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Abstract 
Increasingly, speleologists are employing terrestrial laser scanners to generate highly 
detailed 3D maps of caves, which can be used for quantitative analysis and comparison. 
Although their high precision allows very accurate volume computations, one of the key 
aspects of cave mapping – the identification of chambers for volumetric comparisons – 
still remains a manual post-processing step. Naturally, such manual steps are heavily 
influenced by subjective preferences and not suited for objective comparisons. In this 
paper, we present a novel algorithm that bridges this gap. Given an appropriate 3D 
model of a cave, our algorithm produces a unique and unambiguous segmentation of the 
cave into distinct chambers and passages. It is free of human bias and insensitive to scan-
ning noise, scaling, and orientation of the model.  The foundation of our work is a thor-
ough analysis of cave geometry. We transfer the results of this analysis into a mathemat-
ical model and use state-of-the-art methods from computer graphics to derive the seg-
mentation. We initially tested our approach with various cave models and a group of 
speleologists, which confirmed that our algorithm’s results conform closely to manual 
segmentations. Therefore, it seems to be well-suited as a substitute for “classical” but 
ambiguous existing approaches to comparing chamber volumes, and can provide objec-
tive comparability to the process. 

1. Introduction 
In recent years, digital surveying of caves has 

become increasingly popular. Highly accurate 
laser scanners in combination with reference 

markers that help to assemble multiple partial 

scans to a single model have been used success-

fully to generate detailed three-dimensional 

maps of caves (McFarlane, et al., 2013) 

(Canevese, et al., 2013). For the first time, the 

availability of these maps allows precise meas-

urement of cave sizes in terms of length, vol-

ume, or surface area up to an accuracy that is su-

perior to any manual method. 

However, an important piece of information is 

still missing that is required to measure cham-

ber sizes: the actual borders of the chambers 

within a cave system. A scanning solution that 

acquires a cave’s geometry is obviously not able 

to capture this semantic information since it is 

mainly dictated by convention and experience 

of professionals. Furthermore, the opinions of 

different professionals may vary slightly when 

asked to outline the chambers in the same cave. 

Thus, any advantage of the high-accuracy geom-

etry would be lost immediately as soon as hu-

man interaction is involved in the process of de-

fining chamber extents. 

Instead, we present a fully automatic algorithm 

to solve the aforementioned problem: Given the 

result of a scanning expedition in form of a 3D 

model of a cave, our algorithm deterministically 

calculates the locations and extents of all cham-

bers in the cave system, which allows objective 

size calculation without human bias. We devel-

oped our algorithm in conformance with the 

common sense in speleology, such that the re-

sults match manual segmentations from profes-

sionals closely. Yet, our algorithm provides 

enough degrees of freedom to alter the underly-

ing definitions. 



The basis of our algorithm is a so-called curve 

skeleton (Cornea, et al., 2007), which is a net-

work of paths through the cave. At every point 

of the skeleton, we then compute the perceptible 

size of the cave surrounding the skeleton point. 

This size measure is a generalized radius and 

captures the local extents of the cave. The 

change of the perceptible size along the skeleton 

gives important hints about entrances of cham-

bers. More specifically, a sudden increase in 

size, which we determine from the first two de-

rivatives, is a strong indicator that the corre-

sponding skeleton path leads into a chamber. 

We gather all those indicators from the skeleton 

and generate a probabilistic model that de-

scribes the likelihood of entrances at every po-

sition of the skeleton. We then find the maxi-

mum-likelihood segmentation of the skeleton 

with respect to the probabilistic model, which 

allows us to uniquely classify each part of the 

cave model as either a passage or a chamber. 

In this paper, we give a high-level overview of 

our algorithm. For a thorough explanation, we 

refer the reader to the according technical pa-

per (Schertler, et al., 2017). 

2. Input Data and Preparation 
Our algorithm takes as input the watertight re-

constructed surface from a series of scans, i.e. 

any holes are closed in the resulting 3D model. 

Such models can be generated easily from the 

raw point cloud data that virtually all scanning 

solutions expose, e.g. with Poisson Surface Re-

construction (Kazhdan & Hoppe, 2013). 

Fine details in the cave’s geometry are irrele-

vant for chamber recognition. Therefore, we re-

construct the surface with a low resolution and 

identify chambers in this coarse representation. 

Once the chambers are found, they can be 

mapped back onto a highly-detailed model, al-

lowing accurate size calculation. 

3. Curve Skeleton 
The first step of our algorithm calculates the 

cave’s curve skeleton by successively contract-

ing the 3D model until a thin path network re-

mains (Tagliasacchi, et al., 2012). Figure 1 

shows the result of this procedure. As can be 

seen, the skeleton is a smooth path that is cen-

tered inside the cave and reflects the cave’s 

overall topology, i.e. branching in the cave re-

sults in a corresponding branching in the curve 

skeleton.  

Due to the contraction procedure, every point 

on the skeleton is also equipped with a set of 

corresponding points on the surface (i.e. those 

points that have been contracted to the accord-

ing skeleton point). This correspondence allows 

to project the final segmentation from the curve 

skeleton back onto the cave surface. In perfectly 

cylindrical regions of the cave, these corre-

spondences form a circle around the skeleton 

vertex, whereas more general cave shapes lead 

to irregular correspondence distributions. 

We represent the curve skeleton in its discre-

tized form, i.e. as a graph, consisting of vertices 

and edges. In the following step, we will calcu-

late the perceptible size for every skeleton ver-

tex and derive the first two derivatives on the 

edges. Intuitively, the first derivative corre-

sponds to the direction of size changes and the 

second derivative represents how rapidly the 

change happens (cf. curvature). 

