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ABSTRACT
We present CoqPilot, a VS Code extension designed to help auto-
mate writing of Coq proofs. The plugin collects the parts of proofs
marked with the admit tactic in a Coq file, i.e., proof holes, and
combines LLMs along with non-machine-learning methods to gen-
erate proof candidates for the holes. Then, CoqPilot checks if each
proof candidate solves the given subgoal and, if successful, replaces
the hole with it. The focus of CoqPilot is twofold. Firstly, we want
to allow users to seamlessly combine multiple Coq generation ap-
proaches and provide a zero-setup experience for our tool. Secondly,
we want to deliver a platform for LLM-based experiments on Coq
proof generation. We developed a benchmarking system for Coq
generation methods, available in the plugin, and conducted an ex-
periment using it, showcasing the framework’s possibilities. Demo
of CoqPilot is available at: https://youtu.be/oB1Lx-So9Lo. Code
at: https://github.com/JetBrains-Research/coqpilot
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1 INTRODUCTION
Testing has always been essential for making reliable software. For
some specific domains, such as aerospace engineering, banking
infrastructure, or medical devices, bugs in critical systems may lead
to catastrophic consequences [7, 13]. Formal software verification
ensures that software operates correctly and safely by proving its
correctness against the specification [15]. Under an assumption
of a well-constructed specification, formal verification provides
stronger guarantees than traditional testing methods, such as unit
or integration testing, due to its exhaustive nature. To date, there
exist a number of interactive theorem provers (ITP), such as Coq [2],
Isabelle [14], or Lean [6]. They are designed to assist users with
the construction of formal specifications and verification of for-
mal proofs. For example, Coqhelps in development by providing a
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robust framework for defining mathematical assertions and ensur-
ing the logical consistency of complex formal proofs. The formal
verification approach has proved to be fruitful: for instance, Com-
pCert [12], a C compiler written in Coq, was the only C compiler
in which an extensive study found no bugs [21].

Coq is an interactive proof system, where proofs are constructed
step-by-step using so-called tactics. When applied, tactics change
the state of the current proof. In particular, a tactic may apply an
already proven lemma, destruct the assumption to perform case
analysis, apply induction reasoning, andmuchmore. At any point of
the proof, the proof state shown to the user will contain information
about the current target statement and the assumptions under
which it has to be proven. When the statement is empty, the proof
is complete. If the proof contains an error or is not constructed
correctly, Coq’s system will tell that the proof is invalid and provide
comprehensive information on the origin of the problem.

Writing formal proofs is an exceptionally time-consuming task
and requires considerable experience from the programmer [16].
Various approaches for Coq generation are already present, both
machine-learning-based and not. CoqHammer [5] translates the
Coq’s logic into untyped first-order logic and searches for the proof.
The K-NN [3] approach, implemented as a back-end in Tactician [4],
predicts tactics based on what has been used in similar cases. Other
approaches are based on generative models [9, 17, 18, 20]. Recently,
Large LanguageModels (LLMs) have gained strong code-generation
capabilities [11]. Combined with tools for automatic code verifica-
tion, we may be able to produce high-quality, reliable code seam-
lessly.

Some developed models and tools for Coq generation may re-
quire significant setup and/or lack integration into the platform for
end users [9, 18, 20]. One other space of improvement for existing
non-deterministic proof search processes is to use the information
provided by the Coq’s system. Even for a human, writing Coq code
in a notepad instead of a proper Coq IDE would be harder than
in a typical programming language. Interactive stepping through
each tactic invocation and updated goal states provide the neces-
sary information during the process of writing proofs. Fortunately,
such information can be gathered automatically and used for proof
generation.

We propose CoqPilot, a VSCode plugin designed to deliver a
convenient generation of Coq code using LLMs and other methods.
We studied possible external enhancements to generating Coq code
with general-purpose models. The automatic checking of multiple
generated proof candidates was developed to pick and present only
the valid one to the user. We implemented premise selection for
better LLM prompting and created an LLM-guided mechanism that
attempts fixing failing proofs with the help of the Coq’s error mes-
sages. To evaluate the performance of the described solutions, we
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implemented a benchmarking framework for our extension. The
framework allows efficiently conducting experiments on Coq gener-
ating using different models. We experimented with this framework,
comparing several LLMs in Coq generation and evaluating if our
contributions boost their performance.

