
LiveCompare
Version 1

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. Built at 2024-08-21T17:33:41

3
4
4
4
6
6
8
9

11
13
20
25
34

1 LiveCompare
2 Release notes
2.1 Version 1.18.1
2.2 Version 1.18.0
2.3 Version 1.17.0
3 Requirements
4 Supported Technologies
5 Command-line Usage
6 Advanced Usage
7 BDR Support
8 Oracle Support
9 Settings
10 Licenses

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 2

1 LiveCompare

LiveCompare is designed to compare any number of databases to verify they are identical. The tool compares any number databases and generates a
comparison report, a list of differences and handy DML scripts so the user can optionally apply the DML and fix the inconsistencies in any of the databases.

By default, the comparison set will include all tables in the database. LiveCompare allows checking of multiple tables concurrently (multiple worker
processes) and is highly configurable to allow checking just a few tables or just a section of rows within a table.

Each database comparison is called a "comparison session". When the program starts for the first time, it will start a new session and start comparing
table by table. In standalone mode, once all tables are compared, the program stops and generates all reports. LiveCompare can be stopped and started
without losing context information, so it can be run at convenient times.

Each table comparison operation is called a "comparison round". If the table is too big, LiveCompare will split the table into multiple comparison rounds
that will also be executed in parallel, alongside with other tables that are being carried on by other workers at the same time.

In standalone mode, the initial comparison round for a table starts from the beginning of the table (oldest existing PK) to the end of the table (newest
existing PK). New rows inserted after the round started are ignored. LiveCompare will sort the PK columns in order to get min and max PK from each table.
For each PK column which is unsortable, LiveCompare will cast it's content to string . In PostgreSQL that's achieved by using ::text and in Oracle
by using to_char .

When executing the comparison algorithm, each worker requires N+1 database connections, being N the number of databases being compared. The extra
required connection is to an output/reporting database, where the program cache is kept too, so the user is able to stop/resume a comparison session.

Any differences found by the comparison algorithm can be manually re-checked by the user at a later convenient time. This is recommended to be done to
allow a replication consistency check. Upon the difference re-check, maybe replication caught up on that specific row and the difference does not exist
anymore, so the difference is removed, otherwise it is marked as permanent.

At the end of the execution the program generates a DML script so the user can review it, and fix differences one by one, or simply apply the entire DML
script so all permanent differences are fixed.

LiveCompare can be potentially used to ensure logical data integrity at row-level; for example, for these scenarios:

Database technology migration (Oracle x Postgres);
Server migration or upgrade (old server x new server);
Physical replication (primary x standby);
After failover incidents, for example to compare the new primary data against the old, isolated primary data;
In case of an unexpected split-brain situation after a failover. If the old primary was not properly fenced and the application wrote data into it, it is
possible to use LiveCompare to know exactly which data is present in the old primary and is not present in the new primary. If desired, the DBA can
use the DML script that LiveCompare generates to apply those data into the new primary;
Logical replication. Three kind of logical replication technologies are supported: Postgres native logical replication, pglogical and BDR.

Comparison Performance

LiveCompare has been optimized for use on production systems and has various parameters for tuning, described later. Comparison rounds are read-only
workloads. An example use case compared 43,109,165 rows in 6 tables in 9m 17s with 4 connections and 4 workers, giving comparison performance of
approximately 77k rows per second, or 1 billion rows in <4 hours.

The use case above can be considered a general use case. For low-load, testing, migration and other specific scenarios, it might be possible to improve
speed by changing the data_fetch_mode setting to use server-side cursors. Each kind of server side cursors, in our experiments, provides an increase
in performance on use cases involving either small or large tables.

Security Considerations for the User

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 3

When logical_replication_mode = bdr , LiveCompare requires a user that has been granted the bdr_superuser role. When
logical_replication_mode = pglogical , LiveCompare requires a user that has been granted the pglogical_superuser role.

To apply the DML scripts in BDR, then all divergent connections (potentially all data connections) require a user that has been granted the
bdr_superuser in order to disable bdr.xact_replication .

If BDR is being used, LiveCompare will associate all fixed rows with a replication origin called bdr_local_only_origin . LiveCompare will also apply
the DML with the transaction datetime far in the past, so if there are any BDR conflicts with real DML being executed on the database, LiveCompare DML
always loses the conflict.

With the default setting of difference_fix_start_query , the transaction in apply scripts will change role to the owner of the table in order to
prevent database users from gaining access to the role applying fixes by writing malicious triggers. As a result the user for the divergent connection
needs to have ability to switch role to the table owner.

2 Release notes

The LiveCompare documentation describes the latest version of LiveCompare 1 including minor releases and patches. The release notes in this section
provide information on what is new in each release.

Version Release Date

1.18.1 Dec 14 2021

1.18.0 Dec 1 2021

1.17.0 Oct 1 2021

2.1 Version 1.18.1

LiveCompare 1.18.1 includes the following bug fix:

Type Description ID

Bug fix Fixed an issue where the internal round part column name setting was not being considered in asynchronous
connections.

LIV-95

2.2 Version 1.18.0

LiveCompare 1.18.0 includes the following new features, enhancements, and bug fixes:

Type Description ID

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 4

Enhancement

Implemented a new QueryBlock data fetch method for Oracle. The algorithm keeps fetching rows from the same socket, which
is more efficient as Oracle doesn't allow inequality operators involving Row Value Expressions, which were previously required
to fetch rows past the last processed multi-column PK value. This significantly improves performance on Oracle versus
Postgres comparisons. As PostgreSQL allows inequality operators involving Row Value Expressions, LiveCompare uses the
same algorithm using prepared statements to not cause an impact in terms of bloat and holding back the xmin horizon. So
Postgres versus Postgres performance is not affected by this implementation.

LI
V-
83
,
RT
75
64
4,
RT
75
67
5,
RT
75
33
2

Enhancement

Removed the need to reset the buffers when using comparison_algorithm = block_hash . Now when a block with
mismatching hashes is found, LiveCompare correctly switches to comparison_algorithm = row_hash until all rows
within the mismatching block (already fetched) are compared individually, and then switches back to
comparison_algorithm = block_hash to fetch the next buffer. This improves performance on Oracle versus

Postgres and also Postgres versus Postgres comparisons. For more information, see Common hash.

LI
V-
85
,
LI
V-
86
,
RT
75
64
4,
RT
75
67
5,
RT
75
33
2

Enhancement

Now LiveCompare is able to split large tables even on Oracle versus Postgres comparisons, if comparison_algorithm is
set to block_hash or row_hash (currently requires Oracle 12 and newer). Previously it was possible only on Postgres
versus Postgres, because the hashing is done on the database side. As Oracle and Postgres don't share a common hashing
function, we converted the common row hash that's based on MD5 into an integer hash to be able to split table data into
multiple workers. On Oracle, due to performance reasons it was not possible to do on the database side, so we calculate this
hash on the Python side. The cost of parallelism for Oracle versus Postgres table splitting is still not the same as on Postgres
versus Postgres, so on Oracle versus Postgres we recommend to set parallel_chunk_rows higher than the default of 10
Million. For example, set to 100 Million or even higher, so the algorithm will split only really large tables. For more
information, see Common hash.

LI
V-
87

Enhancement Support for EDB Extended PostgreSQL 14 and EDB Advanced PostgreSQL 14.

LI
V-
71
,
LI
V-
72

Type Description ID

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 5

Enhancement Collecting the Oracle rowid which can be helpful to inspect divergences.

LI
V-
90
,
RT
75
64
4,
RT
75
67
5

Enhancement Improved logging for the LiveRound comparison algorithm, which can be helpful to inspect divergences.

LI
V-
91
,
RT
75
64
4,
RT
75
67
5

Bug fix Fixed the issue where oracle_fetch_fk_metadata was not being honored.
LI
V-
92

Bug fix

Fixed an issue where, if when using log_level = debug on log-heavy use cases, LiveCompare could die with an
unhandled exception because the logging queue was full. On Unix systems, the maximum size of any queue is 32676. The
problem happened because the base Python implementation asynchronously enqueued the logging records. The solution was
to override the Python implementation to synchronously enqueue the logging records, which can have a performance impact
when log_level = debug and log-heavy use cases.

LI
V-
93

Type Description ID

2.3 Version 1.17.0

LiveCompare 2.2 includes the following new features, enhancements, and bug fixes:

Type Description ID

Enhancement Added support to PostgreSQL 14. LIV-66

Enhancement Added support to Debian 11. LIV-70

Bug fix Now --recheck always requires a session ID. LIV-76

Bug fix Minor fixes to the documentation. LIV-26, LIV-68, LIV-80

3 Requirements

LiveCompare requires:

Python >= 3.6 and <= 3.8
PostgreSQL / EDB Postgres Extended 9.5+ / EPAS 11+ (on the output connection)
PostgreSQL / EDB Postgres Extended 9.4+ / EPAS 11+ or Oracle 10g+ (on the data connections being compared)

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 6

LiveCompare requires at least Debian 10, Ubuntu 16.04, or CentOS/RHEL 7.

LiveCompare can be installed from the EnterpriseDB products/livecompare repository. More details can be found in:

https://techsupport.enterprisedb.com/customer_portal/sw/livecompare/

LiveCompare installs on top of:

The latest Python version for Ubuntu, Debian and CentOS/RHEL 8, as provided by the python3 packages; or
Python 3.6 for CentOS/RHEL 7, as provided by the python-36 packages.

