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Abstract
Programmable settlement architectures do not enable
counterparty discovery and solving, both of which are
necessary to build the majority of interactive multi-
party applications. The architectural constraints of
programmable settlement result in contemporary ap-
plication protocols that have at least one Web2 com-
ponent, which becomes the centralisation point. We
present Anoma, a unified architecture for full-stack de-
centralised applications. Anoma is designed following
the principles of intent-centricity and homogeneous
architecture / heterogeneous security, together con-
stituting a declarative paradigm for building decen-
tralised applications. In this paper, we first outline
the Anoma architecture, provide an intuition for the
design rationale, and describe how Anoma disentan-
gles the choices of protocol and security. We then
define the Anoma application programming model and
enumerate several existing and novel decentralised ap-
plications that can be built using the novel primitives.
Finally, we outline the current components used to
instantiate Anoma and list future research directions.

1 Background and motivations
The release of the Bitcoin protocol in 2008 marked
the beginning of scriptable settlement, a category of
distributed ledger architectures that is suitable for
cryptocurrencies with discrete properties and mon-
etary policies. Although it is not Turing-complete,
Bitcoin Script[1] is able to support applications be-
yond currencies, such as Namecoin and Colored Coins.
As discussed in the Ethereum Whitepaper[2], while

applications built on scriptable settlement are func-
tional, this architecture requires too many trade-offs
that resulted in constrained properties and usability.

The introduction of the Ethereum protocol in 2014 set
the precedent for programmable settlement, a new cat-
egory of architectures for constructing decentralised
applications that leverage Turing-complete virtual
machine execution, which adds substantially more
expressivity to the settlement layer. Programmable
settlement paved the way for improved versions of
applications that scriptable settlement is not able to
support, such as fungible tokens (ERC20) or Ethereum
Name Service (ENS), which are today well-established
versions of the Colored Coin and Namecoin ideas,
respectively – in addition to many other desirable
applications, such as non-fungible tokens (NFTs), De-
centralised Autonomous Organisations (DAOs), or
the recently introduced Soulbound Tokens (SBTs)[3].

Proposed and deployed blockchain protocols since
Ethereum’s release have brought significant im-
provements to specific architectural components,
for instance: consensus mechanisms (Tendermint[4],
Avalanche[5]), Sybil-resistance mechanisms (proof-of-
stake, proof-of-storage), scaling solutions (sharding,
rollups), and cryptographic schemes (zero-knowledge
proofs) – but these improvements to constituent prim-
itives do not change the basic architecture of pro-
grammable settlement.

While programmable settlement is sufficient for cer-
tain applications, many contemporary applications
have further requirements. Settlement suffices when
the involved parties have already decided what and
with whom to settle, but contemporary applications
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often also require infrastructure for helping potential
counterparties discover each other and decide with
whom and on what to settle. As a workaround, exist-
ing applications have usually adopted an architecture
that relies on one or many permissioned or centralised
components (such as provers, solvers, or sequencers),
usually implemented as Web2 services, in their stack.

Examples include decentralised exchanges for fungible
assets (0x, CoWSwap, Uniswap), for non-fungible
assets (Wyvern, LooksRare, OpenSea), novel vot-
ing/funding mechanisms (quadratic voting/funding,
Gitcoin), and rollups (Optimism, Arbitrum, Starknet,
zkSync) – their architectures involve at least one cen-
tralised component that often results in a loss of per-
missionlessness, fault-tolerance, censorship-resistance,
or privacy.

One emerging approach for applications seeking to
avoid centralisation points in their architecture is to
deploy an application-specific sovereign chain to re-
place a specific component in the stack. Even though
this approach can solve the immediate centralisation
problem, it comes with substantial trade-offs, such as
the loss of network effects (application composability
and software re-use) or the addition of disproportion-
ate complexity to developers and users, who need
to reason about multi-layered security, privacy, and
latency domains.

In this paper we present Anoma. Anoma is a unified
architecture for full-stack decentralised applications
– characterised by its intent-centricity, decentralised
counterparty discovery and computational outsourc-
ing of NP search problems to solvers which compute
valid state transitions. With this architecture, con-
temporary applications can be built without compro-
mising permissionlessness, fault-tolerance, censorship-
resistance, or privacy.

Anoma’s architecture also exposes novel primitives,
such as composable privacy, which enables applica-
tions to handle transparent, shielded, and private state
and operations; and multi-chain atomic settlement,
which allows users and applications with different secu-
rity preferences to obtain atomicity. These and other
novel primitives pave the way for the development of
applications that cannot be built with existing archi-

tectures, several of which we enumerate in Section
5: Applications.

2 Architectural design philoso-
phy

Anoma’s architecture is driven by two design princi-
ples: first, intent-centricity; second, a homogeneous
protocol architecture with a heterogeneous security
model. Beyond these two design principles, all other
architectural choices are a matter of modularisation
and runtime configuration parameters.

2.1 Intent-centricity
An intent is an expression of what a user wants to
achieve whenever they interact with a protocol, for
instance “transfer X from A to B” or “trade X for Y”.
Practically, an intent is an off-chain signed message
that encodes which state transitions a user wants to
achieve. Unlike transactions, intents are partial, so
one can think of intents as parts of transactions that
require other direct or indirect parts as complements
in order to form a final balanced transaction which
satisfies all users’ constraints.

Existing protocols are designed with transactions as
their most fundamental unit. Anoma takes a radi-
cally different approach: the architecture of Anoma
is centred around programmatic intents.

An intent-centric architecture is necessary to enable
counterparty discovery, which is crucial for compelling
applications, since they require multiparty coordina-
tion and to enable full-stack decentralised applications.
Anoma vertically integrates counterparty discovery,
solving, and settlement, and is able to interpret and
process intents natively and generically. Contempo-
rary applications, as described earlier, require both
counterparty discovery, solving, and settlement. In-
tents are the point at which users interact with such
applications, and an intent-centric design captures
the requirements of applications which need these two
processes to work in tandem and satisfy censorship-
resistance, privacy, and fault-tolerance properties.
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Intent-centric design also constitutes a declarative
paradigm for building applications, since Anoma is
designed to settle intents as defined by the users – an
intent is either settled as defined, or not settled at
all. This declarative model gives users a significantly
higher degree of control, without requiring them to
understand the underlying protocol primitives and
execution flows, which is crucial in order for decen-
tralised applications to reach mass adoption. This
paradigm presents a radically different approach as
compared to existing transaction-centric architectures
that default to an imperative model for applications.
In the latter, users are required to understand the full
execution trace to benefit from security and privacy
guarantees, because instead of authorising a specific
state change, they authorise specific execution paths.
In practice, this is so difficult that users commonly
interact with applications without understanding the
risks.

