr_ipaddress
  -port newpubsvr_port

The updatesub  command allows you to update the subscription metadata consisting of the IP address and port number identifying the publication
server that is the parent of the publication associated with the subscription.

This metadata is essential to the proper operation of the replication system since it is the means by which subscription server locates the publication server
whenever a replication needs to be performed on a given subscription. The replication process is always carried out by the publication server that manages
the publication associated with the subscription.

You would use the updatesub  command in the scenario where you have built your replication system using IP addresses that are valid at that point in
time. At some later point, the IP address assigned to the host running the publication server has changed.

You use the host and port parameters of the updatesub  command to supply the new network address identifying the publication server.

See Updating a Subscription for additional information on updating a subscription.

Parameters

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 475



subname

The name of the subscription whose metadata is to be updated.

subsvrfile

The file containing the subscription server login information for the subscription server in which subscription subname  was created.

pubsvrfile

The file containing publication server login information for the publication server that manages the publication associated with subscription 
subname . Note that the values that you supply for newpubsvr_ipaddress  and newpubsvc_port  must be the same as the values set in

fields host and port in file pubsvrfile .

newpubsvr_ipaddress

The new IP address for the publication server that manages the publication associated with subscription subname. This value must be the same
as the IP address specified for field host in file pubsvrfile .

newpubsvr_port

The new port number for the publication server that manages the publication associated with subscription subname . This value must be the
same as the port number specified for field port in file pubsvrfile .

Examples

If the publication server host IP address has been changed to 192.168.2.7 , then make sure the publication server login information in file 
pubsvrfile.prop  contains the new IP address as shown by the following:

host=192.168.2.7
port=9051
user=enterprisedb
# Password is in encrypted form.
password=ygJ9AxoJEX854elcVIJPTw==

To update the metadata for subscription dept_emp_sub  so that its subscription server can find the new publication server host, run the following
command:

$ java -jar edb-repcli.jar -updatesub dept_emp_sub \
>   -subsvrfile ~/subsvrfile.prop \
>   -pubsvrfile ~/pubsvrfile.prop \
>   -host 192.168.2.7 \
>   -port 9051
Updating subscription dept_emp_sub...

Subscription is updated successfully

9.3.47          Removing a Subscription (removesub)

For SMR only:For SMR only: The removesub  command removes a subscription.

Synopsis

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 476



-removesub subname –repsvrfile subsvrfile

See Removing a Subscription for additional information on removing a subscription.

Parameters

subname

The name of the subscription to be removed.

subsvrfile

The file containing the subscription server login information.

Examples

A subscription named dept_emp_sub is removed.
$ java -jar edb-repcli.jar -removesub dept_emp_sub \
>   -repsvrfile ~/subsvrfile.prop
Removing subscription...
Subscription removed successfully.

9.3.48          Scheduling Shadow Table History Cleanup (confcleanupjob)

The confcleanupjob  command creates a schedule as to when shadow table history is to be deleted.

Synopsis

-confcleanupjob pubdbid –repsvrfile pubsvrfile
{ -disable | -enable
  { -minutely no_of_minutes |
    -hourly no_of_hours |
    -daily hour |
    -weekly day_of_week hour |
    -cronexpr "cron_expression"
  }
}

If the disable parameter is specified, then the schedule is deleted. No other parameters other than pubdbid  and pubsvrfile  can be specified in this
case. If the disable parameter is omitted, then the enable parameter and one of parameters minutely, hourly, daily, weekly,  or cronexpr
must be specified along with the pubdbid  and pubsvrfile  parameters.

See Scheduling Shadow Table History Cleanup for additional information on creating a schedule for shadow table history cleanup.

Parameters

pubdbid

Publication database ID of the publication database definition for which a schedule is to be enabled or disabled for deleting shadow table history.

pubsvrfile

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 477



The file containing the publication server login information.

-disable

If the disable parameter is specified, then any existing shadow table history cleanup schedule is removed from the publication database
definition. If the disable parameter is not specified, then enable must be specified.

-enable

Establish a schedule for shadow table history cleanup.

no_of_minutes

The number of minutes between scheduled shadow table history cleanup jobs. This can be any integer between 1 and 59 inclusive.

no_of_hours

The number of hours between scheduled shadow table history cleanup jobs. This can be any integer between 1 and 12 inclusive.

hour

The hour of the day based on a 24-hour clock. This can be any integer from 0 to 23.

day_of_week

The day of the week. This can be any of the following values: SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,  or 
SATURDAY . This value is case insensitive so Sunday and sunday will work as well as SUNDAY .

cron_expression

A cron expression. See appendix Writing a Cron Expression for information on writing a cron expression.

Examples

In the following example shadow table history cleanup is scheduled to run once every 3 hours on the shadow tables created within the publication
database definition identified by publication database ID 1.

$ java -jar edb-repcli.jar -confcleanupjob 1 \
>   -repsvrfile ~/pubsvrfile.prop \
>   -enable -hourly 3
Configuring cleanup job ...
Cleanup job configured.

In the following example shadow table history cleanup is scheduled to run once a day at 6:00 PM on the shadow tables created within the publication
database definition identified by publication database ID 1 .

$ java -jar edb-repcli.jar -confcleanupjob 1 \
>   -repsvrfile ~/pubsvrfile.prop \
>   -enable -daily 18
Configuring cleanup job ...
Cleanup job configured.

In the following example shadow table history cleanup is scheduled to run every Wednesday at 8:00 AM on the shadow tables created within the
publication database definition identified by publication database ID 1 .

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 478



$ java -jar edb-repcli.jar -confcleanupjob 1 \
>   -repsvrfile ~/pubsvrfile.prop \
>   -enable –weekly WEDNESDAY 8
Configuring cleanup job ...
Cleanup job configured.

In the following example the shadow table history cleanup job is disabled on the publication database definition identified by publication database ID 1 .

$ java -jar edb-repcli.jar -confcleanupjob 1 \
>   -repsvrfile ~/pubsvrfile.prop -disable
Configuring cleanup job ...
Cleanup job removed.

9.3.49          Cleaning Up Shadow Table History (cleanshadowhistforpub)

The cleanshadowhistforpub  command deletes the shadow table history for the specified publication.

Synopsis

-cleanshadowhistforpub pubname
  –repsvrfile pubsvrfile
[ -mmrdbid dbid_1[,dbid_2 ] ...]

See Cleaning Up Shadow Table History for additional information on cleaning up shadow table history.

Parameters

pubname

The name of the publication for which the shadow table history is to be deleted.

pubsvrfile

The file containing the publication server login information.

dbid_n

For MMR only:For MMR only: The publication database ID of the primary node for which the shadow table history is to be deleted. This parameter is required for
a multi-master replication system specifying one or more comma-separated, publication database IDs.

NoteNote

There must be no white space between the comma and publication database IDs.

Examples

In the following example shadow table history is deleted for publication dept_emp .

$ java -jar edb-repcli.jar -cleanshadowhistforpub dept_emp \
>   -repsvrfile ~/pubsvrfile.prop
Removing shadow table's transaction history ...

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 479



Shadow table's transaction history removed successfully.

9.3.50          Cleaning Up Replication History (cleanrephistoryforpub)

The cleanrephistoryforpub  command deletes the replication history for the specified publication.

Synopsis

-cleanrephistoryforpub pubname –repsvrfile pubsvrfile

See Cleaning Up Replication History for additional information on cleaning up replication history.

Parameters

pubname

The name of the publication for which replication history is to be deleted.

pubsvrfile

The file containing the publication server login information.

Examples

In the following example replication history is deleted for publication dept_emp.

$ java -jar edb-repcli.jar -cleanrephistoryforpub dept_emp \
>   -repsvrfile ~/pubsvrfile.prop
Removing publication's replication history ...

Replication history has been removed.

9.3.51          Cleaning Up All Replication History (cleanrephistory)

The cleanrephistory  command deletes the replication history for all publications in the specified publication server.

Synopsis

-cleanrephistory –repsvrfile pubsvrfile

See Cleaning Up Replication History for additional information on cleaning up replication history.

Parameters

pubsvrfile

The file containing the publication server login information.

Examples

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 480



In the following example, replication history is deleted for all publications in the publication server identified by the content of file pubsvrfile.prop .

$ java -jar edb-repcli.jar -cleanrephistory -repsvrfile ~/pubsvrfile.prop
Removing all publication's replication history ...

Replication history has been removed.

10          Data Validator

The Data Validator is a utility that compares the rows of one or more tables within a schema of a database against the rows of the tables with the same
names within a schema of another database. The Data Validator generates a summary of the comparison noting the number of rows whose column values
differ. A file containing detailed information regarding any differences is also generated.

The two databases being compared are referred to as the source database and the target database. The source database can be of type Oracle,
EnterpriseDB, SQL Server, Sybase, or MySQL. The target database must be either Oracle or EnterpriseDB.

An EnterpriseDB database type means either an Advanced Server database or a PostgreSQL database.

The tables available for comparison are those found in the schema of the source database. Tables in the target database that do not exist in the source
database schema are ignored.

NoteNote

The Data Validator does not validate columns having the following data types. Tables containing one or more columns of these types will only be
partially validated.

BFILE
STRUCT
REF
ARRAY
BLOB
CLOB
RAW
LONG RAW

NoteNote

Regarding the usage of the Data Validator with tables in an xDB Replication Server single-master or multi-master replication system, be sure all
synchronization replication between the source and target xDB Replication Server tables has been completed before using the Data Validator. If
synchronization replication is still in progress, it is probable that the Data Validator will report differences in table content.

10.1          Installation and Configuration

Step 1:Step 1: When you install the xDB Replication Server product, the components for the Data Validator are installed as well. See Chapter Installation and
Uninstallation for information on installing the xDB Replication Server product.

Also, when you uninstall the xDB Replication Server product, the Data Validator components are uninstalled as well.

The following components that you use to run the Data Validator are installed when you install the xDB Replication Server product.

Table 9-1: Data Validator FilesTable 9-1: Data Validator Files

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 481



File NameFile Name LocationLocation DescriptionDescription

datavalidator.properties XDB_HOME/etc Data Validator Properties file

runValidation.sh (Linux) XDB_HOME/bin Data Validator execution script

runValidation.bat (Windows) XDB_HOME\bin Data Validator execution script

NoteNote

XDB_HOME  is the directory where xDB Replication Server is installed. This may or may not be the same as the Postgres home directory
depending upon how xDB Replication Server is installed.

Step 2:Step 2: If you plan to use an Oracle database as the source or target database, download the Oracle JDBC driver and place it in the 
JAVA_HOME/jre/lib/ext  directory.

Step 3:Step 3: Edit the datavalidator.properties  file located in the XDB_HOME/etc  directory and specify the connection information for the source
and target databases you want to compare.

Any of these parameters can be overridden by an option when you invoke the Data Validator script. See Performing Data Validation for additional
information on invoking the Data Validator.

The following are the parameters in the datavalidator.properties file .

Tab;e 9-2: Data Validator Properties File ParametersTab;e 9-2: Data Validator Properties File Parameters

ParameterParameter DescriptionDescription

source_dbms Type of the source database. Values may be enterprisedb, oracle, sqlserver, sybase, or
mysql.

source_host IP address or server name of the host running the database server of the source database

source_port Port number on which the database server of the source database listens for requests

source_database Database name of the source database

source_user Database user name of the source database

source_password Unencrypted password of the source database user

target_dbms Type of the target database. Values may be enterprisedb or oracle.

target_host IP address or server name of the host running the database server of the target database

target_port Port number on which the database server of the target database listens for requests

target_database Database name of the target database

target_user Database user name of the target database

target_password Unencrypted password of the target database user

The following is the initial content of the datavalidator.properties  file after installation:

###############################################################
           Source database connection
###############################################################

#source_dbms=(enterprisedb | oracle | sqlserver | sybase | mysql)

source_dbms=oracle
source_host=localhost
source_port=1521
source_database=xe

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 482



source_user=hr
source_password=hr

#source_dbms=mysql
#source_host=localhost
#source_port=3306
#source_database=test
#source_user=root
#source_password=

#source_dbms=sqlserver
#source_host=localhost
#source_port=1433
#source_database=pubs
#source_user=sa
#source_password=

#source_dbms=sybase
#source_host=localhost
#source_port=5004
#source_database=test
#source_user=sa
#source_password=

###############################################################
          Target database connection                   
###############################################################

#target_dbms=(enterprisedb | oracle)

target_dbms=enterprisedb
target_host=localhost
target_port=5444
target_database=edb
target_user=enterprisedb
target_password=edb

Step 4:Step 4: Determine the location for the Data Validator logs directory. Before invoking the Data Validator for the first time, be sure you have determined
where the Data Validator logs directory is to be located.

The Data Validator generates a log file with a name formatted as datavalidator_yymmdd-hhmiss.log  in the logs directory for each run.

If there are row differences between the source and target tables, a file with a name formatted as datavalidator_yymmdd-hhmiss.diff  is also
generated that contains output of the errors in diff format. Use a graphical diff tool like Kompare to view this file to highlight the specific differences.

The Data Validator attempts to create a subdirectory named logs within the XDB_HOME/bin  directory the first time you invoke the Data Validator without
the -ld  option. If you do not invoke the Data Validator as the root account, it is likely that the run will fail as it attempts to create subdirectory logs in the 
XDB_HOME/bin  directory where typically only the root account has this privilege.

The same situation also exists on Windows hosts as the account you are using must have the permission to create a subdirectory in the XDB_HOME\bin
location. Choices for determining and setting the Data Validator directory for the log and diff files are the following:

Run the Data Validator as the root account. This enables the Data Validator to create the logs subdirectory within the XDB_HOME/bin directory, and
then to create the log and diff files in the logs subdirectory.
Create the XDB_HOME/bin/logs  directory structure before running the Data Validator. Modify the permissions on directory 
XDB_HOME/bin/logs  so the operating system account you use to run the Data Validator has the privilege to create files in the directory.

Use the -ld log_directory_path  option to allow the Data Validator to create the log and diff files in the specified directory location 
log_directory_path . Be sure the operating system account you use to run the Data Validator has the proper privileges to either create the

lowest level subdirectory specified by log_directory_path  if it does not already exist, or to create files within the specified directory if the full

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 483



directory path already does exist.

Once you have determined and verified that your operating system account you plan to use to run the Data Validator can create files in the log directory, you
can proceed with performing data validation.

10.2          Performing Data Validation

The current working directory from which you invoke the Data Validator script runValidation.sh  ( runValidation.bat  for Windows) must be the
bin subdirectory containing the script (that is, XDB_HOME/bin ).

For example, if the xDB Replication Server is installed into its default directory location, then issue the following command before invoking the Data
Validator:

cd /opt/PostgreSQL/EnterpriseDB-xDBReplicationServer/bin

Similarly for Windows hosts, issue the following:

cd C:\Program Files\edb\EnterpriseDB-xDBReplicationServer\bin

The general command format for invoking the Data Validator is the following:

./runValidation.sh { –ss | --source-schema } schema_name
  [ option ] ...

schema_name  is the name of the schema in the source database containing the tables to be validated. The choices for option are listed later in this
section within the Options subsection.

For Windows hosts, the command format is the following:

runValidation { –ss | --source-schema } schema_name
  [ option ] ...

The following option displays the Data Validator version:

./runValidation.sh { –v | --version }

On Linux the version is displayed as follows:

$ ./runValidation.sh --version
EnterpriseDB DataValidator Build 3

On Windows the version is displayed as follows:

C:\Program Files\edb\EnterpriseDB-xDBReplicationServer\bin>runValidation -v
EnterpriseDB DataValidator Build 3

The following option displays the help information.

./runValidation.sh { –h | --help }

This is shown by the following:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 484



$ ./runValidation.sh --help
Usage:
   runValidation.sh (-v  | --version) | (-h | --help)
   runValidation.sh (-ss | --source-schema) SOURCE_SCHEMA [OPTIONS] CONNECTION_INFO_FILE

OPTIONS:

   (-ts | --target-schema)   target-schema-name
   (-it | --include-tables)  comma-seperated-tables-name
   (-et | --exclude-tables)  comma-seperated-tables-name

   (-ld | --logging-dir)     logging-dir-path
   (-ds  | --display-summary) (true|false)
   (-srs | --skip-rowsonlyin-source) (true|false)
   (-srt | --skip-rowsonlyin-target) (true|false)
   (-srb | --skip-rowsin-both) (true|false)
   (-fs  | --fetch-size) row count
   (-bs  | --batch-size) row count

   (-sdbms | --source-dbms)     source database type
   (-sh | --source-host) source database server name/IP
   (-sp | --source-port) source database server port
   (-sdb | --source-database)     source database name
   (-su | --source-user) source database user id
   (-spw | --source-password) source database user password
   (-tdbms | --target-dbms)     target database type
   (-th | --target-host) target database server name/IP
   (-tp | --target-port) target database server port
   (-tdb | --target-database)     target database name
   (-tu | --target-user) target database user id
   (-tpw | --target-password) target database user password

The general syntax for all options except for --version  and --help  is shown by the following:

./runValidation.sh –ss schema
  [ -ts schema ]
  [ -it table_1 [,table_2 ] ... ]
  [ -et table_1 [,table_2 ] ... ]
  [ -srs { true | false } ]
  [ -srt { true | false } ]
  [ -srb { true | false } ]
  [ -ld log_directory_path ]
  [ -ds { true | false } ]
  [ -sdbms database_type ]
  [ -sh host ]
  [ -sp port ]
  [ -sdb dbname ]
  [ -su user ]
  [ -spw password ]
  [ -tdbms database_type ]
  [ -th host ]
  [ -tp port ]
  [ -tdb dbname ]
  [ -tu user ]
  [ -tpw password ]
  [ -bs row_count ]
  [ -fs row_count ]

For clarity, the preceding syntax diagram shows only the single-character form of the option. The Options subsection lists both the single-character and
multi-character forms of the options.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 485



Specification of any database connection option ( -sdbms  through -tpw  listed in the preceding syntax diagram) overrides the corresponding parameter
in the datavalidator.properties  file. Installation and Configuration for information on the datavalidator.properties  file.

Options

-ss, --source-schema schema

The schema of the source database containing the tables to be compared against the target database.

-ts, --target-schema schema

The schema of the target database containing the tables to be compared against the source database. If omitted, the schema of the target
database is the same schema as specified for the source database with the -ss option.

-it, --include-tables table_1 [,table_2 ] ...

The tables within the source schema that are to be included for comparison. If omitted, all tables within the source schema are compared against
tables in the target schema with the exception of those tables excluded from comparison using the -et  option. Note: There must be no white
space between the comma and table names.

-et, --exclude-tables table_1 [,table_2 ] ...

The tables within the source schema that are to be excluded from comparison. If omitted, only those tables specified with the -it  option are
included for comparison. If both the -it  and -et  options are omitted, all source schema tables are included for comparison. Note: There must
be no white space between the comma and table names.

-srs, --skip-rowsonlyin-source { true | false }

When true is specified, the logging of differences for rows that exist only in the source database table are skipped. The default is false.

-srt, --skip-rowsonlyin-target { true | false }

When true is specified, the logging of differences for rows that exist only in the target database table are skipped. The default is false.

-srb, --skip-rowsin-both { true | false }

When true is specified, the logging of differences for rows that exist both in the source and target database tables with the same primary key, but
with different non-primary key values are skipped. The default is false.

-ld, --logging-dir log_directory_path

Directory path to where the Data Validator log and diff files are to be created and stored. If log_directory_path  does not exist, Data
Validator attempts to create it. If a full directory path is not specified log_directory_path  is created or assumed to be located relative to
the XDB_HOME/bin  subdirectory where the runValidation.sh  script is invoked. (That is, the logs directory is 
XDB_HOME/bin/log_directory_path .) Be sure the operating system account used to invoke the runValidation.sh  script has the

privileges to create the directory if it does not already exist, or to create files in the specified directory if it does already exist. If omitted, the
default is the XDB_HOME/bin/logs  directory.

-ds, --display-summary { true | false }

Specify true to display only the Data Validator summary. This omits the source and target database connection information as well as the detailed
breakdown of the results by source database table. Specify false to display all of the Data Validator results. The type and amount of information
that is displayed at the command line console when the Data Validator is invoked is the same information that is also stored in the log file for that
run. If omitted, the default is false (that is, all of the Data Validator results is displayed).

-sdbms, --source-dbms database_type

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 486



The type of the source database server. Supported types are oracle, enterprisedb, sqlserver, sybase, and mysql.

-sh, --source-host host

The IP address or server name of the host on which the source database server is running.

-sp, --source-port port

The port number on which the source database server is listening for connections.

-sdb, --source-database dbname

The database name of the source database.

-su, --source-user user

The database user name for connecting to the source database.

-spw, --source-password password

The password of the source database user in unencrypted form.

-tdbms, --target-dbms database_type

The type of the target database server. Supported types are enterprisedb and oracle.

-th, --target-host host

The IP address or server name of the host on which the target database server is running.

-tp, --target-port port

The port number on which the target database server is listening for connections.

-tdb, --target-database dbname

The database name of the target database.

-tu, --target-user user

The database user name for connecting to the target database.

-tpw, --target-password password

The password of the target database user in unencrypted form.

-bs, --batch-size row_count

The -bs option specifies the number of rows to group in a batch to be used for comparison across the source and target database tables. For
example, if a table contains 1000 rows, then a -bs  setting of 100 requires 10 batch iterations to complete the comparison across the source
and target databases. The Data Validator reads 100 rows, both from the source and target tables, and adds them in source and target buffers. The
validation thread then reads the 100 rows from the source and target buffers and performs the comparison. It will then move to read and prepare
the next 100 rows for comparison and so on. Note that the actual database round trips required to bring in 100 rows from the database depends
on the -fs  option for the fetch size. For example, an -fs  setting of 100 needs just one round trip whereas an -fs  setting of 10 requires 10
database round trips.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 487



-fs, --fetch-size row_count

Performing data validation for tables that are quite large in size may cause the Data Validator to terminate with an out of heap space error when
using the default fetch size of 5000 rows. Use the -fs  option to specify a smaller fetch size to help avoid the out of heap space issue. The result
set iteration will bring in as many rows as represented by the row_count  value in a single database round trip.

Examples

The following examples use an Oracle source database and an Advanced Server target database to compare the tables in schema EDB  on Oracle against
the tables in schema public  in Advanced Server.

The following lists the tables in schema EDB along with the content of tables DEPT  and EMP  in the Oracle source database:

SQL> SELECT table_name FROM user_tables;

TABLE_NAME
------------------------------
ORATAB
DEPT
EMP
JOBHIST

SQL> SELECT * FROM dept;

    DEPTNO DNAME          LOC
---------- -------------- -------------
        10 ACCOUNTING     NEW YORK
        20 RESEARCH       DALLAS
        30 SALES          CHICAGO
        40 OPERATIONS     BOSTON
        50 FINANCE        CHICAGO

SQL> SELECT * FROM emp;

     EMPNO ENAME      JOB              MGR HIREDATE         SAL       COMM     DEPTNO
---------- ---------- --------- ---------- --------- ---------- ---------- ----------
      7369 SMITH      CLERK           7902 17-DEC-80        800                    20
      7499 ALLEN      SALESMAN        7698 20-FEB-81       1600        300         30
      7521 WARD       SALESMAN        7698 22-FEB-81       1250        500         30
      7566 JONES      MANAGER         7839 02-APR-81       2975                    20
      7654 MARTIN     SALESMAN        7698 28-SEP-81       1250       1400         30
      7698 BLAKE      MANAGER         7839 01-MAY-81       2850                    30
      7782 CLARK      MANAGER         7839 09-JUN-81       2450                    10
      7788 SCOTT      ANALYST         7566 19-APR-87       3000                    20
      7839 KING       PRESIDENT            17-NOV-81       5000                    10
      7844 TURNER     SALESMAN        7698 08-SEP-81       1500          0         30
      7876 ADAMS      CLERK           7788 23-MAY-87       1100                    20
      7900 JAMES      CLERK           7698 03-DEC-81        950                    30
      7902 FORD       ANALYST         7566 03-DEC-81       3000                    20
      7934 MILLER     CLERK           7782 23-JAN-82       1300                    10
      9001 SMITH      ANALYST         7566                 8500                    20
      9002 ROGERS     SALESMAN        7698                 8000       4000         30

16 rows selected.

