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Projectors, Reflections, Rotations

We have already learned about reflections on a mirror plane spanned by two Cartesian unit vectors
and rotations about one of the Cartesian axes. But what about reflections on arbitrary planes and
rotations about arbitrary axes?

• Define the longitudinal and transverse projection operators PL and PT as well as the transverse
rotation operator RT (cross product matrix). Find their multiplication table.
Solution:
The longitudinal projection operator projects a given vector x onto a chosen vector k. In index
and matrix notation, this operator reads respectively

PL(k) =
kk⊺

|k|2
, (PL)ij (k) =

kikj

|k|2
. (1)

Since the sum of longitudinal and transverse components has to combine into the initial vector
and hence

PL + PT = 1 , (2)
we can construct the transverse projection operator using the latter relation:

PT(k) = 1− PL(k) , (PT)ij (k) = δij −
kikj

|k|2
. (3)

By rewriting this using the Graßmann formula, we further find for an application on a vector
x the identity

PT(k)x =
|k2|x− k(k · x)

|k|2
= −k × (k × x)

|k|2
. (4)

The transverse rotation matrix (or cross product matrix a. k. a. skew-symmetric matrix) is given
by

RT(k)x :=
k × x

|k|
=

1

|k|

k2x3 − k3x2

k3x1 − k1x3

k1x2 − k2x1

 =
1

|k|

 0 −k3 k2
k3 0 −k1
−k2 k1 0

x1

x2

x3

 . (5)

In case k is a unit vector, n = k/|k|, these three operators simplify to

PLx = n(n · x) , PTx = −n× (n× x) , RTx = n× x . (6)

Note: Do not confuse the rotation matrix R from the previous exercise with the projector RT!
The three operators PL, PT and RT form an algebra which is represented by the following
multiplication table:

· PL PT RT

PL PL 0 0

PT 0 PT RT

RT 0 RT −PT

PLPLx = n[n · n(n · x)] = n[1(n · x)] = PLx

PLPT = PL(1− PL) = PL − PL = 0

PT = −RTRT

RTPTx = RT(1− PL)x = RTx− n× [n(n · x)] = RTx

(7)

A priori it is not obvious that this is a commutative algebra, which means you have to check
e. g. PLRT and RTPL separately.
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• How could you tell if a given matrix describes a rotation, a reflection, an inversion or a combi-
nation of any of them?
Solution:
Mathematical Background
Rotations, inversions and reflections (i. e. proper and improper rotations) form the orthogonal
group in three dimensions, O(3). Its elements can be represented by orthogonal matrices whose
eigenvalues are of the form λ = eiφ, i. e. the only possible real ones are λR = ±1.

Proof: Applying a matrix to one of its eigenvectors will simply scale this vector by the
corresponding eigenvalue,

Av = λv . (8)
Now consider the norm of the eigenvector,

∥Av∥ = ∥λv∥ , (9)
and recall that orthogonal matrices Q with Q⊺ = Q−1 preserve the Euclidean norm,

∥Qv∥ def.
=

√
(Qv)⊺(Qv)

trans.
=

√
v⊺(Q⊺Q)v

orth.
=

√
v⊺v

def.
= ∥v∥ , (10)

such that for A ∈ O(3)

∥v∥ (10)
= ∥Av∥ (8)

= ∥λv∥ = |λ|∥v∥ . (11)
Since v ̸= 0 by definition of eigenvectors, it follows that

|λ| = 1 ⇒ λ = eiφ , φ ∈ R , (12)
i. e. all possible eigenvalues are located on the unit circle in the complex plane. ■

Eigenvectors of orthogonal matrices corresponding to distinct eigenvalues are mutually orthog-
onal. For eigenvalues with algebraic multiplicity > 1, a set of eigenvectors can be constructed
in a way that they are mutually orthogonal as well, although for our purpose the less restrictive
linear independence would be already sufficient, which is automatically fullfilled.

Proof: We begin with the eigenvalue equation for two distinct eigenvalues λ1 ̸= λ2 of a real
orthogonal matrix A ∈ O(3,R) with A† := (A⊺)∗

real
= A⊺ orth.