For application developers, Anoma’s intent-centric
architecture enables them to build safer by construc-
tion applications by leveraging the combination of
intents and validity predicates. Validity predicates are
an architecture for smart contracts which separate
out cleanly the task of computing state transitions
and the task of verifying correctness of state transi-
tions, as compared to message-passing VM execution
models (pervasive in current programmable settle-
ment architectures) which interleaves computation
and verification. Validity predicates allow applica-
tion developers to reason about the invariants which
they would like their application to satisfy without
worrying about how other applications interact with
it, since the validity predicate of their application
expresses these invariants directly.

2.2 Homogeneous architecture, het-
erogeneous security

The Anoma protocol, just like the TCP/IP protocol
stack, follows the principle of homogeneous architec-
ture and heterogeneous security. In TCP/IP, the
various layers of the internet protocol are standard-
ised, but the choice of whom to connect to and what
data to entrust them with is left to the user, and

different users can make different choices while using
the same protocol stack. In Anoma, the various layers
of counterparty discovery, solving, and settlement are
similarly standardised, but the choice of what security
domains to trust and what data to send to whom are
left to the user, and different users can make different
choices while using the same protocol stack.

In this framework, protocols can be analysed along
two dimensions: architecture and security.

• Architecture: the abstractions and relations
constituting the structure of a system. An ar-
chitecture is syntactical, possessed of properties
and syntaxes but with no particular semantics in
relation to the exterior world. Convergence on a
singular architecture saves time and verification
costs without constraining users to particular
choices.

• Security: the choice of whom and how to trust
in the operation of a distributed system. Secu-
rity is a decision inseparable from the particular
semantics of a specific context of use. While secu-
rity can be economically abstracted to a certain
degree by limiting the information available to
and consequent choice-making capabilities of sys-
tem operators, operators will always have choices
of: how and from whom to accept messages; when
to elect to include them in blocks or other aggre-
gations over which they vote; and when to cease
voting or otherwise alter normal operational pro-
cedures in response to exceptional circumstances.
Whom to trust with these responsibilities depends
on what the state in the database represents in
the real world, and alignment with the interests
of users of the database requires mutual interests
beyond the purely economic ones.

2.2.1 Analysis of platforms

Consider distributed ledger platforms, from the per-
spective of applications running on top of them, along
these two dimensions: protocol architecture and secu-
rity model, and whether they are homogeneous or het-
erogeneous for different applications running on the
same platform.
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Protocol architecture refers to the state layout, vir-
tual machine, language support, sharding mechanisms,
cross-contract messaging model, etc. An architecture
determines what is required to write an application
for a platform, and applications are specific to a par-
ticular architecture.

• Platforms with a homogeneous architecture re-
quire that all applications are written in a certain
format (e.g. EVM bytecode or WASM).

• Platforms with a heterogeneous architecture allow
applications to be written in different formats,
perhaps with some agreement at the edges, such
as cross-chain communication protocols.

Security model refers both to security in theory, such
as fault tolerance properties of the consensus, fork
detection and handling; and security in practice,
i.e. which miners or validators operate the deployed
instances of these architectures.

• Platforms with a homogeneous security model
have the same security for all applications.

• Platforms with a heterogeneous security model
have different security characteristics for different
applications.

For illustration, Table 1 situates several platforms
on these two axes:

Platform Architecture Security Model
Bitcoin Homogeneous Homogeneous
Ethereum Homogeneous Homogeneous
Ethereum 2.0 Homogeneous Homogeneous
Polkadot Heterogeneous Homogeneous
Near Homogeneous Homogeneous
Cosmos Heterogeneous Heterogeneous
Multichain Heterogeneous Heterogeneous
Anoma Homogeneous Heterogeneous

Table 1: An analysis of platforms based on their
architecture and security model

As the table suggests, these dimensions are generally
quite correlated: homogeneous architectures come
with homogeneous security models, and heterogeneous
architectures come with heterogeneous security mod-

els. It is easier to design a system where they are
correlated. If everything is homogeneous, protocols
can be fit together neatly, and functionalities includ-
ing cross-contract communication are easy; whereas
if everything is heterogeneous, protocols just agree
on the edges of interaction, for instance via the Inter-
Blockchain Communication protocol (IBC)[6], and
handling the complexity of security is up to the users
and application developers.

2.2.2 Why decouple these dimensions?

Anoma’s fractal instance architecture is designed to
decouple these dimensions and build a platform which
is architecturally homogeneous and with a heteroge-
neous security model. This is more complicated, but
it separates out the question of what the best proto-
col architecture is, where there may be a “benevolent
monopoly” (à la Git or TCP/IP), from the question of
what is the best security model, where there is almost
certainly not.

Applications written for fractal instances can stan-
dardise on the architecture Anoma offers, which is
sufficiently well-defined to allow for complex inter-
operability, automatic scaling, etc., without agreeing
on any single security model. Furthermore, in some
cases, this flexibility of choice can be extended all
the way to users of the applications, who can choose
independently.

User interfaces for Anoma instances can support the
same applications deployed with different security
models, and communicate that latter difference to
users in a way which allows them to choose their trust
assumptions while retaining the network effects of
using the same protocol.

Noteworthily, Anoma’s architecture is not homoge-
neous like a straitjacket, as it supports multiple de-
ployment models. The components in the protocol are
layered so that fractal instances can pick and choose
which parts they participate in, even if it involves
leveraging Anoma for specific functionalities, such
as decentralised counterparty discovery and solving,
whilst anchoring the final settlement on another plat-
form, such as Ethereum. Nonetheless, a unified and
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vertically integrated architecture allows developers
and users to benefit from standardisation.

