
EDB JDBC Connector
Release 42.2.9.1

EDB JDBC Connector User’s Guide

Feb 03, 2021

Contents

1 What’s New 2

2 Requirements Overview 3
2.1 Supported Versions . 3
2.2 Supported Platforms . 3

3 Advanced Server JDBC Connector Overview 5
3.1 JDBC Driver Types . 5
3.2 The JDBC Interface . 7
3.3 JDBC Classes and Interfaces . 8
3.4 The JDBC DriverManager . 9
3.5 Advanced Server JDBC Connector Compatibility 10

4 Installing and Configuring the JDBC Connector 11
4.1 Installing the Connector with an RPM Package 12

4.1.1 Updating an RPM Installation . 13
4.2 Installing the Connector on an SLES 12 Host . 15
4.3 Installing a DEB Package on a Debian or Ubuntu Host 17
4.4 Using the Graphical Installer to Install the Connector 18
4.5 Configuring the Advanced Server JDBC Connector 24

5 Using the Advanced Server JDBC Connector with Java applications 25
5.1 Loading the Advanced Server JDBC Connector 27
5.2 Connecting to the Database . 28

5.2.1 Additional Connection Properties . 29
5.2.2 Preferring Synchronous Secondary Database Servers 32

Configuring Primary and Secondary Database Servers Overview 33
Example: Primary and Secondary Database Servers 33

5.3 Executing SQL Statements through Statement Objects 40
5.3.1 Using Named Notation with a CallableStatement Object 41

i

5.4 Retrieving Results from a ResultSet Object . 43
5.5 Freeing Resources . 44
5.6 Handling Errors . 45

6 Executing SQL Commands with executeUpdate() 46
6.1 Using executeUpdate() to INSERT Data . 47

6.1.1 executeUpdate() Syntax Examples . 49

7 Adding a Graphical Interface to a Java Program 50

8 Advanced JDBC Connector Functionality 54
8.1 Reducing Client-side Resource Requirements . 55

8.1.1 Modifying the Batch Size of a Statement Object 56
8.2 Using PreparedStatements to Send SQL Commands 57
8.3 Executing Stored Procedures . 59

8.3.1 Invoking Stored Procedures . 60
Executing a Simple Stored Procedure . 61
Executing Stored Procedures with IN parameters 63
Executing Stored Procedures with OUT parameters 65
Executing Stored Procedures with IN OUT parameters 67

8.4 Using REF CURSORS with Java . 70
8.4.1 Using a REF CURSOR to retrieve a ResultSet 70

8.5 Using BYTEA Data with Java . 73
8.5.1 Inserting BYTEA Data into an Advanced Server Database 74
8.5.2 Retrieving BYTEA Data from an Advanced Server Database 76

8.6 Using Object Types and Collections with Java 78
8.6.1 Using an Object Type . 79
8.6.2 Using a Collection . 82

8.7 Asynchronous Notification Handling with NoticeListener 85

9 Security and Encryption 88
9.1 Using SSL . 88

9.1.1 Configuring the Server . 89
9.1.2 Configuring the Client . 90

sslmode Connection Parameters . 90
9.1.3 Testing the SSL JDBC Connection . 92

Using SSL without Certificate Validation 93
9.1.4 Using Certificate Authentication (Without a Password) 94

9.2 Scram Compatibility . 94

10 Advanced Server JDBC Connector Logging 95
10.1 Enabling Logging with Connection Properties (static) 95
10.2 Enabling Logging with logging.properties (dynamic) 97

11 Reference - JDBC Data Types 98

ii

12 Conclusion 100

Index 102

iii

EDB JDBC Connector, Release 42.2.9.1

The JDBC connector provides connectivity between a Java application and an Advanced Server
database. This guide provides installation instructions, usage instructions, and examples that
demonstrate the Advanced Server specific functionality of the JDBC Connector.

The JDBC connector is written in Java and conforms to Sun’s JDK architecture. For more infor-
mation, see JDBC Driver Types

The JDBC connector is built on and supports all of the functionality of the PostgreSQL community
driver. For more information about the features and functionality of the driver, please refer to the
community documentation.

Contents 1

https://jdbc.postgresql.org/documentation/head/index.html

CHAPTER 1

What’s New

The following features are added to create Advanced Server JDBC Connector 42.2.9.1:

• The EDB JDBC Connector is now supported on Red Hat Enterprise Linux and CentOS
(x86_64) 8.x.

2

CHAPTER 2

Requirements Overview

2.1 Supported Versions

The Advanced Server JDBC Connector is certified with Advanced Server version 9.4 and above.

2.2 Supported Platforms

The Advanced Server JDBC Connector native packages are supported on the following 64 bit
Linux platforms:

• Red Hat Enterprise Linux and CentOS (x86_64) 7.x and 8.x.

• OEL Linux 7.x

• PPC-LE 8 running RHEL or CentOS 7.x

• SLES 12.x

• Debian 9.x

• Ubuntu 18.04

Note: EDB JDBC Connector, version 42.2.9.1 is no longer supported on CentOS/RHEL/OEL 6.x
platforms. It is strongly recommended that EDB products running on these platforms be migrated
to a supported platform.

3

EDB JDBC Connector, Release 42.2.9.1

The Advanced Server JDBC Connector graphical installers are supported on the following Win-
dows platforms:

64-bit Windows:

• Windows Server 2019

• Windows Server 2016

• Windows Server 2012 R2

32-bit Windows:

• Windows 10

• Windows 8

• Windows 7

2.2. Supported Platforms 4

CHAPTER 3

Advanced Server JDBC Connector Overview

Sun Microsystems created a standardized interface for connecting Java applications to databases
known as Java Database Connectivity (JDBC). The Advanced Server JDBC Connector connects a
Java application to a Postgres database.

3.1 JDBC Driver Types

There are currently four different types of JDBC drivers, each with their own specific implemen-
tation, use and limitations. The Advanced Server JDBC Connector is a Type 4 driver.

Type 1 Driver

• This driver type is the JDBC-ODBC bridge.

• It is limited to running locally.

• Must have ODBC installed on computer.

• Must have ODBC driver for specific database installed on computer.

• Generally can’t run inside an applet because of Native Method calls.

Type 2 Driver

• This is the native database library driver.

• Uses Native Database library on computer to access database.

• Generally can’t run inside an applet because of Native Method calls.

5

EDB JDBC Connector, Release 42.2.9.1

• Must have database library installed on client.

Type 3 Driver

• 100% Java Driver, no native methods.

• Does not require pre-installation on client.

• Can be downloaded and configured on-the-fly just like any Java class file.

• Uses a proprietary protocol for talking with a middleware server.

• Middleware server converts from proprietary calls to DBMS specific calls

Type 4 Driver

• 100% Java Driver, no native methods.

• Does not require pre-installation on client.

• Can be downloaded and configured on-the-fly just like any Java class file.

• Unlike Type III driver, talks directly with the DBMS server.

• Converts JDBC calls directly to database specific calls.

3.1. JDBC Driver Types 6

EDB JDBC Connector, Release 42.2.9.1

3.2 The JDBC Interface

Following figure shows the core API interfaces in the JDBC specification and how they relate to
each other. These interfaces are implemented in the java.sql package.

Fig. 1: JDBC Class Relationships

3.2. The JDBC Interface 7

EDB JDBC Connector, Release 42.2.9.1

3.3 JDBC Classes and Interfaces

The core API is composed of classes and interfaces; these classes and interfaces work together as
shown below:

Fig. 2: Core Classes and Interfaces

3.3. JDBC Classes and Interfaces 8

EDB JDBC Connector, Release 42.2.9.1

3.4 The JDBC DriverManager

The figure below depicts the role of the DriverManager class in a typical JDBC application.
The DriverManager acts as the bridge between a Java application and the backend database
and determines which JDBC driver to use for the target database.

Fig. 3: DriverManager/Drivers

3.4. The JDBC DriverManager 9

EDB JDBC Connector, Release 42.2.9.1

3.5 Advanced Server JDBC Connector Compatibility

EDB provides support for multiple JRE/JDK versions by providing appropriate JDBC drivers for
each version of Java Virtual Machine. Use the following table to determine compatibility between
your JRE/JDK version and the Advanced Server Driver.

Table – Advanced Server JDBC Driver Compatibility

JRE/JDK Version(s) JDBC Specification Advanced
Server JDBC
Driver

Community JDBC
Driver

1.4, 1.5 (see Note 1) 3 edb-jdbc15.jar postgresql-
9.3.1103.JDBC3.jar

1.6 (see Note 2) 4 edb-jdbc16.jar postgresql-42.2.9.jre6.jar
1.7 4.1 edb-jdbc17.jar postgresql-42.2.9.jre7.jar
1.8 4.2 edb-jdbc18.jar postgresql-42.2.9.jar

Note:

1. JRE/JDK versions 1.4 and 1.5 are no longer supported by the Advanced Server JDBC Con-
nector as the JDBC driver file edb-jdbc15.jar is no longer provided.

2. The edb-jdbc16.jar file is not available for Linux on PowerPC 64 little endian
(ppc64le), Debian/Ubuntu and RHEL 8 platforms.

3. The edb-jdbc17.jar file is not available for Debian/Ubuntu and RHEL 8 platforms.

4. Community version numbers are based on the pgjdbc version, not the PostgreSQL version.

5. Advanced Server JDBC releases are decoupled with EDB Postgres Advanced Server re-
leases.

The following JDBC Compatibility rules apply:

• From Community website: “The PostgreSQL JDBC driver has some unique properties that
you should be aware of before starting to develop any code for it. The current development
driver supports six server versions and six java environments. This doesn’t mean that every
feature must work in every combination, but a reasonable behaviour must be provided for
non-supported versions. While this extra compatibility sounds like a lot of work, the actual
goal is to reduce the amount of work by maintaining only one code base.”

• From the pgjdbc readme file: “PgJDBC regression tests are run against all PostgreSQL
versions since 8.4, including “build PostgreSQL from git master” version. Don’t assume
pgjdbc 9.4.x is only PostgreSQL 9.4 compatible.”

For the supported community versions, see the PostgreSQL JDBC Driver website.

3.5. Advanced Server JDBC Connector Compatibility 10

https://jdbc.postgresql.org/download.html

CHAPTER 4

Installing and Configuring the JDBC Connector

This chapter describes how to install and configure the Advanced Server JDBC Connector.

Before installing the JDBC Connector, you must have Java installed on your system; you can
download a Java installer that matches your environment from the Oracle Java Downloads website.
Documentation that contains detailed installation instructions is available through the associated
Docs Installation Instruction links on the same page.

You can use the Advanced Server graphical installer or an RPM package to add the JDBC Con-
nector to your installation.

The following sections describe these installation methods.

11

http://www.oracle.com/technetwork/java/javase/downloads/index.html

EDB JDBC Connector, Release 42.2.9.1

4.1 Installing the Connector with an RPM Package

Before installing JDBC Connector, you must:

Install the epel-release package:

• On RHEL or CentOS 7:

yum -y install https://dl.fedoraproject.org/pub/epel/
epel-release-latest-7.noarch.rpm

• On RHEL or CentOS 8:

dnf -y install https://dl.fedoraproject.org/pub/epel/
epel-release-latest-7.noarch.rpm

Note: You may need to enable the [extras] repository definition in the CentOS-Base.repo
file (located in /etc/yum.repos.d).

You must also have credentials that allow access to the EnterpriseDB repository. For information
about requesting credentials, visit:

https://info.enterprisedb.com/rs/069-ALB-339/images/Repository%20Access%
2004-09-2019.pdf

After receiving your repository credentials you can:

1. Create the repository configuration file.

2. Modify the file, providing your user name and password.

3. Install edb-jdbc.

Creating a Repository Configuration File

To create the repository configuration file, assume superuser privileges, and invoke the following
command:

• On RHEL or CentOS 7:

yum -y install https://yum.enterprisedb.com/
edb-repo-rpms/edb-repo-latest.noarch.rpm

• On RHEL or CentOS 8:

dnf -y install https://yum.enterprisedb.com/
edb-repo-rpms/edb-repo-latest.noarch.rpm

The repository configuration file is named edb.repo. The file resides in /etc/yum.repos.d.

Modifying the file, providing your user name and password

4.1. Installing the Connector with an RPM Package 12

https://info.enterprisedb.com/rs/069-ALB-339/images/Repository%20Access%2004-09-2019.pdf
https://info.enterprisedb.com/rs/069-ALB-339/images/Repository%20Access%2004-09-2019.pdf

EDB JDBC Connector, Release 42.2.9.1

After creating the edb.repo file, use your choice of editor to ensure that the value of the en-
abled parameter is 1, and replace the username and password placeholders in the baseurl
specification with the name and password of a registered EnterpriseDB user.

[edb]
name=EnterpriseDB RPMs $releasever - $basearch
baseurl=https://<username>:<password>@yum.enterprisedb.com/edb/redhat/
→˓rhel-$releasever-$basearch
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/ENTERPRISEDB-GPG-KEY

Installing JDBC Connector

After saving your changes to the configuration file, you can use the yum install command to
install the JDBC Connector on RHEL or CentOS 7:

• On RHEL or CentOS 7:

yum install edb-jdbc

• On RHEL or CentOS 8:

dnf install edb-jdbc

When you install an RPM package that is signed by a source that is not recognized by your system,
yum may ask for your permission to import the key to your local server. If prompted, and you are
satisfied that the packages come from a trustworthy source, enter y, and press Return to continue.

During the installation, yum may encounter a dependency that it cannot resolve. If it does, it will
provide a list of the required dependencies that you must manually resolve.

4.1.1 Updating an RPM Installation

If you have an existing JDBC Connector RPM installation, you can use yum or dnf to upgrade
your repository configuration file and update to a more recent product version. To update the
edb.repo file, assume superuser privileges and enter:

• On RHEL or CentOS 7:

yum upgrade edb-repo

• On RHEL or CentOS 8:

dnf upgrade edb-repo

yum or dnf will update the edb.repo file to enable access to the current EDB repository, config-
ured to connect with the credentials specified in your edb.repo file. Then, you can use yum or
dnf to upgrade any installed packages:

• On RHEL or CentOS 7:

4.1. Installing the Connector with an RPM Package 13

EDB JDBC Connector, Release 42.2.9.1

yum upgrade edb-jdbc

• On RHEL or CentOS 8:

dnf upgrade edb-jdbc

4.1. Installing the Connector with an RPM Package 14

EDB JDBC Connector, Release 42.2.9.1

4.2 Installing the Connector on an SLES 12 Host

You can use the zypper package manager to install the connector on an SLES 12 host. zypper
will attempt to satisfy package dependencies as it installs a package, but requires access to specific
repositories that are not hosted at EnterpriseDB.

