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Abstract—The interblockchain communication proto-
col (IBC) is an end-to-end, connection-oriented, state-
ful protocol for reliable, ordered, and authenticated
communication between modules on separate dis-
tributed ledgers. IBC is designed for interoperation
between heterogenous ledgers arranged in an unknown,
dynamic topology, operating with varied consensus
algorithms and state machines. The protocol realises
this by specifying the sufficient set of data structures,
abstractions, and semantics of a communication pro-
tocol which once implemented by participating ledgers
will allow them to safely communicate. IBC is payload-
agnostic and provides a cross-ledger asynchronous com-
munication primitive which can be used as a constituent
building block by a wide variety of applications.

Index Terms—ibc; interblockchain; dlt

I. Introduction
By virtue of their nature as replicated state machines
across which deterministic execution and thus continued
agreement on an exact deterministic ruleset must be
maintained, individual distributed ledgers are limited in
their throughput & flexibility, must trade off application-
specific optimisations for general-purpose capabilities, and
can only offer a single security model to applications
built on top of them. In order to support the transac-
tion throughput, application diversity, cost efficiency, and
fault tolerance required to facilitate wide deployment of
distributed ledger applications, execution and storage must
be split across many independent ledgers which can run
concurrently, upgrade independently, and each specialise
in different ways, in a manner such that the ability of
different applications to communicate with one another,
essential for permissionless innovation and complex multi-
part contracts, is maintained.

One multi-ledger design direction is to shard a single logical
ledger across separate consensus instances, referred to as
“shards”, which execute concurrently and store disjoint
partitions of the state. In order to reason globally about
safety and liveness, and in order to correctly route data and
code between shards, these designs must take a “top-down
approach” — constructing a particular network topology,
usually a single root ledger and a star or tree of shards, and
engineering protocol rules and incentives to enforce that
topology. Message passing can then be implemented on top
of such a sharded topology by systems such as Polkadot’s
XCMP [1] and Ethereum 2.0’s cross-shard communication
[2]. This approach possesses advantages in simplicity and

predictability, but faces hard technical problems in assuring
the validity of state transitions [3], requires the adherence
of all shards to a single validator set (or randomly elected
subset thereof) and a single virtual machine, and faces
challenges in upgrading itself over time due to the necessity
of reaching global consensus on alterations to the network
topology or ledger ruleset. Additionally, such sharded
systems are brittle: if the fault tolerance threshold is
exceeded, the system needs to coordinate a global halt
& restart, and possibly initiate complex state transition
rollback procedures — it is not possible to safely isolate
Byzantine portions of the network graph and continue
operation.

The interblockchain communication protocol (IBC) provides
a mechanism by which separate, sovereign replicated
ledgers can safely, voluntarily interact while sharing only
a minimum requisite common interface. The protocol
design approaches a differently formulated version of the
scaling and interoperability problem: enabling safe, reliable
interoperation of a network of heterogeneous distributed
ledgers, arranged in an unknown topology, preserving data
secrecy where possible, where the ledgers can diversify,
develop, and rearrange independently of each other or
of a particular imposed topology or ledger design. In a
wide, dynamic network of interoperating ledgers, sporadic
Byzantine faults are expected, so the protocol must also
detect, mitigate, and contain the potential damage of
Byzantine faults in accordance with the requirements of
the applications and ledgers involved without requiring the
use of additional trusted parties or global coordination.

To facilitate this heterogeneous interoperation, the in-
terblockchain communication protocol utilises a bottom-up
approach, specifying the set of requirements, functions, and
properties necessary to implement interoperation between
two ledgers, and then specifying different ways in which
multiple interoperating ledgers might be composed which
preserve the requirements of higher-level protocols. IBC
thus presumes nothing about and requires nothing of the
overall network topology, and of the implementing ledgers
requires only that a known, minimal set of functions with
specified properties are available. Ledgers within IBC are
defined as their light client consensus validation functions,
thus expanding the range of what a “ledger” can be to
include single machines and complex consensus algorithms
alike. IBC implementations are expected to be co-resident
with higher-level modules and protocols on the host ledger.



Ledgers hosting IBC must provide a certain set of functions
for consensus transcript verification and cryptographic
commitment proof generation, and IBC packet relayers (off-
ledger processes) are expected to have access to network
protocols and physical data-links as required to read the
state of one ledger and submit data to another.

The data payloads in IBC packets are opaque to the
protocol itself — modules on each ledger determine the
semantics of the packets which are sent between them.
For cross-ledger token transfer, packets could contain
fungible token information, where assets are locked on
one ledger to mint corresponding vouchers on another.
For cross-ledger governance, packets could contain vote
information, where accounts on one ledger could vote in
the governance system of another. For cross-ledger account
delegation, packets could contain transaction authorisation
information, allowing an account on one ledger to be
controlled by an account on another. For a cross-ledger
decentralised exchange, packets could contain order intent
information or trade settlement information, such that
assets on different ledgers could be exchanged without
leaving their host ledgers by transitory escrow and a
sequence of packets.

This bottom-up approach is quite similar to, and directly
inspired by, the TCP/IP specification [4] for interoperability
between hosts in packet-switched computer networks. Just
as TCP/IP defines the protocol by which two hosts commu-
nicate, and higher-level protocols knit many bidirectional
host-to-host links into complex topologies, IBC defines the
protocol by which two ledgers communicate, and higher-
level protocols knit many bidirectional ledger-to-ledger
links into gestalt multi-ledger applications. Just as TCP/IP
packets contain opaque payload data with semantics inter-
preted by the processes on each host, IBC packets contain
opaque payload data with semantics interpreted by the
modules on each ledger. Just as TCP/IP provides reliable,
ordered data transmission between processes, allowing a
process on one host to reason about the state of a process on
another, IBC provides reliable, ordered data transmission
between modules, allowing a module on one ledger to reason
about the state of a module on another.

