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Abstract
Quantitative analysis of cave systems represented as 3D models is becoming more and more important in the field of cave
sciences. One open question is the rigorous identification of chambers in a data set, which has a deep impact on subsequent
analysis steps such as size calculation. This affects the international recognition of a cave since especially record-holding caves
bear significant tourist attraction potential. In the past, chambers have been identified manually, without any clear definition or
guidance. While experts agree on core parts of chambers in general, their opinions may differ in more controversial areas. Since
this process is heavily subjective, it is not suited for objective quantitative comparison of caves. Therefore, we present a novel
fully-automatic curve skeleton-based chamber recognition algorithm that has been derived from requirements from field experts.
We state the problem as a binary labeling problem on a curve skeleton and find a solution through energy minimization. A
thorough evaluation of our results with the help of expert feedback showed that our algorithm matches real-world requirements
very closely and is thus suited as the foundation for any quantitative cave analysis system.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1. Introduction

In the past few years, great efforts have been made in the field of
speleology (science of caves) to acquire highly detailed 3D maps of
underground cave systems, mostly with the help of terrestrial laser
scanners [aE01,BG09,GAMNGL∗09,MRB∗15]. The resulting 3D
models can then be used for analysis. In this paper, by cave we
mean the entirety of a cave system, i.e. everything that is below the
ground. Figure 1 shows an example cave.

A cave’s size (e.g. measured by its volume) is of great interest
to speleologists because extreme sizes may be caused by unique
geological formations and also bear significant touristic attraction.
Although computing this volume from a mesh is straight-forward,
the total volume of a cave is of little significance in most cases.
The entities whose volume is interesting to speleologists are cave
chambers, i.e. enlargements of the cave’s interior [Fie99] (possible
chambers in Figure 1 are marked red). Therefore, volume calcula-
tion requires identification of chambers.

Volume and other quantitative measures that are derived from
identified chambers are objective quantities that describe the cham-
ber. This criterion is not met if experts identify the chambers be-
cause this approach introduces a subjective bias as seen in Fig-
ure 1. In this paper, we present an automatic chamber recognition
algorithm, which we derived strictly from requirements stated by
experts in the field. Because our algorithm is fully automatic, it has

no subjective bias and can be used as a basis to generate objective
quantitative measures.

We use the reconstructed surface from cave surveying expedi-
tions, represented as a triangle mesh, as input for our algorithm. It
is sufficient for the input mesh to have a low spatial resolution be-
cause details and features that are only present at higher resolutions
do not have an impact on chamber recognition. Furthermore, we re-
quire the input mesh to be watertight and manifold in order to sup-
port skeleton extraction as we will explain in Section 3.4. We pro-
duce such meshes with Poisson Surface Reconstruction [KBH06]
on the original point cloud.

The task of chamber identification is a segmentation problem,
where segments represent chambers or the passages that connect
them. In contrast to most other mesh segmentation algorithms, we
do not segment the surface directly as this may cause inconsisten-
cies between the sides of a chamber. Instead, we derive a curve
skeleton [CSM07] from the shape and segment the vertices of the
curve skeleton. The segmentation is then projected back onto the
surface. This procedure ensures consistency of opposite surface
vertices because they correspond to the same skeleton vertex. The
segmentation is guided by a size measure defined on the skeleton
vertices. We describe the presence of entrances (i.e. transitions be-
tween chambers and passages) in a probabilistic framework and
derive the segmentation as the minimizer of a quadratic energy
function. The resulting algorithm is invariant to rigid body trans-
formations as well as to scaling.
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Figure 1: A model of the Simud Puteh cave (Borneo) with chambers (red) identified by three different experts. The core parts of chambers
are matched in all three segmentations. However, differences occur in controversial areas such as the far right branch.

Figure 2: SDF-based segmentation of the Eisriesenwelt cave (Aus-
tria). Strong narrowings as the entrance of the beige passage in the
middle can be recognized very well. Chambers may consist of mul-
tiple segments as can be seen from the beige/yellow/pink segments
on the right.

Unfortunately, the field of speleology does not offer a rigorous
definition of the term chamber, though experts have a common un-
derstanding of chamber characteristics. However, this understand-
ing usually diverges in controversial areas of a cave as shown in
Figure 1. In order to match our algorithm design with the common
sense in speleology, we worked very closely together with experts
in the field and evaluated the results quantitatively against feedback
from experts.

2. Related Work

The problem of mesh segmentation is widely studied and a variety
of approaches exist. For a detailed overview, we refer the reader to
the surveys by Attene et al. [AKM∗06] and Shamir [Sha08]. In the
following, we review a selection of relevant work as well as more
recent publications.

Although chamber recognition is a segmentation problem, mesh
segmentation is a slightly different problem in the sense that most
algorithms try to find a partitioning of a mesh that matches the hu-
man recognition system. The basis for this kind of segmentation
has been laid by Hoffman and Richards [HR84], who stated that
the human recognition system tends to partition a shape in such
way that the boundaries coincide with negative minima of any of
the principal curvatures (i.e. concave regions) and the according
curvature lines (minima rule). As we will explain in Section 3.1,

this rule does not always apply to chamber recognition, especially
because concave creases are not necessarily entrances and curva-
ture lines may fail to capture the entrance when the widening hap-
pens in a single direction. Furthermore, most approaches segment
the shape into a number of individual segments without regarding
semantics (i.e. whether or not the segment is a chamber). There-
fore, it is usually not possible to easily extend existing approaches
to chamber recognition, especially because chambers may be rep-
resented by multiple segments. Figure 2 shows the segmentation
result of SDF-based segmentation [SSCO08] of the Eisriesenwelt
caves. As can be seen, the segmentation captures narrowings very
well. However, an interpretation of the segmentation with respect to
chamber recognition is not directly possible. Even if a parameteri-
zation of the algorithm is found that captures all entrances, a more
sophisticated approach would be necessary to perform the segmen-
tation in a consistent way (i.e. one that labels all corresponding
segments as a single chamber).