Before installing the connector, use the following commands to add EnterpriseDB repository con-
figuration files to your SLES host:

zypper addrepo
https://zypp.enterprisedb.com/suse/epas12-sles.repo

zypper addrepo
https://zypp.enterprisedb.com/suse/epas-sles-tools.repo

zypper addrepo
https://zypp.enterprisedb.com/suse/epas-sles-dependencies.repo

Each command creates a repository configuration file in the /etc/zypp/repos.d directory.
The files are named:

• edbas12suse.repo

• edbasdependencies.repo

• edbastools.repo

After creating the repository configuration files, use the zypper refresh command to refresh
the metadata on your SLES host to include the EnterpriseDB repositories:

/etc/zypp/repos.d # zypper refresh
Repository 'SLES12-12-0' is up to date.
Repository 'SLES12-Pool' is up to date.
Repository 'SLES12-Updates' is up to date.
Retrieving repository 'EDB Postgres Advanced Server 12 12 - x86_64'
metadata -----------------------[\]

Authentication required for
'https://zypp.enterprisedb.com/12/suse/suse-12-x86_64'
User Name:
Password:

Retrieving repository 'EDB Postgres Advanced Server 12 12 - x86_64'
metadata...................................[done]
Building repository 'EDB Postgres Advanced Server 12 12 - x86_64'
cache..........................[done]

(continues on next page)

4.2. Installing the Connector on an SLES 12 Host 15

EDB JDBC Connector, Release 42.2.9.1

(continued from previous page)

All repositories have been refreshed.
...

When prompted for a User Name and Password, provide your connection credentials for the
EnterpriseDB repository. If you need credentials, contact EnterpriseDB.

Before installing EDB Postgres Advanced Server or supporting components, you must also add
SUSEConnect and the SUSE Package Hub extension to the SLES host, and register the host with
SUSE, allowing access to SUSE repositories. Use the commands:

zypper install SUSEConnect

SUSEConnect -p PackageHub/12/x86_64

SUSEConnect -p sle-sdk/12/x86_64

For detailed information about registering a SUSE host, visit the SUSE website.

Then, you can use the zypper utility to install the connector:

zypper install edb-jdbc

4.2. Installing the Connector on an SLES 12 Host 16

https://www.enterprisedb.com/repository-access-request/
https://www.suse.com/support/kb/doc/?id=7016626

EDB JDBC Connector, Release 42.2.9.1

4.3 Installing a DEB Package on a Debian or Ubuntu Host

To install a DEB package on a Debian or Ubuntu host, you must have credentials that allow access
to the EnterpriseDB repository. To request credentials for the repository, visit the EDB website.

The following steps will walk you through on using the EnterpriseDB apt repository to install
a DEB package. When using the commands, replace the username and password with the
credentials provided by EnterpriseDB.

1. Assume superuser privileges:

sudo su -

2. Configure the EnterpriseDB repository:

sh -c 'echo "deb https://username:password@apt.
enterprisedb.com/$(lsb_release -cs)-edb
$(lsb_release -cs) main" > /etc/apt/sources.list.d/
edb-$(lsb_release -cs).list'

3. Add support to your system for secure APT repositories:

apt-get install apt-transport-https

4. Add the EDB signing key:

wget -q -O - https://username:password@apt.
enterprisedb.com/edb-deb.gpg.key | apt-key add -

5. Update the repository metadata:

apt-get update

6. Install DEB package:

apt-get install edb-jdbc

Note: By default, the Debian 9x and Ubuntu 18.04 platform installs Java version 10. Make sure
you install Java version 8 on your system to run the EDB Java-based components.

4.3. Installing a DEB Package on a Debian or Ubuntu Host 17

https://www.enterprisedb.com/repository-access-request

EDB JDBC Connector, Release 42.2.9.1

4.4 Using the Graphical Installer to Install the Connector

You can use the EnterpriseDB Connectors Installation wizard to add the JDBC connector to your
system; the wizard is available from the EnterpriseDB Advanced Downloads page.

This section demonstrates using the Installation Wizard to install the Connectors on a Windows
system. (Download the installer, and then, right-click on the installer icon, and select Run As
Administrator from the context menu.)

When the Language Selection popup opens, select an installation language and click OK to
continue to the Setup window.

Fig. 1: The JDBC Connector Installation wizard

Click Next to continue.

4.4. Using the Graphical Installer to Install the Connector 18

https://www.enterprisedb.com/advanced-downloads

EDB JDBC Connector, Release 42.2.9.1

Fig. 2: The Installation dialog

Use the Installation Directory dialog to specify the directory in which the connector
will be installed, and click Next to continue.

4.4. Using the Graphical Installer to Install the Connector 19

EDB JDBC Connector, Release 42.2.9.1

Fig. 3: The Ready to Install dialog

Click Next on the Ready to Install dialog to start the installation; popup dialogs confirm
the progress of the installation wizard.

4.4. Using the Graphical Installer to Install the Connector 20

EDB JDBC Connector, Release 42.2.9.1

Fig. 4: The installation is complete

When the wizard informs you that it has completed the setup, click the Finish button to exit the
dialog.

You can also use StackBuilder Plus to add or update the connector on an existing Advanced Server
installation; to open StackBuilder Plus, select StackBuilder Plus from the Windows Apps menu
or through Linux Applications menu.

4.4. Using the Graphical Installer to Install the Connector 21

EDB JDBC Connector, Release 42.2.9.1

Fig. 5: Starting StackBuilder Plus

When StackBuilder Plus opens, follow the onscreen instructions. Select the EnterpriseDB
JDBC Connector option from the Database Drivers node of the tree control.

Fig. 6: Selecting the Connectors installer

Follow the directions of the onscreen wizard to add or update an installation of the EnterpriseDB

4.4. Using the Graphical Installer to Install the Connector 22

EDB JDBC Connector, Release 42.2.9.1

Connectors.

4.4. Using the Graphical Installer to Install the Connector 23

EDB JDBC Connector, Release 42.2.9.1

4.5 Configuring the Advanced Server JDBC Connector

Advanced Server ships with the following JDBC drivers:

• edb-jdbc16.jar supports JDBC version 4

• edb-jdbc17.jar supports JDBC version 4.1

• edb-jdbc18.jar supports JDBC version 4.2

Note: The edb-jdbc16.jar file is not available for Linux on PowerPC 64 little endian
(ppc64le).

To make the JDBC driver available to Java, you must either copy the appropriate java .jar file for
the JDBC version that you are using to your $java_home/jre/lib/ext directory or append
the location of the .jar file to the CLASSPATH environment variable.

Note that if you choose to append the location of the jar file to the CLASSPATH environment
variable, you must include the complete pathname:

/usr/edb/jdbc/edb-jdbcxx.jar

4.5. Configuring the Advanced Server JDBC Connector 24

CHAPTER 5

Using the Advanced Server JDBC Connector with Java
applications

With Java and the Advanced Server JDBC Connector in place, a Java application can access an
Advanced Server database. Listing 1.1 creates an application that executes a query and prints the
result set.

Listing 1.1

import java.sql.*;
public class ListEmployees
{
public static void main(String[] args)
{

try
{

Class.forName("com.edb.Driver");
String url = "jdbc:edb://localhost:5444/edb";
String user = "enterprisedb";
String password = "enterprisedb";
Connection con = DriverManager.getConnection(url, user,

→˓password);
Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM emp");
while(rs.next())
{

System.out.println(rs.getString(1));
}

(continues on next page)

25

EDB JDBC Connector, Release 42.2.9.1

(continued from previous page)

rs.close();
stmt.close();
con.close();
System.out.println("Command successfully executed");

}
catch(ClassNotFoundException e)
{

System.out.println("Class Not Found : " + e.getMessage());
}
catch(SQLException exp)
{

System.out.println("SQL Exception: " + exp.getMessage());
System.out.println("SQL State: " + exp.getSQLState());
System.out.println("Vendor Error: " + exp.getErrorCode());

}
}

}

This example is simple, but it demonstrates the fundamental steps required to interact with an
Advanced Server database from a Java application:

• Load the JDBC driver

• Build connection properties

• Connect to the database server

• Execute an SQL statement

• Process the result set

• Clean up

• Handle any errors that may occur

26

EDB JDBC Connector, Release 42.2.9.1

5.1 Loading the Advanced Server JDBC Connector

The Advanced Server JDBC driver is written in Java and is distributed in the form of a com-
piled JAR (Java Archive) file. Use the Class.forName() method to load the driver. The
forName() method dynamically loads a Java class at runtime. When an application calls the
forName() method, the JVM (Java Virtual Machine) attempts to find the compiled form (the
bytecode) that implements the requested class.

The Advanced Server JDBC driver is named com.edb.Driver:

Class.forName("com.edb.Driver");

After loading the bytecode for the driver, the driver registers itself with another JDBC class (named
DriverManager) that is responsible for managing all the JDBC drivers installed on the current
system.

If the JVM is unable to locate the named driver, it throws a ClassNotFound exception (which is
intercepted with a catch block near the end of the program). The DriverManager is designed
to handle multiple JDBC driver objects. You can write a Java application that connects to more
than one database system via JDBC. The next section explains how to select a specific driver.

5.1. Loading the Advanced Server JDBC Connector 27

EDB JDBC Connector, Release 42.2.9.1

5.2 Connecting to the Database

After the driver has loaded and registered itself with the DriverManager, the
ListEmployees class can attempt to connect to the database server, as shown in the follow-
ing code fragment:

String url = "jdbc:edb://localhost:5444/edb";
String user = "enterprisedb";
String password = "enterprisedb";
Connection con = DriverManager.getConnection(url, user, password);

All JDBC connections start with the DriverManager. The DriverManager class offers a
static method called getConnection() that is responsible for creating a connection to the
database. When you call the getConnection() method, the DriverManager must decide
which JDBC driver to use to connect to the database; that decision is based on a URL (Uniform
Resource Locator) that you pass to getConnection().

A JDBC URL takes the following general format:

jdbc:<driver>:<connection parameters>

The first component in a JDBC URL is always jdbc. When using the Advanced Server JDBC
Connector, the second component (the driver) is edb.

The Advanced Server JDBC URL takes one of the following forms:

jdbc:edb:<database>

jdbc:edb://<host>/<database>

jdbc:edb://<host>:<port>/<database>

The following table shows the various connection parameters:

Table - Connection Parameters

Name Description
host The host name of the server. Defaults to localhost.
port The port number the server is listening on. Defaults to the Advanced Server standard

port number (5444).
database The database name.

5.2. Connecting to the Database 28

EDB JDBC Connector, Release 42.2.9.1

5.2.1 Additional Connection Properties

In addition to the standard connection parameters, the Advanced Server JDBC driver sup-
ports connection properties that control behavior specific to EnterpriseDB. You can spec-
ify these properties in the connection URL or as a Properties object parameter passed to
DriverManager.getConnection(). Listing 1.2 demonstrates how to use a Properties
object to specify additional connection properties:

Listing 1.2

String url = "jdbc:edb://localhost/edb";
Properties props = new Properties();

props.setProperty("user", "enterprisedb");
props.setProperty("password", "enterprisedb");
props.setProperty("sslfactory", "com.edb.ssl.NonValidatingFactory");
props.setProperty("ssl", "true");

Connection con = DriverManager.getConnection(url, props);

Note: By default the combination of SSL=true and setting the connection URL pa-
rameter sslfactory=org.postgresql.ssl.NonValidatingFactory encrypts the
connection but does not validate the SSL certificate. To enforce certificate validation, you
must use a Custom SSLSocketFactory. For more details about writing a Custom
SSLSocketFactory, review the PostgreSQL JDBC driver documentation.

To specify additional connection properties in the URL, add a question mark and an ampersand-
separated list of keyword-value pairs:

String url = "jdbc:edb://localhost/edb?user=enterprisedb&ssl=true";

5.2. Connecting to the Database 29

https://jdbc.postgresql.org/documentation/head/ssl-factory.html

EDB JDBC Connector, Release 42.2.9.1

Some of the additional connection properties are shown in the following table:

Table 5-2 - Additional Connection Properties

5.2. Connecting to the Database 30

EDB JDBC Connector, Release 42.2.9.1

Name Type Description
user String The database user on whose behalf the connec-

tion is being made.
password String The database user’s password.
ssl Boolean Requests an authenticated, encrypted SSL

connection
loglevel Integer The value of loglevel determines the amount of

detail printed to the DriverManager’s current
value for LogStream or LogWriter. It currently
supports values of:
com.edb.Driver.DEBUG
com.edb.Driver.INFO
Set the value of loglevel to INFO to include
sparse log information or to DEBUG to pro-
duce significant detail.

charSet String The value of charSet determines the character
set used for data sent to or received from the
database.

prepareThreshold Integer The value of prepareThreshold determines the
number of PreparedStatement executions re-
quired before switching to server side prepared
statements. The default is five.

loadBalanceHosts Boolean In default mode (disabled) hosts are connected
in the given order. If enabled, hosts are chosen
randomly from the set of suitable candidates.

targetServerType String Allows opening connections to only servers
with the required state. The allowed values are
any, master, secondary, preferSecondary, and
preferSyncSecondary. The primary/secondary
distinction is currently done by observing if
the server allows writes. The value preferSec-
ondary tries to connect to secondaries if any
are available, otherwise allows connecting to
the primary. The Advanced Server JDBC Con-
nector supports preferSyncSecondary, which
permits connection to only synchronous sec-
ondaries or the primary if there are no active
synchronous secondaries.

skipQuotesOnReturning Boolean When set to true, column names from the RE-
TURNING clause are not quoted. This elim-
inates a case-sensitive comparison of the col-
umn name. When set to false (the default set-
ting), column names are quoted.

5.2. Connecting to the Database 31

EDB JDBC Connector, Release 42.2.9.1

5.2.2 Preferring Synchronous Secondary Database Servers

The Advanced Server JDBC Connector supports the preferSyncSecondary option for the
targetServerType connection property as noted in Table 5-2.

The preferSyncSecondary option provides a preference for synchronous, standby servers
for failover connection, and thus ignoring asynchronous servers.

The specification of this capability in the connection URL is shown by the following syntax:

jdbc:edb://primary:port,secondary_1:port_1,secondary_2:port_2,
→˓.../
database?targetServerType=preferSyncSecondary

Parameters

primary:port

The IP address or a name assigned to the primary database server followed by its port number. If
primary is a name, it must be specified with its IP address in the /etc/hosts file on the host
running the Java program. Note: The primary database server can be specified in any location in
the list. It does not have to precede the secondary database servers.

secondary_n:port_n

The IP address or a name assigned to a standby, secondary database server followed by its port
number. If secondary_n is a name, it must be specified with its IP address in the /etc/hosts
file on the host running the Java program.

database

The name of the database to which the connection is to be made.

The following is an example of the connection URL:

String url = "jdbc:edb://primary:5300,secondary1:5400/edb?
→˓targetServerType=preferSyncSecondary";
con = DriverManager.getConnection(url, "enterprisedb", "edb");

The following characteristics apply to the preferSyncSecondary option:

• The primary database server may be specified in any location in the connection list.