To allow automatic proof checking, we implemented a higher
level module, wrapping Coq Language Server1 and providing ab-
stractions such as the one to check if the given proof for the theorem
is valid in a particular environment. We used the particular Coq
language server implementation [8], and from now onwards, we
will refer to it as Coq-LSP.

The proposed CoqPilot’s architecture is modular regarding the
target language, requiringminimal code changes to adapt to another
language. CoqPilot integrates popular LLMs and allows users to
include tools like Tactician and CoqHammer in the proof genera-
tion pipeline. During implementation, we addressed the challenges
of using commercial LLMs, including managing token limits and
handling failures, by developing mechanisms for retries and clear
user feedback.

In Section 2, we describe the plugin and the challenges we over-
came during its development process. Section 3 discusses the cre-
ated benchmarking framework. In Section 4, we describe the experi-
ment we conducted and evaluate the features proposed in Section 2.
In Section 5, we cover related work, and in Section 6, we conclude
and glance at future work.

2 COQPILOT
In Coq, a goal represents a statement or proposition to be proven.
One typically starts the proof with the statement you want to es-
tablish as true. Then, one applies tactics and transforms the current
goal into one or more subgoals that are simpler or more manageable.
Special admit tactic allows skipping a subgoal to permit further
progress on the rest of the proof. If the proof contains admits, it is
considered incomplete. Each admit corresponds to a self-contained
goal with the hypotheses and the conclusion. Say we have a Coq file
with a number of unfinished proofs containing admits. CoqPilot
runs over the admits and tries to substitute themwith correct proofs.

We designed CoqPilot to serve as a tool for combining different
approaches to Coq generation. We implemented multiple ways to
fetch completion and infrastructure around Coq-LSP to check proof
candidates. We will refer to each way of fetching completion as
a service. Currently, the available services are OpenAI API, LLMs
running locally through LMStudio, JetBrains AI Platform, and com-
pletion via predefined automation tactics. Coq automation tools
such as Tactician [4] and CoqHammer [5], which are triggered
using special tactics, could be added to the pipeline through the
predefined tactics to unite generation capabilities with CoqPilot.

A particular setup for the completion request is denoted asmodel
parameters. For LLM-based services, model parameters include the
LLM name, the temperature, the prompt, the number of choices to
make (i.e., the number of completions the model should generate),
and other specifications. As LLMs are not deterministic, making
several attempts for each model is beneficial. This result is backed
up in Section 4. The setup of CoqPilot consists of a list of model
parameters for each of the chosen services.

1Language Server Protocol: https://microsoft.github.io/language-server-protocol/

While implementing the described approach, we encountered
several difficulties that affected the CoqPilot’s final architecture.
Different proof holes in Coq have independent states, and we intend
to generate completion for distinct holes in parallel. This requires
introducing safety of concurrency to our developed proof-checking
mechanisms since Coq-LSP cannot process parallel requests. Our
goal was to develop an infrastructure with interchangeable com-
ponents to allow users to easily add new services and prepare the
ground to interchange Coq with another ITP.

Accurate error handling presents other challenges. Services such
as OpenAI have various types of errors, which are supposed to be
handled differently. Some may be classified as parameter validation
errors and presented to the users; others may be service errors. One
of the critical failures, which mainly occurs during benchmarking,
is caused by exceeding token limits. Commercial LLM providers re-
strict their models’ usage rates. Local token counters are imprecise,
which makes it challenging to overcome these limitations com-
pletely. Therefore, correctly handling such errors becomes crucial
for presenting them to the user in an understandable manner. To
address this issue, we developed a custom error class hierarchy,
differentiating between configuration errors, generation failures,
and connection errors, and repacked specific service errors into
these appropriate classes. The implementation reports and logs er-
rors based on their types, supporting both user and benchmarking
modes.

CoqPilot offers many configurable parameters. They help the
user to set up both the plugin behavior and the experiments us-
ing the benchmark. We have implemented a parameter resolution
framework, which correctly handles errors, allowing a programmer
to write reliable resolvers for new services and parameters.