3 Architectural topology
Anoma’s architectural topology consists of a set of log-
ical abstractions delineated by their role in dataflow,
independent of particular forms of representation, de-
ployment models, choices of cryptographic implemen-
tation, etc, Figure 1 provides an overview of the
architectural topology. Particular instantiations carry
different concrete performance and security implica-
tions and should be chosen according to requirements
of the specific deployment in question. We offer a
sketch of our choices for different deployments in Sec-
tion 5: Applications.

3.1 Nodes and network layer
The architectural topology of Anoma operates on a
substrate of networked Turing machines, which we
refer to as nodes. Nodes may take on different oper-
ational roles, such as gossiping intents, searching for
solutions, and voting in consensus. Although different
roles will have different hardware requirements, nodes
are a single class and runtime configuration settings
determine which roles a node performs.

All nodes compute deterministically, with the ability
to generate local randomness (which may be used,
for example, as secret values in cryptography) and
have read and write access to local storage. The
set of nodes is unbounded and dynamic with nodes
entering and exiting at any times. Nodes are partially
connected on an open network, where different roles
require different connections. The network layer is
assumed to be unreliable (messages may be arbitrarily
dropped, duplicated, or reordered) and untrustworthy
(unencrypted data is not secret). Specific roles may
have more stringent network assumptions such as
partial synchrony.

3.2 Intents
An intent is a signed message that describes a partial
state transitions. Semantically, intents contain infor-

mation about state preferences, such as that Alice
wishes to swap X for Y, or any X with property T for
any Y with property U, or Z for some asset A, but
only if A was previously owned by Bob, and only if
Bob provides an additional signature. More generally
intents are arbitrary code that is evaluated at runtime
by the settlement layer.

Intents are partial and hence specific counterparties
are not required, albeit they can also be complete
(complete state transitions are a subset of partial
state transitions). For example, an intent may ex-
press that Alice wishes to send asset A to Bob, a state
change which requires no one except Alice to agree
in order to be enacted. Such intents may still require
solvers, if certain information is unknown by Alice.
For example, Alice could express that she wishes to
set a bounty value in proportion to the current tem-
perature in Berlin, a value which she does not know
but knows an oracle key for, and which a solver with
oracle data access could provide. Intents which need
neither counterparties nor solvers can be immediately
converted into transactions. The particular syntax
of representation of assets, properties, etc. is fixed
at the application level. At the architectural level,
intents are opaque bytestrings.

3.3 Intent gossip layer
The intent gossip layer is a virtual sparse overlay
network for dissemination of intents, counterparty dis-
covery, and solving (when a solver combines multiple
intents to craft a valid transaction). The intent gos-
sip layer consists of sparsely networked intent gossip
nodes, where intent gossip is a role any node can play.
When a client authors an intent which requires solv-
ing, it broadcast the signed intent to an intent gossip
node, which further relays the intent over the intent
gossip layer. This broadcast can be directed, where
the node picks specific other nodes based on privacy,
solving specialisation or other criteria, or undirected,
where the node broadcasts the intent as widely as pos-
sible. Intents can contain a settlement-conditional fee,
to be paid only if the intent is satisfied, settled and
confirmed by consensus. Furthermore this fee can be
split between all nodes involved in the gossip and the
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Figure 1: The lifecycle of a transparent, shielded, and private intent in the Anoma architecture

ultimate solver. Intents can pay a fee for confirmation
and ordering of the (likely encrypted) intent in a data
availability domain where solvers compete to find the
best match for each batch of intents.

3.4 Solver
A solver is a node which chooses to observe all or a
subset of intents and computes solutions over the set
of intents. It achieves this by running one or many
solver algorithms. These algorithms are local and
different solvers compete with each other to satisfy
the presented constrain system. In practice, solvers
will likely specialise in certain applications, such as
fungible token trading or computing rollup states.
Solvers are permissionless and anyone can act as the
role of solver. Solvers can decide which intents to
accept and should generally only consider those that
are worth the storage and bandwidth costs, perhaps
due to a fee or an expected spread from a trade.
The solver algorithm searches the space of possible
solutions based on the current state of the settlement
layer and the known intent pool with the aim of finding
subsets of combinable intents to generate transactions
which are accepted by the settlement layer.

3.5 Transaction
A transaction is complete state transition which
acts as a function from the current state to a new
state. Transactions follow the declarative program-
ming model and describe the desired end state rather
than the imperative steps to compute it. As a result,
submitters of transactions, such as solvers or ordinary
users, do not have to consider the execution steps
when reasoning about the behaviour of their transac-
tion. In existing systems, such as Ethereum or other
programmable settlement architectures, submitters
have to be aware and trust all intermediary execution
steps, including as proxy contracts, since they can
modify the imperative computation and change the
final state result. With Anoma’s declarative approach
submitters only have to accurately specify the desired
end state without worrying about the compute done
in the middle.

Submitters encrypt transactions against the Ferveo
Distributed Key Generation (DKG) public key [7].
Nodes receive and gossip only encrypted transactions.
After consensus has ordered the encrypted byte strings
a 2

3 majority of consensus nodes decrypts and reveals
the original transactions. Ferveo is non-interactive,
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which means that there are no extra economic security
guarantees required in order to enforce the revelation
of the original transactions.

3.6 Mempool
The mempool is a virtual dense partitioned overlay
network for transactions. The mempool is partitioned
on the basis of security and concurrency domains
(fractal instances), where nodes participating in the
mempool gossip only transactions for fractal instances
which they are interested in. By contrast to the intent
gossip network, the mempool is dense in the sense that
validators of a particular fractal instance must receive
all of the transactions destined for that instance. The
mempool is opaque since it only receives, stores and
gossips encrypted byte strings rather than transparent
transactions.

3.7 Data availability domain
A data availability domain is a logical clock and data
availability layer. These data availability domains are
programmable by all applications. It allows applica-
tions to specify batches of intents that are decrypted
all at once at the same time after a particular time
interval has passed. Intents can be submitted in en-
crypted form (using Ferveo) to the nodes in a partic-
ular batch. After the batch is complete the validators
decrypt all intents in a batch and add the decrypted
content to the state. These intents are not directly
executed by the state machine, but rather are avail-
able to solvers who compete to offer the best solution
by a measurable criterion defined by the application.

