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Abstract

This supplementary material gives more information about Xie’s flip criterion and the Signed Union Find data
structure. Additionally the two segmentation criteria are defined formally.

1. Xie’s flip criterion

Xie’s flip criterion can handle sharp creases and close sur-
face sheets by reflecting one normal along the direction vec-
tor between the two points (see figure1 for details). The cri-
terion can be expressed as:

φXie(i, j) = 〈n′i ,n j〉

n′i = ni −2e〈e,ni〉

e=
pi − p j

‖pi − p j‖

(1)

2. Signed Union Find for MST Solutions

In our paper, we use the Signed Union Find data structure to
find the Maximum Spanning Tree solution for an orientation
problem. In this section, we explain the details of this data
structure.

Hoppe’s original algorithm [HDD∗92] first calculates the
spanning tree and in a second step performs the propagation.
This requires traversing the graph twice (once completely
and once the spanning tree) as well as storing the spanning
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Figure 1: Visualization of Hoppe’s and Xie’s flip criterion.

tree explicitly. Our improved version merges both steps into
a single traversal, calculating the spanning tree on-the-fly
without explicitly storing it.

The basis of this improvement is Kruskal’s minimum
spanning tree algorithm [Kru56], which is usually imple-
mented using a Union-Find data structure [Knu69]. A pos-
sible application of normal orientation using Kruskal’s algo-
rithm can be found in [XD11].

The Union-Find data structure is a forest of rooted trees
where each entry corresponds to a node in the graph. Each
node maintains a pointer to its parent node. The entire struc-
ture is implemented with a list of indices. Initially, each node
is a separate tree. A connected component’s representative
(operationfind) can be found by following the path of par-
ent pointers up to the root. Two entries belong two the same
connected component iff they share the same representative.
Merging two connected components (operationunion) is
achieved by updating the parent pointer of one component’s
root to point to the other component’s root. Due to some ac-
celeration techniques like path compression, both operations
can be executed in effectively constant time (more precisely,
it grows very slowly in order of the inverse Ackermann func-
tion).

We augment this structure with a sign bitsi for each node
(0≡ +, 1≡ −) and refer to it asSigned Union-Find. The
idea is to enable quick sign flips for entire connected com-
ponents, which is achieved by using the sign bits on the path
from a node to its root as XOR summands of the node’s ac-
tual sign:

sign(i) = ⊕
j∈path from i to root

sj (2)
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Path compression will ensure that this chained XOR is kept
short, enabling effectively constant time complexity.

If the sign of an entire connected component must
be changed (methodflipConnectedComponentSignin algo-
rithm 1), it is sufficient to flip the sign bit of the compo-
nent’s root (also effectively constant time). Since this bit is
included in the sign formulas for every child node, this es-
sentially flips the signs of all nodes within this connected
component.

Care must be taken when uniting two root nodes. Without
loss of generality we assume that nodei will be the new root
for node j. Then, in order to preserve the sign in the con-
nected component of nodej, the sign bit has to be updated
with sj ← si ⊕ sj . This works because⊕ is its own inverse
operation.

Path compression has to adapt the sign bits in a simi-
lar way. If nodei with path to its root consisting of nodes
j, ...,q, r (noder being the root node) is re-linked to be a di-
rect child of its rootr, the sign calculation of nodei changes
from si ⊕ sj ⊕ ...⊕ sq⊕ sr to si ⊕ sr . It is obvious that the
update must besi ← si ⊕ sj ⊕ ...⊕ sq. An entire path can
be compressed (i.e. re-linking all nodes to the root) inO(k)
time, wherek denotes the number of nodes on that path.

This Signed Union-Find data structure enables on-the-fly
computation of the spanning tree. Algorithm1 shows its ap-
plication to solving the orientation problem.

Algorithm 1 MST Solver Using Signed Union-Find

1: function SOLVE(P,E) ⊲ Calculates optimal labeling
2: uf ← init Signed Union-Find with|P| nodes
3: sort edges in descending order with respect to|φ|
4: for {i, j} ∈ E do
5: r i ← uf .find(i)
6: r j ← uf .find( j)
7: if r i 6= r j then
8: diffSigns← uf .getSign(i) 6= uf .getSign( j)
9: if diffSigns⊕ (φ(i, j)< 0) then

10: uf .flipConnectedComponentSign(i)

11: uf .merge(i, j)

12: return signs ofuf

Although this algorithm does not directly propagate ori-
entations along edges, the general idea is the same as be-
fore. One difference though is the absence of a starting point
with known orientation. If desired, the orientation for a sin-
gle point (or more non-contradicting points) can be forced
after the execution of the algorithm by checking the accord-
ing sign and flipping the component if necessary.

Figure 2 compares the performance of the MRF solver
with the Signed Union Find data structure and with our
implementation of the traditional one. Both data structures

Figure 2: Run time comparison of the MST solver with the
traditional Union Find data structure and our Signed Union
Find data structure for different sizes of the dragon data set.

scale nearly linearly, while the Signed Union Find is in aver-
age 2.2 times as fast as the traditional data structure because
it avoids the second traversal.

3. Segmentation Criteria

The segmentation criteria are used to evaluate if a segment
can be assigned to a point. Given the neighbor vote of two
neighboring pointsvote(p1, p2), we derive the segment vote
of a pointp with respect to segments as

vote(p,s) := ∑
q∈s

vote(p,q), (3)

wherevote(p,q) is zero for non-neighboring points. Simi-
larly, the vote between two segmentss1 ands2 is

vote(s1,s2) := ∑
p∈s1

∑
q∈s2

vote(p,q) (4)

The intra-segment criterion is defined as follows: The as-
signment of segments to point p is valid iff, given the set of
considered neighbor pointsN pt(p,s) of point p from seg-
ment s, i.e. all neighbors that are already assigned to this
segment:

(

∑
n∈N pt(p,s)

vote>0(p,n) ≤ θS ∨

− ∑
n∈N pt(p,s)

vote<0(p,n)≤ θS

)

∧

|vote(p,s)| ≥ θacc (5)

The symbolsvote>0(p1, p2) andvote<0(p1, p2) denote the
positive and negative part of the scalar neighbor vote be-
tween two neighboring pointsp1 andp2. I.e.

vote>0(p1, p2) =

{

vote(p1, p2) if vote(p1, p2)> 0

0 otherwise
(6)
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The inter-segment criterion specifies that a segment is
valid iff

∀t ∈N seg(p)\s :

(sgn(vote(s, t))= sgn(vote(p, t)) · f lip)∨|vote(p, t)|< θS,

(7)

whereN seg(p) denotes the set of neighbor segments of point
p and f lip is the flip decision= sgn(vote(p,s)).
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