This paper is intended as an overview of the abstractions
defined by the IBC protocol and the mechanisms by
which they are composed. We first outline the structure of
the protocol, including scope, interfaces, and operational
requirements. Subsequently, we detail the abstractions
defined by the protocol, including modules, ports, clients,
connections, channels, packets, and relayers, and describe
the subprotocols for opening and closing handshakes,
packet relay, edge-case handling, and relayer operations.
After explaining the internal structure of the protocol,
we define the interface by which applications can utilise
IBC, and sketch an example application-level protocol for
fungible token transfer. Finally, we recount testing and

deployment efforts of the protocol thus far. Appendices
include pseudocode for the connection handshake, channel
handshake, and packet relay algorithms.

II. Protocol scope & properties
A. Scope
IBC handles authentication, transport, and ordering of
opaque data packets relayed between modules on separate
ledgers — ledgers can be run on solo machines, replicated by
many nodes running a consensus algorithm, or constructed
by any process whose state can be verified. The protocol is
defined between modules on two ledgers, but designed for
safe simultaneous use between any number of modules on
any number of ledgers connected in arbitrary topologies.

B. Interfaces
IBC sits between modules — smart contracts, other
ledger components, or otherwise independently executed
pieces of application logic on ledgers — on one side, and
underlying consensus protocols, blockchains, and network
infrastructure (e.g. TCP/IP), on the other side.

IBC provides to modules a set of functions much like
the functions which might be provided to a module for
interacting with another module on the same ledger:
sending data packets and receiving data packets on an
established connection and channel, in addition to calls to
manage the protocol state: opening and closing connections
and channels, choosing connection, channel, and packet
delivery options, and inspecting connection and channel
status.

IBC requires certain functionalities and properties of
the underlying ledgers, primarily finality (or thresholding
finality gadgets), cheaply-verifiable consensus transcripts
(such that a light client algorithm can verify the results
of the consensus process with much less computation &
storage than a full node), and simple key/value store
functionality. On the network side, IBC requires only
eventual data delivery — no authentication, synchrony,
or ordering properties are assumed.

C. Operation
The primary purpose of IBC is to provide reliable, authen-
ticated, ordered communication between modules running
on independent host ledgers. This requires protocol logic in
the areas of data relay, data confidentiality and legibility,
reliability, flow control, authentication, statefulness, and
multiplexing.

1) Data relay

In the IBC architecture, modules are not directly sending
messages to each other over networking infrastructure, but
rather are creating messages to be sent which are then
physically relayed from one ledger to another by monitoring
“relayer processes”. IBC assumes the existence of a set of
relayer processes with access to an underlying network



protocol stack (likely TCP/IP, UDP/IP, or QUIC/IP)
and physical interconnect infrastructure. These relayer
processes monitor a set of ledgers implementing the IBC
protocol, continuously scanning the state of each ledger
and requesting transaction execution on another ledger
when outgoing packets have been committed. For correct
operation and progress in a connection between two ledgers,
IBC requires only that at least one correct and live relayer
process exists which can relay between the ledgers.

2) Data confidentiality and legibility

The IBC protocol requires only that the minimum data
necessary for correct operation of the IBC protocol be made
available and legible (serialised in a standardised format)
to relayer processes, and the ledger may elect to make that
data available only to specific relayers. This data consists
of consensus state, client, connection, channel, and packet
information, and any auxiliary state structure necessary
to construct proofs of inclusion or exclusion of particular
key/value pairs in state. All data which must be proved
to another ledger must also be legible; i.e., it must be
serialised in a standardised format agreed upon by the two
ledgers.

3) Reliability

The network layer and relayer processes may behave
in arbitrary ways, dropping, reordering, or duplicating
packets, purposely attempting to send invalid transactions,
or otherwise acting in a Byzantine fashion, without com-
promising the safety or liveness of IBC. This is achieved
by assigning a sequence number to each packet sent over
an IBC channel, which is checked by the IBC handler (the
part of the ledger implementing the IBC protocol) on the
receiving ledger, and providing a method for the sending
ledger to check that the receiving ledger has in fact received
and handled a packet before sending more packets or taking
further action. Cryptographic commitments are used to
prevent datagram forgery: the sending ledger commits to
outgoing packets, and the receiving ledger checks these
commitments, so datagrams altered in transit by a relayer
will be rejected. IBC also supports unordered channels,
which do not enforce ordering of packet receives relative
to sends but still enforce exactly-once delivery.

4) Flow control

IBC does not provide specific protocol-level provisions for
compute-level or economic-level flow control. The under-
lying ledgers are expected to have compute throughput
limiting devices and flow control mechanisms of their own
such as gas markets. Application-level economic flow con-
trol — limiting the rate of particular packets according to
their content — may be useful to ensure security properties
and contain damage from Byzantine faults. For example, an
application transferring value over an IBC channel might

want to limit the rate of value transfer per block to limit
damage from potential Byzantine behaviour. IBC provides
facilities for modules to reject packets and leaves particulars
up to the higher-level application protocols.

5) Authentication

All data sent over IBC are authenticated: a block finalised
by the consensus algorithm of the sending ledger must com-
mit to the outgoing packet via a cryptographic commitment,
and the receiving ledger’s IBC handler must verify both the
consensus transcript and the cryptographic commitment
proof that the datagram was sent before acting upon it.

6) Statefulness

Reliability, flow control, and authentication as described
above require that IBC initialises and maintains certain
status information for each datastream. This information is
split between three abstractions: clients, connections, and
channels. Each client object contains information about the
consensus state of the counterparty ledger. Each connection
object contains a specific pair of named identifiers agreed
to by both ledgers in a handshake protocol, which uniquely
identifies a connection between the two ledgers. Each
channel, specific to a pair of modules, contains information
concerning negotiated encoding and multiplexing options
and state and sequence numbers. When two modules wish
to communicate, they must locate an existing connection
and channel between their two ledgers, or initialise a new
connection and channel(s) if none yet exist. Initialising
connections and channels requires a multi-step handshake
which, once complete, ensures that only the two intended
ledgers are connected, in the case of connections, and
ensures that two modules are connected and that future
datagrams relayed will be authenticated, encoded, and
sequenced as desired, in the case of channels.