• Connection for accessing the database for usage by the Java program is first attempted on a
synchronous secondary. The secondary servers are available for read-only operations.

• No connection attempt is made to any servers running in asynchronous mode.

• The order in which connection attempts are made is determined by the
loadBalanceHosts connection property as described in Table 5-2. If disabled,
which is the default setting, connection attempts are made in the left-to-right order specified
in the connection list. If enabled, connection attempts are made randomly.

5.2. Connecting to the Database 32

EDB JDBC Connector, Release 42.2.9.1

• If connection cannot be made to a synchronous secondary, then connection to the primary
database server is used. If the primary database server is not active, then the connection
attempt fails.

The synchronous secondaries to be used for the preferSyncSecondary option must be con-
figured for hot standby usage.

The following section provides a brief overview of setting up the primary and secondary database
servers for hot standby, synchronous replication.

Configuring Primary and Secondary Database Servers Overview

The process for configuring a primary and secondary database servers are described in the Post-
greSQL documentation.

For general information on hot standby usage, which is needed for the preferSyncSecondary
option, see the PostgreSQL core documentation.

For information about creating a base backup for the secondary database server from the primary,
see Section 25.3.2, Making a Base Backup (describes usage of the pg_basebackup utility program)
or Section 25.3.3, Making a Base Backup Using the Low Level API within Section 25.3 Continuous
Archiving and Point-in-Time Recovery (PITR) in The PostgreSQL Core Documentation.

For information on the configuration parameters that must be set for hot standby usage, see Section
19.6, Replication.

The following section provides a basic example of setting up the primary and secondary database
servers.

Example: Primary and Secondary Database Servers

In the example that follows, the:

• Primary database server resides on host 192.168.2.24, port 5444

• Secondary database server is named secondary1 and resides on host 192.168.2.22,
port 5445

• Secondary database server is named secondary2 and resides on host 192.162.2.24,
port 5446 (same host as the primary)

In the primary database server’s pg_hba.conf file, there must be a replication entry for each
unique replication database USER/ADDRESS combination for all secondary database servers. In
the following example, the database superuser enterprisedb is used as the replication database
user for both the secondary1 database server on 192.168.2.22 and the secondary2
database server that is local relative to the primary.

5.2. Connecting to the Database 33

https://www.postgresql.org/docs/12/static/hot-standby.html
https://www.postgresql.org/docs/12/static/continuous-archiving.html
https://www.postgresql.org/docs/12/static/runtime-config-replication.html
https://www.postgresql.org/docs/12/static/runtime-config-replication.html

EDB JDBC Connector, Release 42.2.9.1

TYPE DATABASE USER ADDRESS METHOD
host replication enterprisedb 192.168.2.22/32 md5
host replication enterprisedb 127.0.0.1/32 md5

After the primary database server has been configured in the postgresql.conf file along
with its pg_hba.conf file, database server secondary1 is created by invoking the following
command on host 192.168.2.22 for secondary1:

su - enterprisedb
Password:
-bash-4.1$ pg_basebackup -D /opt/secondary1 -h 192.168.2.24 -p 5444 -
→˓Fp -R -X stream -l 'Secondary1'

On the secondary database server, /opt/secondary1, a recovery.conf file is gener-
ated in the database cluster, which has been edited in the following example by adding the
application_name=secondary1 setting as part of the primary_conninfo string and
removal of some of the other unneeded options automatically generated by pg_basebackup.
Also note the use of the standby_mode = 'on' parameter.

standby_mode = 'on'
primary_conninfo = 'user=enterprisedb password=password host=192.168.2.
→˓24 port=5444 application_name=secondary1'

The application name secondary1 must be included in the
synchronous_standby_names parameter of the primary database server’s postgresql.
conf file.

The secondary database server (secondary2) is created in an alternative manner on the same
host used by the primary:

su - enterprisedb
Password:
-bash-4.1$ psql -d edb -c "SELECT pg_start_backup('Secondary2')"
Password:
pg_start_backup

0/6000028
(1 row)

-bash-4.1$ cp -rp /var/lib/edb/as12/data/opt/secondary2
-bash-4.1$ psql -d edb -c "SELECT pg_stop_backup()"
Password:
NOTICE: pg_stop_backup complete, all required WAL segments have been
→˓archived
pg_stop_backup

(continues on next page)

5.2. Connecting to the Database 34

EDB JDBC Connector, Release 42.2.9.1

(continued from previous page)

0/6000130
(1 row)

On the secondary database server /opt/secondary2, create the recovery.conf file in
the database cluster. Note the application_name=secondary2 setting as part of the
primary_conninfo string as shown in the following example. Also be sure to include the
standby_mode = 'on' parameter.

standby_mode = 'on'
primary_conninfo = 'user=enterprisedb password=password host=localhost
→˓port=5444 application_name=secondary2'

The application name secondary2 must be included in the
synchronous_standby_names parameter of the primary database server’s postgresql.
conf file.

You must ensure the configuration parameter settings in the postgresql.conf file of the sec-
ondary database servers are properly set (particularly hot_standby=on).

Note: As of EDB Postgres Advanced Server v12, the recovery.conf file is no longer valid;
it is replaced by the standby.signal file. As a result, primary_conninfo is moved
from the recovery.conf file to the postgresql.conf file. The presence of standby.
signal file signals the cluster to run in standby mode. Please note that even if you try to create a
recovery.conf file manually and keep it under the data directory, the server will fail to start
and throw an error.

The parameter standby_mode=on is also removed from EDB Postgres Advanced Server v12,
and the trigger_file parameter name is changed to promote_trigger_file.

5.2. Connecting to the Database 35

EDB JDBC Connector, Release 42.2.9.1

The following table lists the basic postgresql.conf configuration parameter settings of the
primary database server as compared to the secondary database servers:

Table - Primary/Secondary Configuration Parameters

Parameter Primary Secondary Description
archive_mode on off Completed WAL segments

sent to archive storage
archive_command cp %p

/archive_dir/%f
n/a Archive completed WAL

segments
wal_level hot_standby

(9.5 or earlier),
replica (9.6 or
later)

minimal Information written to
WAL segment

max_wal_senders n (positive inte-
ger)

0 Maximum concurrent
connections from standby
servers

wal_keep_segments n (positive inte-
ger)

0 Minimum number of past
log segments to keep for
standby servers

synchronous_standby_namesn(secondary1,
secondary2,. . .)

n/a List of standby servers
for synchronous replica-
tion. Must be present to
enable synchronous repli-
cation. These are ob-
tained from the applica-
tion_name option of the
primary_conninfo parame-
ter in the recovery.conf file
of each standby server.

hot_standby off on Client application can con-
nect and run queries on
the secondary server in
standby mode

The secondary database server (secondary1) is started:

-bash-4.1$ pg_ctl start -D /opt/secondary1 -l logfile -o "-p 5445"
server starting

The secondary database server (secondary2) is started:

-bash-4.1$ pg_ctl start -D /opt/secondary2/data -l logfile -o "-p 5446"
server starting

5.2. Connecting to the Database 36

EDB JDBC Connector, Release 42.2.9.1

To ensure that the secondary database servers are properly set up in synchronous mode, use the
following query on the primary database server. Note that the sync_state column lists appli-
cations secondary1 and secondary2 as sync.

edb=# SELECT usename, application_name, client_addr, client_port, sync_
→˓state FROM pg_stat_replication;

usename | application_name | client_addr | client_port | sync_
→˓state
--------------+------------------+--------------+-------------+--------
→˓----
enterprisedb | secondary1 | 192.168.2.22 | 53525 | sync
enterprisedb | secondary2 | 127.0.0.1 | 36214 | sync
(2 rows)

The connection URL is:

String url = "jdbc:edb://primary:5444,secondary1:5445,secondary2:5446/
→˓edb?targetServerType=preferSyncSecondary";
con = DriverManager.getConnection(url, "enterprisedb", "password");

The /etc/hosts file on the host running the Java program contains the following entries with
the server names specified in the connection URL string:

192.168.2.24 localhost.localdomain primary
192.168.2.22 localhost.localdomain secondary1
192.168.2.24 localhost.localdomain secondary2

For this example, the preferred synchronous secondary connection option results in the first usage
attempt made on secondary1, then on secondary2 if secondary1 is not active, then on the
primary if both secondary1 and secondary2 are not active as demonstrated by the following
program that displays the IP address and port of the database server to which the connection is
made.

import java.sql.*;
public class InetServer
{
public static void main(String[] args)
{

try
{

Class.forName("com.edb.Driver");
String url =

"jdbc:edb://primary:5444,secondary1:5445,secondary2:5446/edb?
→˓targetServerType=preferSyncSecondary";

String user = "enterprisedb";
String password = "password";
Connection con = DriverManager.getConnection(url, user,

→˓password); (continues on next page)

5.2. Connecting to the Database 37

EDB JDBC Connector, Release 42.2.9.1

(continued from previous page)

ResultSet rs = con.createStatement().executeQuery("SELECT inet_
→˓server_addr() || ':' || inet_server_port()");

rs.next();
System.out.println(rs.getString(1));

rs.close();
con.close();
System.out.println("Command successfully executed");

}
catch(ClassNotFoundException e)
{

System.out.println("Class Not Found : " + e.getMessage());
}
catch(SQLException exp)
{

System.out.println("SQL Exception: " + exp.getMessage());
System.out.println("SQL State: " + exp.getSQLState());
System.out.println("Vendor Error: " + exp.getErrorCode());

}
}

}

Case 1: When all database servers are active, connection is made to secondary1 on 192.168.
2.22 port 5445.

$ java InetServer
192.168.2.22/32:5445
Command successfully executed

Case 2: When secondary1 is shut down, connection is made to secondary2 on 192.168.
2.24 port 5446.

bash-4.1$ /usr/edb/as12/bin/pg_ctl stop -D /opt/secondary1
waiting for server to shut down.... done
server stopped

$ java InetServer
192.168.2.24/32:5446
Command successfully executed

Case 3: When secondary2 is also shut down, connection is made to the primary on 192.
168.2.24 port 5444.

bash-4.1$ /usr/edb/as12/bin/pg_ctl stop -D /opt/secondary2/data
(continues on next page)

5.2. Connecting to the Database 38

EDB JDBC Connector, Release 42.2.9.1

(continued from previous page)

waiting for server to shut down.... done
server stopped

$ java InetServer
192.168.2.24/32:5444
Command successfully executed

5.2. Connecting to the Database 39

EDB JDBC Connector, Release 42.2.9.1

5.3 Executing SQL Statements through Statement Ob-
jects

After loading the Advanced Server JDBC Connector driver and connecting to the server, the code
in the sample application builds a JDBC Statement object, executes an SQL query, and displays
the results.

A Statement object sends SQL statements to a database. There are three kinds of Statement
objects. Each is specialized to send a particular type of SQL statement:

• A Statement object is used to execute a simple SQL statement with no parameters.

• A PreparedStatement object is used to execute a pre-compiled SQL statement with or
without IN parameters.

• A CallableStatement object is used to execute a call to a database stored procedure.

You must construct a Statement object before executing an SQL statement. The Statement
object offers a way to send a SQL statement to the server (and gain access to the result set). Each
Statement object belongs to a Connection; use the createStatement() method to ask
the Connection to create the Statement object.

A Statement object defines several methods to execute different types of SQL statements. In
the sample application, the executeQuery() method executes a SELECT statement:

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM emp");

The executeQuery() method expects a single argument: the SQL statement that you want to
execute. executeQuery() returns data from the query in a ResultSet object. If the server
encounters an error while executing the SQL statement provided, it throws an SQLException
(and does not return a ResultSet).

5.3. Executing SQL Statements through Statement Objects 40

EDB JDBC Connector, Release 42.2.9.1

5.3.1 Using Named Notation with a CallableStatement Object

The JDBC Connector (Advanced Server version 9.6 and later) supports the use of named param-
eters when instantiating a CallableStatement object. This syntax is an extension of JDBC
supported syntax, and does not conform to the JDBC standard.

You can use a CallableStatement object to pass parameter values to a stored procedure. You
can assign values to IN, OUT, and INOUT parameters with a CallableStatement object.

When using the CallableStatement class, you can use ordinal notation or named notation
to specify values for an actual arguments. You must set a value for each IN or INOUT parameter
marker in a statement.

When using ordinal notation to pass values to a CallableStatement object, you should use
the setter method that corresponds to the parameter type. For example, when passing a STRING
value, use the setString setter method. Each parameter marker within a statement (?) rep-
resents an ordinal value. When using ordinal parameters, you should pass the actual parameter
values to the statement in the order that the formal arguments are specified within the procedure
definition.

You can also use named parameter notation when specifying argument values for a
CallableStatement object. Named parameter notation allows you to supply values for only
those parameters that are required by the procedure, omitting any parameters that have acceptable
default values. You can also specify named parameters in any order.

When using named notation, each parameter name should correspond to a COLUMN_NAME re-
turned by a call to the DatabaseMetaData.getProcedureColumns method. You should
use the => token when including a named parameter in a statement call.

Use the registerOutParameter method to identify each OUT or INOUT parameter marker
in the statement.

Examples

The following examples demonstrate using the CallableStatement method to provide pa-
rameters to a procedure with the following signature:

PROCEDURE hire_emp (ename VARCHAR2
empno NUMBER
job VARCHAR2
sal NUMBER
hiredate DATE DEFAULT now(),
mgr NUMBER DEFAULT 7100,
deptno NUMBER
)

The following example uses ordinal notation to provide parameters:

5.3. Executing SQL Statements through Statement Objects 41

EDB JDBC Connector, Release 42.2.9.1

CallableStatement cstmt = con.prepareCall
("{CALL hire_emp(?,?,?,?,?,?,?)}");
//Bind a value to each parameter.
cstmt.setString(1, "SMITH");
cstmt.setInt(2, 8888);
cstmt.setString(3, "Sales");
cstmt.setInt(4, 5500);
cstmt.setDate(5, "2016-06-01");
cstmt.setInt(6, 7566);
cstmt.setInt(7, 30);

The following example uses named notation to provide parameters; using named notation, you can
omit parameters that have default values or re-order parameters:

CallableStatement cstmt = con.prepareCall
("{CALL hire_emp(ename => ?,
job => ?,
empno => ?,
sal => ?,
deptno => ?
)}");

//Bind a value to each parameter.
cstmt.setString("ename", "SMITH");
cstmt.setInt("empno", 8888);
cstmt.setString("job", "Sales");
cstmt.setInt("sal", 5500);
cstmt.setInt("deptno", 30);

5.3. Executing SQL Statements through Statement Objects 42

EDB JDBC Connector, Release 42.2.9.1

5.4 Retrieving Results from a ResultSet Object

A ResultSet object is the primary storage mechanism for the data returned by an SQL
statement. Each ResultSet object contains both data and metadata (in the form of a
ResultSetMetaData object). ResultSetMetaData includes useful information about re-
sults returned by the SQL command: column names, column count, row count, column length, and
so on.