The following lists the tables in schema public along with the content of tables dept  and emp  in the Advanced Server edb  database:

edb=# \dt
            List of relations

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 488



 Schema |  Name   | Type  |    Owner
--------+---------+-------+--------------
 public | dept    | table | enterprisedb
 public | emp     | table | enterprisedb
 public | jobhist | table | enterprisedb
(3 rows)

edb=# SELECT * FROM dept;
 deptno |   dname    |   loc
--------+------------+----------
     10 | ACCOUNTING | NEW YORK
     20 | RESEARCH   | DALLAS
     30 | SALES      | CHICAGO
     40 | OPERATIONS | BOSTON
(4 rows)

edb=# SELECT * FROM emp;
 empno | ename  |    job    | mgr  |      hiredate      |   sal   |  comm   | deptno
-------+--------+-----------+------+--------------------+---------+---------+--------
  7369 | SMITH  | CLERK     | 7902 | 17-DEC-80 00:00:00 |  800.00 |         |     20
  7499 | ALLEN  | SALESMAN  | 7698 | 20-FEB-81 00:00:00 | 1600.00 |  300.00 |     30
  7521 | WARD   | SALESMAN  | 7698 | 22-FEB-81 00:00:00 | 1250.00 |  500.00 |     30
  7566 | JONES  | MANAGER   | 7839 | 02-APR-81 00:00:00 | 2975.00 |         |     20
  7654 | MARTIN | SALESMAN  | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 |     30
  7698 | BLAKE  | MANAGER   | 7839 | 01-MAY-81 00:00:00 | 2850.00 |         |     30
  7782 | CLARK  | MANAGER   | 7839 | 09-JUN-81 00:00:00 | 2450.00 |         |     10
  7788 | SCOTT  | ANALYST   | 7566 | 19-APR-87 00:00:00 | 3000.00 |         |     20
  7839 | KING   | PRESIDENT |      | 17-NOV-81 00:00:00 | 5000.00 |         |     10
  7844 | TURNER | SALESMAN  | 7698 | 08-SEP-81 00:00:00 | 1500.00 |    0.00 |     30
  7876 | ADAMS  | CLERK     | 7788 | 23-MAY-87 00:00:00 | 1100.00 |         |     20
  7900 | JAMES  | CLERK     | 7698 | 03-DEC-81 00:00:00 |  950.00 |         |     30
  7902 | FORD   | ANALYST   | 7566 | 03-DEC-81 00:00:00 | 3000.00 |         |     20
  7934 | MILLER | CLERK     | 7782 | 23-JAN-82 00:00:00 | 1300.00 |         |     10
  9001 | SMITH  | SALESMAN  | 7698 |                    | 8000.00 | 4000.00 |     30
  9002 | ROGERS | SALESMAN  | 7698 |                    | 9500.00 | 4000.00 |     30
(16 rows)

Note the following differences:

The Oracle EDB  schema contains one additional table named ORATAB  that does not exist in the Advanced Server public schema.
The Oracle DEPT  table contains one extra row with DEPTNO 50  that does not exist in the Advanced Server dept table.
The rows in the EMP  table with EMPNO  values 9001  and 9002  have column values that differ between the Oracle and Advanced Server tables
In this example, the JOBHIST  table contains identical rows for both the Oracle and Advanced Server tables.

The content of the datavalidator.properties  file is set as follows:

###############################################################
            Source database connection
###############################################################

#source_dbms=(enterprisedb | oracle | sqlserver | sybase | mysql)

source_dbms=oracle
source_host=192.168.2.23
source_port=1521
source_database=xe
source_user=edb
source_password=password

###############################################################

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 489



         Target database connection
###############################################################

#target_dbms=(enterprisedb | oracle)

target_dbms=enterprisedb
target_host=localhost
target_port=5444
target_database=edb
target_user=enterprisedb
target_password=password

The following example compares all tables in the Oracle EDB  schema against the Advanced Server public schema.

The Data Validator log files are created in directory /home/user/datavalidator_logs  as specified with the -ld  option. The operating system
account used to invoke the runValidation.sh  script has write access to the /home/user  directory so the Data Validator can create the 
datavalidator_logs  subdirectory.

$ cd /opt/PostgreSQL/EnterpriseDB-xDBReplicationServer/bin
$ pwd
/opt/PostgreSQL/EnterpriseDB-xDBReplicationServer/bin
$ ./runValidation.sh -ss edb -ts public -ld /home/user/datavalidator_logs

EnterpriseDB DataValidator Build 3
----------------------------------------------------------------------------
Source and target databases connection information
----------------------------------------------------------------------------

Source database:

     DBMS:     ORACLE
     Host:     192.168.2.23
     Port:     1521
     Database: xe
     User:     edb

Target database:

     DBMS:     ENTERPRISEDB
     Host:     localhost
     Port:     5444
     Database: edb
     User:     enterprisedb

----------------------------------------------------------------------------
Databases data validation process started...
----------------------------------------------------------------------------

Validating Table DEPT
  Rows validated: 5
  Finished validating table DEPT with 1 errors.
  Logging errors details in the diff file...

Validating Table EMP
  Rows validated: 16
  Finished validating table EMP with 2 errors.
  Logging errors details in the diff file...

Validating Table JOBHIST
  Rows validated: 17

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 490



  Finished validating table JOBHIST with 0 errors.

Validating Table ORATAB
  Table not validated as it does not exist on the target database.

DataValidator found 3 errors across source and target databases.
For detailed error report see datavalidator_20150713-144417.diff file.

----------------------------------------------------------------------------
Data validation process has completed.
----------------------------------------------------------------------------

***************************************************************
                            DataValidator Summary
***************************************************************

       All tables count: 4

       Validated tables count: 3
       Rows count: 38
       Errors count: 3

       Missing tables on the target database count: 1
       Tables list:
           - EDB.ORATAB

       Tables having only unsupported datatypes count: 0

       Tables having primary key limitation count: 0

       Total time(s): 0.678
       Rows per second: 56

***************************************************************

The Data Validator output indicates the following:

There is one error in the DEPT  table (the missing row).
There are two errors in the EMP  table (the two rows with mismatching column values)
The JOBHIST  table contains no errors.
The ORATAB  table does not exist on the target database.

The following shows the files created in the Data Validator logs directory:

$ pwd
/home/user/datavalidator_logs
$ ls -l
total 24
-rw-rw-r-- 1 user user 18999 Aug 13 15:44 datavalidator_20150713-144417.diff
-rw-rw-r-- 1 user user  2133 Aug 13 15:44 datavalidator_20150713-144417.log

The log file contains the same content as displayed when the Data Validator is invoked. The diff file compares the differences where errors were detected.

The following is the diff file as displayed in a text editor:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 491



Figure 9-1: Data Validator diff fileFigure 9-1: Data Validator diff file

The following example includes only tables dept  and emp  with the -it  option when comparing the Oracle EDB schema against the Advanced Server
public schema.

$ cd /opt/PostgreSQL/EnterpriseDB-xDBReplicationServer/bin
$ pwd
/opt/PostgreSQL/EnterpriseDB-xDBReplicationServer/bin
$ ./runValidation.sh -ss edb -ts public -ld /home/user/datavalidator_logs -it dept,emp

EnterpriseDB DataValidator Build 3
----------------------------------------------------------------------------
Source and target databases connection information
----------------------------------------------------------------------------

Source database:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 492



     DBMS:     ORACLE
     Host:     192.168.2.23
     Port:     1521
     Database: xe
     User:     edb

Target database:

     DBMS:     ENTERPRISEDB
     Host:     localhost
     Port:     5444
     Database: edb
     User:     enterprisedb

----------------------------------------------------------------------------
Databases data validation process started...
----------------------------------------------------------------------------

Validating Table DEPT
  Rows validated: 5
  Finished validating table DEPT with 1 errors.
  Logging errors details in the diff file...

Validating Table EMP
  Rows validated: 16
  Finished validating table EMP with 2 errors.
  Logging errors details in the diff file...

DataValidator found 3 errors across source and target databases.
For detailed error report see ``datavalidator_20150714-123353.diff`` file.

----------------------------------------------------------------------------
Data validation process has completed.
----------------------------------------------------------------------------

***************************************************************
                            DataValidator Summary
***************************************************************

       All tables count: 2

       Validated tables count: 2
       Rows count: 21
       Errors count: 3

       Missing tables on the target database count: 0

       Tables having only unsupported datatypes count: 0

       Tables having primary key limitation count: 0

       Total time(s): 0.539
       Rows per second: 39

***************************************************************

The following example excludes tables ORATAB  and jobhist  with the -et  option when comparing the Oracle EDB schema against the Advanced
Server public schema. The -ds  true option results in the display of only the Data Validator summary.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 493



$ ./runValidation.sh -ss edb -ts public -ld /home/user/datavalidator_logs -et ORATAB,jobhist -ds true
Databases data validation process started...

***************************************************************
                            DataValidator Summary
***************************************************************

       All tables count: 2

       Validated tables count: 2
       Rows count: 21
       Errors count: 3

       Missing tables on the target database count: 0

       Tables having only unsupported datatypes count: 0

       Tables having primary key limitation count: 0

       Total time(s): 0.535
       Rows per second: 39

***************************************************************

For this run, the corresponding log file contains only the Data Validator summary, omitting the source and target database connection information along
with the error breakdown by table.

11          Appendix

This chapter discusses various miscellaneous topics.

11.1          Permitted Configurations and Combinations

Depending upon the database products you are using with xDB Replication Server (Oracle, SQL Server, PostgreSQL, or Advanced Server) along with the
compatibility configuration mode if you are using Advanced Server, certain combinations of a source database server and a target database server are not
permitted for a publication and its associated subscription in a single-master replication system.

Similarly, only certain combinations of database products and Advanced Server compatibility configuration modes can be used together in a multi-master
replication system.

For a single-master replication system, the source refers to the database server of the publication database. The target refers to the database server of the
subscription database.

For a multi-master replication system, all of the participating database servers act as both a source and a target for all other participating database servers,
so the restrictions pertain to the combinations of database servers and compatibility configuration modes that can be used together in the same multi-
master replication system.

NoteNote

A Publication or Subscription database cannot be shared across SMR and MMR clusters. For example, if inventory  is registered as a
Subscription database in a SMR cluster, it cannot be registered as a Publication database in the MMR cluster. While xDB might not throw an
error, such a type of deployment architecture is not supported.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 494



This section presents the specific combinations of database server configurations that can be used for a publication and its associated subscription in a
single-master replication system, and the combinations of database server configurations that can be used in a multi-master replication system.

Advanced Server Compatibility Configuration Modes

Advanced Server supports two compatibility configuration modes of operation, which are the following:

Oracle compatible configuration mode. Operations are performed using Oracle syntax and semantics for data types, functions, database object
creation, and so forth. This mode is useful when your applications are migrated from Oracle, or you want your applications built in an Oracle
compatible fashion.
PostgreSQL compatible configuration mode. Operations are performed using native PostgreSQL syntax and semantics. This mode is useful when
your applications are migrated from PostgreSQL, or you want your applications built in a PostgreSQL compatible fashion.

For more information on features supported in Oracle compatible configuration mode, see Database Compatibility for Oracle Developers in the EDB
Postgres Advanced Server documentation.

The compatibility configuration mode is selected at the time you install Advanced Server.

Permitted SMR Source and Target Configurations

The following table shows the combinations of source and target database server products and Advanced Server compatibility configuration modes
permitted by xDB Replication Server for single-master replication systems:

Table 10-1: Permitted Source and Target ConfigurationsTable 10-1: Permitted Source and Target Configurations

Source \ TargetSource \ Target OracleOracle Microsoft SQLMicrosoft SQL
ServerServer

PostgreSQLPostgreSQL Advanced Server (OracleAdvanced Server (Oracle
compatible)compatible)

Advanced Server (PostgreSQLAdvanced Server (PostgreSQL
compatible)compatible)

OracleOracle No No Yes Yes Yes

Microsoft SQL ServerMicrosoft SQL Server No No Yes Yes Yes

PostgreSQLPostgreSQL Yes Yes Yes Yes Yes

Advanced Server (OracleAdvanced Server (Oracle
compatible)compatible)

Yes Yes No Yes No

Advanced Server (PostgreSQLAdvanced Server (PostgreSQL
compatible)compatible)

Yes Yes Yes Yes Yes

In the preceding table, the left hand column lists the possible source database server products including the possible Advanced Server compatibility
configuration modes. The top row lists the same set of possible target database server products and Advanced Server compatibility configuration modes.

Yes  at the intersection of a source and target indicates that xDB Replication Server permits replication using that combination of database server
configurations for a publication and its associated subscription. No  indicates replication is not permitted for that combination.

Permitted MMR Database Server Configurations

For multi-master replication systems, each primary node acts as both a source for all primary nodes and a target for all primary nodes. Thus, the permitted
database servers comprising a particular multi-master replication system or cluster is determined by the overall composition of the cluster, which is
initially established when selecting the database type of the primary definition node (see Step 3 in Section Adding the Primary definition node). There are
two basic cluster types that can be characterized as follows:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 495

https://www.enterprisedb.com/docs/epas/latest/epas_compat_ora_dev_guide/


PostgreSQL compatible cluster. All primary nodes must consist of PostgreSQL database servers or Advanced Servers installed in PostgreSQL
compatible configuration mode.
Advanced Server Oracle compatible cluster. All primary nodes must consist of Advanced Servers installed in Oracle compatible configuration mode.

The following table summarizes the permitted database server configurations allowed in the two cluster types.

Table 10-2: Permitted Database Server Configurations by Cluster TypeTable 10-2: Permitted Database Server Configurations by Cluster Type

Database Server \ Cluster Type PostgreSQL Compatible Cluster Advanced Server Oracle Compatible Cluster

PostgreSQLPostgreSQL Yes No

Advanced Server (PostgreSQL compatible)Advanced Server (PostgreSQL compatible) Yes No

Advanced Server (Oracle compatible)Advanced Server (Oracle compatible) No Yes

In the preceding table, the left hand column lists the possible database server products including the possible Advanced Server compatibility configuration
modes. The top row lists the supported cluster types.

Yes  at the intersection of a database server and cluster type indicates that xDB Replication Server permits the database server and the specified
configuration mode in the cluster type. No  indicates the database server and the specified configuration mode cannot be used in the cluster type.

11.2          Upgrading to xDB Replication Server 6.2

This section describes the process of installing xDB Replication Server 6.2 when you have existing single-master or multi-master replication systems that
are running under xDB Replication Server version 6.1.x or 6.0.x.

It is assumed that you will be installing xDB Replication Server 6.2 on the same host machine that is currently running xDB Replication Server 6.1.x or 6.0.x,
and that you will then manage the existing replication systems using xDB Replication Server 6.2.

A direct upgrade is supported only from xDB Replication Server versions 6.1.x or 6.0.x.

The following sections illustrate the upgrade process from xDB Replication Server 6.1. The same steps apply for upgrading from xDB Replication Server 6.0,
but with different version numbers in the file and directory names of the older product.

11.2.1          Upgrading with the Graphical User Interface Installer

Perform the following steps to upgrade to xDB Replication Server 6.2 using the graphical user interface installer.

Step 1:Step 1: Any pending backlog of transactions on the publication tables must be replicated before starting the upgrade process.

Step 2:Step 2: After all pending transactions have been replicated to their target databases, stop the xDB Replication Server 6.1.x publication server and
subscription server. See sections Registering a Publication Server and Registering a Subscription Server.

Step 3:Step 3: Install xDB Replication Server 6.2. See Chapter Installation and Uninstallation for instructions on installing xDB Replication Server, but note the
differences described in the following steps.

Step 4:Step 4: Following the acceptance of the license agreement in Step 11 of Section Installing With Stack Builder or StackBuilder Plus, the Select Components
screen appears, but with the entries grayed out. The old xDB Replication Server components are replaced by the new ones in the old xDB Replication
Server’s directory location. Click the Next  button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 496



Figure 10-1: Select componentsFigure 10-1: Select components

Step 5:Step 5: The Existing Installation screen confirms that an existing xDB Replication Server installation was found. Click the Next  button to proceed with the
upgrade.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 497



Figure 10-2: Existing installationFigure 10-2: Existing installation

Step 6:Step 6: On the Ready to Install  screen, click the Next  button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 498



Figure 10-3: Ready to installFigure 10-3: Ready to install

Step 7:Step 7: The remaining screens that appear confirm completion of the installation process and allow you to exit from Stack Builder or StackBuilder Plus.

Step 8:Step 8: After installation completes, the publication server of the new xDB Replication Server product should be running, connected to the controller
database used by xDB Replication Server 6.1. The subscription server may or may not be running at this point, however, that is an expected outcome of this
process.

Step 9:Step 9: Complete the publication server and subscription server configuration file setup.

In the XDB_HOME/etc  directory, a new set of configuration files for xDB Replication Server version 6.2 are created. These files are named 
xdb_pubserver.conf.new  and xdb_subserver.conf.new . The new configuration files contain any new configuration options added for xDB

Replication Server 6.2.

The old configuration files used by xDB Replication Server version 6.1.x remain unchanged as xdb_pubserver.conf  and xdb_subserver.conf .

Merge the old and new configuration files so that the resulting, active configuration files contain any new xDB Replication Server 6.2 configuration options
as well as any non-default settings you used with xDB Replication Server 6.1.x and wish to continue to use with xDB Replication Server 6.2. The final set of
active configuration files must be named xdb_pubserver.conf  and xdb_subserver.conf .

In the XDB_HOME/etc/sysconfig  directory, make sure the xDB Startup Configuration file xdbReplicationServer-62.config  contains the
parameter settings you wish to use with xDB Replication Server 6.2. See xDB Startup Configuration File for information on the xDB Startup Configuration
file.

Step 10:Step 10: Restart the publication server and the subscription server (see sections Registering a Publication Server and Registering a Subscription Server).

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 499



Step 11:Step 11: Check the publication server and subscription server log files to verify that no errors have occurred (see Publication and Subscription Server
Startup Failures).

Step 12:Step 12: Adjust the publication server and subscription server port numbers if necessary.

The xDB Replication Server 6.2 publication and subscription servers are installed to use the default port numbers 9051  and 9052 , respectively. If the
xDB Replication Server 6.1.x replication systems used port numbers other than 9051  and 9052 , then perform the modifications to correct this
inconsistency as described in Section Updating the Publication and Subscription Server Ports.

If no such adjustment to the port numbers is needed, register the publication server and subscription server with the xDB Replication Console as described
in sections Registering a Publication Server and Registering a Subscription Server. The existing replication systems should appear in the replication tree of
the xDB Replication Console.

Step 13:Step 13: You are now ready to use xDB Replication Server 6.2 to create new replication systems and manage existing ones.

11.2.2          Upgrading with the xDB Replication Server RPM Package

If you are using xDB Replication Server 6.1.x that was installed using the xDB RPM package, upgrading to xDB Replication Server 6.2 from an RPM package
is accomplished as described in this section.

NoteNote

Be sure the repository configuration file edb.repo  for xDB Replication Server 6.2 is set up in the /etc/yum.repos.d  directory. See
Section Installing the xDB RPM Package for information.

Step 1:Step 1: Any pending backlog of transactions on the publication tables must be replicated before starting the upgrade process.

Step 2:Step 2: After all pending transactions have been replicated to their target databases, stop the xDB Replication Server 6.1.x publication server and
subscription server (see sections Registering a Publication Server and Registering a Subscription Server).

Step 3:Step 3: Save a copy of the following configuration files:

/etc/edb-repl.conf
/usr/ppas-xdb-6.1/etc/xdb_pubserver.conf
/usr/ppas-xdb-6.1/etc/xdb_subserver.conf
/usr/ppas-xdb-6.1/etc/sysconfig/xdbReplicationServer-61.config

Copies of these files are typically saved by the upgrade process if the files had been modified since their original installation. However, it is safest to save
copies in case the upgrade process fails to do so. Use the saved files as your xDB Replication Server 6.1.x configuration files for the updates described in
Step 7.

Step 4:Step 4: If any Oracle publication or subscription databases are used in existing single-master replication systems, make sure a copy of the Oracle JDBC
driver, version ojdbc5 or later, will be accessible by the publication server and subscription server where xDB Replication Server 6.2 will be installed. See
Enabling Access to Oracle for information.

NoteNote

There are two options available: Option 1) Copy the Oracle JDBC driver to the jre/lib/ext subdirectory  of your Java runtime
environment. Option 2) Copy the Oracle JDBC driver to the lib/jdbc subdirectory  of the xDB Replication Server installation directory.

It is suggested that you perform option 1 (copy the Oracle JDBC driver to the jre/lib/ext subdirectory of your Java runtime environment).

If on the other hand you perform option 2, you must copy the Oracle JDBC driver to the /usr/ppas-xdb-6.2/lib/jdbc  directory after you have
installed xDB Replication Server 6.2.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 500



Step 5:Step 5: It is best to ensure that the controller database is up and running. The other publication and subscription databases of existing SMR and MMR
systems do not need to be up and running.

Step 6:Step 6: As the root account invoke the yum update command to begin the upgrade from xDB Replication Server 6.1.x to xDB Replication Server 6.2 as
shown by the following:

yum update ppas-xdb*

Be sure to include the asterisk character (*) following ppas-xdb in order to update all xDB Replication Server components.