= A−1,
Av1 = λ1v1 , Av2 = λ2v2 . (13)

Plugging the LHS of each equation into an inner product (complex vector space!) yields
⟨Av1, Av2⟩ = ⟨v1, (A

†A)v2⟩ = ⟨v1,v2⟩ . (14)
On the other hand we know because of sesquilinearity of the inner product

⟨Av1, Av2⟩ = ⟨λ1v1, λ2v2⟩ = λ1λ
∗
2 ⟨v1,v2⟩ . (15)

Equating both expressions gives the following condition
(1− λ1λ

∗
2)⟨v1,v2⟩ = 0 , (16)

which can only be true in two cases. Apparently, the first option leads to a contradiction
since we required λ1 ̸= λ2 in the beginning:

1
!
= λ1λ

∗
2 = |λ1||λ2| eiφ1 e−iφ2

(12)
= ei(φ1−φ2) ⇒ φ1 = φ2 ⇒ λ1 = λ2  (17)

Hence we find for the remaining second option
⟨v1,v2⟩ = 0 , (18)

i. e. any pair of eigenvectors with different eigenvalues must be orthogonal. ■
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In the upcoming tasks we will show by example that the different symmetry operations can be
identified by the following characteristic properties of their representing matrices:

1. Inversions can be identified directly, because I = −1.
2. Pure rotations have determinant +1 and a single real eigenvalue +1, improper rotations

like roto-reflections and roto-inversions have −1 for both.
3. Pure reflections (without rotations) have three real eigenvalues. The eigenvector corre-

sponding to λ1 = −1 is the plane normal vector, whereas the two eigenvectors correspond-
ing to λ2/3 = 1 span the mirror plane.

4. Any matrix with a rotation component has only one real eigenvalue λ1 = ±1 (depending on
the presence of a mirror component), and two complex conjugated eigenvalues λ2/3 = e±iφ

with corresponding complex conjugated eigenvectors v2 = v∗
3. By constructing two new

real vectors via
w1 =

v2 + v3√
2

, w2 =
v2 − v3√

2i
, (19)

we can span the plane of rotation.
5. In general, you cannot tell any intermediate steps like multiple rotations, reflections or

arbitrary combinations, but only the resulting or effective symmetry operation. This is
because there is no unique way of reaching a specific configuration.

• Find the matrix for reflections on arbitrary planes (containing the origin) with a normal unit
vector n. For a given reflection matrix, find the corresponding plane.
Solution:
In order to calclulate the matrix corresponding to a reflection on a plane that contains the
origin, we may use the definition of the Householder matrix,

H = 1− 2nn⊺ = 1− 2PL = PT − PL , (20)

which essentially subtracts twice the projection of a vector onto the plane normal. For testing,
we apply some example matrices to vectors whose reflection can easily be verified.
Fun fact: The Householder matrix or transformation is an important concept in numerical
mathematics, namely for QR decomposition, as well as in video game development.
Examples:

1. Normal vector n1 = (1, 0, 0)⊺

Householder matrix:

H1 =

1 0 0
0 1 0
0 0 1

− 2

1
0
0

(
1 0 0

)
=

1 0 0
0 1 0
0 0 1

−

2 0 0
0 0 0
0 0 0

 =

−1 0 0
0 1 0
0 0 1

 (21)

Test for vector in xy-plane and vector parallel to reflection plane:−1 0 0
0 1 0
0 0 1

1
1
0

 =

−1
1
0

 (22)

−1 0 0
0 1 0
0 0 1

0
1
1

 =

0
1
1

 (23)
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2. Normal vector n2 = 1/
√
3 (1, 1, 1)⊺

Householder matrix:

H2 =

1 0 0
0 1 0
0 0 1

− 2

3

1 1 1
1 1 1
1 1 1

 =

 1/3 −2/3 −2/3
−2/3 1/3 −2/3
−2/3 −2/3 1/3

 (24)

Test for vectors ⊥ and ∥ to reflection plane:

 1/3 −2/3 −2/3
−2/3 1/3 −2/3
−2/3 −2/3 1/3

1
1
1

 =

−1
−1
−1

 (25)

 1/3 −2/3 −2/3
−2/3 1/3 −2/3
−2/3 −2/3 1/3

−1
1
0

 =

−1
1
0

 (26)

Inverse Problem
For odd dimensions like R3 where 3x3 matrices have at least 1 real eigenvalue (complex eigen-
values always emerge in conjugated pairs), a reflection matrix has to possess an eigenvector vn
such that

