
ПРОГРАММИРОВАНИЕ, 2021, No 2, с. 1–??

УДК 004.421.6

A Survey of Programming Language Memory Models
© 2021 г. Evgenii Moiseenko∗,‡, Anton Podkopaev†‡, Dmitrii Koznov∗

∗ Saint Petersburg State University
198504 Saint Petersburg, Petergof, Universitetskii ave. 28

† HSE University
194100 Saint Petersburg, Kantemirovskaya str. 3 b. 1

‡ JetBrains Research
197342 Saint Petersburg, Kantemirovskaya str. 2

E-mail: e.moiseenko@2012.spbu.ru, apodkopaev@hse.ru, d.koznov@spbu.ru
Поступила в редакцию 17.05.2021

Abstract

A memory model defines the semantics of
concurrent programs operating on a shared
memory. The most well-known and intuitive
memory model, sequential consistency, is too
strong for modern languages as it forbids many
outcomes observable on modern hardware as a
result of compiler and CPU optimizations. This
gave rise to so-called weak or relaxed memory
models. In recent years dozens of (weak) memory
models for programming languages were proposed
making different compromises with respect to
programmability and the optimization potential.
The goal of this paper is to survey and classify
these models as well as to provide practical
recommendations for language and compiler
designers regarding a choice of a memory model.

To achieve this goal we picked over 2000 research
items from Google Scholar with keywords “Relaxed
Memory Models”, “Weak Memory Models”, and
“Weak Memory Consistency”. Then, we narrowed
down this list to 40 papers having as a contribution
a programming language memory model. We divide
these models to six main classes and analyze their
properties and limitations. We conclude with a
discussion on how a choice of a memory model
is affected by desired features of a language and
suggest several possible directions for future researh
in the field of weak memory models.

1 Introduction

The main challenge in concurrent programming
is to establish proper synchronization between
threads executed in parallel. Usually it is done with
the help of synchronization primitives provided
by a programming language or libraries, for
example locks, barriers, channels, etc. Sometimes,
however, the usage of these primitives is impossible
or undesirable. Examples of such cases are the
implementation of synchronization primitives
themselves or lock-free data structures. In these
cases one has to resort to lower-level programming
and use shared variables. At this point things get
complicated.

Let us consider a concrete example. Here is a
simplified version of Dekker’s Lock [1]:

x := 1
r1 := y
if r1 = 0 {

//critical section
}

y := 1
r2 := x
if r2 = 0 {

//critical section
}

(Dekker’s Lock)
In this program, two threads compete to enter the

critical section. In order to indicate their intention,
the threads set variables x and y correspondingly.1

The one who manages to set the variable first and
1We distinguish shared variables (denoted as x, y, z) and

thread local registers (denoted as r1, r2, r3, etc.).

1

2

read the other variable before it is set enters the
critical section. The algorithm relies on the fact
that both threads cannot read value 0.2 Otherwise,
the two threads would have been able to enter the
critical section simultaneously, thus breaking the
correctness of the algorithm.

Indeed, running this program on a multi-core
system, one would expect to see one of the following
outcomes: [r1 = 0, r2 = 1], [r1 = 1, r2 = 0], or
[r1 = 1, r2 = 1]. These outcomes are sequential
consistent [2] meaning that they may be obtained
via a sequential execution of some interleaving of
the threads’ instructions.

However, not all behaviors which are observable
on real concurrent systems are sequentially
consistent. For example, if one ports Dekker’s Lock
from the pseudo code to the C language, compile
it with the GCC compiler, and run on a processor
from the x86/x64 family, they may observe non
sequentially consistent outcome [r1 = 0, r2 = 0].
Such outcomes are called weak.

Weak outcomes appear because of compiler
and CPU optimizations. For example, given the
Dekker’s Lock, the optimizer may observe that the
store to x and the load from y in the left thread
are independent instructions and thus they can
be reordered (this optimization is valid for single-
threaded programs). For the optimized program,
the outcome [r1 = 0, r2 = 0] is sequentially
consistent.

The exact set of allowed outcomes for a given
program is defined by a semantics of a concurrent
system, or a memory model. The memory model
permitting only sequentially consistent outcomes is
called sequential consistency (SC). Memory models
admitting weak behaviors are called weak memory
models.

Neither modern hardware, nor programming
languages guarantee sequential consistency since
this model forbids many important optimizations.
The main question then is how weak their memory
models should be, i.e., how big is the set of
allowed weak behaviors for a given program. A
stronger model allows less behaviors, thus giving
more guarantees to a programmer and simplifying
reasoning about programs, but a weaker model

2From here and through the rest of the paper we
assume that all variables are initialized with zeros, unless
we explicitly state otherwise

permits more optimizations, thus allowing a
compiler to produce more efficient code.

It turns out that this question is challenging
especially in the context of programming language
(PL) memory models. Thus over the last two
decades a plenty of memory models for various
languages have been proposed, e.g., for Java [3, 4],
C/C++ [5], LLVM [6], JavaScript [7], OCaml [3],
Haskell [8], etc. These models have different design
goals, trade-offs, and limitations. Moreover, the
research on weak memory models continues to
develop rapidly. According to our findings, in the
last decade at least 50 papers on the subject are
published each year.3 For those unfamiliar with all
the subtleties of weak memory models, it is hard to
navigate in this large zoo. Despite the long history
of the field and recent progress made, there is no
single source that summarizes the prior knowledge
and give a comparison of different memory models
of programming languages. The aim of this paper
is to close this gap.

We provide an overview of existing approaches to
programming languages’ memory models, discuss
their design choices, trade-offs, and limitations.
Besides that, we compare existing memory models
in terms of what optimizations opportunities and
what guarantees for reasoning they provide.

We hope that our work will be useful to
programming language researchers who want to
dive into the theory of weakly consistent memory
models, and also to system-level developers, who
are working on new programming languages,
compilers, or virtual machines, and have to choose
a memory model for their system.

The rest of the paper is organized as follows.
In §2 we overview related work. In §3 we describe
the methodology of our study. In §4 we introduce
common criteria of programming language
memory models, namely optimality of compilation
mappings, soundness of program transformations,
and provided reasoning guarantees. Next, in §5 we
explain how we compare memory models by these
criteria. In §6 we present a classification of memory
models based on their properties, and discuss
each class. Additionally, in appendix A we further
describe each particular memory model considered
in our study. In §7 we present a short guide on

3This claim is supported by our data acquired from
Google Scholar, see §3 for details

ПРОГРАММИРОВАНИЕ No 2 2021

3

the design of memory model for researchers and
system developers and, as an example of using the
guide, propose a memory model for the Kotlin4

language. Finally, §8 concludes and outlines
possible directions for future research in the field.

2 Related Work

Weak memory models can be partitioned into
two significantly different subclasses: models
for hardware architectures and models for
programming languages. The main difference
between them is that memory models for
programming languages are expected to support
compiler optimizations and may need to support
compilation to different architectures.

To this day, hardware weak memory models
are relatively well-studied and understood.
All major architectures have formally defined
memory models: x86 [9], IBM POWER [10–12]),
Arm [10, 12–15]) and RISC-V [14]. Among those,
x86 and POWER architectures have stable memory
models which did not change in the last years,
whereas the Arm memory model changed with
transition from Armv7 [12] to Armv8 [14] to
accommodate new instructions for shared memory
access. RISC-V5 was introduced in 2010 and
recently adopted a memory model [14] which is
almost the same as the Armv8 model.

All of the aforementioned models have
representations in the framework of declarative (or
axiomatic) memory models [12]. This framework
became a standard for defining weak memory
models, and it has tools for testing and
verification [12]. It is also used for defining
some programming language memory models:
C/C++ [5], JavaScript [7], Java [3] and many
others. However, the framework does not fully
solve the problem for programming languages
like C/C++ (even though it is currently used
for defining C/C++ memory models in their
standards [5]) which are oriented on zero cost
abstraction over architectures like Arm and
POWER and support for compiler optimizations
which may eliminate syntactic dependencies (for
example, constant folding).

4https://kotlinlang.org/
5https://riscv.org/

The problem is that the framework does not
allow one to properly distinguish real (semantic)
dependencies between instructions in programs
from fake ones. For example, there is a real
dependency between instructions in the snippet on
the left and a fake dependency between instructions
on the right:

r := x r := x
y := r y := r ∗ 0

For hardware models, it is not a problem since they
respect all syntactic dependencies, whereas, in the
case of a programming language memory model, if
we want to support a compiler optimization which
replaces r ∗ 0 with 0 in the code on the right,
we have to either distinguish them and respect
only real dependencies or ignore dependencies
completely (as the model of C/C++ does).
Ignoring of dependencies in combination with
support of load-buffering behavior of Arm and
POWER leads to notorious Out Of Thin-Air
(OOTA) executions [16] which break even basic
reasoning principles about programs (discussed in
more detail in §4.3.4).

Many memory models using significantly
different approaches and frameworks were proposed
to solve the problem without a performance
penalty: Java Memory Model (JMM) [3],
Promising semantics [17, 18], Weakestmo [19],
Modular Relaxed Dependencies (MRD) [20].
Others like RC11 [21] and the OCaml memory
model [22] decided to solve the problem and
provide more guarantees to a developer at the cost
of some slowdown [23].

Even though dozens of memory models with
different compromises and features were proposed
for programming languages, there are no detailed
surveys of them to the best of our knowledge. That
motivated our work on this paper.

3 Methodology

The main purpose of our work was to study
trade-offs in the design of a memory model for a
programming language. Stronger memory models
give more reasoning guarantees to programmers,
while weaker models provide more optimization
opportunities. We wanted to answer the following
research question.

ПРОГРАММИРОВАНИЕ No 2 2021

4

• How reasoning guarantees provided by
a memory model to an end-user of a
programming language narrow optimization
opportunities for a language implementation?

To answer this question, we consulted the
existing research studies in the field of programming
language memory models. Our goal was to identify
existing proposed memory models and classify
them.

In order to compare memory models we used
standard criteria developed in the literature.

C.1 An optimality of compilation scheme. A
language with a memory model supporting
optimal compilation schemes can be efficiently
implemented on modern hardware. Contrary,
the usage of nonoptimal compilation mappings
induces a slowdown during an execution of
a program, but can prevent an apperance
of certain weak behaviors permitted by the
hardware.

C.2 A soundness of common program
transformations. During the optimiztions
passes a compiler of a programming
language performs various source-to-source
transformations. The more transformations a
memory model of the language supports; the
more compiler optimizations are potentially
applicable to programs written in this
language.

C.3 Support of various reasoning guarantees, which
simplify the reasoning about the correctness
of concurrent programs written in a given
programming language.

In order to select memory models for our study,
we performed the following search procedure. On
the first stage, we manually selected 10 peer-
reviewed research papers [3, 5, 7, 17, 19–22, 24, 25]
whose main contribution was a proposal of
a new PL weak memory model, and which
were presented at highly ranked programming
language conferences, such as “Symposium on
Principles of Programming Languages” (POPL),
“Conference on Programming Language Design
and Implementation” (PLDI), and others. We then
took the list of keywords from these papers. From

this list of keywords we manually excluded those
that were either too broad or too narrow. As a
result we get three keyword phrases:

• Relaxed Memory Models;

• Weak Memory Models;

• Weak Memory Consistency.

On the second stage we used these phrases
as search queries for the Google Scholar6 search
engine. For each query we took first 1000 entries
from the search result.7 We got a list of 2493
research items in total. As a sanity check, we
verified that each of the 10 initially selected papers
was contained in the selection.

On the third stage we removed from the selection
duplicates and non-peer-reviewed papers. Also we
decided to remove technical reports, theses, non-
English publications, as well as short papers (up to
4 page long). After this stage 1077 research items
have left.

Next, on the fourth stage, we further filtered
the selection by consulting titles and abstracts of
the papers. We included only the papers which
are directly related to the topic of PL memory
models and whose main focus is memory models
themselves, as opposed to papers that only use
established results about PL memory models, or
papers related to adjacent topics. In particular, we
filtered out papers related to the following adjacent
topics:

• memory models of hardware, heterogeneous
systems, and distributed systems;

• semantics of transactions and persistency;

• verification techniques for weak memory.