7) Multiplexing

To allow for many modules within a single host ledger to use
an IBC connection simultaneously, IBC allows any number
of channels to be associated with a single connection.
Each channel uniquely identifies a datastream over which
packets can be sent in order (in the case of an ordered
channel), and always exactly once, to a destination module
on the receiving ledger. Channels are usually expected to
be associated with a single module on each ledger, but
one-to-many and many-to-one channels are also possible.
The number of channels per connection is unbounded,
facilitating concurrent throughput limited only by the
throughput of the underlying ledgers with only a single
connection and pair of clients necessary to track consensus
information (and consensus transcript verification cost thus
amortised across all channels using the connection).



III. Host ledger requirements
1) Module system

The host ledger must support a module system, whereby
self-contained, potentially mutually distrusted packages of
code can safely execute on the same ledger, control how
and when they allow other modules to communicate with
them, and be identified and manipulated by a controller
module or execution environment.

2) Key/value Store

The host ledger must provide a key/value store interface
allowing values to be read, written, and deleted.

These functions must be permissioned to the IBC handler
module so that only the IBC handler module can write
or delete a certain subset of paths. This will likely be
implemented as a sub-store (prefixed key-space) of a larger
key/value store used by the entire ledger.

Host ledgers must provide an instance of this interface
which is provable, such that the light client algorithm for
the host ledger can verify presence or absence of particular
key-value pairs which have been written to it.

This interface does not necessitate any particular storage
backend or backend data layout. ledgers may elect to use a
storage backend configured in accordance with their needs,
as long as the store on top fulfils the specified interface
and provides commitment proofs.

3) Consensus state introspection

Host ledgers must provide the ability to introspect their
current height, current consensus state (as utilised by
the host ledger’s light client algorithm), and a bounded
number of recent consensus states (e.g. past headers).
These are used to prevent man-in-the-middle attacks during
handshakes to set up connections with other ledgers — each
ledger checks that the other ledger is in fact authenticating
data using its consensus state.

4) Timestamp access

In order to support timestamp-based timeouts, host ledgers
must provide a current Unix-style timestamp. Timeouts in
subsequent headers must be non-decreasing.

5) Port system

Host ledgers must implement a port system, where the
IBC handler can allow different modules in the host ledger
to bind to uniquely named ports. Ports are identified by
an identifier, and must be permissioned so that:

• Once a module has bound to a port, no other modules
can use that port until the module releases it

• A single module can bind to multiple ports
• Ports are allocated first-come first-serve

• “Reserved” ports for known modules can be bound
when the ledger is first started

This permissioning can be implemented with unique
references (object capabilities [5]) for each port, with
source-based authentication(a la msg.sender in Ethereum
contracts), or with some other method of access control,
in any case enforced by the host ledger.

Ports are not generally intended to be human-readable
identifiers — just as DNS name resolution and standardised
port numbers for particular applications exist to abstract
away the details of IP addresses and ports from TCP/IP
users, ledger name resolution and standardised ports for
particular applications may be created in order to abstract
away the details of ledger identification and port selection.
Such an addressing system could easily be built on top of
IBC itself, such that an initial connection to the addressing
system over IBC would then enable name resolution for
subsequent connections to other ledgers and applications.

6) Exception/rollback system

Host ledgers must support an exception or rollback system,
whereby a transaction can abort execution and revert any
previously made state changes (including state changes in
other modules happening within the same transaction),
excluding gas consumed and fee payments as appropriate.

7) Data availability

For deliver-or-timeout safety, host ledgers must have
eventual data availability, such that any key/value pairs in
state can be eventually retrieved by relayers. For exactly-
once safety, data availability is not required.

For liveness of packet relay, host ledgers must have bounded
transactional liveness, such that incoming transactions are
confirmed within a block height or timestamp bound (in
particular, less than the timeouts assigned to the packets).

IBC packet data, and other data which is not directly
stored in the Merklized state but is relied upon by relayers,
must be available to and efficiently computable by relayer
processes.

IV. Protocol structure
A. Clients
The client abstraction encapsulates the properties that
consensus algorithms of ledgers implementing the in-
terblockchain communication protocol are required to
satisfy. These properties are necessary for efficient and safe
state verification in the higher-level protocol abstractions.
The algorithm utilised in IBC to verify the consensus
transcript and state sub-components of another ledger is
referred to as a “validity predicate”, and pairing it with a
state that the verifier assumes to be correct forms a “light
client” (colloquially shortened to “client”).



1) Motivation

In the IBC protocol, an actor, which may be an end
user, an off-ledger process, or ledger, needs to be able
to verify updates to the state of another ledger which
the other ledger’s consensus algorithm has agreed upon,
and reject any possible updates which the other ledger’s
consensus algorithm has not agreed upon. A light client is
the algorithm with which an actor can do so. The client
abstraction formalises this model’s interface and require-
ments, so that the IBC protocol can easily integrate with
new ledgers which are running new consensus algorithms
as long as associated light client algorithms fulfilling the
listed requirements are provided.

Beyond the properties described in this specification, IBC
does not impose any requirements on the internal operation
of ledgers and their consensus algorithms. A ledger may
consist of a single process signing operations with a
private key, a quorum of processes signing in unison, many
processes operating a Byzantine fault-tolerant consensus
algorithm (a replicated, or distributed, ledger), or other
configurations yet to be invented — from the perspective
of IBC, a ledger is defined entirely by its light client
validation and equivocation detection logic. Clients will
generally not include validation of the state transition logic
in general (as that would be equivalent to simply executing
the other state machine), but may elect to validate parts of
state transitions in particular cases, and can validate the
entire state transition if doing so is asymptotically efficient,
perhaps through compression using a SNARK [6].