Hvn = −vn , vn ∥ n . (27)
In other words, we can find an eigenvector of H whose entries will all change sign after applying
the reflection matrix to it. Consequently, this vector has to be parallel to the plane normal n.
Thus, the problem of finding the plane corresponding to a reflection matrix is equal to finding
the eigenvector corresponding to the eigenvalue λ = −1.
Examples:1

H1 =

−1 0 0
0 1 0
0 0 1

 ,
λ1 = −1 , v1 = (1, 0, 0)⊺

λ2 = 1 , v2 = (0, 1, 0)⊺

λ3 = 1 , v3 = (0, 0, 1)⊺
⇒ v1 ∥ n1 (28)

H2 =

 1/3 −2/3 −2/3
−2/3 1/3 −2/3
−2/3 −2/3 1/3

 ,
λ1 = −1 , v1 = (1, 1, 1)⊺

λ2 = 1 , v2 = (−1, 1, 0)⊺

λ3 = 1 , v3 = (−1, 0, 1)⊺
⇒ v1 ∥ n2 (29)

The reflection plane itself could technically be described by one of the plane equations, e. g.

x · n = 0 ⇔ n1x+ n2y + n3z = 0 , (n1, n2, n3)
⊺ = n . (30)

1Note, that when having algebraic multiplicity µi > 1 for any eigenvalue λi of matrix A, then the associated eigenspace
EigA(λi) = N (A − λi1) can have at most dimension µi. In case of H2 we find H2 − λ2/31 = −2/3J3 (J3 is 3x3
matrix of ones) and consequently the underconstrained equation x1 + x2 + x3 = 0. A general vector from this
eigenspace reads

v =

−x2 − x3

x2

x3

 = x2

−1
1
0

+ x3

−1
0
1


In order to find a suitable and convenient basis of this subspace, we simply set x2 = 0 and x3 = 0, respectively.
The two resulting vectors are automatically orthogonal to each other and span EigH2

(λ2).
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• Find the matrix of a rotation about an arbitrary axis (crossing the origin). For a given rotation
matrix, find the corresponding rotation axis and angle.
Solution:
A general counter-clockwise rotation of a vector x by angle φ about an arbitrary axis n (with
n · n = 1) is given by the Rodrigues formula

R(φn)x = n(n · x) + (n× x) sinφ− n× (n× x) cosφ (31)
= n(n · x)(1− cosφ) + (n× x) sinφ+ x cosφ . (32)

Figure 1: (a) Decomposition of x into x∥ = PLx and x⊥ = PTx, (b) zoom into a new Cartesian system where x⊥ is
rotated about n by φ to x′

⊥ = R(φn)x⊥, (c) 2D view of the transverse plane with non-normal basis vectors
x⊥ = −n× (n · x) and n× x.

Heuristic derivation
We want to verify the composing terms of the Rodrigues formula using elementary geometry:

1. First, we decompose the initial vector x into its longitudinal and transverse parts (with
respect to the normal vector n) using the two projection operators,

x∥ := PL(n)x, x⊥ := PT(n)x, x∥ + x⊥ = x . (33)

You can find these two components in Fig. 1 (a) emphasized in red.
2. Next, we zoom into the transverse plane corresponding to the rotation axis n. How can

we find the spanning vectors? By construction, x⊥ is orthogonal to n, because it has been
built using the transverse projection operator. Thus, it already lies within the transverse
plane. So we only need one other vector that is orthogonal to n but may not be parallel
to x⊥. Let’s choose n× x.
Note, that we explicitly did not choose n× x⊥, because we need expressions in terms of
n and x as will become clear later. However, the resulting vectors in both cases point in
the same direction, but have different magnitudes.