4. Perceptible Size 
The perceptible size at any skeleton position is 

the essential measure on which we base our 

segmentation algorithm. We define it in a way 

such that it corresponds to the perceived size of 

the cave for an observer located at the according 

skeleton vertex.  

Our perceptible size measure is a generalized 

radius of the cave. E.g., for a cylindrical cave 

part, the size is equal to the cylinder’s radius. 

Similarly, for elliptical cylinders, we use the av-

erage radius. In the following section, we extend 

this idea and explain how we calculate the per-

ceptible size for arbitrary cave shapes, espe-

cially in the presence of branching. 

Figure 1 Curve skeleton represented as connected dots in-
side the Eisriesenwelt caves, Austria 



The examples of the cylindrical caves have in 

common that the resulting perceptible size is 

the average radius over a circular line around 

the according cave part, where the radius is de-

fined as the distance of the skeleton vertex and 

the cave surface in a given direction. We gener-

alize this approach for arbitrary cave shapes as 

follows: 

The cave part surrounding a skeleton vertex can 

be expressed as a spherical radius field. In this 

radius field, we find a closed network of valley 

lines that encompasses the vertex completely, 

i.e. the connected area on the unit sphere be-

tween the valley lines is smaller than a pre-
scribed threshold. As a consequence, these lines 

are most compact in the sense that they would 

not contract further if they were rubber bands 

around the physical cave. As such, they natu-

rally avoid incident passages and tend to align 

with the areas of smallest radius. Please note 

that the rubber band analogy was only chosen 

for demonstration purposes and is not com-

pletely accurate as there is no actual physical 

model in our calculation.  Please refer to the 

technical paper (Schertler, et al., 2017) for a rig-

orous definition of this line network. An exam-

ple network can be found in Figure 2. 

Once this line network is found, we average the 

radius over the network to find the perceptible 

size. By construction, cylindrical caves produce 

networks that consist of a single circle with con-

stant radius, resulting in the same perceptible 

size as in the introductory examples. 

The steps to calculate the perceptible size over 

the entire data set are therefore as follows: For 

every skeleton vertex, we generate a spherical 

radius field. In this field, we find a network of 

valley lines and calculate its average radius. The 

result is then used as the skeleton vertex’ per-

ceptible size. 

After calculating the perceptible size, we evalu-

ate the first and second derivative numerically. 

These values are then used to guide the actual 

segmentation of the skeleton. 

5. Segmentation 
The goal of the segmentation step is to assign 

one of two possible labels (𝒞 or 𝒫) to every skel-

eton vertex that describes if the vertex belongs 

to a chamber or a passage. If this segmentation 

is known, distinct chambers can be separated 

easily by analyzing connected components. 

To find the segmentation, we generate a Markov 

Random Field from the curve skeleton that de-

scribes the likelihood of every possible label 

transition for every skeleton edge in a probabil-

istic framework. Figure 3 shows the four possi-

ble transitions for a single edge. The underlying 

geometric properties on the edge (i.e. the first 

and second derivatives of the perceptible size) 

allow us to define the probabilities for every 

transition. E.g., a high absolute second deriva-

tive is characteristic for an area where the cave 

size changes rapidly and thus indicates a cham-

ber entrance. Therefore, the two transitions 

𝒞 → 𝒞 and 𝒫 → 𝒫 are very unlikely because 

they do not introduce an entrance on this edge. 

And depending on the sign of the first deriva-

tive, one of the two remaining transitions 

should have a higher probability than the other. 

Figure 2 Visualization of the cave part that is visible from 
the skeleton vertex at the intersection of the dark axes along 
with the corresponding valley line network on the surface 
used for perceptible size calculation visualized as orange 
dots. Gomantong caves, Borneo 

𝑣𝑖 𝑣𝑗 

𝒞 𝒞 

𝒫 𝒫 
small abs. 2nd deriv. 

small abs. 2nd deriv. 

Figure 3 All possible label transitions for an edge between 
skeleton vertices 𝑣𝑖  and 𝑣𝑗 . The geometric characteristics 

that lead to high probabilities for the respective transitions 
have been annotated for three of the four transitions. 



In this manner, we calculate all four transition 

probabilities for all edges of the curve skeleton. 

These partial probabilities then allow us to cal-

culate a final objective function in form of the to-

tal probability: Given a specific labeling of the 

skeleton vertices, every edge is fixed to the ac-

cording probability value defined by the labels 

of its two incident vertices. The product of all 

transition probabilities is then the total proba-

bility of the labeling given the underlying geo-

metric properties. We finally maximize this ob-

jective function to find the most probable label-

ing with QPBO (Rother, et al., 2007). 

Once the labeling is found on the curve skeleton, 

we find distinct chambers via connected compo-

nent analysis. The result is then projected back 

onto the cave surface, such that every point of 

the 3D model is uniquely associated to a specific 

chamber or a passage. 

6. Results and Conclusions 
The chamber recognition algorithm presented 

in this paper leads to expressive segmentations 

of arbitrary cave data sets (cf. Figure 4). In a for-

mal evaluation, we found that a reasonable pa-

rameterization achieves a similarity between 

automatic and manual segmentations from ex-

perts of over 95 %. 

The high similarity with professional opinions 

makes our algorithm a perfect candidate to sub-

stitute the manual and potentially error-prone 

segmentation step in existing chamber size cal-

culation pipelines. Furthermore, our algorithm 

is deterministic, i.e. running it multiple times on 

the same data yields exactly the same result, 

which is an obvious prerequisite for objective 

comparability. 

Although finding a good parameterization is not 

trivial, a rich data base of cave scans and manual 

annotations can help significantly in both im-

proving the core algorithm and determining a 

global parameter set that is applicable to a vari-

ety of cave types. 
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Figure 4 Segmentation result for the Eisriesenwelt caves, Austria. Chambers are visualized with distinct colors, passages are grey.  