On CentOS/RHEL distributions, LiveCompare also requires the EPEL repository. More details can be found in:

https://fedoraproject.org/wiki/EPEL

Specifically on CentOS/RHEL version 7, the Python component tqdm is too old (< 4.16.0). It is possible to install the latest tqdm using pip or pip3
for the user that is running LiveCompare:

pip install --user tqdm --upgrade

LiveCompare with TPAexec

The following sample config for TPAexec can be used to build a server with LiveCompare and PostgreSQL 11 :

architecture: M1
cluster_name:
livecompare_m1
cluster_tags: {}

cluster_vars:
 postgres_coredump_filter: '0xff'
 postgres_version: '13'
 postgresql_flavour: postgresql
 repmgr_failover:
manual
 tpa_2q_repositories:
 - products/livecompare/release
 packages:
 common:
 - 2ndq-livecompare
 use_volatile_subscriptions: true

locations:
- Name: main

instance_defaults:
 image: tpa/redhat
 platform:
docker
 vars:
 ansible_user: root

instances:
- Name:
livem1node1

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 7

https://techsupport.enterprisedb.com/customer_portal/sw/livecompare/
https://fedoraproject.org/wiki/EPEL

More details about TPAexec can be found in:

https://techsupport.enterprisedb.com/customer_portal/sw/tpa/

4 Supported Technologies

LiveCompare is able to connect to and compare data from a list of technologies including PostgreSQL, BDR and Oracle.

In LiveCompare there are 3 kinds of connections:

Initial (optional): Used to fetch metadata about pglogical or BDR connections. Required if data connections are pglogical or BDR, and if
replication_sets or node_name settings are used. Requires logical_replication_mode = pglogical or
logical_replication_mode = bdr . It is required to be a pglogical- or BDR-enabled database.

Data: The actual database connection that the tool will connect to perform data comparison. The first connection in the list is used to solve Table
Filter and Row Filter , and is also used in conjunction with the Initial connection to gather information about BDR nodes. If
logical_replication_mode = bdr and all_bdr_nodes = on , then LiveCompare will consider all BDR nodes that are part of the

same BDR cluster as the Initial Connection . In this case it is not necessary to define Data connections individually. The fix can be
potentially applied in all Data connections, as comparison and consensus decisions work per row.
Output (mandatory): Where LiveCompare will create a schema called livecompare , some tables and views. This is required to keep progress
and reporting data about comparison sessions. It is required to be a PostgreSQL or 2ndQPostgres connection.

Below you can find about versions and details about supported technologies and in which context they can be used in LiveCompare.

Technology Versions Connections

PostgreSQL 10, 11, 12 and 13 Data and/or Output

EDB PostgreSQL Extended 10, 11, 12 and 13 Data and/or Output

EDB PostgreSQL Advanced
(EPAS)

11, 12 and 13 Data and/or Output

pglogical 2 and 3 Initial and/or Data

BDR 1, 2 and 3 Initial and/or Data

Oracle 10g, 11g, 12c and 18c A single Data connection

PgBouncer Support

LiveCompare can be used against nodes through PgBouncer, but only if using pool_mode=session because LiveCompare uses prepared statements

 location: main
 node: 1
 role: primary
 published_ports:
 - 5401:5432
- Name:
livem1node2
 location: main
 node: 2
 role: replica
 upstream:
livem1node1
 published_ports:
 - 5402:5432

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 8

https://techsupport.enterprisedb.com/customer_portal/sw/tpa/

on PostgreSQL, and it would not be possible if pool_mode were either transaction or statement .

5 Command-line Usage

Compare mode

Copy any /etc/2ndq-livecompare/template*.ini to use in your project and adjust as necessary (see the section Settings below).

cp /etc/2ndq-livecompare/template_basic.ini my_project.ini

2ndq-livecompare my_project.ini

During the execution of LiveCompare, you will see N+1 progress bars, N being the number of processes (you can specify the number of processes in the
settings). The first progress bar shows overall execution while the other progress bars show the current table being processed by a specific process.

The information being shown for each table is, from left to right:

Number of the process
Table name
Status, which may be the ID of the comparison round followed by the current table chunk (p1/1 means the table was not split). If the status says
setup , it means the table is being analyzed (checking row count and splitting if necessary)

Number of rows processed
Number of total rows being considered in this comparison round
Time elapsed
Estimated time to complete
Speed in records per second

If a table has more rows than the parallel_chunk_rows setting (see more details below), then a hash function will be used to determine which job
will consider each row. This can slow down the comparison individually, but the comparison as a whole may benefit from parallelism for the given table.

While the program is executing, you can cancel it at any time by pressing Ctrl-c . You will see a message like this:

Manually stopping session 6... You can resume the session with:

2ndq-livecompare my_project.ini 6

Important: If LiveCompare is running in background or running in another shell, you can still softly stop it. It will keep the PID of the master process
inside the session folder (in the example lc_session_6), in a file named livemaster.pid . You can then invoke kill -2 <PID> to softly stop
it.

Then, at any time you can resume a previously canceled session, for example:

2ndq-livecompare my_project.ini 6

When the program ends, if it found no inconsistencies, you will see an output like this:

Saved file lc_session_5/summary_20190514.out with the complete table summary.
You can also get the table summary by connecting to the output database and executing:
select * from livecompare.vw_table_summary where session_id = 5;

Elapsed time: 0:02:10.970954

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 9

Processed 3919015 rows in 6 tables using 3 processes.
Found 0 inconsistent rows in 0 tables.

But if any inconsistencies were found, the output will look like this:

Comparison finished, waiting for remaining difference checks...

Outstanding differences:

+--------------+-------------------+-----------------+------------------+----------------------+---------------
----+---------------------------+
| session_id | table_name | elapsed_time | num_total_rows | num_processed_rows |
num_differences | max_num_ignored_columns |
|--------------+-------------------+-----------------+------------------+----------------------+---------------
----+---------------------------|
| 6 | public.categories | 00:00:00.027864 | 18 | 18 |
4 | |
+--------------+-------------------+-----------------+------------------+----------------------+---------------
----+---------------------------+

Saved file lc_session_6/summary_20200129.out with the complete table summary.
You can also get the table summary by connecting to the output database and executing:
select * from livecompare.vw_table_summary where session_id = 6;

Elapsed time: 0:00:50.149987
Processed 172718 rows in 8 tables from 3 connections using 2 workers.
Found 4 inconsistent rows in 1 tables.

Saved file lc_session_6/differences_20200129.out with the list of differences per table.
You can also get a list of differences per table with:
select * from livecompare.vw_differences where session_id = 6;
Too see more details on how LiveCompare determined the differences:
select * from livecompare.vw_consensus where session_id = 6;

Script lc_session_6/apply_on_the_first_20200129.sql was generated, which can be applied to the first
connection and make it consistent with the majority of connections.
You can also get this script with:
select difference_fix_dml from livecompare.vw_difference_fix where session_id = 6 and connection_id =
'first';

Re-check mode

In a BDR environment, any divergence that BDR finds can be later non-existing as the replication caught up due to eventual consistency. Depending on
several factors, replication lag can cause LiveCompare to report false positives.

To overcome that, in a later moment when replication lag has decreased or data has already caught up, users can manually execute a re-check only on the
differences that were previously found. This execution mode is called "recheck" and can be executed like this:

2ndq-livecompare my_project.ini 6 --recheck

In this mode, LiveCompare will generate separate recheck logs and update all reports that are already existing in the lc_session_X directory.

Important: If resuming a compare or executing under recheck , LiveCompare will check if the settings and connections attributes are the same as
when the session was created. If any divergence found, it will quit the execution with proper message.

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 10

Conflicts mode

To run LiveCompare in conflicts mode, you should invoke it with:

2ndq-livecompare my_project.ini --conflicts

For more details about the conflicts mode, check BDR Support chapter.

6 Advanced Usage

After the end of execution of LiveCompare, you will notice it created a folder called lc_session_<session_id> in the working directory. This folder
contains the following files:

lc_<execution_mode>_<current_date>.log : log file for the session;

summary_<current_date>.out : shows a list of all tables that were processed, and for each table it shows the time LiveCompare took to
process the table, the total number of rows and how many rows were processed, how many differences were found in the table, and also the
maximum number of ignored columns, if any.

To get the complete summary, you can also execute the following query against the output database:

select *
from <output_schema>.vw_table_summary
where session_id = <session_id>;

differences_<current_date>.out : if there are any differences, this file shows useful information about each difference. This file is not
generated if there are no differences.

For example, the difference list could be like this:

+-------------------+-------------------------+-----------------+---------------------+
| table_name | table_pk_column_names | difference_pk | difference_status |
|-------------------+-------------------------+-----------------+---------------------|
public.categories	category	(7)	P
public.categories	category	(10)	P
public.categories	category	(17)	P
public.categories	category	(18)	P
+-------------------+-------------------------+-----------------+---------------------+

To get the full list of differences with all details, you can also execute the following query against the output database:

select *
from <output_schema.vw_differences
where session_id = <session_id>;

To understand how LiveCompare consensus worked to decide which databases are divergent, then the view vw_consensus can provide details on the
consensus algorithm:

select *
from <output_schema.vw_consensus
where session_id = <session_id>;

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 11

apply_on_the_first_<current_date>.sql : if there are any differences, this file will show a DML command to be applied on the first
database, to make the first database consistent all other databases. For example, for the differences above, this script could be:

BEGIN;

DELETE FROM public.categories WHERE (category) = 7;
UPDATE public.categories SET categoryname = $lc1$Games Changed$lc1$ WHERE (category) = 10;
INSERT INTO public.categories (category,categoryname) VALUES (17, $lc1$Test 1$lc1$);
INSERT INTO public.categories (category,categoryname) VALUES (18, $lc1$Test 2$lc1$);

COMMIT;

LiveCompare generates this script automatically. In order to fix the inconsistencies in the first database, you can simply execute the script in the first
database.