3. By using the identity from Eq. (4), we further find

x⊥ = −n× (n× x) ⇒ |x⊥| = |n× (n× x)| . (34)

4. Up to now, we only have (1) decomposed x and (2) created a new Cartesian system with
origin at the intersection of x∥ and x⊥ (see Fig. 1 (a) and (b)). What’s left is to rotate
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x⊥ within the transverse plane by φ. This is achieved just like in the 2D case where

x′ = r

(
cosφ
sinφ

)
= e1 r cosφ+ e2 r sinφ , (35)

with the only difference that we have more complex and especially non-normal base vectors
(see Fig. 1 (c)):

x′
⊥ = |x⊥|

(
cosφ
sinφ

)
= |x⊥|

(
x⊥

|x⊥|
cosφ+

n× x

|n× x|
sinφ

)
. (36)

In the first term we can immediately cancel |x⊥|. In the second term it is however not so
obvious, but we can make use of Eq. (4) again:

|x⊥| = |n× (n× x)| = |n||n× x| sin∠(n,n× x) = |n× x| . (37)

Thus, we end up with

x′
⊥ = −n× (n× x) cosφ+ (n× x) sinφ . (38)

5. What about the longitudinal part x′
∥? Since it is parallel to n by construction, it won’t

change during a rotation about n, so x′
∥ = x∥ = n(n · x).

6. Finally, we have to add up the rotated transverse and the unchanged longitudinal compo-
nents in order to construct the transformed vector x′:

x′ Definition
= Rx

Decomposition
= R(x∥ + x⊥) (39)

Linearity
= R(x∥) + R(x⊥) (40)

Definition
= x′

∥ + x′
⊥ (41)

Inserting
= n(n · x) + (n× x) sinφ− n× (n× x) cosφ . (42)

This is exactly the Rodrigues formula as introduced in Eq. (31).

Transformation Matrix
By applying the Graßmann formula,

a× (b× c) = b(a · c)− c(a · b) , (43)

the other way around on Eq. (31), we find

R(φn)x = n(n · x) + (n× x) sinφ− n× (n× x) cosφ (44)
= x(n · n) + n× (n× x) + (n× x) sinφ− n× (n× x) cosφ (45)
= x + n× (n× x)(1− cosφ) + (n× x) sinφ (46)
= 1x +RT(n) (RT(n)x) (1− cosφ) + RT(n)x sinφ (47)

The corresponding transformation matrices of Eq. (31), (32) and (47),

R = PL +RT sinφ+ PT cosφ (48)
= PL(1− cosφ) + RT sinφ+ 1 cosφ (49)
= 1+RT sinφ+R2

T(1− cosφ) , (50)

can be found by simply reading off the definitions of PL, PT and RT.
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Examples:
1. Rotation by angle φ about normal vector n3 = ez

R(φez) =

1 0 0
0 1 0
0 0 1

+ sinφ

0 −1 0
1 0 0
0 0 0

+ (1− cosφ)

−1 0 0
0 −1 0
0 0 0

 (51)

=

cosφ − sinφ 0
sinφ cosφ 0
0 0 1

 (52)

2. Rotation by angle φ = 2π/3 =̂ 120◦ about space diagonal n4 = 1/
√
3 (1, 1, 1)⊺

R(φn2) =

1 0 0
0 1 0
0 0 1

+
sinφ√

3

 0 −1 1
1 0 −1
−1 1 0

+
(1− cosφ)

3

−2 1 1
1 −2 1
1 1 −2

 (53)

=

0 0 1
1 0 0
0 1 0


φ → 0 30◦=̂π

6
45◦=̂π

4
60◦=̂π

3
90◦=̂π

2
120◦=̂2π

3

sinφ 0
√
1
2

√
2
2

√
3
2

1
√
3
2

cosφ 1
√
3
2

√
2
2

√
1
2

0 −1
2

tanφ 0
√
3
3

1 3√
3

0 − 3√
3

(54)

Check:

0 0 1
1 0 0
0 1 0

1
1
1

 =

1
1
1

 ,

0 0 1
1 0 0
0 1 0

1
0
0

 =

0
1
0

 (55)

Inverse Problem
Quite similar to the reflection case, a rotation matrix has to posess an eigenvector vn such that

R(φn)vn = vn , vn ∥ n , (56)

i. e. every point on the rotation axis stays unchanged during this symmetry operation. Thus
the problem of finding the rotation axis from a given matrix reduces to finding the eigenvector
corresponding to the eigenvalue +1.
Examples:

R(φez) =

cosφ − sinφ 0
sinφ cosφ 0
0 0 1

 ,
λ1 = 1 , v1 = (0, 0, 1)⊺

λ2 = eiφ , v2 = (−i, 1, 0)⊺
λ3 = e−iφ , v3 = (i, 1, 0)⊺

⇒ v1 ∥ n3 (57)

