
Solid State Theory
Computer Lab 4 | Page 1

© 2017 René Wirnata
licensed under CC BY-SA 4.0

Convergence tests

For numerical computations it is imperative to check certain algorithmic parameters for “convergence”.
In general, this implies that the same system is calculated repeatedly while applying different values
for these parameters until a certain output property does not change anymore. In that case, a
parameter is called “converged”.

In standard DFT electronic structure calculations (i. e. plane wave basis set and Monkhorst-Pack
Brillouin zone sampling), the two main parameters which are imperative “to converge” are the plane
wave energy cut-off (ecut) and the grid of wave vectors in reciprocal space (kpts). The property
which should not change after a suitable set of parameters has been found is usually chosen to be
the total energy (or in GPAW language: potential_energy).

1. Check convergence for your system with respect to the aforementioned parameters. First define
a set of reasonable values, e. g. for the energy cut-off a range between 200 and 1200 eV and a
uniform grid of n× n× n points with n in the range from 4 to 16.

2. Use a for-in-loop to iterate through the energy range in a pythonic way. What energy cut-off
is at least necessary to “converge” the system to a total energy difference of less than 2meV
per atom?
Solution:

1 # import required modules
2 from ase.build import bulk
3 from gpaw import GPAW, PW
4 import time
5

6 # create bulk structure
7 si = bulk("Si", "diamond", 5.43)
8 # prepare empty list for storing resulting total energies
9 etots = []

10 # loop over following ecuts: [200, 300, 400, ..., 1200]
11 ecuts = range(200, 1201, 100)
12 for ecut in ecuts:
13 # create and set calculator for silicon cell object
14 si.calc = GPAW(mode=PW(ecut), xc="PBE", kpts=(8, 8, 8), txt=None)
15 # get total energy via DFT and time calculation
16 start = time.time()
17 etot = si.get_potential_energy()
18 end = time.time()
19 # append result to list
20 etots.append(etot)
21 # round results and print some user information
22 print("%4d \t %.6f \t %.2f" % (ecut, etot, end - start))
23

24 # convert results into energy differences in meV per atom
25 dEcuts = []
26 # list of differences has one element less than the ’etots’ list
27 for i in range(len(etots) - 1):
28 dE = etots[i+1] - etots[i]
29 dEcuts.append(dE)
30 print("E(%4d) - E(%4d) = % .2e" % (ecuts[i+1], ecuts[i], dE))
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3. Use the same script again and adapt it for testing convergence with respect to the k-grid.
Solution:

1 # import required modules
2 from ase.build import bulk
3 from gpaw import GPAW, PW
4 import time
5

6 # create bulk structure
7 si = bulk("Si", "diamond", 5.43)
8

9 etots = []
10 kpts = range(4, 16)
11 for k in kpts:
12 si.calc = GPAW(mode=PW(100), xc="PBE", kpts=(k, k, k), txt=None)
13 start = time.time()
14 etot = si.get_potential_energy()
15 end = time.time()
16 etots.append(etot)
17 print("%2d \t %.6f \t %.2f" % (k, etot, end - start))
18

19 # convert results into energy differences in meV per atom
20 dEkpts = []
21 for i in range(len(etots) - 1):
22 dE = etots[i+1] - etots[i]
23 dEkpts.append(dE)
24 print("E(%2d) - E(%2d) = % .2e" % (kpts[i+1], kpts[i], dE))

Formatted printing in Python 3
Have a look at the python printing function options for prettier text output:
https://pyformat.info

In general, you should prefer the .format() version over the older one using %. The solution
examples make already extensive use of formatted printing but stick with the old style for
line-length reasons.

4. After analyzing the output numerically, what can you tell about:

• Values of converged parameters for your system compared to the other systems
Solution: Larger unit cells can be calculated using a coarser k-grid. Larger atoms with
more electrons need higher cut-off energy. Metals need more kpts than semiconductors
due to the occupation around the Fermi level, which makes calculations more difficult.

• Time consumption when increasing the reciprocal grid size or energy cut-off
Solution: The most common way to parallelize is over the k-grid, i. e. each process
calculates “its” k-point independently of all other processes. Conversely, in serial runs
the Kohn-Sham equations are calculated for each k-point seperately. Each k-point takes
approximately the same computing time. Since we use a regular grid, a doubling of the
number of k-points in each direction results in an increase of total number of k-points by
a factor of 23 = 8 and equally for the total computation time.
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5. Visualize the data using matplotlib
Solution:

1 # since dEcuts and dEkpts have one element less than ecuts and kpts,
2 # we have to remove e.g. the first element from latter using slices:
3 # array[start:stop] gives elements from index start till (stop−1).
4 # for [:stop] −−> start = 0, for [start:] stop −−> end of list
5

6

7 # −− easy version: two separate plots −−
8 # import plot module
9 import matplotlib.pyplot as plt

10

11 fig1 = plt.figure()
12 plt.plot(ecuts[1:], dEcuts)
13 plt.xlabel("Plane wave energy cut-off in eV")
14 plt.ylabel("deltaE = Etot[i+1] - Etot[i]")
15 # use separate figures for both plots
16 fig2 = plt.figure()
17 plt.plot(kpts[1:], dEkpts)
18 plt.xlabel("K-point grid (k x k x k)")
19 plt.ylabel("deltaE = Etot[i+1] - Etot[i]")
20 # draw both plots to screen
21 plt.show()
22

23

24 # −− advanced version: one figure with 2 different axis−systems −−
25 # import plot module
26 import matplotlib.pyplot as plt
27

28 # create new empty figure
29 fig = plt.figure()
30 # create subplot for lower x−axis
31 ax1 = fig.add_subplot(111)
32 # create second x−axis at the top
33 ax2 = ax1.twiny()
34 # plot the two data sets
35 ax1.plot(ecuts[1:], dEcuts , "r", lw=2, label="PW cut-off")
36 ax2.plot(kpts[1:], dEkpts , "b", lw=2, label="k-grid")
37 # set labels
38 ax1.set_xlabel("Plane wave energy cut-off [eV]")
39 ax2.set_xlabel("K-point grid size")
40 # with r’text with formula $a^2 + b^2$’ we can use latex in labels
41 ax1.set_ylabel(r"$E_\mathrm{tot}^{i+1} - E_\mathrm{tot}^i$ [eV]")
42 # enable legends for both plots
43 ax1.legend(loc="upper left")
44 ax2.legend(loc="upper right")
45 # render the plot to screen
46 plt.show()
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