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1 Band structure of the free electron gas

The model of the free electron gas (non-interacting electrons) is quite often used to show trends for
specific physical quantities in solids. It can be regarded as kind of an analogon to the Hydrogen atom
in basic quantum theory, because a lot of complex formulae simplify to very easy expressions e. g. for
band structure (dispersion relation), density of states (D(E) ∼

√
E), dielectric function (Lindhard

theory) or heat capacity (Sommerfeld model).

In this exercise, we want to take a look at the band structure. You should already be familiar with
the resulting plot! What happens when you vary the parameter nvalence?

1 from ase.build import bulk
2 from ase.calculators.test import FreeElectrons
3 import matplotlib.pyplot as plt
4 import matplotlib as mpl
5 mpl.rcParams.update({"lines.linewidth": 4, "font.size": 32})
6

7 # create fictive simple cubic material
8 c = bulk("Si", "sc", 5.43)
9 # treat material as FEG with sampling along the x−direction

10 c.calc = FreeElectrons(nvalence=3, kpts={"path": "XGX", "npoints": 200})
11 c.get_potential_energy()
12 # plot band structure
13 bs = c.calc.band_structure()
14 bs.plot(emax=16, filename="egas.png") # emax = ylim w.r.t. Fermi energy
15 # set a larger plot range −> show more bands
16 plt.ylim([0, 12])
17 plt.show()

Note@admin: The bands are by default all colored green. By replacing kwargs=dict(color=color) with kwargs=dict()
in file ase/spectrum/band_structure.py - class BandStructurePlot, you can have them colored individually.
Solution:

Figure 1: Bandstructure of the free electron gas in three dimensions for a simple cubic lattice as calculated with ASE.
The Fermi energy EF (horizontal dashed black line) shifts upwards with the number of valence electrons.
For detailed explanation on how to interpret these bands, see section “Reduced Zone Scheme” in [1, §8.1.5].

https://creativecommons.org/licenses/by-sa/4.0/
https://gitlab.com/ase/ase/-/blob/3.23.0/ase/spectrum/band_structure.py?ref_type=tags#L197
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2 Band structure of your system

1. Now, try to calculate the band structure for your system along a reasonable path in momentum
space. Use 200 sampling points spread over the entire path. Don’t forget to set the calculator
from electron gas back to GPAW for the ground state calculation!
https://en.wikipedia.org/wiki/Brillouin_zone

1 # find special points in Brillouin zone
2 from ase.dft.kpoints import special_paths , sc_special_points
3 from ase.build import bulk
4 from gpaw import GPAW
5

6 import matplotlib.pyplot as plt
7 import matplotlib as mpl
8 mpl.rcParams.update({"lines.linewidth": 4, "font.size": 32})
9

10 # find high symmetry k−point path in 1st Brillouin zone of fcc cell
11 print(special_paths["fcc"])
12 for special_point , coordinates in sc_special_points["fcc"].items():
13 print(f"{special_point} : {coordinates}")
14

15 # STUDENT: create bulk silicon in diamond structure, perform GS
16 # calculation and save density with si.calc.write(’si.gpw’)
17

18 # restart from saved density but instead of running SCF iterations
19 # calculate eigenvalues along the kpt path to create band structure
20 si = bulk("Si", "fcc", 5.43)
21 si.calc = GPAW("si.gpw").fixed_density(
22 nbands=16, # need more for metals or magnetic systems
23 symmetry="off", # calc all k−points, not only IBZ
24 kpts={"path": "LGXU,KG", "npoints": 200}, # 200 pts total
25 txt="gpaw.log"
26 )
27 print("Fermi Energy:", si.calc.get_fermi_level().round(3))
28

29 # compute eigenvalues, set E_F = 0 and plot band structure
30 bs = si.calc.band_structure().subtract_reference()
31 bs.plot(filename="si.png", show=False , emax=16)
32 plt.ylim([-12.5, 10])
33 plt.show()

2. Compare your result with the picture on Wikipedia:
https://de.wikipedia.org/wiki/Bandstruktur#/media/File:Band_structure_Si_schematic.svg