Graph-Based Approaches on Mesh Connectivity use the mesh
graph and geometrical measures on the graph to run segmentation.
SDF-based segmentation [SSCO08] as shown in Figure 2 defines
the Shape Diameter Function on every surface facet, which serves
as a local size measure. After a soft clustering of faces with re-
spect to their SDF, a graph cut-based optimization is used to find
the final segmentation. Similar clustering approaches are used with
other attributes such as dihedral angle, curvature, convexity, etc.
For details, please refer to the referenced surveys. Other clustering
techniques based on geometrical features have also been proposed,
such as Random Walks [LHMR08] and Mean Shift [ZLXH08].
Golovinskiy et al. [GF09] presented a method that does not only
regard edges within a single mesh but also correspondences be-
tween a set of meshes to achieve consistent segmentations across
the set. Au et al. [AZC∗12] use geometric features to define scalar
functions across the surface and derive borders of the segmenta-
tion from isolines of these functions. Wang et al. [WLAT14] define
a concavity-aware Laplacian operator on the surface and derive a
segmentation from its eigenvectors. Analyzing the behavior of the
mesh under several operations can also be used for segmentation.
De Goes et al. [DGGV08] consider a diffusion process, whereas
Fang et al. [FSKR11] analyze heat flows. All these methods are
not directly applicable to chamber recognition due to the reasons
explained in the previous paragraph.
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Part-based approaches consider the volume enclosed by the sur-
face instead of segmenting the surface directly. Fitting-based ap-
proaches [WY11,YWLY12] try to fit quadrics or spline surfaces to
the geometry and use the fitting error for segmentation. Solomon
et al. [SBCBG11] analyze the intrinsic symmetry of shapes with
approximate Killing vector fields to find a segmentation. These ap-
proaches are inappropriate for chamber recognition due to the irreg-
ularity of caves. Agathos et al. [APPS10] use feature points to clas-
sify the shape into a body part and protrusible parts. The assump-
tion of a single body part, however, contradicts chamber recogni-
tion since a cave usually contains multiple chambers (which would
be represented by body parts). A different approach is shown by
Feng et al. [FJT15], who use the medial axis in a volumetric data
set to explore the space of possible cuts and derive the final seg-
mentation from statistical analysis of the cut space. This approach
is also inapplicable because it lacks semantic information of seg-
ments. Kaplansky et al. [KT09] show how to improve a coarse seg-
mentation based on optimization of level set functions.

Tubular Part Extraction [MPS∗04a,MPS∗04b,GDB06,MST10]
as a special case of part-based extraction is the family closest to
chamber recognition. Similarly to our approach, Dey et al. [DS06]
also use a curve skeleton to segment a shape, although with a simple
thresholding procedure. Even this family solves a different problem
because chambers can have tubular shapes as well. Additionally,
passages are not necessarily generalized tubes as they can be very
irregular [Pal07].

Data-Driven Approaches use Machine Learning methods to gen-
erate a segmentation without explicitly modeling the requirements.
Kalogerakis et al. [KHS10] and Lv et al. [LCHB12] use a set of
manually labeled training shapes in a conditional random field
framework to learn the segmentation objective based on geo-
metric features. Instead of learning the segmentation, Benhabiles
et al. [BLVD11] learn the presence of a boundary.

3. Chamber Recognition

In this section, we explain the core concepts of our chamber recog-
nition algorithm. We start with a review of cave characteristics that
lay the foundation of our algorithm. We continue with a formal
problem statement, then give an overview of the algorithm, and fi-
nally elaborate on the details.

3.1. Geometry of Caves

In general, caves exhibit a very irregular surface without symme-
try [Bec80,SRFVP13]. Due to erosion, there may be several creases
in the surface, which do not necessarily coincide with entrances
(i.e. the minima rule does not apply). There may be large differ-
ences in size, both between different caves and even within the
same cave, which requires the algorithm to be scale-independent.

In the field of speleology, there is no definition of chambers.
In order to establish a guide line, we conducted several interviews
with speleology experts and found the following characteristics to
be the common sense. Speleologists identify chambers based on
the cave’s perceptible size for an observer that is located in the

cave, which is a subjective measure of the cave’s local extents. For
a cylindrical cave and an observer that is located inside the cylinder,
the perceptible size correlates with the cylinder’s radius. In fact, the
absolute size is not as important as the size change. An observer
that moves through the cave is assumed to pass an entrance if he
recognizes a sudden widening of the cave’s size, i.e. the presence
of chambers is mainly dictated by the presence of entrances. This
widening may happen in a single or in both principal directions
orthogonal to the observer’s path.

3.2. Problem Statement

Given a mesh M = (VM ,F) with vertices VM and faces F ⊆
(VM

3
)
,

we want to find a labeling for the vertices L ∈ {C,P}|VM|, such
that all vertices that belong to a chamber are labeled with C and
all vertices that belong to a passage are labeled with P . Once this
labeling is calculated, separate chambers can be extracted by con-
nected component analysis.