LiveCompare generates a similar apply_on_*.sql script for each database that has inconsistent data.

Which differences to fix

LiveCompare is able to identify and provide fixes for the following differences:

A row exists in the majority of the data connections. The fix will be an INSERT on the divergent databases;
A row does not exist in the majority of the data connections. The fix will be a DELETE on the divergent databases;
A row exists in all databases, but some column values mismatch. The fix will be an UPDATE on the divergent databases.

By default difference_statements = all , which means that LiveCompare will try to apply all 3 DML types (INSERT , UPDATE and DELETE)
for each difference it finds. But it is possible to specify which type of DML LiveCompare should consider when providing difference fixes, by changing the
value of the setting difference_statements , which can be:

all (default): Fixes INSERT s, UPDATE s and DELETE s;
inserts : Fixes only INSERT s;
updates : Fixes only UPDATE s;
deletes : Fixes only DELETE s;
inserts_updates : Fixes only INSERT s and UPDATE s;
inserts_deletes : Fixes only INSERT s and DELETE s;
updates_deletes : Fixes only UPDATE s and DELETE s.

When difference_statements has the values all , updates , inserts_updates or updates_deletes , then it is possible to tell
LiveCompare to ignore any UPDATE s that would set NULL to a column.

Difference log

Table difference_log stores all information about differences every time LiveCompare checked them. Users can run LiveCompare in re-check mode
multiple times, so this table shows how the difference has evolved over the time window where LiveCompare was re-checking it.

Detected (D): The difference was just detected. In re-check and fix modes, LiveCompare will mark all Permanent and Tie differences as Detected in
order to re-check them.

Permanent (P): After having re-checked the difference, if data is still divergent, LiveCompare marks the difference as Permanent.

Tie (T): Same as Permanent, but there is not enough consensus to determine which connections are the majority.

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 12

Absent (A): If upon a re-check LiveCompare finds that the difference does not exist anymore (the row is now consistent between both databases),
then LiveCompare marks the difference as Absent.

Volatile (V): If upon a re-check xmin has changed on an inconsistent row, then LiveCompare marks the difference as Volatile.

Ignored (I): Users can stop difference re-check of certain differences by manually calling the function
<livecompare_schema_name>.accept_divergence(session_id, table_name, difference_pk) in the Output PostgreSQL

connection. For example:

SELECT livecompare.accept_divergence(
 2 -- session_id
 , 'public.categories' -- table_name
 , $$(10)$$ -- difference_pk
);

7 BDR Support

LiveCompare can be used against BDR nodes, as well as non-BDR nodes.

Setting logical_replication_mode = bdr will make the tool assume that all databases being compared belong to the same BDR cluster. Then
you can specify node names as connections, and replication sets to filter tables.

For example, consider you are able to connect to any node in the BDR cluster. Let's call this Initial Connection . By initially connection to this
node, LiveCompare is able to check BDR metadata and retrieve connection information from all other nodes.

Now consider you want to compare 3 BDR nodes. As LiveCompare is able to connect to any node starting from the Initial Connection , you do not
need to define dsn or any connection information for the data connections. You just need to define node_name . LiveCompare searches in BDR
metadata about the connection information for that node, and then connects to the node.

Please note that, for LiveCompare to be able to connect to all other nodes by fetching BDR metadata, it is required that LiveCompare is able to connect to
them using the same DSN from BDR view bdr.node_summary , field interface_connstr . In this case it is recommended to run LiveCompare on
the same machine as the Initial Connection , as postgres user. If that's not possible, then please define the dsn attribute in all data
connections.

You can also specify replication sets as table filters. LiveCompare will use BDR metadata to build the table list, considering only tables that belong to the
replication set(s) you defined in the replication_sets setting.

For example, you can create an .ini file to compare 3 BDR nodes:

[General Settings]
logical_replication_mode =
bdr
max_parallel_workers = 4
parallel_chunk_rows = 1000000

[Initial
Connection]
dsn = port=5432 dbname=live
user=postgres

[Node1
Connection]
node_name = node1

[Node2
Connection]

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 13

It is also possible to tell LiveCompare to compare all active nodes in the BDR cluster. For that purpose just do the following:

In General Settings , enable all_bdr_nodes = on ;
Specify an Initial Connection ;
Additional data connections are not required.

For example:

When all_bdr_nodes = on , LiveCompare uses the Initial Connection to fetch the list of all BDR nodes. Additional data connections are not
required; although if set, will be appended to the list of data connections. For example, it would be possible to compare a whole BDR cluster against a
single Postgres connection, useful in migration projects:

node_name = node2

[Node3
Connection]
node_name = node3

[Output
Connection]
dsn = port=5432 dbname=liveoutput user=postgres

[Table Filter]
replication_sets = set_name =
'bdrgroup'

[General Settings]
logical_replication_mode =
bdr
max_parallel_workers = 4
parallel_chunk_rows = 1000000
all_bdr_nodes = on

[Initial
Connection]
dsn = port=5432 dbname=live
user=postgres

[Output
Connection]
dsn = port=5432 dbname=liveoutput user=postgres

[Table Filter]
replication_sets = set_name =
'bdrgroup'

[General Settings]
logical_replication_mode =
bdr
max_parallel_workers = 4
parallel_chunk_rows = 1000000
all_bdr_nodes = on

[Initial
Connection]
dsn = port=5432 dbname=live
user=postgres

[Old
Connection]
dsn = host=oldpg port=5432 dbname=live
user=postgres

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 14

Settings node_name and replication_sets are supported for the following technologies:

BDR 1, 2 and 3;
pglogical 2 and 3.

Please note that to enable pglogical metadata fetch instead of BDR, just set logical_replication_mode = pglogical instead of
logical_replication_mode = bdr .

BDR Witness nodes

Using replication sets in BDR, it's possible to configure specific tables to be included in the BDR replication, and also specify which nodes should receive
data from such tables, by configuring the node to subscribe to the replication set the table belongs to. This allows for different architectures such as BDR
Sharding and the use of BDR Witness nodes.

A BDR Witness is a regular BDR node which doesn't replicate any DML from other nodes. The purpose of the Witness is to provide quorum in Raft
Consensus voting (for more details on the BDR Witness node, check BDR documentation). Depending on how replication sets were configured, the
Witness may or may not replicate DDL. Which means that there are 2 types of BDR Witnesses:

A completely empty node, without any data nor tables; or
A node that replicates DDL from other nodes, hence having empty tables.

In the first case, even if the BDR Witness is included in the comparison (either manually under [Connections] or using all_bdr_nodes = on),
as the Witness doesn't have any tables, the following message will be logged:

Table public.tbl does not exist on connection node1

In the second case, on the other hand, the table exists on the BDR Witness. However, it would not be correct to report data missing on the Witness as
divergences. So, for each table, LiveCompare checks the following information on each node included in the comparison:

The replication sets that the node subscribes;
The replication sets that the table is associated with;
The replication sets, if any, the user defined in filter replication_sets under Table Filter .

If the intersection among all 3 lists of replication sets is empty, which is the case for the BDR Witness, then LiveCompare will log this:

Table public.tbl is not subscribed on connection node1

In both cases, the comparison for that specific table proceeds on the nodes where the table exists, and the table is replicated according to the replication
sets configuration.

Differences in a BDR cluster

LiveCompare will make changes to the local node only; it is important that corrective changes do not get replicated to other nodes.

[Output
Connection]
dsn = port=5432 dbname=liveoutput user=postgres

[Table Filter]
replication_sets = set_name =
'bdrgroup'

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 15

When logical_replication_mode = bdr , LiveCompare will initially check if a replication origin called bdr_local_only_origin already
exists (the name of the replication origin can be configured by adjusting the setting difference_fix_replication_origin). If a replication
origin called bdr_local_only_origin does not exist yet, then LiveCompare creates it on all BDR connections.

IMPORTANT: Please note that BDR 3.6.18 introduced the new pre-created bdr_local_only_origin replication origin to be used for applying local-
only transactions. So if LiveCompare is connected to BDR 3.6.18, it won't create this replication origin.

LiveCompare will generate apply scripts considering the following:

Set the current transaction to use the replication origin bdr_local_only_origin , so any DML executed will have xmin associated to
bdr_local_only_origin ;

Set the current transaction datetime to be far in the past, so if there are any BDR conflicts with real DML being executed on the database,
LiveCompare DML always loses the conflict.

After applying LiveCompare fix script to a BDR node, it will be possible to get exactly which rows were inserted or updated by LiveCompare using the
following query (replace mytable with the name of any table):

with lc_origin as (
 select roident
 from pg_replication_origin
 where roname = 'bdr_local_only_origin'
)
select t.*
from mytable t
inner join lc_origin r
on r.roident = bdr.pg_xact_origin(t.xmin);

(Note that deleted rows are no longer visible.)