The following is an example:

[root@localhost ~]# yum update ppas-xdb*
Loaded plugins: fastestmirror, langpacks
Loading mirror speeds from cached hostfile
* base: mirrors.piconets.webwerks.in
* extras: mirrors.piconets.webwerks.in
* updates: centos.excellmedia.net
Resolving Dependencies
--> Running transaction check
---> Package ppas-xdb.x86_64 0:6.1.5-1.rhel7 will be updated
---> Package ppas-xdb.x86_64 0:6.2.12-1.rhel7 will be an update
---> Package ppas-xdb-console.x86_64 0:6.1.5-1.rhel7 will be updated
---> Package ppas-xdb-console.x86_64 0:6.2.12-1.rhel7 will be an update
---> Package ppas-xdb-libs.x86_64 0:6.1.5-1.rhel7 will be updated
---> Package ppas-xdb-libs.x86_64 0:6.2.12-1.rhel7 will be an update
---> Package ppas-xdb-publisher.x86_64 0:6.1.5-1.rhel7 will be updated
---> Package ppas-xdb-publisher.x86_64 0:6.2.12-1.rhel7 will be an update
---> Package ppas-xdb-subscriber.x86_64 0:6.1.5-1.rhel7 will be updated
---> Package ppas-xdb-subscriber.x86_64 0:6.2.12-1.rhel7 will be an update
--> Finished Dependency Resolution

Dependencies Resolved

===============================================================================================================
==========================================================================
Package                                              Arch                                    Version                                         
Repository                            Size
===============================================================================================================
==========================================================================
Updating:
ppas-xdb                                             x86_64                                  6.2.12-1.rhel7                                  
edb                                  7.2 k
ppas-xdb-console                                     x86_64                                  6.2.12-1.rhel7                                  
edb                                  1.6 M
ppas-xdb-libs                                        x86_64                                  6.2.12-1.rhel7                                  
edb                                   14 M
ppas-xdb-publisher                                   x86_64                                  6.2.12-1.rhel7                                  
edb                                   40 k
ppas-xdb-subscriber                                  x86_64                                  6.2.12-1.rhel7                                  
edb                                   11 k

Transaction Summary
===============================================================================================================
==========================================================================
Upgrade  5 Packages

Total download size: 16 M
Is this ok [y/d/N]: y
Downloading packages:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 501



No Presto metadata available for edb
(1/5): ppas-xdb-6.2.12-1.rhel7.x86_64.rpm                                                                                                                         
| 7.2 kB  00:00:01
(2/5): ppas-xdb-console-6.2.12-1.rhel7.x86_64.rpm                                                                                                                 
| 1.6 MB  00:00:08
(3/5): ppas-xdb-publisher-6.2.12-1.rhel7.x86_64.rpm                                                                                                               
|  40 kB  00:00:00
(4/5): ppas-xdb-subscriber-6.2.12-1.rhel7.x86_64.rpm                                                                                                              
|  11 kB  00:00:00
(5/5): ppas-xdb-libs-6.2.12-1.rhel7.x86_64.rpm                                                                                                                    
|  14 MB  00:00:30
----------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------
Total                                                                                                                                                    
491 kB/s |  16 MB  00:00:32
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
Updating   : ppas-xdb-libs-6.2.12-1.rhel7.x86_64                                                                                                                                  
1/10
Updating   : ppas-xdb-publisher-6.2.12-1.rhel7.x86_64                                                                                                                             
2/10
Updating   : ppas-xdb-subscriber-6.2.12-1.rhel7.x86_64                                                                                                                            
3/10
Updating   : ppas-xdb-console-6.2.12-1.rhel7.x86_64                                                                                                                               
4/10
Updating   : ppas-xdb-6.2.12-1.rhel7.x86_64                                                                                                                                       
5/10
Cleanup    : ppas-xdb-6.1.5-1.rhel7.x86_64                                                                                                                                        
6/10
Cleanup    : ppas-xdb-subscriber-6.1.5-1.rhel7.x86_64                                                                                                                             
7/10
Cleanup    : ppas-xdb-console-6.1.5-1.rhel7.x86_64                                                                                                                                
8/10
Cleanup    : ppas-xdb-publisher-6.1.5-1.rhel7.x86_64                                                                                                                              
9/10
Cleanup    : ppas-xdb-libs-6.1.5-1.rhel7.x86_64                                                                                                                                  
10/10
Verifying  : ppas-xdb-6.2.12-1.rhel7.x86_64                                                                                                                                       
1/10
Verifying  : ppas-xdb-libs-6.2.12-1.rhel7.x86_64                                                                                                                                  
2/10
Verifying  : ppas-xdb-publisher-6.2.12-1.rhel7.x86_64                                                                                                                             
3/10
Verifying  : ppas-xdb-subscriber-6.2.12-1.rhel7.x86_64                                                                                                                            
4/10
Verifying  : ppas-xdb-console-6.2.12-1.rhel7.x86_64                                                                                                                               
5/10
Verifying  : ppas-xdb-publisher-6.1.5-1.rhel7.x86_64                                                                                                                              
6/10
Verifying  : ppas-xdb-subscriber-6.1.5-1.rhel7.x86_64                                                                                                                             
7/10
Verifying  : ppas-xdb-6.1.5-1.rhel7.x86_64                                                                                                                                        
8/10
Verifying  : ppas-xdb-libs-6.1.5-1.rhel7.x86_64                                                                                                                                   
9/10
Verifying  : ppas-xdb-console-6.1.5-1.rhel7.x86_64                                                                                                                               
10/10

Updated:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 502



ppas-xdb.x86_64 0:6.2.12-1.rhel7                ppas-xdb-console.x86_64 0:6.2.12-1.rhel7     ppas-xdb-
libs.x86_64 0:6.2.12-1.rhel7     ppas-xdb-publisher.x86_64 0:6.2.12-1.rhel7
ppas-xdb-subscriber.x86_64 0:6.2.12-1.rhel7

Complete!

At this point the publication server and the subscription server for xDB Replication Server 6.2 are not running. The directories now contain the following:

xDB Replication Server 6.2 is installed in directory location /usr/ppas-xdb-6.2 .
xDB Replication Server 6.1.x remains in directory location /usr/ppas-xdb-6.1, but with the files removed from the subdirectories such as bin and lib.
In the etc subdirectory, there may be the configuration files renamed as xdb_pubserver.conf.rpmsave  and 
xdb_subserver.conf.rpmsave .

In the etc/sysconfig subdirectory , there may be the configuration file renamed as xdbReplicationServer-
61.config.rpmsave .
In the /etc directory, there may be either one or two xDB Replication Configuration files named edb-repl.conf  and possibly edb-
repl.conf.rpmsave . The file edb-repl.conf  should contain the connection and authentication information for the controller database
used by the xDB 6.1.x publication server. The file edb-repl.conf.rpmsave  contains only the new administrator user parameters admin_user
and admin_password. Before starting the publication server and subscription server, be sure the controller database is up and running, and the 
edb-repl.conf  file contains the controller database connection and authentication parameters.

Step 7:Step 7: Complete the publication server and subscription server configuration file setup.

In the /usr/ppas-xdb-6.2/etc  directory, a new set of configuration files for xDB Replication Server version 6.2 are created. These files are named 
xdb_pubserver.conf  and xdb_subserver.conf . The new configuration files contain any new configuration options added for xDB Replication

Server 6.2. The old configuration files used by xDB Replication Server version 6.1.x might be found in the /usr/ppas-xdb-6.1/etc directory renamed as 
xdb_pubserver.conf.rpmsave  and xdb_subserver.conf.rpmsave .

NoteNote

If these files do not exist, use the ones you saved in Step 3.

Merge the old and new configuration files so that the resulting, active configuration files contain any new xDB Replication Server 6.2 configuration options
as well as any non-default settings you used with xDB Replication Server 6.1.x and wish to continue to use with xDB Replication Server 6.2.

The final set of active configuration files must be contained in directory /usr/ppas-xdb-6.2/etc  named xdb_pubserver.conf  and 
xdb_subserver.conf . In the /usr/ppas-xdb-6.2/etc/sysconfig directory , make sure the xDB Startup Configuration file 
xdbReplicationServer-62.config  contains the parameter settings you wish to use with xDB Replication Server 6.2. See xDB Replication

Configuration File for information on the xDB Startup Configuration file.

Step 8:Step 8: Restart the publication server and the subscription server (see sections Registering a Publication Server and Registering a Subscription Server).

Step 9:Step 9: Check the publication server and subscription server log files to verify that no errors have occurred (see xDB Replication Configuration File).

Step 10:Step 10: Adjust the publication server and subscription server port numbers if necessary.

The xDB Replication Server 6.2 publication and subscription servers are installed to use the default port numbers 9051 and 9052, respectively. If the xDB
Replication Server 6.1.x replication systems used port numbers other than 9051  and 9052  for the publication and subscription servers, then perform
the modifications to correct this inconsistency as described in Section Updating the Publication and Subscription Server Ports.

If no such adjustment to the port numbers is needed, register the publication server and subscription server with the xDB Replication Console as described
in sections Registering a Publication Server and Registering a Subscription Server). The existing replication systems should appear in the replication tree of
the xDB Replication Console.

Step 11:Step 11: You are now ready to use xDB Replication Server 6.2 to create new replication systems and manage existing ones.

11.2.3          Updating the Publication and Subscription Server Ports

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 503



The newly installed publication server and subscription server of xDB Replication Server 6.2 are configured to use the default port numbers 9051 and 9052,
respectively. These port numbers are set in the xDB Startup Configuration file as described in Section xDB Replication Configuration File.

If your xDB Replication Server 6.1.x replication systems were running under port numbers other than 9051 and 9052, some of your settings in xDB
Replication Server 6.2 must be adjusted to continue to use these existing replication systems.

NoteNote

The following changes regarding port 9052  and the subscription server are only needed if you are running a single-master replication system. If
you are using only a multi-master replication system, then only the changes involving port 9051  and the publication server are needed.

There are two methods to correct this as summarized by the following two points:

To continue to use the old port numbers (other than 9051  and 9052 ) that were in use for xDB Replication Server 6.1.x, stop the publication and
subscription servers. Change the settings of the PUBPORT  and SUBPORT  parameters in the xDB Startup Configuration file from 9051  and 
9052  to the old port numbers used by xDB Replication Server 6.1.x. Restart the publication and subscription servers. Register the publication

server and the subscription server with the old xDB Replication Server 6.1.x port numbers along with the admin user and password as described in
sections Registering a Publication Server and Registering a Subscription Server.
To use the default port numbers 9051  and 9052  with the xDB Replication Server 6.1.x replication systems, you must replace the old port
numbers with the default port numbers 9051  and 9052 . Register the publication server and the subscription server with port numbers 9051
and 9052  along with the admin user and password as described in sections Registering a Publication Server and Registering a Subscription Server.
For single-master replication systems only, you then need to change the port numbers stored in the control schema from the old port numbers to 
9051  and 9052 . First, perform the procedure described in Section Subscription Server Network Location, and then perform the procedure

described in Section Updating a Subscription.

After making the changes as previously described, click the Refresh  button of the xDB Replication Console. The replication tree of the xDB Replication
Console should display the complete set of nodes for the replication systems.

11.3          Resolving Problems

This section contains tips for locating and correcting various problems that may occur.

11.3.1          Error Messages

The following section lists of certain error messages that can appear from the xDB Replication Console. The messages are listed in alphabetical order based
on the first word in the message following a, an,  or the .

When an error message is displayed by the xDB Replication Console, it may be followed by a specific reason as denoted by:

Reason: reason_for_failure as in the following example:

Authentication failed. Reason: Invalid user name/password.

The various specific reasons are not listed for all messages in the table.

This table also lists only the messages that typically involve initial configuration operations requiring additional information for resolving the problem.
Messages related to less complicated corrections for simpler operations are not listed in this table.

Error Messages and Resolutions

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 504



ProblemProblem

Authentication failed. Reason: Invalid user name/password.

ResolutionResolution

Occurs when registering a publication server or subscription server. Verify the user name and password you enter matches the admin user name and
password in the xDB Replication Configuration file on the host you are running the publication server or subscription server. See xDB Replication
Configuration File.

ProblemProblem

Cannot register database because it is already registered by a publication service.

ResolutionResolution

Only one publication database definition can be created for any given database. (Oracle is the exception whereby more than one publication database
definition can be created for the same Oracle database if different Oracle user names are specified in each publication database definition.)

ProblemProblem

The connection could not be established with the server. Verify that the server is running and accepting 
connections. Reason: Connection refused to host: *xxx*.\ *xxx*.\ *xx*.\ *xxx*; nested exception is: 
java.net.ConnectException: Connection refused

ResolutionResolution

Occurs whenever a Java RMI connection cannot be made to the publication server, the subscription server, or a database server. Can occur when
registering a publication or subscription server, adding a publication database or a subscription database, or identifying the publication server for a new
subscription. Verify you have entered the correct host IP address and port number of the server. Verify the server is running (see Starting the Publication
Server or Subscription Server). If the server is running on Linux, verify that in the /etc/hosts  file, the host name is mapped to the correct network IP
address, which matches the IP address returned by the Linux /sbin/ifconfig  command, and also matches the IP address you entered in the Host field
of the dialog box. Alternatively, instead of modifying the /etc/hosts file, set configuration option java.rmi.server.hostname  to the IP address of
the publication or subscription server (see Assigning an IP Address for Remote Method Invocation Do not use the loopback address 127.\ *x*.\ 
*x*.\ *x*  for this entry.

ProblemProblem

Connection refused. Check that the hostname and port are correct and that the postprimary is accepting TCP/IP connections.

ResolutionResolution

Occurs when attempting to save a publication database definition. The publication server cannot connect to the database server network location given in
the Add Database dialog box. Verify that the correct IP address and port for the database server are given. Verify that the database server is running and is
accessible from the host running the publication server.

ProblemProblem

Could not connect to the database server. Reason: FATAL: number of requested standby connections exceeds 
max_wal_senders (currently *n*)

ResolutionResolution

Occurs when attempting a snapshot replication from a publication database configured with the log-based method of synchronization replication (that is,
WAL based logical replication), and the additional concurrent connection for logical replication exceeds the current setting, n , of the 
max_wal_senders  configuration parameter in the postgresql.conf file . Increase the value of max_wal_senders  in the 
postgresql.conf  file of the database server running the publication database. Restart the database server containing the publication database. See

Synchronization Replication with the Log-Based Method.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 505



ProblemProblem

Currently no publication exists on the publication server. Please create at least one publication on the 
server and then retry.

ResolutionResolution

Occurs when attempting to create a subscription. If there are no publications in the specified publication server, then this error message is displayed.

ProblemProblem

The database cannot be registered because a partial schema already exists. A manual cleanup is required to 
proceed. For help with manual cleanup please check out our product documentation.

ResolutionResolution

The metadata database objects from a prior publication already exist in the schema under which the publication server is attempting to create new
metadata database objects. Perform the operation described in Section Deleting the Control Schema and Control Schema Objects.

ProblemProblem

Database cannot be removed. Reason: Publication database connection cannot be removed as one or more 
publications are defined against it.

ResolutionResolution

Make sure all publications subordinate to the publication database definition have been removed. If no publications appear under the Publication Database
node in the xDB Replication Console replication tree and the error persists, there may be a problem with the control schema objects. Perform the operation
described in Section Deleting the Control Schema and Control Schema Objects.

ProblemProblem

Database cannot be removed. Reason: Publication service failed to clean up replication control schema tables.

ResolutionResolution

The control schema objects under the Oracle publication database user schema or under the Postgres or SQL Server schemas 
\_edb_replicator_pub, \_edb_replicator_sub,  or \_edb_scheduler  cannot be deleted by the publication server. The control schema

objects or schemas may have already been deleted. The publication database definition cannot be removed using the xDB Replication Console. Perform the
operation described in Section Deleting the Control Schema and Control Schema Objects.

ProblemProblem

Database cannot be removed. Reason: The target publication database is currently set as the Controller 
database and is being referenced by one or more dependent nodes.

ResolutionResolution

Occurs when attempting to remove the publication database currently set as the controller database. Select another publication database to be used as the
controller database. Use the Set As Controller option in the publication databases’ context menu to set this database as the controller database. You can
then remove the original publication database. See Switching the Controller Database.

ProblemProblem

Database cannot be set as controller. Reason: Connection refused. Check that the hostname and port are 
correct and that the postprimary is accepting TCP/IP connections.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 506



ResolutionResolution

Occurs when attempting to set a publication database as the controller database and the database is not accessible by the publication server. Verify that
the correct IP address and port has been defined in the publication database definition. Verify that the database server is running and is accessible from the
host running the publication server.

ProblemProblem

Database connection cannot be added. Connection refused. Check that the hostname and port are correct and 
that the postprimary is accepting TCP/IP connections.

ResolutionResolution

Occurs when attempting to save a subscription database definition. The subscription server cannot connect to the database server network location given in
the Add Database dialog box. Verify that the correct IP address and port for the database server are given. Verify that the database server is running and is
accessible from the host running the subscription server.

ProblemProblem

Database connection cannot be added. FATAL: no pg_hba.conf entry for host "*xxx*.\ *xxx*.\ *xx*.\ *xxx*", 
user "*user_name*", database "*db_name*", SSL off

ResolutionResolution

Occurs when attempting to save a subscription database definition. The subscription server is not permitted to connect to the database at the network
location given in the Add Database dialog box. Verify that the database host IP address, port number, database user name, password, and database
identifier are correct. Verify there is an entry in the pg_hba.conf  file permitting access to the database by the given user name originating from the IP
address where the subscription server is running.

ProblemProblem

Database connection cannot be added. Controller database is not initialized yet.

ResolutionResolution

Occurs when attempting to add a subscription database. Verify that the xDB Replication Configuration file on the host running the subscription server
contains an entry for a valid controller database. Verify that a publication database has been defined under the publication server as the controller
database and its connection information is recorded in the xDB Replication Configuration file. See xDB Replication Configuration File.

ProblemProblem

The database type for the selected database is different than that of the MDN database. Each database should be of the same type in a MMR cluster.

ResolutionResolution

All database servers in a multi-master replication system must be of the same type – either all PostgreSQL (or Advanced Server installed in PostgreSQL
compatible configuration mode); or all Advanced Server installed in Oracle compatible configuration mode. This error message is displayed when
attempting to add a primary node and the database server type differs from the database server type of the primary definition node. See Permitted MMR
Database Server Configurations.

ProblemProblem

An error occurred while removing tables from other Primary node(s). Please refer to the user manual for 
instructions on how to remove shadow tables and triggers from Primary node(s).

ResolutionResolution

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 507



When a primary node of a multi-master replication system is deleted using the xDB Replication Console or the xDB Replication Server CLI, the control
schema objects that were created in the primary node are also dropped. These include schemas \_edb_replicator_pub, 
\_edb_replicator_sub,  and \_edb_scheduler . For the log-based method of synchronization replication there are shadow tables and triggers
on the publication tables as well. If any of these control schema objects fail to be dropped, this error message is displayed. See Dropping Replication Slots
for Log-Based Synchronization Replication for directions on how to remove these control schema objects.

ProblemProblem

FATAL: no pg_hba.conf entry for host "*xxx*.\ *xxx*.\ *xx*.\ *xxx*", user "*user_name*", database 
"*db_name*", SSL off

ResolutionResolution

Occurs when attempting to save a publication database definition. The publication server is not permitted to connect to the database at the network
location given in the Add Database dialog box. Verify that the database host IP address, port number, database user name, password, and database
identifier are correct. Verify there is an entry in the pg_hba.conf  file permitting access to the database by the given user name originating from the IP
address where the publication server is running.

ProblemProblem

Filter cannot be defined for Binary data type column(s)e.g. BYTEA, BLOB, RAW.

ResolutionResolution

Occurs when attempting to define a filter rule on a column with a binary data type in a publication table. Filter rules are not permitted on such columns.
See Section Table Settings and Restrictions for Table Filters.

ProblemProblem

Filter with same name/clause already exist on table/view: *schema*.\ *table_name*

ResolutionResolution

When adding a filter rule on a publication table, the same filter name or the same filter clause (WHERE clause) cannot be used more than once on a given
table. Modify the duplicate filter name or filter clause so it is unique for the table.

ProblemProblem

The initial snapshot is not performed for this subscription. Please take the snapshot first and then 
proceed with the synchronize operation.

ResolutionResolution

A snapshot replication must be performed before the first synchronization replication. Perform an on demand snapshot replication.

ProblemProblem

It is recommended to use a network IP address, the loopback address may result in connectivity issues.

ResolutionResolution

This warning is given when localhost or 127.0.0.1 is specified as the host address of a replication system component. If is strongly recommended that all
replication system components are identified by their specific IP address on the network.

ProblemProblem

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 508



The log triggers creation failed for one or more publication tables. Make sure the database is in valid 
state and user is granted the required privileges.

ResolutionResolution

Either the user does not have the trigger creation privilege or there is a database server problem. The database server message is displayed as part of the
error.

ProblemProblem

The MMR mode is currently not supported for *database_type* database.

ResolutionResolution

A database server of type database_type cannot be used in a multi-master replication system. Only Advanced Server or PostgreSQL database servers may
be used as primary nodes in a multi-master replication system.

ProblemProblem

Multiple filters of same table are not allowed.

ResolutionResolution

When creating a subscription in a single-master replication system or creating a primary node other than the primary definition node in a multi-master
replication system, only one filter may be selected for a given table. Uncheck the additional boxes in the Apply column under the Filter Rules tab if more
than one box is selected.

ProblemProblem

No JDBC Client driver is configured for the Oracle data source.

ResolutionResolution

Occurs when creating an Oracle publication or subscription database definition. Copy the Oracle JDBC driver file ojdbc\ *x*.jar  to subdirectory 
lib/jdbc  of where the publication server or subscription server is installed on the host running the publication server or subscription server. Restart the

publication server or subscription server.

ProblemProblem

No Publication found on MDN node, additional Primary node cannot join MMR cluster.

ResolutionResolution

Occurs when attempting to add a second primary node to a multi-master replication system, but no publication has been defined under the primary
definition node. Create a publication under the primary definition node, then add the additional primary nodes. See Adding a Publication.

ProblemProblem

None of the target master/subscription databases is accessible, hence the replication process failed to 
complete.

ResolutionResolution

Synchronization replication failed due to the unavailability of a target database. See the publication server log file for details. See Where to Look for Errors.

ProblemProblem

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 509



One or more primary database node(s) are defined against this publication. Removing the publication will 
invalidate the MDN.

ResolutionResolution

Primary nodes are still defined in a multi-master replication system in which an attempt is being made to delete the publication from the primary definition
node. All primary nodes (other than the primary definition node) must be deleted first before deleting the publication from the primary definition node.
Perform this deletion process with the xDB Replication Console or xDB Replication Server CLI.

ProblemProblem

One or more subscriptions are defined against this publication. Removing the publication will invalidate the 
subscription. Do you want to continue?

ResolutionResolution

Warning issued when you attempt to remove a publication with subscriptions associated with it. You can remove the publication, but the subscriptions are
no longer usable and should be removed as well.

ProblemProblem

Multiple Publications creation is currently not supported.

ResolutionResolution

Only one publication is supported in a multi-master replication system and only one such multi-master replication system can exist for an xDB Replication
Server installation.

ProblemProblem

Only subscription which has subscribed against a publication with transactional replication type, can be 
synchronized.

ResolutionResolution

You cannot perform synchronization replication on a snapshot-only publication. Perform snapshot replication instead.

ProblemProblem

The Oracle/MS SQL Server cannot be registered if the active Controller database is a non-PG/PPAS database.

ResolutionResolution

Occurs when creating an Oracle or SQL Server publication database definition and the current controller database is not a Postgres database (that is, the
controller database is an Oracle or SQL Server database). In order to create an Oracle or SQL Server publication database, create and designate a Postgres
publication database as the controller database. See Switching the Controller Database.

ProblemProblem

Parent table *table_name* is not selected when its child tables are part of the publication list.

ResolutionResolution

Table selected for a publication has a foreign key referencing a parent table that has not been chosen for the publication. This is only a warning that the
parent table will not be part of the subscription.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 510



ProblemProblem

Problem occurred in publish process. Reason: Connection refused. Check that the hostname and port are 
correct and that the postprimary is accepting TCP/IP connections.

ResolutionResolution

Occurs when attempting synchronization replication and the controller database is not accessible by the publication server. Verify that the correct IP
address and port has been defined in the publication database definition of the controller database. Verify that the database server is running and is
accessible from the host running the publication server.