As a result we got 105 research items.
Finally, on the fifth stage, we carefully examined

the remaining articles. In our final selection, we
have included only those whose contribution was
claimed to include:

• a new PL memory model;

• a study of an existing PL memory model;

• a refinement of an existing PL memory model.

In the end we got 40 research papers.
6https://scholar.google.com/
7All search queries were performed on 24 September 2020

ПРОГРАММИРОВАНИЕ No 2 2021

5

4 Criteria for Memory Models

In this section we will have a closer look on criteria
for programming language memory models, namely
optimality of compilation scheme C.1, soundness
of common program transformations C.2, and
provided reasoning guarantees C.3. The criteria
are bound to common programming primitives
provided by the shared memory abstraction. Thus,
we first introduce these programming primitives.

Programming Primitives A memory model
defines the semantics of the shared memory in the
presence of concurrently executing threads. The
shared memory consists of individual variables,
each having a unique address.8 Threads access
these variables by performing loads or stores.9

Most programming language memory models
distinguish non-atomic (sometimes also called
plain) and atomic variables. The former generally
should not be accessed concurrently from parallel
threads. Depending on the particular programming
language, concurrent accesses to non-atomic
variables can be either prohibited by a type-system
(e.g., Haskell [8, 26], Rust [27]), have undefined
behavior (e.g., C/C++ [5, 28]), or being defined
but have very weak semantics with almost no
guarantees on the order in which concurrent
threads can observe these accesses (e.g., Java [3]).

In turn, atomics are designed for concurrent
accesses. Some memory models further distinguish
several kinds of accesses to atomic variables. In
these models the accesses to shared memory are
annotated by so-called access modes. For example,
the C/C++ model (and a later revision of the
Java [4] model), distinguish three modes: relaxed
(opaque in Java terminology), acquire/release,
and sequentially consistent (volatile in Java).
They are denoted as rlx, acq, rel, and sc

correspondingly. Note that acq mode is only
applicable to load operations, while rel is only
applicable to store operations. Non-atomic accesses
are often considered to be the fourth access mode
na.

The access modes are ordered by the guarantees

8Throughout the rest of paper, we use terms memory
address and memory location interchangeably

9We use terms load/stores and reads/writes
interchangeably

they provide in exchange of optimization
opportunities, as the following diagram shows.

na rlx

rel

acq

sc@
@
@

@

@

On the one end of the spectrum are sequentially
consistent accesses. They guarantee to restore the
sequentially consistent semantics, if used properly
(see §4.3.1 for details). Non-atomic accesses, as
we have already discussed, give little guarantee.
Relaxed accesses also have very weak semantics,
usually they provide only the coherence property
(see §4.3.2 for details). Finally, in the middle there
are the acquire/release accesses. They are designed
to support the message passing idiom [29]. A thread
sends the message by performing a release write,
another thread expecting a message can perform an
acquire read. If the acquire read observes the release
write, the two threads synchronize their views on
shared memory.

Memory models also provide atomic read-modify-
write operations. These include compare-and-swap,
exchange, and variations of atomic increment, e.g.,
fetch-and-add, fetch-and-sub, etc. Compare-and-
swap (CAS) operation takes a shared variable,
expected and desired values. It reads from the
variable and compares the result with the expected
value. If the two are equal, it substitutes the value
of the variable to the desired value. In either
case, the value read from the variable is returned
as a result. Note that the above operations are
guaranteed to be performed atomically, no other
write to the shared variable can happen in-between
the read and write parts of CAS. Exchange
operation atomically replaces the value of the
variable and returns the previously held value.
Fetch-and-add and similar primitives perform the
operation (addition, subtraction, etc.) atomically
and unconditionally, returning the content of the
shared variable prior to modification.

Locks sometimes considered to be a part of
a memory model [3], as well as memory fence
operations [5], which are related to hardware fence
instructions (see §4.1 for details).

Finally, a memory model can treat the shared
memory not as a set of disjoint typed variables, but
rather as a raw byte sequence, and permit so-called

ПРОГРАММИРОВАНИЕ No 2 2021

6

mixed-size concurrent accesses [30]. For example, in
a mixed-size model it is allowed for an 8 byte load
instruction to read from two concurrent adjacent 4
byte stores.

4.1 Compilation Scheme

We next consider the first criterion C.1 for
programming language memory models—optimality
of the compilation scheme. A compilation scheme is
a mapping of programming language primitives into
instructions of particular hardware architecture. In
our setting we consider the primitives mentioned
in §4. The hardware architectures provide a similar
set of instructions which usually contain plain load
and stores,10 read-modify-write operations, and
also various memory fences.

A compilation scheme should be sound. In the
context of this paper it means that a set of outcomes
permitted by the hardware memory model for a
compiled program should be a subset of outcomes
permitted by the programming language model for
the original program.

Let us consider an example. The program SB
below is a variant of Dekker’s Lock from §1.

x := 1
r1 := y

y := 1
r2 := x

(SB)

Assume that the memory model of the
programming language is sequential consistency,
and it should be compiled to x86 hardware. If
one would compile all loads and stores to plain
load and store instructions of x86,11 the outcome
[r1 = 0, r2 = 0] would be allowed for the compiled
program (and it can actually be observed in
practice), since the memory model of x86 permits
this outcome. It can be obtained as a result of
store buffering optimization (hence the name of the
program SB). The store x := 1 can be buffered
and executed after all other instructions of the
program. Yet the outcome [r1 = 0, r2 = 0] is not
sequentially consistent. Therefore the proposed
compilation scheme, which maps all loads and
stores to the plain load and stores is unsound.
Unsoundness of a compilation scheme has dramatic

10Some architectures also provide various types of load and
stores matching the access modes annotations, e.g., lda —
load acquire, and stl — store release on Armv8.

11On x86 MOV instruction is used as both plain load from
memory and plain store to memory instructions.

consequences as it may break the correctness of a
program.

A sound compilation scheme for the sequential
consistency can compile a store as a plain store
followed by the mfence instruction [5, 9] as
demonstrated below:

x := 1
mfence
r1 := y

y := 1
mfence
r2 := x

(SB+MFENCE)

The mfence is a special memory fence instruction
of x86 architecture that flushes the store buffer of
the thread. For the program SB+MFENCE the
outcome [r1 = 0, r2 = 0] is forbidden by the x86
memory model.

Although the modified compilation scheme is
sound for SC, it is not optimal [31], in a sense
that it requires to use memory fence instructions,
which usually induce a performance penalty of
about 10-30% [32,33] (see appendix A.1 for details).
Unfortunately, it is not possible to have compilation
mapping to modern hardware architectures for
the SC model which is both sound and optimal.
This fact makes the SC memory model unsuitable
for high-performance programming languages and
serves as the stimulu for weakening of memory
models.

In this paper, when speaking about compilation
schemes, we will consider the following hardware
memory models: x86, Armv7, Armv8, and POWER,
for two main reasons. First, these hardware
architectures are the most widespread today.
Second, they have received a lot of attention from
the research community recently. As a result of
this effort, there were developed rigorous formal
specifications of these models [9, 11,14,15].

4.2 Program Transformations

The next criterion C.2 for memory models is
the soundness of program transformations, which
are source-to-source transformations of code which
applied during optimization passes of a compiler.
Sound transformations should preserve the

semantics of a program. In our context, similarly
to the soundness of compilation scheme, it means
that a set of outcomes of the transformed program
should be a subset of outcomes of the original one.

ПРОГРАММИРОВАНИЕ No 2 2021

7

Going back to the SB example, assume the
sequential consistency model again and consider a
transformation that reorders the store instruction
past the following load instructions in the left
thread, assuming the load and store operate on the
disjoint memory locations:

x := 1
r1 := y

y := 1
r2 := x

 r1 := y
x := 1

y := 1
r2 := x

For the transformed version of the program (on
the right), the outcome [r1 = 0, r2 = 0] is
sequentially consistent. Yet for the original one (on
the left) it is not. It means that the aforementioned
program transformation is unsound for SC.

We next present a list of various program
transformations considered in the literature on
weak memory models with a short description
of each one. Note that the list is far from being
complete regarding to transformations used in
optimizing compilers [34]. For example, it lacks
common loop optimizations, because the theory
of relaxed memory models still struggles with
problems of liveness properties [35], needed for
studying these transformations formally.

The transformations we consider can be split
into two subcategories: local and global. Local
transformations rewrite a small piece of code
within a single thread. Global transformations
may need to consider a whole program (or a large
part of it) spanning multiple threads in order to
perform a rewriting.

4.2.1 Local Transformations

Reordering of Independent Instructions
This transformation reorders two adjacent
independent memory accessing instructions
operating on different memory locations.
Depending on a particular pair of instructions
it can be further split into store/load, store/store,
load/load, and load/store reorderings.

x := v; r := y r := y; x := v store/load

x := v; y := u y := u; x := v store/store

r := x; s := y s := y; r := x load/load

r := x; y := v y := v; r := x load/store

Elimination of Redundant Access In a pair of
two adjacent instructions accessing same memory
location one of them can be eliminated if its effect

is subsumed by another. For example, two stores
writing to the same variable can be replaced by a
single store. Similarly to the reorderings, there exist
four kinds of eliminations depicted below.

x := v; r := x x := v; r := v store/load

r := x; s := x r := x; s := r load/load

r := x; x := r r := x load/store

x := v; x := u x := u store/store

Irrelevant Load Elimination Yet another
elimination transformation which removes a load
instruction if its result is never used.

r := x ε | r is never used

Speculative Load Introduction An inverse to
the previous transformation, the load introduction
inserts a load instruction in an arbitrary place of a
program.

ε r := x | r is never used

It can be used in combination with the load/load
elimination to move a load instruction out from one
branch of a conditional:

if (e) then {r := x} s := x; if (e) then {r := s}

| s is never used

Roach Motel Reordering This class of
reorderings moves memory access instructions into
synchronization blocks. For example, a store can
be moved past a lock acquisition. Intuitively, such
reorderings can only increase synchronization of
a program, which means that the transformed
program should exhibit less non-determinism and
have fewer outcomes.

Non-atomic accesses can be moved freely inside
a critical section, i.e., past a lock acquisition or
prior a lock release. Besides that, a store can be
moved after a lock, and load can be moved prior an
unlock. Similar rules apply to reorderings around
acquire and release accesses and fences, where an
acquire operation behaves similarly to lock, and
release operation similarly to unlock.

r :=na x; lock(l) lock(l); r :=na x

x :=o v; lock(l) lock(l); x :=o v

unlock(l); x :=na v x :=na v; unlock(l)

unlock(l); r :=o x r :=o x; unlock(l)

ПРОГРАММИРОВАНИЕ No 2 2021

8

Strengthening Similarly to the roach motel
reordering, the strengthening transformation
increases synchronization by replacing an access
mode of an operation by a stronger one. For
example, a non-atomic access can be replaced by a
sequentially consistent access:

r :=o x r :=o′ x | o @ o′

x :=o v x :=o′ v | o @ o′

Trace Preserving Transformations This wide
class contains all local transformations which do
not change a set of traces of a thread [36]. Trace
is a sequence of visible side-effects performed by
a thread (loads and stores to shared memory are
also viewed as side-effects). An example is the
classic constant folding [34,37] transformation. Here
is a particular example of the constant folding
application:

x := 0 + v x := v

Common Subexpression Elimination CSE
is yet another classic transformation [34] which
searches for instances of identical expressions
and removes redundant computations. Here is an
example:

r1 := x+ y; r2 := x+ y r1 := x+ y; r2 := r1

4.2.2 Global Transformations

Register Promotion If a compiler can
determine that a shared variable is accessed
only from a single thread, it can replace the
variable by a thread-local register.

x := v; r := x s := v; r := s

| x is not accessed from other threads

| s is a fresh register

Thread Inlining Sequentialization or thread
inlining is a transformation that merges two
threads into one. Quite surprisingly, this seemingly
harmless transformation is challenging for many
memory models.

P || Q P ; Q

Value Range Based Transformations
Transformations of this class can be applied
if a program satisfies some invariant deduced by
a global value-range analysis. For example, in
a program below the conditional statement can
be eliminated since a static analysis can deduce
invariant x ≥ 0.

r1 := x
if (r1 ≥ 0) then
y := 1

r2 := x
y := r2

r1 := x
y := 1

r2 := x
y := r2

4.3 Reasoning Guarantees

Finally, we discuss the third criterion C.3—
reasoning guarantees provided by memory models.