Externally, however, the light client verification functions
used by IBC clients must have finality, such that verified
blocks (subject to the usual consensus safety assumptions),
once verified, cannot be reverted. The safety of higher
abstraction layers of the IBC protocol and guarantees
provided to the applications using the protocol depend
on this property of finality.

In order to graft finality onto Nakamoto consensus al-
gorithms, such as used in Bitcoin [7], clients can act as
thresholding views of internal, non-finalising clients. In
the case where modules utilising the IBC protocol to
interact with probabilistic-finality consensus algorithms
which might require different finality thresholds for different
applications, one write-only client could be created to track
headers and many read-only clients with different finality
thresholds (confirmation depths after which state roots are
considered final) could use that same state. Of course, this
will introduce different security assumptions than those
required of full nodes running the consensus algorithm, and
trade-offs which must be balanced by the user on the basis
of their application-specific security needs.

The client protocol is designed to support third-party
introduction. Consider the general example: Alice, a module
on a ledger, wants to introduce Bob, a second module on

a second ledger who Alice knows (and who knows Alice),
to Carol, a third module on a third ledger, who Alice
knows but Bob does not. Alice must utilise an existing
channel to Bob to communicate the canonically-serialisable
validity predicate for Carol, with which Bob can then
open a connection and channel so that Bob and Carol
can talk directly. If necessary, Alice may also communicate
to Carol the validity predicate for Bob, prior to Bob’s
connection attempt, so that Carol knows to accept the
incoming request.

Client interfaces are constructed so that custom validation
logic can be provided safely to define a custom client at
runtime, as long as the underlying ledger can provide
an appropriate gas metering mechanism to charge for
compute and storage. On a host ledger which supports
WASM execution, for example, the validity predicate and
equivocation predicate could be provided as executable
WASM functions when the client instance is created.

2) Definitions

A validity predicate is an opaque function defined by a
client type to verify headers depending on the current
consensus state. Using the validity predicate should be
far more computationally efficient than replaying the full
consensus algorithm and state machine for the given parent
header and the list of network messages.

A consensus state is an opaque type representing the state
of a validity predicate. The light client validity predicate
algorithm in combination with a particular consensus state
must be able to verify state updates agreed upon by the
associated consensus algorithm. The consensus state must
also be serialisable in a canonical fashion so that third
parties, such as counterparty ledgers, can check that a
particular ledger has stored a particular state. It must
also be introspectable by the ledger which it is for, such
that the ledger can look up its own consensus state at a
past height and compare it to a stored consensus state in
another ledger’s client.

A commitment root is an inexpensive way for downstream
logic to verify whether key/value pairs are present or
absent in a state at a particular height. Often this will be
instantiated as the root of a Merkle tree.

A header is an opaque data structure defined by a client
type which provides information to update a consensus
state. Headers can be submitted to an associated client
to update the stored consensus state. They likely contain
a height, a proof, a new commitment root, and possibly
updates to the validity predicate.

A misbehaviour predicate is an opaque function defined
by a client type, used to check if data constitutes a
violation of the consensus protocol. This might be two
signed headers with different state roots but the same
height, a signed header containing invalid state transitions,



or other evidence of malfeasance as defined by the consensus
algorithm.

3) Desired properties

Light clients must provide a secure algorithm to verify other
ledgers’ canonical headers, using the existing consensus
state. The higher level abstractions will then be able to
verify sub-components of the state with the commitment
roots stored in the consensus state, which are guaranteed
to have been committed by the other ledger’s consensus
algorithm.

Validity predicates are expected to reflect the behaviour
of the full nodes which are running the corresponding
consensus algorithm. Given a consensus state and a list
of messages, if a full node accepts a new header, then the
light client must also accept it, and if a full node rejects
it, then the light client must also reject it.

Light clients are not replaying the whole message transcript,
so it is possible under cases of consensus misbehaviour that
the light clients’ behaviour differs from the full nodes’. In
this case, a misbehaviour proof which proves the divergence
between the validity predicate and the full node can be
generated and submitted to the ledger so that the ledger
can safely deactivate the light client, invalidate past state
roots, and await higher-level intervention.

The validity of the validity predicate is dependent on the
security model of the consensus algorithm. For example,
the consensus algorithm could be BFT proof-of-authority
with a trusted operator set, or BFT proof-of-stake with
a tokenholder set, each of which have a defined threshold
above which Byzantine behaviour may result in divergence.

Clients may have time-sensitive validity predicates, such
that if no header is provided for a period of time (e.g. an
unbonding period of three weeks in a proof-of-stake system)
it will no longer be possible to update the client.

4) State verification

Client types must define functions to authenticate internal
state of the ledger which the client tracks. Internal imple-
mentation details may differ (for example, a loopback client
could simply read directly from the state and require no
proofs). Externally-facing clients will likely verify signature
or vector commitment proofs.

5) Example client instantiations

a) Loopback

A loopback client of a local ledger merely reads from the
local state, to which it must have access. This is analogous
to localhost or 127.0.0.1 in TCP/IP.

b) Simple signatures

A client of a solo machine running a non-replicated ledger
with a known public key checks signatures on messages
sent by that local machine. Multi-signature or threshold
signature schemes can also be used in such a fashion.

c) Proxy clients

Proxy clients verify another (proxy) ledger’s verification of
the target ledger, by including in the proof first a proof of
the client state on the proxy ledger, and then a secondary
proof of the sub-state of the target ledger with respect to
the client state on the proxy ledger. This allows the proxy
client to avoid storing and tracking the consensus state
of the target ledger itself, at the cost of adding security
assumptions of proxy ledger correctness.

d) BFT consensus and verifiable state

For the immediate application of interoperability between
sovereign, fault-tolerant distributed ledgers, the most
common and most useful client type will be light clients for
instances of BFT consensus algorithms such as Tendermint
[8], GRANDPA [9], or HotStuff [10], with ledgers utilising
Merklized state trees such as an IAVL+ tree [11] or a
Merkle Patricia tree [12]. The client algorithm for such
instances will utilise the BFT consensus algorithm’s light
client validity predicate and treat at minimum consensus
equivocation (double-signing) as misbehaviour, along with
other possible misbehaviour types specific to the proof-of-
authority or proof-of-stake system involved.