3.3. Overview

Figure 3 shows the four steps of our algorithm. The algorithm starts
by extracting a curve skeleton from the input mesh, which will
serve as the segmentation domain. The curve skeleton is a smooth
1D structure that is centered in the shape. As such, it is a natural
path for an observer through the cave, which is needed to evalu-
ate widening and narrowing of the perceptible cave size (cf. Sec-
tion 3.1). By design, the utilization of a curve skeleton ensures that
surface vertices that correspond to the same skeleton vertex receive
the same label, which guarantees segmentation consistency along
the cross-section of the cave in regions where the skeleton is mani-
fold. Furthermore, the curve skeleton comprises significantly fewer
vertices with sparser connectivity than the surface mesh, which al-
lows for very efficient computation of the final solution. We explain
the process of skeleton extraction in Section 3.4.

In a second step, the perceptible size is calculated for every
skeleton vertex, resulting in a scalar field defined over the curve
skeleton. This calculation is based on a combination of ray shooting
and extraction of significant enclosing lines on the surface, which
results in a measure that matches the subjective local cave size as
perceived by an observer located at the according skeleton vertex.
We point out the details of this measure in Section 3.5.

The perceptible size field is then used to segment the curve skele-
ton. We model the segmentation problem as an energy minimiza-
tion within a probabilistic framework. The key idea is that the pres-
ence of entrances (i.e. sudden widenings of the cave) is closely re-
lated to the presence of maxima in the second derivative of the per-
ceptible size field with respect to the skeleton, while the first deriva-
tive describes the direction of the entrance. This model results in a
quadratic energy function, which we minimize using a graph cut-
based solver. We explain the structure of the energy function and
the process of minimizing it in Section 3.7.

Finally, the segmentation is projected back onto the surface using
the skeleton-shape correspondence that is calculated by the skele-
ton extraction process.
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1. Curve Skeleton Extraction
2. Perceptible Size Calculation

3. Skeleton Segmentation
4. Projection on Surface

Figure 3: Overview of the chamber recognition pipeline

3.4. Skeleton Extraction

From the variety of skeleton extraction algorithms, we found that
Mean Curvature Skeletons [TAOZ12] perform best on the cave
data sets and they allow to choose the degree of centeredness and
smoothness. As a requirement, the input mesh must be watertight
and manifold. As explained in Section 1, the generation of such
meshes is straight-forward.

Since the algorithm relies on the medial axis, we apply HC
Laplacian smoothing [VMM99] before extracting the skeleton. Due
to the reduction in noise, the medial axis is much cleaner and leads
to more expressive skeletons without changing the original mesh
too much.

The result of skeleton extraction is a skeleton S = (VS,E) with
vertices VS and directed edges E ⊆V 2

S , which are oriented arbitrar-
ily for computational reasons (cf. Section 4.2). We subdivide edges
that are longer than a given target size to achieve near uniform sam-
pling of the skeleton.

Furthermore, the extraction process produces a correspondence
map C : VM → VS. In general, the corresponding mesh vertices for
a given skeleton vertex interleave those of its neighbor vertices.
Therefore, we clean the correspondence map by assigning mesh
vertices to neighbors of their original corresponding skeleton vertex
whenever the neighbor is closer to the mesh vertex than the original
correspondence. This local optimization influences only the back-
projection step and cleans the borders between segments. Figure 4
shows an example of the extracted curve skeleton.

3.5. Perceptible Size

As explained in Section 3.1, the perceptible size inside the cave
is a crucial measure for the recognition of chambers. Therefore, we
define it as an attribute on the skeleton vertices size : VS→R. In the
following section, we present the characteristics of this attribute,
which we have derived from discussions with speleologists. The
according implementation details are explained in Section 4.1.

The starting point for the development of the measure definition
is a skeleton vertex v that is located at the center of a perfectly cylin-
dric cave. In this case, the size should be the cylinder’s radius. This
can be easily extended to cylinders with irregular cross-sections, in
which case the size should be the average radius:

size(v) =
1

2π

∫ 2π

0
radius(φ)dφ, (1)

Figure 4: Visualization of the extracted curve skeleton with edges
shown in green and vertices represented as gray spheres. The front
faces of the cave surface have been removed in the rendering.

where radius(φ) is the radius of the cross-section in the direction
of φ. Upon closer inspection, the resulting size is the radius of a
circle whose perimeter is equal to that of the cross-section. The
calculation can be modified to give the radius of a circle whose
area is equal to the area of the cross-section by incorporating an
exponent e = 2:

size(v) =
(

1
2π

∫ 2π

0
radius(φ)e dφ

)1/e

, (2)

In fact, any exponent can be used in order to match the size measure
to the actual perceptible size, e.g. the exponent 1.75 as proposed by
Flannery [Fla71] may be used to use the circle’s perceptual size.
We evaluate the choice of this exponent in Section 6.

We generalize this principle of averaging the radius over a path
network across the surface for arbitrarily shaped caves surrounding
v. Assume that radiusv(d) is now a spherical field of distances from
v to the cave’s surface in the direction d. For an arbitrary (not nec-
essarily manifold) path network P on the surface of the unit sphere,
the average radius is then:

avgRadius(v,P) =
(

1
length(P)

∮
P

radiusv(d)e dd
)1/e

, (3)

where both length and the differential are measured using the
geodesic distance on the unit sphere:

dist(d1,d2) = arccos〈d1,d2〉 (4)
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(a) Cylindrical cave (b) Elliptical cylinder (c) General cave shape with three path seg-
ments.

Figure 5: Visualization of the averaging path network used for perceptible size calculation for different cave shapes. The path network is
visualized in green. The according skeleton vertex is located at the intersection of the two black lines.