One of our contributions is enhancing the capabilities of general-
purpose LLMs in generating Coq code. Given a position to perform
completion, we can get the desired statement to prove and the
hypotheses under which it should hold. However, this is usually not
enough. Writing Coq proofs, a human often recalls other lemmas
and objects in the corresponding file/project. It may be challenging
for the model to deal with a theorem isolated from its context.
To address this problem, we perform premise selection2 for the
theorems within the same file and use them as a few-shot prompt to
an LLM. During few-shot prompting, several concrete examples of
how the task needs to be solved are provided. Few-shot prompting
gives the model a better understanding of the problem context and
structures the format of its output. Due to token limitations and the
model’s context window size, we can usually only take a subset of
theorems from the file. We choose optimal premises using metrics
such as distance from the generation target or similarity with other
theorem statements.

Also, we may extract helpful information from the Coq’s system
when proof candidates fail. In particular, we may get the error that
occurred and use it to try to fix the failing proof. Baldur [10] used
an idea of proof repairing to train a separate proof fixing model. A
similar to CoqPilot approach with general purpose LLMs may be
found in Copra [19]. When CoqPilot’s general pipeline does not
find the proof, we launch a multi-turn communication process with

2Retrieval of facts from some given knowledge base that can help the model and
advance the proof.
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an LLM. The number of completions to fetch per turn and the depth
𝑑 are predefined in settings by the user. We send the compilation
error and special prompt to the LLM and ask it to fix it. If the proof
is still not accepted by Coq afterward, we repeat the process, but at
a maximum of 𝑑 − 1 times.

3 COQPILOT BENCHMARK
We aimed to develop a benchmarking framework to evaluate the
current effectiveness of features implemented in CoqPilot and find
space for further improvements. Specifically, our research questions
included (i) how well general purpose LLMs can write Coq proofs,
(ii) to which extent does CoqPilot improve the LLM approach to
Coq generation, and (iii) which additional value CoqPilot, using
general-purpose LLMs, contributes to other Coq automation tools
such as CoqHammer and Tactician?

Implementing such a framework brought up several issues that
we solved. The main peculiarity of our benchmarking approach
is that we need to send a large number of tokens to each model.
In order to maintain reasonable performance, we aim to make
requests as fast as possible. However, there is usually a limitation
on the number of tokens that can be sent in a short time frame. To
overcome this, we considered the requests to each model in each
service to complete the given goal as a separate asynchronous task.
We heuristically determined the necessary waiting time for these
tasks to comply with the mentioned limitation.

The developed benchmark framework provides a number of
possibilities. First, it allows the gathering of information about the
internal state of CoqPilot, e.g., the theorems chosen for the context
and the number of used tokens. Second, thanks to the implemented
interfaces and the CoqPilot’s architecture, the developed frame-
work can be conveniently scaled for experimenting with other tools.
In this work, we experimented with Tactician and CoqHammer.
Moreover, it is possible to generate tailored reports based on the
results of the experiments that were conducted.

4 EVALUATION
To evaluate the performance of CoqPilot, we required a dataset
with a large number of human-written theorems and proofs. As
it was said before, CoqPilot depends on Coq-LSP, which is not
version agnostic and supports Coq versions starting from 8.15. Due
to this limitation, it was impossible to fully leverage the CoqGym
dataset [20] for our experiments as it contains projects requiring
older Coq versions. We have decided to limit ourselves to Coq 8.19
as the latest version available. We have chosen the IMM project3 for
our experiment. The project consists of a large number of proofs
and supports Coq 8.19. Moreover, the IMM is of particular interest
to our lab since it is developed there.

The data for the experiments was prepared as follows. We de-
cided to consider only the proofs of at most 20 tactics, as we initially
developed CoqPilot to help users generate subgoals or smaller lem-
mas. Theorems with proofs with such lengths amount to 83% of
proofs in the IMM project. Due to the amount of computing and
financial resources at our disposal, we have been unable to experi-
ment on the entire project. Therefore, we decided to use a relatively
small subset of 300 theorems. Moreover, we wanted to split the
3IMM: https://github.com/weakmemory/imm

dataset into three groups based on the length of proofs measured
in tactics. This was done to provide a clearer interpretation of the
results. The group sizes were chosen with respect to the distribu-
tion of proof lengths in the given project so that the results of the
experiments would be representative of the entire project. The final
group sizes are presented in Table 1.