6) Client lifecycle

a) Creation

Clients can be created permissionlessly by anyone at any
time by specifying an identifier, client type, and initial
consensus state.

b) Update

Updating a client is done by submitting a new header.
When a new header is verified with the stored client
state’s validity predicate and consensus state, the client
will update its internal state accordingly, possibly finalising
commitment roots and updating the signature authority
logic in the stored consensus state.

If a client can no longer be updated (if, for example,
the unbonding period has passed), it will no longer be
possible to send any packets over connections and channels
associated with that client, or timeout any packets in-
flight (since the height and timestamp on the destination
ledger can no longer be verified). Manual intervention
must take place to reset the client state or migrate the
connections and channels to another client. This cannot
safely be done automatically, but ledgers implementing IBC
could elect to allow governance mechanisms to perform
these actions (perhaps even per-client/connection/channel
with a controlling multi-signature or contract).



c) Misbehaviour

If the client detects evidence of misbehaviour, the client can
be take appropriate action, possibly invalidating previously
valid commitment roots and preventing future updates.
What precisely constitutes misbehaviour will depend on
the consensus algorithm which the validity predicate is
validating the output of.

B. Connections
The connection abstraction encapsulates two stateful
objects (connection ends) on two separate ledgers, each
associated with a light client of the other ledger, which
together facilitate cross-ledger sub-state verification and
packet relay (through channels). Connections are safely
established in an unknown, dynamic topology using a
handshake subprotocol.

1) Motivation

The IBC protocol provides authorisation and ordering
semantics for packets: guarantees, respectively, that packets
have been committed on the sending ledger (and according
state transitions executed, such as escrowing tokens), and
that they have been committed exactly once in a particular
order and can be delivered exactly once in that same order.
The connection abstraction in conjunction with the client
abstraction defines the authorisation semantics of IBC.
Ordering semantics are provided by channels.

2) Definitions

A connection end is state tracked for an end of a connection
on one ledger, defined as follows:

enum ConnectionState {
INIT,
TRYOPEN,
OPEN,

}

interface ConnectionEnd {
state: ConnectionState
counterpartyConnectionIdentifier: Identifier
counterpartyPrefix: CommitmentPrefix
clientIdentifier: Identifier
counterpartyClientIdentifier: Identifier
version: string

}

• The state field describes the current state of the
connection end.

• The counterpartyConnectionIdentifier field iden-
tifies the connection end on the counterparty ledger
associated with this connection.

• The counterpartyPrefix field contains the prefix
used for state verification on the counterparty ledger
associated with this connection.

• The clientIdentifier field identifies the client asso-
ciated with this connection.

• The counterpartyClientIdentifier field identifies
the client on the counterparty ledger associated with
this connection.

• The version field is an opaque string which can
be utilised to determine encodings or protocols for
channels or packets utilising this connection.

3) Opening handshake

The opening handshake subprotocol allows each ledger to
verify the identifier used to reference the connection on the
other ledger, enabling modules on each ledger to reason
about the reference on the other ledger.

The opening handshake consists of four datagrams:
ConnOpenInit, ConnOpenTry, ConnOpenAck, and
ConnOpenConfirm.

A correct protocol execution, between two ledgers A and
B, with connection states formatted as (A, B), flows as
follows:

Datagram Prior state Posterior state
ConnOpenInit (-, -) (INIT, -)
ConnOpenTry (INIT, none) (INIT, TRYOPEN)
ConnOpenAck (INIT, TRYOPEN) (OPEN, TRYOPEN)
ConnOpenConfirm (OPEN, TRYOPEN) (OPEN, OPEN)

At the end of an opening handshake between two ledgers
implementing the subprotocol, the following properties
hold:

• Each ledger has each other’s correct consensus state
as originally specified by the initiating actor.

• Each ledger has knowledge of and has agreed to its
identifier on the other ledger.

• Each ledger knows that the other ledger has agreed
to the same data.

Connection handshakes can safely be performed permis-
sionlessly, modulo anti-spam measures (paying gas).

ConnOpenInit, executed on ledger A, initialises a connec-
tion attempt on ledger A, specifying a pair of identifiers for
the connection on both ledgers and a pair of identifiers for
existing light clients (one for each ledger). ledger A stores
a connection end object in its state.

ConnOpenTry, executed on ledger B, relays notice of a
connection attempt on ledger A to ledger B, providing the
pair of connection identifiers, the pair of client identifiers,
and a desired version. Ledger B verifies that these identifiers
are valid, checks that the version is compatible, verifies a
proof that ledger A has stored these identifiers, and verifies
a proof that the light client ledger A is using to validate
ledger B has the correct consensus state for ledger B. ledger
B stores a connection end object in its state.



ConnOpenAck, executed on ledger A, relays acceptance of
a connection open attempt from ledger B back to ledger
A, providing the identifier which can now be used to look
up the connection end object. ledger A verifies that the
version requested is compatible, verifies a proof that ledger
B has stored the same identifiers ledger A has stored, and
verifies a proof that the light client ledger B is using to
validate ledger A has the correct consensus state for ledger
A.

ConnOpenConfirm, executed on ledger B, confirms opening
of a connection on ledger A to ledger B. Ledger B simply
checks that ledger A has executed ConnOpenAck and
marked the connection as OPEN. Ledger B subsequently
marks its end of the connection as OPEN. After execution
of ConnOpenConfirm the connection is open on both ends
and can be used immediately.