For the cylindric case, the path network is a circle on the unit
sphere. Figures 5a and 5b show the averaging network for the two
cases discussed so far. We express P as a set of open path segments,
where each segment is represented by a discrete sampling. The cru-
cial question is how to define the network on general cave shapes.

As can be seen from the cylindrical
cases, the chosen path network is closed and
always encompasses the according skele-
ton vertex completely. More formally, this
means the following: The path network par-
titions the surface of the unit sphere into dis-
tinct patches (in the case of the cylindrical
examples in exactly two hemispheres). The nearby figure shows
these patches for a more general network. The solid angle of each
of these patches must be smaller than a threshold θΩ. Intuitively,
this restricts the size of generated cells of the network, which en-
sures that the cave part surrounding v is examined in its entirety in-
stead of a single non-representative area. Similarly, a lower bound
on the solid angle θΩ is enforced to ensure a minimum distance of
path segments and to avoid redundancy as a consequence of near-
collapsing cells. In our computation, we define these thresholds not
directly but in a 2D plane as simple angles. We will explain the
details of this constraint in Section 4.1.

Furthermore, the chosen network is the most compact one, i.e. it
is a minimizer of (3). Together with the aforementioned constraints,
this completes the definition of the perceptible size:

size(v) :=min
P

avgRadius(v,P)

s.t. P is closed

s.t. θΩ ≤ solidAngle(p)≤ θΩ∀p ∈ patches(P),

(5)

where patches(P) is the set of patches on the surface of the unit
sphere induced by the path network P. Figure 5c shows this net-
work for a general cave shape.

We evaluate this equation by finding an optimal path network on
the surface and averaging the radius field over it. The starting point
for this optimization is a heuristic initialization based on the local
minima of the radius field, which is then refined through gradient
descent-based optimization. For details, refer to Section 4.1.

3.6. Derived Measures

The perceptible size is the key measure that controls the segmenta-
tion. In order to define the segmentation energy function, we derive
a few more measures from the perceptible size, most notably the
first two derivatives. In the following section, we explain the pro-
cedure used to extract these measures.

We define both derivatives of the perceptible size on the edges in-
stead of skeleton vertices. Therefore, the first derivative can be cal-
culated easily using finite differences of the perceptible sizes of the
incident vertices. The edge direction serves as a natural direction
for the derivative value. Obviously, the derivative in the reversed
direction is the negated value, which we will use in a later proce-
dure. Similarly, the second derivative is calculated with central dif-
ferences from the first derivative. To compute the central difference
on an edge, where at least one vertex is a branching, we average the
first derivatives over all incoming (incident to the edge’s first ver-
tex) and all outgoing (incident to the edge’s second vertex) edges
and use these two values for the finite difference. For implemen-
tation details, please refer to Section 4.2. In order to remove noise
and to make the derivative calculation more robust, we apply Gaus-
sian smoothing to both the perceptible size and its first derivative
before calculating the next derivative.

From the three measures presented so far, only the first deriva-
tive is independent of scale because any uniform scaling cancels
out in the differential quotient dsize(t)

dt , where t is the position of a
vertex on the skeleton branch, measured in length units. This fact
prohibits the direct use of the other measures for an energy func-
tion of a scale-invariant chamber recognition algorithm. Therefore,
we derive a local scale measure that allows the definition of rel-
ative, scale-independent measures. We use this cave scale in the
following ways: We express the kernel sizes used for smoothing
the perceptible size and its first derivative as a multiple of the scale.
And we multiply the second derivative by the cave scale to derive a
normalized, scale-invariant second derivative ŝize′′. In the follow-
ing, we will refer to this measure as Normalized Curvature. The
reason for that is the according differential quotient having a sin-
gle scale measure in the numerator and two in its denominator. By
multiplying with another scale measure, all scale dependency can-
cels out, leaving a scale-invariant value. The advantage of using a
local cave scale instead of a global one is its adaptivity to the ac-
tual proportions in an observed portion of the cave. As discussed
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in Section 3.1, caves can exhibit large differences in size, which
makes the use of a global scale inappropriate.

We found that the maximum perceptible size in the neighbor-
hood surrounding a specific skeleton vertex v is well suited as the
scale measure for v. This neighborhood constitutes vertices that
have a geodesic distance smaller than a multiple µscale of the per-
ceptible size from v. Expressing the distance threshold as a multi-
ple of the size leads to a scale-invariant process. Specifically, with
dist(v1,v2) being the geodesic distance of two vertices along the
skeleton, the cave scale is defined as:

scale(v)←max{size(i)|dist(v, i)≤ µscale · size(v)} (6)

This essentially pulls the maximum cave size from all neighbors
within a given radius.

3.7. Segmentation

With the definition of derived measures, all necessary input data
for the segmentation are specified. In the following, we present the
utilized energy function and the according minimization method.

We start by quickly recalling the segmentation objective: Given
the curve skeleton S, we want to find a labeling LS ∈ {C,P}|VS| that
specifies for each skeleton vertex if it belongs to a chamber or to a
passage. Since the presence of chambers is dictated by the presence
of entrances, the energy function has the following general form of
a Markov Random Field:

argmin
L

∑
(vi,v j)∈E

φi, j(Li,L j), (7)

where φi, j : {C,P}2 → R is a per-edge potential that describes in
a probabilistic framework how likely a given labeling of the two
incident vertices is. Instead of modeling the potential directly, we
model the according probabilities and derive the potential from
their negative-log space:

φi, j(Li,L j) =− logπi, j(Li,L j) (8)

There are two ingredients for the definition of the probabilities.
The function πentrance models the probability of an edge being an
entrance. The second function πdirection models the probability of
a possible entrance to be directed along the edge (i.e. the source
vertex belongs to a passage and the target vertex to a chamber).
These two probabilities can be used to define the probability func-
tion for the edge. The probability of the edge not being an entrance
is therefore the complement of the entrance probability:

πi, j(C,C) = 1−πentrance(ŝize′′(i, j))

πi, j(P,P) = 1−πentrance(ŝize′′(i, j))
(9)

The remaining two cases must take the direction into account:

πi, j(P,C) = πentrance(ŝize′′(i, j)) ·πdirection(size′(i, j))

πi, j(C,P) = πentrance(ŝize′′(i, j)) · (1−πdirection(size′(i, j))
(10)

In the following, we present how we model the partial probabilities.