Please note that LiveCompare requires at least a PostgreSQL user with bdr_superuser privileges in order to properly fetch metadata.

All steps above involving replication origins only applied to output script, if the PostgreSQL user has bdr_superuser or PostgreSQL superuser
privileges. Otherwise, LiveCompare will generate fixes without associating any replication origin (transaction replication is still disabled using SET
LOCAL bdr.xact_replication = off). However, it is recommended to use a replication origin when applying the DML scripts, because
otherwise LiveCompare will have the same precedence as a regular user application regarding conflict resolution. Also, as there will not be any
replication origin associated to the fix, the query above to list all rows fixed by LiveCompare can not be used.

Between BDR 3.6.18 and BDR 3.7.0, the following functions are used:

bdr.difference_fix_origin_create() : Executed by LiveCompare to create the replication origin specified in
difference_fix_replication_origin (by default set to bdr_local_only_origin), if this replication origin does not exist;
bdr.difference_fix_session_setup() : Included in the generated DML script so the transaction is associated with the replication origin

specified in difference_fix_replication_origin ;
bdr.difference_fix_xact_set_avoid_conflict() : Included in the generated DML script so the transaction is set far in the past

(2010-01-01), so the fix transaction applied by LiveCompare always loses a conflict, if any.

The functions above require a bdr_superuser rather than a PostgreSQL superuser. Starting from BDR 3.7.0, those functions are deprecated.
LiveCompare then will, if running as a PostgreSQL superuser, use the following functions instead, to perform the same actions as above:

pg_replication_origin_create(origin_name) ;
pg_replication_origin_session_setup() ;
pg_replication_origin_xact_setup() .

If a PostgreSQL superuser is not being used, then LiveCompare will include only the following in the generated DML transaction:

SET LOCAL bdr.xact_replication = off;

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 16

Conflicts in BDR

LiveCompare has an execution mode called conflicts . This execution mode is specific for BDR clusters. It will only work in BDR 3.6 or BDR 3.7
clusters.

While compare mode is used to compare all content of tables as a whole, conflicts mode will focus just in tuples/tables that are related to
existing conflicts that are registered in bdr.apply_log , in case of BDR 3.6, or in bdr.conflict_history , in case of BDR 3.7.

Having said that, conflicts execution mode is expected to run much faster than compare mode, because it will just inspect specific tuples from
specific tables. At the same time, it's not as complete as compare mode, because of the same reason.

The main objective of this execution mode is to check that the automatic conflict resolution which is being done by BDR is consistent among nodes, i.e.,
after BDR resolving conflicts the cluster is in a consistent state.

Although, for the general use case, automatic conflict resolution ensures cluster consistency, there are a few known cases where automatic conflict
resolution can result in divergent tuples among nodes. So the conflicts execution mode from LiveCompare can help checking and ensuring
consistency, with a good balance between time vs result.

Conflict example

Imagine on node3 we execute the following query:

SELECT c.reloid::regclass,
 s.origin_name,
 c.local_time,
 c.key_tuple,
 c.local_tuple,
 c.remote_tuple,
 c.apply_tuple,
 c.conflict_type,
 c.conflict_resolution
FROM bdr.conflict_history c
INNER JOIN bdr.subscription_summary s
ON s.sub_id = c.sub_id;

We can see the following conflict in bdr.conflict_history :

reloid | tbl
origin_name | node2
local_time | 2021-05-13 19:17:43.239744+00
key_tuple | {"a":null,"b":3,"c":null}
local_tuple |
remote_tuple |
apply_tuple |
conflict_type | delete_missing
conflict_resolution | skip

Which means that when the DELETE arrived from node2 to node3 , there was no row with b = 3 in table tbl . However, the INSERT might
have arrived from node1 to node3 later, which then added the row with b = 3 to node3 . So this is the current situation on node3 :

bdrdb=# SELECT * FROM tbl WHERE b = 3;
 a | b | c
---+---+-----
 x | 3 | foo

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 17

(1 row)

While on nodes node1 and node2 , this is what we see:

bdrdb=# SELECT * FROM tbl WHERE b = 3;
 a | b | c
---+---+---
(0 rows)

The BDR cluster is divergent.

Now in order to detect and fix such divergence, we could execute LiveCompare in compare mode, but depending on the size of the comparison set
(imagine table tbl is very large), that can take a long time, even hours.

This is exactly the situation where conflicts mode can be helpful. In this case, the delete_missing conflict is visible only from node3 , but
LiveCompare is able to extract the PK values from the conflict logged rows (key_tuple , local_tuple , remote_tuple and apply_tuple)
and perform an automatic cluster-wide comparison only on the affected table, already filtering by the PK values. The comparison will then check the
current row version in all nodes in the cluster.

So we create a check.ini file to set all_bdr_nodes = on , i.e., to tell LiveCompare to compare all nodes in the cluster:

[General Settings]
logical_replication_mode = bdr
max_parallel_workers = 2
all_bdr_nodes = on

[Initial Connection]
dsn = dbname=bdrdb

[Output Connection]
dsn = dbname=liveoutput

To run LiveCompare in conflicts mode:

2ndq-livecompare check.ini --conflicts

After the execution, in the console output, you will see something like this:

Elapsed time: 0:00:02.443557
Processed 1 conflicts about 1 tables from 3 connections using 2 workers.
Found 1 divergent conflicts in 1 tables.
Processed 1 rows in 1 tables from 3 connections using 2 workers.
Found 1 inconsistent rows in 1 tables.

Inside folder ./lc_session_X/ (being X the number of the current comparison session), LiveCompare will write the file conflicts_DAY.out
(replacing DAY in the name of the file with the current day), showing the main information about all divergent conflicts.

If you connect to database liveoutput , you will be able to see more details about the conflicts, for example using this query:

SELECT *
FROM livecompare.vw_conflicts
WHERE session_id = 1
 AND conflict_id = 1
ORDER BY table_name,
 local_time,

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 18

 target_node;

You will see something like this:

session_id | 1
table_name | public.tbl
conflict_id | 1
connection_id | node3
origin_node | node2
target_node | node3
local_time | 2021-05-13 19:17:43.239744+00
key_tuple | {"a": null, "b": 3, "c": null}
local_tuple |
remote_tuple |
apply_tuple |
conflict_type | delete_missing
conflict_resolution | skip
conflict_pk_value_list | {(3)}
difference_log_id_list | {1}
is_conflict_divergent | t

The is_conflict_divergent = true means that LiveCompare has compared the conflict and found the nodes to be currently divergent in the
tables and rows reported by the conflict. View livecompare.vw_conflicts shows information about all conflicts, including the non-divergent
ones.

LiveCompare will also automatically generate DML script ./lc_session_X/apply_on_the_node3_DAY.sql (replacing DAY in the name of the
file with the current day):

BEGIN;

SET LOCAL bdr.xact_replication = off;
SELECT pg_replication_origin_session_setup('bdr_local_only_origin');
SELECT pg_replication_origin_xact_setup('0/0', '2010-01-01'::timestamptz);;

SET LOCAL ROLE postgres;
DELETE FROM public.tbl WHERE (b) = (3);

COMMIT;

LiveCompare is suggesting to DELETE the row where b = 3 from node3 , because on the other 2 nodes the row does not exist. By default,
LiveCompare suggest the DML to fix based on the majority of the nodes.

If you run this DML script against node3 :

psql -h node3 -f ./lc_session_X/apply_on_the_node3_DAY.sql

You will get the BDR cluster consistent again.

As the --conflicts mode comparison is much faster than a full --compare , it is highly recommended to schedule a --conflicts comparison
session more often, to ensure conflict resolution is providing cluster-wide consistency.

Please note that, in order to be able to see the data in bdr.conflict_history in BDR 3.7 or bdr.apply_log in BDR 3.6, you should run
LiveCompare with an user that is bdr_superuser or is a PostgreSQL superuser.

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 19

Mixing technologies

Please note that metadata for node_name and replication_sets are fetched in the Initial Connection . So it should be a pglogical-
and/or BDR-enabled database.

The list of tables is built in the first data connection. So the replication_sets condition should be valid in the first connection.

It is possible to perform mixed technology comparisons, for example:

BDR 1 node versus BDR 3 node;
BDR 3 node versus vanilla Postgres instance;
Vanilla Postgres instance versus pglogical node.

8 Oracle Support

LiveCompare can be used to compare data from an Oracle database against any number of PostgreSQL or BDR databases.

For example, you can define technology = oracle in a data connection. Other settings can then be used to define the connection to Oracle:

host
port
service
user
password

All other data connections are required to be PostgreSQL.

Here is a simple example of comparison between an Oracle database versus a PostgreSQL database:

[General Settings]
logical_replication_mode = off
full_comparison_mode = on
max_parallel_workers = 4
oracle_user_tables_only = on
oracle_ignore_unsortable = on
column_intersection = on
force_collate =
C
difference_tie_breakers =
oracle

[Oracle
Connection]
technology =
oracle
host = 127.0.0.1
port = 1521
service = XE
user = LIVE
password = live

[Postgres
Connection]
technology = postgresql
dsn = dbname=liveoracle user=william

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 20

Here the schema_name in Oracle is the user table sandbox. All table names are schema-qualified by default:

Postgres: <schema_name> . <table_name>
Oracle: <user> . <table_name

It is possible to disable schema-qualified table names by setting schema_qualified_table_names = off . This can be done only if
oracle_user_tables_only = on , which means that LiveCompare will search only on tables that belong to the Oracle user that is connected.