To access the row data stored in a ResultSet object, an application calls one or more getter
methods. A getter method retrieves the value in particular column of the current row. There are
many different getter methods; each method returns a value of a particular type. For example,
the getString() method returns a STRING type; the getDate() method returns a Date,
and the getInt() method returns an INT type. When an application calls a getter method,
JDBC tries to convert the value into the requested type.

Each ResultSet keeps an internal pointer that point to the current row. When the
executeQuery() method returns a ResultSet, the pointer is positioned before the first row;
if an application calls a getter method before moving the pointer, the getter method will fail.
To advance to the next (or first) row, call the ResultSet’s next() method. ResultSet.
next() is a boolean method; it returns TRUE if there is another row in the ResultSet or
FALSE if you have moved past the last row.

After moving the pointer to the first row, the sample application uses the getString() getter
method to retrieve the value in the first column and then prints that value. Since ListEmployees
calls rs.next() and rs.getString() in a loop, it processes each row in the result set.
ListEmployees exits the loop when rs.next() moves the pointer past the last row and
returns FALSE.

while(rs.next())
{
System.out.println(rs.getString(1));
}

When using the ResultSet interface, remember:

• You must call next() before reading any values. next() returns true if another row is
available and prepares the row for processing.

• Under the JDBC specification, an application should access each row in the ResultSet
only once. It is safest to stick to this rule, although at the current time, the Advanced Server
JDBC driver will allow you to access a field as many times as you want.

• When you’ve finished using a ResultSet, call the close() method to free the resources
held by that object.

5.4. Retrieving Results from a ResultSet Object 43

EDB JDBC Connector, Release 42.2.9.1

5.5 Freeing Resources

Every JDBC object consumes some number of resources. A ResultSet object, for example,
may contain a copy of every row returned by a query; a Statement object may contain the text of
the last command executed, and so forth. It’s usually a good idea to free up those resources when
the application no longer needs them. The sample application releases the resources consumed
by the Result, Statement, and Connection objects by calling each object’s close()
method:

rs.close();
stmt.close();
con.close();

If you attempt to use a JDBC object after closing it, that object will throw an error.

5.5. Freeing Resources 44

EDB JDBC Connector, Release 42.2.9.1

5.6 Handling Errors

When connecting to an external resource (such as a database server), errors are bound to occur;
your code should include a way to handle these errors. Both JDBC and the Advanced Server JDBC
Connector provide various types of error handling. The ListEmployees class example demonstrates
how to handle an error using try/catch blocks.

When a JDBC object throws an error (an object of type SQLException or of a type derived from
SQLException), the SQLException object exposes three different pieces of error informa-
tion:

• The error message.

• The SQL State.

• A vendor-specific error code.

In the example, the following code displays the value of these components should an error occur:

System.out.println("SQL Exception: " + exp.getMessage());
System.out.println("SQL State: " + exp.getSQLState());
System.out.println("Vendor Error: " + exp.getErrorCode());

For example, if the server tries to connect to a database that does not exist on the specified host,
the following error message is displayed:

SQL Exception: FATAL: database "acctg" does not exist
SQL State: 3D000
Vendor Error: 0

5.6. Handling Errors 45

CHAPTER 6

Executing SQL Commands with executeUpdate()

In the previous example ListEmployees executed a SELECT statement using the
Statement.executeQuery() method. executeQuery() was designed to execute query
statements so it returns a ResultSet that contains the data returned by the query. The
Statement class offers a second method that you should use to execute other types of com-
mands (UPDATE, INSERT, DELETE, and so forth). Instead of returning a collection of rows,
the executeUpdate() method returns the number of rows affected by the SQL command it
executes.

The signature of the executeUpdate() method is:

int executeUpdate(String sqlStatement)

Provide this method a single parameter of type String, containing the SQL command that you
wish to execute.

46

EDB JDBC Connector, Release 42.2.9.1

6.1 Using executeUpdate() to INSERT Data

The example that follows demonstrates using the executeUpdate() method to add a row to
the emp table.

NOTE: the following example is not a complete application, only a method - the samples in the re-
mainder of this document do not include the code required to set up and tear down a Connection.
To experiment with the example, you must provide a class that invokes the sample code.

Listing 1.3

public void updateEmployee(Connection con)
{

try
{

Console console = System.console();
Statement stmt = con.createStatement();

String empno = console.readLine("Employee Number :");
String ename = console.readLine("Employee Name :");
int rowcount = stmt.executeUpdate("INSERT INTO emp(empno, ename)

VALUES("+empno+",'"+ename+"')");
System.out.println("");
System.out.println("Success - "+rowcount+" rows affected.");

}
catch(Exception err)
{

System.out.println("An error has occurred.");
System.out.println("See full details below.");
err.printStackTrace();

}
}

The updateEmployee() method expects a single argument from the caller, a Connection
object that must be connected to an Advanced Server database:

public void updateEmployee(Connection con)

Next, updateEmployee() prompts the user for an employee name and number:

String empno = console.readLine("Employee Number :");
String ename = console.readLine("Employee Name :");

updateEmployee() concatenates the values returned by console.readline() into an
INSERT statement and pass the result to the executeUpdate() method.

6.1. Using executeUpdate() to INSERT Data 47

EDB JDBC Connector, Release 42.2.9.1

int rowcount = stmt.executeUpdate("INSERT INTO emp(empno, ename)
VALUES("+empno+",'"+ename+"')");

For example, if the user enters an employee number of 6000 and a name of Jones, the INSERT
statement passed to executeUpdate() will look like this:

INSERT INTO emp(empno, ename) VALUES(6000, 'Jones');

The executeUpdate() method returns the number of rows affected by the SQL statement (an
INSERT typically affects one row, but an UPDATE or DELETE statement can affect more). If
executeUpdate() returns without throwing an error, the call to System.out.println
displays a message to the user that shows the number of rows affected.

System.out.println("");
System.out.println("Success - "+rowcount+" rows affected.");

The catch block displays an appropriate error message to the user if the program encounters an
exception:

{
System.out.println("An error has occurred.");
System.out.println("See full details below.");
err.printStackTrace();
}

6.1. Using executeUpdate() to INSERT Data 48

EDB JDBC Connector, Release 42.2.9.1

6.1.1 executeUpdate() Syntax Examples

You can use executeUpdate() with any SQL command that does not return a result set. Some
simple syntax examples using executeUpdate() with SQL commands follow:

To use the UPDATE command with executeUpdate() to update a row:

stmt.executeUpdate("UPDATE emp SET ename='"+ename+"' WHERE empno=
→˓"+empno);

To use the DELETE command with executeUpdate() to remove a row from a table:

stmt.executeUpdate("DELETE FROM emp WHERE empno="+empno);

To use the DROP TABLE command with executeUpdate() to delete a table from a database:

stmt.executeUpdate("DROP TABLE tablename");

To use the CREATE TABLE command with executeUpdate() to add a new table to a
database:

stmt.executeUpdate("CREATE TABLE tablename (fieldname NUMBER(4,2),
fieldname2 VARCHAR2(30))");

To use the ALTER TABLE command with executeUpdate() to change the attributes of a
table:

stmt.executeUpdate("ALTER TABLE tablename ADD COLUMN colname BOOLEAN");

6.1. Using executeUpdate() to INSERT Data 49

CHAPTER 7

Adding a Graphical Interface to a Java Program

With a little extra work, you can add a graphical user interface to a program - the next example
(Listing 1.4) demonstrates how to write a Java application that creates a JTable (a spreadsheet-
like graphical object) and copies the data returned by a query into that JTable.

Note: The following sample application is a method, not a complete application. To call this
method, provide an appropriate main() function and wrapper class.

Listing 1.4

import java.sql.*;
import java.util.Vector;
import javax.swing.JFrame;
import javax.swing.JScrollPane;
import javax.swing.JTable;

...
public void showEmployees(Connection con)
{
try
{

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM emp");
ResultSetMetaData rsmd = rs.getMetaData();
Vector labels = new Vector();
for(int column = 0; column < rsmd.getColumnCount(); column++)

(continues on next page)

50

EDB JDBC Connector, Release 42.2.9.1

(continued from previous page)

labels.addElement(rsmd.getColumnLabel(column + 1));

Vector rows = new Vector();
while(rs.next())
{

Vector rowValues = new Vector();
for(int column = 0; column < rsmd.getColumnCount(); column++)

rowValues.addElement(rs.getString(column + 1));
rows.addElement(rowValues);

}

JTable table = new JTable(rows, labels);
JFrame jf = new JFrame("Browsing table: EMP (from EnterpriseDB)");
jf.getContentPane().add(new JScrollPane(table));
jf.setSize(400, 400);
jf.setVisible(true);
jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
System.out.println("Command successfully executed");

}
catch(Exception err)
{

System.out.println("An error has occurred.");
System.out.println("See full details below.");
err.printStackTrace();

}
}

Before writing the showEmployees() method, you must import the definitions for a few JDK-
provided classes:

import java.sql.*;
import java.util.Vector;
import javax.swing.JFrame;
import javax.swing.JScrollPane;
import javax.swing.JTable;

The showEmployees() method expects a Connection object to be provided by the caller; the
Connection object must be connected to the Advanced Server:

public void showEmployees(Connection con)

showEmployees() creates a Statement and uses the executeQuery()method to execute
an SQL query that generates an employee list:

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM emp");

51

EDB JDBC Connector, Release 42.2.9.1

As you would expect, executeQuery() returns a ResultSet object. The ResultSet ob-
ject contains the metadata that describes the shape of the result set (that is, the number of rows
and columns in the result set, the data type for each column, the name of each column, and so
forth). You can extract the metadata from the ResultSet by calling the getMetaData()
method:

ResultSetMetaData rsmd = rs.getMetaData();

Next, showEmployees() creates a Vector (a one dimensional array) to hold the column head-
ers and then copies each header from the ResultMetaData object into the vector:

Vector labels = new Vector();
for(int column = 0; column < rsmd.getColumnCount(); column++)
{

labels.addElement(rsmd.getColumnLabel(column + 1));
}

With the column headers in place, showEmployees() extracts each row from the ResultSet
and copies it into a new vector (named rows). The rows vector is actually a vector of vectors:
each entry in the rows vector contains a vector that contains the data values in that row. This
combination forms the two-dimensional array that you will need to build a JTable. After creating
the rows vector, the program reads through each row in the ResultSet (by calling rs.next()).
For each column in each row, a getter method extracts the value at that row/column and adds
the value to the rowValues vector. Finally, showEmployee() adds each rowValues vector
to the rows vector:

Vector rows = new Vector();
while(rs.next())
{

Vector rowValues = new Vector();
for(int column = 0; column < rsmd.getColumnCount(); column++)

rowValues.addElement(rs.getString(column + 1));
rows.addElement(rowValues);

}

At this point, the vector (labels) contains the column headers, and a second two-dimensional
vector (rows) contains the data for the table. Now you can create a JTable from the vectors and
a JFrame to hold the JTable:

JTable table = new JTable(rows, labels);
JFrame jf = new JFrame("Browsing table: EMP (from EnterpriseDB)");
jf.getContentPane().add(new JScrollPane(table));
jf.setSize(400, 400);
jf.setVisible(true);
jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
System.out.println("Command successfully executed");

52

EDB JDBC Connector, Release 42.2.9.1

The showEmployees() method includes a catch block to intercept any errors that may occur
and display an appropriate message to the user:

catch(Exception err)
{

System.out.println("An error has occurred.");
System.out.println("See full details below.");
err.printStackTrace();

}

The result of calling the showEmployees() method is shown in below figure:

Fig. 1: The showEmployees Window

53

CHAPTER 8

Advanced JDBC Connector Functionality

The previous example created a graphical user interface that displayed a result set in a JTable.
Now we will switch gears and show you some of the more advanced features of the Advanced
Server JDBC Connector.

To avoid unnecessary clutter, the rest of the code samples in this document will use the console to
interact with the user instead of creating a graphical use interface.

54

EDB JDBC Connector, Release 42.2.9.1

8.1 Reducing Client-side Resource Requirements

The Advanced Server JDBC driver retrieves the results of a SQL query as a ResultSet object.
If a query returns a large number of rows, using a batched ResultSet will:

• Reduce the amount of time it takes to retrieve the first row.

• Save time by retrieving only the rows that you need.

• Reduce the memory requirement of the client.

When you reduce the fetch size of a ResultSet object, the driver doesn’t copy the entire
ResultSet across the network (from the server to the client). Instead, the driver requests a
small number of rows at a time; as the client application moves through the result set, the driver
fetches the next batch of rows from the server.

Batched result sets cannot be used in all situations. Not adhering to the following restrictions will
make the driver silently fall back to fetching the whole ResultSet at once:

• The client application must disable autocommit.

• The Statement object must be created with a ResultSet type of
TYPE_FORWARD_ONLY type (which is the default). TYPE_FORWARD_ONLY result
sets can only step forward through the ResultSet.

• The query must consist of a single SQL statement.

8.1. Reducing Client-side Resource Requirements 55

EDB JDBC Connector, Release 42.2.9.1

8.1.1 Modifying the Batch Size of a Statement Object

Limiting the batch size of a ResultSet object can speed the retrieval of data and reduce the
resources needed by a client-side application. Listing 1.5 creates a Statement object with a
batch size limited to five rows:

// Make sure autocommit is off
conn.setAutoCommit(false);

Statement stmt = conn.createStatement();
// Set the Batch Size.
stmt.setFetchSize(5);

ResultSet rs = stmt.executeQuery("SELECT * FROM emp");
while (rs.next())

System.out.println("a row was returned.");

rs.close();
stmt.close();

The call to conn.setAutoCommit(false) ensures that the server won’t close the
ResultSet before you have a chance to retrieve the first row. After preparing the Connection,
you can construct a Statement object:

Statement stmt = db.createStatement();

The following code sets the batch size to five (rows) before executing the query:

stmt.setFetchSize(5);

ResultSet rs = stmt.executeQuery("SELECT * FROM emp");

For each row in the ResultSet object, the call to println() prints a row was
returned.

System.out.println("a row was returned.");

Remember, while the ResultSet contains all of the rows in the table, they are only fetched
from the server five rows at a time. From the client’s point of view, the only difference between a
batched result set and an unbatched result set is that a batched result may return the first row
in less time.

Next, we will look at another feature (the PreparedStatement) that you can use to increase
the performance of certain JDBC applications.