4) Versioning

During the handshake process, two ends of a connection
come to agreement on a version bytestring associated with
that connection. At the moment, the contents of this version
bytestring are opaque to the IBC core protocol. In the
future, it might be used to indicate what kinds of channels
can utilise the connection in question, or what encoding
formats channel-related datagrams will use. Host ledgers
may utilise the version data to negotiate encodings, pri-
orities, or connection-specific metadata related to custom
logic on top of IBC. Host ledgers may also safely ignore
the version data or specify an empty string.

C. Channels

The channel abstraction provides message delivery seman-
tics to the interblockchain communication protocol in three
categories: ordering, exactly-once delivery, and module
permissioning. A channel serves as a conduit for packets
passing between a module on one ledger and a module
on another, ensuring that packets are executed only once,
delivered in the order in which they were sent (if necessary),
and delivered only to the corresponding module owning the
other end of the channel on the destination ledger. Each
channel is associated with a particular connection, and a
connection may have any number of associated channels,
allowing the use of common identifiers and amortising the
cost of header verification across all the channels utilising
a connection and light client.

Channels are payload-agnostic. The modules which send
and receive IBC packets decide how to construct packet
data and how to act upon the incoming packet data, and
must utilise their own application logic to determine which
state transactions to apply according to what data the
packet contains.

1) Motivation

The interblockchain communication protocol uses a cross-
ledger message passing model. IBC packets are relayed
from one ledger to the other by external relayer processes.
Two ledgers, A and B, confirm new blocks independently,
and packets from one ledger to the other may be delayed,
censored, or re-ordered arbitrarily. Packets are visible to
relayers and can be read from a ledger by any relayer
process and submitted to any other ledger.

The IBC protocol must provide ordering (for ordered
channels) and exactly-once delivery guarantees to allow ap-
plications to reason about the combined state of connected
modules on two ledgers. For example, an application may
wish to allow a single tokenised asset to be transferred
between and held on multiple ledgers while preserving
fungibility and conservation of supply. The application can
mint asset vouchers on ledger B when a particular IBC
packet is committed to ledger B, and require outgoing sends
of that packet on ledger A to escrow an equal amount of the
asset on ledger A until the vouchers are later redeemed back
to ledger A with an IBC packet in the reverse direction.
This ordering guarantee along with correct application
logic can ensure that total supply is preserved across both
ledgers and that any vouchers minted on ledger B can later
be redeemed back to ledger A. A more detailed explanation
of this example is provided later on.

2) Definitions

A channel is a pipeline for exactly-once packet delivery
between specific modules on separate ledgers, which has
at least one end capable of sending packets and one end
capable of receiving packets.

An ordered channel is a channel where packets are delivered
exactly in the order which they were sent.

An unordered channel is a channel where packets can be
delivered in any order, which may differ from the order in
which they were sent.

All channels provide exactly-once packet delivery, meaning
that a packet sent on one end of a channel is delivered no
more and no less than once, eventually, to the other end.

A channel end is a data structure storing metadata associ-
ated with one end of a channel on one of the participating
ledgers, defined as follows:

interface ChannelEnd {
state: ChannelState
ordering: ChannelOrder
counterpartyPortIdentifier: Identifier
counterpartyChannelIdentifier: Identifier
nextSequenceSend: uint64
nextSequenceRecv: uint64
nextSequenceAck: uint64



connectionHops: [Identifier]
version: string

}

• The state is the current state of the channel end.
• The ordering field indicates whether the channel is

ordered or unordered. This is an enumeration instead
of a boolean in order to allow additional kinds of
ordering to be easily supported in the future.

• The counterpartyPortIdentifier identifies the
port on the counterparty ledger which owns the other
end of the channel.

• The counterpartyChannelIdentifier identifies the
channel end on the counterparty ledger.

• The nextSequenceSend, stored separately, tracks the
sequence number for the next packet to be sent.

• The nextSequenceRecv, stored separately, tracks the
sequence number for the next packet to be received.

• The nextSequenceAck, stored separately, tracks the
sequence number for the next packet to be acknowl-
edged.

• The connectionHops stores the list of connection
identifiers, in order, along which packets sent on this
channel will travel. At the moment this list must be
of length 1. In the future multi-hop channels may be
supported.

• The version string stores an opaque channel version,
which is agreed upon during the handshake. This can
determine module-level configuration such as which
packet encoding is used for the channel. This version
is not used by the core IBC protocol.

Channel ends have a state:

enum ChannelState {
INIT,
TRYOPEN,
OPEN,
CLOSED,

}

• A channel end in INIT state has just started the
opening handshake.

• A channel end in TRYOPEN state has acknowledged the
handshake step on the counterparty ledger.

• A channel end in OPEN state has completed the
handshake and is ready to send and receive packets.

• A channel end in CLOSED state has been closed and
can no longer be used to send or receive packets.

A Packet, encapsulating opaque data to be transferred
from one module to another over a channel, is a particular
interface defined as follows:

interface Packet {
sequence: uint64
timeoutHeight: uint64
timeoutTimestamp: uint64

sourcePort: Identifier
sourceChannel: Identifier
destPort: Identifier
destChannel: Identifier
data: bytes

}

• The sequence number corresponds to the order of
sends and receives, where a packet with an earlier
sequence number must be sent and received before a
packet with a later sequence number.

• The timeoutHeight indicates a consensus height on
the destination ledger after which the packet will no
longer be processed, and will instead count as having
timed-out.

• The timeoutTimestamp indicates a timestamp on the
destination ledger after which the packet will no longer
be processed, and will instead count as having timed-
out.

• The sourcePort identifies the port on the sending
ledger.

• The sourceChannel identifies the channel end on the
sending ledger.

• The destPort identifies the port on the receiving
ledger.

• The destChannel identifies the channel end on the
receiving ledger.

• The data is an opaque value which can be defined by
the application logic of the associated modules.

