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Euclidean group and its subgroups

All possible symmetry operations (space groups) in a crystal can be composed of symmetry operations
from the translation group 7" and one of the so-called crystallographic point groups.

e Define the following terms within the context of crystallography:
symmetry operation, symmetry element, symmetry group
Solution:

Symmetry operation A geometric operation that leaves the crystal unchanged or in other
words, a transformation that converts the crystal in itself.
Example: Rotation by 180° about a two-fold axis.

Symmetry element The geometric object that is associated with a symmetry operation. It
contains all points that stay unchanged during the transformation.
Example: A mirror plane during a reflection or an axis during a rotation about that axis.

Symmetry group The group of all transformations under which an object is invariant, i.e. for
a tetrahedron it’s the tetrahedron group.

o What is the Euclidean group E(n) and how is it related to the orthogonal group O(n)?
Solution:
The elements of E(n) comprise all distance-preserving transformations in Euclidean space and
n dimensions and essentially contain translations, rotations and reflections as well as any com-
binations of those. The said distance between two points is called Euclidean norm and defined
by

3

d(p.q) = \|> (6 —p)?=la—p|. (1)

i=1

The Euclidean group contains the subgroups T(n) and O(n), which are the translational group
and the orthogonal group, and is itself a subgroup of the group of affine transformations (which
additionally includes scaling and shearing).

Mathematically, this can be expressed by a so-called semi-direct product (indicating that trans-
lations and orthogonal transformations are not independent) (left) or equivalently as factor
group (right),

E(n) = T(n)x0(Mn) < O(n)=ZEMn)/THn). (2)

By excluding reflections (i. e. transformations that do not preserve handedness or orientation),
the special Euclidean group SE(n) or E(n) can be identified as a subgroup. Again decomposing
into translational and rotational subgroups yields

SE(n) 2 T(n) x SO(n) < SO(n) = SE(n)/T(n), (3)

where SO(n) or O (n) denotes the special orthogonal group, whose elements are the proper or
pure rotations, i.e. rotations without reflections. Naturally, SO(n) is a subgroup of O(n),

O(n) 2S0(n) x Cy & SO(n) 2 O(n)/Cs. (4)

with Co = {1, —1} being the cyclic group of order 2, which consists of the identity and the
reflection matrix. In 3 dimensions, SO(3) is also known as the rotation group whose elements
are isomorphic to the orthogonal 3x3 matrices with determinant 1,

O(3) = {A € Mayy | AT= A1}, SO(3) = {A € O®3) | det(A) = 1}. (5)
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« Give examples for elements of the rotation group SO(3) = O"(3) and the inversion group Cj
(a.k.a. cyclic group of order 2, Cy). Determine their determinant. Fill the Cayley table for C;.
Show that both symmetry operations commute.

Solution:
SO(3) is the special orthogonal group. Its elements are so called “proper rotations”, i.e. rota-
tions that preserve the orientation (in contrast to reflections).

Example: Counter-clockwise rotation by ¢ around the z-axis in a right-handed Cartesian
coordinate system:

cosp —singp 0
R(p) = |sing cosp 0|, det(R(p)) =cos’p+sinp=1. (6)
0 0 1
A general rotation of a vector & about an arbitrary axis n (with n - n = 1) can be written as

R(pn)x =n(n-x)+ (n x x)sin(p) —n X (n X x) cos(p), (7)

which is known as the Rodrigues formula. Setting ¢ = 0 should yield the initial vector x,

ROn)x=n(n-z) —n x (n X x) (8)
=n(n-x)—[nn- -xz)—x(n- n) 9)
=n(n-x)—nn-z)+x (10)
=z, v’ (11)
where the Gramann formula (a.k.a. “bac-cab” rule),
ax(bxec)=bla-c)—cla-b), (12)

has been used.

Inversion is the reflection at the center of a reference system. It can be represented by the
orthogonal matrix

I=10 -1 0 with  det(I) = (—1)° = —1, (13)

and produces the same Cayley table as Cy since both groups are isomorphic to each other:

G|F 1
E|FE 1 (14)
I I FE

Let I be the operator corresponding to inversion, i.e. [& = —x and R(¢) be the same for the

rotation, i.e. R(p)x = &’. Here, ¢ is a vector whose direction is equal to the rotation axis
and whose magnitude is equal to the angle which is rotated by. Both operators are obviously
linear. We can show:

R(p)(Iz) = R(p)(—x) = —R(p)x = [(R(p)x) = RI=IR, (15)

hence both operations (inversion and rotation) do indeed commute.
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o« What are improper rotations? What is the difference between a roto-inversion and a roto-

reflection? Proof that they can be converted into each other. What about their determinant?
Solution:
Improper rotations are combinations of a rotation about an axis followed by a reflection on
a plane perpendicular to that very axis. More specifically, there are two types of improper
rotations that must be distinguished: the roto-reflection, which obeys the initial definition,
and the roto-inversion, which is a composition of a rotation about an axis followed by an
inversion. However, both can be converted into each other:

Let R(¢n) be a rotation by ¢ about the unit vector n = /. First we note, that a rotation
by 180° followed by an inversion is equal to a reflection on a mirror plane which the rotation
axis is perpendicular to (cf. Fig. 1).

Figure 1: Reflection = Rotation by 180° + Inversion
1st row: initial view — rotation 180° — inversion
2nd row: initial view — reflection

We will assign the following symbol for reflections:
on=0(n)=I1R(mn). (16)

Now assume a rotation by an arbitrary angle ¢ instead of 180°. Using the latter geometric
identity, we further proof that a roto-reflection (rotation followed by a reflection on the plane
perpendicular to the rotation axis) about ¢ is equal to a roto-inversion (rotation followed by
an inversion) about m + ¢ (cf. Fig. 2):

o(n)R(en) = IR(mn)R(pn) = IR((m + p)n). (17)
For roto-reflections, we assign the symbol
Sn(p) = S(en) = o(n)R(en) (18)
The determinant of such an improper rotation is always —1 since
det(IR(an)) = det(I) det(R(an)) (19)
= det(]) det(R(ayey)) det(R(azes)) det(R(ases)) (20)

=(-1)-1-1-1=—1. (21)
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Figure 2: Roto-reflection by ¢ = Roto-inversion by ¢ + 180°
1st row: initial view - rotation ¢ - reflection
2nd row: initial view - rotation ¢ 4 180° - inversion

Example: The roto-reflection S (27” e.) is a composition of the two basic operations
i) reflection on the x-y plane o,
ii) n-fold rotation about the z-axis, C,,.

We can immediately construct the corresponding matrix

10 0 cos(3%) —sin(3E) 0 cos(3) —sin(3) 0
S,=0.C,=(0 1 0 sin(3%)  cos(2Z) 0] = |sin(2) cos(2Z) 0 |, (22)
00 -1 0 0 1 0 0 1
with determinant ) 5
det(S,) = — cos (—W> — sin® (—W> =—1. (23)
n n

Note: S;, S, and S, are usually used to abbreviate S5,, with n = e;, e; or es, respectively, and
similarly for o,.
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