ProblemProblem

Problem occurred in publish process. Reason: ERROR: permission denied for schema \_edb_replicator_pub

ResolutionResolution

For a Postgres publication, verify that the publication database user has CREATE ON DATABASE  privilege on the publication database, or the database
user is a superuser.

ProblemProblem

Publication cannot be created. One or more tables have no attributes defined and cannot be published. 
Unselect the specific tables and retry.

ResolutionResolution

In Postgres, it is possible to create a table with no columns. A publication is not allowed to include a Postgres table with no columns since the
corresponding subscription table cannot be created in Oracle.

ProblemProblem

Publication cannot be created. Publication *publication_name* already exists on the publisher server. Please 
choose a different name and then proceed.

ResolutionResolution

Publication names must be unique within a publication server. Enter a different publication name.

ProblemProblem

Publication cannot be created. Table *schema*.\ *table_name* replica identity is set to 
*replica_identity_setting*. To define a Filter, the table replica identity should be set to FULL.

ResolutionResolution

Occurs when a table filter is attempted to be defined on a publication table used in a log-based replication system. Use the ALTER TABLE statement to
change REPLICA IDENTITY to FULL. See Table Settings and Restrictions for Table Filters.

ProblemProblem

Publication cannot be created. Table *table_name* does not contain a primary key. Transactional replication 
is not supported for a non-pk table.

ResolutionResolution

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 511



All tables used for synchronization replication must have primary keys. Create a primary key on the table or add the table to a snapshot-only publication.

ProblemProblem

Publication cannot be created. The publication creation process timed out as one or more tables may be 
locked by another session. Please retry later.

ResolutionResolution

For a Postgres publication that is not for snapshot-only, the publication database user must be able to create triggers on the publication tables. In order to
do this, the publication database user must have the privilege to execute the ALTER TABLE  statement on the publication tables and the publication
database user must have CREATE  and USAGE  privileges on the schema containing the publication tables. Verify that one of the following is true: 1) All
the tables in the publication are owned by the publication database user and the user has CREATE  and USAGE  privileges on the publication tables’
schemas, or 2) the publication database user is a superuser.

ProblemProblem

Publication cannot be removed. Reason: Publication *publication_name* cannot be removed. Reason: Error: 
cannot drop table \_edb_replicator_pub.rrst\_\ *schema_table_name* because other objects depend on it.

ResolutionResolution PL/pgSQL custom conflict handler functions may exist in the primary definition node that are dependent upon the publication’s shadow tables.
Drop the custom conflict handler functions before deleting the publication.

ProblemProblem

Publication cannot be updated. Reason: The parent table *schema*.\ *table_name* is selected for removal 
while it has one or more child tables in the publication list. Make sure that parent-child dependency holds 
in the publication tables.

ResolutionResolution

Choose the child tables for removal as well as the parent table.

ProblemProblem

Publication defined in MMR cluster cannot be subscribed in SMR cluster.

ResolutionResolution

A given publication cannot be used in both a multi-master replication system and a single-master replication system.

ProblemProblem

Publication does not exist on the publication server. It might have been removed.

ResolutionResolution The publication does not exist for a given subscription. The subscription is no longer usable and must be removed.

ProblemProblem

Publication having subscription against it, cannot be updated by removing tables from it.

ResolutionResolution

Remove the subscription, remove tables from the publication, then add the subscription.

ProblemProblem

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 512



The publication schema cannot be created. Reason: ERROR: Permission denied for database *db_name*.

ResolutionResolution

Occurs when attempting to create the publication database definition and the specified publication database user does not have the privilege to create a
schema in database db_name . Grant the CREATE  privilege on the database to the publication database user

ProblemProblem

Publication Service connection failure.

ResolutionResolution

Verify that the publication server is running. See Starting the Publication Server or Subscription Server. Verify that the database server hosting the
controller database specified in the xDB Replication Configuration file is running and the publication server is connected to it. See xDB Replication
Configuration File.

ProblemProblem

The replication process could not be completed due to a database failure. Check the database state and 
retry.

ResolutionResolution

May be caused by characters in the publication data that are illegal for the character set of the subscription database. Check the snapshot replication
failure log file or the database server log file. See Replacing Null Characters.

ProblemProblem

Replication server does not support Oracle to Oracle replication.

ResolutionResolution See Permitted Configurations and Combinations for supported database server configurations. Use Oracle products for Oracle to Oracle
replication.

ProblemProblem

A replication slot is not available on the target database server. Please configure the 
max_replication_slots GUC on the database server.

ResolutionResolution

Occurs when attempting to add a publication database definition with the log-based method of synchronization replication, and the max_replication_slots
configuration parameter in the postgresql.conf  file is not set to a large enough value to accommodate the additional database. Increase the value of
the max_replication_slots parameter and restart the database server. See Synchronization Replication with the Log-Based Method for additional
information.

ProblemProblem

Subscription *subscription_name* already exists on the subscriber server. Please choose a different name 
and then proceed.

ResolutionResolution Subscription names must be unique within a subscription server. Enter a different subscription name.

ProblemProblem

Subscription *subscription_name* cannot be removed. Reason: Publication does not exist on the publication 

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 513



server.

ResolutionResolution Warning issued if the subscription you are attempting to remove does not have an associated publication. You can still remove the subscription.
Subscription database connection cannot be removed as one or more subscriptions are defined against it.

ResolutionResolution You cannot remove a subscription database definition if there are subordinate subscriptions. Remove the subscriptions first.

ProblemProblem

Subscription does not exist on the subscription service. It might have been removed by some other user.

ResolutionResolution The Subscription node you are trying to select no longer represents an existing subscription. The subscription may have been removed by a
concurrent xDB Replication Console or xDB Replication Server CLI session. Click the Refresh icon in the xDB Replication Console toolbar to display the
current replication tree.

ProblemProblem

Subscription Service connection failure.

ResolutionResolution Verify that the subscription server is running. See Starting the Publication Server or Subscription Server

ProblemProblem

Synchronize Publication process failed for one or more primary nodes. Please see logs for more details.

ResolutionResolution Synchronization replication failed to complete for all target databases in the multi-master replication system due to the unavailability of some
target database. See the publication server log file for details. See Where to Look for Errors. A table with large object type PK attribute cannot be published
for (synchronize) incremental replication.

ResolutionResolution Oracle doesn’t log changes for a large object column. Such a column cannot be referenced in the triggers that log changes to the shadow tables.
Use snapshot-only replication instead.

ProblemProblem

Test result: Failure

Database connection information test failed. Connection refused. Check that the hostname and port are 
correct and that the postprimary is accepting TCP/IP connections.

ResolutionResolution Occurs when testing the connection of a publication or subscription database definition. The publication or subscription server cannot connect
to the database server network location given in the Add Database dialog box. Verify that the correct IP address and port for the database server are given.
Verify that the database server is running and is accessible from the host running the publication or subscription server.

ProblemProblem

Test result: Failure

Database connection information test failed. FATAL: no pg_hba.conf entry for host "*xxx*.\ *xxx*.\ *xx*.\ 
*xxx*", user "*user_name*", database "*db_name*", SSL off

ResolutionResolution

Occurs when testing the connection of a publication or subscription database definition. The publication or subscription server is not permitted to connect
to the database at the network location given in the Add Database dialog box. Verify that the database host IP address, port number, database user name,
password, and database identifier are correct. Verify there is an entry in the pg_hba.conf  file permitting access to the database by the given user name
originating from the IP address where the publication or subscription server is running.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 514



ProblemProblem

Test result: Failure

Database connection information test failed. IO exception: The Network Adapter could not establish the 
connection.

ResolutionResolution Verify that the database server is running. For Oracle, verify that the Oracle listener program lsnrctl  is running.

ProblemProblem

Test result: Failure

The target database server cannot be registered for WAL based logical replication. Reason: The database 
server is not configured for logical replication. Reason: FATAL: must be superuser or replication role to 
start walsender.

ResolutionResolution Occurs when attempting to add a publication database definition with the log-based method of synchronization replication (that is, WAL based
logical replication), and the publication database user is not a superuser or does not have REPLICATION  privilege. Grant the publication database user
the appropriate privilege or specify a different database user who has the appropriate privilege for logical replication as the publication database user. See
Synchronization Replication with the Log-Based Method.

ProblemProblem

Test result: Failure

The target database server cannot be registered for WAL based logical replication. Reason: The database 
server is not configured for logical replication. Reason: FATAL: no pg_hba.conf entry for replication 
connection from host "*xxx*.\ *xxx*.\ *xx*.\ *xxx*", user "*user_name*", SSL off

ResolutionResolution

Occurs when attempting to add a publication database definition with the log-based method of synchronization replication (that is, WAL based logical
replication), and there is no entry in the pg_hba.conf  file where the DATABASE field is set to replication for user_name . The pg_hba.conf  file of
the target database server must contain a replication entry for the publication database user name specified when creating the publication database
definition. See Synchronization Replication with the Log-Based Method.

ProblemProblem

Test result: Failure

The target database server cannot be registered for WAL based logical replication. Reason: The database 
server is not configured for logical replication. Reason: FATAL: number of requested standby connections 
exceeds max_wal_senders (currently *n*)

ResolutionResolution Occurs when attempting to add a publication database definition with the log-based method of synchronization replication (that is, WAL based
logical replication), and the additional concurrent connection for logical replication exceeds the current setting, n , of the max_wal_senders
configuration parameter in the postgresql.conf  file. Increase the value of max_wal_senders  in the postgresql.conf  file of the database
server running the publication database. Restart the database server containing the publication database. See Synchronization Replication with the Log-
Based Method.

ProblemProblem

Test result: Failure

The target database server cannot be registered for WAL based logical replication. Reason: The target 
database server version x.x  does not support WAL logical decoding.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 515



ResolutionResolution

Occurs when attempting to create a publication database definition with the log-based method of synchronization replication (that is, WAL based logical
replication), and the Postgres database server is not version 9.4 or later. Only Postgres database servers of version 9.4 or later support the log-based
method of synchronization replication. See Synchronization Replication with the Log-Based Method.

ProblemProblem

Unable to apply DDL changes.

ResolutionResolution The DDL statements in the text file specified for the DDL change replication feature contain syntax errors or are not supported by the DDL
change replication feature. See Replicating DDL Changes.

ProblemProblem

Unable to communicate with remote server.

ResolutionResolution

Occurs when attempting an operation such as performing synchronization replication or creating a schedule on a publication or subscription database that
cannot be accessed by the xDB Replication Console. Verify that the publication and/or subscription servers are running. Verify that the database servers of
the publication and/or subscription databases are running.

ProblemProblem

Unable to create schema tables in target primary database.

Unable to create publication shadow tables.

Unable to create subscription schema tables.

DB-42501: com.edb.util.PSQLException: ERROR: permission denied for relation pg_class.

ResolutionResolution Occurs when attempting to create an MMR publication database definition and the publication server is unable to create the control schema
objects in the new publication database. This typically results when creating a second publication database definition and the publication server is unable
to copy by snapshot the control schema objects from the controller database to the new publication database. The publication database user of the new
publication database must be a superuser. In addition, in system catalog table pg_catalog.pg_authid , column rolcatupdate  must be set to
true for this superuser. See Disabling Foreign Key Constraints for Snapshot Replications.

ProblemProblem

Unable to create Subscription subscription_name. Reason: Connection rejected: FATAL: no pg_hba.conf entry 
for host "*xxx*.\ *xxx*.\ *xx*.\ *xxx*" user "*user_name*", database "*db_name*", SSL off

ResolutionResolution

Occurs when creating a subscription. The subscription server running on host xxx.xxx.xx.xxx  could not access the controller database. Verify that the
pg_hba.conf  file on the controller database server permits access from the subscription server host

ProblemProblem

Unable to create subscription schema tables. Org.postgresql.util.PSQLException: FATAL: no pg_hba.conf entry 
for host "*xxx*.\ *xxx*.\ *xx*.\ *xxx*" user "*user_name*", database "*db_name*", SSL off

ResolutionResolution

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 516



Occurs when creating a subscription. The subscription server running on host xxx.xxx.xx.xxx  could not access the publication database. Verify that
the pg_hba.conf  file on the publication database server permits access from the subscription server host.

ProblemProblem

Unable to create subscription schema tables. The database type is not supported.

ResolutionResolution

The subscription database type is not supported for the intended publication database type. See Permitted SMR Source and Target Configurations for a list
of permitted source and target database server configurations.

ProblemProblem

Unable to create subscription schema tables. The target database schema already contains one or more tables 
with the same name as the table(s) in the source database.

ResolutionResolution The subscription server was unable to create a subscription table definition in the intended target schema. Typically, the reason is that a table
with the same name already exists in the target schema of the subscription database. This can occur if you create a subscription, then remove it, but fail to
drop the table definitions created under the target schema, then try to create the subscription a second time. Unable to create subscription schema tables.

ProblemProblem

Unable to create publication shadow tables.

Unable to create subscription schema tables.

DB-42501: com.edb.util.PSQLException: ERROR: permission denied for relation pg_class.

ResolutionResolution Occurs when attempting to create an SMR publication database definition and the publication server is unable to create the control schema
objects in the new publication database. This typically results when creating a second publication database definition and the publication server is unable
to copy by snapshot the control schema objects from the controller database to the new publication database. The publication database user of the new
publication database must be a superuser. In addition, in system catalog table pg_catalog.pg_authid , column rolcatupdate  must be set to
true for this superuser. See Disabling Foreign Key Constraints for Snapshot Replications.

ProblemProblem

Unable to perform snapshot for subscription subscription_name . Reason: DB-42501: com.edb.util.PSQLException: 
ERROR: permission denied for relation pg_class.

ResolutionResolution

Occurs when attempting a snapshot replication. The database user of the database receiving the snapshot must be a superuser. In addition, in system
catalog table pg_catalog.pg_authid , column rolcatupdate  must be set to true for this superuser . See Disabling Foreign Key Constraints
for Snapshot Replications.

ProblemProblem

Unable to perform snapshot for subscription subscription_name. Reason: org.postgresql.util.PSQLException: 
FATAL: no pg_hba.conf entry for host "*xxx*.\ *xxx*.\ *xx*.\ *xxx*", user "*user_name*", database 
"*db_name*", SSL off

ResolutionResolution

Occurs when attempting a snapshot replication. The publication server running on host xxx.xxx.xx.xxx could not access the 
subscription database. Verify that the pg_hba.conf file on the subscription database server permits access 
from the publication server host. Unable to synchronize. Reason: FATAL: no pg_hba.conf entry for 

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 517



host xxx.xxx.xx.xxx , user user_name , database db_name`, SSL off

ProblemProblem

Unable to synchronize. Reason: FATAL: no pg_hba.conf entry for host "xxx.xxx.xx.xxx", user "user_name", 
database "db_name", SSL off

Reason:  Occurs during an implicit synchronization following snapshot replication. The publication server running on host xxx.xxx.xx.xxx  could
not access the subscription server’s controller database. Verify that the pg_hba.conf  file on the subscription server permits access from the publication
server host using network address xxx.xxx.xx.xxx .

ProblemProblem

Unable to update publication database information. Reason: Publication control schema does not exist on 
target database.

ResolutionResolution

The control schema objects in the publication database may have been deleted or corrupted. For an Oracle publication database the control schema objects
are located in the publication database user’s schema. For a Postgres or SQL Server publication database the metadata database objects are located in
schemas \_edb_replicator_pub, \_edb_replicator_sub,  and \_edb_scheduler . See Dropping Replication Slots for Log-Based
Synchronization Replication.

ProblemProblem

The user has insufficient privileges to manage publications. Grant required privileges as listed below and 
then proceed with operation.

ResolutionResolution An Oracle publication database user must have CONNECT, RESOURCE , and CREATE ANY TRIGGER  privileges.

11.3.2          Where to Look for Errors

There are a number of places to look to find more detailed information about a replication error that may have occurred. This section provides a guide as to
where to look for various types of errors.

General Replication Status

In the xDB Replication Console, view the replication history. See Viewing Replication History.

Snapshot Replication Failures

View the log file found in the following path:

For Linux:For Linux:

/var/log/xdb-x.x/mtk.log

For Windows:For Windows:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 518



POSTGRES_HOME\.enterprisedb\xdb\x.x\mtk.log

POSTGRES_HOME  is the home directory of the Windows postgres account (enterprisedb account for Advanced Server installed in Oracle compatible
configuration mode). The specific location of POSTGRES_HOME is dependent upon your version of Windows. The xDB Replication Server version number is
represented by x.x.

See Controlling Logging Level, Log File Sizes, and Rotation Count for more information on setting log file options.

Synchronization Replication Failures

Check the database server log file.

The typical default location of these files is:

POSTGRES_INSTALL_HOME/data/pg_log

Publication and Subscription Server Startup Failures

View the publication server and subscription server log files pubserver.log[.n]  and subserver.log[.n]  in the following directory:

For Linux:For Linux:

/var/log/xdb-x.x

For Windows:For Windows:

POSTGRES_HOME\.enterprisedb\xdb\x.x

[.n]  is an optional, integer suffix whose presence depends upon the logging.file.count  configuration option described in Section Controlling
Logging Level, Log File Sizes, and Rotation Count.

POSTGRES_HOME  is the home directory of the Windows postgres account (enterprisedb account for Advanced Server installed in Oracle compatible
configuration mode). The specific location of POSTGRES_HOME  is dependent upon your version of Windows. The xDB Replication Server version number
is represented by x.x .

NoteNote

The severity level of messages logged in these files can be controlled by a configuration option. See Controlling Logging Level, Log File Sizes,
and Rotation Count.

For Linux only:For Linux only: View the publication service and subscription service startup log files edb-xdbpubserver.log  and edb-xdbsubserver.log  as
well as the service script log files edb-xdbpubserver_script.log  and edb-xdbsubserver_script.log  in directories 
/var/log/edb/xdbpubserver  and /var/log/edb/xdbsubserver . These log files contain the output from the scripts used to start the

publication server and subscription server, and can typically be used to confirm the port number on which the publication and subscription servers were
started.

NoteNote

The publication service and subscription service startup log files are not generated for Windows and Mac OS X operating systems.

If there is an entry for a controller database in the xDB Replication Configuration file, verify that this controller database is accessible with the designated

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 519



connection information. The controller database parameters are host, port, type, user , and password .

The following is an example of the content of an xDB Replication Configuration file with an Oracle database as the controller database:

#xDB Replication Server Configuration Properties
#Tue May 26 13:45:37 GMT-05:00 2015
port=1521
admin_password=ygJ9AxoJEX854elcVIJPTw\=\=
user=pubuser
admin_user=admin
type=oracle
password=ygJ9AxoJEX854elcVIJPTw\=\=
database=xe
host=192.168.2.23

See xDB Replication Configuration File
for information on the xDB Replication Configuration file.

Also check the database server log file of the controller database.

Database Server Errors

Check the database server log file.

The typical default location of these files is:

POSTGRES_INSTALL_HOME/data/pg_log

Oracle Errors

For problems in Oracle, first find the directory locations of the log files by issuing the following commands in SQL*Plus:

SQL> SHOW PARAMETER USER_DUMP_DEST;

NAME                                 TYPE        VALUE
------------------------------------ ----------- ------------------------------
user_dump_dest                       string      /usr/lib/oracle/xe/app/oracle/
                                                 admin/XE/udump

The directory given by parameter USER_DUMP_DEST  contains errors given by user processes.

SQL> CONNECT system/password
Connected.
SQL> SHOW PARAMETER BACKGROUND_DUMP_DEST;

NAME                                 TYPE        VALUE
------------------------------------ ----------- ------------------------------
background_dump_dest                 string      /usr/lib/oracle/xe/app/oracle/
                                                 admin/XE/bdump

The directory given by parameter BACKGROUND_DUMP_DEST  contains errors given by the Oracle background processes.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 520



Find the latest log file in the preceding directories to investigate the problem.

11.3.3          Common Problem Checklist

Use the following checklist to verify that the proper configuration steps have been followed. Omission of one or more of these steps is a common source of
errors.

Step 1:Step 1: Verify that the database server of the publication database, the database server of the subscription database (for single-master replication systems),
and the database servers of the primary nodes (for multi-master replication systems) are all running.

Step 2:Step 2: When viewing information in the xDB Replication Console, click the Refresh  icon in the toolbar to ensure you are viewing the most current
information, especially after making a configuration change to your replication system.

Step 3:Step 3: Verify that the publication server and the subscription server (for single-master replication systems) are running. If they are not running and cannot
be started see Starting the Publication Server or Subscription Server.

Step 4:Step 4: If you are using an Oracle publication or subscription database, verify that the Oracle JDBC driver file has been copied to the 
XDB_HOME/lib/jdbc  directory. XDB_HOME  is the location where you installed xDB Replication Server.

See Enabling Access to Oracle.

Step 5:Step 5: Verify that the necessary privileges have been granted to the publication database user.

For an Oracle publication database, verify that the publication database user has CONNECT, RESOURCE , and CREATE ANY TRIGGER  privileges.

See Oracle Publication Database.

For a SQL Server publication database, verify the following:

In the msdb database, verify that the database user mapped to the SQL Server login given in the publication database definition has EXECUTE  and 
SELECT  privileges on schema dbo .

In the publication database, verify that the database user mapped to the SQL Server login given in the publication database definition has its default
schema set to the schema containing the xDB Replication Server metadata database objects.
For the same database user discussed in the prior paragraph, verify that this database user is either the owner of the schema containing the xDB
Replication Server metadata database objects, or has the following privileges on this schema: ALTER, EXECUTE, SELECT, INSERT, 
UPDATE,  and DELETE .
For the same database user discussed in the prior paragraph, verify that this database user has CREATE TABLE  and CREATE PROCEDURE
privileges.
For the same database user discussed in the prior paragraph, verify that this database user has ALTER privilege on the publication tables.
For any database user that will be updating the publication tables, verify that these database users have EXECUTE, SELECT , and INSERT
privileges on the schema containing the xDB Replication Server metadata database objects.

See SQL Server Publication Database.

For a Postgres publication database in a single-master replication system, verify that the publication database user is a superuser and has the privilege to
modify pg_catalog  tables. See Postgres Publication Database.

For the primary definition node in a multi-master replication system, verify that the publication database user is a superuser and has the privilege to modify
pg_catalog  tables. See Section Preparing the Primary definition node.

For a primary node other than the primary definition node in a multi-master replication system, verify that the primary node database user is a superuser
and has the privilege to modify pg_catalog  tables. See Preparing Additional Primary nodes.

Step 6:Step 6: Verify that the necessary privileges have been granted to the subscription database user.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 521



For an Oracle subscription database, verify that the subscription database user has CONNECT  and RESOURCE  privileges.

For a Postgres subscription database, verify that the subscription database user is a superuser and has the privilege to modify pg_catalog  tables. See
Preparing the Subscription Database.

Step 7 (For Linux only):Step 7 (For Linux only): Verify that the network IP address returned by the /sbin/ifconfig  command either matches the IP address associated with
the host name in the /etc/hosts file (see Network IP Addresses), or matches the IP address specified with the java.rmi.server.hostname
configuration option in the publication and subscription server configuration files (see Assigning an IP Address for Remote Method Invocation).

11.3.4          Troubleshooting Areas

The following topics provide information on specific problem areas you may encounter.

Java Runtime Errors

If errors are encountered regarding the Java Runtime Environment such as the Java program cannot be found or Java heap space errors, check the
parameters set in the xDB Startup Configuration file xdbReplicationServer-xx.config . See xDB Replication Configuration File for information
on the xDB Startup Configuration file.