During the main experiment, we evaluated how many theo-
rems from the constructed dataset could be proven using different
methods. We used Coq’s built-in first-order reasoning tactic with
automation firstorder auto with * as a baseline. We have
chosen GPT-4o, GPT-3.5, Anthropic Claude, and the open-sourced
LLaMA-2 13B Chat as models. The average number of theorems
sent to a model varied from the context window size, e.g., for GPT-
4o it was 52. Completion choices were equal to 12 for GPT-4o, 20 for
GPT-3.5 and LLaMA and 7 for Anthropic Claude. The multi-round
feature was disabled due to the exhaustive tokens consumption of
this feature. Along with the models listed above, we have tested
Tactician and CoqHammer with timeouts of 30, 60, and 90 seconds
for the three groups, respectively. If the proof was not found during
the specified timeout, we consider the theorem as unsolved. The
percentages in the table cells represent the proportion of theorems
in each group successfully solved using the specified method. More
details are provided in the experiment report.4

Table 1: Benchmarking results

Reference proof length ⩽ 4 5–8 9–20 Total
Group size 131 98 71 300

firstorder auto with * 11% 2% 1% 6%

OpenAI GPT-3.5 29% 17% 6% 20%
OpenAI GPT-4o 50% 26% 15% 34%
LLaMA-2 13B Chat 2% 0% 0% 0.5%
Anthropic Claude 21% 7% 7% 13%
All models together 57% 32% 18% 39%

Tactician 45% 23% 10% 29%
CoqHammer 23% 4% 0% 11%

All methods together 71% 45% 23% 51%

GPT-4o with CoqPilot’s approach can prove 34% theorems, as
seen in Table 1, with 51% of them being proved on the first at-
tempt. GPT-3.5 can only prove 30% on the first attempt, which
can be explained by the smaller context window size, resulting in
fewer chosen premises. Another noticeable result is that among
each group, the collectible effort of all models is stronger than any
individual one. It shows that the approach of CoqPilot to using
a sequence of different models altogether is promising. A combi-
nation of four models used through CoqPilot, CoqHammer, and
Tactician can prove 51% theorems. The user can invoke this power-
ful combination from CoqPilot with a single call. Figure 1 shows
methods corresponding to the sets of theorems they can prove.

Additionally, to examine how varying the number of premises
sent to the model impacts the results, we compared GPT-4o with a
different number of premises used in context on another 50 samples
4https://github.com/JetBrains-Research/coqpilot/tree/main/etc/docs/benchmark
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Figure 1: Venn diagram of the proven theorems

from the IMM project. Results show that the model can solve 0%
with 0 theorems as premises, 8% with 1 theorem, and 32% theorems
with the maximum possible number of premises.5 Another experi-
ment with GPT-4o and 50 theorems showed that the multi-round
mechanism with depth 2 and width 2 fixes 2 proofs in addition to
the ones that were already generated correctly.

The results demonstrate the benefits of using CoqPilot instead
of plain LLMs, showcase additional value to other Coq provers,
and highlight the usability of using multiple generation methods at
once via CoqPilot.

5 RELATEDWORK
Many Coq generation tools require a long setup and are hardly
integrated into the Coq development workflow. Proofster [1] is a
web interface for Coq proof synthesis and exploration. Tactician [4]
tries to generate Coq proofs after invocation by the special tactics.
Copra [19] is an agent for theorem proving, which repeatedly uses a
general-purpose LLM for completion. Our work serves similar pur-
poses with a focus on a couple of factors. We aim to develop a plugin
that incorporates well into a typical user’s workflow and provides
setup-free experience. We have built our tool around uniting many
approaches and seamlessly allowing users to try all available tools
for their problems. This pipeline also brings convenience in experi-
menting. Another focus is automatically boosting non-deterministic
Coq generation tools with the Coq’s proof checker. Along with that,
we implemented fetching completion from common LLM providers.
Tools such as Tactician can be used in CoqPilot as services via
predefined tactics without any additional effort from the user.

6 CONCLUSION
We presented CoqPilot, a VSCode plugin for Coq generation that
requires minimal setup. We allow users to seamlessly switch be-
tween different Coq generation methods and easily add new ones.
We contributed techniques that boost the performance of general-
purpose LLMs. Compared to one-shot plain GPT-4o invocation,
which can solve 0% theorems from the compiled dataset, GPT-4o
with CoqPilot’ modifications gets 34%. As shown in Table 1, the
joint effort of four models integrated into CoqPilot, achieves 39%.

5The maximum possible number of premises is calculated as the maximal number of
premises that fit into the model’s context window.

We contributed a highly configurable experiment framework for
testing methods implemented in CoqPilot for Coq generation.
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