4.3.1 DRF Theorems

When reasoning about concurrent code, most
programmers assume sequentially consistent
memory model. Of course, it would be improper
to require from programmers to always keep in
mind all the intricacy of weak memory models,
as it only complicates an already difficult task
of establishing the correctness of concurrent
programs. The data-race freedom [3] property, DRF
for short, is designed to solve this problem. It
guarantees that well-synchronized programs have
only sequentially consistent outcomes. In other
words, it allows programmers to assume simpler
sequentially consistent model if they properly use
synchronization primitives.

Let us consider an example. Remember the SB
program from §4.1. As we demonstrated, under a
weak memory model this program can have the
weak outcome [r1 = 0, r2 = 0]. Nevertheless, one
can restore the SC semantics. One way to do this is
to use locks, as the following listing demonstrates:

lock(l)
x := 1
r1 := y
unlock(l)

lock(l)
y := 1
r2 := x
unlock(l)

(SB+LOCK)

A DRF compliant weak memory model
should guarantee that this program has only
sequentially consistent outcomes: [r1 = 0, r2 = 1],
[r1 = 1, r2 = 0], or [r1 = 1, r2 = 1].

Alternatively, if model provides sc access mode,
a programmer can annotate all memory accesses by
this mode to restore sequential consistency:

ПРОГРАММИРОВАНИЕ No 2 2021

9

x :=sc 1
r1 :=sc y

y :=sc 1
r2 :=sc x

(SB+SC)

More formally, DRF theorem for a weak model
M states that a program has only sequentially
consistent outcomes under M if it has no data-races
under sequentially consistent memory model (or all
accesses participating in such race are annotated
by sc).

The DRF theorem allows one to reduce reasoning
under a weak memory model to reasoning under the
sequential consistency. It is sufficient to prove that
a program has no data-races under the SC in order
to derive that this program has only SC outcomes.

The DRF theorem in the formulation given
above is sometimes called external data-race
freedom (eDRF), in order to distinguish it from
the internal data-race freedom (iDRF) [7, 38]. The
latter guarantees the SC semantics for a program
under weak model M only if the program has
no races under model M itself. Note that the
internal DRF gives a weaker guarantee compared to
the external DRF. It does not allow to completely
avoid the reasoning in term of the weak memory
model, because one has to first show that the
program is race-free under relaxed model. As we
will demonstrate later (see §6.3) the internal DRF
is a compromise for a certain class of memory
models which does not admit the external DRF.

4.3.2 Coherence

As we demonstrated, memory models of modern
hardware architectures do not provide the
sequentially consistent semantics. Yet they
usually provide a weaker property called
sequential consistency per location, also known as
coherence [12]. Following hardware models many
programming language level memory models also
provide this property.

The coherence property ensures that all stores
to each particular location can be totally ordered
and that the resulting order, the coherence order,
reflects the order in which stores propagate from
threads into the main memory. In particular,
coherence implies that programs consisting only
of accesses to a single memory location have
sequentially consistent semantics. For example,
consider the following program:

x := 1
r1 := x

x := 2
r2 := x

(COH)

The coherence prescribes memory model
to assign to this program only the
sequentially consistent outcomes: [r1 = 1, r2 = 2],
[r1 = 1, r2 = 1], or [r1 = 2, r2 = 2]. A non-coherent
model additionally may permit the outcome
[r1 = 2, r2 = 1]. For example, the Java memory
model actually allows this outcome [3].

4.3.3 Undefined Behavior

As we already briefly mentioned, some memory
models, e.g., C/C++, treat racy programs as
having undefined behavior [28] if at least one
of the accesses participating in a race is a non-
atomic access. In other words, for these programs
any outcome is possible. This property is also
sometimes called the catch-fire semantics.

The practical payoff of this approach is that it
enables the optimal compilation scheme for non-
atomic accesses and makes any sequentially valid
transformation applicable to them. Indeed, effects
of hardware and compiler optimizationz can only
be observed due to racy accesses from concurrent
threads. If such accesses are said to imply undefined
behavior and give no guarantee, effects of these
optimizations become indistinguishable.

4.3.4 Speculative Execution and
Out of Thin-Air Values

In order to introduce the last two properties, we
turn to an example:

r1 := x
y := 1

r2 := y
x := r2

(LB)

Assume a weak memory model admitting the
outcome [r1 = 1, r2 = 1] for this program. For
example, hardware memory models of Armv7,
Armv8, and POWER allow this outcome, and it
can even be actually observed on some Armv7
machines [39].

The outcome [r1 = 1, r2 = 1] cannot be obtained
by some in-order execution of the program.
To enable this kind of behaviors for programs,
a memory model has to utilize some form of
speculative execution [16, 40]. That is, during the
execution, the load r1 := x needs to be buffered

ПРОГРАММИРОВАНИЕ No 2 2021

10

and the store y := 1 needs to be executed out of
order (hence the name of the program LB — load
buffering).

However, unrestricted speculations can lead to
disruptive results. A store executed out of order can
turn into a self-fulfilling prophecy [16]. Consider the
following variation of the load buffering program.

r1 := x
y := r1

r2 := y
x := r2

(LB+data)

Here, a hypothetical abstract machine can
speculate to perform a store of value 1 into the
variable y from the left thread, then read this
value in the right thread, write it to the variable
x and then read it back in the left thread closing
the paradoxical causality cycle. The value 1 in the
example above appears out of thin-air and then
justifies itself leading to the confusing outcome
[r1 = 1, r2 = 1].

As we will see in §6, speculative execution is
required to enable certain program transformations.
However, speculations should be properly
constrained in order to prevent thin-air values. In
§6.4-§6.6 we will see how various memory models
deal with this problem.

5 Comparison

We performed a comparison of the memory models
found via the search procedure described in §3
by the criteria given in §4. A particular challenge
of this comparison was the fact that consulted
research papers often use different terminology,
have incomplete information about models, and
sometimes they even contradict each other. We
tried to approach these challenges by the following
means. First, we used consistent terminology to
denote the properties of the memory models, as
presented in §4. Second, we complemented the
information about each particular memory model
from different sources. If after this procedure some
particular property was still unclear, we left it as
unknown.

Based on our comparison of the memory models,
we identified six classes of them: sequentially
consistent models, models with total or partial
order on stores, program order preserving models,
syntactic dependency preserving models, semantic
dependency preserving models, and models with

out of thin-air values. The models from the same
class have the similar compilation mappings,
set of sound program transformations, and
provided reasoning guarantees. We first present
the result of our comparison on a per-class basis
(see table 1 and §6), and then give a more detailed
comparison with respect to individual models
(see table 2 and appendix A). Thus we have an
opportunity to first discuss common principles
behind programming language relaxed memory
models in general, and then dive deeper into the
details of each particular model.

In both table 1 and table 2 we order the memory
models by their strength. The strongest models are
located at the top rows of the tables, while the
weakest are at the bottom.

The columns of both tables correspond to the
properties of the memory models. In order to be
concise, we chose a binary classification for all
properties, i.e., the model is either said to satisfy a
given property or not. We also split properties into
several subgroups.

The first group is devoted to an optimality
of compilation mappings to target hardware
architectures. We classify a compilation scheme as
either optimal or not, in the following sense. We
chose the weakest possible access mode supported
by a model and consider the compilation scheme
for memory accesses annotated by this mode. For
memory models that treat racy non-atomic accesses
as undefined behavior, we consider the compilation
mapping for the weakest atomic access mode
that model provides. It is because the catch-fire
semantics for racy non-atomics trivially permits
the optimal compilation mapping (see §4.3.3).
We say that the compilation scheme is optimal
if accesses annotated by the chosen mode can be
compiled just as plain load and store instructions
of a given hardware architecture (i.e., without use
of memory fences or other auxiliary code).

The second group is dedicated to a soundness of
various program transformations. The classification
is also binary: a transformation is either sound
or unsound in a given memory model (in the
sense stated in §4.2). Again, to be concise, we
do not consider all combinations of program
transformations and memory access modes.
Instead, we consider the weakest possible accesses
which have fully defined semantics. We further

ПРОГРАММИРОВАНИЕ No 2 2021

11

Class

#
M

odels

Compilation Transformations Reasoning
Local Global

x8
6

P
O
W

E
R

A
rm

v
7

A
rm

v
8

Reordering Elimination IL
E

SL
I

R
M S T
P

C
SE

R
P

T
I

V
R

eD
R
F

C
O

H

no-U
B

In-O
rder

no-O
O

T
ASL SS LL LS SL SS LL LS

Sequential
Consistency 2 − − − − − − − − + + + + + + + + + − + + − + + + + +

Total/Partial
Store Order 2 + − − − + + − − + + + − + + − − + − − − − + + + + +

Program Order
Preserving 3 + − − − + + + − + + + − − − + + + ± + + − + + + + +

Syntax. Dep.
Preserving 2 + + + + + + + + + + + + + + + − − − − − − + + + − +

Semantic Dep.
Preserving 7 + + + + + + + + + + + ± + + + + + ± + − + + + + − +

Out of
Thin-Air 5 + + + + + + + + + + + − − − + + + − − + − − + + − −

Table 1.: Classes of memory models and their properties

split the transformations into global and local as
in §4.2.

The third group corresponds to reasoning
principles guaranteed by the model. In particular,
we check whether a model provides the external
DRF guarantee (see §4.3.1), whether it provides
the coherence property (see §4.3.2), whether it has
fully defined semantics for all types of accesses, i.e.,
the model does not treat racy non-atomic accesses
as undefined behavior (see §4.3.3), whether the
model utilizes in-order execution (as opposed to
speculative out-of-order executon), and whether it
forbids out of thin-air values (see §4.3.4).

In table 2 each row corresponds to a specific
memory model, denoted by its abbreviation, and
thus each cell describes a particular property of that
particular model. We marked a cell by + if the
corresponding model satisfies the given property,
and we marked it by − otherwise. If the property
was not studied in the research papers, we color the
cell in gray .

Each row of the table 1 corresponds to a class
of memory models. We marked a cell by + if the
majority of models in the given class satisfy the
property. If less than the majority of models satisfy
the property we mark the corresponding cell by ±.
Finally, if none of the models satisfy the property,
we mark the cell by −. Note that when counting the
majority, we omit the unknowns. Also, if a given
property was not studied in the context of some

class of models (i.e., in table 2 it is marked by
gray color for all models in this class) in table 1
we mark the corresponding cell by −. That is, in
table 1 symbols+ and± denote positive knowledge,
while − denotes negative knowledge or an absence
of information.

Besides tables 1 and 2 which describe properties
of the memory models, we also present table 3
that provides a list of features supported by the
models. In this table each row corresponds to a
particular memory model. Columns correspond
to supported features. In particular, we check
what types of access modes are supported: non-
atomic (NA), relaxed (RLX), release/acquire (RA),
sequentially-consistent (SC); what types of
fences are supported: release/acquire (F-RA)
and sequentially-consistent (F-SC); whether
the atomic read-modify-write operations are
supported (RMW), whether the model handles
locks explicitly (LK), and whether it supports
mixed-size accesses (MIX).