8.1. Reducing Client-side Resource Requirements 56

EDB JDBC Connector, Release 42.2.9.1

8.2 Using PreparedStatements to Send SQL Commands

Many applications execute the same SQL statement over and over again, changing one or more
of the data values in the statement between each iteration. If you use a Statement object to
repeatedly execute a SQL statement, the server must parse, plan, and optimize the statement every
time. JDBC offers another Statement derivative, the PreparedStatement to reduce the
amount of work required in such a scenario.

Listing 1.6 demonstrates invoking a PreparedStatement that accepts an employee ID and
employee name and inserts that employee information in the emp table:

Listing 1.6

public void AddEmployee(Connection con)
{

try
{

Console c = System.console();
String command = "INSERT INTO emp(empno,ename) VALUES(?,?)";
PreparedStatement stmt = con.prepareStatement(command);
stmt.setObject(1,new Integer(c.readLine("ID:")));
stmt.setObject(2,c.readLine("Name:"));
stmt.execute();

System.out.println("The procedure successfully executed.");
}
catch(Exception err)
{

System.out.println("An error has occurred.");
System.out.println("See full details below.");
err.printStackTrace();

}
}

Instead of hard-coding data values in the SQL statement, you insert placeholders to represent
the values that will change with each iteration. Listing 1.6 shows an INSERT statement that
includes two placeholders (each represented by a question mark):

String command = "INSERT INTO emp(empno,ename) VALUES(?,?)";

With the parameterized SQL statement in hand, the AddEmployee() method can ask the
Connection object to prepare that statement and return a PreparedStatement object:

PreparedStatement stmt = con.prepareStatement(command);

At this point, the PreparedStatement has parsed and planned the INSERT statement, but it
does not know what values to add to the table. Before executing the PreparedStatement, you

8.2. Using PreparedStatements to Send SQL Commands 57

EDB JDBC Connector, Release 42.2.9.1

must supply a value for each placeholder by calling a setter method. setObject() expects
two arguments:

• A parameter number; parameter number one corresponds to the first question mark, param-
eter number two corresponds to the second question mark, etc.

• The value to substitute for the placeholder.

The AddEmployee() method prompts the user for an employee ID and name and calls
setObject() with the values supplied by the user:

stmt.setObject(1,new Integer(c.readLine("ID:")));
stmt.setObject(2, c.readLine("Name:"));

And then asks the PreparedStatement object to execute the statement:

stmt.execute();

If the SQL statement executes as expected, AddEmployee() displays a message that confirms
the execution. If the server encounters an exception, the error handling code displays an error
message.

8.2. Using PreparedStatements to Send SQL Commands 58

EDB JDBC Connector, Release 42.2.9.1

8.3 Executing Stored Procedures

A stored procedure is a module that is written in EnterpriseDB’s SPL and stored in the database.
A stored procedure may define input parameters to supply data to the procedure and output param-
eters to return data from the procedure. Stored procedures execute within the server and consist of
database access commands (SQL), control statements, and data structures that manipulate the data
obtained from the database.

Stored procedures are especially useful when extensive data manipulation is required before storing
data from the client. It is also efficient to use a stored procedure to manipulate data in a batch
program.

8.3. Executing Stored Procedures 59

EDB JDBC Connector, Release 42.2.9.1

8.3.1 Invoking Stored Procedures

The CallableStatement class provides a way for a Java program to call stored procedures.
A CallableStatement object can have a variable number of parameters used for input (IN
parameters), output (OUT parameters), or both (IN OUT parameters).

The syntax for invoking a stored procedure in JDBC is shown below. Note that the square brackets
indicate optional parameters; they are not part of the command syntax.

{call procedure_name([?, ?, ...])}

The syntax to invoke a procedure that returns a result parameter is:

{? = call procedure_name([?, ?, ...])}

Each question mark serves as a placeholder for a parameter. The stored procedure determines if
the placeholders represent IN, OUT, or IN OUT parameters and the Java code must match. We
will show you how to supply values for IN (or IN OUT) parameters and how to retrieve values
returned in OUT (or IN OUT) parameters in a moment.

8.3. Executing Stored Procedures 60

EDB JDBC Connector, Release 42.2.9.1

Executing a Simple Stored Procedure

Listing 1.7-a shows a stored procedure that increases the salary of each employee by 10%.
increaseSalary expects no arguments from the caller and does not return any information:

CREATE OR REPLACE PROCEDURE increaseSalary
IS

BEGIN
UPDATE emp SET sal = sal * 1.10;

END;

Listing 1.7-b demonstrates how to invoke the increaseSalary procedure:

public void SimpleCallSample(Connection con)
{

try
{

CallableStatement stmt = con.prepareCall("{call increaseSalary()}
→˓");

stmt.execute();
System.out.println("Stored Procedure executed successfully");

}
catch(Exception err)
{

System.out.println("An error has occurred.");
System.out.println("See full details below.");
err.printStackTrace();

}
}

To invoke a stored procedure from a Java application, use a CallableStatement object. The
CallableStatement class is derived from the Statement class and, like the Statement
class, you obtain a CallableStatement object by asking a Connection object to create one
for you. To create a CallableStatement from a Connection, use the prepareCall()
method:

CallableStatement stmt = con.prepareCall("{call increaseSalary()}");

As the name implies, the prepareCall() method prepares the statement, but does not execute
it. As you will see in the next example, an application typically binds parameter values between
the call to prepareCall() and the call to execute(). To invoke the stored procedure on the
server, call the execute() method.

stmt.execute();

This stored procedure (increaseSalary) did not expect any IN parameters and did not return
any information to the caller (using OUT parameters) so invoking the procedure is simply a matter

8.3. Executing Stored Procedures 61

EDB JDBC Connector, Release 42.2.9.1

of creating a CallableStatement object and then calling that object’s execute() method.

The next section demonstrates how to invoke a stored procedure that requires data (IN parameters)
from the caller.

8.3. Executing Stored Procedures 62

EDB JDBC Connector, Release 42.2.9.1

Executing Stored Procedures with IN parameters

The code in the next example first creates and then invokes a stored procedure named empInsert;
empInsert requires IN parameters that contain employee information: empno, ename, job,
sal, comm, deptno, and mgr. empInsert then inserts that information into the emp table.

Listing 1.8-a creates the stored procedure in the Advanced Server database:

CREATE OR REPLACE PROCEDURE empInsert(
pEname IN VARCHAR,
pJob IN VARCHAR,
pSal IN FLOAT4,
pComm IN FLOAT4,

pDeptno IN INTEGER,
pMgr IN INTEGER
)
AS
DECLARE

CURSOR getMax IS SELECT MAX(empno) FROM emp;
max_empno INTEGER := 10;

BEGIN
OPEN getMax;
FETCH getMax INTO max_empno;
INSERT INTO emp(empno, ename, job, sal, comm, deptno, mgr)

VALUES(max_empno+1, pEname, pJob, pSal, pComm, pDeptno, pMgr);
CLOSE getMax;

END;

Listing 1.8-b demonstrates how to invoke the stored procedure from Java:

public void CallExample2(Connection con)
{

try
{

Console c = System.console();
String commandText = "{call empInsert(?,?,?,?,?,?)}";
CallableStatement stmt = con.prepareCall(commandText);
stmt.setObject(1, new String(c.readLine("Employee Name :")));
stmt.setObject(2, new String(c.readLine("Job :")));
stmt.setObject(3, new Float(c.readLine("Salary :")));
stmt.setObject(4, new Float(c.readLine("Commission :")));
stmt.setObject(5, new Integer(c.readLine("Department No :")));
stmt.setObject(6, new Integer(c.readLine("Manager")));
stmt.execute();

}
catch(Exception err)
{

(continues on next page)

8.3. Executing Stored Procedures 63

EDB JDBC Connector, Release 42.2.9.1

(continued from previous page)

System.out.println("An error has occurred.");
System.out.println("See full details below.");
err.printStackTrace();

}
}

Each placeholder (?) in the command (commandText) represents a point in the command that is
later replaced with data:

String commandText = "{call EMP_INSERT(?,?,?,?,?,?)}";
CallableStatement stmt = con.prepareCall(commandText);

The setObject() method binds a value to an IN or IN OUT placeholder. Each call to
setObject() specifies a parameter number and a value to bind to that parameter:

stmt.setObject(1, new String(c.readLine("Employee Name :")));
stmt.setObject(2, new String(c.readLine("Job :")));
stmt.setObject(3, new Float(c.readLine("Salary :")));
stmt.setObject(4, new Float(c.readLine("Commission :")));
stmt.setObject(5, new Integer(c.readLine("Department No :")));
stmt.setObject(6, new Integer(c.readLine("Manager")));

After supplying a value for each placeholder, this method executes the statement by calling the
execute() method.

8.3. Executing Stored Procedures 64

EDB JDBC Connector, Release 42.2.9.1

Executing Stored Procedures with OUT parameters

The next example creates and invokes an SPL stored procedure called deptSelect. This pro-
cedure requires one IN parameter (department number) and returns two OUT parameters (the de-
partment name and location) corresponding to the department number. The code in Listing 1.9-a
creates the deptSelect procedure:

CREATE OR REPLACE PROCEDURE deptSelect
(

p_deptno IN INTEGER,
p_dname OUT VARCHAR,
p_loc OUT VARCHAR

)
AS
DECLARE
CURSOR deptCursor IS SELECT dname, loc FROM dept WHERE deptno=p_

→˓deptno;
BEGIN

OPEN deptCursor;
FETCH deptCursor INTO p_dname, p_loc;

CLOSE deptCursor;
END;

Listing 1.9-b shows the Java code required to invoke the deptSelect stored procedure:

public void GetDeptInfo(Connection con)
{

try
{

Console c = System.console();
String commandText = "{call deptSelect(?,?,?)}";
CallableStatement stmt = con.prepareCall(commandText);
stmt.setObject(1, new Integer(c.readLine("Dept No :")));
stmt.registerOutParameter(2, Types.VARCHAR);
stmt.registerOutParameter(3, Types.VARCHAR);
stmt.execute();
System.out.println("Dept Name: " + stmt.getString(2));
System.out.println("Location : " + stmt.getString(3));

}
catch(Exception err)
{

System.out.println("An error has occurred.");
System.out.println("See full details below.");
err.printStackTrace();

}
}

8.3. Executing Stored Procedures 65

EDB JDBC Connector, Release 42.2.9.1

Each placeholder (?) in the command (commandText) represents a point in the command that is
later replaced with data:

String commandText = "{call deptSelect(?,?,?)}";
CallableStatement stmt = con.prepareCall(commandText);

The setObject() method binds a value to an IN or ``IN OUT placeholder. When calling
setObject() you must identify a placeholder (by its ordinal number) and provide a value to
substitute in place of that placeholder:

stmt.setObject(1, new Integer(c.readLine("Dept No :")));

The JDBC type of each OUT parameter must be registered before the CallableStatement ob-
ject can be executed. Registering the JDBC type is done with the registerOutParameter()
method.

stmt.registerOutParameter(2, Types.VARCHAR);
stmt.registerOutParameter(3, Types.VARCHAR);

After executing the statement, the CallableStatement’s getter method retrieves the OUT
parameter values: to retrieve a VARCHAR value, use the getString() getter method.

stmt.execute();
System.out.println("Dept Name: " + stmt.getString(2));
System.out.println("Location : " + stmt.getString(3));

In the current example GetDeptInfo() registers two OUT parameters and (after executing the
stored procedure) retrieves the values returned in the OUT parameters. Since both OUT parameters
are defined as VARCHAR values, GetDeptInfo() uses the getString() method to retrieve
the OUT parameters.

8.3. Executing Stored Procedures 66

EDB JDBC Connector, Release 42.2.9.1

Executing Stored Procedures with IN OUT parameters

The code in the next example creates and invokes a stored procedure named empQuery defined
with one IN parameter (p_deptno), two IN OUT parameters (p_empno and p_ename) and
three OUT parameters (p_job, p_hiredate and p_sal). empQuery then returns information
about the employee in the two IN OUT parameters and three OUT parameters.

Listing 1.10-a creates a stored procedure named empQuery:

CREATE OR REPLACE PROCEDURE empQuery
(

p_deptno IN NUMBER,
p_empno IN OUT NUMBER,
p_ename IN OUT VARCHAR2,
p_job OUT VARCHAR2,
p_hiredate OUT DATE,
p_sal OUT NUMBER

)
IS
BEGIN

SELECT empno, ename, job, hiredate, sal
INTO p_empno, p_ename, p_job, p_hiredate, p_sal
FROM emp
WHERE deptno = p_deptno
AND (empno = p_empno
OR ename = UPPER(p_ename));

END;

Listing 1.10-b demonstrates invoking the empQuery procedure, providing values for the IN pa-
rameters, and handling the OUT and IN OUT parameters:

public void CallSample4(Connection con)
{

try
{

Console c = System.console();
String commandText = "{call emp_query(?,?,?,?,?,?)}";
CallableStatement stmt = con.prepareCall(commandText);
stmt.setInt(1, new Integer(c.readLine("Department No:")));
stmt.setInt(2, new Integer(c.readLine("Employee No:")));
stmt.setString(3, new String(c.readLine("Employee Name:")));
stmt.registerOutParameter(2, Types.INTEGER);
stmt.registerOutParameter(3, Types.VARCHAR);
stmt.registerOutParameter(4, Types.VARCHAR);
stmt.registerOutParameter(5, Types.TIMESTAMP);
stmt.registerOutParameter(6, Types.NUMERIC);
stmt.execute();

(continues on next page)

8.3. Executing Stored Procedures 67

EDB JDBC Connector, Release 42.2.9.1

(continued from previous page)

System.out.println("Employee No: " + stmt.getInt(2));
System.out.println("Employee Name: " + stmt.getString(3));
System.out.println("Job : " + stmt.getString(4));
System.out.println("Hiredate : " + stmt.getTimestamp(5));
System.out.println("Salary : " + stmt.getBigDecimal(6));

}
catch(Exception err)
{

System.out.println("An error has occurred.");
System.out.println("See full details below.");
err.printStackTrace();

}
}

Each placeholder (?) in the command (commandText) represents a point in the command that is
later replaced with data:

String commandText = "{call emp_query(?,?,?,?,?,?)}";
CallableStatement stmt = con.prepareCall(commandText);

The setInt() method is a type-specific setter method that binds an Integer value to an
IN or IN OUT placeholder. The call to setInt() specifies a parameter number and provides a
value to substitute in place of that placeholder:

stmt.setInt(1, new Integer(c.readLine("Department No:")));
stmt.setInt(2, new Integer(c.readLine("Employee No:")));

The setString() method binds a String value to an IN or IN OUT placeholder:

stmt.setString(3, new String(c.readLine("Employee Name:")));

Before executing the CallableStatement, you must register the JDBC type of each OUT
parameter by calling the registerOutParameter() method.

stmt.registerOutParameter(2, Types.INTEGER);
stmt.registerOutParameter(3, Types.VARCHAR);
stmt.registerOutParameter(4, Types.VARCHAR);
stmt.registerOutParameter(5, Types.TIMESTAMP);
stmt.registerOutParameter(6, Types.NUMERIC);

Remember, before calling a procedure with an IN parameter, you must assign a value to that
parameter with a setter method. Before calling a procedure with an OUT parameter, you register
the type of that parameter; then you can retrieve the value returned by calling a getter method.
When calling a procedure that defines an IN OUT parameter, you must perform all three actions:

• Assign a value to the parameter.