When schema-qualified table names is disabled, then on Postgres you need to have set a default search_path on your role or configuration, or you
can use the connection start_query parameter to set an appropriate search_path , for example:

When schema_qualified_table_names = off , then you can use non-qualified table names in the Table Filter , Row Filter and
Column Filter too.

Also please note that the Output Connection is required to write progress and reporting information from LiveCompare.

[Output
Connection]
dsn = dbname=liveoutput user=william

[Table Filter]
schemas = schema_name =
'live'

[General Settings]
logical_replication_mode = off
full_comparison_mode = on
max_parallel_workers = 4
oracle_user_tables_only = on
oracle_ignore_unsortable = on
column_intersection = on
force_collate =
C
difference_tie_breakers =
oracle
schema_qualified_table_names = off

[Oracle
Connection]
technology =
oracle
host = 127.0.0.1
port = 1521
service = XE
user = LIVE
password = live

[Postgres
Connection]
technology = postgresql
dsn = dbname=liveoracle user=william
start_query = SET search_path = myschema1, myschema2,
public

[Output
Connection]
dsn = dbname=liveoutput user=william

[Table Filter]
tables = table_name in ('mytable1',
'mytable2')

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 21

If you need to compare a BDR database against Oracle, and you want to take advantage about Initial Connection , node_name and
replication_sets features (as explained earlier), then you can point the last data connection to Oracle, like this:

It is also possible to compare a whole BDR cluster against a single Oracle database, for example:

[General Settings]
logical_replication_mode =
bdr
full_comparison_mode = on
max_parallel_workers = 4
oracle_user_tables_only = on
oracle_ignore_unsortable = on
column_intersection = on
force_collate =
C
difference_tie_breakers =
oracle

[Initial
Connection]
dsn = port=5432 dbname=live
user=postgres

[BDR
Connection]
node_name = node1

[Oracle
Connection]
technology =
oracle
host = 127.0.0.1
port = 1521
service = XE
user = LIVE
password = live

[Output
Connection]
dsn = port=5432 dbname=liveoutput user=postgres

[Table Filter]
replication_sets = set_name =
'bdrgroup'

[General Settings]
logical_replication_mode =
bdr
full_comparison_mode = on
max_parallel_workers = 4
oracle_user_tables_only = on
oracle_ignore_unsortable = on
column_intersection = on
force_collate =
C
difference_tie_breakers =
oracle
all_bdr_nodes = on

[Initial
Connection]
dsn = port=5432 dbname=live
user=postgres

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 22

Requirements

Please note that LiveCompare works on PostgreSQL databases out-of-the-box, without needing to install any additional software.

But in order to be able to connect to Oracle, LiveCompare requires additional software:

Oracle Instant Client

You need to download and install Oracle Instant Client (or extract it to a specific folder, depending on the operating system you use):

MacOSX: Download Oracle Instant Client (64-bit) and extract in ~/lib ;
Linux: Download Oracle Instant Client (32-bit) (64-bit) and install it on your system, then set LD_LIBRARY_PATH ;
Windows: Download Oracle Instant Client (32-bit) (64-bit) and extract it into the LiveCompare folder.

cx_Oracle Python module

The Python module cx_Oracle is required to be installed and available on your system so that LiveCompare is able to connect to an Oracle Database.

Currently cx_Oracle is not installable from Linux distribution repositories, so please follow the instructions in cx_Oracle website to install it on your
system.

As LiveCompare is recommended to be executed under the postgres operating system user, then it is possible to install the cx_Oracle module
through PIP only for the postgres user, with the following command:

pip3 install --user cx_Oracle --upgrade

Differences

If LiveCompare finds any difference, it will generate a DML script only to be applied on the PostgreSQL connections. A DML script to be applied in the
Oracle connection is not generated.

[Oracle
Connection]
technology =
oracle
host = 127.0.0.1
port = 1521
service = XE
user = LIVE
password = live

[Output
Connection]
dsn = port=5432 dbname=liveoutput user=postgres

[Table Filter]
replication_sets = set_name =
'bdrgroup'

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 23

http://www.oracle.com/technetwork/topics/intel-macsoft-096467.html
http://www.oracle.com/technetwork/topics/linuxsoft-082809.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/winsoft-085727.html
http://www.oracle.com/technetwork/topics/winx64soft-089540.html
https://oracle.github.io/python-cx_Oracle/
https://cx-oracle.readthedocs.io/en/latest/user_guide/installation.html

BLOB and CLOB Data Types

LiveCompare is able to compare CLOB fields from Oracle, provided that the equivalent field in PostgreSQL is of type text . The same goes for BLOB
fields from Oracle, the equivalent in PostgreSQL should be of type bytea .

However, by default LiveCompare does not handle BLOB/CLOB fields if they are in the primary key, or if the table has no primary key. If that's the case,
then the table will be ignored, and in LiveCompare logs you will see a message like this:

ORA-00932: inconsistent datatypes: expected - got BLOB

It is possible to workaround this behaviour by telling LiveCompare to ignore BLOB/CLOB fields if table has no primary key, by enabling these 2 settings in
the General Settings section:

oracle_ignore_unsortable = on
column_intersection = on

Incompatible Collation

On Oracle, generally we have the following initialization parameters set:

NLS_COMP = BINARY
NLS_SORT = BINARY

This means that, regardless of the NLS_LANG and other language settings, all ORDER BY operations in Oracle are performed using the character
binary code.

In Postgres, the equivalent collation that shows the same behavior is the C collation. If your Postgres database was initialized in a different collation,
then by default LiveCompare might find issues when sorting PK values, which can lead to false positives.

To workaround that, it is possible to force a collation (say, the C collation) in Postgres, so it matches the same sort behavior from Oracle:

If LiveCompare detects that the comparison session involves Oracle and PostgreSQL, then LiveCompare already sets force_collate = C , unless the
user has set it to any other value.

Common Hash

By default, LiveCompare has comparison_algorithm = block_hash , even when comparing PostgreSQL versus Oracle. However, a "common
hash" is built following these rules:

The row is fully represented as text, by concatenating all column values;
On Postgres side, timestamp, numeric and bytea data types are handled to mimic Oracle;
This way, the full row representation is then hashed using MD5 on both sides;
This allows using comparison_algorithm set to block_hash and row_hash ;
If there are any mismatches when using block_hash , LiveCompare will automatically fall back to row_hash and then full_row , as it
would on a Postgres versus Postgres comparison.
The BLOB, CLOB and NCLOB fields on Oracle are limited to the first 2000 characters only (comparison_algorithm = full_row allows
comparison of the entire BLOB and CLOB);

force_collate =
C

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 24

On Oracle, the full row representation should not be wider than 4000 characters.

If the full row representation is wider than 4000 characters, LiveCompare aborts the comparison for that specific table, and the following error message
appears in the logs:

ORA-01489: result of string concatenation is too long

Further LiveCompare versions will fall back to full_row comparison on these specific tables. For now, a workaround would be to configure a separate
comparison sessions on these tables only, using comparison_algorithm = full_row .

Also note that the Common Hash requires the standard_hash function on Oracle, which is available only on Oracle 12c and newer. On Oracle 10g
and 11c, please use comparison_algorithm = full_row .

9 Settings

General Settings

logical_replication_mode : Affects how the program interprets connections and table filter settings (see more details below), and also
what requirements to check for in the connections before starting the comparison. Currently the possible values are:

- `off`: Assumes there is no logical replication between the databases;

- `native`: Assumes there is native logical replication between the
databases. Enables the usage of the `Table Filter -> publications`
setting to specify the list of tables to be used. Requires PostgreSQL 10+ on
all databases.

- `pglogical`: Assumes there is pglogical replication between the databases.
Enables the usage of the `Table Filter -> replication_sets` setting to
specify the list of tables to be used. Also enables the usage of `node_name`
to specify the data connections, which require setting the `Initial
Connection` that is used to retrieve DSN information of the nodes. Requires
the `pglogical` extensions to be installed on all databases.

- `bdr`: Assumes all data connections are nodes from the same BDR cluster.
Enables usage of `Table Filter -> replication_sets` setting to specify list
of tables to be used. Also enables usage of `node_name` to
specify the data connections, which require setting `Initial Connection`
that is used to retrieve DSN information of the nodes. Requires `pglogical`
and `bdr` extensions installed on all databases.

all_bdr_nodes : If logical_replication_mode is set to bdr , then it is possible to specify only the Initial Connection (see below) and
let LiveCompare build the connection list based on the current list of active BDR nodes. Default: off .

max_parallel_workers : Number of parallel processes to be considered. Each process will work on a table from the queue. Default: 2 .

Important: Each process will keep N+1 open connections: 1 to each data connection and another 1 to the output database.

buffer_size : Number of rows to be retrieved from the tables on every data fetch operation. Default: 4096 .

log_level : Verbosity level in the log file. Possible values: debug , info , warning or error . Default: info .

