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Euclidean group and its subgroups

All possible symmetry operations (space groups) in a crystal can be composed of symmetry operations
from the translation group T and one of the so-called crystallographic point groups.

• Define the following terms within the context of crystallography:
symmetry operation, symmetry element, symmetry group
Solution:
Symmetry operation A geometric operation that leaves the crystal unchanged or in other

words, a transformation that converts the crystal in itself.
Example: Rotation by 180◦ about a two-fold axis.

Symmetry element The geometric object that is associated with a symmetry operation. It
contains all points that stay unchanged during the transformation.
Example: A mirror plane during a reflection or an axis during a rotation about that axis.

Symmetry group The group of all transformations under which an object is invariant, i. e. for
a tetrahedron it’s the tetrahedron group.

• What is the Euclidean group E(n) and how is it related to the orthogonal group O(n)?
Solution:
The elements of E(n) comprise all distance-preserving transformations in Euclidean space and
n dimensions and essentially contain translations, rotations and reflections as well as any com-
binations of those. The said distance between two points is called Euclidean norm and defined
by

d(p, q) =

√√√√ 3∑
i=1

(qi − pi)2 = ∥q − p∥ . (1)

The Euclidean group contains the subgroups T(n) and O(n), which are the translational group
and the orthogonal group, and is itself a subgroup of the group of affine transformations (which
additionally includes scaling and shearing).
Mathematically, this can be expressed by a so-called semi-direct product (indicating that trans-
lations and orthogonal transformations are not independent) (left) or equivalently as factor
group (right),

E(n) ∼= T(n)⋊ O(n) ⇔ O(n) ∼= E(n)/T(n) . (2)
By excluding reflections (i. e. transformations that do not preserve handedness or orientation),
the special Euclidean group SE(n) or E+(n) can be identified as a subgroup. Again decomposing
into translational and rotational subgroups yields

SE(n) ∼= T(n)⋊ SO(n) ⇔ SO(n) ∼= SE(n)/T(n) , (3)

where SO(n) or O+(n) denotes the special orthogonal group, whose elements are the proper or
pure rotations, i. e. rotations without reflections. Naturally, SO(n) is a subgroup of O(n),

O(n) ∼= SO(n)× C2 ⇔ SO(n) ∼= O(n)/C2 . (4)

with C2 = {1,−1} being the cyclic group of order 2, which consists of the identity and the
reflection matrix. In 3 dimensions, SO(3) is also known as the rotation group whose elements
are isomorphic to the orthogonal 3x3 matrices with determinant 1,

O(3) = {A ∈ M3x3 | A⊺ = A−1} , SO(3) = {A ∈ O(3) | det(A) = 1} . (5)
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• Give examples for elements of the rotation group SO(3) = O+(3) and the inversion group Ci
(a. k. a. cyclic group of order 2, C2). Determine their determinant. Fill the Cayley table for Ci.
Show that both symmetry operations commute.
Solution:
SO(3) is the special orthogonal group. Its elements are so called “proper rotations”, i. e. rota-
tions that preserve the orientation (in contrast to reflections).
Example: Counter-clockwise rotation by φ around the z-axis in a right-handed Cartesian
coordinate system:

R(φ) =

cosφ − sinφ 0
sinφ cosφ 0
0 0 1

 , det(R(φ)) = cos2 φ+ sin2 φ = 1 . (6)

A general rotation of a vector x about an arbitrary axis n (with n · n = 1) can be written as

R(φn)x = n(n · x) + (n× x) sin(φ)− n× (n× x) cos(φ) , (7)

which is known as the Rodrigues formula. Setting φ = 0 should yield the initial vector x,

R(0n)x = n(n · x)− n× (n× x) (8)
= n(n · x)− [n(n · x)− x(n · n)] (9)
= n(n · x)− n(n · x) + x (10)
= x , (11)

where the Graßmann formula (a. k. a. “bac-cab” rule),

a× (b× c) = b(a · c)− c(a · b) , (12)

has been used.
Inversion is the reflection at the center of a reference system. It can be represented by the
orthogonal matrix

I =

−1 0 0
0 −1 0
0 0 −1

 with det(I) = (−1)3 = −1, (13)

and produces the same Cayley table as C2 since both groups are isomorphic to each other:

Ci E I
E E I
I I E

(14)

Let I be the operator corresponding to inversion, i. e. Ix = −x and R(φ) be the same for the
rotation, i. e. R(φ)x = x′. Here, φ is a vector whose direction is equal to the rotation axis
and whose magnitude is equal to the angle which is rotated by. Both operators are obviously
linear. We can show:

R(φ)(Ix) = R(φ)(−x) = −R(φ)x = I(R(φ)x) ⇒ RI = IR , (15)

hence both operations (inversion and rotation) do indeed commute.
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• What are improper rotations? What is the difference between a roto-inversion and a roto-
reflection? Proof that they can be converted into each other. What about their determinant?
Solution:
Improper rotations are combinations of a rotation about an axis followed by a reflection on
a plane perpendicular to that very axis. More specifically, there are two types of improper
rotations that must be distinguished: the roto-reflection, which obeys the initial definition,
and the roto-inversion, which is a composition of a rotation about an axis followed by an
inversion. However, both can be converted into each other:
Let R(φn) be a rotation by φ about the unit vector n = φ/φ. First we note, that a rotation
by 180◦ followed by an inversion is equal to a reflection on a mirror plane which the rotation
axis is perpendicular to (cf. Fig. 1).

Figure 1: Reflection = Rotation by 180◦ + Inversion
1st row: initial view → rotation 180◦ → inversion
2nd row: initial view → reflection

We will assign the following symbol for reflections:

σn ≡ σ(n) = IR(πn) . (16)

Now assume a rotation by an arbitrary angle φ instead of 180◦. Using the latter geometric
identity, we further proof that a roto-reflection (rotation followed by a reflection on the plane
perpendicular to the rotation axis) about φ is equal to a roto-inversion (rotation followed by
an inversion) about π + φ (cf. Fig. 2):

σ(n)R(φn) = IR(πn)R(φn) = IR((π + φ)n) . (17)

For roto-reflections, we assign the symbol

Sn(φ) ≡ S(φn) = σ(n)R(φn) (18)

The determinant of such an improper rotation is always −1 since

det(IR(αn)) = det(I) det(R(αn)) (19)
= det(I) det(R(α1e1)) det(R(α2e2)) det(R(α3e3)) (20)
= (−1) · 1 · 1 · 1 = −1 . (21)
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Figure 2: Roto-reflection by φ = Roto-inversion by φ+ 180◦

1st row: initial view - rotation φ - reflection
2nd row: initial view - rotation φ+ 180◦ - inversion

Example: The roto-reflection S(2π
n
ez) is a composition of the two basic operations

i) reflection on the x-y plane σz,
ii) n-fold rotation about the z-axis, Cn.

We can immediately construct the corresponding matrix

Sz = σzCn =

1 0 0
0 1 0
0 0 −1

cos(2π
n
) − sin(2π

n
) 0

sin(2π
n
) cos(2π

n
) 0

0 0 1

 =

cos(2π
n
) − sin(2π

n
) 0

sin(2π
n
) cos(2π

n
) 0

0 0 −1

 , (22)

with determinant
det(Sz) = − cos2

(
2π

n

)
− sin2

(
2π

n

)
= −1 . (23)

Note: Sx, Sy and Sz are usually used to abbreviate Sn with n = e1, e2 or e3, respectively, and
similarly for σn.
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