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Definitions and Cayley Tables

• What is a (sub)group, a group law and the group axioms? Name some examples.
Solution:
Definition: A group is a set, G, together with an operation · (called group law of G) that
combines any two elements A and B to form another element C = A ·B. To qualify as a group,
the set and operation, (G, ·), must satisfy four requirements known as the group axioms:

(i) Closure
Each “multiplication” of any two elements of the group will also yield an element of this
very group.

∀A,B ∈ G ∃C ∈ G : A ·B = C (1)

(ii) Associativity
The order of “multiplication” does not matter as long as the sequence of operands is not
changed.

∀A,B,C ∈ G : (A ·B) ·C = A ·(B ·C) (2)

(iii) Identity element
In every group there is an identity element that, after “multiplication” with any other
group element, will yield the very same element as result. It can be shown, that the
identity is unique.

∃!E ∈ G ∀A ∈ G : A ·E = E ·A = A (3)

(iv) Inverse element
Each group element has exactly one inverse which is also part of the group and which has
the property to yield identity after multiplying with the original element.

∀A ∈ G ∃!A−1 ∈ G :A ·A−1 = A−1 ·A = E (4)

Additional properties:
Commutativity (only for abelian groups)
The order of operands is irrelevant, i. e. they commute. A group is then called abelian.

∀A,B ∈ G : A ·B = B ·A (5)

Subgroups
Subsets U of a group (G, · ) are called subgroups if they also form a group under the
group operation ·. The trivial subgroup {E} consists only of the identity element and is
subgroup to every group by virtue of axiom (iii).
See also https://en.wikipedia.org/wiki/Subgroup

Order
The order of a (finite) group, a. k. a. cardinality, is the number of its elements.

Examples
{1,−1} and {1,−1, i,−i} with multiplication, E = 1, 1−1 = −1

R \ {0} with mutiplication, E = 1, X−1 = 1/X

R or Z with addition, E = 0, X−1 = −X

3x3 orthogonal matrices with matrix multiplication → O(3) group, E = 1, X−1 = X⊺
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Point symmetry transformations.
Point group elements (as a subgroup of the orthogonal group O(3)) can be realized as sets
of orthogonal matrices M that transform a point x into a point y by virtue of y = Mx,
where the origin is the fixed point.
Translations with vector addition (infinite group!)
Euclidean group E(3) (leave distance between any 2 points in space unchanged) with
subgroups i) translation group T , ii) rotation group O+(3), iii) inversion group Ci.
Orthogonal group: O(3) = O+(3)× Ci.

• What is a group multiplication table (a. k. a. Cayley table)? As an example, fill such a table
(if possible) for the following groups and name their identity and inverse elements:

1. (G1, · ) = ({1,−1, i,−i}, · ),
2. (G2, · ) = (Rx, · ) with Rx ≡ R \ {0},
3. (G3, · ) = (R,+),
4. (G4, · ) = (Z/mZ,+), where Z/mZ is the set of all sections modulo m, i. e. all sections of

the form [a]m = a+mZ = {b|b ≡ a mod (m)}, (=̂ m-fold rotations). Show for m = 4.
5. (G5, · ) = point group Ck

n, i. e. rotations about an n-fold symmetry axis =̂ rotation by
angles φ = k 2π

n
. Show for n = 3 .

Which of them are abelian groups? What subgroups can you identify?
If the modulo operation and residue classes are new to you, have a look here:
https://de.wikipedia.org/wiki/Restklasse
https://groupprops.subwiki.org/wiki/Group_of_integers_modulo_n

Solution: a)

· 1 -1 i -i
1 1 -1 i -i

-1 -1 1 -i i
i i -i -1 1

-i -1 1 -i i

d)

Z4,+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

e)

C3,+ E C3 C2
3

E E C3 C2
3

C3 C3 C2
3 E

C2
3 C2

3 E C3

All groups are abelian; g = {E} is always a subgroup; Caley table exist only for finite groups.
1. E = 1, A−1 = 1/A → 1−1 = 1 ∈ G1, i−1 = −i ∈ G1

SG = {1,−1}, g = {i,−i} is not a SG, because i · i = −1 /∈ g

2. Infinite group → no Caley table; E = 1, A−1 = 1/A ∈ G2

infinite SGs: R+ (positive real numbers), R− (negative real numbers), and many more,
e. g. ∀b ̸= ±1 : g = {bn} is infinite SG with E = 1 and bn ·bm = bn+m and (bn)−1 = b−n;
finite SG: {1,−1} (sign group); Rx ∼= R+ × {1,−1}