8.3. Executing Stored Procedures 68

EDB JDBC Connector, Release 42.2.9.1

• Register the type of the parameter.

• Retrieve the value returned with a getter method.

8.3. Executing Stored Procedures 69

EDB JDBC Connector, Release 42.2.9.1

8.4 Using REF CURSORS with Java

A REF CURSOR is a cursor variable that contains a pointer to a query result set returned by an
OPEN statement. Unlike a static cursor, a REF CURSOR is not tied to a particular query. You may
open the same REF CURSOR variable any number of times with the OPEN statement containing
different queries; each time, a new result set is created for that query and made available via the
cursor variable. A REF CURSOR can also pass a result set from one procedure to another.

Advanced Server supports the declaration of both strongly-typed and weakly-typed REF
CURSORs. A strongly-typed cursor must declare the shape (the type of each column) of the
expected result set. You can only use a strongly-typed cursor with a query that returns the declared
columns; opening the cursor with a query that returns a result set with a different shape will cause
the server to throw an exception. On the other hand, a weakly-typed cursor can work with a result
set of any shape.

To declare a strongly-typed REF CURSOR:

TYPE <cursor_type_name> IS REF CURSOR RETURN <return_type>;

To declare a weakly-typed REF_CURSOR:

name SYS_REFCURSOR;

.. raw:: latex

\newpage

8.4.1 Using a REF CURSOR to retrieve a ResultSet

The stored procedure shown in Listing 1.11-a (getEmpNames) builds two REF CURSORs on
the server; the first REF CURSOR contains a list of commissioned employees in the emp table,
while the second REF CURSOR contains a list of salaried employees in the emp table:

Listing 1.11-a

CREATE OR REPLACE PROCEDURE getEmpNames
(

commissioned IN OUT SYS_REFCURSOR,
salaried IN OUT SYS_REFCURSOR

)
IS
BEGIN
OPEN commissioned FOR SELECT ename FROM emp WHERE comm is NOT NULL;
OPEN salaried FOR SELECT ename FROM emp WHERE comm is NULL;

END;

8.4. Using REF CURSORS with Java 70

EDB JDBC Connector, Release 42.2.9.1

The RefCursorSample() method (see Listing 1.11-b) invokes the getEmpName() stored
procedure and displays the names returned in each of the two REF CURSOR variables:

Listing 1.11-b

public void RefCursorSample(Connection con)
{

try
{

con.setAutoCommit(false);
String commandText = "{call getEmpNames(?,?)}";
CallableStatement stmt = con.prepareCall(commandText);
stmt.setNull(1, Types.REF);
stmt.registerOutParameter(1, Types.REF);
stmt.setNull(2, Types.REF);
stmt.registerOutParameter(2, Types.REF);

stmt.execute();
ResultSet commissioned = (ResultSet)stmt.getObject(1);
System.out.println("Commissioned employees:");
while(commissioned.next())
{

System.out.println(commissioned.getString(1));
}

ResultSet salaried = (ResultSet)stmt.getObject(2);
System.out.println("Salaried employees:");
while(salaried.next())
{

System.out.println(salaried.getString(1));
}

}
catch(Exception err)
{

System.out.println("An error has occurred.");
System.out.println("See full details below.");
err.printStackTrace();

}
}

A CallableStatement prepares each REF CURSOR (commissioned and salaried).
Each cursor is returned as an IN OUT parameter of the stored procedure, getEmpNames():

String commandText = "{call getEmpNames(?,?)}";
CallableStatement stmt = con.prepareCall(commandText);

The call to registerOutParameter() registers the parameter type (Types.REF) of the first
REF CURSOR (commissioned) :

8.4. Using REF CURSORS with Java 71

EDB JDBC Connector, Release 42.2.9.1

stmt.setNull(1, Types.REF);
stmt.registerOutParameter(1, Types.REF);

Another call to registerOutParameter() registers the second parameter type (Types.
REF) of the second REF CURSOR (salaried) :

stmt.setNull(2, Types.REF);
stmt.registerOutParameter(2, Types.REF);

A call to stmt.execute() executes the statement:

stmt.execute();

The getObject() method retrieves the values from the first parameter and casts the result to a
ResultSet. Then, RefCursorSample iterates through the cursor and prints the name of each
commissioned employee:

ResultSet commissioned = (ResultSet)stmt.getObject(1);
while(commissioned.next())
{

System.out.println(commissioned.getString(1));
}

The same getter method retrieves the ResultSet from the second parameter and
RefCursorExample iterates through that cursor, printing the name of each salaried employee:

ResultSet salaried = (ResultSet)stmt.getObject(2);
while(salaried.next())
{

System.out.println(salaried.getString(1));
}

8.4. Using REF CURSORS with Java 72

EDB JDBC Connector, Release 42.2.9.1

8.5 Using BYTEA Data with Java

The BYTEA data type stores a binary string in a sequence of bytes; digital images and sound files
are often stored as binary data. Advanced Server can store and retrieve binary data via the BYTEA
data type.

The following Java sample stores BYTEA data in an Advanced Server database and then demon-
strates how to retrieve that data. The example requires a bit of setup; Listings 1.12-a, 1.12-b, and
1.12-c create the server-side environment for the Java example.

Listing 1.12-a creates a table (emp_detail) that stores BYTEA data. emp_detail contains two
columns: the first column stores an employee’s ID number (type INT) and serves as the primary
key for the table; the second column stores a photograph of the employee in BYTEA format:

CREATE TABLE emp_detail
(

empno INT4 PRIMARY KEY,
pic BYTEA

);

Listing 1.12-b creates a procedure (ADD_PIC) that inserts a row into the emp_detail table:

CREATE OR REPLACE PROCEDURE ADD_PIC(p_empno IN int4, p_photo IN bytea)
→˓AS
BEGIN

INSERT INTO emp_detail VALUES(p_empno, p_photo);
END;

And finally, Listing 1.12-c creates a function (GET_PIC) that returns the photograph for a given
employee:

CREATE OR REPLACE FUNCTION GET_PIC(p_empno IN int4) RETURN BYTEA IS
DECLARE

photo BYTEA;
BEGIN

SELECT pic INTO photo from EMP_DETAIL WHERE empno = p_empno;
RETURN photo;

END;

8.5. Using BYTEA Data with Java 73

EDB JDBC Connector, Release 42.2.9.1

8.5.1 Inserting BYTEA Data into an Advanced Server Database

Listing 1.13 shows a Java method that invokes the ADD_PIC procedure (see Listing 1.12-b) to
copy a photograph from the client file system to the emp_detail table on the server:

public void InsertPic(Connection con)
{

try
{

Console c = System.console();
int empno = Integer.parseInt(c.readLine("Employee No :"));
String fileName = c.readLine("Image filename :");
File f = new File(fileName);

if(!f.exists())
{

System.out.println("Image file not found. Terminating...");
return;

}

CallableStatement stmt = con.prepareCall("{call ADD_PIC(?, ?)}");
stmt.setInt(1, empno);
stmt.setBinaryStream(2, new FileInputStream(f), (int)f.length());
stmt.execute();
System.out.println("Added image for Employee "+empno);

}
catch(Exception err)
{

System.out.println("An error has occurred.");
System.out.println("See full details below.");
err.printStackTrace();

}
}

InsertPic() prompts the user for an employee number and the name of an image file:

int empno = Integer.parseInt(c.readLine("Employee No :"));
String fileName = c.readLine("Image filename :");

If the requested file does not exist, InsertPic() displays an error message and terminates:

File f = new File(fileName);

if(!f.exists())
{

System.out.println("Image file not found. Terminating...");
return;

(continues on next page)

8.5. Using BYTEA Data with Java 74

EDB JDBC Connector, Release 42.2.9.1

(continued from previous page)

}

Next, InsertPic() prepares a CallableStatement object (stmt) that calls the ADD_PIC
procedure. The first placeholder (?) represents the first parameter expected by ADD_PIC
(p_empno); the second placeholder represents the second parameter (p_photo). To provide
actual values for those placeholders, InsertPic() calls two setter methods. Since the first pa-
rameter is of type INTEGER, InsertPic() calls the setInt() method to provide a value
for p_empno. The second parameter is of type BYTEA, so InsertPic() uses a binary setter
method; in this case, the method is setBinaryStream():

CallableStatement stmt = con.prepareCall("{call ADD_PIC(?, ?)}");
stmt.setInt(1, empno);
stmt.setBinaryStream(2 ,new FileInputStream(f), f.length());

Now that the placeholders are bound to actual values, InsertPic() executes the
CallableStatement:

stmt.execute();

If all goes well, InsertPic() displays a message verifying that the image has been added to
the table. If an error occurs, the catch block displays a message to the user:

System.out.println("Added image for Employee \""+empno);
catch(Exception err)
{

System.out.println("An error has occurred.");
System.out.println("See full details below.");
err.printStackTrace();

}

8.5. Using BYTEA Data with Java 75

EDB JDBC Connector, Release 42.2.9.1

8.5.2 Retrieving BYTEA Data from an Advanced Server Database

Now that you know how to insert BYTEA data from a Java application, Listing 1.14 demonstrates
how to retrieve BYTEA data from the server:

public static void GetPic(Connection con)
{

try
{

Console c = System.console();
int empno = Integer.parseInt(c.readLine("Employee No :"));
CallableStatement stmt = con.prepareCall("{?=call GET_PIC(?)}");
stmt.setInt(2, empno);
stmt.registerOutParameter(1, Types.BINARY);
stmt.execute();
byte[] b = stmt.getBytes(1);

String fileName = c.readLine("Destination filename :");
FileOutputStream fos = new FileOutputStream(new File(fileName));
fos.write(b);
fos.close();
System.out.println("File saved at \""+fileName+"\"");

}
catch(Exception err)
{

System.out.println("An error has occurred.");
System.out.println("See full details below.");
err.printStackTrace();

}
}

GetPic() starts by prompting the user for an employee ID number:

int empno = Integer.parseInt(c.readLine("Employee No :"));

Next, GetPic() prepares a CallableStatement with one IN parameter and one OUT pa-
rameter. The first parameter is the OUT parameter that will contain the photograph retrieved from
the database. Since the photograph is BYTEA data, GetPic() registers the parameter as a Type.
BINARY. The second parameter is the IN parameter that holds the employee number (an INT), so
GetPic() uses the setInt() method to provide a value for the second parameter.

CallableStatement stmt = con.prepareCall("{?=call GET_PIC(?)}");
stmt.setInt(2, empno);
stmt.registerOutParameter(1, Types.BINARY);

Next, GetPic() uses the getBytes getter method to retrieve the BYTEA data from the
CallableStatement:

8.5. Using BYTEA Data with Java 76

EDB JDBC Connector, Release 42.2.9.1

stmt.execute();
byte[] b = stmt.getBytes(1);

The program prompts the user for the name of the file where it will store the photograph:

String fileName = c.readLine("Destination filename :");

The FileOutputStream object writes the binary data that contains the photograph to the des-
tination filename:

FileOutputStream fos = new FileOutputStream(new File(fileName));
fos.write(b);
fos.close();

Finally, GetPic() displays a message confirming that the file has been saved at the new location:

System.out.println("File saved at \""+fileName+"\"");

8.5. Using BYTEA Data with Java 77

EDB JDBC Connector, Release 42.2.9.1

8.6 Using Object Types and Collections with Java

The SQL CREATE TYPE command is used to create a user-defined object type, which is
stored in the Advanced Server database. The CREATE TYPE command is also used to create a
collection, commonly referred to as an array, which is also stored in the Advanced Server
database.

These user-defined types can then be referenced within SPL procedures, SPL functions, and Java
programs.

The basic object type is created with the CREATE TYPE AS OBJECT command along with
optional usage of the CREATE TYPE BODY command.

A nested table type collection is created using the CREATE TYPE AS TABLE OF
command. A varray type collection is created with the CREATE TYPE VARRAY command.

Example usage of an object type and a collection are shown in the following sections.

Listing 1.15 shows a Java method used by both examples to establish the connection to the Ad-
vanced Server database.

public static Connection getEDBConnection() throws
ClassNotFoundException, SQLException {
String url = "jdbc:edb://localhost:5444/test";
String user = "enterprisedb";
String password = "edb";
Class.forName("com.edb.Driver");
Connection conn = DriverManager.getConnection(url, user, password);
return conn;

}

8.6. Using Object Types and Collections with Java 78

EDB JDBC Connector, Release 42.2.9.1

8.6.1 Using an Object Type

Create the object types in the Advanced Server database. Object type addr_object_type
defines the attributes of an address:

CREATE OR REPLACE TYPE addr_object_type AS OBJECT
(

street VARCHAR2(30),
city VARCHAR2(20),
state CHAR(2),
zip NUMBER(5)

);

Object type emp_obj_typ defines the attributes of an employee. Note that one of these attributes
is object type ADDR_OBJECT_TYPE as previously described. The object type body contains a
method that displays the employee information:

CREATE OR REPLACE TYPE emp_obj_typ AS OBJECT
(

empno NUMBER(4),
ename VARCHAR2(20),
addr ADDR_OBJECT_TYPE,
MEMBER PROCEDURE display_emp(SELF IN OUT emp_obj_typ)

);

CREATE OR REPLACE TYPE BODY emp_obj_typ AS
MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_typ)
IS
BEGIN

DBMS_OUTPUT.PUT_LINE('Employee No : ' || SELF.empno);
DBMS_OUTPUT.PUT_LINE('Name : ' || SELF.ename);
DBMS_OUTPUT.PUT_LINE('Street : ' || SELF.addr.street);
DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || SELF.addr.city || ', '

→˓||
SELF.addr.state || ' ' || LPAD(SELF.addr.zip,5,'0'));

END;
END;

Listing 1.16 is a Java method that includes these user-defined object types:

public static void testUDT() throws SQLException {
Connection conn = null;
try {

conn = getEDBConnection();
String commandText = "{call emp_obj_typ.display_emp(?)}";
CallableStatement stmt = conn.prepareCall(commandText);

(continues on next page)

8.6. Using Object Types and Collections with Java 79

EDB JDBC Connector, Release 42.2.9.1

(continued from previous page)

// initialize emp_obj_typ structure
// create addr_object_type structure
Struct address = conn.createStruct("addr_object_type",
new Object[]{"123 MAIN STREET","EDISON","NJ",8817});