R(φn4) =

0 0 1
1 0 0
0 1 0

 ,

λ1 = 1 , v1 = (1, 1, 1)⊺

λ2 =
−1−

√
3i

2
, v2 = not so easy

λ3 =
−1+

√
3i

2
, v3 = not so easy

⇒ v1 ∥ n4 (58)
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Note: Although R(φez) looks rather simple, calculating its eigenvectors is quite intricate2.
For finding the rotation angle, we could either choose an arbitrary vector orthogonal to the
rotation axis x · n = 0 and find the angle between the vector before and after the rotation,

φ = arccos
(

x ·Rx

|x||Rx|

)
, (59)

or, more easily, we can calculate the trace of the rotation matrix via Eq. (50),

Tr(R) = Tr(1) + sinφTr(RT) + (1− cosφ)Tr(R2
T) (60)

= 1 + 2 cosφ , (61)

where we have used
Tr(αA+ βB) = αTr(A) + β Tr(B) , (62)

as well as Tr(1) = 3, Tr(RT) = 0 and

Tr(R2
T) = Tr

−n2
2 − n2

3 n1n2 n1n3

n1n2 −n2
1 − n2

3 n2n3

n1n3 n2n3 −n2
1 − n2

2

 (63)

= −2(n2
1 + n2

2 + n2
3) = −2(n · n) (64)

= −2 . (65)

Note, that the sign of φ has to be chosen according to the direction (±) of the rotation axis.
Examples:

Tr

cosφ − sinφ 0
sinφ cosφ 0
0 0 1

 = 1 + 2 cosφ (66)

Tr

0 0 1
1 0 0
0 1 0

 = 0
!
= 1 + 2 cosφ ⇒ φ±n4 = ±2

3
π =̂ ± 120◦ (67)

2For the eigenvalues of R(φez) we find

(1− λ)[(cosφ− λ)2 + sin2 φ)] = 0
λ1=1
=⇒

sin2 + cos2=1
λ2 − 2λ cosφ+ 1 = 0 =⇒ λ2/3 = cosφ± i sinφ = e±iφ.

The associated system of equations for calculating the components of eigenvector v1 = (x, y, z)⊺ is 0z = 0 and

(I) (cosφ− 1)x− sinφy = 0
sinφx+ (cosφ− 1)y = 0

φ ̸=0
=⇒ (II)

x = sin φ
cos φ−1 y

x = − cos φ−1
sinφ y

y ̸=0
=⇒ (III) sin2 φ+ (cosφ− 1)2 = 0  

Apparently, z can be chosen arbitrarily. For x and y, we can check the case φ = 0 directly in (I). Here, any real
vector is a valid eigenvector and consequently a rotation axis, since nothing will be rotated in the first place.
For non-zero φ, (III) leads to a contradiction: Both terms, sin2 φ and (cosφ − 1)2, are non-negative, hence must
be zero simultaneously, which is only possible for φ = kπ and φ = 2kπ with k ∈ Z, respectively. Combining both
conditions and restricting φ to the interval [0, 2π) yields φ = 0 which we excluded explicitly.  
This renders y = 0 and via (I) also x = 0, together with an arbitrary z the only non-trivial solution: v1 = (0, 0, z)⊺

https://creativecommons.org/licenses/by-sa/4.0/
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• Bonus: Perform a decomposition of the rotation by 2π/3 about the space diagonal into a
product of fundamental rotations Rz−x−z and Rz−y−x. Why is the first decomposition usually
preferred, even if it does not rotate at least once about each of the three Cartesian axes?
Solution:
We simply compare the entries of the given rotation matrix R(φn) with the ones from Rz−x−z

and Rz−y−x (check Notes section at the end of the document for details).
Examples:

1. For a rotation about [1, 1, 1]⊺ by 120◦ we find for Rz−x−z the following unique Euler angles:

33-component: cos(β) = 0 → β =
π

2
(68)

32-component: cos(α) sin(β) = cos(α) = 1 → α = 0 (69)

13-component: sin(β) sin(γ) = sin(γ) = 1 → γ =
π

2
(70)

Test: Rz−x−z

(
α = 0, β =

π

2
, γ =

π

2

)
= R

(
2π

3
n4

)
. (71)

Similarly, we find for Rz−y−x the following two valid sets of angles:
31-component: − sin(β) = 0 → β1 = 0, β2 = π (72)

