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| Introduction

Consistent normal orientations are essential for renderings
and many processing algorithms.

Given a point cloud with unoriented normals, we re-orient
the normals in a consistent way.

Key points of our work:

e Consolidation of previous work into a Markov Random Field
model

e Globally optimal solution of the MRF

e Qut-of-core framework for large point clouds

| Problem formalization

Every point p. with normal n_ is assigned a label [ € {—1, 1},
such that the adapted normals n’:= [ n_are most consistent.

Consistency is measured upon a neighbor graph with edges
€ and the flip criterion ¢ : £ >R (positive for consistent edges,
negative for non-consistent edges). Hoppe’s flip criterion [1]
can be expressed as:

¢Hoppe (i,j) = (n, nj)

Example graph:
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| Signed Union Find

An approximate solution of (1) can be found by propagating
the orientation along the minimum spanning tree [1].

The MST can be calculated with Kruskal’s algorithm and the
Union Find data structure [2].

We augment this structure with a sign bit, which enables fast
flips of entire connected components. Thus, MST propagation
can be executed on-the-fly without explicit MST calculation.

__---Node Index
e ----- Sign Bit
~~~--Actual Sign
B+
) =

sign(i) = @ S;

jEpath from i to root

Components can be flipped by inverting their root’s sign bit.
Merging components requires the sign bit update s. < s @ S..

= f1lip(0):

Similar updates exist for path compression. Sign bits are un-
affected by union-by-rank.

= union(0,2):
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| Orientation of large point clouds

Results

Using a global optimizer yields more consistent results than
the greedy MST approach:

Hoppe’s flip criterion:

MST MST+QPBO-I

Our out-of-core approach allows orientation of large data sets
and higher performance even for medium-sized data sets.

The following potentials are derived from this flip criterion:

E;;j(l;, ;) =

{ o )] - wpipj) ¢0J)=0D L =1
0 otherwise

distance(p;, p;)°

w(p,pj) =1- -

This potential definition can be visualized as follows:
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The sum of potentials forms a labeling’s energy. The optimal
orientation is the energy’s minimizer:

E(L)= ) Eij(Lyl))
{i,j}ee (1)
L =argminE(L)
L

The nearby sections give an overview of various ways to
solve this equation.

| Globally optimal solution with QPBO

Greedy spanning tree-based solutions fail in cases with con-
tra dicting edges like in this simple example:

MST solution, E=2.4

Distance-weighted
output of flip criterion

Optimal solution, E=2.0

Instead, we use QPBO (quadratic pseudo-boolean optimiza-
tion [4]) to find a globally optimal solution.

QPBO outputs a labeling with [ €{—1,1, 0}, where @ denotes
an unlabeled node. Every labeled node is part of a globally
optimal solution (partial optimality property).

In order to remove the solution ambiguity, we force the first
element of every connected component to the label +1 by al-
tering the energy as follows:

0
Eqoppo ’=E+2{ 7

for the set of connected components C and an arbitrary posi-
tive number .

We use the variant QPBO-I (QPBO Improve) to find labels for
formerly unlabeled nodes. In this process, we successively fix
random nodes to their according MST solution and re-solve
QPBO until all nodes are labeled. We refer to this method as

MST+QPBO-I.

lco = +1
otherwise

Big data sets are first sorted and Data in memory
then streamed along the x-direction i
[5]. This allows out-of-core process- .
ing with a small slice of data in
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In a first step, the point cloud is seg-
mented into locally orientable
patches, I1.e. there are no con-
tradicting edges within a single
patch.

The global patch orientation iIs then
calculated on the reduced neighbor
graph, where points of the same
patch have been contracted to a
single node. The energy functions
of edges are summed during this
contraction.

Segmentation Details

When a point is processed, all of its left neighbors are already
segmented. The segments of the closest neighbors are con-
sidered as the segment for the processed node.

The sum of distance-weighted flip criterion output for each
segment is the segment’s vote. The segment with the greatest
absolute vote wins:

For the reduction to be energy-preserving, each considered
segment must fulfill the intra-segment criterion and inter-seg-
ment criterion.

The intra-segment criterion

constrains edges from neigh-
bors within the considered
segment. Every edge must
have the same sign. We allow
a small tolerance to reduce

the number of segments.

The inter-segment criterion
constrains edges from neigh-
bors in other segments. They
must have the same sign as
all previous edges between
the two segments. We allow a
small tolerance to reduce the
number of segments.

If no eligible segment exists, a new segment is created.
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