Consistent normals for large point clouds

 Global optimality for streaming orientation of point cloud normals
| Introduction

Consistent normal orientations are essential for renderings and many processing algorithms.
Given a point cloud with unoriented normals, we re-orient the normals in a consistent way.
Key points of our work:

- Consolidation of previous work into a Markov Random Field model
- Globally optimal solution of the MRF
- Out-of-core framework for large point clouds

| Problem formalization

Every point p_{i} with normal n_{i} is assigned a label $l_{i} \in\{-1,1\}$, such that the adapted normals $n_{i}^{\prime}:=l_{i} n_{i}$ are most consistent.
Consistency is measured upon a neighbor graph with edges \mathcal{E} and the flip criterion $\phi: \varepsilon \rightarrow \mathbb{R}$ (positive for consistent edges, negative for non-consistent edges). Hoppe's flip criterion [1] can be expressed as:

$$
\phi_{\text {Hoppe }}(i, j)=\left\langle n_{i}, n_{j}\right\rangle
$$

Example graph:

The following potentials are derived from this flip criterion: $E_{i, j}\left(l_{i}, l_{j}\right)=$
$\left\{\begin{array}{ll}|\phi(i, j)| \cdot \omega\left(p_{i}, p_{j}\right) & \begin{array}{l}\phi(i, j) \geq 0 \\ 0\end{array} \\ \text { otherwise }\end{array} \oplus l_{i}=l_{j}\right.$ $\omega\left(p_{i}, p_{j}\right)=1-\frac{\operatorname{distance}\left(p_{i}, p_{j}\right)^{2}}{r^{2}}$

This potential definition can be visualized as follows:

The sum of potentials forms a labeling's energy. The optimal
orientation is the energy's minimizer: orientation is the energy's minimizer:

$$
\begin{align*}
E(L) & =\sum_{\{i, j\} \in \mathcal{E}} E_{i, j}\left(L_{i}, L_{j}\right) \tag{1}\\
L^{*} & =\underset{L}{\arg \min } E(L)
\end{align*}
$$

The nearby sections give an overview of various ways to solve this equation.

Signed Union Find

An approximate solution of (1) can be found by propagating the orientation along the minimum spanning tree [1].
The MST can be calculated with Kruskal's algorithm and the Union Find data structure [2].
We augment this structure with a sign bit, which enables fast flips of entire connected components. Thus, MST propagation can be executed on-the-fly without explicit MST calculation.

\qquad

Components can be flipped by inverting their root's sign bit. Merging components requires the sign bit update $s_{i} \leftarrow \mathrm{~s}_{\mathrm{i}} \oplus \mathrm{s}_{\mathrm{i}}$.

Similar updates exist for path compression. Sign bits are unaffected by union-by-rank.

Results

Using a global optimizer yields more consistent results than the greedy MST approach:
Hoppe's flip criterion:

Our out-of-core approach allows orientation of large data sets and higher performance even for medium-sized data sets.

| Globally optimal solution with QPBO

Greedy spanning tree-based solutions fail in cases with con tra dicting edges like in this simple example:

Distance-weighted output of flip criterion

MST solution, $\mathrm{E}=2.4 \quad$ Optimal solution, $\mathrm{E}=2.0$
Instead, we use QPBO (quadratic pseudo-boolean optimization [4]) to find a globally optimal solution.
OPBO outputs a labeling with $l_{i} \in\{-1,1, \varnothing\}$, where \varnothing denotes an unlabeled node. Every labeled node is part of a globally optimal solution (partial optimality property).
In order to remove the solution ambiguity, we force the first element of every connected component to the label +1 by altering the energy as follows:

$$
E_{Q P B O}:=E+\sum_{c \in C} \begin{cases}0 & l_{c_{0}}=+1 \\ \zeta & \text { otherwise }\end{cases}
$$

for the set of connected components C and an arbitrary positive number ζ.
We use the variant QPBO-I (OPBO Improve) to find labels for formerly unlabeled nodes. In this process, we successively fix random nodes to their according MST solution and re-solve OPBO until all nodes are labeled. We refer to this method as MST+QPBO-I.

Orientation of large point clouds

Big data sets are first sorted and Data in memory [5]. This allows out-of-core processing with a small slice of data in memory.

In a first step, the point cloud is segmented into locally orientable mented into locally orientable tradicting edges within a single patch.
The global patch orientation is then calculated on the reduced neighbor graph, where points of the same patch have been contracted to a single node. The energy functions of edges are summed during this contraction.

Segmentation Details
When a point is processed, all of its left neighbors are already segmented. The segments of the closest neighbors are considered as the segment for the processed node.
The sum of distance-weighted flip criterion output for each segment is the segment's vote. The segment with the greatest absolute vote wins:

Vote for purple segment

Vote for yellow segment

For the reduction to be energy-preserving, each considered segment must fulfill the intra-segment criterion and inter-segment criterion.

The intra-segment criterion constrains edges from neigh bors within the considered segment. Every edge must have the same sign. We allow a small tolerance to reduce the number of segments.
The inter-segment criterion constrains edges from neighbors in other segments. They must have the same sign as must have the same sign as the two segments. We allow a small tolerance to reduce the number of segments.
If no eligible segment exists, a new segment is created

References

[1] Hoppe H. et al.: Surface reconstruction from unorganized points. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques (New York, NY, USA, 1992), SIGGRAPH '92, ACM, pp. 71-78.
[2] Kruskal J. B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society 7, 1 (1956), 48-50
[3] Xie H. et al.: Piecewise c1 continuous surface reconstruction of noisy point clouds via local implicit quadric regression. In Visualization, 2003. VIS 2003. IEEE, pp. 91-98
[4] Rother C. et al.: Optimizing binary MRFs via extended roof duality. In Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on (2007), IEEE, pp. 1-8.
[5] Pajarola R.: Stream-processing points. In Visualization, 2005. VIS 05. IEEE (Oct 2005), pp. 239-246.

Acknowledgements

The Dragon data have been provided by the Stanford 3D Scanning Repository. The Pegasus model has been provided by the AIM @SHAPE-VISIONAIR Shape Repository. Data provision is thankfully acknowledged.
This work is partially funded by the European Social Fund and the Free State of Saxony (ESF project numbe 100226943, "ADFEX")