Like most other mesh segmentation algorithms, which use a cur-
vature measure, we use the second derivative of the perceptible size
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Figure 6: Visualization of the utilized probability functions.

as the basis for the entrance probability. More specifically, high
values of the second derivative correspond to a high probability of
the presence of an entrance. This matches the requirement for an
entrance to be located at a sudden widening of the cave (cf. Sec-
tion 3.1). Formally, this probability is defined as follows:

πentrance(ŝize′′) =

0 ŝize′′ < 0

1− exp
(
− ŝize′′

2

2σ2

)
otherwise

, (11)

where we define the parameter σ based on the curvature tipping
point θtip, i.e. the value of the normalized curvature that results in
an entrance probability of 0.5, which is the border line between
deciding for a passage or a chamber:

πentrance(θtip) = 0.5

⇐⇒ σ =
θtip√
2ln2

(12)

Figure 6a visualizes this function. Note that this function never
reaches the probability of 1. This is necessary in order to allow
the algorithm to mark edges with high second derivatives as non-
entrances to ensure global consistency.

The direction probability specifies the direction of the entrance,
by which we mean the direction, in which the label changes from
passage to chamber. Naturally, this should be the direction, in
which the cave size increases, i.e. the direction, in which the first
derivative is positive. However, near local minima of the cave size,
the first derivative may vanish. Therefore, we allow a small toler-
ance θdir for the direction. The probability of a possible entrance
being directed in the same direction as the underlying edge is there-
fore:

πdirection(size′) =


0 size′ <−0.5θdir

1 size′ > 0.5θdir

0.5+ size′
θdir

otherwise

(13)

Figure 6b visualizes this function, where the slope in the middle is
defined by the direction tolerance.

Minimizing the resulting energy is in general NP-hard. The
proof for that can be found in the appendix. However, there are
only few edges that prevent the problem from being solvable
in polynomial time (so called non-submodular edges; for details
see the appendix). QPBO (quadratic pseudo-boolean optimiza-
tion) [RKLS07] is a solver that is well-suited for this kind of en-
ergy function. It is a graph-cut based solver that produces a pseudo-
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Local Field Minima

Representatives

(a) Intensity-coded parameter space. The purple dots near the orange path
network are the initial circular arcs. The ridge line is represented as black
dots, where representatives are enlarged.

(b) 3D visualization of the portion of the cave that is visible from the eval-
uated vertex (inside the bulge). The path network encompasses the skeleton
vertex completely and passes nicely between the three incident passages.

Figure 7: Visualization of the sampled radius field for a representative skeleton vertex and e = 1 as well as the final path network represented
as orange dots.

boolean labeling in the sense that it may leave some vertices unla-
beled. However, due to the small number of submodular edges and
the sparse connectivity, QPBO is able to label all vertices in all our
test data sets. If this was not the case, it would be possible to run
a combinatorial solver on the remaining vertices because all labels
that are computed by QPBO are part of a globally optimal solution.
Since this is not the case for the tested cave data sets, a solution
can be computed very quickly (in average in less than ten millisec-
onds), which makes the solver feasible for interactive exploration
of the parameter space.

After calculating the solution on the curve skeleton, a connected
component analysis is performed to assign individual indices to ev-
ery chamber. After that, the solution is projected back onto the sur-
face with the correspondence map.

4. Implementation Details

In the following section, we explain the details of the calculation of
the perceptible size and derived measures.

4.1. Computation of Perceptible Size

The basis of the perceptible size is the radius field, which we sam-
ple by ray-shooting from the skeleton vertex in several directions.
The directions are sampled by a regular sampling scheme based on
spherical coordinates that produces nearly uniform solid angles of
influence per ray (i.e. there are fewer samples along latitudes close
to the poles). In order to keep neighbor queries simple and efficient,
we restrict the number of samples along latitudes to powers of two.

The central objective of perceptible size calculation is the gen-
eration of the minimal path network. Depending on the exponent
chosen in (3), we raise the radius field to the power of e to derive a
generic height field. In the following, we explain how we optimize
the path network over this generic height field. Once the optimal av-
erage height h∗ is found, the corresponding average radius is e

√
h∗.

Since the space of possible path networks on the unit sphere is infi-
nite and their average height is non-convex, the exact computation
of the perceptible size is usually not feasible. In the following, we

Endpoints

Ridge line with representatives

Figure 8: Height field of Figure 7 unrolled to a planar domain

present an algorithm that approximates the optimal average height
with satisfying accuracy.