Note that a Packet is never directly serialised. Rather
it is an intermediary structure used in certain function
calls that may need to be created or processed by modules
calling the IBC handler.

3) Properties

a) Efficiency

As channels impose no flow control of their own, the speed
of packet transmission and confirmation is limited only by
the speed of the underlying ledgers.

b) Exactly-once delivery

IBC packets sent on one end of a channel are delivered
no more than exactly once to the other end. No network
synchrony assumptions are required for exactly-once safety.
If one or both of the ledgers halt, packets may be delivered
no more than once, and once the ledgers resume packets
will be able to flow again.

c) Ordering

On ordered channels, packets are be sent and received in
the same order: if packet x is sent before packet y by a
channel end on ledger A, packet x will be received before
packet y by the corresponding channel end on ledger B.



On unordered channels, packets may be sent and received
in any order. Unordered packets, like ordered packets, have
individual timeouts specified in terms of the destination
ledger’s height or timestamp.

d) Permissioning

Channels are permissioned to one module on each end,
determined during the handshake and immutable after-
wards (higher-level logic could tokenise channel ownership
by tokenising ownership of the port). Only the module
which owns the port associated with a channel end is able
to send or receive on the channel.

4) Channel lifecycle management

a) Opening handshake

The channel opening handshake, between two ledgers A
and B, with state formatted as (A, B), flows as follows:

Datagram Prior state Posterior state

ChanOpenInit (-, -) (INIT, -)
ChanOpenTry (INIT, -) (INIT, TRYOPEN)
ChanOpenAck (INIT, TRYOPEN) (OPEN, TRYOPEN)
ChanOpenConfirm (OPEN, TRYOPEN) (OPEN, OPEN)

ChanOpenInit, executed on ledger A, initiates a channel
opening handshake from a module on ledger A to a module
on ledger B, providing the identifiers of the local channel
identifier, local port, remote port, and remote channel
identifier. ledger A stores a channel end object in its state.

ChanOpenTry, executed on ledger B, relays notice of a
channel handshake attempt to the module on ledger B,
providing the pair of channel identifiers, a pair of port
identifiers, and a desired version. ledger B verifies a proof
that ledger A has stored these identifiers as claimed, looks
up the module which owns the destination port, calls that
module to check that the version requested is compatible,
and stores a channel end object in its state.

ChanOpenAck, executed on ledger A, relays acceptance of a
channel handshake attempt back to the module on ledger
A, providing the identifier which can now be used to look
up the channel end. ledger A verifies a proof that ledger B
has stored the channel metadata as claimed and marks its
end of the channel as OPEN.

ChanOpenConfirm, executed on ledger B, confirms open-
ing of a channel from ledger A to ledger B. Ledger B
simply checks that ledger A has executed ChanOpenAck
and marked the channel as OPEN. Ledger B subsequently
marks its end of the channel as OPEN. After execution of
ChanOpenConfirm, the channel is open on both ends and
can be used immediately.

When the opening handshake is complete, the module
which initiates the handshake will own the end of the
created channel on the host ledger, and the counterparty

module which it specifies will own the other end of the
created channel on the counterparty ledger. Once a channel
is created, ownership can only be changed by changing
ownership of the associated ports.

b) Versioning

During the handshake process, two ends of a channel
come to agreement on a version bytestring associated with
that channel. The contents of this version bytestring are
opaque to the IBC core protocol. Host ledgers may utilise
the version data to indicate supported application-layer
protocols, agree on packet encoding formats, or negotiate
other channel-related metadata related to custom logic on
top of IBC. Host ledgers may also safely ignore the version
data or specify an empty string.

c) Closing handshake

The channel closing handshake, between two ledgers A and
B, with state formatted as (A, B), flows as follows:

Datagram Prior state Posterior state
ChanCloseInit (OPEN, OPEN) (CLOSED, OPEN)
ChanCloseConfirm (CLOSED, OPEN) (CLOSED, CLOSED)

ChanCloseInit, executed on ledger A, closes the end of
the channel on ledger A.

ChanCloseInit, executed on ledger B, simply verifies that
the channel has been marked as closed on ledger A and
closes the end on ledger B.

Any in-flight packets can be timed-out as soon as a channel
is closed.

Once closed, channels cannot be reopened and identifiers
cannot be reused. Identifier reuse is prevented because
we want to prevent potential replay of previously sent
packets. The replay problem is analogous to using sequence
numbers with signed messages, except where the light
client algorithm “signs” the messages (IBC packets), and
the replay prevention sequence is the combination of port
identifier, channel identifier, and packet sequence — hence
we cannot allow the same port identifier and channel
identifier to be reused again with a sequence reset to zero,
since this might allow packets to be replayed. It would be
possible to safely reuse identifiers if timeouts of a particular
maximum height/time were mandated and tracked, and
future protocol versions may incorporate this feature.

5) Sending packets

The sendPacket function is called by a module in order to
send an IBC packet on a channel end owned by the calling
module to the corresponding module on the counterparty
ledger.

Calling modules must execute application logic atomically
in conjunction with calling sendPacket.



The IBC handler performs the following steps in order:

• Checks that the channel and connection are open to
send packets

• Checks that the calling module owns the sending port
• Checks that the packet metadata matches the channel

and connection information
• Checks that the timeout height specified has not

already passed on the destination ledger
• Increments the send sequence counter associated with

the channel (in the case of ordered channels)
• Stores a constant-size commitment to the packet data

and packet timeout

Note that the full packet is not stored in the state of the
ledger — merely a short hash-commitment to the data and
timeout value. The packet data can be calculated from the
transaction execution and possibly returned as log output
which relayers can index.

6) Receiving packets

The recvPacket function is called by a module in order
to receive and process an IBC packet sent on the corre-
sponding channel end on the counterparty ledger.

Calling modules must execute application logic atomically
in conjunction with calling recvPacket, likely beforehand
to calculate the acknowledgement value.