Struct emp = conn.createStruct("emp_obj_typ",
new Object[]{9001,"JONES", address});

// set emp_obj_typ type param
stmt.registerOutParameter(1, Types.STRUCT, "emp_obj_typ");
stmt.setObject(1, emp);
stmt.execute();

// extract emp_obj_typ object
emp = (Struct)stmt.getObject(1);
Object[] attrEmp = emp.getAttributes();
System.out.println("empno: " + attrEmp[0]);
System.out.println("ename: " + attrEmp[1]);

// extract addr_object_type attributes
address = (Struct) attrEmp[2];
Object[] attrAddress = address.getAttributes();
System.out.println("street: " + attrAddress[0]);
System.out.println("city: " + attrAddress[1]);
System.out.println("state: " + attrAddress[2]);
System.out.println("zip: " + attrAddress[3]);

} catch (ClassNotFoundException cnfe) {
System.err.println("Error: " + cnfe.getMessage());

} finally {
if (conn != null) {

conn.close();
}

}
}

A CallableStatement object is prepared based on the display_emp() method of the
emp_obj_typ object type:

String commandText = "{call emp_obj_typ.display_emp(?)}";
CallableStatement stmt = conn.prepareCall(commandText);

createStruct() initializes and creates instances of object types addr_object_type and
emp_obj_typ named address and emp, respectively:

Struct address = conn.createStruct("addr_object_type",
new Object[]{"123 MAIN STREET","EDISON","NJ",8817});

(continues on next page)

8.6. Using Object Types and Collections with Java 80

EDB JDBC Connector, Release 42.2.9.1

(continued from previous page)

Struct emp = conn.createStruct("emp_obj_typ",
new Object[]{9001,"JONES", address});

The call to registerOutParameter() registers the parameter type (Types.STRUCT) of
emp_obj_typ:

stmt.registerOutParameter(1, Types.STRUCT, "emp_obj_typ");

The setObject() method binds the object instance emp to the IN OUT placeholder.

stmt.setObject(1, emp);

A call to stmt.execute() executes the call to the display_emp() method:

stmt.execute();

getObject() retrieves the emp_obj_typ object type. The attributes of the emp and
address object instances are then retrieved and displayed:

emp = (Struct)stmt.getObject(1);
Object[] attrEmp = emp.getAttributes();
System.out.println("empno: " + attrEmp[0]);
System.out.println("ename: " + attrEmp[1]);

address = (Struct) attrEmp[2];
Object[] attrAddress = address.getAttributes();
System.out.println("street: " + attrAddress[0]);
System.out.println("city: " + attrAddress[1]);
System.out.println("state: " + attrAddress[2]);
System.out.println("zip: " + attrAddress[3]);

8.6. Using Object Types and Collections with Java 81

EDB JDBC Connector, Release 42.2.9.1

8.6.2 Using a Collection

Create collection types NUMBER_ARRAY and CHAR_ARRAY in the Advanced Server database:

CREATE OR REPLACE TYPE NUMBER_ARRAY AS TABLE OF NUMBER;
CREATE OR REPLACE TYPE CHAR_ARRAY AS TABLE OF VARCHAR(50);

Listing 1.17-a is an SPL function that uses collection types NUMBER_ARRAY and CHAR_ARRAY
as IN parameters and CHAR_ARRAY as the OUT parameter.

The function concatenates the employee ID from the NUMBER_ARRAY IN parameter with the
employee name in the corresponding row from the CHAR_ARRAY IN parameter. The resulting
concatenated entries are returned in the CHAR_ARRAY OUT parameter.

CREATE OR REPLACE FUNCTION concatEmpIdName
(

arrEmpIds NUMBER_ARRAY,
arrEmpNames CHAR_ARRAY

) RETURN CHAR_ARRAY
AS
DECLARE

i INTEGER := 0;
arrEmpIdNames CHAR_ARRAY;

BEGIN
arrEmpIdNames := CHAR_ARRAY(NULL,NULL);
FOR i IN arrEmpIds.FIRST..arrEmpIds.LAST LOOP
arrEmpIdNames(i) := arrEmpIds(i) || ' ' || arrEmpNames(i);

END LOOP;
RETURN arrEmpIdNames;

END;

Listing 1.17-b is a Java method that calls the Listing 1.17-a function, passing and retrieving the
collection types:

public static void testTableOfAsInOutParams() throws SQLException {
Connection conn = null;
try {

conn = getEDBConnection();
String commandText = "{? = call concatEmpIdName(?,?)}";
CallableStatement stmt = conn.prepareCall(commandText);

// create collections to specify employee id and name values
Array empIdArray = conn.createArrayOf("integer",

new Integer[]{7900, 7902});
Array empNameArray = conn.createArrayOf("varchar",

new String[]{"JAMES", "FORD"});

(continues on next page)

8.6. Using Object Types and Collections with Java 82

EDB JDBC Connector, Release 42.2.9.1

(continued from previous page)

// set TABLE OF VARCHAR as OUT param
stmt.registerOutParameter(1, Types.ARRAY);

// set TABLE OF INTEGER as IN param
stmt.setObject(2, empIdArray, Types.OTHER);

// set TABLE OF VARCHAR as IN param
stmt.setObject(3, empNameArray, Types.OTHER);
stmt.execute();
java.sql.Array empIdNameArray = stmt.getArray(1);
String[] emps = (String[]) empIdNameArray.getArray();

System.out.println("items length: " + emps.length);
System.out.println("items[0]: " + emps[0].toString());
System.out.println("items[1]: " + emps[1].toString());

} catch (ClassNotFoundException cnfe) {
System.err.println("Error: " + cnfe.getMessage());

} finally {
if (conn != null) {

conn.close();
}

}
}

A CallableStatement object is prepared to invoke the concatEmpIdName() function:

String commandText = "{? = call concatEmpIdName(?,?)}";
CallableStatement stmt = conn.prepareCall(commandText);

createArrayOf() initializes and creates collections named empIdArray and
empNameArray:

Array empIdArray = conn.createArrayOf("integer",
new Integer[]{7900, 7902});

Array empNameArray = conn.createArrayOf("varchar",
new String[]{"JAMES", "FORD"});

The call to registerOutParameter() registers the parameter type (Types.ARRAY) of the
OUT parameter:

stmt.registerOutParameter(1, Types.ARRAY);

The setObject() method binds the collections empIdArray and empNameArray to the IN
placeholders:

8.6. Using Object Types and Collections with Java 83

EDB JDBC Connector, Release 42.2.9.1

stmt.setObject(2, empIdArray, Types.OTHER);
stmt.setObject(3, empNameArray, Types.OTHER);

A call to stmt.execute() invokes the concatEmpIdName() function:

stmt.execute();

getArray() retrieves the collection returned by the function. The first two rows consisting of
the concatenated employee IDs and names are displayed:

java.sql.Array empIdNameArray = stmt.getArray(1);
String[] emps = (String[]) empIdNameArray.getArray();
System.out.println("items length: " + emps.length);
System.out.println("items[0]: " + emps[0].toString());
System.out.println("items[1]: " + emps[1].toString());

8.6. Using Object Types and Collections with Java 84

EDB JDBC Connector, Release 42.2.9.1

8.7 Asynchronous Notification Handling with NoticeLis-
tener

The Advanced Server JDBC Connector provides asynchronous notification handling functionality.
A notification is a message generated by the server when an SPL (or PL/pgSQL) program ex-
ecutes a RAISE NOTICE statement. Each notification is sent from the server to the client applica-
tion. To intercept a notification in a JDBC client, an application must create a NoticeListener
object (or, more typically, an object derived from NoticeListener).

It is important to understand that a notification is sent to the client as a result of executing
an SPL (or PL/pgSQL) program. To generate a notification, you must execute an SQL state-
ment that invokes a stored procedure, function, or trigger: the notification is delivered to the
client as the SQL statement executes. Notifications work with any type of statement object;
CallableStatement objects, PreparedStatement objects, or simple Statement ob-
jects. A JDBC program intercepts a notification by associating a NoticeListener with a
Statement object. When the Statement object executes an SQL statement that raises a no-
tice, JDBC invokes the noticeReceived() method in the associated NoticeListener.

Listing 1.18-a shows an SPL procedure that loops through the emp table and gives each employee
a 10% raise. As each employee is processed, adjustSalary executes a RAISE NOTICE
statement (in this case, the message contained in the notification reports progress to the client
application):

CREATE OR REPLACE PROCEDURE adjustSalary
IS

v_empno NUMBER(4);
v_ename VARCHAR2(10);
CURSOR emp_cur IS SELECT empno, ename FROM emp;

BEGIN
OPEN emp_cur;
LOOP

FETCH emp_cur INTO v_empno, v_ename;
EXIT WHEN emp_cur%NOTFOUND;

UPDATE emp SET sal = sal * 1.10 WHERE empno = v_empno;
RAISE NOTICE 'Salary increased for %', v_ename;

END LOOP;
CLOSE emp_cur;

END;

Listing 1.18-b shows how to create a NoticeListener that intercepts notifications in a JDBC
application:

public void NoticeExample(Connection con)
{

(continues on next page)

8.7. Asynchronous Notification Handling with NoticeListener 85

EDB JDBC Connector, Release 42.2.9.1

(continued from previous page)

CallableStatement stmt;
try
{

stmt = con.prepareCall("{call adjustSalary()}");

MyNoticeListener listener = new MyNoticeListener();
((BaseStatement)stmt).addNoticeListener(listener);
stmt.execute();
System.out.println("Finished");

}
catch (SQLException e)
{

System.out.println("An error has occurred.");
System.out.println("See full details below.");
e.printStackTrace();

}
}
class MyNoticeListener implements NoticeListener
{

public MyNoticeListener()
{
}

public void noticeReceived(SQLWarning warn)
{

System.out.println("NOTICE: "+ warn.getMessage());
}

}

The NoticeExample() method is straightforward; it expects a single argument, a
Connection object, from the caller:

public void NoticeExample(Connection con)

NoticeExample() begins by preparing a call to the adjustSalary procedure shown in ex-
ample 1.10-a. As you would expect, con.prepareCall() returns a CallableStatement
object. Before executing the CallableStatement, you must create an object that implements
the NoticeListener interface and add that object to the list of NoticeListeners associ-
ated with the CallableStatement:

CallableStatement stmt = con.prepareCall("{call adjustSalary()}");
MyNoticeListener listener = new MyNoticeListener();
((BaseStatement)stmt).addNoticeListener(listener);

Once the NoticeListener is in place, NoticeExample method executes the
CallableStatement (invoking the adjustSalary procedure on the server) and displays

8.7. Asynchronous Notification Handling with NoticeListener 86

EDB JDBC Connector, Release 42.2.9.1

a message to the user:

stmt.execute();
System.out.println("Finished");

Each time the adjustSalary procedure executes a RAISE NOTICE statement, the server
sends the text of the message ("Salary increased for ...") to the Statement (or
derivative) object in the client application. JDBC invokes the noticeReceived() method
(possibly many times) before the call to stmt.execute() completes.

class MyNoticeListener implements NoticeListener
{

public MyNoticeListener()
{
}

public void noticeReceived(SQLWarning warn)
{

System.out.println("NOTICE: "+ warn.getMessage());
}

}

When JDBC calls the noticeReceived() method, it creates an SQLWarning object that
contains the text of the message generated by the RAISE NOTICE statement on the server.

Notice that each Statement object keeps a list of NoticeListeners`. When the JDBC
driver receives a notification from the server, it consults the list maintained by the Statement
object. If the list is empty, the notification is saved in the Statement object (you can retrieve
the notifications by calling stmt.getWarnings() once the call to execute() completes).
If the list is not empty, the JDBC driver delivers an SQLWarning to each listener, in the order in
which the listeners were added to the Statement.

8.7. Asynchronous Notification Handling with NoticeListener 87

CHAPTER 9

Security and Encryption

9.1 Using SSL

In this section, you will learn about:

• Configuring the server

• Configuring the client

• Testing the SSL JDBC Connection

• Using SSL without Certificate Validation

• Using Certificate Authentication (without a password)

88

EDB JDBC Connector, Release 42.2.9.1

9.1.1 Configuring the Server

For information about configuring PostgreSQL or Advanced Server for SSL, refer to:

https://www.enterprisedb.com/edb-docs/d/postgresql/reference/manual/12.3/ssl-tcp.
html

Note: Before you access your SSL enabled server from Java, ensure that you can log in to your
server via edb-psql. The sample output should look similar to the one shown below if you have
established a SSL connection:

$./bin/edb-psql -U enterprisedb -d edb
psql.bin (12.0.1)
SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384,
→˓ bits: 256, compression: off)
Type "help" for help.

edb=#

9.1. Using SSL 89

https://www.enterprisedb.com/edb-docs/d/postgresql/reference/manual/12.3/ssl-tcp.html
https://www.enterprisedb.com/edb-docs/d/postgresql/reference/manual/12.3/ssl-tcp.html

EDB JDBC Connector, Release 42.2.9.1

9.1.2 Configuring the Client

There are a number of connection parameters for configuring the client for SSL. To know more
about the SSL Connection parameters and Additional Connection Properties, refer to Section 5.2.

In this section, we will discuss more about the behavior of ssl connection parameter when passed
with different values. When you pass the connection parameter ssl=true into the driver, the
driver validates the SSL certificate and verifies the hostname. On contrary to this behavior, using
libpq defaults to a non-validating SSL connection.

You can get better control of the SSL connection using the sslmode connection parameter. This
parameter is the same as the libpq sslmode parameter and the existing SSL implements the
following sslmode connection parameters.

sslmode Connection Parameters

sslmode=require

This mode makes the encryption mandatory and also requires the connection to fail if it can’t be
encrypted. The server is configured to accept SSL connections for this Host/IP address and that
the server recognizes the client certificate.

Note: In this mode, the JDBC driver accepts all server certificates.

sslmode=verify-ca

If sslmode=verify-ca, the server is verified by checking the certificate chain up to the root
certificate stored on the client.

sslmode=verify-full

If sslmode=verify-full, the server host name is verified to make sure it matches the name
stored in the server certificate. The SSL connection fails if the server certificate cannot be verified.
This mode is recommended in most security-sensitive environments.

In the case where the certificate validation is failing you can try sslcert= and LibPQFactory
will not send the client certificate. If the server is not configured to authenticate using the certificate
it should connect.

The location of the client certificate, client key and root certificate can be overrid-
den with the sslcert, sslkey, and sslrootcert settings respectively. These de-
fault to /defaultdir/postgresql.crt, /defaultdir/postgresql.pk8, and /
defaultdir/root.crt respectively where defaultdir is ${user.home}/.postgresql/ in unix
systems and %appdata%/postgresql/ on windows.