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 25

data_fetch_mode : Affects how LiveCompare fetches data from the database.

prepared_statements : Uses prepared statements (a query with LIMIT) for data fetch. Only a very small amount of data
(buffer_size = 4096 rows by default) is fetched each time, so it has the smallest impact of all 3 modes, and by the same reason it's
the safer fetch mode. Allows asynchronous data fetch (defined by parallel_data_fetch). For the general use case, this fetch method
provides a good performance, but a performance decrease can be felt for large tables. This is the default and strongly recommended when
server load is medium-high.

server_side_cursors_with_hold : Uses server-side cursors WITH HOLD for data fetch. As table data is retrieved in a single
transaction, it holds back xmin and can cause bloat and replication issues, and also prevent VACUUM from running well. Also, the WITH
HOLD clause tells Postgres to materialize the query (workers may hang for a few seconds waiting for the data to be materialized), so the
whole table data consumes RAM and can be stored on Postgres side disk as temporary files. All that impact can be decreased by using
parallel_chunk_rows (set to 10000000 by default), and speed can be improved by increasing buffer_size a little. Allows

asynchronous data fetch (defined by parallel_data_fetch). For the general use case, this fetch method doesn't provide any benefits
when compared to prepared_stataments , but for multiple small tables it's faster. However, this mode is recommended only when
load is very low, for example on tests and migration scenarios.

server_side_cursors_without_hold : Uses server-side cursors WITHOUT HOLD for data fetch. As
server_side_cursors_with_hold , this mode can also hold back xmin , thus potentially can cause bloat, VACUUM and

replication issues on Postgres, but such impact is higher because WITHOUT HOLD cursors require an open transaction for the whole
comparison session (this will be lifted in further versions). As the snapshot is held for the whole comparison session, comparison results
might be helpful depending on your use case. As the query is not materialized, memory usage and temp file generation remains low.
Asynchronous data fetch is not allowed. In terms of performance, this mode is slower for the general use case, but for large tables it can be
the faster. It's recommended when load on the database is low-medium.

Important: the choice of the right data_fetch_mode for the right scenario is very important. Using prepared statements has the smallest footprint on
the database server, so it's the safest approach, and it's good for the general use case. Another point is that prepared statements allow LiveCompare to
always see the latest version of the rows, which may not happen when using server-side cursors on a busy database. So it's recommended to use
prepared_statements for production, high load servers; and either server_side_cursors_* settings for testing, migration scenarios, and

low load servers. The best strategy would probably mix server_side_cursors_without_hold for very large tables, and
prepared_statements for the remaining tables. Refer to the table below for a comparison on the cost/benefit ratio:

prepared_statements server_side_cursors_with_hold server_side_cursors_without_hold

xmin hold very low medium high

xmin released per buffer chunk whole comparison session

temp files very low very high low

memory very low high low

allows async conns yes yes no

fastest for general small tables large tables

recommended load high very low low-medium

Note about Oracle: For Oracle, the data_fetch_mode setting is completely ignored, and data will always be fetch from Oracle using direct queries
with LIMIT , without using prepared statements or cursors.

parallel_chunk_rows : Minimum number of rows required to consider splitting a table into multiple chunks for parallel comparison. A hash is
used to fetch data, so workers don't clash with each other. Each table chunk will have no more than parallel_chunk_rows rows. Setting it to
any value < 1 disables table splitting. If any connections are not PostgreSQL, then table splitting is disabled automatically by LiveCompare.
Default: 10000000.

parallel_data_fetch : If data fetch should be performed in parallel (i.e., using async connections to the databases). Improves performance
of multi-way comparison. If any data connections are not PostgreSQL, then this setting is automatically disabled. It's only allowed when
data_fetch_mode = prepared_statements or data_fetch_mode = server_side_cursors_with_hold . Default: on .

comparison_algorithm : Affects how LiveCompare works through table rows to compare data. Using hashes is faster than full row
comparison. It can assume one of the following values:

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 26

- `full_row`: Disables row comparison using hashes. Full comparison, in this
case, is performed by comparing the row column by column.

- `row_hash`: Enables row comparison using hashes and enables table
splitting. Tables are split so each worker compares a maximum of
`parallel_chunk_rows` per table. Data row is hashed in PostgreSQL, so the
comparison is faster than `full_row`. However, if for a specific row the
hash does not match, then for that specific row, LiveCompare will fallback
to `full_row` algorithm (i.e., compare row by row). If any data connections
is not PostgreSQL, then LiveCompare uses a row hash that's defined as the MD5
hash of the concatenated column values of the row, being considered a
"common hash" among the database technologies being compared.

- `block_hash`: Works the same as `row_hash`, but instead of comparing row
by row, LiveCompare builds a "block hash", i.e., a hash of the hashes of all
rows in the data buffer that was just fetched (maximum of `buffer_size`
rows). Conceptually it works like a 2-level Merkle Tree. If the block hash
matches, then LiveCompare advances the whole block (this is why this
comparison algorithm is faster than `row_hash`). If block hash does not
match, then LiveCompare falls back to `row_hash` and performs comparison row
by row in the buffer to find the divergent rows. This is the default value.

min_time_between_round_saves : Time in seconds to wait before updating each round state when the comparison algorithm is in progress.
Note that when the round finishes, LiveCompare always updates the round state for that table. Default: 60 seconds.

Important: If the user cancels execution of LiveCompare by hitting Ctrl-c and starts it again, then LiveCompare will resume the round for that table,
starting from the point where the round state was saved.

stop_after_time : Time in seconds after which LiveCompare will automatically stop itself as if the user had hit Ctrl-c . The comparison
session that was interrupted, if not finished yet, can be resumed again by passing the session ID as argument in the command line. Default is
stop_after_time = 0 , which means that automatic interruption is disabled.

consensus_mode : Consensus algorithm used by LiveCompare to determine which data connections are divergent. Possible values are
simple_majority , quorum_based or source_of_truth . If consensus_mode = source_of_truth then
difference_sources_of_truth must be filled. Default is simple_majority .

difference_required_quorum : If consensus_mode = quorum_based , then this setting specified the minimum quorum is required
to decide which connections are divergent. Should be a number between 0.0 and 1.0 (0.0 means no connection is required while 1.0 means all
connections are required, both cases are extreme and should not be used). The default value is 0.5, and we recommend using a value close to that.

difference_sources_of_truth : Comma-separated list of connections names (or node names, if logical_replication_mode =
bdr and all_bdr_nodes = on) that should be considered as source of truth. It is only used when consensus_mode =
source_of_truth . For example: difference_sources_of_truth = node1,node2 . In this example, either the sections node1
Connection and node2 Connection should be defined in the .ini file or all_bdr_nodes = on and only the Initial Connection
is defined, while node1 and node2 should be valid BDR node names.

difference_tie_breakers : Comma-separated list of connection names (or node names, if logical_replication_mode = bdr and
all_bdr_nodes = on) that should be considered as tie breakers whenever the consensus algorithm finds a tie situation. For example:
difference_tie_breakers = node1,node2 . In this example, either the sections node1 Connection and node2 Connections

should be defined in the .ini file or all_bdr_nodes = on and only the Initial Connection is defined, while node1 and node2
should be valid BDR node names. Default is to not consider any connection as tie breaker.

difference_statements : Controls what kind of DML statements will be generated by LiveCompare. The value of
difference_statements can be one of:

- `all` (default)
- `inserts`
- `updates`

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 27

- `deletes`
- `inserts_updates`
- `inserts_deletes`
- `updates_deletes`

difference_allow_null_updates : Determines whether commands like UPDATE SET col = NULL will be allowed in the difference
report. Default: on .

difference_statement_order : Controls order of DML statements that will be generated by LiveCompare. The value of
difference_statement_order can be one of:

- `delete_insert_update`
- `delete_update_insert` (default)
- `insert_update_delete`
- `insert_delete_update`
- `update_insert_delete`
- `update_delete_insert`

difference_fix_replication_origin : When working with BDR databases, for difference LiveCompare will create a specific replication
origin if it doesn't exist yet, then use the replication origin to create apply script with DML fixes. The setting
difference_fix_replication_origin specifies the name of the replication origin used by LiveCompare. If the user doesn't set any value

for this setting, then LiveCompare will automatically set difference_fix_replication_origin = bdr_local_only_origin . Note
that the replication origin that LiveCompare creates is not dropped to allow verification after the comparison, but if needed the replication origin
can be manually dropped later. Requires logical_replication_mode = bdr .

IMPORTANT: Please note that BDR 3.6.18 introduced the new pre-created bdr_local_only_origin replication origin to be used for applying local-
only transactions. So if LiveCompare is connected to BDR 3.6.18, it won't create this replication origin, and it is recommended that the user should not try
to drop this replication origin.

difference_fix_start_query : Arbitrary query that is executed at the beginning of the apply script generated by LiveCompare.
Additionally if a BDR comparison is being performed and the difference_fix_start_query is empty, then LiveCompare also automatically
does the following:

- If the divergent connection is BDR 3.6.7, add
`SET LOCAL bdr.xact_replication = off;`
- Add commands that setup transaction to use the replication origin
specified in `difference_fix_replication_origin`.

show_progress_bars : Determines whether or not progress bars should be shown in the console output. Disabling this setting might be useful
for batch executions. Default: on .

output_schema : In the output connection, the schema where the comparison report tables will be created. Default: livecompare .

hash_column_name : Every data fetch will contain a specific column which is the hash of all actual columns in the row. This setting specifies the
name of this column. Default: livecompare_hash .

rownumber_column_name : Some fetches need to use the row_number() function value inside a query column. This setting specifies the
name of this column. Default: livecompare_rownumber .

fetch_row_origin : When this setting is enabled, LiveCompare fetches the origin name for each divergent row, which might be useful for
debugging purposes. Default: off . To be enabled, requires logical_replication_mode set to pglogical or bdr .

column_intersection : When this setting is enabled, for a given table that is being compared, LiveCompare will only work on the intersection
of columns from the table on all connections, ignoring extra columns that might exist on any of the connections. When this setting is disabled,
LiveCompare will check if columns are equivalent on the table on all connections, and abort the comparison of the table if there are any column
mismatches. Default: off .