3. How large is the Fermi energy EF? What is the physical meaning of its value?
(Find the corresponding member function of the GPAW calculator class!)
Solution:
The Fermi energy is about 5.375 eV. Use si.calc.get_fermi_level().
Note, that this absolute value has no further physical meaning. This is why electronic structure
codes tend to return bandstructure energy data relative to the Fermi energy, i. e. they plot
(E(k)− EF) instead of E(k) on the y-axis.

https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/Brillouin_zone
https://de.wikipedia.org/wiki/Bandstruktur#/media/File:Band_structure_Si_schematic.svg
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4. How large is the bandgap?
Solution:

1 from ase.dft.bandgap import GapInfo , bandgap
2 # full description as reported by GPAW output
3 ibz_kpts = si.calc.get_ibz_k_points()
4 print(GapInfo.fromcalc(si.calc).description(ibz_kpoints=ibz_kpts))
5 # or for less text simply use
6 bandgap(si.calc,direct=False)

E id
G = 0.472 eV is an indirect band gap starting at the Gamma point (0,0,0) and ending

somewhere near the X point. By contrast, Ed
G = 2.530 from Γ → Γ is the direct gap.

Note, that these bandgaps are far off the “real” ones. This is a perfect example for DFT
not being able to reproduce absolute energies very well - at least not in the simple fashion
we followed in this exercise. On top of that, the true band gap is in fact a quasiparticle
property that involves not only ground state but also excited state energies. However, our
DFT bandstructure covers all important symmetries and intersections qualitatively correct.
For quantitatively good results, one had to employ more advanced approaches like usage of
hybrid functionals, extensions like DFT+U or even entirely different theories like GW.

5. What can you tell about the semi-conductor properties of silicon from looking at its band
structure plot?
Solution:
The energy gap, i. e. the minimal distance between the lowest states above and the highest
states below the Fermi energy cannot be overcome without an additional change in the wave
vector. In other words: the maximum of the valence band and the minimum of the conduction
band are not located at the same k-point. Hence, Silicon is an indirect semi-conductor.

6. Repeat the calculation with values 0,2,4,5,8,-1 for the paramter nbands. What does the pro-
gram tell you? How can you determine the minimum number of bands you have to use?
Solution:
There are 4 bands below the Fermi energy. This matches the number of valence electrons in
the silicon system (diamond configuration) divided by 2 (2x Si atom with 4 VE each = 8 VE):

Si: [Ne] + ↿⇂
3s2

↿ ↿
3p2

GPAW’s default value for nbands is 4 + 1.2 times the number of occupied bands. For a system
where all spins pair, you would need at least as many bands as half the number of valence
electrons. In case of diamond-silicon, this is 8/2 = 4. In case of spin-polarized calculations
with a total magnetic moment greater than zero, there are even more bands necessary. In fact,
it is usually a good idea to set nbands to a rather high number, especially for metals!
https://wiki.fysik.dtu.dk/gpaw/documentation/basic.html#number-of-electronic-bands

7. Have a look again at the part of the band structure below the Fermi energy, where all
states/bands are fully occupied. Can you possibly assign orbital labels like “s” or “p” to
these lower bands?
Solution:
There is no simple way of telling if a band is a p-band or s-band, simply because neither is
true in general. By calculating the so-called projected (or partial) density of states (w. r. t. to
certain atomic orbitals) illustrates this effect well as shown in Fig. 3. A very good answer to
this question can also be found here: https://physics.stackexchange.com/questions/278844/why-
do-p-orbitals-correspond-to-the-valence-band-in-semiconductors

https://creativecommons.org/licenses/by-sa/4.0/
https://wiki.fysik.dtu.dk/gpaw/documentation/basic.html#number-of-electronic-bands
https://physics.stackexchange.com/questions/278844/why-do-p-orbitals-correspond-to-the-valence-band-in-semiconductors
https://physics.stackexchange.com/questions/278844/why-do-p-orbitals-correspond-to-the-valence-band-in-semiconductors
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Figure 2: Bandstructure of silicon as calculated with GPAW. Energies are given relative to the Fermi energy. Although
the band gap is too narrow, all important features have been reproduced qualitatively correct.

Figure 3: Bandstructure of silicon colored according to projected density of states on 3s and 3p atom orbitals.
Provided by G.S. Vallverdu under MIT license: https://github.com/gVallverdu/bandstructureplots/
blob/master/Si_bands/bands_Si.png.
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