As explained in Section 3.5, we express the path network as a
set of manifold, open segments that are represented by an ordered
point sampling. As a simplification, we assume that all segments
share their two endpoints with each other. The steps to calculate
the path network are then as follows (the result as well as inter-
mediate steps can be found in Figure 7): First, we find the shared
endpoints on the sphere surface, which are usually local minima of
the heightfield. Once these endpoints are known, all path segments
should run through passes (usually saddle points of the height field)
between the endpoints. We found that this approach serves as a
good heuristic for minimizing the segment’s average height (cf.
Figure 8). Therefore, we find the ridge line that separates the two
endpoints (black in Figure 7) and select representative points from
it, where we would like the path segments to pass through (enlarged
dots). For each representative, we then construct a path segment
and initialize it with a circular arc between the endpoints through
the representative (purple in Figure 7). Finally, we refine the ini-
tial guess by letting the segments flow towards valleys in the height
field (orange in Figure 7).

Endpoints of the path segments. Since the height field is smooth
in general (except from discontinuities that are caused by occlu-
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sions), a path network that minimizes (3) is likely to pass through
the field’s local minima. Therefore, in the case of a height field that
contains exactly two local minima, we fix the endpoints to those.
Similarly, if only one local minimum is present in the 2D height
field, we choose the global minimum of its opposite longitude as
the second endpoint.

If more than two minima exist, we pick the two minima with
the least height but favor pairs with a large distance with a soft
constraint in order to not degenerate the solution. More specifically,
we find the pair of minima m1,m2 ∈ R3 (unit vectors representing
the direction) that solve:

argmin
m1,m2∈M

λ

(
1− arccos(〈m1,m2〉)

π

)
+

height(m1)+height(m2)

2 ·maxm∈M(height(m))
,

(14)
where M is the set of all local minima and λ ∈ [0,∞) is a trade-
off parameter that balances between the proximity criterion (first
term) and the height criterion (second term). In our implementa-
tion, we achieved good results with λ = 2. The denominators of
the two terms are used to normalize the according values. Due to
the small size of the optimization domain, the optimal pair can be
found quickly with an exhaustive search.

Ridge Line.

Ridge Line. Due to the overall smoothness of the height field, the
ridge line usually lies on or near the bisecting plane between the
two endpoints. Therefore, we initialize the ridge line (represented
as a point sampling) with the circle that intersects the sphere and the
bisector. All samples are then moved iteratively towards the closest
ridge or peak by gradient ascent, such that the line converges to
the actual ridge line. During this procedure, the line is re-sampled
where necessary.

Number of Segments and Initial Guess. To initialize the path
segments, we find representative points on the ridge line. We as-
sume that the average height of a path segment correlates closely
with the height of the corresponding representative (as this is usu-
ally the highest point of that path segment). Therefore, one objec-
tive of representative selection is to find representatives with least
average height. Furthermore, the representatives have to be chosen
in a way that the resulting path network fulfills the solid angle con-
straints (5). To simplify computation, we project these constraints
on the bisecting plane, which results in the new constraints:

O := center of sphere

θφ ≤ ](pro j(Ri),O, pro j(Ri+1 mod |R|)≤ θφ ∀ 0≤ i < |R|,
(15)

where pro j(p) is the perpendicular projection of a point onto the
bisector plane. In this formulation, the bounds previously expressed
as solid angles have become simple angle bounds θφ and θφ. Em-
pirically, we found that θφ = 1

3 π and θφ = 4
3 π result in good parti-

tionings of the unit sphere. The representatives are then calculated
as the minimizer of the resulting average height:

argmin
R

1
|R| ∑

r∈R
height(r)

s.t.(15)
(16)

This can be computed efficiently with a dynamic program (for de-
tails, refer to Appendix B). To speed up computation even further,
we run this program only on local minima of the ridge line. If this
does not produce a valid output, we re-run it on the entire ridge
line.

Path Refinement After the sequence of representatives have been
found and the path network has been initialized with the according
circular arcs, all path segments are then refined through gradient
descent, which lets the initial line flow towards the closest valley.
The result of this procedure is a path network that encompasses the
entire sphere (due to the angle bounds) and that has approximately
minimum average height. Finally, (3) is evaluated by calculating
the average height over the path and taking the e-th root.

4.2. Calculation of Derived Measures

The second derivative of the perceptible size is calculated on the
skeleton edges using central differences of the first derivatives of
incident edges. However, since the curve skeleton is non-manifold,
we average the derivative values over all incident edges of the
source and target vertex of the evaluated edge, respectively. In the
case that an incident edge is oriented in the opposite direction as the
evaluated edge (i.e. both edges have the same target or source ver-
tex), we use its negated first derivative, which results in the deriva-
tive in the direction of the evaluated edge. The resulting second
derivative is direction independent, i.e. the derivative in the reverse
direction of an edge is the same as in the forward direction.

Smoothing is done similarly. We employ a modified version of
Dijkstra’s algorithm to find the relevant neighbors for the processed
vertex or edge. The smoothing weights are then calculated based on
the geodesic distance along the curve skeleton. If a direction depen-
dent measure such as the first derivative is smoothed, we negate the
measure’s sign where necessary.

4.3. Utilized Libraries

For ray-shooting in the calculation of the perceptible size, we use
data structures from CGAL [ATW16]. For minimization of the
Markov Random Field, we rely on the QPBO implementation pro-
vided by OpenGM [ABK12].

5. Results

In the following section, we present some results of our algorithm
and discuss limitations. A thorough evaluation with respect to the
common sense in speleology is given in Section 6.

The algorithm presented so far has six parameters: The exponent
e defines what measure is used to derive the perceptible size. The
size of the smoothing kernel used to derive the cave scale is repre-
sented as a multiple of the local cave size σscale(v) = µscale ·size(v).
The kernel widths for the cave size σsize and the first derivative
σsize′ are then expressed as multiples of the cave scale σsize(v) =
µsize · scale(v), σsize′(v) = µsize′ · scale(v). Finally, the energy def-
inition requires the curvature tipping point θtip and the direction
tolerance θdir.