6 Analysis

In this section we discuss each identified class of
memory models in more detail. Based on the data
from table 1, we derive a relationship between
a compilation scheme optimality, a soundness
of transformations and reasoning guarantees. In
particular, we show how the support of some

ПРОГРАММИРОВАНИЕ No 2 2021

12

Class Model
Compilation Transformations Reasoning

Local Global

x8
6

P
O
W
E
R

A
rm

v7

A
rm

v8

Reordering Elimination IL
E

SL
I

R
M S T
P

C
SE
R
P

T
I

V
R

eD
R
F

C
O
H

no-U
B

In-O
rder

no-O
O
T
ASL SS LL LS SL SS LL LS

Sequential
Consistency

SC [8, 32,33,41,42] − − − − − − − − + + + + + + + + + − + + + + + + +

DRFx [43] − − − − − − − − + + + + + − + + + − + + + + − + +

Total/Partial
Store Order

BMM [44] + − − − + − − − + + + − + + − + − − + + + + +

RMMOA [45] + − − − + + − − + + + +

Program Order
Preserving

RC11 [21,46–48] + − − − + + + − + + + − − + + + − + + + + − + +

OCMM [22] + − − − + + + − + + + − + + + − + + +

JAM [4] + − − − + − + + + + +

Syntax. Dep.
Preserving

LKMM [49] + + + + + + + + − − + + − +

OHMM [50] + + + + + + + + + + + − + + − +

Semantic Dep.
Preserving

JMM [3, 36,51] + − + + + + + + + + − − + − − + − − + − + − +

PRM [17,18] + + + + + + + + + + + + + + + + + + + − + + + + − +

WMO [6, 19] + + + + + + + + + + + − + − + − − + + − − +

CSRA [25] + + − − + + + + + + + − + − + − − − + + − − +

WJES [24] − − − − − − + − + − +

MRD [20] + + + + + + + − +

GOS [52] + + − +

Out of
Thin-Air

C11 [5, 29,30,38,53–57] + + + + + + + + + + + − − + + + − + − + − − −

JSMM [7] + + + + − − + − −

RMC [58] + + + + − + + − −

RAO [59] − + − −

TSC [40] − + − −

Table 2.: Memory models and their properties

reasoning guarantees disables some program
transformations and requires a more heavyweight
compilation mapping to hardware.

We stat with a discussion of the class of
sequentially consistent models §6.1. Then we
proceed to the class of totally and partially store
ordered models §6.2. After that we switch to the
class of very weak models permitting thin-air
values §6.3. Then we describe various solutions
tackling the problem of thin-air values, namely
program order preserving models §6.4, syntactic
dependency preserving models §6.5, and semantic
dependency preserving models §6.6.

In §6.7 we also discuss the particular properties

of models, namely the coherence and the catch-
fire semantics, which are orthogonal to the main
partitioning into classes, but nonetheless they affect
the soundness of certain program transformations.

6.1 Sequential Consistency

Sequential Consistency (SC) is one of the most
intuitive models of concurrency. Under this model,
one can represent a state of the memory as a
simple mapping from memory locations to their
values. Then each outcome can be obtained by
sequential execution of some interleaving of threads’
instructions.

ПРОГРАММИРОВАНИЕ No 2 2021

13

Class Model Features

N
A

R
LX
R
A SC

F
-R

A
F
-SC

R
M
W

LK
M
IX

Sequential
Consistency

EtE-SC [32,41] − − − + − − − − −
VbD [33,42] + − − + − − + + −
SC-Hs [8] + − − + − − + − −
DRFx [43] + − − + − − − − −

Total/Partial
Store Order

BMM [44] + − − + − − − + −
RMMOA [45] + − − − − − − + −

Program Order
Preserving

RC11 [21] + + + + + + + − −
ORC11 [48] + + + − + − + − −
RAR [47] − + + − − − + − −
CRC [46] + − + − − + + − −
OCMM [22] + − − + − − + − −
JAM [4] + + + + + + + − −

Syntax. Dep.
Preserving

LKMM [49] − + + − + + + − −
OHMM [50] + − − + − − − + −

Semantic Dep.
Preserving

JMM [3] + − − + − − + + −
PRM [17] + + + − + + + + −
WMO [19] + + + + + + + − −
CSRA [25] + + + − − − + + −
WJES [24] − + − − − − + + −
MRD [20] − + − − − − − + −
GOS [52] + − − − − − − + −

Out of
Thin-Air

C11 [5] + + + + + + + + +
JSMM [7] + − − + − − + + +
RMC [58] − + + + + + + − −
RAO [59] + − − + − − − − −
TSC [40] + − − + − − − + −

Table 3.: Features supported by memory models

SC renders many common transformations
unsound, including all kinds of instruction
reorderings and common subexpression
elimination [32, 36]. The fact that instruction
reorderings are forbidden makes the model
expensive to implement on modern hardware
since even the relatively strong hardware model of
x86 performs store/load reordering. Therefore, in
order to preserve the sequential consistency during
compilation, a compiler need to emit heavyweight
memory fences between store and load instructions,
which makes the compilation mappings far from
being optimal.

In terms of reasoning guarantees, however, SC
is quite a pleasant model. It gives the external
DRF and the coherence properties for free, because

it assigns to programs only sequentially consistent
outcomes by definition.

The conceptual simplicity of SC have inspired
many researchers to adopt it and to try to mitigate
the induced performance penalty. The recurring
idea was to somehow separate thread-local and
shared mutable memory. Accesses to thread-
local memory can be compiled without memory
fences and are subject to a wider range of local
transformations. To safely distinguish between two
types of memory researches proposed to utilize a
type-system [8], static [41] or dynamic [42] analysis,
a hardware support [41,43] or some combination of
the above.

Despite these efforts SC still induces considerable
slowdown, especially on weak hardware. For
instance, on Armv8 machines the slowdown can
be up to 70% [42] (see appendix A.1 for details).
Moreover, while these optimization typically reduce
penalties on thread-local accesses (a common case),
they are likely to have a lesser impact on specific
applications which heavily utilize concurrency, for
example, lock-free data structures. Finally, modern
compilers usually require a significant amount of
engineering work and rewrite in order to preserve
SC [32, 42].

6.2 Total or Partial Store Order

The next class of PL memory models we consider
was inspired by the total store order (TSO) and
the partial store order (PSO) models. TSO and
PSO are memory models of x86 [9] and SPARC [60]
hardware correspondingly. In these models threads
are equipped with store buffers. All store operations
go to these buffers before they propagate into the
main memory.

Models of this class can be compiled down to
the x86 hardware without any performance penalty,
since x86 implements TSO model itself. However,
on weaker hardware like POWER a compiler need to
emit essentially as many fences as to enforce SC [61].

This class permits more program transformations
than SC. Store buffers enable store/load reorderings
in case of TSO, and additionally store/store
reorderings in case of PSO. The TSO and PSO
models are weaker than the SC, but they are still
relatively strong — the external DRF and the
coherence properties hold.

ПРОГРАММИРОВАНИЕ No 2 2021

14

Therefore these models do not have any
significant benefits in terms of the reasoning
guarantees compared to SC, but induce a similar
performance penalty on architectures weaker
than x86. Hence a choice of TSO and PSO as
a programming language level memory model is
reasonable only if the language targets the x86
hardware solely.

6.3 Out of Thin-Air Values

We next move on to the other end of a memory
models’ spectrum. We consider the class uniting
the weakest models from our list. These models
enable efficient compilation mappings and almost
all reasonable program transformations, but at a
cost of introducing thin-air values (§4.3.4).

Let us revisit the load buffering program:

r1 := x
y := 1

r2 := y
x := r2

(LB)

y := 1
r1 := x

r2 := y
x := r2

(LBtr)
Program on the right LBtr can be obtained from

the program on the left LB via the load/store
reordering. The outcome [r1 = 1, r2 = 1] is valid for
LBtr. Therefore under a memory model where the
load/store reordering is a sound transformation,
this outcome should also be valid for LB. As
we demonstrated in §4.3.4 in order to allow
this outcome, memory models needs to utilize
speculative execution.

We also demonstrated that unrestricted
speculations can lead to so called thin-air
values which break fundamental reasoning
principles [16, 38]. In the presence of thin-air
values type safety and security guarantees can be
violated, and compositional reasoning is impossible.
Moreover, they are also incompatible with the
external DRF property. To see this consider yet
another variation of the load buffering program:

r1 := x
if (r1) {
y := 1
}

r2 := y
if (r2) {
x := 1
}

(LB+ctrl)

For a memory model admitting thin-air values
(as e.g., C11 [5]), the outcome [r1 = 1, r2 = 1] is
valid (a justification is the same as for the LB+data
example from §4.3.4). Not only this outcome is
completely unintuitive, but it also contradicts the

external DRF guarantee. Indeed, under SC the
program above has a single valid execution with the
outcome [r1 = 0, r2 = 0] containing no data-races,
thus under a DRF compliant model it should also
have this sole outcome.

The counter-intuitive behavior of OOTA models,
together with the fact that they break important
reasoning principles, has lead over the time to
the consensus in the research community that
these models are not suited well for the role of
programming languages memory models [16, 38].
A lot of effort has been put to forbid problematic
thin-air outcomes, while still keep the compilation
scheme as efficient as possible and enable as many
transformations as possible. In the rest of this
section we describe various proposals tackling the
thin-air problem.

6.4 Program Order Preserving

The most straightforward way to forbid thin-air
values was proposed by Boehm and Demsky [16]
The idea is to simply prohibit any kind of
speculative execution, which can be achieved
by forbidding load/store reorderings altogether.
This fix not only restores the external DRF and
other reasoning guarantees [21], but also leads
to a much simpler model. The abstract machine
implementing the memory model does not need to
resort to speculative execution and can perform
threads’ instructions in-order. A memory storage
can be implemented as a monotonically growing
history of messages, with each thread having its
own view on a frontier of this history [22,47].

Lahav et al. [21] formalized this approach to
the thin-air problem and studied it extensively.
The authors were shown that many program
transformations are still sound in this setting, with
the obvious exception of the load/store reordering
itself (see table 1 for details).

The compilation mapping to x86 remain efficient,
since this architecture already guarantee to preserve
order between loads and subsequent stores.
However, weaker architectures (Arm, POWER) do
not guarantee that, and thus additional measures
are required. Boehm and Demsky [16] proposed to
compile every relaxed load as a plain load followed
by a spurious conditional jump instruction, which
introduces a dependency between the load and

ПРОГРАММИРОВАНИЕ No 2 2021

15

subsequent stores. Arm and POWER hardware
preserves this dependency, and thus it also retains
the load/store ordering. Ou and Demsky [23]
studied a performance penalty required to preserve
load/store ordering between relaxed atomics
only on the Armv8 hardware and reported a
negligible overhead of 0% on average and 6.3% in
maximum on a set of benchmarks implementing
various concurrent data-structures, e.g., locks,
stacks, queues, deques, maps, etc. (see A.3 for
details). Note that the overhead is expected to be
greater if the compilation scheme is required to
preserve the ordering between non-atomic accesses
as well.

6.5 Syntactic Dependencies Preserving

The alternative conceptually simple solution to
thin-air values problem is to preserve syntactic
dependencies [16, 49]. Under this approach
reordering of independent load/store pairs is
allowed. However, reordering is forbidden if a store
depends on the value read by a load either because
this value was used to compute the value written
by the store (data dependency), or it was used to
compute the memory address of the store (address
dependency), or else a control-flow path lead to
the store was dependent on this value (control
dependency). For example, giving the program
LB+data the store y := r1 depends on the load
x := r1 since it writes the value read by the load.

Note that these kind of dependencies are
computed following the syntax of a program (hence
the name) as opposed to semantic dependencies.
For example, giving the modified version of the
LB+data program below, the store to y in the
left thread is still considered to have syntactic
dependency on the previous load.

r1 := x
y := 1 + 0 ∗ r1

r2 := y
x := r2

(LB+fakedata)

Here the syntactic dependency can be eliminated
by the constant folding transformation — the
expression 1 + 0 ∗ r1 can be reduced to value 1.
Under a syntactic dependency preserving memory
model a compiler, however, is prohibited to perform
this optimization. Indeed, once a dependency is
removed, nothing prevents to reorder a store before

a preceding load. Even if a compiler itself does
not perform this reordering, after the compilation
hardware can do this during the execution.

This subtlety reveals the main drawback of
syntactic dependency tracking models — trace
preserving transformations (e.g., constant folding)
are unsound in these models. Constant folding is
one of the classic optimizations that any compiler
might want to apply, and the fact that it is
unsound makes an adoption of this class of models
problematic. Note that hardware memory models
apply a similar approach and usually have a
notion of syntactic dependencies between memory
operations [11, 12, 14]. Yet in this setting the
unsoundness of trace preserving transformations is
not a problem, since hardware does not perform
such complex optimizations.

Ou and Demsky [23] examined the performance
penalty of a syntactic dependency tracking
compiler. They adjusted compiler optimization
passes to preserve dependencies between non-
atomic and relaxed accesses. They evaluated
the dependency preserving version of the LLVM
compiler infrastructure on Armv8 hardware using
SPEC CPU2006 benchmarks and reported a
moderate slowdown of 3.1% on average and 17.6%
in maximum. (see A.4 for details).