The following is an example of the content of the xDB Startup Configuration file:

#!/bin/sh

JAVA_EXECUTABLE_PATH="/usr/bin/java"
JAVA_MINIMUM_VERSION=1.8
JAVA_BITNESS_REQUIRED=64
JAVA_HEAP_SIZE="-Xms256m -Xmx1536m"
PUBPORT=9051
SUBPORT=9052

If you make any changes to the parameters in the xDB Startup Configuration file, be sure to restart the publication server and subscription server after
making the modifications.

Starting the Publication Server or Subscription Server

NoteNote

The subscription server only applies to single-master replication systems.

If you cannot start the publication server or the subscription server perform the following steps:

Step 1:Step 1: Check the pubserver.log  and subserver.log  files for errors.

Step 2:Step 2: Check the log file of the database server running the controller database for errors.

Step 3:Step 3: Verify that the user name and password in the xDB Replication Configuration file on the hosts running the publication server and subscription server
match a database user name and password in the database server running the controller database that the publication server and subscription server are
attempting to access.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 522



Step 4:Step 4: If the controller database is a Postgres database, verify that the pg_hba.conf  file of its Postgres database server has entries that allow access to
the controller database from the IP addresses of the hosts running the publication server and subscription server by the user name in the xDB Replication
Configuration file.

Deleting the Control Schema and Control Schema Objects

The control schema completely describes the replication system. The control schema and its control schema objects must be complete and correct in order
for replication to occur properly. In addition, the configuration and maintenance operations performed through the xDB Replication Console or the xDB
Replication Server CLI cannot be accomplished properly unless the control schema is complete and correct.

There may be occasions where the control schema becomes corrupted. Either one or more control schema tables containing metadata are inadvertently
deleted, or the data within the control schema tables becomes corrupted. Typically, corruption occurs in the form of the first case – one or more control
schema tables were deleted, or the entire control schema and its contents were deleted manually using an SQL utility rather than through the operation of
the xDB Replication Console or xDB Replication Server CLI.

In these situations, there may be no other choice than to remove all of the remaining control schema objects using the database management system’s
deletion functions, which effectively deletes all replication systems managed by the control schema.

The same control schema deletion procedure must be performed in all publication databases that share the same control schema information as the current
controller database given in the xDB Replication Configuration file.

From the viewpoint of the xDB Replication Console replication tree, a publication server that connects to the controller database has subordinate to it, the
publication databases sharing the same control schema information.

In the following example, the SMR publication database edb as well as the three MMR primary node databases mdnnode , MMRnode_a , and 
MMRnode_b  are all managed by the same publication server, which connects to the controller database designated in the xDB Replication Configuration

file. Thus, all publication databases edb , mdnnode , MMRnode_a , and MMRnode_b  contain what should be the same control schema information.

The control schema must be removed from all four publication databases if it is determined that the control schema is corrupted in any of the four
publication databases.

Finally, the subscription databases of SMR systems contain a control schema object, which must be deleted as well.

In the preceding example, subscription database subdb  contains a control schema object that may have to be deleted if control schema deletion is
performed on the publication database.

The instructions in this section describe how to completely remove all control schema objects created by the xDB Replication Server product leaving just
your original publication tables and any replicated subscription tables or publication tables of multi-master system nodes. Hence, the definition and
framework for all existing single-master and multi-master replication systems are deleted. In effect, this simulates the situation when you have installed
the xDB Replication Server product for the first time.

After you have performed this deletion process, single-master replication systems must then be recreated following the directions in sections Creating a
Publication onward. A multi-master replication system must be recreated following the directions in sections Creating a Publication onward.

Warning: Do not attempt this if any replication systems are running in production. All replication systems will become inoperable. This section describes
what to look for in order to tell if the control schema is not complete, and if so, what must be deleted to completely remove the replication system. This
section does not discuss the internal contents of the control schema objects. If all of the control schema objects are present, then review the checklist in
Section Common Problem Checklist before proceeding with deletion of the control schema as it is fairly unlikely that the content of a control schema table
becomes corrupted.

If you decide that you must delete all of the control schema objects, follow the steps as discussed in the following:

Step 1:Step 1: Stop the publication server.

Step 2:Step 2: Stop the subscription server.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 523



Step 3:Step 3: Look for the control schema objects contained within a publication database. In the example used in this section, pubuser is the publication
database user name. The publication consists of two tables – dept and emp.

For Oracle only:For Oracle only: See Oracle Control Schema Objects for a list of Oracle control schema objects.

For SQL Server only:For SQL Server only: See SQL Control Schema Objects for a list of SQL Server control schema objects.

For Postgres only:For Postgres only: See PostgreSQL Control Schema Objects for a list of Postgres control schema objects.

Step 4:Step 4: If the schema that is supposed to contain the control schema objects (the publication database user name for Oracle, or the control schema you
created or selected when configuring a SQL Server publication database along with _edb_replicator_pub , _edb_replicator_sub , and 
_edb_scheduler , or _edb_replicator_pub, _edb_replicator_sub , and _edb_scheduler  for Postgres) is missing, or there are missing

database objects under the control schema, then you may need to complete the process of removing all remaining control schema objects.

If you decide to undergo this procedure, you must remove the control schema objects from all publication databases. You must also remove all subscription
metadata objects from the subscription databases. Proceed with Step 7 and repeat Step 7 for all publication databases. Then proceed with Step 8 and
repeat Step 8 for all subscription databases.

If the control schema objects look intact, repeat Step 3 for all other publication databases. If the control schema objects of all publication databases appear
intact, then proceed with Step 5.

Step 5:Step 5: For single-master replication systems, the subscription database contains a single control schema object in the form of a table named 
rrep_txset_health . See Subscription Metadata Object for a listing of this control schema object for each type of subscription database.

For each subscription database, verify the presence of this subscription metadata object.

Step 6:Step 6: If at this point, all control schemas and control schema objects appear intact in all publication databases and all subscription databases, then
chances are that the problem lies elsewhere. Do not go proceed with any further steps in this section. Instead, recheck the checklist in Section Common
Problem Checklist.

If it was determined that incomplete control schema objects exist, and you decide to go ahead with the deletion process, proceed with Step 7.

Step 7:Step 7: Repeat this step for every publication database to delete its control schema and control schema objects.

For Oracle only:For Oracle only: If the publication user name still exists, then log onto SQL*Plus or any other Oracle database administration utility and drop all control
schema objects owned by the publication user. Alternatively, you can drop the publication database user along with its database objects using the cascade
option, but the publication database user must be recreated and privileges reassigned if you intend to rebuild your replication systems. See Section
Preparing the Publication Database for directions on creating the publication database user. The following example illustrates use of the cascade option:

SQL> CONNECT system/password
Connected.
SQL> DROP USER pubuser CASCADE;

User dropped.

For SQL Server only:For SQL Server only: If any of the control schema objects listed in Step 3 still exist, then log onto the SQL Server command line program, sqlcmd, or SQL
Server Management Studio and drop these objects. The following example assumes some of the control schema objects were created under schema 
pubuser . The other control schema objects are created under _edb_replicator_pub, _edb_replicator_sub,  and _edb_scheduler . The

publication tables are dept  and emp  located in schema edb .

The following example shows how to delete the jobs in the msdb  database:

1> USE msdb;
2> GO
Changed database context to 'msdb'.
1> EXEC sp_delete_job @job_name = 'rrep_cleanup_job_edb';
2> GO
1> EXEC sp_delete_job @job_name = 'rrep_txset_job_edb';

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 524



2> GO
The next example shows the deletion of the triggers on the non-snapshot only publication tables:
1> USE edb;
2> GO
Changed database context to 'edb'.
1> DROP TRIGGER edb.rrpd_edb_dept;
2> DROP TRIGGER edb.rrpi_edb_dept;
3> DROP TRIGGER edb.rrpu_edb_dept;
4> DROP TRIGGER edb.rrpd_edb_emp;
5> DROP TRIGGER edb.rrpi_edb_emp;
6> DROP TRIGGER edb.rrpu_edb_emp;
7> GO

The control schema objects under the _edb_replicator_pub  schema are dropped as shown by the following:

1> USE edb;
2> GO
Changed database context to 'edb'.
1> DROP TABLE _edb_replicator_pub.rrep_lock;
2> DROP TABLE _edb_replicator_pub.rrep_MMR_pub_group;
3> DROP TABLE _edb_replicator_pub.rrep_MMR_txset;
4> DROP TABLE _edb_replicator_pub.rrep_properties;
5> DROP TABLE _edb_replicator_pub.rrep_publication_subscriptions;
6> DROP TABLE _edb_replicator_pub.rrep_publication_tables;
7> DROP TABLE _edb_replicator_pub.rrep_tables;
8> DROP TABLE _edb_replicator_pub.rrep_tx_monitor;
9> DROP TABLE _edb_replicator_pub.rrep_txset;
10> DROP TABLE _edb_replicator_pub.rrep_txset_health;
11> DROP TABLE _edb_replicator_pub.rrep_txset_log;
12> DROP TABLE _edb_replicator_pub.xdb_cleanup_conf;
13> DROP TABLE _edb_replicator_pub.xdb_conflicts;
14> DROP TABLE _edb_replicator_pub.xdb_conflicts_options;
15> DROP TABLE _edb_replicator_pub.xdb_events;
16> DROP TABLE _edb_replicator_pub.xdb_events_status;
17> DROP TABLE _edb_replicator_pub.xdb_MMR_pub_group;
18> DROP TABLE _edb_replicator_pub.xdb_pub_database;
19> DROP TABLE _edb_replicator_pub.xdb_pub_table_replog;
20> DROP TABLE _edb_replicator_pub.xdb_pub_replog;
21> DROP TABLE _edb_replicator_pub.xdb_publication_filter;
22> DROP TABLE _edb_replicator_pub.xdb_publication_filter_rule;
23> DROP TABLE _edb_replicator_pub.xdb_publication_subscriptions;
24> DROP TABLE _edb_replicator_pub.xdb_publications;
25> DROP TABLE _edb_replicator_pub.xdb_pubtables_ignoredcols;
26> DROP TABLE _edb_replicator_pub.xdb_sub_servers;
27> GO

For SQL Server 2008 only:For SQL Server 2008 only: Drop the following control schema objects when the publication database is SQL Server 2008:

1> USE edb;
2> GO
Changed database context to 'edb'.
1> DROP PROCEDURE _edb_replicator_pub.nextval;
2> DROP PROCEDURE _edb_replicator_pub.sp_createsequence;
3> DROP PROCEDURE _edb_replicator_pub.sp_dropsequence;
4> DROP TABLE _edb_replicator_pub.rrep_common_seq;
5> DROP TABLE _edb_replicator_pub.rrep_tx_seq;
6> DROP TABLE _edb_replicator_pub.rrep_txset_seq;
7> GO

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 525



For SQL Server 2012, 2014 only:For SQL Server 2012, 2014 only: Drop the following control schema objects when the publication database is SQL Server 2012 or 2014:

1> USE edb;
2> GO
Changed database context to 'edb'.
1> DROP SEQUENCE _edb_replicator_pub.rrep_tx_seq;
2> DROP SEQUENCE _edb_replicator_pub.rrep_txset_seq;
3> DROP SEQUENCE _edb_replicator_pub.rrep_common_seq;
4> GO

Drop the _edb_replicator_pub  control schema:

1> USE edb; 2> GO

Changed database context to edb .

1> DROP SCHEMA _edb_replicator_pub; 2> GO

The control schema objects under the _edb_replicator_sub  schema as well as the schema itself are dropped as shown by the following.

NoteNote

(For SQL Server 2012, 2014):(For SQL Server 2012, 2014): When the publication database is SQL Server 2012 or 2014, the first table in the following list, 
rrep_common_seq , does not exist. Therefore do not issue the first DROP TABLE

_edb_replicator_sub.rrep_common_seq  command.

1> USE edb;
2> GO
Changed database context to 'edb'.
1> DROP TABLE _edb_replicator_sub.rrep_common_seq;
2> DROP TABLE _edb_replicator_sub.xdb_sub_database;
3> DROP TABLE _edb_replicator_sub.xdb_subscription_tables;
4> DROP TABLE _edb_replicator_sub.xdb_subscriptions;
5> DROP TABLE _edb_replicator_sub.xdb_tables;
6> DROP SCHEMA _edb_replicator_sub;
7> GO

The control schema objects under the _edb_scheduler  schema as well as the schema itself are dropped as shown by the following:

1> USE edb;
2> GO
Changed database context to 'edb'.
1> DROP TABLE _edb_scheduler.sch_pub_BLOB_TRIGGERS;
2> DROP TABLE _edb_scheduler.sch_pub_CALENDARS;
3> DROP TABLE _edb_scheduler.sch_pub_CRON_TRIGGERS;
4> DROP TABLE _edb_scheduler.sch_pub_SIMPLE_TRIGGERS;
5> DROP TABLE _edb_scheduler.sch_pub_TRIGGER_LISTENERS;
6> DROP TABLE _edb_scheduler.sch_pub_FIRED_TRIGGERS;
7> DROP TABLE _edb_scheduler.sch_pub_TRIGGERS;
8> DROP TABLE _edb_scheduler.sch_pub_JOB_LISTENERS;
9> DROP TABLE _edb_scheduler.sch_pub_JOB_DETAILS;
10> DROP TABLE _edb_scheduler.sch_pub_LOCKS;
11> DROP TABLE _edb_scheduler.sch_pub_PAUSED_TRIGGER_GRPS;
12> DROP TABLE _edb_scheduler.sch_pub_SCHEDULER_STATE;
13> DROP TABLE _edb_scheduler.sch_sub_BLOB_TRIGGERS;
14> DROP TABLE _edb_scheduler.sch_sub_CALENDARS;

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 526



15> DROP TABLE _edb_scheduler.sch_sub_CRON_TRIGGERS;
16> DROP TABLE _edb_scheduler.sch_sub_SIMPLE_TRIGGERS;
17> DROP TABLE _edb_scheduler.sch_sub_TRIGGER_LISTENERS;
18> DROP TABLE _edb_scheduler.sch_sub_FIRED_TRIGGERS;
19> DROP TABLE _edb_scheduler.sch_sub_TRIGGERS;
20> DROP TABLE _edb_scheduler.sch_sub_JOB_LISTENERS;
21> DROP TABLE _edb_scheduler.sch_sub_JOB_DETAILS;
22> DROP TABLE _edb_scheduler.sch_sub_LOCKS;
23> DROP TABLE _edb_scheduler.sch_sub_PAUSED_TRIGGER_GRPS;
24> DROP TABLE _edb_scheduler.sch_sub_SCHEDULER_STATE;
25> DROP SCHEMA _edb_scheduler;
26> GO

The control schema objects under the pubuser  schema are dropped as shown by the following:

1> USE edb;
2> GO
Changed database context to 'edb'.
1> DROP FUNCTION pubuser.getPackageVersionNumber;
2> DROP PROCEDURE pubuser.CleanupShadowTables;
3> DROP PROCEDURE pubuser.ConfigureCleanUpJob;
4> DROP PROCEDURE pubuser.ConfigureCreateTxSetJob;
5> DROP PROCEDURE pubuser.CreateMultiTxSet;
6> DROP PROCEDURE pubuser.CreateTableLogTrigger;
7> DROP PROCEDURE pubuser.CreateTxSet;
8> DROP PROCEDURE pubuser.CreateTxSet_old;
9> DROP PROCEDURE pubuser.CreateUniTxSet;
10> DROP PROCEDURE pubuser.GetNewTxsCount;
11> DROP PROCEDURE pubuser.JobCleanup;
12> DROP PROCEDURE pubuser.JobCreateTxSet;
13> DROP PROCEDURE pubuser.LoadPubTableList;
14> DROP PROCEDURE pubuser.RemoveCleanupJob;
15> DROP PROCEDURE pubuser.RemoveCreateTxSetJob;
16> DROP TABLE pubuser.rrst_edb_dept;
17> DROP TABLE pubuser.rrst_edb_emp;
18> GO

For Postgres only:For Postgres only: If any of the schemas _edb_replicator_pub, _edb_replicator_sub,  or _edb_scheduler  still exist in the publication
database, drop the schema and all of its database objects. The following example shows a connection established in psql to the publication database edb.
The DROP SCHEMA CASCADE  statement is then used to drop the schemas.

edb=# \c edb enterprisedb
You are now connected to database "edb" as user "enterprisedb".

edb=# DROP SCHEMA _edb_replicator_pub CASCADE;
NOTICE:  drop cascades to 51 other objects
DETAIL:  drop cascades to sequence _edb_replicator_pub.rrep_common_seq
drop cascades to sequence _edb_replicator_pub.rrep_tx_seq
            .
            .
            .
DROP SCHEMA

edb=# DROP SCHEMA _edb_replicator_sub CASCADE;
NOTICE:  drop cascades to 9 other objects
DETAIL:  drop cascades to sequence _edb_replicator_sub.rrep_common_seq
drop cascades to table _edb_replicator_sub.xdb_sub_database
            .
            .

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 527



            .
DROP SCHEMA

edb=# DROP SCHEMA _edb_scheduler CASCADE;
NOTICE:  drop cascades to 40 other objects
DETAIL:  drop cascades to table _edb_scheduler.sch_pub_job_details
drop cascades to table _edb_scheduler.sch_pub_job_listeners
            .
            .
            .
DROP SCHEMA

For synchronization replication with the trigger-based method, in the schema containing the publication tables, drop the triggers and trigger functions
associated with the publication tables:

edb=# SET search_path TO edb;
SET
edb=# DROP FUNCTION rrpd_edb_dept_tgfunc() CASCADE;
NOTICE:  drop cascades to trigger rrpd_edb_dept on table dept
DROP FUNCTION
edb=# DROP FUNCTION rrpi_edb_dept_tgfunc() CASCADE;
NOTICE:  drop cascades to trigger rrpi_edb_dept on table dept
DROP FUNCTION
edb=# DROP FUNCTION rrpu_edb_dept_tgfunc() CASCADE;
NOTICE:  drop cascades to trigger rrpu_edb_dept on table dept
DROP FUNCTION
edb=# DROP FUNCTION rrpd_edb_emp_tgfunc() CASCADE;
NOTICE:  drop cascades to trigger rrpd_edb_emp on table emp
DROP FUNCTION
edb=# DROP FUNCTION rrpi_edb_emp_tgfunc() CASCADE;
NOTICE:  drop cascades to trigger rrpi_edb_emp on table emp
DROP FUNCTION
edb=# DROP FUNCTION rrpu_edb_emp_tgfunc() CASCADE;
NOTICE:  drop cascades to trigger rrpu_edb_emp on table emp
DROP FUNCTION

Step 8:Step 8: Repeat this step for every subscription database to delete its control schema and control schema object.

For single-master replication systems, the subscription database contains a single control schema object in the form of a table named rrep_txset_health.
Delete this table in all subscription databases. For SQL Server and Postgres subscription databases, delete the parent schema _edb_replicator_sub as well.

For Oracle subscription databases, the parent schema is not generated by xDB Replication Server, so it your decision as to whether to keep or delete the
parent schema.

For Oracle only:For Oracle only: The RREP_TXSET_HEALTH  table is created in the subscription database user’s schema. Drop this table.

SQL> CONNECT subuser/password
Connected.
SQL> DROP TABLE rrep_txset_health;

Table dropped.

For SQL Server only:For SQL Server only: The rrep_txset_health  table is created in the schema named _edb_replicator_sub. Drop this table and schema.

1> USE subdb;
2> GO
Changed database context to 'subdb'.
1> DROP TABLE _edb_replicator_sub.rrep_txset_health;

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 528



2> GO
1> DROP SCHEMA _edb_replicator_sub;
2> GO

For Postgres only:For Postgres only: The rrep_txset_health  table is created in the schema named _edb_replicator_sub . Drop this table and schema.

edb=# \c subdb enterprisedb
You are now connected to database "subdb" as user "enterprisedb".
subdb=# DROP SCHEMA _edb_replicator_sub CASCADE;
NOTICE:  drop cascades to table _edb_replicator_sub.rrep_txset_health
DROP SCHEMA

Step 9:Step 9: In the xDB Replication Configuration file, delete the lines containing the following parameters: user, password, host, port, 
database , and type .

Keep the lines with the following parameters: admin_user, admin_password , and license_key  (if it exists).

See xDB Replication Configuration File for information on the xDB Replication Configuration file. See Post Installation Host Environment for the file system
location of the xDB Replication Configuration file.

The absence of these parameters prevents the publication server and subscription server from attempting to connect to this database upon publication and
subscription server startup.

The xDB Replication Configuration file should appear as follows without the controller database connection and authentication information:

#xDB Replication Server Configuration Properties
#Fri Jan 30 17:34:06 GMT-05:00 2015
admin_password=ygJ9AxoJEX854elcVIJPTw\=\=
admin_user=enterprisedb

Step 10:Step 10: Start the publication server.

Step 11:Step 11: Start the subscription server.

Step 12:Step 12: In the replication tree you should see the following:

Figure 10-5: Replication tree after removal of all control schema objectsFigure 10-5: Replication tree after removal of all control schema objects

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 529



All the nodes under the SMR and MMR type nodes beneath the Publication Server node, and under the Subscription Server node no longer appear.

Step 13:Step 13: You will need to recreate the replication system as described in sections Creating a Publication onward for a single-master replication system. See
sections Creating a Publication onward for a multi-master replication system.

Dropping Replication Slots for Log-Based Synchronization Replication

As described in Section Logical Replication Slots logical replication slots are used for the log-based method of synchronization replication. While a log-
based replication system is in use, these replication slots remain connected to the Postgres databases. When the replication system is removed, these
replication slots are also deleted.

There may be circumstances where it is desired to drop a Postgres database used in a replication system, but the replication system could not be removed
according to the normal procedure of using the xDB Replication Console or the xDB Replication Server CLI.

In such cases, it is assumed that the replication system has somehow become corrupted, and it is simply desired to delete the replication system
components including some of the databases used in the replication system.

When the log-based method is used, certain additional procedures may be required to remove the replication slots before dropping the databases. Postgres
does not permit a database to be dropped if a replication slot is connected to it. The following describes how the replication slots can be removed in order
to drop a database.

Warning: Do not attempt this if any replication systems are running in production. All replication systems will become inoperable.

Replication slots can be displayed by the following query on the database server containing the databases to be dropped:

edb=# SELECT slot_name, slot_type, database, active, active_pid FROM pg_replication_slots;
  slot_name  | slot_type | database | active | active_pid
-------------+-----------+----------+--------+------------
 xdb_14793_5 | logical   | edb      | t      |       5288
 xdb_79910_5 | logical   | MMRnode  | t      |       5327
(2 rows)

The active column indicates whether or not the replication slot is active. To deactivate an active replication slot, first stop the publication server. If the
active column of the replication slot now displays f for false then you can remove the replication slot.