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 28

Important: If table has PK, then the PK columns are not allowed to be different, even if column_intersection = on .

oracle_ignore_unsortable : When enabled, tells LiveCompare to ignore columns with Oracle unsortable data types (BLOB, CLOB, NCLOB,
BFILE) if column is not part of the table PK. If enabling this setting, it is recommended to also enable column_intersection .

oracle_user_tables_only : When enabled, tells LiveCompare to fetch table metadata only from the Oracle logged in user, which is faster
because it reads, for example, from sys.user_tables and sys.user_tab_columns instead of sys.all_tables and
sys.all_tab_columns . Default: off .

oracle_fetch_fk_metadata : When enabled, tells LiveCompare to fetch foreign key metadata, which can be a slow operation. Overrides the
value of the setting fetch_fk_metadata on the Oracle connection. Default: off .

schema_qualified_table_names : Table names are treated as schema-qualified when this setting is enabled. Disabling it allows
comparison of tables without using schema-qualified table names: on Oracle x Postgres comparisons, it requires also enabling
oracle_user_tables_only , while on Postgres x Postgres, it allows for comparisons of tables that are under different schemas, even in the

same database. Also, when schema_qualified_table_names is enabled, Table Filter -> tables , Row Filter and Column
Filter allow table name without the schema name. Default: on .

force_collate : When set to a value other than off and to a valid collation name, forces the specified collation name in ORDER BY
operations in all Postgres databases being compared. Useful when comparing Postgres databases with different collation or when comparing
Oracle versus Postgres databases (in this case users should set force_collate = C). Will assume value C if comparing mixed technologies
(like Oracle vs PostgreSQL) and no collation is specified. Default: off .

work_directory : path to the LiveCompare working directory. The session folder containing output files will be created in such directory.
Default: . (current directory).

abort_on_setup_error : when enabled, if LiveCompare hits any error when trying to setup a table comparison round, the whole comparison
session is aborted. Default: off .

Important: Setting abort_on_setup_error is only considered during compare mode. In recheck mode, LiveCompare always aborts at the first
error in setup.

custom_dollar_quoting_delimiter : when LiveCompare finds differences, it will output the DML using dollar quoting on strings. The
default behavior is create a random string to compose it. If you want by any means use a custom one, you can set this parameter as the delimiter to
be used. You just need to set the constant, not the $ symbols around the constant. Defaults to off , which means LiveCompare will use a md5
hash of the word LiveCompare .

session_replication_role_replica : when enabled LiveCompare will use session_replication_role PostgreSQL setting as
replica in the output apply scripts. That's useful if you want to prevent firing triggers and rules while applying DML in the nodes with

divergences. Enabling it requires a PostgreSQL super user, otherwise will take no effect. Defaults to off .

split_updates : when enabled LiveCompare will split UPDATE divergences, i.e., instead of generating a UPDATE DML, it will generate
corresponding DELETE and INSERT in the apply script. Defaults to off .

float_point_round : an integer to specify decimal digits that LiveCompare should round when comparing float point values coming from the
database. Default is -1, which disables float point rounding.

Initial Connection

The initial connection is used only when logical_replication_mode is set to pglogical or bdr , and is used only when the program starts, to
fetch DSN from node names, if the user has set data connections using only the node_name setting.

technology : RDBMS technology. Currently the only possible value is postgresql .
dsn : PostgreSQL connection string. If dsn is set, then host , port , dbname and user are ignored. The dsn setting can also have all

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 29

other parameter key words allowed by libpq.
host : Server address. Leave empty to use the Unix socket connection.
port : Port. Default: 5432 .
dbname : Database name. Default: postgres .
user : Database user. Default: postgres .
application_name . Application name. Can be used even if the user set dsn instead of all other connection information. Default:
livecompare_initial .

Output Connection

The output connection specifies where LiveCompare will create the comparison report tables.

technology : RDBMS technology. Currently the only possible value is postgresql .
dsn : PostgreSQL connection string. If dsn is set, then host , port , dbname and user are ignored. The dsn setting can also have all

other parameter key words allowed by libpq.
host : Server address. Leave empty to use the Unix socket connection.
port : Port. Default: 5432 .
dbname : Database name. Default: postgres .
user : Database user. Default: postgres .
application_name . Application name. Can be used even if the user set dsn instead of all other connection information. Default:
livecompare_output .

Data Connection

A "data connection" is a connection section similar to the Initial Connection and the Output Connection , but LiveCompare effectively
fetches and compares data on the data connections.

Similarly to the Initial Connection and Output Connection , a "data connection" is defined in a named section. The section name should be
of the form Name Connection , being Name any single-worded string starting with an alphabetic character. In this case, whatever the user fills in
Name is called the "Connection ID" of the data connection. It is also required that each data connection has an unique Connection ID in the whole list of

data connections.

If logical_replication_mode = bdr and all_bdr_nodes = on , then the user is not required to specify any data connection, because
LiveCompare will build the data connection list by fetching BDR metadata from the Initial Connection .

technology : RDBMS technology. Currently possible values are postgresql or oracle .
node_name : Name of the node in the cluster. Requires logical_replication_mode set to pglogical or bdr , and also requires that

the Initial Connection is filled. If node_name is set, then dsn , host port , dbname and user settings are all ignored.
dsn : PostgreSQL connection string. If dsn is set, then host , port , dbname and user are ignored. The dsn setting can also have all

other parameter key words allowed by libpq.
host : Server address. Leave empty to use the Unix socket connection.
port : Port. Default: 5432 .
dbname : Database name. Default: postgres .
service : Service name, used in Oracle connections. Default: XE .
user : Database user. Default: postgres .
password : Plain text password. We recommend not to use this, but in some legacy connections it might be required.
application_name . Application name. Can be used even if the user set dsn or node_name instead of all other connection information.

Default: livecompare_<Connection ID> .
start_query : Arbitrary query that is executed each time a connection to a database is open.
fetch_fk_metadata : If LiveCompare should gather metadata about foreign keys on the connection. Default: on .

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 30

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-PARAMKEYWORDS
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-PARAMKEYWORDS
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-PARAMKEYWORDS

Table Filter

If omitted or left empty, this section from the .ini file will mean that LiveCompare should be executed against all tables in the first database.

If you want LiveCompare to be executed against a specific set of tables, there are different ways to specify this:

publications : You can filter specific publications, and LiveCompare will use only the tables associated to those publications. The variable
publication_name can be used to build the conditional expression, for example:

Requires logical_replication_mode = native .

replication_sets : When using pglogical or BDR, you can filter specific replication sets, and LiveCompare will work only on the tables
associated to those replication sets. The variable set_name can be used to build the conditional expression, for example:

Requires logical_replication_mode = pglogical or logical_replication_mode = bdr .

schemas : You can filter specific schemas, and LiveCompare will work only on the tables that belong to those schemas. The variable
schema_name can be used to build the conditional expression, for example:

tables : The variable table_name can help you build a conditional expression to filter only the tables you want LiveCompare to work on, for
example:

Please note that, in any conditional expression, the % character should be escaped as %% .

The table name should be schema-qualified, unless schema_qualified_table_names is disabled. For example, it's possible to filter only a specific
list of tables:

tables = table_name in ('myschema1.mytable1', 'myschema2.mytable2')

If you have disabled general setting schema_qualified_table_names , then you should also set an appropriate search_path for Postgres in
the connection start_query setting, for example:

[General Setting]
...
schema_qualified_table_names = off

[My Connection]
...
start_query = SET search_path TO myschema1, myschema2

[Table Filter]
tables = table_name in ('mytable1', 'mytable2')

IMPORTANT: Please note that if two or more schemas that were set on search_path contains a table if the same name, just the first one found will be

publications = publication_name =
'livepub'

replication_sets = set_name in ('default',
'bdrgroup')

schemas = schema_name !=
'badschema'

tables = table_name not like
'%%account'

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 31

considered in the comparison.

The Table Filter section can have a mix of publications , replication_sets , schemas and tables filters, and LiveCompare will
consider the set of tables that are in the intersection of all filters you specified. For example:

Also please note that the table filter is applied in the first database, to build the table list. If a table exists in the first database and is being considered in
the filter, but does not exist in any other database, then you will see something like this in the logs, and the comparison for that specific table will be
skipped.

2019-06-17 11:52:41,403 - ERROR - live_table.py - 55 - GetMetaData - P1: livecompare_second_1: Table
public.test does not exist
2019-06-17 11:52:41,410 - ERROR - live_round.py - 201 - Initialize - P1: Table public.test does not exist
on second connection. Aborting comparison

Similarly, if a table exists in any other database but does not exist in the first database, then it won't be considered in the comparison, even if you didn't
apply any table filter.