3.8 Security domain
A security domain is a set of cryptographically iden-
tified nodes executing a particular state transition
function in consensus, for which finality and correct-
ness hold under a particular assumption of a certain
fraction of nodes behaving according to protocol, gen-
erally: n >= 3f + 1. Different Sybil-resistance mech-
anisms can be used to select the set of nodes, such as
proof of stake (PoS), proof of work (PoW), proof of
identity (PoI) or proof of authority (PoA).

3.9 Concurrency domain
A concurrency domain is a total ordering over a set of
transactions within the domain which may be partially
ordered or unordered with respect to other concur-
rency domains. Concurrency domains always operate
within particular security domains, since the total
order is enforced by the consensus of the security
domain.

3.10 Consensus
Consensus is an algorithm for agreement between
many parties (some possibly Byzantine) that forms a
security domain and quantizes time. The consensus
algorithm is responsible for grouping transactions into
blocks which are agreed upon by consensus partici-
pants.

3.11 Execution
An execution environment is an algorithm for taking
the current state and a set of transactions and ap-
plying those transactions to the state resulting in a
new state. Anoma provides a unified execution envi-
ronment which can handle transparent, shielded, and
private state transitions.

• Transparent data is public to execution nodes
and observers.

• Shielded data is private to execution nodes and
observers, but known to a single user, who can
prove properties of it using ZKPs.

• Private data is known by no one independently
and is computed and stored in encrypted form
using various forms of homomorphic encryption
(HE).

Anoma provides a general framework for reasoning
about the privacy of data independently of the kind
of verification performed, but performance character-
istics of the underlying cryptographic schemes will
determine the practical feasibility and execution costs
of various applications. It is important to note that
the delineation here is purely on the basis of state
privacy. Technologies such as zero-knowledge or opti-
mistic rollups can be used with transparent, shielded,
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and private state transitions.

3.12 Application
An application is a semantic domain governing the
form and logic of a particular partition of state which
many users may interact with. Figure 2 illustrates
the interfaces for end-users in Anoma. An application
consists of:

• State, which may be partitioned across multi-
ple fractal instances and shards within those in-
stances;

• application validity predicates, which govern
changes to the application’s state;

• user validity predicate components, which can be
included by the user in order to authorise certain
interactions with the application;

• intent formats, which allow intents to be cre-
ated by clients, reasoned about by solvers, and
processed by application validity predicates;

• solver algorithms, which allow solvers to craft
transactions satisfying intents from a specific ap-
plication or possibly from many other applica-
tions;, - - and interfaces, which provide users
visual, spatial, and temporal abstractions for in-
teracting with the application.

3.13 Fractal instance
A fractal instance is an instance of the Anoma con-
sensus and execution protocols operated by a set of
networked validators. In general, fractal instances are
security domains, in that they are operated by a par-
ticular set of validators, of which the user must trust a
quorum; concurrency domains, in that they maintain
a full order of only the transactions which they exe-
cute; and data availability domains, in that external
observers can query the fractal instance to retrieve
parts of its state. Fractal instances are sovereign, in
that they do not depend on any other part of the
fractal instance graph for continued correct execu-
tion, although their validator sets may overlap, a
property which can be exploited in certain cases to
provide multi-chain atomic settlement. Fractal in-
stances, in order to be compatible with all features of

the network, must implement the Anoma consensus
and settlement protocols according to the specifica-
tion, but they can vary in their chosen sybil-resistance
mechanisms, execution pricing, and local governance
of protocol versioning, economic distribution regime,
and irregular state transitions handling.

4 Programming model
Considering the architecture of Anoma from the per-
spective of users with preferences over states of the
system, one might ask the question: why are there
applications at all? Cannot users merely articulate
their preferences and the system enact them, without
further component intermediation? In principle, they
can, but the search space of solvers and difficulty of
coordinating the relations between the state of the
ledger and state of the world would be computation-
ally intractable without coordination on particular
forms of representation and particular logics of prefer-
ence expression and settlement. Applications describe
these particular forms, on which it is necessary to co-
ordinate in order to express, match, and settle intents,
and in order to provide simple and accurate interfaces
for users.

4.1 Application components
An application on the Anoma architecture consists of
intent formats, an application state validity predicate,
user validity predicate components, solver algorithms,
and one or many user interfaces.

• Intent formats describe the form and semantics
of particular intents utilised by the application,
which must be created by the user interfaces,
understood by intent gossip nodes, matched by
solvers, and validated by the application’s validity
predicates.

• The application state validity predicate encodes
the relation governing valid state transitions of
the application’s state.

• User validity predicate components encode the
relations which users can approve in order to
allow for safe interactions with this application.
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Figure 2: End-user interfaces of applications on Anoma

• Solver algorithms instruct a solver how to match
this application’s intents and form valid transac-
tions.

• Finally, user interfaces present users with a
graphical or textual view of and controller for the
application in question.

4.2 Application portability
By default, applications are portable across fractal in-
stances, and application state validity predicates may
also reason about security and concurrency domains
in order to allow for safe interaction between users of
an application across these domains.

Although nothing ties a particular interface to a par-
ticular application, Anoma’s intent gossip network is
capable of acting as a data availability layer for inter-
face code, in a way which allows secure synchronised
interface and application versions.

4.3 Application security model
In Anoma, users distrust applications. Applications
are never granted un-restricted access to modify a
user’s state. All state entries carry an explicit owner,
and the validity predicate associated with that owner
must authorise all changes to that state. Instead of
authorising à la transferFrom, users add components
to their validity predicates which allow for specific
interactions with a specific application, which can
then be performed non-interactively from the perspec-
tive of the user, if they have granted the application
license to do so. These components can be altered or
revoked at any time, and allow for “defence-in-depth”,
e.g. prevent transfers of more than X within time

bound t).

4.4 Application state model
Anoma assumes clients are stateful - they are treated
as components of the distributed system. Messages
will only be sent once, and can be marked as delivered,
in which case they will not be kept around. Message
history can be reconstructed by reprocessing historical
transaction archives.