3. Infinite group → no Caley table; E = 0, A−1 = −A ∈ G3

infinite SGs: Z (integers), Q (rational numbers), aZ = {na | n ∈ Z, a ∈ R} and more;
no finite SGs besides {0}

4. (Z4,+) has E = 0, A−1 = −A ∈ G4

[0]4 = {. . . ,−8,−4, 0, 4, 8, . . .} = {b|b = 0 + 4n, n ∈ Z}
[1]4 = {. . . ,−7,−3, 1, 5, 9, . . .} = {b|b = 1 + 4n, n ∈ Z}
[2]4 = {. . . ,−6,−2, 2, 6, 10, . . .} = {b|b = 2 + 4n, n ∈ Z}
[3]4 = {. . . ,−5,−1, 3, 7, 11, . . .} = {b|b = 3 + 4n, n ∈ Z}

5. Ck
3 has E = “no rotation” =̂ rotations with φ = 2πn, n ∈ Z and A−1 = C−k

3
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• Have a look at the Cayley table for the point group C3v. What can you tell about its properties,
i. e. corresponding symmetry elements, number of symmetry transformations, commutativity
(abelian group?), possible duplicates?

C3v E C3 C2
3 σv1 σv2 σv3

E E C3 C2
3 σv1 σv2 σv3

C3 C3 C2
3 E σv2 σv3 σv1

C2
3 C2

3 E C3 σv3 σv1 σv2

σv1 σv1 σv3 σv2 E C2
3 C3

σv2 σv2 σv1 σv3 C3 E C2
3

σv3 σv3 σv2 σv1 C2
3 C3 E

Solution:
Symmetry elements: C3 and 3× σv (for naming scheme details see next exercise sheet)
Symmetry operations: See e. g. first row or column
Subgroups besides identity are the point group Cs (reflection through a single plane, which
is isomorphic to the cyclic group of order 2, Cs

∼= C2), and the group C3

Cs E σ

E E σ

σ σ E

C3 E C3 C2
3

E E C3 C2
3

C3 C3 C2
3 E

C2
3 C2

3 E C3

(6)

{E, σv1, σv2, σv3} is not a subgroup, b/c most of their products do not belong to the set.
Non-abelian, because table is not symmetric: C3σv1 = σv2 but σv1C3 = σv3

No element occurs more than once in each row or column. This holds for every Cayley
table! In fact, each row/column is “only” a permutation of the set of symmetry operations.
Search Youtube for step-by-step explanations on how to build the table, there are plenty
of resources available.
Wolfram Demonstration Project (Mathematica): interactive visualization of the C3v group
http://demonstrations.wolfram.com/OperationsOfC3vSymmetryGroupAppliedToAmmonia
(unfortunately really slow)
Examples from chemistry: NH3, trichlormethane, POCl3, 1,3,5-trichlorecyclohexane
(all equatorial or all axial conformation)

N
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H H
N

H

H H
N

H

H H
N

H

H H
σv1

σv2 σv3 C3

Figure 1: Ammonia as an example for the C3v symmetry group. There are three mirror planes σv1, σv2, σv3, each
containing the same 3-fold rotation axis C3.

https://creativecommons.org/licenses/by-sa/4.0/
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• Fill the Cayley table for the point group C2v with help of the H2O or 1,3-Dichlorobenzene
molecule as an example.

Figure 2: H2O and 1,3-Dichlorobenzene are molecules illustrating symmetries according to the point group C2v.

Solution:
Steps to reproduce:

1. Fill the row and column for identity.

C2v E C2 σv1 σv2

E E C2 σv1 σv2

C2 C2

σv1 σv1

σv2 σv2

(7)

2. Since we can ignore the order (and potential non-commutativity) for the product of an
element with itself, m ·m = E with m = C2, σv1, σv2, we can easily deduce how the main
diagonal is populated.

C2v E C2 σv1 σv2

E E C2 σv1 σv2

C2 C2 E
σv1 σv1 E
σv2 σv2 E

(8)

3. Finally, we fill the missing relations

C2 ·σv1 = σv1 ·C2 = σv2 (9)
C2 ·σv2 = σv2 ·C2 = σv1 (10)

and can complete the table.