A comparison for a specific table will also be skipped if the table column names are not exactly the same (unless column_intersection is enabled),
and in the same order. An appropriate message will be included in the log file as well.

Currently LiveCompare does not check if data types nor constraints are the same on both tables.

IMPORTANT: please note that conflicts mode doesn't make use of table filter.

Row Filter

In this section you can apply a row-level filter to any table, so LiveCompare will work only on the rows that satisfy the row filter.

You can write a list of tables under this section, one table per line (all table names should be schema qualified unless
schema_qualified_table_names is disabled), for example:

In this case, for the table public.table1 , LiveCompare will work only in the rows that satisfy the clause id = 10 , while for the table
public.table2 , only rows that satisfy logdate >= '2000-01-01 will be considered in the comparison.

If you have disabled general setting schema_qualified_table_names , then you should also set an appropriate search_path for Postgres in
the connection start_query setting, for example:

[General Setting]
...
schema_qualified_table_names = off

[Table Filter]
publications = publication_name =
'livepub'
replication_sets = set_name in ('default',
'bdrgroup')
schemas = schema_name !=
'badschema'
tables = table_name not like
'%%account'

[Row Filter]
public.table1 = id =
10
public.table2 = logdate >= '2000-01-
01'

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 32

[My Connection]
...
start_query = SET search_path TO public

[Row Filter]
table1 = id = 10
table2 = logdate >= '2000-01-01'

Any kind of SQL condition (same as you would put in the WHERE clause) is accepted, in the same line, as the table row filter. For example, if you have a
large table and want to compare only a specific number of IDs, it's possible to create a temporary table with all the IDs. Then you can use an IN clause to
emulate a JOIN , like this:

[Row Filter]
public.large_table = id IN (SELECT id2 FROM temp_table)

If a row filter is written incorrectly, then LiveCompare will try to apply the filter but will fail. So the comparison for this specific table will be skipped, and
an exception will be written to the log file.

If a table is listed in the Row Filter section, but somehow got filtered out by the Table Filter , then the row filter for this table will be silently
ignored.

IMPORTANT: please note that conflicts mode doesn't make use of row filter.

Column Filter

In this section you can apply a column-level filter to any table, so LiveCompare will work only on the columns that are not part of the column filter.

You can write a list of tables under this section, one table per line (all table names should be schema qualified unless
schema_qualified_table_names is disabled). For example, considering both public.table1 and public.table2 have the columns
column1 , column2 , column3 , column4 and column5 :

In this case, for the table public.table1 , LiveCompare will work only in the columns column2 , column4 and column5 , filtering out
column1 and column3 , while for the table public.table2 , only the columns column2 , column3 and column4 will be considered in the

comparison, filtering out column1 and column5 .

If you have disabled general setting schema_qualified_table_names , then you should also set an appropriate search_path for Postgres in
the connection start_query setting, for example:

[General Setting]
...
schema_qualified_table_names = off

[My Connection]
...
start_query = SET search_path TO public

[Column Filter]
table1 = column1, column3

[Column Filter]
public.table1 = column1,
column3
public.table2 = column1,
column5

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 33

table2 = column1, column5

If absent column names are given in the column filter, that is, column doesn't exist in the given table, then LiveCompare will log a message about the
columns that could not be found and ignore them, using just the valid ones, if any.

If a table is listed in the Column Filter section, but somehow got filtered out by the Table Filter , then the column filter for this table will be
silently ignored.

IMPORTANT: Please note that if a column specified in a Column Filter is part of the table PK, then it won't be ignored in the comparison.
LiveCompare will log that and ignore the filter of such column.

IMPORTANT: please note that conflicts mode doesn't make use of column filter.

Conflicts Filter

In this section you can specify a filter to be used in --conflicts mode while fetching conflicts from BDR nodes. You can build any SQL conditional
expression, and use below fields in the expression:

origin_node : the upstream node of the subscription
target_node : the downstream node of the subscription
local_time : the timestamp when the conflict occurred in the node
conflict_type : the type of the conflict
conflict_resolution : the resolution which was applied
nspname : schema name of the involved relation
relname : relation name of the involved relation

You must use conflicts attribute under the section. Please find an example below:

[Conflicts Filter]
conflicts = conflict_type = 'update_missing' AND nspname = 'my_schema'

By adding above piece of configuration to your INI file, LiveCompare would fetch just conflicts that are of type update_missing , and related to tables
under schema my_schema while querying for conflicts in each of the BDR nodes.

IMPORTANT: Please note that this section is exclusive for --conflicts mode.

10 Licenses

TQDM

tqdm is a product of collaborative work. Unless otherwise stated, all authors (see commit logs) retain copyright for their respective work, and release
the work under the MIT licence (text below).

Exceptions or notable authors are listed below in reverse chronological order:

files: * MPLv2.0 2015-2020 (c) Casper da Costa-Luis casperdcl.
files: tqdm/_tqdm.py MIT 2016 (c) PR #96 on behalf of Google Inc.
files: tqdm/_tqdm.py setup.py README.rst MANIFEST.in .gitignore MIT 2013 (c) Noam Yorav-Raphael, original author.

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 34

https://github.com/casperdcl
https://github.com/tqdm/tqdm/pull/96

Mozilla Public Licence (MPL) v. 2.0 - Exhibit A

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain
one at https://mozilla.org/MPL/2.0/.

MIT License (MIT)

Copyright (c) 2013 noamraph

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

cx_Oracle

LICENSE AGREEMENT FOR CX_ORACLE

Copyright © 2016, 2020, Oracle and/or its affiliates. All rights reserved.

Copyright © 2007-2015, Anthony Tuininga. All rights reserved.

Copyright © 2001-2007, Computronix (Canada) Ltd., Edmonton, Alberta, Canada. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions, and the disclaimer that follows. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials
provided with the distribution. Neither the names of the copyright holders nor the names of any contributors may be used to endorse or promote products
derived from this software without specific prior written permission. DISCLAIMER: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Computronix ® is a registered trademark of Computronix (Canada) Ltd.

© Copyright 2016, 2020, Oracle and/or its affiliates. All rights reserved. Portions Copyright © 2007-2015, Anthony Tuininga. All rights reserved. Portions
Copyright © 2001-2007, Computronix (Canada) Ltd., Edmonton, Alberta, Canada. All rights reserved Revision 10e5c258.

Apache License

 Apache License
 Version 2.0, January 2004

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 35

https://mozilla.org/MPL/2.0/

 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that
entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such
entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source,
and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled
object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice
that is included in or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial
revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative
Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or
Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal
Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal,
or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source
code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving
the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a
Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-
exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily
infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If
You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for
that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and
in Source or Object form, provided that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 36

(b) You must cause any modified files to carry prominent notices stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from
the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of
the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at
least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if
provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional
attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use,
reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution
of the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing
herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except
as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its
Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of
permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by
applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including
any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to
use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other
commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee
for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting
such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree
to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of
your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

Psycopg2

psycopg2 is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any later version.

psycopg2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

In addition, as a special exception, the copyright holders give permission to link this program with the OpenSSL library (or with modified versions of
OpenSSL that use the same license as OpenSSL), and distribute linked combinations including the two.

You must obey the GNU Lesser General Public License in all respects for all of the code used other than OpenSSL. If you modify file(s) with this exception,
you may extend this exception to your version of the file(s), but you are not obligated to do so. If you do not wish to do so, delete this exception statement
from your version. If you delete this exception statement from all source files in the program, then also delete it here.

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 37

You should have received a copy of the GNU Lesser General Public License along with psycopg2 (see the doc/ directory.) If not, see
https://www.gnu.org/licenses/.

Alternative licenses

The following BSD-like license applies (at your option) to the files following the pattern psycopg/adapter*.{h,c} and
psycopg/microprotocol*.{h,c} :

Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject
to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a
product, an acknowledgment in the product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Tabulate

Copyright (c) 2011-2020 Sergey Astanin and contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. © 2020 GitHub, Inc.

OmniDB

MIT License

Portions Copyright (c) 2015-2019, The OmniDB Team Portions Copyright (c) 2017-2019, 2ndQuadrant Limited

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 38

https://www.gnu.org/licenses/

	1 LiveCompare
	Comparison Performance
	Security Considerations for the User

	2 Release notes
	2.1 Version 1.18.1
	2.2 Version 1.18.0
	2.3 Version 1.17.0
	3 Requirements
	LiveCompare with TPAexec

	4 Supported Technologies
	PgBouncer Support

	5 Command-line Usage
	Compare mode
	Re-check mode
	Conflicts mode

	6 Advanced Usage
	Which differences to fix
	Difference log

	7 BDR Support
	BDR Witness nodes
	Differences in a BDR cluster
	Conflicts in BDR
	Conflict example

	Mixing technologies

	8 Oracle Support
	Requirements
	Oracle Instant Client
	cx_Oracle Python module

	Differences
	BLOB and CLOB Data Types
	Incompatible Collation
	Common Hash

	9 Settings
	General Settings
	Initial Connection
	Output Connection
	Data Connection
	Table Filter
	Row Filter
	Column Filter
	Conflicts Filter

	10 Licenses
	TQDM
	Mozilla Public Licence (MPL) v. 2.0 - Exhibit A
	MIT License (MIT)

	cx_Oracle
	Apache License

	Psycopg2
	Alternative licenses

	Tabulate
	OmniDB