5 Applications
The architecture of Anoma is suitable for any ap-
plication desiring to provide counterparty discovery,
solving, and settlement for particular forms of pref-
erences over a particular semantic domain. Here we
enumerate several primitives that Anoma exposes to
application developers. We then list several exam-
ples of contemporary decentralised applications and
how they would benefit from Anoma’s architecture.
Followed by the description of novel decentralised
applications which have hitherto been impractical or
impossible to develop due to the constraints of existing
architectures.

5.1 Novel primitives for applications
Anoma exposes several new primitives to application
developers:

• Incentivised data availability, for data which is
expected to be used in the creation of future
transactions, provided by the intent gossip layer
(see Section 6: Architectural instantiation).
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• Programmable solvers, provided by intent gossip
nodes running solver algorithms, to which can be
outsourced the computational task of finding an
atomic state transition (transaction) involving
many parties which simultaneously satisfies all
of their preferences.

• Programmable threshold decryption, provided
by Ferveo [7], which can be used to implement
on-demand batching and enforce configurable fair-
ness properties on the processing of application-
specific state transitions submitted within a quan-
tised period of logical time.

• Programmable privacy, provided by ZKP systems
and fully homomorphic encryption (FHE), which
can be used to separate verification of properties
of data from knowledge of the data itself. Ap-
plication developers can leverage programmable
privacy to build applications that handle trans-
parent, shielded, and private state in the same
application.

These primitives taken together provide the flexibility
required to build complex user-friendly applications
which provide the desired game-theoretic, privacy, and
latency properties, such as decentralised quadratic
voting and quadratic funding, voting through incen-
tivised data availability, settlement through solvers,
privacy & receipt-freeness through ZKPs and HE.

5.2 Application examples
5.2.1 Contemporary decentralised applica-

tions

Here we list example of collections of contemporary
applications that follow the intent, counterparty dis-
covery, and solving design pattern, but that are at
the moment application specific and rely on at least
one single-operator component.

5.2.1.1 Decentralised exchanges Contempo-
rary decentralised exchanges for both fungible and
non-fungible tokens, such as 0x, CoWSwap, Uniswap,
Wyvern, and Seaport, require both counterparty dis-
covery, solving, and settlement, besides other require-
ments such as batched/fair execution. At the mo-
ment, such projects either use the blockchain itself for

counterparty discovery (Uniswap) or operate single-
operator orderbooks controlled by specific parties
(0x, Wyvern, Seaport, CoWSwap), which tend to be
trusted for fair ordering and optimal execution. Using
Anoma, these parties could be replaced by the peer-to-
peer intent gossip and distributed solving layer, which
generalises through arbitrary trades. Orders to buy
or sell particular assets would instead be broadcasted
across the intent gossip network as intents, matched
by a solver, who could collect any number of intents in
order to balance a trade, and submitted for settlement
to the fractal instance holding the assets in question.
Threshold decryption can be used for fairness across
batches.

5.2.1.2 Rollups Existing rollup architectures,
both optimistic ones such as Arbitrum, Optimism;
and zero-knowledge ones, such as ZkSync or StarkNet,
operate with a single-operator sequencer and solver
responsible for ordering transactions, calculating state
updates, and submitting updated states to the root
chain, in these cases, Ethereum. This sequencer is
trusted with fair ordering and optimal solving, and
can selectively omit transactions, so some projects
have expressed a desire to decentralise the sequencer.
As a decentralised sequencer is simply a consensus
instance, such rollups could instantiate an Anoma
fractal instance, using Typhon consensus, to oper-
ate their sequencer, and submit zero-knowledge or
optimistic proofs of execution to Ethereum as they
currently do.

5.2.1.3 Public goods funding Quadratic fund-
ing (QF), as implemented by Gitcoin, requires
both counterparty discovery, solving (as the fund-
ing provider’s payouts depend on individual dona-
tions), and settlement. Using Anoma, QF can be
implemented in a manner which preserves individ-
ual privacy and provides excellent UX (e.g., donating
to projects carries no fees). The funding provider,
project creators, and all individual donators each au-
thor intents reflecting their willingness to commit
funds, execute on a project, and donate, respectively.
A solver algorithm matches these intents and creates
a single transaction to settle at the end of the QF
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round, while the funding provider can pay the settle-
ment fees. Amounts of donations must be public in
order to perform the QF calculations, but individual
identities can be kept private using Anoma’s private
execution environment. Expressive intents can also
capture additional dimensionality which is difficult to
represent in a simpler QF model - for example, many
projects require a certain amount of funding in order
to do anything at all, and only wish to receive funding
(and commit to action) should a certain threshold be
met. This can be expressed as a constraint in the
intent, and the solver must either find enough funding
to meet the threshold or omit the project, as desired,
in order for the final settlement transaction to be
valid.

5.2.2 Novel applications

Here we sketch some novel decentralised applications
that can be built using Anoma’s architecture: DAOs
2.0, runtime rollups, multiparty multivariate barter-
ing, private auctions, and local episodic games.

5.2.2.1 DAOs 2.0 Decentralised autonomous or-
ganisations (DAOs) hold the twin promises of organi-
sational operational transparency, in that the rules for
decision-making are articulated and executed in the
same code, which anyone can read, and operational
verifiability, in that any past actions of the organisa-
tion can be proven to a third party to be consistent
with this rule set. In present instantiations, however,
they obtain transparency and verifiability by execu-
tion on a public blockchain, which comes at the cost
of privacy.

Operational privacy allows organisations to present,
and prove with verifiability, specific data about the or-
ganisations inputs and outputs (e.g. quarterly funding
disclosure for a non-profit) without revealing every
aspect of decision-making, which is a lot of data from
which someone can easily cherry-pick to misrepre-
sent what’s really happening, or which members of
the public with other agendas (perhaps operating a
competing organisation, or with a personal bone to
pick with a member of the one in question) can use
to start bike-shedding debates or otherwise interfere

with organisational operations.

Anoma’s architecture allows for the creation of private
DAOs which need make no such compromise: they
can keep both decision-making rules and data private,
visible only to parties within the organisation, but
prove arbitrary properties of each to the world as they
choose.

In particular, this system could be used to instantiate
something like the plural money system[8]. Communi-
ties could themselves create private DAOs, controlled
by members of the community, with internal commu-
nity currencies, community-owned SALSA-allocated
assets, and limitations/taxes on wealth transfer out-
side the community.