Figure 9 shows the influence of select parameters. Increasing the
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(a) Base parameter set, e = 1.5,
µscale = 10, µsize = 0.2, µsize′ = 0.2,
θtip = 0.3, θdir = 0.2

(b) Increased smoothing leads to
larger segments, µsize = 0.4

(c) Smaller tipping curvature leads
to more segments, θtip = 0.1

(d) Higher direction tolerance leads
to segment oscillations, θdir = 0.4

Figure 9: Impact of select parameters on the final result

exponent e results in steeper profiles of the perceptible size, which
increases its derivatives. As a consequence, higher exponents result
in a larger number of segments. Small values of µscale cause a more
localized evaluation of the scale, whereas large values result in less
global variation. In general, higher values lead to a larger number
of segments because the scale increases, especially in small-sized
areas. Increasing either of the smoothing kernels µsize or µsize′ re-
sults in a smoother profile of the perceptible size and thus in fewer
recognized entrances. The curvature tipping point θtip relates di-
rectly to the number of recognized entrances. Higher values pro-
duce fewer segments. Finally, the direction tolerance θdir affects
only areas with a near-vanishing first derivative of the perceptible
size. Higher values lead to more short segments that are only one
or two skeleton vertices long. This happens because the weak guid-
ance of the first derivative cannot be used to decide for an entrance
direction if the entrance probability is higher than 0.5 and multiple
entrances in alternating directions are created.

A limitation of our algorithm is posed
by big rocks or stalagnates inside the
cave that reduce the perceptible size sig-
nificantly (see nearby figure). In this
case, the skeleton is split by the sta-
lagnate, which results in a sudden drop
in perceptible size. Therefore, entrances
are created at this location. A possible solution for this limitation is
a preprocessing step that recognizes and eliminates such problems
in the mesh, which we will explore in our future work.

6. Evaluation

In the following section, we explain our approach of evaluating the
presented algorithm against real-world requirements from experts.
We express the quality of our segmentation with a plausibility mea-
sure ∈ [0,1] that compares the results of our algorithm with expert
feedback. This measure represents the percentage of the cave sur-
face that our algorithm segmented in conformance with the experts.
The plausibility value is then evaluated on a sampling of the param-
eter space in order to derive the best set of parameters. In the fol-
lowing, we give a brief overview of the evaluation method and re-
sults. The details on the plausibility measure follow in Section 6.2.

85 %

95 %

min. plausibility

Figure 10: Parallel Coordinates plot of the parameter set samples
that result in the highest minimal plausibility (≥ 85%)

6.1. Overview

We use the two cave data sets that have already been presented in
the paper. Both data sets were acquired using highly detailed terres-
trial laser scanners using marker-based registration. The resulting
point clouds have been used as input for Poisson surface recon-
struction to get a manifold watertight mesh of desired resolution.

In a first step, we gathered expert opinion with the help of an
interactive tool. The experts were presented a 3D view of the cave
and could mark areas as either passages or chambers by painting on
the surface. We instructed them to mark only areas where they were
certain of their decision and leave doubting areas blank. To mini-
mize the time required for the user study, we did not require them
to paint everything but only to place a few strokes. A full painting
would not give much more information because it is very likely that
our algorithm matches the entire part that a stroke represents if it
matches the stroke itself. We have gathered a total of six feedback
data sets. Figure 11a shows one example.

Gathering this feedback allows to calculate the plausibility mea-
sure for each cave data set, given a set of segmentation parameters.
We used the minimum plausibility over both cave data sets as the
overall plausibility of a parameter set, which ultimately measures
the quality of a parameter set over all available test data sets. By
sampling the parameter space uniformly, we find parameter sets
that result in high plausibilities, which are visualized in Figure 10.
The diagram shows a clear band of high-quality parameters, which
we see as an indicator that our algorithm is stable to small changes
of the parameters and that our approach offers enough degrees of
freedom to generalize to other data sets. Since a correlation of pa-
rameters is not directly apparent from this figure, we believe that
all parameters are necessary and do not bear any redundancy.

This sampling also allows to find the best parameter set, which
is visualized in Figure 11b and achieves an overall plausibility of
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95.5% (i.e. our segmentation conforms to expert feedback on at
least 95.5% of the cave surface over both data sets). The majority of
chambers match the feedback from Figure 11a closely. Most areas
that do not match exhibit ambiguous expert feedback (e.g. some
experts classified the middle light-blue branch as a chamber).

6.2. Plausibility Measure

We start by explaining the characteristics of the plausibility mea-
sure in the case of a single feedback data set and then expand this
to multiple feedback data sets. For every vertex, we can compare
the segmentation result and the expert opinion. A vertex for which
both match has a plausible segmentation. Additionally, vertices that
have been left blank by the expert are also considered plausible
because there is no evidence that suggests otherwise. The overall
plausibility of a segmentation can then be calculated as the ratio
of the number of plausible vertices and total number of vertices.
The resulting plausibility value is a number in the range [0,1] and
is bounded from below by the percentage of blank vertices in the
feedback. This can be formulated equivalently as the complement
of unplausibility, where unplausibility is the percentage of unplau-
sible vertices. We will use this formulation for our generalization
to more feedback data sets.