If the replication slot is still active, then you can deactivate it by terminating the process shown in the active_pid  column with the following command:

edb=# SELECT pg_terminate_backend(5327);
 pg_terminate_backend
----------------------
 t
(1 row)

The following now shows that replication slot xdb_79910_5  for database MMRnode  has been deactivated:

edb=# SELECT slot_name, slot_type, database, active, active_pid FROM pg_replication_slots;
  slot_name  | slot_type | database | active | active_pid
-------------+-----------+----------+--------+------------
 xdb_14793_5 | logical   | edb      | t      |       5288
 xdb_79910_5 | logical   | MMRnode  | f      |
(2 rows)

Drop the replication slot with the following command by specifying the slot name:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 530



edb=# SELECT pg_drop_replication_slot('xdb_79910_5');
 pg_drop_replication_slot
--------------------------

(1 row)

Now, the dropped replication slot does not appear when the pg_replication_slots  directory is queried:

edb=# SELECT slot_name, slot_type, database, active, active_pid FROM pg_replication_slots;
  slot_name  | slot_type | database | active | active_pid
-------------+-----------+----------+--------+------------
 xdb_14793_5 | logical   | edb      | t      |       5288
(1 row)

The database can now be successfully dropped:

edb=# DROP DATABASE MMRnode;
DROP DATABASE

In addition, replication origins can be displayed with the following command:

edb=# SELECT * FROM pg_replication_origin;
 roident |        roname
---------+-----------------------
       1 | xdb_MMRnode_emp_pub_1
       2 | xdb_edb_emp_pub_6
(2 rows)

The following command can be used to remove a replication origin:

edb=# SELECT pg_replication_origin_drop('xdb_MMRnode_emp_pub_1');
 pg_replication_origin_drop
----------------------------

(1 row)

The following shows this replication origin has been removed:

edb=# SELECT * FROM pg_replication_origin;
 roident |        roname
---------+-----------------------
       2 | xdb_edb_emp_pub_6
(1 row)

For additional information on logical decoding functions see Section 9.26.6 Replication Functions` under Section 9.26 System Administration Functions in
the PostgreSQL Core Documentation located at:

https://www.postgresql.org/docs/current/static/functions-admin.html

After performing this process, it is unlikely that removal of the entire replication system can be done with the xDB Replication Console or the xDB
Replication Server CLI. Complete removal of the remaining replication system components must be done manually. Part of this process is removing the
control schema and control schema objects from the publication databases. See Section Dropping Replication Slots for Log-Based Synchronization
Replication for information on this procedure.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 531

https://www.postgresql.org/docs/current/static/functions-admin.html


11.4          Miscellaneous xDB Replication Server Processing Topics

This section contains various topics covering the following:

Handling special characters in replication data
Replicating Oracle partitioned tables
Performing an offline snapshot and subsequent synchronization
Generating an encrypted password
Writing cron expressions

11.4.1          Publication and Subscription Server Configuration Options

The publication server and the subscription server support various configuration options for purposes such as the following:

Optimize synchronization performance based on the types of transactions affecting the publication. (See Optimizing Synchronization Replication for
details on these particular options.)
Utilize alternate loading methods in snapshot replications. (See Optimizing Snapshot Replication for details on these particular options.)
Special configuration options for multi-master replication. (See Optimizing Performance for details on these particular options.)
Adjust memory usage and transaction size for replications.
Replicate certain Oracle partitioned table types.
Replicate special characters found in publication data.
Special configuration options for the log-based method of synchronization replication. (See Quoted Identifiers and Default Case Translation for
details on these particular options.)

Most options apply to the publication server only, although a few are used by the subscription server.

The configuration options for the publication server are set and passed in a text file called the publication server configuration file with file name 
xdb_pubserver.conf.

The configuration options for the subscription server are set and passed in a text file called the subscription server configuration file with file name 
xdb_subserver.conf.

See Post Installation Host Environment for the directory locations of these files.

Modified publication server configuration options take effect after the publication server is restarted. Similarly, modified subscription server configuration
options take effect after the subscription server is restarted. The configuration options that have been explicitly put into effect by overriding their defaults
in the configuration files are logged in the publication server log file and the subscription server log file. Section Post Installation Host Environment
contains the directory locations of these log files.

The following is a description of how to set the configuration options. This is followed by sections describing the purpose of each option.

Step 1:Step 1: The publication and subscription server configuration files are created during xDB Replication Server installation and already contain all of the
configuration options as comments with their default settings.

To change the setting of a configuration option, edit the publication server or subscription server configuration file by removing the comment symbol (#)
from the option and substituting the desired value in place of the currently coded value.

The following example shows a portion of the publication server configuration file where replacement of null characters in the publication data has been
activated and the replacement character has been set to the question mark character.

replaceNullChar = true

#Null Replacement Character
nullReplacementChar = ?

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 532



Step 2:Step 2: Restart the publication or subscription server.

Use the following command for CentOS 7 or RHEL 7 and Rocky Linux 8 or AlmaLinux 8 or RHEL 8:

systemctl restart edb-xdbpubserver

Use the following command for previous Linux versions:

service edb-xdbpubserver restart

The following sections provide additional detail on the server configuration options.

11.4.1.1          Controlling Logging Level, Log File Sizes, and Rotation Count

NoteNote

The options described in this section apply to the publication server and the subscription server unless otherwise specified.

The following options control various aspects of message logging in the publication server log file, the subscription server log file, and the Migration Toolkit
log file.

See Publication and Subscription Server Startup Failures for additional information on the publication and subscription server log files.

See Snapshot Replication Failures for additional information on the Migration Toolkit log file.

logging.level

Set the logging.level  option to control the severity of messages written to the publication server log file and the subscription server log file.

logging.level={OFF | SEVERE | WARNING | INFO | CONFIG | FINE | FINER | FINEST | ALL}

The default value is WARNING .

logging.file.size

Set the logging.file.size  option to control the maximum file size (in megabytes) of the publication server log file and the subscription server log
file.

NoteNote

If logging.file.count is set to 0, the setting of logging.file.size is ignored. The log file is allowed to grow without limit.

logging.file.size=n

The default value is 50 megabytes.

logging.file.count

Set the logging.file.count  option to control the number of files in the log file rotation history of the publication server log file and the subscription
server log file.

logging.file.count=n

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 533



The default value for n is 20.

A non-zero value of n specifies the maximum number of log files that are to be created.

NoteNote

In the remaining discussion the publication server log file named pubserver.log  is used as an example. For the subscription server, the log
file is named subserver.log .

Specify a value of 0 to disable log file rotation and create a single, unlimited size log file named pubserver.log . This log file will grow to an
unlimited size ignoring any setting of logging.file.size.
Specify a value of 1 to disable log file rotation and create a single, limited size log file named pubserver.log . The log file is deleted and a new
one is created each time the log file reaches the size limit set by logging.file.size .
Specify a value of 2 or greater to enable log file rotation. All log file names have an integer suffix (for example, pubserver.log.0, 
pubserver.log.1, pubserver.log.2 ).

When log file rotation is enabled, the log file with the greatest integer suffix contains the oldest messages. When there are enough messages to generate
every file in the history rotation, the oldest messages are in pubserver.log.n-1  where n is the setting of logging.file.count . Log file 
pubserver.log.0  is the current, active log file containing the most recent messages.

When log file rotation is enabled and the current, active log file ( pubserver.log.0 ) reaches the size specified by logging.file.size , then the
following events occur:

The log file containing the oldest messages ( pubserver.log.n-1 ) is deleted.
Each remaining log file is renamed with the next greater integer suffix ( pubserver.log.m  is renamed to pubserver.log.m+1  with m
varying from 0  to n-2 ).
A new, active log file is created (pubserver.log.0).

mtk.logging.file.size

NoteNote

This option applies to the publication server only.

Set the mtk.logging.file.size  option to control the maximum file size (in megabytes) of the Migration Toolkit log file.

mtk.logging.file.size=n

The default value is 50 megabytes.

mtk.logging.file.count

NoteNote

This option applies to the publication server only.

Set the mtk.logging.file.count  option to control the number of files in the log file rotation history of the Migration Toolkit log file.

mtk.logging.file.count=n

The default value for n is 20 .

A non-zero value of n specifies the maximum number of history log files that are to be created.

Specify a value of 0 to disable log file rotation and create a single, limited size log file named mtk.log . The log file is deleted and a new one is
created each time the log file reaches the size limit set by mtk.logging.file.size .

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 534



Specify a value of 1 or greater to enable log file rotation. All log file names have an integer suffix (for example, mtk.log.1, mtk.log.2 ).

When log file rotation is enabled, the log file with the greatest integer suffix contains the oldest messages. When there are enough messages to generate
every file in the history rotation, the oldest messages are in mtk.log.n  where n  is the setting of mtk.logging.file.count .

Log file mtk.log  is the current, active log file containing the most recent messages.

When the current, active log file ( mtk.log ) reaches the size specified by mtk.logging.file.size , then the following events occur:

The log file containing the oldest messages ( mtk.log.n ) is deleted.
Each remaining log file with a suffix is renamed with the next greater integer suffix ( mtk.log.m  is renamed to mtk.log.m+1  with m  varying
from 1  to n-1 ).
Log file mtk.log  is renamed to mtk.log.1 .
A new, active log file is created ( mtk.log ).

11.4.1.2          Replacing Null Characters

NoteNote

The options described in this section apply to the publication server only.

A character consisting of binary zeros (also called the null character string) and represented as 000 in octal or 0x00 in hexadecimal can result in errors
when attempting to load such data into a Postgres character column.

You may get the following error in the Migration Toolkit log file when performing a snapshot replication of an Oracle table that contains the null character
string:

Loading Table Data in 8 MB batches...
Disabling FK constraints & triggers on edb.null_test before truncate...
Truncating table NULL_TEST before data load...
Disabling indexes on edb.null_test before data load...
Loading Table: NULL_TEST ...
Error Loading Data into Table: NULL_TEST: ERROR: invalid byte sequence for encoding "UTF8": 0x00
  Where: COPY null_test, line 2

The same circumstance may also produce the following error in the Migration Toolkit log file:

Loading Table Data in 8 MB batches...
Disabling FK constraints & triggers on edb.null_clob before truncate...
Disabling indexes on edb.null_clob before data load...
Loading Large Objects into table: NULL_CLOB ...
[NULL_CLOB] Migrated 1 rows.
com.edb.util.PSQLException: Zero bytes may not occur in string parameters., Skipping Batch

If any of these errors occur, you can set an option that will convert each null character encountered in character columns of the source tables to a space
character, or to any other character of your choice, before loading the target tables.

NoteNote

This option does not alter null characters encountered in columns with binary data types such as Oracle RAW and BLOB data types.

Set the following option:

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 535



replaceNullChar=true

This option results in the substitution of a space character for each null character encountered in the source character data. If you want to use a character
other than a space character to replace each null character, use the following option in addition to replaceNullChar=true .

nullReplacementChar=char

char is a single character you want to substitute for the null character. For example, the following combination will replace each null character with the
hash symbol # .

replaceNullChar=true

nullReplacementChar=#

11.4.1.3          Schema Migration Options

NoteNote

The option described in this section applies to the subscription server only.

The option in this section controls how certain aspects of the publication database schema are migrated to the subscription database.

skipCheckConstskipCheckConst

By default, column CHECK  constraints from publication tables are migrated to the subscription table definitions when the subscription is created. Set this
option to true if you do not want CHECK  constraints as part of the subscription table definitions.

Setting this option to true is useful if the CHECK  constraint is based on a built-in function supported by the publication database server, and this built-in
function does not exist in the subscription database server.

skipCheckConst={true | false}

The default value is false.

11.4.1.4          Replicating Oracle Partitioned Tables

NoteNote

The option described in this section must be set to the same value for both the publication server and the subscription server.

NoteNote

This feature applies only for subscriptions in an Advanced Server database. It does not apply to subscriptions in a PostgreSQL database.

In Oracle, table partitioning provides the capability to store table rows in different physical locations (tablespaces) according to a rule defined on the table.

The most common types of Oracle table partitioning are the following:

Range Partitioning. Ranges of values defined on a column determine which tablespace a row is stored.
List Partitioning. A list of values defined on a column determines which tablespace a row is stored.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 536



Hash Partitioning. An algorithm on a column generates a hash key, which determines which tablespace a row is stored.

NoteNote

If you are using Advanced Server, table partitioning using Oracle compatible table partitioning syntax is an available feature. See the section on
table partitioning in the Database Compatibility for Oracle Developer’s Guide for information. See Replicating Postgres Partitioned Tables for
information on including Postgres partitioned tables in a replication system. The importPartitionAsTable  option described in this section
applies only to table partitioning in an Oracle database.

The importPartitionAsTable  option controls what happens when an Oracle partitioned table is part of the publication.

importPartitionAsTable={true | false}

The default value is false .

Depending upon the Oracle partitioned table type and the setting of the importPartitionAsTable  option one of the following may occur:

A set of inherited tables is created in Advanced Server to which the Oracle partitioned table is replicated. The rows can be stored in different physical
locations.
A plain, single table with no inheritance is created in Advanced Server to which the Oracle partitioned table is replicated. All rows are stored in one
physical location.
No table is created in Advanced Server for the Oracle partitioned table, and an error message is written to the Migration Toolkit log file.

When importPartitionAsTable=false  (the default setting), the following occurs:

A list partitioned table is replicated as a set of inherited Advanced Server tables.
A range partitioned table is replicated as a set of inherited Advanced Server tables.
A hash partitioned table is not replicated to Advanced Server, and an error message is written to the Migration Toolkit log file.

NoteNote

If there are subscription tables created as sets of Advanced Server inherited tables, then you must also set the 
enableConstBeforeDataLoad  option in the publication server configuration file to true. See Specifying a Custom URL for an Oracle JDBC

Connection for information on the enableConstBeforeDataLoad  option.

When importPartitionAsTable=true , the following occurs:

A list partitioned table is replicated as a single Advanced Server table with no inheritance.
A range partitioned table is replicated as a single Advanced Server table with no inheritance.
A hash partitioned table is replicated as a single Advanced Server table with no inheritance.

Setting the importPartitionAsTable  option to true allows you to replicate a broader range of Oracle partitioned table types, but as normal
Advanced Server tables without simulating partitions by using inheritance.

11.4.1.5          Specifying a Custom URL for an Oracle JDBC Connection

NoteNote

The option described in this section applies to the publication server only.

By default the xDB Replication Server supports the basic thin client URL pattern for an Oracle JDBC connection. If there is a requirement to specify custom
connectivity credentials, specify the advanced URL using the following option.

oraJDBCCustomURL=customURL_string

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 537



The following is an example of custom connectivity to an Oracle database.

oraJDBCCustomURL=jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=$HOST)(PORT=$PORT))
(CONNECT_DATA=(SERVICE_NAME =$SERVICE_NAME)(SERVER=DEDICATED)))

The parameters prefixed with a dollar sign ($)  are dynamically replaced based on the actual connection values specified when adding the Oracle
publication database (see Adding a Publication Database). Alternatively, the parameters prefixed with a dollar sign can be replaced by hardcoded values in
the URL string in which case these hardcoded values override what is specified when adding the publication database.

11.4.1.6          Snapshot Replication Options

NoteNote

The options described in this section apply to the publication server only unless otherwise specified.

The server configuration options discussed in this section apply to snapshot replications.

escapeTabDelimiter

When JDBC COPY  is used in snapshot replication, the data delimiter between column values is an escaped tab character (t). Set this option to false if you
do not want to escape the tab delimiter character.

escapeTabDelimiter={true | false}

The default value is true .

mtkCopyDelimiter

When JDBC COPY  is used in snapshot replication, the data delimiter between column values is an escaped tab character (t). Set this option to change the
data delimiter character.

mtkCopyDelimiter=c

c  denotes the single replacement character for the data delimiter.

The default value is \t.

enableConstBeforeDataLoad

The enableConstBeforeDataLoad  option controls whether or not table constraints, including triggers, are re-enabled before loading data into
target tables. The default process is that the tables are loaded first, and then the constraints are enabled afterwards.

Activate this option if there are triggers that affect how data is loaded into the target tables.

If there are target tables created as sets of Postgres inherited tables resulting from partitioned Oracle source tables, then this option must be enabled.

enableConstBeforeDataLoad={true | false}

The default value is false.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 538



11.4.1.7          Assigning an IP Address for Remote Method Invocation

NoteNote

The option described in this section applies to the publication server and the subscription server.

For Linux only:For Linux only:

An alternative method to modifying the /etc/hosts  file so that the host name is associated with a non-loopback IP address as discussed in Section
Network IP Addressese is to specify the network IP address using the java.rmi.server.hostname option.

In the publication server configuration file, set this option to the network IP address of the host running the publication server.

In the subscription server configuration file, set this option to the network IP address of the host running the subscription server.

java.rmi.server.hostname=xxx.xxx.xx.xxx

For example, instead of modifying the /etc/hosts  file to look like the following for a publication or subscription server running on host 
192.168.2.19 :

#127.0.0.1              localhost.localdomain localhost
192.168.2.19             localhost.localdomain localhost

You can set the IP address in the server configuration file as shown by the following:

#On Linux machines, the localhost to real IP may not give correct results. Hence
#users are advised to override the following property with server IP address
java.rmi.server.hostname=192.168.2.19

11.4.1.8          Using pgAgent Job Scheduling

NoteNote

The option described in this section applies to the publication server only.

NoteNote

Using pgAgent job scheduling has significance only if Postgres is the publication database.

NoteNote

You must have pgAgent installed and running on the host where the publication database resides.

When the pgdbschedule option is set to true, xDB Replication Server uses the pgAgent job scheduler instead of the default Quartz job scheduler.

When activated, pgAgent takes over the following scheduling tasks from Quartz:

Scheduling shadow table history cleanup in the publication database. See Scheduling Shadow Table History Cleanup for information on scheduling
shadow table history cleanup.
Scheduling transaction set creation. A transaction set creation job is scheduled to run every hour to create transaction sets from the updates on the
source tables. Transaction sets are applied to the target tables.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 539



Unlike the Quartz scheduler, pgAgent can still run and perform its tasks even if the publication server is not running.

pgdbschedule={true | false}

The default value is false .

11.4.1.9          Forcing Immediate Shadow Table Cleanup

NoteNote

The option described in this section applies to the publication server only.

A cleanup job is provided that can be run on demand or on a schedule to remove dead (processed) tuples from the shadow tables (see Managing History).

However, to perform even quicker cleanup scheduling, turn on this option to force the cleanup of shadow tables after every synchronization replication.

postSyncShadowTableCleanup={true | false}

The default value is false.

11.4.1.10          Setting Event History Cleanup Threshold

The event history cleanup job is scheduled to run every day at 12 AM to remove completed, historical, event and replication history data from the control
schema xdb_events , xdb_events_status , xdb_pub_replog , and xdb_pub_table_replog  tables that are older than n  days. By default
the history data older than seven days is removed.

Specify a value of 0  to cleanup all, completed, event history and replication history data, regardless of its age.

See Cleaning Up Event History for information on cleaning up event and replication history.

historyCleanupDaysThreshold=n

The default value is 7  days.

11.4.1.11          DDL Change Replication Table Locking

NoteNote

The option described in this section applies to the publication server only.

When the DDL change replication process is invoked, each affected table in the replication system is acquired in turn with an exclusive lock before the DDL
change is applied to the table.

Set ddlChangeTableLock  to false if you do not want an exclusive lock placed on the table before applying the DDL change. This option should be set
to false only if there are no write transactions expected on the target table. If write transactions do occur, they may not be recorded by the replication
system.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 540



See Replicating DDL Changes for information on DDL change replication.

ddlChangeTableLock={true | false}

The default value is true .

11.4.1.12          Persisting Zero Transaction Count Replication History

NoteNote

The option described in this section applies to the publication server only.

If you wish to maintain zero transaction count records in the replication history after the publication server is restarted, set persistZeroTxRepEvent to true.
Otherwise, zero transaction count records are no longer available once the publication server is restarted.

See Section Viewing Replication History for information on viewing replication history.

persistZeroTxRepEvent={true | false}

The default value is false .

11.4.1.13          Skipping Grants of Table Level User Privileges on MMR Target Tables

NoteNote

This option applies to the publication server only.

When creating non-MDN nodes in a multi-master replication system, the publication server creates the publication tables and their corresponding shadow
tables in the non-MDN node database.

When skipTablePrivileges  is set to false, which is the default value, the database user privileges on the publication tables in the primary definition
node are granted to the same database users on the publication tables in the newly created non-MDN node.

The required privileges are also granted to these database users on the corresponding shadow tables in the non-MDN node so these database users can
perform updates on the publication tables and the changes are recorded in the corresponding shadow tables. This enables proper synchronization
replication of any such changes.

This granting of privileges occurs only for database users with privileges on the primary definition node publication tables at the time the non-MDN node is
defined using the xDB Replication Console or the xDB Replication Server CLI. If you do not want the publication server to grant these database user
privileges to the non-MDN publication tables and shadow tables when defining the non-MDN node, set skipTablePrivileges  to true. In this case,
you must explicitly grant the privileges on the publication tables and corresponding shadow tables in the non-MDN node for any database user that you
wish to provide update access to on these tables. See Step 2 of Section Postgres Publication Database for information regarding the required privileges.

This usage would typically be for the case where different database users are to access the non-MDN node publication tables than the database users who
access the primary definition node publication tables.

skipTablePrivileges={true | false}

The default value is false .

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 541



11.4.1.14          Applying Grants of Table Level User Privileges on SMR Target Tables

NoteNote

This option applies to the subscription server only.

NoteNote

This option applies only when both the publication database and the subscription database are Postgres databases.

When creating a subscription in a single-master replication system, the subscription server creates the subscription tables in the subscription database.

When skipTablePrivileges  is set to true, which is the default value, no database user privileges are granted on these subscription tables to any
database user. By default the subscription database user specified when the subscription database definition is created (see Adding a Subscription
Database) is the owner of the subscription tables.

This is the typical, expected scenario since the data in subscription tables should not be updated by user applications other than the xDB Replication
Server.

Database users that require access to the subscription tables must be explicitly granted such privileges.

If however, you do want the subscription server to grant database user privileges to the subscription tables for the same database users that already have
access privileges to the publication tables, set skipTablePrivileges  to false in the subscription server configuration file. (The setting of 
skipTablePrivileges  in the publication server configuration file is ignored for this process in a single-master replication system.)

In this case, the same access privileges are granted on the subscription tables to database users with privileges on the publication tables at the time the
subscription is defined using the xDB Replication Console or the xDB Replication Server CLI.

skipTablePrivileges={true | false}

The default value is true.

11.4.1.15          Log-Based Method of Synchronization Options

NoteNote

This option applies to the publication server only.

walTxSetCreationInterval

When using the log-based method of synchronization replication the walTxSetCreationInterval  option controls the time interval between
creations of the transaction sets, which affects the size of the transaction set (that is, the batch size). The default setting results in the creation of a
transaction set every 5,000 milliseconds (5 seconds) assuming changes to the publication tables to be replicated are available.

This value should be adjusted based on the workload (that is, the transaction per minute (TPM) rate) on the target publication tables.

If the TPM rate is on a higher end, the walTxSetCreationInterval option should be set to a relatively low value.

If the TPM rate is on a lower end, the option should be set to a higher value to ensure that a transaction set is large enough to allow an average batch size in
the range of 100 to 500 transactions.

walTxSetCreationInterval=n  The default value is 5000 milliseconds.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 542



walStreamQueueLimit

The walStreamQueueLimit  option defines the upper limit for the number of WAL entries that can be held in the queue pending for processing at a
point in time. Once the queue becomes full, the WAL stream receiver blocks additions until space becomes available in the queue as transaction entries are
popped out of the queue for processing.

A value of 0 indicates there will be no upper limit. Note that too high a setting may result in Java heap space out of memory errors. See Setting Heap
Memory Size for the Publication and Subscription Servers for information on adjusting the Java heap memory size.

walStreamQueueLimit=n

The default value is 10000.

pendingTxSetThreshold

The pendingTxSetThreshold  option defines the upper threshold limit for the number of pending transaction sets that when reached, causes the
extraction of transaction data from the WAL stream and its parsing to be put on hold until the pending transactions are processed.