6.6 Semantic Dependencies Preserving

The last approach to tackle thin-air problem is to
construct a notion of semantic dependencies, which
would precisely characterize what load/store pairs
are independent and rule out fake dependencies
like the one in LB+fakedata. A practical payoff
of this approach is that it does not require
significant modifications to existing compilers or
hardware, and thus should not impose performance
penalties. The ultimate goal is to enable the
optimal compilation mappings, preserve most
of the existing compiler optimizations, and at
the same time maintain the important reasoning
guarantees like external DRF.

It turns out that this task is quite challenging and
to this date there is no strong consensus on how to
achieve it. In order to give a satisfactory definition
of semantic dependencies researchers had to resort
to conceptually complex memory models [17,19,20,
24, 25, 52]. The main challenge in this line of work

ПРОГРАММИРОВАНИЕ No 2 2021

16

was to formally prove that these complex models
indeed satisfy all the desired properties.

Currently the most complete approach of this
class is the Promising semantics [17,18]. This model
was proven to enable the optimal compilation
schemes [62], and permit most local and global
program transformations (with a notable exception
of the thread inlining), while still preserving the
external DRF guarantee.

6.7 Secondary Classes

We also identified an alternative division of
memory models into groups, which correspond to
particular properties of a memory model, namely
the coherence and the catch-fire semantics which
treats racy programs as erroneous. We demonstrate
how the presence of these properties affects the
compilation mappings and the soundness of certain
program transformations.

6.7.1 Coherent Models

The coherence property (i.e., SC-per-location,
§4.3.2) has a subtle effect on the common
subexpression elimination optimization (CSE),
which was was first observed in the context of
an early version of the Java memory model [63].
To see the problem, consider the program below
(on the left) and the transformed version of this
program after application of CSE (on the right).
Note that the optimization has replaced the second
access to variable x by a read from a register.

r1 := x
r2 := y
r3 := x

y := 1
r1 := x
r2 := y
r3 := r1

y := 1

Now assume that variables x and y point to the
same memory location. Under this assumption the
outcome [r1 = 0, r2 = 1, r3 = 0] is forbidden
for a memory model respecting coherence. Indeed,
the coherence guarantees sequential consistency per
location, which means that for programs consisting
of accesses to a single memory location (as the
one above in the presence of aliasing) only the
sequentially consistent outcomes are allowed. The
outcome [r1 = 0, r2 = 1, r3 = 0] cannot be
obtained as the interleaving of instructions, and
thus it should be forbidden. However, this outcome
is allowed for the optimized version of the program.

Note that the compiler still can apply CSE
to the program above, but only if it is able to
prove that variables x and y point to disjoint
memory locations, which can be achieved by alias
analysis [64]. In fact, in this case CSE can be
seen as a combination of instruction reordering and
elimination transformations.

Therefore, the coherence property in general is
not compatible with the common subexpression
elimination. As for compilation schemes, coherence
does not require any changes here and thus does
not impose any performance penalty. It is because
hardware models already guarantee coherence [9,
11,12,21].

6.7.2 Catch-Fire Models

A catch-fire semantics that treats racy non-
atomic accesses as undefined behavior also affects
soundness of a program transformations. As we
already briefly discussed, it enables the optimal
compilation mapping for non-atomic accesses
and makes sequentially valid transformations
applicable to them, but its impact is not limited
to this observation. A catch-fire semantics also has
an interesting interplay with the speculative load
introduction.

Consider the following example:

r := x
if (r) {
s := y
}

y := 1

r1 := x
t := y
if (r) {
s := t
}

y := 1

As we mentioned in §4.2, the speculative load
introduction can be used in combination with the
load/load elimination to move a load instruction
out of one branch of a conditional. In more detail,
giving the example above, the speculative load
introduction can be applied to add the load t := y
before the if statement, and then the load/load
elimination can be used to replace the second load
with an assignment.

The subtle point here is that while the left
program is race free even under SC, the right
program is racy under SC semantics, because
of the race between load and store to y. This
fact implies that if all accesses in the programs
above are non-atomic, then a catch-fire semantics
should treat the right program as having undefined

ПРОГРАММИРОВАНИЕ No 2 2021

17

behavior. In other words, the right program
allows any outcome, while the left program allows
only the outcome [r = 0]. Soundness of program
transformation requires a set of outcomes of a
transformed program to be a subset of outcomes
of the original program. This condition is clearly
violated in our example.

Put simply, speculative load introduction in
general is unsound in catch-fire memory models,
because it can bring data-races into otherwise
race-free programs. Since catch-fire semantics
is sensitive to the presence of data-races it is
incompatible with this transformation.

Note that this problem cannot be mitigated
by forbidding only non-atomic load introduction
and allowing atomic load introduction. Indeed, an
introduced atomic load access still can race with
some non-atomic load or store located elsewhere in
a program.

7 Guide for Choosing a Model

In this section we provide a summary of our findings
and present a short guide for researchers and
system-level developers on how to choose a memory
model based on design principles of a programming
language.

A language that seeks to provide a clear
semantics and high-level programming abstractions
at the cost of some performance losses most
definitely should adhere to simple memory models
like sequential consistency.

Programming languages focusing on efficiency
of compiled code, for example, C/C++, have to
resort to weakest models admitting the optimal
compilation mapping and wide range of program
transformations. For these languages it would be
natural to pick semantic dependency preserving
models. However, these models are the most
complicated ones which makes reasoning about
programs’ correctness under them challenging [65].

In the middle between two extremes are program
order preserving models. Those are a reasonable
choice for programming languages which may
afford a moderate performance overhead in
exchange of a simpler and more predictable
program behavior [23].

A nice property of program order preserving
models, compared to a syntax or semantic

dependency preserving models, is that they do
not utilize any form of speculative execution.
This further simplifies the reasoning about the
correctness of concurrent programs and better
reflects the expectations of programmers. The price
for this simplicity is that these models require
sub-optimal compilation mappings to the Arm
and POWER hardware. In contrast, syntactic
dependency preserving models can be efficiently
implemented on Arm and POWER hardware, but
these models do not support trace preserving
transformations, including constant folding, and
utilize speculative execution, leading to a more
complicated semantics.

For languages adopting stronger models which
require non-optimal compilation mappings and
forbid certain program transformations there are
some general optimization techniques and design
decisions which may partly mitigate the induced
performance penalties.

A type system can serve as a great help in this
task. Languages like Haskell, OCaml, Rust that
statically distinguish and isolate memory regions
which can be accessed and modified concurrently
have a great advantage. These languages can
identify precisely immutable and thread local
variables and compile accesses to them without
insertion of fences. Moreover, memory accesses
to local variables are subject to a wide range of
program transformations proven to be sound for
single threaded programs.

Languages like Java which cannot utilize the type
system to fully prevent racy accesses to non-atomic
variables because of the backward compatibility,
still can approximate a set of thread local variables
using a conservative static escape analysis [66] or
various dynamic techniques [42], and then apply
similar optimizations to them.

Functional programming languages encourage
programmers to use immutable data whenever
possible. This style of programming minimizes the
use shared memory and mitigates the performance
impact of a strong memory model [8].

Finally, if the language tolerates undefined
behavior, as C/C++ does, an alternative to a
complex semantic dependency preserving model
could be a program order preserving model
which treats data races on non-atomic accesses as
undefined behavior [16, 23]. In this case a compiler

2 ПРОГРАММИРОВАНИЕ No 2 2021

18

can use optimal compilation mappings and apply
a wide range of transformations to non-atomics
and at the same time have a simpler semantics for
atomics.

Choosing a Memory Model for Kotlin As
an example, consider Kotlin,12 a general-purpose
programming language, which does not have a
standardized memory model yet. Currently, Kotlin
can be compiled to Java bytecode, to JavaScript
code, or to native code via LLVM (for Linux,
Windows, macOS, iOS, and other platforms).

The language is not oriented to system-level
programming, that is, it does not have to provide
zero cost abstraction over target hardware for
shared memory accesses. Therefore a memory
model which either preserves program order or
syntax dependencies is suitable for Kotlin. Both
approaches have moderate performance penalties.
However, program order preservation works better
for languages tolerating undefined behavior for
data races involving non-atomic accesses (see [23])
since it allows to compile non-atomics as plain
accesses to architectures like Arm and POWER
which do not guarantee to preserve the program
order. Even though having undefined behavior
for Kotlin in general might be undesirable, it
is practically unavoidable because data races
on non-atomics have undefined behavior under
LLVM [6].

Among the two classes of models the most
well-studied and feature-rich model is RC11 [21],
which adds program order preservation to the C11
memory model [5]. RC11 supports a superset of
access types presented in JMM [3] and its extension
JAM [4], and it is very close to the memory models
of JavaScript [7] and LLVM [6] since both of them
were inspired by C11.

That makes RC11 a good starting point for
development of a memory model for Kotlin.

8 Conclusion and Future Work

In this work we surveyed memory models proposed
for various programming language. We compared
them based on the common set of criteria developed
in the literature and identified six main classes of

12https://kotlinlang.org/

memory models. We also presented a short guide
on how to choose a suitable memory model based
on the design of a programming language. We hope
our work will be helpful for programming language
researches and implementors, and will serve as a
gentle introduction to the complex topic of weak
memory models. Based on our analysis, we can
suggest several possible directions for future work
in the field.

The problems of the optimality of compilation
schemes and the soundness of local program
transformations are relatively well-studied. More
recent memory models, RC11 [21], OCaml MM [22],
Promising [17, 18], and Weakestmo [19], support
a wide range of local transformations and have
clear trade-offs in terms of compilation mappings.
An exception is local transformations involving
loops and recursion, their soundness was not
studied formally. Global transformations also
received a little attention so far, with few notable
exceptions [18, 25]. The exact impact of these
transformations on the design of memory models
is yet to be discovered.

Whole program data-race freedom guarantees
were also studied extensively [3, 17, 21, 38]. In
contrast, the local data-race freedom [22] is a
relatively new concept. We expect it as well as
local reasoning guarantees in general [46, 67, 68] to
receive more attention in the near future.

Mixed size accesses [30], which are already used
in the JavaScript memory model [7] and real-
world applications, for example, in the Linux kernel
codebase [30], are understudied even for hardware.
Proper understanding of them is an important
direction for the community.

Semantic dependency preserving models are
still an active area of research [17–20, 67, 68]. We
expect those to be a subject to further refinement.
An interesting line of work here would be the
development of new reasoning principles beyond
data-race freedom, which could improve the meta-
theory of these models and simplify reasoning
about the correctness of programs.

Finally, comprehensive quantitative studies of the
performance penalties induced by memory models
are quite valuable. Although there is some work in
this direction, [8,22,23,33,41,42], the full picture is
still unclear.

ПРОГРАММИРОВАНИЕ No 2 2021

19

Acknowledgments

We thank Ori Lahav for his comments on the draft
of this paper.

The reported study was funded by RFBR, project
number 20-31-90088.

References

1. E. W. Dijkstra, “Cooperating sequential
processes,” in The origin of concurrent
programming, pp. 65–138, Springer, 1968.

2. L. Lamport, “How to make a multiprocessor
computer that correctly executes multiprocess
programs,” IEEE Trans. Computers, vol. 28,
no. 9, pp. 690–691, 1979.

3. J. Manson, W. Pugh, and S. V. Adve, “The Java
memory model,” in POPL 2005, pp. 378–391,
ACM, 2005.

4. J. Bender and J. Palsberg, “A formalization of
Java’s concurrent access modes,” Proceedings of
the ACM on Programming Languages, vol. 3,
no. OOPSLA, pp. 1–28, 2019.

5. M. Batty, S. Owens, S. Sarkar, P. Sewell, and
T. Weber, “Mathematizing C++ concurrency,”
in POPL 2011, pp. 55–66, ACM, 2011.

6. S. Chakraborty and V. Vafeiadis, “Formalizing
the concurrency semantics of an LLVM
fragment,” in 2017 IEEE/ACM International
Symposium on Code Generation and
Optimization (CGO), pp. 100–110, IEEE,
2017.