If more than one feedback exists, the following constellations for
a specific vertex may occur: 1. All feedbacks agree on a segmenta-
tion or left the vertex blank. In this case, the vertex can be uniquely
classified and plausbility can be calculated as above. 2. Feedbacks
do not agree. In that case, a unique classification of the vertex is
not possible, even if a majority of feedbacks vote for a certain seg-
mentation. To capture these situations, we use a soft classification
of the vertices, denoted by the chamber probability. We calculate
the chamber probability as the average from all feedbacks (i.e. 0
for a passage segmentation and 1 for a chamber segmentation, cf.
Figure 12), excluding blank segmentations. For unique classifica-
tions, this probability assumes the value of either 0 or 1 whereas
contradicting feedback leads to an intermediate value. To evaluate a
vertex’ unplausibility, we first check if the algorithm result matches
the majority vote (e.g. if the algorithm decided for a chamber and
the chamber probability is larger than 0.5). In these cases, we de-
fine the unplausibility to be zero because the algorithm reached the
same decision as the majority of experts. If that is not the case, we
use 2|p− 0.5| as the unplausibility of the vertex, where p is the
chamber probability. This results in an unplausibility of 0 for unde-
cided vertices (i.e. chamber probability of 0.5) and of 1 for uniquely
classifiable vertices (i.e. chamber probability of 0 or 1). The over-
all segmentation plausibility is then the complement of the average
unplausibility. As before, this measure is bounded from below by
the percentage of vertices that are blank in all feedbacks.

7. Conclusions and Future Work

In this paper, we presented an algorithm for fully-automatic cave
chamber recognition that we derived strictly from real-world re-
quirements. The key of this segmentation approach is a curve skele-
ton, which guarantees segmentation consistency along the cross
section of the cave and reduces the computation time. As shown
in our evaluation, the results of this algorithm match very closely
to the opinions of experts.

However, some scenarios cannot be captured by our algorithm,
such as stalagnates or big rocks in the cave. Therefore, we will
continue to explore further improvements such as cleaning pre-
processing steps and additional terms in the energy function.

Due to limited availability of cave data sets, we were only able
to perform our quantitative evaluation on two data sets. As more
data sets become available, we would like to perform the evaluation
on a significantly larger data base, which could actually result in a
parameter set that generalizes well to unseen caves. Furthermore, a
larger number of experts and higher-quality feedback may improve
evaluation results.

Finally, a refinement of the skeleton-based segmentation similar
to [KT09] may be desirable, especially if the segmentation is to be
transferred onto the high-resolution mesh.
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A. Proof of NP-hardness of the segmentation problem

To evaluate the computational complexity of minimizing a Markov
Random Field, we analyze the energy’s submodularity, which is
defined as follows [KZ04, LRB07]:

submodular ⇐⇒
φi, j(C,C)+φi, j(P,P)≤ φi, j(C,P)+φi, j(P,C)

∀(i, j) ∈ E (17)

In the following, we will show that in general the energy defined in
(7) is non-submodular, rendering the minimization problem NP-
hard [KZ04]. However, since the parameter space for which an
edge is non-submodular is very small and always in regions of
high πi, j;entrance, there are usually only a few (less than 1 %) non-
submodular edges.

For reasons of brevity, we define

e := πentrance( ̂size′′(i, j))

d := πdirection(size′(i, j))
(18)

submodular ⇐⇒
φi, j(C,C)+φi, j(P,P)≤ φi, j(C,P)+φi, j(P,C)

−2log(1− e)≤− log(e ·d)− log(e · (1−d))

log
(
(1− e)2

)
≥ log

(
e2 ·d · (1−d)

)
(1− e)2 ≥ e2 ·d · (1−d)

1−2e+ e2(1−d +d2)≥ 0

e≤ 1−
√

d−d2

1−d +d2 .

(19)

The resulting space of submodularity is visualized in Figure 13.
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Figure 13: Visualization of the parameter space of entrance proba-
bility e and direction probability d, for which the resulting potential
is submodular (shaded).

B. Dynamic Program for (16)

In the following, we present the dynamic program that solves

argmin
R

1
|R| ∑

r∈R
radius(r)

s.t.(15),
(20)

where the output R is a subset of the input samples S 3 (αi,hi)
consisting of the angular location on the circle and the according
height value. The input samples are sorted by αi.

We represent R by a list of indices into S. To find these indices,
we propagate the function Σ( f , l,k) over the relevant solution space
in a DP manner, where f and l > f correspond to the first and
last entry in R, respectively, and k refers to the cardinality of R.
The function value is a partial optimum, i.e. the maximum sum of
height values of the set R that fulfills the constraints f , l,k. Once
this function is known, the global optimum is

min
f≤α1+θφ,α f +2π−θφ≤l≤α f +2π−θ

φ
,k

(
1
k

Σ( f , l,k)
)

(21)

and the inducing set R can be found by backtracking.

We initialize the dynamic program with Σ( f , f ,1) = h f for all
relevant f and Σ(·) =∞ for all remaining entries. To propagate the
function over the solution space, we start at a known entry ( f , l,k)
and explore all valid successors updating the according entries:

∀( f ,m,k+1),s.t.αl +θφ ≤ αm ≤ αl +θφ :

Σ( f ,m,k+1)←min(Σ( f ,m,k+1),Σ( f , l,k)+hm) (22)

At the same time, we store the predecessor with the new entry. If an
entry falls in the acceptable range defined by (21), we immediately
update the global optimum.

After this propagation, the minimum defined by (21) is directly
available and we find the minimizer by following the predecessor
links set up during propagation. Under the assumption that the sam-
ples are distributed approximately uniformly, the time complexity
of this algorithm is O(θφ ·n2 · (θφ−θφ)), where the first θφ stands
for the number of samples that need to be considered for f , n is the
total number of input samples, and the term θφ−θφ represents the
number of explored samples during propagation.
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