C2v E C2 σv1 σv2

E E C2 σv1 σv2

C2 C2 E σv2 σv1

σv1 σv1 σv2 E C2

σv2 σv2 σv1 C2 E

(11)

As subgroups we can again identify Cs for each of the two mirror planes, as well as C2.
Further, the group C2v is obviously abelian.

https://creativecommons.org/licenses/by-sa/4.0/
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• What is the symmetric group? Construct the Cayley table for the symmetric group S3. What
is this group’s order and degree? How is it connected to the Cayley theorem?
Solution:
The symmetric group Sn, sometimes also called permutation group, is the group of all permu-
tations π of a set M with n elements. The group operation is the composition of permutations,
while a permutation can be thought of as bijective function from a set to itself.
The permutations are usually noted in one of the following three forms:

Cauchy’s two-line notation
The first line lists the element of a set M , the second line tells you where each element
is mapped to.
Example:

π =

(
x1 x2 x3 x4 x5

π(x1) π(x2) π(x3) π(x4) π(x5)

)
, π =

(
1 2 3 4 5
2 5 4 3 1

)
(12)

One-line notation
Effectively identical to the first variant except that the first row may be omitted
in case there is a natural order of elements in M , e. g. for M = 1, 2, 3, 4, . . . , n or
M = x1, x2, x3, . . ., xn and if there are no duplicates or repeated sequences as e. g. in
M = 1, 2, 3, 6, 1, 2, 3, 7.
Example:

π =

(
1 2 3 4 5
2 5 4 3 1

)
=

(
2 5 4 3 1

)
(13)

Cyclic notation
Here, the set is decomposed into “disjoint cycles”, i. e. in subsets of elements that
individually perform a cyclic rotation. Unrotated elements may be ommited. The
subsets are found by successively applying the permutation on an arbitary element
until the initial value is retained (without listing it twice): (x, π(x), π(π(x))), . . .).
Example:

π =
(
2 5 4 3 1

)
= (125)(34) = (34)(512) ̸= (34)(521) (14)

Let’s try to construct the Cayley table for such a permutation group. As an example, we
will take the symmetric group of all permutations of three elements, S3, which comprises the
following 6 permutations1(hence is of order 6):

Element Operation Permutations Cycle decomposition
e identity 123 → 123 (1)(2)(3)
a swap 1 and 2 123 → 213 → 123 (12) or (12)(3)
b swap 2 and 3 123 → 132 → 123 (23) or (1)(23)
c a · b · a 123 → 321 → 123 (13) or (13)(2)
d a · b 123 → 231 → 312 → 123 (123)
f b · a 123 → 312 → 231 → 123 (132)

Table 1: The symmetric group S3 comprises all possible permutations of the set M = {1, 2, 3}. Cyclic decompositions
are found by repeatedly applying the permutation on a single set element until the starting value is retained.

https://creativecommons.org/licenses/by-sa/4.0/
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From here, we can construct the corresponding Cayley table by simply calculating all possible
products:

S3 e a b c d f
e e a b c d f
a a e d f b c
b b f e d c a
c c d f e a b
d d b c a f e
f f c a b e d

(15)

We notice again, that every row or column is just a permutation of the group elements. Further,
the group is non-abelian since the Cayley table is not symmetric to the main diagonal. Last
but not least, we can immediately identify the following subgroups:

Order 1: trivial group {e}
Order 2: three, each generated by one of the transpositions: {e, a}, {e, b}, {e, c}
Order 3: the alternating group A3 formed by the 3-cycle {e, d, f}

· e a

e e a

a a e

· e b

e e b

b b e

· e c

e e c

c c e

A3 e d f

e e d f

d d f e

f f e d

Apparently, these subgroups are again isomorphic to the cyclic group of order 2 and 3, just like
before for the C3v group. Hence, it is not surprising that C3v itself is isomorphic to S3.
Note: Do not confuse the order of a symmetric group (= number of group elements) with its
degree (= number of elements in the underlying set which is permuted) or with the order of an
element g in a group G, which is defined by the smallest positive integer n such that gn = e.
As abstract group, S3 and C3v are isomorphic to the dihedral group D3 of degree 3 and order
6, which also happens to be the smallest non-abelian group.

Abelian groups:
Generally, the following statements hold regarding abelian groups:

Order 1: only the trivial group, obviously abelian.
Order 2: Any group of order 2 is isomorphic to the cyclic group C2, which is abelian.
Order 3: Any group of order 3 is isomorphic to the cyclic group C3, which is abelian.
Order 4: Only (i) cyclic group C4 and (ii) Klein four-group V4 = C2 × C2, both abelian.
Order 5: Any group of order 5 is isomorphic to the cyclic group C5, which is abelian.

Hence, the smallest non-abelian group is of order 6 and, as discussed before, isomorphic to S3.

Cayley’s Theorem:
Every group of order n is isomorphic to a subgroup of the symmetric group Sn. It follows, that

i) no element is mapped to itself except if the permutation is identity
ii) in each row or column of a Cayley table, the same element cannot occur more than once

1Here, a · b is to be understood as “first do b, then do a”.
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