In this mode, when establishing a SSL connection the JDBC driver will validate the server’s iden-
tity preventing “man in the middle” attacks. It does this by checking that the server certificate is

9.1. Using SSL 90

EDB JDBC Connector, Release 42.2.9.1

signed by a trusted authority, and that the host you are connecting to, is the same as the hostname
in the certificate.

9.1. Using SSL 91

EDB JDBC Connector, Release 42.2.9.1

9.1.3 Testing the SSL JDBC Connection

If you are using Java’s default mechanism (not LibPQFactory) to create the SSL connection,
you need to make the server certificate available to Java, which can be achieved by implementing
steps given below:

1. Set the below property in the Java program.

props.setProperty(“ssl”,“true”);

Or, you can set the property in the connection url:

String url=“jdbc:edb://localhost/test?user=fred&password=secret&ssl=true”;

2. Convert the server certificate to Java format:

$ openssl x509 -in server.crt -out server.crt.der -outform der

3. Import this certificate into Java’s system truststore.

$ keytool -keystore $JAVA_HOME/lib/security/cacerts -alias
→˓postgresql
-import -file server.crt.der

Note: The default password for the cacerts keystore is changeit. The alias to post-
gresql is not important and you may select any name you desire.

4. If you do not have access to the system cacerts truststore, create your own truststore as below:

$ keytool -keystore mystore -alias postgresql -import -file server.
→˓crt.der

5. Start your Java application and test the program.

$ java -Djavax.net.ssl.trustStore=mystore com.mycompany.MyApp

For example:

$java -classpath .:/usr/edb/jdbc/edb-jdbc18.jar-
Djavax.net.ssl.trustStore=mystore pg_test2 public

Note: For troubleshooting connection issues, add -Djavax.net.debug=ssl to the java command.

9.1. Using SSL 92

jdbc:edb://localhost/test?user=fred&password=secret&ssl=true

EDB JDBC Connector, Release 42.2.9.1

Using SSL without Certificate Validation

By default the combination of SSL=true and setting the connection URL parameter
sslfactory=com.edb.ssl.NonValidatingFactory encrypts the connection but does
not validate the SSL certificate. To enforce certificate validation, you must use a Custom
SSLSocketFactory.

For more details about writing a Custom SSLSocketFactory, refer to:

https://jdbc.postgresql.org/documentation/head/ssl-factory.html

9.1. Using SSL 93

https://jdbc.postgresql.org/documentation/head/ssl-factory.html

EDB JDBC Connector, Release 42.2.9.1

9.1.4 Using Certificate Authentication (Without a Password)

In order to use certificate authentication (without a password), follow the below steps:

1. Convert the client certificate to DER format.

$ openssl x509 -in postgresql.crt -out postgresql.crt.der -outform
der

2. Convert the client key to DER format.

$ openssl pkcs8 -topk8 -outform DER -in postgresql.key -out
postgresql.key.pk8 -nocrypt

3. Copy the client files (postgresql.crt.der, postgresql.key.pk8) and root cer-
tificate to the client machine and use the following properties in your java program to test
it:

String url = "jdbc:edb://snvm001:5444/edbstore";
Properties props = new Properties();
props.setProperty("user","enterprisedb");
props.setProperty("ssl","true");
props.setProperty("sslmode","verify-full");
props.setProperty("sslcert","postgresql.crt.der");
props.setProperty("sslkey","postgresql.key.pk8");
props.setProperty("sslrootcert","root.crt");

4. Compile the Java program and test it.

$ java -Djavax.net.ssl.trustStore=mystore -classpath
.:./edb-jdbc18.jar pg_ssl public

9.2 Scram Compatibility

The EDB JDBC driver provides SCRAM-SHA-256 support for Advanced Server versions 10, 11,
and 12. For JRE/JDK version 1.8, this support is available from EDB JDBC Connector release
42.2.2.1 onwards; for JRE/JDK version 1.7, this support is available from EDB JDBC Connector
release 42.2.5 onwards.

9.2. Scram Compatibility 94

CHAPTER 10

Advanced Server JDBC Connector Logging

The Advanced Server JDBC Connector supports the use of logging to help resolve issues with the
JDBC Connector when used in your application. The JDBC Connector uses the logging APIs of
java.util.logging that was part of Java since JDK 1.4. For information on java.util.
logging, see The PostgreSQL JDBC Driver.

Note: Previous versions of the Advanced Server JDBC Connector used a custom mechanism to
enable logging, which is now replaced by the use of java.util.logging in versions moving
forward from community version 42.1.4.1. The older mechanism is no longer available.

10.1 Enabling Logging with Connection Properties
(static)

You can directly configure logging within the connection properties of the JDBC Connector. The
connection properties related to logging are loggerLevel and loggerFile.

loggerLevel

Logger level of the driver. Allowed values are OFF, DEBUG, or TRACE. This option enables the
java.util.logging.Logger level of the driver to correspond to the following Advanced
Server JDBC levels:

95

https://jdbc.postgresql.org/documentation/head/logging.html

EDB JDBC Connector, Release 42.2.9.1

loggerLevel java.util.logging
OFF OFF
DEBUG FINE
TRACE FINEST

loggerFile

File name output of the logger. The default is java.util.logging.ConsoleHandler.
The following example sets the logging level to TRACE (FINEST) and the log file to
EDB-JDBC.LOG:

jdbc:edb://myhost:5444/mydb?loggerLevel=TRACE&loggerFile=EDB-JDBC.
LOG

10.1. Enabling Logging with Connection Properties (static) 96

EDB JDBC Connector, Release 42.2.9.1

10.2 Enabling Logging with logging.properties (dynamic)

You can use logging properties to configure the driver dynamically (for example, when using the
JDBC Connector with an application server such as Tomcat, JBoss, WildFly, etc.), which makes
it easier to enable/disable logging at runtime. The following example demonstrates configuring
logging dynamically:

handlers = java.util.logging.FileHandler
//logging level
.level = OFF

The default file output is in the user’s home directory:

java.util.logging.FileHandler.pattern = %h/EDB-JDBC%u.log
java.util.logging.FileHandler.limit = 5000000
java.util.logging.FileHandler.count = 20
java.util.logging.FileHandler.formatter = java.util.logging.
→˓SimpleFormatter java.util.logging.FileHandler.level = FINEST java.
→˓util.logging.SimpleFormatter.format=%1$tY-%1$tm-%1$td %1$tH:%1$tM:%1
→˓$tS %4$s %2$s %5$s%6$s%n

Use the following command to set the logging level for the JDBC Connector to FINEST (maps to
loggerLevel):

com.edb.level=FINEST

Then, execute the application with the logging configuration:

java -jar -Djava.util.logging.config.file=logging.
properties run.jar

10.2. Enabling Logging with logging.properties (dynamic) 97

CHAPTER 11

Reference - JDBC Data Types

The following table lists the JDBC data types supported by Advanced Server and the JDBC con-
nector. If you are binding to an Advanced Server type (shown in the middle column) using the
setObject() method, supply a JDBC value of the type shown in the left column. When you
retrieve data, the getObject() method will return the object type listed in the right-most col-
umn:

98

EDB JDBC Connector, Release 42.2.9.1

JDBC Type Advanced Server Type getObject() returns
INTEGER INT4 java.lang.Integer
TINYINT, SMALLINT INT2 java.lang.Integer
BIGINT INT8 java.lang.Long
REAL FLOAT4 java.lang.Float
DOUBLE, FLOAT FLOAT8 java.lang.Double (Float is same as

double)
DECIMAL, NUMERIC NUMERIC java.math.BigDecimal
CHAR BPCHAR java.lang.String
VARCHAR, LONGVAR-
CHAR

VARCHAR java.lang.String

DATE DATE java.sql.Date
TIME TIME, TIMETZ java.sql.Timestamp
TIMESTAMP TIMESTAMP, TIMES-

TAMPTZ
java.sql.Timestamp

BINARY BYTEA byte[](primitive)
BOOLEAN, BIT BOOL java.lang.Boolean
Types.REF REFCURSOR java.sql.ResultSet
Types.REF_CURSOR REFCURSOR java.sql.ResultSet
Types.OTHER REFCURSOR java.sql.ResultSet
Types.OTHER UUID java.util.UUID
Types.SQLXML XML java.sql.SQLXML

Note: Types.REF_CURSOR is only supported for JRE 4.2.

Types.OTHER is not only used for UUID, but is also used if you do not specify any specific type
and allow the server or the JDBC driver to determine the type. If the parameter is an instance of
java.util.UUID, the driver determines the appropriate internal type and sends it to the server.

99

CHAPTER 12

Conclusion

EDB Postgres Advanced Server JDBC Connector Guide

Copyright © 2007 - 2021 EnterpriseDB Corporation.

All rights reserved.

EnterpriseDB® Corporation

34 Crosby Drive, Suite 201, Bedford, MA 01730, USA

T +1 781 357 3390 F +1 978 467 1307 E

info@enterprisedb.com

www.enterprisedb.com

• EDB designs, establishes coding best practices, reviews, and verifies input validation for the
logon UI for EDB Postgres products where present. EDB follows the same approach for
additional input components, however the nature of the product may require that it accepts
freeform SQL, WMI or other strings to be entered and submitted by trusted users for which
limited validation is possible. In such cases it is not possible to prevent users from entering
incorrect or otherwise dangerous inputs.

• EDB reserves the right to add features to products that accept freeform SQL, WMI or other
potentially dangerous inputs from authenticated, trusted users in the future, but will ensure
all such features are designed and tested to ensure they provide the minimum possible risk,
and where possible, require superuser or equivalent privileges.

• EDB does not that warrant that we can or will anticipate all potential threats and therefore
our process cannot fully guarantee that all potential vulnerabilities have been addressed or

100

mailto:info@enterprisedb.com

EDB JDBC Connector, Release 42.2.9.1

considered.

101

Index

A
Adding a Graphical Interface to

a Java Program, 50
Additional Connection

Properties, 29
Advanced JDBC Connector

Functionality, 54
Advanced Server JDBC Connector

Compatibility, 10
Advanced Server JDBC Connector

Logging, 95
Advanced Server JDBC Connector

Overview, 5
Asynchronous Notification

Handling with
NoticeListener, 85

C
Conclusion, 100
Configuring the Advanced Server

JDBC Connector, 24
Configuring the Client, 90
Configuring the Server, 89
Connecting to the Database, 28

E
enable logging with connection

properties, 95
enable logging with

logging.properties, 97
executeupdate() syntax examles,

49

executing a simple stored
procedure, 61

Executing SQL Commands with
executeUpdate(), 46

Executing SQL Statements
through Statement Objects,
40

Executing Stored Procedures, 59
executing stored procedures

with in out parameters,
67

executing stored procedures
with in parameters, 63

executing stored procedures
with out parameters, 65

F
Freeing Resources, 44

H
Handling Errors, 45

I
inserting bytea data into

advanced server database,
74

Installing a DEB Package on a
Debian or Ubuntu Host, 17

Installing and Configuring the
JDBC Connector, 11

Installing the Connector on an
SLES 12 Host, 15

102

EDB JDBC Connector, Release 42.2.9.1

Installing the Connector with
an RPM Package, 12

invoking stored procedures, 60

J
jdbc classes, 8
jdbc driver types, 5
jdbc drivermanager, 9
jdbc interface, 7

L
Loading the Advanced Server

JDBC Connector, 27

M
modifying batch size of

statement object, 56

P
Preferring Synchronous

Secondary Database
Servers, 32

R
Reducing Client-side Resource

Requirements, 55
Reference - JDBC Data Types, 98
Requirements Overview, 3
retrieving bytea data from

advanced server database,
76

Retrieving Results from a
ResultSet Object, 43

S
Scram Compatibility, 94
Security and Encryption, 88
sslmode connection parameters, 90
supported platforms, 3
supported server versions, 3

T
Testing the SSL JDBC Connection,

92

U
Using BYTEA Data with Java, 73
Using Certificate

Authentication (Without a
Password), 94

using collection, 82
using executeupdate() to insert

data, 47
using named notation with a

callablestatement object,
41

using object type, 79
Using Object Types and

Collections with Java, 78
Using PreparedStatements to

Send SQL Commands, 57
using ref cursor to retrieve a

resultset, 70
Using REF CURSORS with Java, 70
Using SSL, 88
using ssl without certificate

validation, 93
Using the Advanced Server

JDBC Connector with Java
applications, 25

Using the Graphical Installer
to Install the Connector,
18

W
What’s New, 2

Index 103

	What’s New
	Requirements Overview
	Supported Versions
	Supported Platforms

	Advanced Server JDBC Connector Overview
	JDBC Driver Types
	The JDBC Interface
	JDBC Classes and Interfaces
	The JDBC DriverManager
	Advanced Server JDBC Connector Compatibility

	Installing and Configuring the JDBC Connector
	Installing the Connector with an RPM Package
	Updating an RPM Installation

	Installing the Connector on an SLES 12 Host
	Installing a DEB Package on a Debian or Ubuntu Host
	Using the Graphical Installer to Install the Connector
	Configuring the Advanced Server JDBC Connector

	Using the Advanced Server JDBC Connector with Java applications
	Loading the Advanced Server JDBC Connector
	Connecting to the Database
	Additional Connection Properties
	Preferring Synchronous Secondary Database Servers
	Configuring Primary and Secondary Database Servers Overview
	Example: Primary and Secondary Database Servers

	Executing SQL Statements through Statement Objects
	Using Named Notation with a CallableStatement Object

	Retrieving Results from a ResultSet Object
	Freeing Resources
	Handling Errors

	Executing SQL Commands with executeUpdate()
	Using executeUpdate() to INSERT Data
	executeUpdate() Syntax Examples

	Adding a Graphical Interface to a Java Program
	Advanced JDBC Connector Functionality
	Reducing Client-side Resource Requirements
	Modifying the Batch Size of a Statement Object

	Using PreparedStatements to Send SQL Commands
	Executing Stored Procedures
	Invoking Stored Procedures
	Executing a Simple Stored Procedure
	Executing Stored Procedures with IN parameters
	Executing Stored Procedures with OUT parameters
	Executing Stored Procedures with IN OUT parameters

	Using REF CURSORS with Java
	Using a REF CURSOR to retrieve a ResultSet

	Using BYTEA Data with Java
	Inserting BYTEA Data into an Advanced Server Database
	Retrieving BYTEA Data from an Advanced Server Database

	Using Object Types and Collections with Java
	Using an Object Type
	Using a Collection

	Asynchronous Notification Handling with NoticeListener

	Security and Encryption
	Using SSL
	Configuring the Server
	Configuring the Client
	sslmode Connection Parameters

	Testing the SSL JDBC Connection
	Using SSL without Certificate Validation

	Using Certificate Authentication (Without a Password)

	Scram Compatibility

	Advanced Server JDBC Connector Logging
	Enabling Logging with Connection Properties (static)
	Enabling Logging with logging.properties (dynamic)

	Reference - JDBC Data Types
	Conclusion
	Index