This is to avoid a situation where the data is continuously pushed over the WAL stream channel, but is not being processed and applied due to some failure
or lack of scheduling of the synchronization process. This may result in a Java heap space out of heap memory error. See Setting Heap Memory Size for the
Publication and Subscription Servers for information on adjusting the Java heap memory size.

pendingTxSetThreshold=n

The default value is 10.

11.4.1.16          Setting the Apache DBCP Connection Validation Query Timeout

NoteNote

This option applies to the publication server only.

The Apache Commons Database Connection Pooling (DBCP) component is the Apache pooling framework used by the publication server for establishing
JDBC connections.

The jdbc.pool.validationQueryTimeout  option controls the timeout setting when a validation query is executed at the time of allocating a
connection from the pool. This is the amount of time in seconds before an exception is returned if the connection validation query does not succeed.

The default timeout value is 30 seconds. In situations where network connections are not reliable, the timeout value can be increased accordingly to allow
more time for the connection attempt. Specify a value of 0 if no timeout is desired.

jdbc.pool.validationQueryTimeout=n

The default value is 30 .

11.4.2          Encrypting the Password in the xDB Replication Configuration File

If you need to change the password in the xDB Replication Configuration file, you must first encrypt the password. Use the encrypt command of the xDB
Replication Server CLI to generate the encrypted form of the password from its plain text form given in an input file.

Step 1:Step 1: Create a text file with the password you wish to encrypt. Do not leave any white space before or after the password.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 543



The following example shows the text newpassword in the input file passfile :

$ cat passfile
newpassword
$

Step 2:Step 2: Use the edb-repcli.jar  file to execute the xDB Replication Server CLI with the encrypt command by first including the Java bin directory in
your PATH  environment variable and making XDB_HOME/bin  your current working directory.

For example, assuming /usr/bin  contains the java executable program and xDB Replication Server is installed into the POSTGRES_INSTALL_HOME
directory, perform the following:

$ export PATH=/usr/bin:$PATH
$ cd /opt/PostgresPlus/9.4AS/bin
$ java -jar edb-repcli.jar -encrypt -input ~/passfile -output ~/encrypted
The following shows the encrypted form of the password in the output file encrypted:
$ cat ~/encrypted
4mKq/4jQQoV2IypCSmPpTQ==
$

Step 3:Step 3: Copy and paste the encrypted password into the xDB Replication Configuration file.

#xDB Replication Server Configuration Properties
#Thu Sep 03 11:13:27 GMT-05:00 2015
admin_password=4mKq/4jQQoV2IypCSmPpTQ==
admin_user=admin

11.4.3          Writing a Cron Expression

A cron expression is a text string used to express a schedule of dates and times. The Linux cron tool uses a cron expression to schedule the execution of a
job. xDB Replication Server uses the Quartz job scheduling system for scheduling replications.

When creating a schedule for an xDB Replication Server replication system, a cron expression can be specified. There are a number of formats for cron
expressions. You must use the cron expression format supported by Quartz.

The remainder of this section provides an overview of most of the types of cron expressions that can be used for an xDB Replication Server schedule. For a
more comprehensive treatment of cron expressions, refer to the Quartz documentation.

A Quartz cron expression consists of six mandatory fields, followed by one optional field. Each field is separated from its neighbors by one or more
consecutive space characters. The fields are order dependent and are listed as they must appear below:

ss mi hr dd mm dow [ yyyy ]

Table 10-4: Cron Expression FieldsTable 10-4: Cron Expression Fields

Field Values Description

ss 0 - 59 Second of the minute

mi 0 - 59 Minute of the hour

hr 0 - 23 Hour of the day

dd 1 - 31 or ? Day of the month – if dow is given, then dd must be specified as ?

mm 1 - 12 or JAN - DEC Month of the year (3-letter month abbreviations are not case sensitive)

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 544



dow
1 – 7 or SUN – SAT
or ?

Day of the week – if dd is given, then dow must be specified as ? (3-letter day of the week abbreviations are not case
sensitive)

yyyy 1970 - 2099 Year – if omitted, then any year applies

There are a number of characters that have special meaning that can be utilized in all fields unless noted.

Table 10-5: Cron Expression Special CharactersTable 10-5: Cron Expression Special Characters

Character Meaning Example

, Separates a list of values MON,WED,FRI – Every Monday, Wednesday, and Friday

- Separates the low and high end of a range of
values

MON-FRI – Every Monday through Friday

* Allows all legal values for the field 0 10 14 * * ? – Every day of every month at 2:10 PM

x/i Specifies an increment, i, starting with x 0 0/10 * * * ? – Every 10 minutes starting on the hour for every day of every month
(e.g., 8:00:00, 8:10:00, 8:20:00)

L When used in the day of the month (dd) field,
means the last day of the month 0 30 15 L 8 ? – Every August 31st at 3:30 PM

L When used by itself in the day of the week field
(dow), means Saturday

30 0 12 ? AUG L – The next Saturday in August at 30 seconds past 12:00 noon

xxxL
When used in the day of the week field (dow)
following a day of the week, means the last xxx
day of the month

30 0 12 ? AUG 6L – The last Friday in August at 30 seconds past 12:00 noon

xW

Used in the day of the month field (dd)
following a day of the month, x, to specify the
weekday closest to x without going over into the
next or previous month.

1W – The weekday closest to the 1st of the month. If the 1st is a Wednesday, the result
is Wednesday the 1st. If the 1st is a Sunday, the result is Monday the 2nd. If the 1st is a
Saturday, the result is Monday the 3rd because the result does not go into the previous
or following month.

xxx#n Used in the day of the week field (dow) to
specify the nth xxx day of the month

2#3 – The third Monday of the month (2 = Monday, 3 = third occurrence)

The following illustrates some examples of cron expressions.

Table 10-6: Cron Expression ExamplesTable 10-6: Cron Expression Examples

Cron Expression Meaning

0 0 12 20 AUG ? 2009 12:00:00 noon on August 20, 2009

0 15 13 ? AUG WED 1:15:00 PM every Wednesday in August

30 30 8 ? *
MON,WED,FRI

8:30:30 AM every Monday, Wednesday, and Friday of every month

0 0 8 ? * 2-6 8:00:00 AM Monday thru Friday of every month

0 0/30 8,9,10 15,L * ? 8:00:00 AM, 8:30:00 AM, 9:00:00 AM, 9:30:00 AM, 10:00:00 AM, 10:30:00 AM on the 15th and the last day of the month of
every month

0 0 9 ? 9 L 9:00:00 AM each Saturday in September

0 0 1 ? * MonL 1:00:00 AM on the last Monday of the month of every month

0 30 16 15W sep ? 4:30:00 PM on the weekday of September closest to the 15th

0 30 16 ? * WED#2 4:30:00 PM on the second Wednesday of every month

11.4.4          Disabling Foreign Key Constraints for Snapshot Replications

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 545



In a snapshot replication, the publication server calls EnterpriseDB’s Migration Toolkit, which disables foreign key constraints on tables so it can truncate
the target tables before loading rows. In Postgres, foreign key constraints are implemented using triggers, so in actuality, the Migration Toolkit disables
triggers on the target tables by setting column relhastriggers  of pg_catalog.pg_class  to false for each target table.

No user (not even a superuser) is allowed to directly modify the data in a Postgres system catalog table unless the following conditions are satisfied:

The database user attempting to modify the rows of a system catalog table is a superuser.
In the Postgres system catalog table pg_catalog.pg_authid , the column rolcatupdate  is set to true for the row identifying the superuser
attempting to update a system catalog table. This requirement applies only to Postgres version 9.4 or earlier. The column rolcatupdate  no
longer exists in Postgres 9.5 or later.

To verify that a user has the privilege to update the system catalog tables, select the user name  under the Login Roles  node in pgAdmin (Postgres
Enterprise Manager Client in Advanced Server). The Update Catalogs  property should be set to Yes .

Figure 10-6: User with privilege to update system catalogsFigure 10-6: User with privilege to update system catalogs

If the Update Catalogs property is set to No , click the secondary mouse button on the user name in the Object Browser and choose Properties from the
menu. Select the Role Privileges  tab, check the Can Modify Catalog Directly  box, and click the OK  button.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 546



Figure 10-7: Granting system catalog update privilegeFigure 10-7: Granting system catalog update privilege

11.4.5          Quoted Identifiers and Default Case Translation

A quoted identifier is an identifier created with its name enclosed within double quote characters (") . The text enclosed within double quotes is stored as
the object identifier name exactly as given with no default case translation of alphabetic characters. Quoted identifiers occur in both Oracle and Postgres.

For example, CREATE TABLE "MyTable"  … produces a table name that is stored in the database system’s data dictionary as MyTable. References to
this table must be made using an uppercase M, an uppercase T, and lowercase letters for the rest of the name.

If a database object is created without the double quotes surrounding its identifier name, default case translation of alphabetic characters occurs.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 547



In Oracle, the default case translation is to uppercase. For example, CREATE TABLE MyTable  … would result in an object identifier name of 
MYTABLE .

In Postgres, the default case translation is to lowercase. For example, CREATE TABLE MyTable …  would result in an object identifier name of
mytable.

11.4.6          Replicating the SQL Server SQL_VARIANT Data Type

This section discusses how to replicate a table containing the SQL Server SQL_VARIANT  data type.

The SQL_VARIANT  data type defines a column so that the individual values in that column may be of different data types. For example, the same 
SQL_VARIANT  column can store values that have been explicitly cast as character, integer, numeric, and date/time.

However, if a table containing a SQL_VARIANT  column is to be replicated to a Postgres database, the usage of the column in Postgres is restricted to a
single data type to which all the values in the SQL_VARIANT  column are implicitly convertible (that is, without the use of explicit casting). For example,
an integer value is implicitly convertible to a FLOAT  data type, but a floating point value is not implicitly convertible to an INTEGER  data type.

The following restrictions apply in order to use replication on tables with the SQL_VARIANT  data type:

The values stored within the SQL_VARIANT  columns of the table to be replicated must be implicitly convertible to the same data type in Postgres.
If there is more than one table with SQL_VARIANT  columns to be replicated to the same Postgres database, then all such SQL_VARIANT
columns must contain values that are implicitly convertible to the same data type in Postgres.

In the Postgres subscription database, you define a domain named sql_variant  that maps to an underlying data type to which all values in the 
SQL_VARIANT  columns are implicitly convertible.

The following example shows how to set up replication for a table containing a SQL_VARIANT  data type used to store numeric values, but of different
data types. The SQL Server table definition is the following:

CREATE TABLE variant_tbl (
    f1              INTEGER PRIMARY KEY,
    f2              SQL_VARIANT
);

INSERT INTO variant_tbl VALUES (1, CAST(1423.23 AS NUMERIC(6,2)));
INSERT INTO variant_tbl VALUES (2, CAST(8001 AS INTEGER));
INSERT INTO variant_tbl VALUES (3, CAST('4321' AS CHAR(4)));
GO

The following query uses a function named SQL_VARIANT_PROPERTY  to show the values stored in column f2  and their data types.

1> SELECT *,
2>     SQL_VARIANT_PROPERTY(f2,'BaseType') AS basetype,
3>     SQL_VARIANT_PROPERTY(f2,'Precision') AS precision,
4>     SQL_VARIANT_PROPERTY(f2,'Scale') AS scale
5> FROM variant_tbl;
6> GO
f1          f2         basetype   precision  scale
----------- ---------- ---------- ---------- ----------
          1 1423.23    numeric    6          2
          2 8001       int        10         0
          3 4321       char       0          0

(3 rows affected)

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 548



In the Postgres subscription database, create a domain named sql_variant  with an underlying data type that is compatible with the values that are
stored in the SQL Server SQL_VARIANT  column:

CREATE DOMAIN sql_variant AS NUMERIC(6, 2);

After replication occurs, the subscription table is created using the sql_variant  domain in place of the SQL_VARIANT  data type of the publication
table.

At the bottom of the following Object Browser window, note the presence of the sql_variant  domain under the Domains node of the public
schema.

CREATE TABLE MyTable …  would result in an object identifier name of mytable .

Figure 10-8: Subscription table with sql_variant columnFigure 10-8: Subscription table with sql_variant column

11.5          Service Pack Maintenance

Maintenance items (bug fixes and enhancements) that have been added to this version of xDB Replication Server are listed below.

1. Registering your xDB Replication Server product with an EnterpriseDB product license key is no longer required. Thus, all components related to
registering the product have been removed. The following are the removed components:

1. The Product Registration  dialog box accessed from the xDB Replication Console Help  menu,
2. The license_key  parameter located in the xDB Replication Configuration file, and

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 549



3. The xDB Replication Server CLI registerkey  command. ( 43230 )

1. Partitioned tables created using the declarative partitioning feature of PostgreSQL and Advanced Server version 10 can now be replicated in a log-
based single-master or multi-master replication system. ( 43134 )

2. In an SMR system, removal of a table from a publication that has one or more existing subscriptions is now permitted. Previously, no tables from a
publication in an SMR system could be removed if there are existing subscriptions. ( 43110 )

12          Release Notes

The EDB Postgres Replication Server documentation describes the latest version of EDB Postgres Replication Server 6.2 including minor releases and
patches. The release notes in this section provide information on what was new in each release. For new functionality introduced in a minor or patch
release, there are also indicators within the content about what release introduced the feature.

Version Release Date

6.2.19 2022 Dec 15

6.2.18 2022 Apr 05

6.2.17 2022 Mar 03

6.2.16 2021 Dec 09

6.2.15 2021 Aug 30

6.2.14 2021 May 27

6.2.13 2021 Feb 18

6.2.12 2020 Nov 16

6.2.11 2020 Aug 28

6.2.10 2020 Jun 11

6.2.9 2020 May 07

Installation and upgrade notes

To install Replication Server 6.2.x for the first time or to upgrade to the latest Replication Server 6.2.x release from an earlier Replication Server 6.2.x
release using the EDB repository, you must use the --exclude edb-xdb  option with the install or upgrade command. If the exclude option is not used,
Replication Server version 7.x is installed.

To upgrade:

<package_manager> upgrade ppas-xdb* --exclude edb-xdb*

To do a fresh install:

<package_manager> install ppas-xdb --exclude edb-xdb

Where <package_manager>  varies by operating system:

Package manager Operating system

dnf RHEL 8, OL 8, AlmaLinux 8, Rocky Linux 8

yum RHEL 7, OL 7, CentOS 7

apt Debian and Ubuntu

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 550



zypper SLES

Package manager Operating system

12.1          Version 6.2.18

New features, enhancements, bug fixes, and other changes in EDB Postgres Replication Server 6.2.18 include the following:

Type Description

Security
Fix

The log4j component version bundled with Replication Server 6.2 has been identified as being affected by CVE-2019-17571. The log4j
version has been upgraded to the latest patched version to address this vulnerability.

Bug Fix Fixed the issue that caused the Publication creation failure when index name of the Publication table is same as of another table index in a
different schema [Support Ticket #79822].

12.2          Version 6.2.17

New features, enhancements, bug fixes, and other changes in EDB Postgres Replication Server 6.2.16 include the following:

Type Description

Security
Fix

Addresses JDBC vulnerability CVE-2022-21724 that has a CVSS score of 8.5, which is a High severity. The PostgreSQL JDBC driver version
42.3.2 that contains the security fix is bundled with Replication Server. If you have a RPM- or Debian-based Replication Server installation,
the EDB JDBC driver for Advanced Server, which incorporates the community version 42.3.2, needs to be updated. For example, on RHEL 7
or CentOS 7 distributions, run: yum update edb-jdbc .

Bug Fix Publication database registration fails for a SSL connection with a non-default SSL client certs/key path. [77621]

12.3          Version 6.2.16

New features, enhancements, bug fixes, and other changes in EDB Postgres Replication Server 6.2.16 include the following:

Type Description

Enhancement Replication Server is certified to support PostgreSQL v14 and EDB Postgres Advanced Server v14.

Enhancement Performance optimization for Synchronize operation when a MMR Publication has a SMR Subscription. [Support Ticket #74217]

Bug Fix The removepub  CLI command removes a Publication while it has one or more Subscriptions. This issue is fixed. [Support Ticket
#72194]

Bug Fix Fixed an issue where replication fails for the UUID  data type in EDB Postgres Advanced Server to MS SQL Server permutation.
[Support Ticket #73835]

Bug Fix Fixed an issue where the Synchronize operation failed to replicate NULL for a BLOB type for EDB Postgres Advanced Server to Oracle.
[Support Ticket #74057]

Bug Fix Fixed case where wrong schema qualifier was picked up during history cleanup for EDB Postgres Advanced Server to Oracle and SQL
Server permutations. [Support Ticket #72626]

Bug Fix Fixed loading of Replication History on Replication Console after restart of Publication Services when SMR subscription is associated
with a MMR Publication. [Support Ticket #74217]

Bug Fix Fixed the upgrade issue related with the enhancement of shadow table triggers. [Support Ticket #74447]

Bug Fix Fixed an issue where redundant INSERT conflicts were recorded when a new table was added in the MMR Publication.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 551



Bug Fix In a hybrid replication cluster, the cleanup shadow table routine is subject to remove unprocessed changes. This issue is fixed.

Bug Fix The Synchronize replication fails while replicating changes for a multi-level List Partition table. This issue is fixed.

Bug Fix Fixed the error where Snapshot fails for the third database in a MMR cluster.

Bug Fix Fixed an error that prevented creation of a row-level Filter based on the ->  operator for JSONB data type.

Bug Fix Fixed the issue related with the reporting of incorrect missing privileges while registering Oracle Publication database.

Bug Fix In a hybrid cluster, batch is always applied using BUS (batch update using simple Statement) mode even when the user has opted for
BUP mode (batch update using PreparedStatement). This issue is now fixed.

Bug Fix Fixed an issue where an INSERT conflict in MMR Publication is subject to failure of Synchronize operation for a target SMR
Subscription in a hybrid cluster. [Support Ticket #75608]

Bug Fix Fixed an issue so that a validation error is reported when the CLI command createpub  is executed without registering a
Publication database.

Bug Fix Fixed the NoClassDefFoundError error (org/postgresql/replication/LogSequenceNumber) observed during data Snapshot operation
for a RPM based installation on RHEL8/CENTOS8.

Bug Fix Fixed the error libpq JNI wrapper library is not available  that occured while adding a database for WAL based
replication.

Type Description

12.4          Version 6.2.15

New features, enhancements, bug fixes, and other changes in EDB Postgres Replication Server 6.2.15 include the following:

Type Description

Enhancement Postgres Replication Server is now certified to support Oracle 18c and 19c as the Publication and Subscription database.

Bug Fix Fixed an issue where adding the non-MDN node in the MMR cluster fails as the Constraint OID value exceeds the INTEGER range.
[Support Ticket #911176]

Bug Fix After upgrading to version 6.2.13, frequent wal_sender_timeouts were observed causing slowness in the replication, this issue is fixed.
[Support Ticket #1273404]

Bug Fix The Snapshot operation takes too long to complete as it unnecessarily reloads an already failed table, this issue is fixed [Support
Ticket #1280541]

Bug Fix Fixed an issue where Snapshot fails for a Publication table that is named after a reserved keyword [Support Ticket #1292121]

Bug Fix In a corner case, the conflict detection gets stuck when the target database has multiple conflicts. This issue is fixed [Support Ticket
#1318732]

Bug Fix Fixed an issue where Publication creation fails for EPAS 9.6. [Support Ticket #72306]

Bug Fix Fixed an issue that caused Synchronize replication failure due to a non-escaped quote character in the control event. [Support Ticket
#72614]

Bug Fix In a corner case, the CDC changes were skipped when the SMR Subscription database was also part of the MMR cluster. This issue is
resolved. [Support Ticket #72353]

Bug Fix Fixed an issue that caused “addtablesintopub” operation failure in a corner case when database OID value exceeded INTEGER range.
[Support Ticket #72694]

Bug Fix
In a hybrid replication setup where EDB Postgres Advanced Server was registered with no-redwood-compat option (as a controller
database in MMR and Oracle was registered as a Publication database in SMR), the Publication removal operation failed to complete.
This issue is fixed. [Support Ticket #72469]

Bug Fix SSL root file opening issue that is caused by JDBC driver after upgrading from version 6.2.5 to 6.2.6, is resolved. [Support Ticket
#899996]

Bug Fix Rep CLI createpub  command failed when the Filter index was greater than 9. This issue is fixed.

Bug Fix Fixed an issue where Synchronize replication fails when Filter contains a modulus operator.

Bug Fix Fixed an issue that caused addtablesintopub  command failure for a table name with multiple $ characters.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 552



12.5          Version 6.2.14

New features, enhancements, bug fixes, and other changes in EDB Postgres Replication Server 6.2.14 include the following:

Type Description

Enhancement Added support for replication of Oracle XMLType column. [Support Ticket #1129386]

Enhancement Added support to allow an MMR (trigger-based) Publication to be Subscribed in a SMR cluster.

Enhancement Improved replication processing to cater for a corner case when large transactions are rolled back in MMR trigger-based setup
causing delay in replication speed. [Support Ticket #1247976]

Enhancement Enhanced xDB to support Subscription for a table having name longer than 30 characters length from EDB Postgres Advanced Server
to Oracle 12.2 or later versions. [Support Ticket #1280206]

Bug Fix Fixed Java heap space error when performing sync for a single row containing data > 100MB.

Bug Fix Fixed issue of replication failure when user modifies an Oracle table column that is part of a Filter and PK column is of
DATE/TIMESTAMP type. [Support Ticket #1207460]

Bug Fix Fixed replication failure caused by change in Oracle XMLType column value that is part of a Filter.

Bug Fix Fixed a corner case that is subject to replication failure if PK column ordinal position is after a LOB column in an Oracle Publication
table.

Bug Fix Fixed NPE case when cleanup job is fired while no Publication is defined yet [Support Ticket #1007131].

Bug Fix Fixed an issue that causes Sync operation get stuck due to Thread Deadlock.

Bug Fix [EPAS to Oracle] Fixed an issue related with Subscription failure when table contains boolean type column. [Support Ticket
#1280206]

Bug Fix [EPAS to Oracle] Fixed an issue related with Subscription failure when table contains XML/XMLType column.

Bug Fix Fixed an issue when a non-reserved keyword as column name causes exception in WAL parsing. [Support Ticket #1281560]

Bug Fix Corrected the behavior of useFastCopy flag that was always enabled even when user turned it off.

Bug Fix Fixed the issue where in trigger-mode, the UPDATE operation is denied on an EPAS Publication table with XMLType column.

12.6          Version 6.2.13

New features, enhancements, bug fixes, and other changes in EDB Postgres Replication Server 6.2.13 include the following:

Type Description

Bug Fix Fixed the issue where TRUNCATE operation is captured only for parent partition table. [Support Ticket #1140685]

Bug Fix Fixed the issue where xDB process intermittently crashes on Windows due to invalid libpq connection. [Support Ticket #1165973]

Bug Fix Fixed the issue where user is getting duplicate key violates unique constraint "xdb_mmr_pub_group_pkey" error in non-MDN database server
log. [Support Ticket #1039627]

Bug Fix Fixed a corner case where processed data might not be removed from shadow tables for Oracle to EPAS permutation. [Support Ticket
#1038941]

Bug Fix Fixed the issue where WAL based Publication table filter does not work with negative integer.