5.2.2.2 Runtime rollups Let us take a “rollup”
to be the separation of computation and verification
such that the verification can be suitably replicated
for improved fault-tolerance while the computation
need not be. In systems which rely on imperative
semantics, and where end-users are signing particular
imperative execution paths, rollups are long-lived and
must be specifically specified by users. In Anoma’s
declarative architecture, since users sign intents ex-
pressing properties which the execution is required
to satisfy rather than any particular execution path,
rollups can be created at runtime depending on dy-
namic demand, and markets for compute may be used
rather than replication where doing so is cheaper.

5.2.2.3 Multiparty, multivariate private bar-
tering Consider three friends, Alice, Bob, and Char-
lie, a hotel operator David, a festival producer Eve,
and a train company Deutsche Bahn. The festival runs
for three weekends in July near Potsdam. Alice, Bob,
and Charlie wish to attend the festival together, on
the same weekend, and take trains from their respec-
tive home towns of Berlin, Zurich, and Amsterdam.
They’re flexible about the particular weekend, and
would like the combined price of train tickets, hotel
rooms, and festival passes to be as low as possible.
Eve wants to sell tickets to his festival, which are
fixed-price based on his costs plus markup, but some-
times resold by parties who purchase them early on
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then later realise that they cannot attend. Deutsche
Bahn sells train tickets with variable prices based on
demand, David likewise for hotel rooms (and she has
both single rooms suitable to host one person and
quadruple rooms suitable to host four). Alice, Bob,
and Charlie are happy to room with another person,
as long as they are also attending the festival (they
view this as good evidence of a likely friendship).

In the world today, Alice, Bob, and Charlie might go
to the festival’s website to look for ticket availability,
then try to check hotel and train prices across the
three possible weekends and compile a spreadsheet
in order to figure out what their costs might be. Of
course, while they’re busy compiling the spreadsheet,
someone else looking to travel could book their hotel
room or train seat, and they’d be out of luck. Worse,
they could book a hotel room for a particular weekend,
then find out that the train tickets are unavailable and
be unable to change the hotel room (at least without
paying a cancellation fee).

Alice, Bob, Charlie, David, Eve, and Deutsche Bahn
could all use Anoma as a substrate for multiparty
private bartering. Each party would author an intent
with their preferences, and all intents would either be
matched atomically (meaning that train tickets, hotel
rooms, and festival passes are booked for all of Alice,
Bob, and Charlie in correspondence at once) or not
at all. Using private bartering, what all parties want
is public, but who they are need not be revealed.

This can also be used for simpler cases, such as fun-
gible tokens. Users can author intents capturing the
semantics of market & limit orders, and also more
complex algorithms such as an AMM. Expressed in
intent form, an AMM order is simply a price curve
along which one is willing to swap two assets (xy =
k). Users can author AMM intents for the full price
range or any subrange (similar to Uniswap v3). Un-
like on-chain AMMs, this does not require sending
transactions or locking any assets up.

5.2.2.4 Private auctions Independent of more
long-term reasons, auctions often benefit from privacy
for game-theoretic reasons: a sealed-bid second-price
auction gives bidders reason to bid their true value,

but requires bid privacy in order to work. Using
Anoma, such auctions could be conducted privately,
in two different ways. The first and most immedi-
ately feasible way is to use programmable threshold
decryption to keep all bids encrypted until the auction
deadline has passed, then decrypt them all at once, se-
lect the highest bidder as the winner and charge them
the second-highest price. This can be combined with
other privacy techniques for concealment of identity.
FHE can also be used to implement private auctions,
by performing the bid selection directly as operations
on the bids submitted as ciphertexts.

5.2.2.5 Local episodic private games Con-
sider a digital re-enactment of a game of poker. Games
of poker are episodic, in that (even if bets are being
placed and winners reported to a leaderboard) no
interaction or ordering takes place between different
games - if users are submitting actions, actions taken
by users within the same game must be ordered with
respect to actions taken by other users in that game,
but not with respect to actions taken by any others.
Anoma’s fractal instance architecture can instantiate
this structure efficiently: players, when they start a
poker game, launch a temporary consensus instance
(simply operated between themselves) to order state
transitions within that game, then submit the results
at the end to a poker tracking/statistics application
on a more long-running fractal instance. This frac-
tal instance can be run on LAN for low-latency, and
transactions need not have any cost (since the set of
who can submit them is restricted to the players).

Poker also requires privacy, primarily keeping a private
hand and periodically revealing cards, and random-
ness (for the deck shuffle), which can be provided
by the private execution system and threshold sig-
natures from the threshold cryptosystem in Anoma,
respectively.

6 Architectural instantiation
The Anoma architecture requires many individually
intricate subcomponents which can be instantiated in
a variety of ways with different performance, complex-
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ity, and ergonomic trade-offs. Here we sketch the ab-
stract interfaces required of necessary subcomponents
and summarise our current development directions in
instantiating them.

6.1 Gossip
The Anoma gossip system is a pseudonymously iden-
tified, path-authenticated, fault-accountable sparse
overlay network. In contrast to conventional peer-
to-peer gossip networks, this system is designed to
operate privately by default, with optional attesta-
tions. Nodes are identified by cryptographic keys
and all messages are encrypted to their recipient and
signed by their sender. Nodes craft & enforce lo-
cal rules around message validity, rebroadcast, and
retention. Combined with a settlement ledger and
path-authentication-based fees, this provides an incen-
tivised data availability layer for transaction-relevant
data, which is used within the Anoma architecture
by users to broadcast intents, which are sent around
until solvers find counterparties, create transactions,
and submit them to fractal instances for settlement.
Nodes maintain a local trust graph and ruleset around
message content validity and rebroadcast criteria. The
Anoma gossip system uses an explicit trust model,
where the underlying physical network is distrusted,
new nodes bootstrap with a set of trusted peer public
keys, and nodes maintain trust relations over time,
keeping track of who introduced them to whom and
applying changes in trust recursively along the trust
graph.

6.1.1 Node model

Nodes in the gossip network are assumed to possess
a private key, the corresponding public key to which
is used as identification. Nodes must totally order
and sign all messages which they send, which are
unique. Signing two messages with the same nonce is
an accountable fault.