7. C. Watt, C. Pulte, A. Podkopaev, G. Barbier,
S. Dolan, S. Flur, J. Pichon-Pharabod,
and S.-y. Guo, “Repairing and mechanising
the JavaScript relaxed memory model,” in
Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design
and Implementation, pp. 346–361, 2020.

8. M. Vollmer, R. G. Scott, M. Musuvathi,
and R. R. Newton, “SC-Haskell: Sequential
consistency in languages that minimize mutable
shared heap,” ACM SIGPLAN Notices, vol. 52,
no. 8, pp. 283–298, 2017.

9. P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli,
and M. O. Myreen, “x86-TSO: A rigorous
and usable programmer’s model for x86
multiprocessors,” Commun. ACM, vol. 53,
no. 7, pp. 89–97, 2010.

10. J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen,
S. Sarkar, P. Sewell, and F. Z. Nardelli, “The
semantics of Power and ARM multiprocessor
machine code,” in Proceedings of the 4th
workshop on Declarative aspects of multicore
programming, pp. 13–24, 2009.

11. S. Sarkar, P. Sewell, J. Alglave, L. Maranget,
and D. Williams, “Understanding POWER
multiprocessors,” in PLDI 2011, pp. 175–186,
ACM, 2011.

12. J. Alglave, L. Maranget, and M. Tautschnig,
“Herding cats: Modelling, simulation, testing,
and data mining for weak memory,” ACM
Trans. Program. Lang. Syst., vol. 36, no. 2,
pp. 7:1–7:74, 2014.

13. N. Chong and S. Ishtiaq, “Reasoning
about the ARM weakly consistent memory
model,” in Proceedings of the 2008 ACM
SIGPLAN workshop on Memory systems
performance and correctness: held in
conjunction with the Thirteenth International
Conference on Architectural Support for
Programming Languages and Operating
Systems (ASPLOS’08), pp. 16–19, 2008.

14. C. Pulte, S. Flur, W. Deacon, J. French,
S. Sarkar, and P. Sewell, “Simplifying ARM
concurrency: multicopy-atomic axiomatic and
operational models for ARMv8,” Proceedings of
the ACM on Programming Languages, vol. 2,
no. POPL, pp. 1–29, 2018.

15. S. Flur, K. E. Gray, C. Pulte, S. Sarkar,
A. Sezgin, L. Maranget, W. Deacon, and
P. Sewell, “Modelling the ARMv8 architecture,
operationally: Concurrency and ISA,” in POPL
2016, pp. 608–621, ACM, 2016.

16. H.-J. Boehm and B. Demsky, “Outlawing
ghosts: Avoiding out-of-thin-air results,” in
MSPC 2014, pp. 7:1–7:6, ACM, 2014.

ПРОГРАММИРОВАНИЕ No 2 2021 2∗

20

17. J. Kang, C.-K. Hur, O. Lahav, V. Vafeiadis, and
D. Dreyer, “A promising semantics for relaxed-
memory concurrency,” in POPL 2017, ACM,
2017.

18. S.-H. Lee, M. Cho, A. Podkopaev,
S. Chakraborty, C.-K. Hur, O. Lahav,
and V. Vafeiadis, “Promising 2.0: global
optimizations in relaxed memory concurrency,”
in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design
and Implementation, pp. 362–376, 2020.

19. S. Chakraborty and V. Vafeiadis, “Grounding
thin-air reads with event structures,”
Proceedings of the ACM on Programming
Languages, vol. 3, no. POPL, pp. 1–28, 2019.

20. M. Paviotti, S. Cooksey, A. Paradis, D. Wright,
S. Owens, and M. Batty, “Modular relaxed
dependencies in weak memory concurrency,”
in European Symposium on Programming,
pp. 599–625, Springer, Cham, 2020.

21. O. Lahav, V. Vafeiadis, J. Kang, C.-K. Hur, and
D. Dreyer, “Repairing sequential consistency in
C/C++11,” in PLDI 2017, ACM, 2017.

22. S. Dolan, K. Sivaramakrishnan, and
A. Madhavapeddy, “Bounding data races
in space and time,” ACM SIGPLAN Notices,
vol. 53, no. 4, pp. 242–255, 2018.

23. P. Ou and B. Demsky, “Towards understanding
the costs of avoiding out-of-thin-air results,”
Proceedings of the ACM on Programming
Languages, vol. 2, no. OOPSLA, pp. 1–29, 2018.

24. A. Jeffrey and J. Riely, “On thin air reads:
Towards an event structures model of relaxed
memory,” in LICS 2016, IEEE, 2016.

25. J. Pichon-Pharabod and P. Sewell, “A
concurrency semantics for relaxed atomics
that permits optimisation and avoids thin-air
executions,” in POPL 2016, pp. 622–633,
ACM, 2016.

26. S. Marlow et al., “Haskell 2010 language
report,” Available on: https://www. haskell.
org/onlinereport/haskell2010, 2010.

27. S. Klabnik and C. Nichols, The Rust
Programming Language (Covers Rust 2018).
No Starch Press, 2019.

28. H.-J. Boehm and S. V. Adve, “Foundations of
the C++ concurrency memory model,” ACM
SIGPLAN Notices, vol. 43, no. 6, pp. 68–78,
2008.

29. O. Lahav, N. Giannarakis, and V. Vafeiadis,
“Taming release-acquire consistency,” ACM
SIGPLAN Notices, vol. 51, no. 1, pp. 649–662,
2016.

30. S. Flur, S. Sarkar, C. Pulte, K. Nienhuis,
L. Maranget, K. E. Gray, A. Sezgin, M. Batty,
and P. Sewell, “Mixed-size concurrency: ARM,
Power, C/C++ 11, and SC,” ACM SIGPLAN
Notices, vol. 52, no. 1, pp. 429–442, 2017.

31. “C/C++11 mappings to processors,” 2011.
Available at https://www.cl.cam.ac.uk/
~pes20/cpp/cpp0xmappings.html [Online;
accessed 26-April-2021].

32. D. Marino, A. Singh, T. Millstein,
M. Musuvathi, and S. Narayanasamy, “A
case for an SC-preserving compiler,” ACM
SIGPLAN Notices, vol. 46, no. 6, pp. 199–210,
2011.

33. L. Liu, T. Millstein, and M. Musuvathi,
“A volatile-by-default JVM for server
applications,” Proceedings of the ACM on
Programming Languages, vol. 1, no. OOPSLA,
pp. 1–25, 2017.

34. S. Muchnick, Advanced compiler design and
implementation. Morgan kaufmann, 1997.

35. O. Lahav, E. Namakonov, J. Oberhauser,
A. Podkopaev, and V. Vafeiadis, “Making
weak memory models fair,” arXiv preprint
arXiv:2012.01067, 2020.

36. J. Ševč́ık and D. Aspinall, “On validity of
program transformations in the Java memory
model,” in European Conference on Object-
Oriented Programming, pp. 27–51, Springer,
2008.

37. M. N. Wegman and F. K. Zadeck, “Constant
propagation with conditional branches,” ACM

ПРОГРАММИРОВАНИЕ No 2 2021

https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

21

Transactions on Programming Languages and
Systems (TOPLAS), vol. 13, no. 2, pp. 181–210,
1991.

38. M. Batty, K. Memarian, K. Nienhuis,
J. Pichon-Pharabod, and P. Sewell, “The
problem of programming language concurrency
semantics,” in ESOP, vol. 9032 of LNCS,
pp. 283–307, Springer, 2015.

39. L. Maranget, S. Sarkar, and P. Sewell,
“A tutorial introduction to the ARM and
POWER relaxed memory models,” 2012.
Available at https://www.cl.cam.ac.
uk/~pes20/ppc-supplemental/test7.pdf
[Online; accessed 30-April-2021].

40. G. Boudol and G. Petri, “A theory of
speculative computation,” in European
Symposium on Programming, pp. 165–184,
Springer, 2010.

41. A. Singh, S. Narayanasamy, D. Marino,
T. Millstein, and M. Musuvathi, “End-to-
end sequential consistency,” in 2012 39th
Annual International Symposium on Computer
Architecture (ISCA), pp. 524–535, IEEE, 2012.

42. L. Liu, T. Millstein, and M. Musuvathi,
“Accelerating sequential consistency for Java
with speculative compilation,” in Proceedings
of the 40th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, pp. 16–30, 2019.

43. D. Marino, A. Singh, T. Millstein,
M. Musuvathi, and S. Narayanasamy, “DRFx:
A simple and efficient memory model for
concurrent programming languages,” in
Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design
and Implementation, pp. 351–362, 2010.

44. D. Demange, V. Laporte, L. Zhao,
S. Jagannathan, D. Pichardie, and J. Vitek,
“Plan B: A buffered memory model for Java,”
in Proceedings of the 40th annual ACM
SIGPLAN-SIGACT symposium on Principles
of programming languages, pp. 329–342, 2013.

45. G. Boudol and G. Petri, “Relaxed memory
models: an operational approach,” ACM

SIGPLAN Notices, vol. 44, no. 1, pp. 392–403,
2009.

46. M. Dodds, M. Batty, and A. Gotsman,
“Compositional verification of compiler
optimisations on relaxed memory,” in European
Symposium on Programming, pp. 1027–1055,
Springer, 2018.

47. S. Doherty, B. Dongol, H. Wehrheim,
and J. Derrick, “Verifying C11 programs
operationally,” in Proceedings of the 24th
Symposium on Principles and Practice of
Parallel Programming, pp. 355–365, 2019.

48. H.-H. Dang, J.-H. Jourdan, J.-O. Kaiser, and
D. Dreyer, “RustBelt meets relaxed memory,”
Proceedings of the ACM on Programming
Languages, vol. 4, no. POPL, pp. 1–29, 2019.

49. J. Alglave, L. Maranget, P. E. McKenney,
A. Parri, and A. Stern, “Frightening
small children and disconcerting grown-
ups: Concurrency in the Linux kernel,” in
Proceedings of the Twenty-Third International
Conference on Architectural Support for
Programming Languages and Operating
Systems, pp. 405–418, 2018.

50. Y. Zhang and X. Feng, “An operational
happens-before memory model,” Frontiers of
Computer Science, vol. 10, no. 1, pp. 54–81,
2016.

51. M. Huisman and G. Petri, “The Java memory
model: a formal explanation,” VAMP, vol. 7,
pp. 81–96, 2007.

52. R. Jagadeesan, C. Pitcher, and J. Riely,
“Generative operational semantics for relaxed
memory models,” in European Symposium on
Programming, pp. 307–326, Springer, 2010.

53. S. Sarkar, K. Memarian, S. Owens, M. Batty,
P. Sewell, L. Maranget, J. Alglave, and
D. Williams, “Synchronising C/C++ and
POWER,” in Proceedings of the 33rd ACM
SIGPLAN Conference on Programming
Language Design and Implementation, pp. 311–
322, 2012.

54. M. Batty, K. Memarian, S. Owens, S. Sarkar,
and P. Sewell, “Clarifying and compiling

ПРОГРАММИРОВАНИЕ No 2 2021

https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf

22

C/C++ concurrency: from C++ 11 to
POWER,” ACM SIGPLAN Notices, vol. 47,
no. 1, pp. 509–520, 2012.

55. V. Vafeiadis, T. Balabonski, S. Chakraborty,
R. Morisset, and F. Z. Nardelli, “Common
Compiler Optimisations are Invalid in the C11
Memory Model and what we can do about it,”
in POPL 2015, pp. 209–220, ACM, 2015.

56. M. Batty, A. F. Donaldson, and J. Wickerson,
“Overhauling SC atomics in C11 and OpenCL,”
in Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 634–648, 2016.

57. K. Nienhuis, K. Memarian, and P. Sewell,
“An operational semantics for C/C++ 11
concurrency,” in Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages,
and Applications, pp. 111–128, 2016.

58. K. Crary and M. J. Sullivan, “A calculus for
relaxed memory,” in Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages,
pp. 623–636, 2015.

59. V. A. Saraswat, R. Jagadeesan, M. Michael,
and C. von Praun, “A theory of memory
models,” in Proceedings of the 12th ACM
SIGPLAN symposium on Principles and
practice of parallel programming, pp. 161–172,
2007.