32-component: sin(α) cos(β) = ± sin(α) = 1 → α1 =
π

2
, α2 =

3π

2
(73)

11-component: cos(β) cos(γ) = ± cos(γ) = 0 → γ1 =
π

2
, γ2 =

3π

2
(74)

Test: Rz−y−x(α1, β1, γ1) = R

(
2π

3
n4

)
, Rz−y−x(α2, β2, γ2) = R

(
2π

3
n4

)
(75)

Note: Not every combination you find using only 3 matrix components may yield the
desired rotation matrix. The set of angles have to fullfill all the other equations as well.
You can test this best by writing a small computer program that will print the resulting
matrix for a given set. In case the original rotation matrix is retained, the set is valid,
but in case any of the components turn out to be different from the input matrix, the set
is no solution.

2. For a rotation about the ez axis by 180◦ we find for Rz−x−z the following Euler angles:
From the 33-component we can deduce β = 0 and since sin(β) = 0, all remaining elements
of the 3rd row and column yield the equation 0 = 0 and cannot be used further.
11/22: cos(α) cos(γ)− sin(α) sin(γ) = cos(α + γ) = −1 → α + γ = π + 2πk (76)
12/21: cos(α) sin(γ) + sin(α) cos(γ) = sin(α + γ) = 0 → α + γ = πk, k ∈ Z (77)

Since the 11/22 result is more restrictive, we obtain only one solution: α+γ = π, whereas
α + γ = 0 is no solution.

Test: Rz−x−z(42, 0, π − 42) = diag(−1,−1, 1) = R(πez) (78)

Especially in vehicle and aircraft engineering, there are certain conventions like the Z-X-Z
multiplication order which are preferred over the Z-Y-X order, because they result in unique
Euler angles, except when e′

z ∥ ez, e. g. for rotations about the z-axis. Then, the Euler angles
are only unique up to the sum or difference of two angles.
Fun fact: This effect is known as gimbal lock and well known in 3D graphics, where it leads
to funny animation artifacts. It can be prevented by adding a 4th rotation axis or by switching
to quaternion methods as explained in these Youtube videos: click, click, click.

https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/Gimbal_lock
https://en.wikipedia.org/wiki/Quaternion
https://www.youtube.com/watch?v=z3dDsz4f20A
https://www.youtube.com/watch?v=zc8b2Jo7mno
https://www.youtube.com/watch?v=zjMuIxRvygQ
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Notes

Because of the various ambiguities wrt. rotation matrices, we agree on the following conventions:
Alibi (active) transformation

We rotate points/vectors, not the coordinate system (alias/passive transformation).

Pre-multiplication of column vectors
We use the operator form, i.e. Rx, where a column vector is Pre-multiplied by the matrix in
contrast to post-multiplication, where a row vector is multiplied with a matrix, i.e. xR.

Handedness
We use solely right-handed coordinate systems, no left-handed ones. Consequently, we may use
the “right hand rule” to determine the sign of rotation angles.

Extrinsic rotations
During a composition of rotations about different angles, the coordinate system stays fixed. It
is also possible to rotate it with an object, which is called intrinsic rotation.

Euler angles
For decomposing an arbitrary rotation matrix, you may use the following reference matrix
(z-x-z convention)[1, §19.4], [2-4]

Rz−x−z = Rz(γ)Rx(β)Rz(α) =

c1c3 − s1c2s3 −s1c3 − c1c2s3 s2s3
c1s3 + s1c2c3 −s1s3 + c1c2c3 −s2c3

s1s2 c1s2 c2

 , (79)

where s1/2/3 and c1/2/3 are shortcuts for sine and cosine of the Euler angles α, β, γ (not Tait-
Bryan angles!). Further, we agree on the ranges α ∈ [0, 2π), β ∈ [0, π] and γ ∈ [0, 2π) in order
to find unique sets (at least in case x′

3 ̸= x3). For a decomposition in rotations about the three
Cartesian axes, you may use

Rz−y−x = Rz(γ)Ry(β)Rx(α) =

c2c3 s1s2c3 − c1s3 c1s2c3 + s1s3
c2s3 s1s2s3 + c1c3 c1s2s3 − s1c3
−s2 s1c2 c1c2

 . (80)
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