Bug Fix Fixed the issue where xDB might skip CDC changes after Snapshot, when exported Snapshot id occurs around transaction wrap-around
boundary value.

Bug Fix Apache Commons Collections libraries are updated to cater for possible security risks.

12.7          Version 6.2.12

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 553



New features, enhancements, bug fixes, and other changes in EDB Postgres Replication Server 6.2.12 include the following:

Type Description

Enhancement Replication Server supports PostgreSQL or EDB Postgres Advanced Server v13 both as a Publication and Subscription for SMR and
MMR replication configurations.

Bug Fix Fixed the issue where the cleanup job is unable to remove processed data from the shadow tables. [Support Ticket #1067057]

Bug Fix Fixed the error where properties file containing user password created for Snapshot operation is not removed. [Support Ticket
#947894]

Bug Fix Fixed the issue where WAL streaming sticks due to a deadlock introduced after a network failure.

Bug Fix Fixed the corner case issue where Replication Server failed to send LSN Acknowledgement to the database server. [Support Ticket
#1018300, #1019154]

Bug Fix Corrected the row level filter criteria execution based on JSON attributes for WAL mode replication. [Support Ticket #1044051]

Bug Fix Fixed the installation issue observed on Windows 2012 in Azure environment. [Support Ticket #1032966]

Bug Fix Resolved the Snapshot failure case when the source database connection is invalidated in a long running Snapshot session. [Support
Ticket #1049973]

12.8          Version 6.2.11

New features, enhancements, bug fixes, and other changes in EDB Postgres Replication Server 6.2.11 include the following:

Type Description

Bug ix Replication performance degrades significantly when there are a large number of conflicts, resulting in sync slowing down as more and more
tx sets pile up for conflict resolution. [Support Ticket #927590]

Bug
Fix

Synchronize operation fails due to UnsupportedCharsetException for WIN1252 encoding. [Support Ticket #1022536]

Bug
Fix

The data is not replicated to the target node after performing the Synchronize operation when the table name contains multi-bytes Japanese
characters. [Support Ticket #993951]

12.9          Version 6.2.10

New features, enhancements, bug fixes, and other changes in EDB Postgres Replication Server 6.2.10 include the following:

Type Description

Bug Fix Fixed error that caused data Snapshot failure for a table name with Japanese characters. [Support Ticket #993951]

Bug Fix Fixed duplicate key error for conflicts with unique constraint “xdb_conflicts_pkey” failure. [Support Ticket #998952]

Bug Fix Updated PostgreSQL/Advanced Server JDBC driver to version 42.2.9.

Bug Fix Fixed an issue where a Publication database cannot register with dbtype "enterprisedb".

Bug Fix Fixed redundant logging related with custom EUC_JP encoding.

Bug Fix Exposed an option to turn off logging of table level history stats. [Support Ticket #927590]

Bug Fix Resolved periodic Synchronisation stuck error when a database connection failure occurs. [Support Ticket #1002089]

Bug Fix Fixed an issue where a column name with multi-byte character(s) is incorrectly flagged as case sensitive. [Support Ticket
#1002319]

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 554



12.10          Version 6.2.9

New features, enhancements, bug fixes, and other changes in EDB Postgres Replication Server 6.2.9 include the following:

Type Description

Bug
Fix

The execution time of RepCLI dosyncronize command is improved. [Support Ticket #936411]

Bug
Fix

Synchronize replication fails if table column name contains a space. [Support Ticket #929731]

Bug
Fix

Synchronize replication fails for EUC-JP encoding. [Support Ticket #929731]

Bug
Fix

Synchronize replication might fail for an UPDATE transaction after a drop column via alter table.

Bug
Fix

Shadow table cleanup is subject to remove unprocessed changes. [Support Ticket #966253]

Bug
Fix

In Ora 2 PG/EPAS permutation, delta changes might skip in a corner case. [Support Ticket #966253]

Bug
Fix

Replication breaks for Oracle partition tables. [Support Ticket #966575]

Bug
Fix

Clean up shadow table history not working. [Support Ticket #927162]

Bug
Fix

For Ora to EPAS permutation, replication of TIMESTAMP (6) truncates leading 0 of decimal places. [Support Ticket #974690]

Bug
Fix

Adding a new table in MMR Publication might skip certain CDC changes introduced on target non-MDN Master database. [Support Ticket
#979202]

Bug
Fix

Fixed a Snapshot failure for JSONB array type. [Support Ticket #964245]

Bug
Fix

Synchronize operation incorrectly attempts to use a non-existent replication slot while Snapshot operation is in progress. [Support Ticket
#959229]

Bug
Fix

Upgrading from xDB 6.2.5 to xDB 6.2.8 causes services to fail with SSL error. [Support Ticket #982469]

12.11          Version 6.2.19

New features, enhancements, bug fixes, and other changes in EDB Postgres Replication Server 6.2.19 include the following:

Type Description

Bug
fix

Fixed the issue where the history cleanup job is not automatically configured for non-MDN databases in a MMR triggered based cluster.

Bug
fix

Fixed a data consistency issue that occurs in an UPDATE-UPDATE  conflict use case where some of the column changes from the target node
are not reverted if the source node changes are accepted and the target node changes are discarded. [Support ticket #83594]

Bug
fix

Fixed a corner case issue where the newly added rows in a non-MDN database might result in redundant INSERT-INSERT  conflicts. [Support
ticket #81651]

Bug
fix

Fixed an issue where synchronize replication fails when EDB Postgres Advanced Server is the publication database configured to use WAL
based change data capture (CDC) and an Oracle database is set up as the first subscription database and EDB Postgres Advanced Server as the
second subscription database.

Replication Server

Copyright © 2009 - 2023 EnterpriseDB Corporation. All rights reserved. 555


	1          Replication Server
	2          Introduction
	2.1          Conventions Used in this Guide
	2.2          Certified and Supported Product Versions
	2.3          Supported Platforms
	3          Overview
	3.1          Why Use Replication
	3.1.1          Offloading Reporting and Business Intelligence Queries
	3.1.2          Using Warm Standby Servers
	3.1.3          Testing Systems in Parallel
	3.1.4          Migrating Data
	3.1.5          Write Availability
	3.1.6          Write Scalability
	3.1.7          Localized Data Access
	3.2          Replication Concepts and Definitions
	3.2.1          Comparison of Single-Master and Multi-Master Replication
	3.2.2          Publications and Subscriptions
	3.2.3          Single-Master (Primary-to-secondary) Replication
	3.2.4          Multi-Master Replication
	3.2.5          Asynchronous
	3.2.6          Snapshot and Synchronization Overview
	3.2.7          Snapshot-Only Publications
	3.2.8          Snapshot Replication
	3.2.9          Synchronization Replication with the Trigger-Based Method
	3.2.10          Synchronization Replication with the Log-Based Method
	3.2.10.1          Requirements and Restrictions
	3.2.10.2          Logical Replication Slots
	3.2.10.3          Streaming Replication with the WAL Sender Process
	3.2.10.4          Replication Origin
	3.2.10.5          In-Memory Caching and Persistence
	3.2.11          Multi-Master Parallel Replication
	3.2.12          Table Filters
	Implementing Table Filters
	Effects of Table Filtering
	Table Settings and Restrictions for Table Filters
	Roadmap for Further Instructions

	3.3          xDB Replication Server Components and Architecture
	3.3.1          Physical Components
	Publication Server
	Subscription Server
	xDB Replication Configuration File
	xDB Startup Configuration File
	xDB Replication Console
	xDB Replication Server Command Line Interface
	Publication Database
	Subscription Database
	Primary node
	Primary definition node
	Control Schema and Control Schema Objects
	Controller Database

	3.3.2          Logical Components
	Publication Server
	Replication System Type (SMR/MMR)
	Publication Database Definition
	Publication
	Subscription Server
	Subscription Database Definition
	Subscription

	3.3.3          xDB Replication System Examples
	Oracle to PostgreSQL or Advanced Server Replication
	SQL Server to PostgreSQL or Advanced Server Replication
	Advanced Server to Oracle Replication
	PostgreSQL to Oracle Replication
	PostgreSQL or Advanced Server to SQL Server Replication
	Postgres Multi-Master Replication

	3.4          Designing a Replication System
	3.4.1          General Steps
	3.4.2          Design Considerations
	3.4.3          Restrictions on Replicated Database Objects
	Restrictions on Oracle Database Objects
	Restrictions on SQL Server Database Objects
	Restrictions on Postgres Database Objects

	3.4.4          Performance Considerations
	When to Use Snapshot or Synchronization
	When to Use On Demand Replication

	3.4.5          Distributed Replication
	Single Host
	Single-Master Replication Distributed Hosts
	Multi-Master Replication Distributed Hosts

	4          Installation and Uninstallation
	4.1          Installing With Stack Builder or StackBuilder Plus
	4.2          Installing from the Command Line
	4.3          Installing the xDB RPM Package on x86-64
	Updating an RPM Installation

	4.4          Installing the RHEL 8 xDB RPM Package on IBM Power (ppc64le)
	Setting up the Repository
	Installing the Package
	Initial configuration

	4.5          Installing Replication Server on an SLES Host
	On SLES 12 x86_64
	On SLES 12 ppc64le
	Setting up the Repository
	Installing the Package

	Initial configuration

	4.6          Installing a JDBC driver
	Choosing and installing a JDBC driver
	Configuring the driver
	Retaining the driver in an upgrade

	4.7          Post-Installation Host Environment
	4.8          Uninstalling xDB Replication Server
	4.9          Uninstalling the xDB RPM Package
	5          Introduction to the xDB Replication Console
	xDB Replication Console Tool Bar
	Refresh
	Create Publication
	Publication Management
	Create Subscription
	Subscription Management

	Saving Server Login Information
	Server Login File
	Security Risks of Saved Server Login Information


	6          Single-Master Replication Operation
	6.1          Prerequisite Steps
	6.1.1          Setting Heap Memory Size for the Publication and Subscription Servers
	Tuning heap size and configuration parameters for larger rows

	6.1.2          Enabling Synchronization Replication with the Log-Based Method
	6.1.3          Enabling Access to the Database Servers
	Enabling Access to Oracle
	Enabling Access to SQL Server

	6.1.4          Preparing the Publication Database
	Oracle Publication Database
	SQL Server Publication Database
	Postgres Publication Database

	6.1.5          Preparing the Subscription Database
	Postgres Subscription Database
	Oracle Subscription Database
	SQL Server Subscription Database

	6.1.6          Verifying Host Accessibility
	Firewalls and Access to Ports
	Network IP Addresses
	Postgres Server Authentication

	6.2          Creating a Publication
	6.2.1          Registering a Publication Server
	6.2.2          Adding a Publication Database
	6.2.3          Adding a Publication
	6.2.4          Control Schema Objects Created for a Publication
	Oracle Control Schema Objects
	SQL Server Control Schema Objects
	Postgres Control Schema Objects

	6.3          Creating a Subscription
	6.3.1          Registering a Subscription Server
	6.3.2          Adding a Subscription Database
	6.3.3          Adding a Subscription
	6.3.4          Subscription Metadata Object
	6.4          On Demand Replication
	6.4.1          Performing Snapshot Replication
	6.4.2          Performing Synchronization Replication
	6.5          Managing a Subscription
	6.5.1          Updating a Subscription Server
	6.5.2          Updating a Subscription Database
	6.5.3          Updating a Subscription
	6.5.4          Enabling/Disabling Table Filters on a Subscription
	6.5.5          Removing a Subscription
	6.5.6          Removing a Subscription Database
	6.6          Performing Controlled Switchover
	Controlled Switchover Overview
	Controlled Switchover Steps

	6.7          Performing Failover
	6.8          Optimizing Performance
	6.8.1          Optimizing Snapshot Replication
	6.8.2          Optimizing Synchronization Replication
	6.8.2.1          Using Prepared SQL Statements
	6.8.2.2          Parallel Synchronization
	6.8.2.3          Other Synchronization Configuration Options
	7          Multi-Master Replication Operation
	7.1          Prerequisite Steps
	Setting Heap Memory Size for the Publication Server
	Enabling Synchronization Replication with the Log-Based Method
	Preparing the Primary definition node
	Preparing Additional Primary nodes
	Verifying Host Accessibility

	7.2          Creating a Publication
	Registering a Publication Server
	Adding the Primary definition node
	Adding a Publication

	7.3          Creating Additional Primary nodes
	7.4          Control Schema Objects Created in Primary nodes
	7.5          On Demand Replication
	Performing Snapshot Replication
	Performing Synchronization Replication

	7.6          Conflict Resolution
	7.6.1          Configuration Parameter and Table Setting Requirements
	7.6.2          Conflict Types
	7.6.3          Conflict Detection
	7.6.4          Conflict Resolution Strategies
	7.6.5          Conflict Prevention – Uniqueness Case
	7.6.6          Conflict Prevention with an MMR-Ready Sequence
	7.6.6.1          Creating an MMR-Ready Sequence
	7.6.6.2          MMR-Ready Sequence Example
	7.6.6.3          Converting a Standard Sequence to an MMR-Ready Sequence
	7.6.6.4          Conversion to an MMR-Ready Sequence Example
	7.6.7          Automatic Conflict Resolution Example
	7.6.8          Custom Conflict Handling
	7.6.8.1          Custom Conflict Handling Function
	7.6.8.2          Adding a Custom Conflict Handling Function
	7.6.8.3          Custom Conflict Handling Examples
	7.6.9          Manual Conflict Resolution for the Trigger-Based Method
	7.6.9.1          Finding Conflicts
	7.6.9.2          Conflict Resolution Preparation
	7.6.9.3          Overview of Correction Strategies
	7.6.9.4          Manual Publication Table Correction
	7.6.9.5          Correction Using New Transactions
	7.6.9.6          Correction Using Shadow Table Transactions
	7.6.10          Manual Conflict Resolution for the Log-Based Method
	7.6.10.1          Finding Conflicts
	7.6.10.2          Conflict Resolution Concept for the Log-Based Method
	7.6.10.3          Overview of Correction Strategies
	7.6.10.4          Manual Publication Table Correction
	7.6.10.5          Correction Using New Transactions
	7.7          Viewing Conflict History
	7.8          Updating the Conflict Resolution Options
	7.9          Enabling/Disabling Table Filters on a Primary node
	7.10          Switching the Primary definition node
	7.11          Ensuring High Availability
	Significance of the Controller Database
	Automatic Switchover of the Controller Database
	Switching an Active Controller Database
	Restarting with an Alternate Controller Database

	7.12          Optimizing Performance
	8          Common Operations
	8.1          Selecting Tables with the Wildcard Selector
	Wildcard Selector Patterns
	Using the Wildcard Selector

	8.2          Creating a Schedule
	8.3          Managing a Schedule
	Updating a Schedule
	Removing a Schedule

	8.4          Viewing Replication History
	All Replication History
	Hiding Synchronizations With Zero Transaction Counts
	Shadow Table History

	8.5          Managing History
	Scheduling Shadow Table History Cleanup
	Cleaning Up the Shadow Table History
	Cleaning Up Replication History
	Cleaning Up Event History

	8.6          Managing a Publication
	8.6.1          Updating a Publication Server
	Publication Server Login File
	Subscription Server Network Location

	8.6.2          Updating a Publication Database
	8.6.3          Updating a Publication
	Adding Tables to a Publication
	Removing Tables from a Publication

	8.6.4          Updating the Set of Available Table Filters in a Publication
	8.6.5          Validating a Publication
	Validating a Single Publication
	Validating All Publications

	8.6.6          Removing a Publication
	8.6.7          Removing a Publication Database
	8.7          Switching the Controller Database
	8.8          Replicating DDL Changes
	8.8.1          DDL Change Replication Process
	8.8.2          DDL Change Replication Using the xDB Replication Console
	8.9          Loading Tables From an External Data Source (Offline Snapshot)
	Non-Batch Mode Synchronization
	Offline Snapshot Configuration Options
	Single-Master Replication Offline Snapshot
	Multi-Master Replication Offline Snapshot

	8.10          Replicating Postgres Partitioned Tables
	Creating a Postgres Version 10 or Later Partitioned Table Publication

	8.11          Using Secure Sockets Layer (SSL) Connections
	Configuring SSL on a Postgres Database Server
	Configuring SSL for the Publication Server and Subscription Server
	Using different databases for the source and target
	Requesting SSL Connection to the xDB Replication Server Databases
	Setting Non-default Paths using Environment Variables
	Setting Non-default Paths using SSL Connection Parameters
	Summary of SSL Configuration Options

	9          xDB Replication Server Command Line Interface
	9.1          Prerequisite Steps
	9.2          General Usage
	Running xDB Replication Server CLI
	Getting Help
	Supplying the Publication or Subscription Server Login Information
	Using Encrypted Passwords in Text Files
	Running xDB Replication Server CLI Using a Parameter File
	Testing the Command Exit Status

	9.3          xDB Replication Server CLI Commands
	9.3.1          Getting Help (help)
	9.3.2          Printing the Version Number (version)
	9.3.3          Printing the xDB Replication Server Version Number (repversion)
	9.3.4          Encrypting Passwords (encrypt)
	9.3.5          Printing the Time the Server Has Been Running (uptime)
	9.3.6          Adding a Publication Database (addpubdb)
	9.3.7          Printing Publication Database IDs (printpubdbids)
	9.3.8          Printing Publication Database Details (printpubdbidsdetails)
	9.3.9          Printing the Controller Database ID (printcontrollerdbid)
	9.3.10          Printing the Primary definition node Database ID (printmdndbid)
	9.3.11          Updating a Publication Database (updatepubdb)
	9.3.12          Removing a Publication Database (removepubdb)
	9.3.13          Get Tables for a New Publication (gettablesfornewpub)
	9.3.14          Creating a Publication (createpub)
	9.3.15          Printing a List of Publications (printpublist)
	9.3.16          Printing a List of Tables in a Publication (printpublishedtables)
	9.3.17          Printing a List of Filters in a Publication (printpubfilterslist)
	9.3.18          Adding Tables to a Publication (addtablesintopub)
	9.3.19          Removing Tables from a Publication (removetablesfrompub)
	9.3.20          Adding Table Filters to a Publication (addfilter)
	9.3.21          Updating Table Filters in a Publication (updatefilter)
	9.3.22          Removing a Table Filter from a Publication (removefilter)
	9.3.23          Printing the Conflict Resolution Strategy (printconfresolutionstrategy)
	9.3.24          Updating the Conflict Resolution Strategy (updateconfresolutionstrategy)
	9.3.25          Setting the master definition node (setasmdn)
	9.3.26          Setting the Controller (setascontroller)
	9.3.27          Validating a Publication (validatepub)
	9.3.28          Validating All Publications (validatepubs)
	9.3.29          Removing a Publication (removepub)
	9.3.30          Replicating DDL Changes (replicateddl)
	9.3.31          Adding a Subscription Database (addsubdb)
	9.3.32          Printing Subscription Database IDs (printsubdbids)
	9.3.33          Printing Subscription Database Details (printsubdbidsdetails)
	9.3.34          Updating a Subscription Database (updatesubdb)
	9.3.35          Removing a Subscription Database (removesubdb)
	9.3.36          Creating a Subscription (createsub)
	9.3.37          Printing a Subscription List (printsublist)
	9.3.38          Enabling Filters on a Subscription or Non-MDN Node (enablefilter)
	9.3.39          Disabling Filters on a Subscription or Non-MDN Node (disablefilter)
	9.3.40          Taking a Single-Master Snapshot (dosnapshot)
	9.3.41          Take a Multi-Master Snapshot (dommrsnapshot)
	9.3.42          Performing a Synchronization (dosynchronize)
	9.3.43          Configuring a Single-Master Schedule (confschedule)
	9.3.44          Configuring a Multi-Master Schedule (confschedulemmr)
	9.3.45          Print Schedule (printschedule)
	9.3.46          Updating a Subscription (updatesub)
	9.3.47          Removing a Subscription (removesub)
	9.3.48          Scheduling Shadow Table History Cleanup (confcleanupjob)
	9.3.49          Cleaning Up Shadow Table History (cleanshadowhistforpub)
	9.3.50          Cleaning Up Replication History (cleanrephistoryforpub)
	9.3.51          Cleaning Up All Replication History (cleanrephistory)
	10          Data Validator
	10.1          Installation and Configuration
	10.2          Performing Data Validation
	11          Appendix
	11.1          Permitted Configurations and Combinations
	Advanced Server Compatibility Configuration Modes
	Permitted SMR Source and Target Configurations
	Permitted MMR Database Server Configurations

	11.2          Upgrading to xDB Replication Server 6.2
	11.2.1          Upgrading with the Graphical User Interface Installer
	11.2.2          Upgrading with the xDB Replication Server RPM Package
	11.2.3          Updating the Publication and Subscription Server Ports
	11.3          Resolving Problems
	11.3.1          Error Messages
	Error Messages and Resolutions

	11.3.2          Where to Look for Errors
	General Replication Status
	Snapshot Replication Failures
	Synchronization Replication Failures
	Publication and Subscription Server Startup Failures
	Database Server Errors
	Oracle Errors

	11.3.3          Common Problem Checklist
	11.3.4          Troubleshooting Areas
	Java Runtime Errors
	Starting the Publication Server or Subscription Server
	Deleting the Control Schema and Control Schema Objects
	Dropping Replication Slots for Log-Based Synchronization Replication

	11.4          Miscellaneous xDB Replication Server Processing Topics
	11.4.1          Publication and Subscription Server Configuration Options
	11.4.1.1          Controlling Logging Level, Log File Sizes, and Rotation Count
	11.4.1.2          Replacing Null Characters
	11.4.1.3          Schema Migration Options
	11.4.1.4          Replicating Oracle Partitioned Tables
	11.4.1.5          Specifying a Custom URL for an Oracle JDBC Connection
	11.4.1.6          Snapshot Replication Options
	11.4.1.7          Assigning an IP Address for Remote Method Invocation
	11.4.1.8          Using pgAgent Job Scheduling
	11.4.1.9          Forcing Immediate Shadow Table Cleanup
	11.4.1.10          Setting Event History Cleanup Threshold
	11.4.1.11          DDL Change Replication Table Locking
	11.4.1.12          Persisting Zero Transaction Count Replication History
	11.4.1.13          Skipping Grants of Table Level User Privileges on MMR Target Tables
	11.4.1.14          Applying Grants of Table Level User Privileges on SMR Target Tables
	11.4.1.15          Log-Based Method of Synchronization Options
	11.4.1.16          Setting the Apache DBCP Connection Validation Query Timeout
	11.4.2          Encrypting the Password in the xDB Replication Configuration File
	11.4.3          Writing a Cron Expression
	11.4.4          Disabling Foreign Key Constraints for Snapshot Replications
	11.4.5          Quoted Identifiers and Default Case Translation
	11.4.6          Replicating the SQL Server SQL_VARIANT Data Type
	11.5          Service Pack Maintenance
	12          Release Notes
	Installation and upgrade notes

	12.1          Version 6.2.18
	12.2          Version 6.2.17
	12.3          Version 6.2.16
	12.4          Version 6.2.15
	12.5          Version 6.2.14
	12.6          Version 6.2.13
	12.7          Version 6.2.12
	12.8          Version 6.2.11
	12.9          Version 6.2.10
	12.10          Version 6.2.9
	12.11          Version 6.2.19

