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1 Density of states

We already talked about the density of states (DOS) of the homogeneous electron gas and its definition
in general (see exercise sheet 2). Now we want to calculate it ab inito for different materials like
insulators, semi-conductors and metals.

1. Perform ground state calculations for silicon, aluminum and sodium chloride (optional: gallium
arsenide, iron). Plot the density of states for each material using
en, dos = si.calc.get_dos(spin=0, npts=201, width=0.1)
and study their differences. What can you tell about the DOS at the Fermi level D(EF)?
Note: Especially for metals, you need a rather dense k-grid. Once your code works without errors, you should
use a BZ sampling of 12× 12× 12 points and a plane wave cut-off of 800 eV.

2. What can you conclude for the bandstructure just from looking at the DOS plots?

3. What is the result of integrating the DOS of non-metals a) over the entire computed range and
b) up to the Fermi energy? What changes if you vary the nbands parameter?

Hint: For finding the index of the energy nearest to EF, slicing the DOS-array at EF and
plotting a vertical line at EF, you can use this snippet:

idx = np.abs(en - efermi).argmin()
dosUpToEf, enUpToEf= dos[:(idx+1)], en[:(idx+1)]
plt.axvline(x=efermi, ls="--", alpha=0.5)
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2 Projected density of states

As briefly mentioned in last lab’s sheet, there is a method to project the DOS onto a set of atomic
orbitals in order to calculate the so-called projected density of states. It is sometimes used by
researchers for bonding analysis and can be motivated as follows:

We start with the definition of the DOS and add a “one” of the form 1 = ⟨ψn|ψn⟩, where {|ψn⟩}
is the set of (orthonormalized) Kohn-Sham eigenstates (= auxiliary states used in DFT),

D(E) =
∑
n

⟨ψn|ψn⟩ δ(E − En) . (1)

Now we can insert identity again using the completeness property of bases,

1 =
∑
k

|k⟩ ⟨k| =
∫

d3x |x⟩ ⟨x| =
∑
i

|ϕa
i ⟩ ⟨ϕa

i | , (2)

where {|ϕa
i ⟩} is again a set of orthonormal, but atomic eigenfunctions corresponding to atom a.

This transforms the DOS into

D(E) =
∑
n,i

|⟨ϕa
i |ψn⟩|2 δ(E − En) =

∑
i

Di(E) , (3)

where the individual PDOS functions are now simply defined as

Di(E) =
∑
n

|⟨ϕa
i |ψn⟩|2 δ(E − En) . (4)

The total density of states “TDOS” is then reobtained by summing over all PDOS,

D(E) =
∑
i

Di(E) . (5)

A nice summary of this topic can be found in the GPAW documentation:
https://wiki.fysik.dtu.dk/gpaw/tutorialsexercises/electronic/pdos/pdos.html

You can use the function
calc.get_orbital_ldos(a=atomID, spin=0, angular=orbital, width=0.3, npts=2001)

to calculate the DOS projected on wave functions of atom with index a (e. g. 0 and 1 for As and Ga
in GaAs or Si #1 and Si #2 for Si in diamond structure) and orbital 's', 'p', 'd' or 'f'. The
parameter width is again a smearing factor which is used to smooth out the resulting plot.
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