60. S. I. Inc and D. L. Weaver, The SPARC
architecture manual. Prentice-Hall, 1994.

61. D. Lustig, C. Trippel, M. Pellauer, and
M. Martonosi, “ArMOR: Defending against
memory consistency model mismatches in
heterogeneous architectures,” in Proceedings of
the 42nd Annual International Symposium on
Computer Architecture, pp. 388–400, 2015.

62. A. Podkopaev, O. Lahav, and V. Vafeiadis,
“Bridging the gap between programming
languages and hardware weak memory models,”
Proceedings of the ACM on Programming
Languages, vol. 3, no. POPL, pp. 1–31, 2019.

63. W. Pugh, “Fixing the Java memory model,”
in Proceedings of the ACM 1999 conference on
Java Grande, pp. 89–98, 1999.

64. A. Diwan, K. S. McKinley, and J. E. B. Moss,
“Type-based alias analysis,” ACM Sigplan
Notices, vol. 33, no. 5, pp. 106–117, 1998.

65. K. Svendsen, J. Pichon-Pharabod, M. Doko,
O. Lahav, and V. Vafeiadis, “A separation logic
for a promising semantics,” in Programming
Languages and Systems (A. Ahmed, ed.),
(Cham), pp. 357–384, Springer International
Publishing, 2018.

66. J.-D. Choi, M. Gupta, M. Serrano, V. C.
Sreedhar, and S. Midkiff, “Escape analysis for
Java,” Acm Sigplan Notices, vol. 34, no. 10,
pp. 1–19, 1999.

67. R. Jagadeesan, A. Jeffrey, and J. Riely,
“Pomsets with preconditions: a simple model of
relaxed memory,” Proceedings of the ACM on
Programming Languages, vol. 4, no. OOPSLA,
pp. 1–30, 2020.

68. M. Cho, S.-H. Lee, C.-K. Hur, and O. Lahav,
“Modular data-race-freedom guarantees in the
Promising semantics,” in Proceedings of the 42st
ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2021.

69. D. Marino, A. Singh, T. Millstein,
M. Musuvathi, and S. Narayanasamy, “Drf
x: An understandable, high performance,
and flexible memory model for concurrent
languages,” ACM Transactions on
Programming Languages and Systems
(TOPLAS), vol. 38, no. 4, pp. 1–40, 2016.

70. J. Ševč́ık, V. Vafeiadis, F. Zappa Nardelli,
S. Jagannathan, and P. Sewell,
“CompCertTSO: A verified compiler for
relaxed-memory concurrency,” Journal of the
ACM (JACM), vol. 60, no. 3, pp. 1–50, 2013.

71. F. Pizlo, L. Ziarek, E. Blanton, P. Maj, and
J. Vitek, “High-level programming of embedded
hard real-time devices,” in Proceedings of the
5th European conference on Computer systems,
pp. 69–82, 2010.

ПРОГРАММИРОВАНИЕ No 2 2021

23

72. M. Khiszinsky, “CDS C++ library,” 2017.
Available at https://github.com/khizmax/
libcds [Online; accessed 26-April-2021].

73. “Folly: Facebook open-source library,” 2018.
Available at https://github.com/facebook/
folly [Online; accessed 26-April-2021].

74. J. Preshing, “Junction — a library of concurrent
data structures in C++,” 2018. Available
at https://github.com/preshing/junction
[Online; accessed 26-April-2021].

75. “VarHandle API Docs.,” 2017. Available at
https://docs.oracle.com/javase/9/docs/
api/java/lang/invoke/VarHandle.html
[Online; accessed 22-Feb-2021].

76. D. Lea, “JEP 193: Variable handles,” 2017.
Available at http://openjdk.java.net/jeps/
193[Online; accessed 22-Feb-2021].

77. D. Lea, “Using JDK 9 memory order modes,”
2018. Available at http://gee.cs.oswego.
edu/dl/html/j9mm.html[Online; accessed 22-
Feb-2021].

78. D. Howells, P. E. McKenney, W. Deacon, and
P. Zijlstra, “Linux kernel memory barriers,”
2017. Available at https://www.kernel.org/
doc/Documentation/memory-barriers.txt
[Online; accessed 22-Feb-2021].

79. P. E. McKenney, “Proper care and feeding of
return values from rcu_dereference(),” 2017.
Available at https://www.kernel.org/doc/
Documentation/RCU/rcu_dereference.txt
[Online; accessed 22-Feb-2021].

80. P. E. McKenney and J. Walpole, “What is RCU,
fundamentally?,” Linux Weekly News (LWN.
net), 2007.

81. G. Winskel, “Event structures,” in Advanced
Course on Petri Nets, pp. 325–392, Springer,
1986.

82. A. Podkopaev, O. Lahav, and V. Vafeiadis,
“Promising compilation to ARMv8 POP,”
in ECOOP 2017, Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

83. E. Moiseenko, A. Podkopaev, O. Lahav,
O. Melkonian, and V. Vafeiadis, “Reconciling
event structures with modern multiprocessors,”
in 34th European Conference on Object-
Oriented Programming, 2020.

84. J. Y. A. Pichon-Pharabod, A no-thin-air
memory model for programming languages.
PhD thesis, University of Cambridge, 2018.

ПРОГРАММИРОВАНИЕ No 2 2021

https://github.com/khizmax/libcds
https://github.com/khizmax/libcds
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/preshing/junction
https://docs.oracle.com/javase/9/docs/api/java/lang/invoke/VarHandle.html
https://docs.oracle.com/javase/9/docs/api/java/lang/invoke/VarHandle.html
http://openjdk.java.net/jeps/193
http://openjdk.java.net/jeps/193
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/RCU/rcu_dereference.txt
https://www.kernel.org/doc/Documentation/RCU/rcu_dereference.txt

24

A Catalog of Memory Models

In this section we dive inside the classes of memory
models given in §6, and present a more detailed view
on each memory model we consider in our study. It
contains an overview of each PL memory model, a
recap of its distinguished properties, and references
to the research papers studying this model.

A.1 Sequential Consistency

We start with a description of several attempts
to adopt the sequential consistency as a memory
model for existing languages and runtimes. Most of
the proposed solutions share similar properties, and
thus in table 2 we unite them in a single row under
the name SC. The only exception is DRFx model
which implements a catch-fire semantics for racy
programs and thus has slightly different properties.

End-to-end Sequential Consistency
Marino et al. [32, 41] examined the performance
penalties to ensure end-to-end SC (EtE-SC)
enforced by (1) a modified SC-preserving version of
LLVM compiler infrastructure and (2) a modified
version of x86 hardware. To mitigate the induced
overhead the authors utilized the observation that
hardware need to enforce SC only for memory
accesses to shared mutable variables. To classify
memory regions as either thread-local, shared
immutable, or shared mutable they have used a
combination of a static compiler analysis and a
dynamic analysis powered by modified hardware.
They evaluated their approach on a number of
benchmarks and reported performance overhead of
6.2% on average and 17% in maximum, compared
to the stock LLVM compiler and x86 hardware.

Volatile-by-default Liu et al. [33, 42] studied
sequential consistency in the context of the Java
language. They proposed the volatile-by-default
semantics (VbD), where each memory access is
treated as volatile (i.e., sequentially consistent) by
default. The experiments showed a considerable
performance penalty: 28% slowdown on average
with 81% in maximum on x86 hardware, and 57%
slowdown on average with 157% in maximum on
Armv8 hardware. The authors tried to mitigate
performance overhead and presented a novel

optimization technique for the language-level
SC compatible with just-in-time compilation.
They propose to treat each object as thread-
local speculatively and compile memory accesses
without fences. If later during the execution
concurrent accesses to the object are detected, the
code is recompiled to place necessary fences. A
modified version of the JVM which implements the
technique described above was reported to incur
37% slowdown on average with 73% in maximum
on Armv8 hardware.

SC-Haskell SC-Hs memory model [8] was
inspired by the similar idea of separation between
thread-local and shared mutable memory. To safely
distinguish between the two the authors utilized
the powerful strong type system of Haskell. The
consequence of this approach is that programmers
need to follow a stricter discipline in order to please
the type checker. The authors modified the GHC
to preserve SC and then run 1,279 benchmarks
on x86-64 hardware to measure the performance
penalties. They reported 0.4% geometric mean
slowdown, and noticed that only 12 benchmarks
experienced slowdown greater than 10%. These
promising results can be partly explained by the
fact that Haskell encourages a purely functional
programming style, which minimizes the usage of
shared mutable memory.

DRFx The DRFx [43,69] is another SC preserving
memory model. In this model a runtime system is
guaranteed to raise an exception if a program has
data-races, and yield only sequentially consistent
outcomes otherwise. In order to make the runtime
data-race detection feasible in practice, the authors
propose several modifications to existing hardware.

The authors claim that any sequentially valid
optimization (e.g., instruction reorderings or
common subexpression elimination), is sound in
DRFx model, the only limitation is that these
transformations can only be performed withing
bounds of compiler-designated program regions.
Besides that any transformation that introduces
speculative reads or writes is unsound, since
speculative optimizations can bring data-races into
otherwise race-free programs.

Note that in table 2 we still do not consider many
of the transformations that claimed to be sound

ПРОГРАММИРОВАНИЕ No 2 2021

25

by the authors as actually being sound because
of our convention described in §5. We consider
transformations sound only if they are sound in
a fully-defined semantics. The DRFx model does
not meet this criterion as it provides catch-fire
semantics.

The expected performance overhead of the model
is reported to be 3.25% on average assuming an
efficient implementation of the data-race detection
in hardware. (compared to stock compiler and x86
hardware).

A.2 Total and Partial Store Order

In this section we consider PL memory models
inspired by TSO and PSO.

Buffered Memory Model Demange et al. [44]
presented the Buffered Memory Model, BMM for
short, as a candidate model for the Java language.
Their motivation, however, stemmed not from the
desire to fully replace the Java memory model,
but rather from a goal to build a verified version
of Java Virtual Machine (akin to CompCertTSO
project [70] for the C language). A more simple yet
pragmatic TSO like memory model was considered
as a first step to achieve this goal.

The authors proved soundness of several
program transformations (including the store/load
reordering, the speculative load introduction, and
several others, see table 2) and the external DRF
theorem. They also modified existing open-source
implementation of JVM [71] to preserve BMM
and reported only 1% average overhead compared
to original version of the virtual machine. Again,
the authors used only x86 hardware in their
experiments, and the performance penalties
are expected to be more significant on weaker
hardware.

Relaxed Memory Models: an Operational
Approach Boudol and Petri [45] proposed an
operational approach to formal semantics of relaxed
memory models (RMMOA) based on an abstract
machine with a main memory and a hierarchical
structure of store buffers with stores to different
locations possibly propagating to the main memory
out-of-order (similarly to PSO model). The authors
present a proof of the external DRF theorem, but

do not provide an extensive study of the soundness
of program transformations.

A.3 Program Order Preserving

In this section we describe the memory models
that preserve program order and forbid any kind
of speculative executions to tackle the problem of
thin-air values. In particular, we consider RC11 and
several derivatives of this model, as well as the
memory model of OCaml, and the proposed revised
model of Java.

RC11 Lahav et al. [21] formalized a version of
the C11 that preserves order between load/store
pairs, and also repairs the semantics of sequentially-
consistent accesses. The resulting model is
commonly referred to as RC11.

The authors proved soundness of several program
transformations (see table 2 for details). Among the
unsound transformation, the load/store reordering
is forbidden for an obvious reasons, the speculative
load introduction is not supported because of the
catch-fire semantics for racy programs, the CSE
is not supported because relaxed accesses enforce
coherence (non-atomic accesses support this
transformation, but their usage entails undefined
behavior in the presence of races).

The compilation mapping to x86 is not
affected and remain optimal. One of the possible
compilation mappings to the Arm and POWER
architectures requires to compile a relaxed load
as a plain load followed by a spurious conditional
branch. Ou and Demsky [23] have studied the
performance penalty of this mapping on Armv8
hardware. They modified the LLVM compiler
framework to enforce the RC11 memory model by
(1) adjusting the compiler optimization passes and
(2) changing the compilation mappings. Several
compilation schemes were considered, among them
the one that uses a spurious conditional branch
as described above has demonstrated the most
promising results. The authors measured the
running time on a set of benchmarks implementing
concurrent data-structures (e.g., locks, stacks,
queues, deques, maps from various open source
libraries [72–74]) and reported an overhead of 0%
on average and 6.3% in maximum, compared to
the unmodified version of the compiler.