In traditional P2P gossip systems, nodes are primar-
ily identified by their IP address, which refers to a
physical network destination and is assumed to be
long-lived. By contrast, in the Anoma gossip sys-
tem, nodes are primarily identified by their public key,

which can list and periodically rotate IP addresses
at which it could potentially be reached (but which
a sender does not necessarily need to know in order
to send messages). This can be seen as a sort of vir-
tual gossip network, with identity persistence based
on secret information (the private keys) which can
be freely moved across physical substrates. Local
caches of physical routing latency are kept in order to
maintain a relatively efficient mapping of the spatially
non-local virtualised network into the spatially local
physical one.

This choice of structure also allows for a conceptually
elegant virtualisation of fault-tolerant subsystems: a
threshold cryptosystem in combination with consensus
(in order to provide ordering) effectively virtualises
many nodes as one node, with the threshold key used
for incoming and outgoing messages and shares for
threshold decryption and threshold signing internally
rebroadcast around for reconstruction (encrypted to
individual node public keys for privacy). In contrast to
other blockchain systems, Anoma’s gossip network is
not sharded on the basis of security domains (compare
to independent blockchain mempools), but rather
simply sparse, where real-time demand can inform
connection choices and routing tables.

6.1.2 Path authentication

Anoma’s gossip system provides path authentication:
the receiver of a message can verify a chain of sig-
natures recursively back all the way to the original
sender, such that each party in the message chain can
be verified to have authorised the next send, and can
be both potentially paid for participating in gossip
and held accountable for inconsistent ordering across
messages. This is accomplished simply by keeping
an ordered list of signatures in the message header,
which can all be checked by the recipient for cor-
rectness and linkage consistency. For efficiency and
privacy, validity checks may be compressed and inner
path identities may be hidden using ZKPs, which
the recipient then verifies as a part of receiving the
message.
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6.1.3 Gossip incentives

The path authentication system described above can
be used to provide a form of gossip incentive whereby
a user can broadcast an intent and offer payment to
any nodes who participate in a chain of gossip which
leads to its eventual settlement. The user simply in-
cludes a small fee (the semantics of which are chosen
at runtime) which they allow gossip nodes to malleate,
so that each node, when forwarding the message, can
choose to take a portion of the fee for themselves. If
the node can settle the intent by combining it with
others, crafting a valid transaction, and submitting
it to the appropriate fractal instance, they can claim
the fee immediately. If not, the node can choose how
much fee to take for themselves before they forward
the message. Of course, they can take all the fee,
but then there would be no reason for other nodes to
rebroadcast or settle the intent, so the node would
receive nothing. Nodes can thus be expected to re-
broadcast intents taking only enough of the fee such
that the expected benefits of potential settlement out-
weigh the opportunity cost of potentially being able
to settle it themselves (but the user can broadcast
their intent to many parties, so an individual node
who cannot immediately settle it is unlikely to be the
first to be able to).

6.2 Consensus
The consensus component is an algorithm by which
many nodes can be abstracted as one virtual node,
which will be correct subject to certain assumptions
about the correctness of the constituent nodes (gener-
ally > 2

3 ). Just as individual nodes operate a deter-
ministic state machine and send and receive messages
in a local total order, virtual nodes created by use
of the consensus algorithm operate a deterministic
(replicated) state machine and send/receive messages
in a total order. The consensus algorithm is responsi-
ble for abstracting many nodes into this virtual node
by gossiping, ordering, and executing transactions (in-
coming messages), then finalising the updated states
(outgoing messages) in a verifiable manner.

At present, the consensus component in Anoma is
instantiated by Typhon[9], which draws substantially

from Heterogeneous Paxos[10], Narwhal[11], and Ten-
dermint[4].

6.2.1 Ordering

The ordering component of consensus is responsible
for ordering transactions prior to execution, where
nodes participating in consensus must agree on the
ordering and ensure that all transactions so ordered
are available to them for execution.

6.2.2 Execution

The execution component of consensus is responsible
for executing transactions on which an order has al-
ready been agreed, updating the state to reflect the
results of transaction execution, and finalising the up-
dated state so that external parties can inexpensively
verify properties of it.

6.3 Execution environments
The execution environment of Anoma is a runtime
responsible for partitioning and permissioning state
and code to allow for safe interoperation of mutu-
ally distrusting programs, abstracting transparent,
shielded, and private state changes and providing
appropriate primitives for cryptographic operations,
and handling cross-fractal instance state verification
as well as synchronous and asynchronous cross-fractal-
instance messaging. These three responsibilities of
abstraction are orthogonalised into three components:
the validity predicate subsystem, the unified transpar-
ent/shielded/private execution environment (Taiga),
and the transparent execution environment (Typhon
EE).

6.3.1 Validity predicate subsystem

The validity predicate (VP) subsystem is responsible
for partitioning and permissioning state and code in
order to allow for safe interoperation of mutually dis-
trusting programs. This is accomplished by splitting
the keyspace of transparent, shielded, and private
state into mutually exclusive prefix spaces, where the
first part of a key corresponds to ownership by a spe-
cific validity predicate, stored at a sentinel key within
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that prefix. Whenever state within a particular prefix
is altered, the validity predicates associated with that
prefix are called, and they can choose to accept or
reject the transaction. Validity predicates can also
choose to require that other validity predicates also
accept.

The validity predicate subsystem is itself implemented
as a validity predicate and can in principle be instan-
tiated recursively. The subsystem is also responsible
for enforcing limitations on what data is accessible to
VPs.

6.3.2 Taiga Unified EE

The Taiga unified execution environment is respon-
sible for handling transparent, shielded, and private
data access and operations.

6.3.2.1 Data privacy domains Transparent
data is represented as a mutable key-value tree, where
keys can be read, written, and deleted, and prefixes
can be iterated over.

Shielded data is represented as an immutable append-
only note set, where each note can be either consumed
once or many times. Each note includes a key, value,
and owner key, to which an encryption of the note
contents must be available.

Private data is represented as a mutable key -> ci-
phertext mapping, where keys can be read, written,
and deleted, and ciphertexts can be operated on using
special homomorphic instructions.