ПРОГРАММИРОВАНИЕ No 2 2021

26

RAR Doherty et al. [47] developed an
operational version of the RC11 supporting
release-acquire and relaxed accesses (RAR). On
top of it they built proof calculus for invariant-
based reasoning and verified correctness of mutual
exclusion algorithms.

Operational RC11 Dang et al. [48] developed
yet another operational version of the RC11 which
they called ORC11. Their motivation was to
then develop a new program logic and show it’s
soundness with respect to the ORC11 memory
model. The program logic itself was utilized
to prove correctness of several synchronization
primitives from the standard library of the
Rust [27].

Compositional Relaxed Concurrency
Dodds et al. [46] proposed the compositional
relaxed concurrency semantics (CRC) for the
fragment of the C11 memory model, including non-
atomic accesses with catch-fire semantics, release-
acquire accesses, and sequentially-consistent fences.
Based on this semantics the authors developed
a tool for automatic verification of program
transformations in the considered fragment of
the C11 model. Since the relaxed fragment was
not included, the authors avoided problems with
thin-air values.

OCaml Memory Model Dolan et al. [22]
developed a new memory model for the Multicore
OCaml project. An important divergence of the
OCaml memory model (OCMM) from the C11-like
models is that the former has a weaker notion of the
coherence. The choice of the weaker coherence was
deliberate with the purpose to enable the common
subexpression elimination (see §6.7.1 for details).

The authors also were the first to propose the
local DRF property (lDRF), a strengthening of the
external DRF (eDRF). While the latter requires
an absence of data-races for a whole program as a
prerequisite, the former bounds the effect of races
to a portion of the program, thus enabling the
compositional reasoning about the behavior of the
program. The authors discovered that the lDRF
property is not compatible with the load/store
reordering. This fact forced them to forbid this

transformation and adapt similar compilation
scheme as for RC11.

Java Access Modes Bender and Palsberg [4]
formalized a new revision of the Java Memory
Model [75–77], which was developed to overcome
the difficulties of the previous one [3] (see A.5 for
details). The new version of the model was inspired
by the RC11. It introduced a system of annotations
on memory accesses, called “Java Access Modes”
(hence the name of the model — JAM), similar to
those present in the C11 like models. The new model
adopted the RC11 solution to OOTA problem. It
forbids load/store reorderings on the level of opaque
(an analog of C/C++ relaxed) or stronger accesses.
The model does not tackle the problem of thin-
air values on the level of plain (i.e., non-atomic)
accesses.

A.4 Syntactic Dependencies Preserving

Next we discuss the programming language memory
models that track syntactic dependencies.

Linux Kernel Memory Model LKMM [49] has
adopted the idea to track syntactic dependencies
in order to forbid thin-air values. Despite this
choice limits the list of supported trace preserving
transformations, in the context of the OS kernel
development it can be justified by the following
arguments. First, the Linux kernel targets a wide
range of hardware architectures with a diverse
set of memory models. To simplify the reasoning
about the code, it is reasonable to pick a syntactic
dependency preserving model which is conceptually
close to those of hardware. Second, kernel
developers already utilize various techniques to
prevent certain compiler optimizations [49,78,79].

The authors of the model have empirically
tested soundness of compilation mappings to x86,
Armv7, Armv8, and POWER hardware. They also
formalized the read-copy-update synchronization
mechanism (RCU) [80] extensively used in the
Linux kernel development, and proved soundness
of its implementation with respect to their model.

Operational Happens-Before Model In
attempt to repair the Java Memory Model (see
appendix A.5) Zhang and Feng have proposed the

ПРОГРАММИРОВАНИЕ No 2 2021

27

operational happens-before model OHMM [50].
Their abstract machine consists of a global event
buffer, where events might be reordered before they
propagate into a global history based memory, and
a replay mechanism used to simulate speculative
executions. To avoid thin-air outcomes the model
tracks syntactic dependencies between events and
forbids the reordering of dependent events. The
authors proved the external DRF and the soundness
of several program transformations (see table 2).

Dependency Preserving Compiler Ou
and Demsky [23] studied the performance penalty
induced by dependency preserving compiler. Again,
they modified the LLVM compiler infrastructure
and run benchmarks from SPEC CPU2006 suite
on Armv8 hardware. They have observed 3.1%
overhead on average and 17.6% in maximum.

A.5 Semantic Dependencies Preserving

Next we discuss the memory models which try to
tackle the thin-air values problem by developing a
notion of semantic dependencies. In particular, this
class includes the original Java Memory Model, the
Promising semantics, and several models based on
the event structures [81].

Java Memory Model The original version of
the Java memory model JMM [3] was a pioneering
work in the area of programming language memory
models. In order to forbid thin-air outcomes, the
memory model used a notion of commit sequence,
i.e., a sequence of partial execution graphs. The
model was shown to adhere the external DRF [51].
However, the model failed to justify some program
transformations that were expected to be sound [36]
(e.g., redundant load after load elimination, roach
motel reordering, and others, see table 2 for details).

Generative operational semantics
Jagadeesan et al. [52] attempted to fix JMM
and proposed the generative operational semantics
with speculative execution (GOS). To avoid thin-
air values they have put stratification constraints
on speculations. The authors prove the external
DRF theorem. Also they verified a few program
transformations (store/store reordering, load/load
elimination, and roach motel reordering), but

overall their study of transformations was not
systematic.

Promising Semantics Kang et al. [17, 18]
developed the Promising semantics (PRM). It is
the most complete to this day model of the class
of semantic dependency preserving models. Its
key ingredient is a promising and certification
machinery. During an execution, the abstract
machine can non-deterministically promise to
perform some store, it then has to certify the
promise is feasible. The certification mechanism
is defined in a way that forbids thin-air values to
appear. The authors of the model have proven
formally that Promising semantics admits many
local and global program transformations, with a
notable exception of the thread inlining (see table 2
for details).

Podkopaev et al. [62, 82] proved formally
the soundness of standard optimal compilation
mappings to x86, Armv7, Armv8, and POWER.

The model has a fully defined semantics for
plain accesses. Plain and relaxed accesses, however,
have different semantics. In particular, coherence
is enforced only for relaxed accesses. This design
choice, in particular, allows to support CSE on the
level of plain accesses.

One of a few limitations of the Promising
semantics is that it does not support sequentially
consistent accesses.

Weakestmo Chakraborty and Vafeiadis [6, 19]
developed a memory model based on the event
structures (WMO). They utilize the event
structures’ capability to simultaneously encode
multiple conflicting executions in order to model
speculative executions. The model was shown
to admit optimal compilation mappings [83],
several program transformation, and the external
DRF. Unlike Promising semantics it also supports
sequentially consistent accesses.

A Concurrency Semantics for Relaxed
Atomics Pichon-Pharabod and Sewell [25]
presented the operational memory model (CSRA)
consisting of a memory subsystem inspired by the
POWER model and a thread subsystem, where
each thread is represented as an event structure.
At each step the abstract machine is allowed to

ПРОГРАММИРОВАНИЕ No 2 2021

28

either commit an event to the storage, or perform
a transformation on one of the event structures.
The authors have shown soundness of optimal
compilation mappings to x86 and POWER, as well
as soundness of several program transformations.
It was later revealed though that the compilation
scheme to Armv7 and Armv8 is not optimal [84].

Well-Justified Event Structures Jeffrey
and Riely [24] proposed the memory model
(WJES) based on event structures and a notion of
well-justification of events inspired by the game
semantics. Well-justification is used to prevent
thin-air values and prove the external DRF. The
authors do not study the soundness of program
transformations in their model. They show,
however, a counterexample demonstrating that the
load/load reordering is unsound. This fact also
implies that the compilation mappings to Armv7,
Armv8, and POWER are not optimal.

Modular Relaxed Dependencies
Paviotti et al. [20] constructed the denotational
semantics based on the event structures (MRD).
They employ the event structures to capture
semantic dependencies between memory access
events, which are in turn used to rule out thin-air
outcomes. The authors prove the external DRF and
the soundness of optimal compilation mappings,
also they present a refinement relation which
can be used to reason about validity of program
transformations. However, they have not studied
soundness of particular transformations.

A.6 Out of Thin-Air Values

Finally, we discuss memory models admitting thin-
air values.

C11 The most notable member of the OOTA
class is the C11 model [5]. The main purpose of
the C11 model was to adhere to the fundamental
principle of C/C++, i.e., to provide so-called
zero-cost abstraction. In other words, the memory
model was meant to provide efficient compilation
mappings and support as many transformation
as possible. It was later revealed that the formal
model partially fails to achive these goals.

Vafeiadis et al. [55] showed that several
program transformation (load/store elimination,
strengthening, roach motel reorderings,
sequentialization) that deemed to be correct are
actually unsound according to the formal model.
They proposed several local fixes to the model
which partly repair soundness of transformations
and improve its meta-theoretical properties.

Batty et al. [38] showed that the model also fails
to provide the external DRF guarantee, and that it
is ultimately not possible to provide this guarantee
at all within the style of the C11 formal semantics.
Only the internal DRF can be proved for it.

A lot of work [5, 53, 54, 56] was dedicated to
prove soundness of optimal compilation mappings
with respect to formal models of hardware, and
there the results were mostly positive. Besides that,
Flur et al. [30] have extended the model to support
mixed-size accesses. Finally, Nienhuis et al. [57]
presented a formal executable semantics in terms of
an abstract machine, equivalent to the C11 model.

JavaScript Memory Model The JSMM is
based on the C11 model. Like the latter, it also has
the problem of thin-air values and thus can only
provide the internal DRF guarantee. Contrary to
the C11, the JavaScript model does not treat racy
non-atomic accesses as undefined behavior.

The main language primitive provided by the
JSMM is SharedArrayBuffer, that is a linear
mutable byte buffer. Thus the model naturally
supports mixed-size accesses.

A calculus for relaxed memory Crary and
Sullivan [58] proposed an alternative approach to
the relaxed shared memory concurrency, which
they called Relaxed Memory Calculus (RMC).
Instead of deriving ordering constraints from
annotations on memory accesses, they propose
to directly specify the ordering between memory
accesses in a source code. Their approach is highly
generic and subsumes the traditional memory
order annotations in the style of C11. Their model
is very weak and permits thin-air values. Yet the
authors proved the internal DRF theorem.

Relaxed Atomic + Ordering Saraswat et al.
[59] presented the RAO memory model where
relaxed behaviors are explained through

ПРОГРАММИРОВАНИЕ No 2 2021

29

transformations over a sequentially consistent
execution. Authors claim their model provides
the external DRF, but at the same time permits
thin-air values. These two properties known
to be incompatible [38]. We suppose that the
external DRF can be achieved in their model only
because of the fundamental restrictions on the
input programming language (e.g., the general
conditional statements are not supported [25]).

A theory of speculative computation Boudol
and Petri [40] proposed a general framework to
study effects of speculative execution in shared
memory setting (TSC). They have also noticed that
the external DRF does not hold in the presence
of unrestricted speculations, yet the internal DRF
theorem still can be proven.

ПРОГРАММИРОВАНИЕ No 2 2021

	Introduction
	Related Work
	Methodology
	Criteria for Memory Models
	Compilation Scheme
	Program Transformations
	Local Transformations
	Global Transformations

	Reasoning Guarantees
	DRF Theorems
	Coherence
	Undefined Behavior
	Speculative Execution and Out of Thin-Air Values

	Comparison
	Analysis
	Sequential Consistency
	Total or Partial Store Order
	Out of Thin-Air Values
	Program Order Preserving
	Syntactic Dependencies Preserving
	Semantic Dependencies Preserving
	Secondary Classes
	Coherent Models
	Catch-Fire Models

	Guide for Choosing a Model
	Conclusion and Future Work
	Catalog of Memory Models
	Sequential Consistency
	Total and Partial Store Order
	Program Order Preserving
	Syntactic Dependencies Preserving
	Semantic Dependencies Preserving
	Out of Thin-Air Values