6.3.2.2 Cross-domain transit Conversion be-
tween the three data realms is handled as follows:

• Transparent -> Shielded: Transparent data can
be read or computed over in the course of execu-
tion, and then written into a shielded note.

• Transparent -> Private: Transparent data can be
read or computed over in the course of execution,
and then encrypted to the threshold key.

• Shielded -> Private: Shielded data can be com-
puted over in zero-knowledge, and then encrypted
to the threshold key, where correct encryption is

proved in zero-knowledge and only the encrypted
value is revealed to the operator.

• Shielded -> Transparent: Properties of shielded
data can be proved in zero-knowledge and then
revealed to the operator along with the proof.

• Private -> Transparent: Private ciphertexts can
be decrypted using threshold decryption. This
process is asynchronous.

• Private -> Shielded: Private ciphertexts can
be re-encrypted to another public key and thus
become shielded data. This process is asyn-
chronous.

6.3.3 Typhon Transparent EE

The Typhon execution environment is the lowest-level
execution environment, designed to impose only the
minimal requirements and structure required by Ty-
phon for transaction ordering and concurrent execu-
tion.

The Typhon execution environment has only trans-
parent state, which is organised in a key-value tree.
Transactions declare parents of all subtrees of keyspace
within which they will read and write. Using this in-
formation, Typhon can identify transactions which
touch only non-overlapping regions of state and thus
order transactions for concurrent execution. This ex-
ecution environment does not itself have any state
semantics for private data or state/code partition-
ing. Further structure is specified by a root validity
predicate, stored at a particular sentinel key, which is
called as a part of all transactions.

The Typhon EE is also responsible for handling asyn-
chronous message passing across fractal instances and
synchronous (atomic) message passing within chimera
chains. The EE handles transport, ordering, and ver-
ification, while message semantics are left to higher
execution abstraction layers.

6.4 Compilation stack
In order to provide a unified black-box application
development interface, the Anoma implementation
includes a new language, Juvix, and a compiler stack,
designed in tandem to allow developers to write for-
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mally verified, privacy-preserving, fault-tolerant dis-
tributed applications.

A great deal of research work into the compiler stack
remains and this section should be considered a work
in progress. Several components described herein are
only partially implemented and alternatives are still
under active consideration.

6.4.1 Juvix

Juvix is a high-level function language which com-
piles to a variant of the simply typed lambda calculus.
Programs written in Juvix can express and reason
about public, shielded, and private data and opera-
tions. Juvix’s lambda calculus output language can
be compiled to RISCV or WASM through C, or can
be compiled to the abstract categorical operations
of the AVM which can in turn be instantiated as
polynomials, the input language of VampIR.

6.4.2 AnomaVM

The AnomaVM (AVM) is a distributed abstract cate-
gorical virtual machine. The AVM is designed to cap-
ture information theoretic semantics of multiparty in-
teractions and compute without fixing concrete crypto-
graphic representations/instantiations or operational
execution semantics. An AVM program directly ref-
erences agents by role, who can reason about each
others state transitions and states through proofs of
execution and authentication, and who can send and
receive messages to and from each other.

An AVM program itself specifies agents only ab-
stractly, but it can be executed (or compiled, then
executed) by any agent, who must specify the role
they wish to play (this is a sort of local naming sys-
tem). The AVM can be compiled through LLVM
for transparent execution, and through VampIR for
circuits suited to ZKP or FHE execution.

As an operationally neutral abstract representation,
the AVM is also the level at which the Anoma architec-
ture defines cost semantics and identity of programs,
e.g. different parties may compile AVM programs to
different concrete cryptographic and transparent back-
ends for execution.

6.4.3 VampIR

VampIR is a language and compiler designed to pro-
vide an abstract representation of polynomials, cir-
cuits, and constraint systems which can be compiled
to different concrete proof systems. The IR is designed
to capture the denotational semantics of circuits while
remaining agnostic to operational semantics of instan-
tiation in various proof systems and cryptographic
backends, including ZKP and FHE.

6.5 Fractal instance components

6.5.1 Sybil resistance

Fractal instances must provide a Sybil resistant mech-
anism in order to assign voting power in consensus.
This can be proof-of-stake, proof-of-authority, hybrid
(partially fungible) proof-of-stake, or some form of
liquid democracy based on the cryptographic identity
substrate.

6.5.2 Governance

Fractal instances may provide a governance mecha-
nism for enacting irregular state changes by a (some-
what) more regular process than what would take
place without any such system. This governance mech-
anism itself requires Sybil resistance, which can be
the same as used in consensus or a slight variant.

6.5.3 Resource pricing

Fractal instances must provide a Sybil resistance mech-
anism for performing expensive computational opera-
tions upon the receipt of messages which can be sent
by anyone in an open network. This Sybil resistance
mechanism could be based on fees paid in a network
token, identity-based quotas or subscriptions of com-
pute, storage, etc., or low flat per-message limits in
combination with network-based rate limiting.
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7 Future directions

7.1 Private counterparty discovery

The trade-off axis between counterparty discovery,
fairness, and privacy is quite fundamental: in order
to find a counterparty in any way more efficient than
random testing, you must provide some information
about your preferences, which entails a correspond-
ing loss of privacy, and in order to provide fairness
across a larger set of parties in cases of uncertain in-
formation (e.g. variable prices), you must make your
preferences public to a larger set of solvers who can see
more intents at once and compete to find the fairest
solutions.

Encrypted solving (solving intents which are com-
pletely private to the solver), while possible in prin-
ciple, pairs the already NP problem of solving with
the overhead of heavy-duty HE, and is likely to re-
main infeasible in the near future, but research into
improved algorithms, application-specific solutions,
and dedicated hardware could bring these overhead
costs down over time.

7.2 End-to-end behavioural verifica-
tion

Anoma’s architecture covers the domain from (ab-
stract) Turing machines operating node software to
(abstract) users authoring intents, and provides guar-
antees for the behaviours of the system with respect
to the latter given certain assumptions about the be-
haviours of the former. In practice, safe usage of a
deployment of Anoma depends not only on the cor-
rectness of this system but also on the correctness of
the hardware utilised by nodes and the correctness of
interfaces utilised by users. Eventually, this verifica-
tion could be extended further into the interface and
hardware domains.
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