The IBC handler performs the following steps in order:

• Checks that the channel and connection are open to
receive packets

• Checks that the calling module owns the receiving
port

• Checks that the packet metadata matches the channel
and connection information

• Checks that the packet sequence is the next sequence
the channel end expects to receive (for ordered chan-
nels)

• Checks that the timeout height has not yet passed
• Checks the inclusion proof of packet data commitment

in the outgoing ledger’s state
• Sets the opaque acknowledgement value at a store

path unique to the packet (if the acknowledgement is
non-empty or the channel is unordered)

• Increments the packet receive sequence associated with
the channel end (for ordered channels)

a) Acknowledgements

The acknowledgePacket function is called by a module
to process the acknowledgement of a packet previously
sent by the calling module on a channel to a counterparty
module on the counterparty ledger. acknowledgePacket
also cleans up the packet commitment, which is no longer
necessary since the packet has been received and acted
upon.

Calling modules may atomically execute appropriate ap-
plication acknowledgement-handling logic in conjunction
with calling acknowledgePacket.

The IBC handler performs the following steps in order:

• Checks that the channel and connection are open to
acknowledge packets

• Checks that the calling module owns the sending port
• Checks that the packet metadata matches the channel

and connection information
• Checks that the packet was actually sent on this

channel
• Checks that the packet sequence is the next sequence

the channel end expects to acknowledge (for ordered
channels)

• Checks the inclusion proof of the packet acknowledge-
ment data in the receiving ledger’s state

• Deletes the packet commitment (cleaning up state and
preventing replay)

• Increments the next acknowledgement sequence (for
ordered channels)

7) Timeouts

Application semantics may require some timeout: an upper
limit to how long the ledger will wait for a transaction
to be processed before considering it an error. Since the
two ledgers have different local clocks, this is an obvious
attack vector for a double spend — an attacker may delay
the relay of the receipt or wait to send the packet until
right after the timeout — so applications cannot safely
implement naive timeout logic themselves. In order to
avoid any possible “double-spend” attacks, the timeout
algorithm requires that the destination ledger is running
and reachable. The timeout must be proven on the recipient
ledger, not simply the absence of a response on the sending
ledger.

a) Sending end

The timeoutPacket function is called by a module which
originally attempted to send a packet to a counterparty
module, where the timeout height or timeout timestamp
has passed on the counterparty ledger without the packet
being committed, to prove that the packet can no longer be
executed and to allow the calling module to safely perform
appropriate state transitions.

Calling modules may atomically execute appropriate appli-
cation timeout-handling logic in conjunction with calling
timeoutPacket.

The IBC handler performs the following steps in order:

• Checks that the channel and connection are open to
timeout packets

• Checks that the calling module owns the sending port



• Checks that the packet metadata matches the channel
and connection information

• Checks that the packet was actually sent on this
channel

• Checks a proof that the packet has not been confirmed
on the destination ledger

• Checks a proof that the destination ledger has ex-
ceeded the timeout height or timestamp

• Deletes the packet commitment (cleaning up state and
preventing replay)

In the case of an ordered channel, timeoutPacket addition-
ally closes the channel if a packet has timed out. Unordered
channels are expected to continue in the face of timed-out
packets.

If relations are enforced between timeout heights of subse-
quent packets, safe bulk timeouts of all packets prior to a
timed-out packet can be performed.

b) Timing-out on close

If a channel is closed, in-flight packets can never be received
and thus can be safely timed-out. The timeoutOnClose
function is called by a module in order to prove that the
channel to which an unreceived packet was addressed has
been closed, so the packet will never be received (even
if the timeoutHeight or timeoutTimestamp has not yet
been reached). Appropriate application-specific logic may
then safely be executed.

c) Cleaning up state

If an acknowledgement is not written (as handling the
acknowledgement would clean up state in that case),
cleanupPacket may be called by a module in order to
remove a received packet commitment from storage. The
receiving end must have already processed the packet
(whether regularly or past timeout).

In the ordered channel case, cleanupPacket cleans-up a
packet on an ordered channel by proving that the receive
sequence has passed the packet’s sequence on the other
end.

In the unordered channel case, cleanupPacket cleans-up
a packet on an unordered channel by proving that the
associated acknowledgement has been written.

D. Relayers

Relayer algorithms are the “physical” connection layer
of IBC — off-ledger processes responsible for relaying
data between two ledgers running the IBC protocol by
scanning the state of each ledger, constructing appropriate
datagrams, and executing them on the opposite ledger as
allowed by the protocol.

1) Motivation

In the IBC protocol, one ledger can only record the
intention to send particular data to another ledger — it
does not have direct access to a network transport layer.
Physical datagram relay must be performed by off-ledger
infrastructure with access to a transport layer such as
TCP/IP. This standard defines the concept of a relayer
algorithm, executable by an off-ledger process with the
ability to query ledger state, to perform this relay.

A relayer is an off-ledger process with the ability to read
the state of and submit transactions to some set of ledgers
utilising the IBC protocol.

2) Properties

• No exactly-once or deliver-or-timeout safety proper-
ties of IBC depend on relayer behaviour (Byzantine
relayers are assumed)

• Packet relay liveness properties of IBC depend only
on the existence of at least one correct, live relayer

• Relaying can safely be permissionless, all requisite
verification is performed by the ledger itself

• Requisite communication between the IBC user and
the relayer is minimised

• Provision for relayer incentivisation are not included
in the core protocol, but are possible at the application
layer

3) Basic relayer algorithm

The relayer algorithm is defined over a set of ledgers imple-
menting the IBC protocol. Each relayer may not necessarily
have access to read state from and write datagrams to all
ledgers in the multi-ledger network (especially in the case
of permissioned or private ledgers) — different relayers
may relay between different subsets.

Every so often, although no more frequently than once
per block on either ledger, a relayer calculates the set
of all valid datagrams to be relayed from one ledger to
another based on the state of both ledgers. The relayer must
possess prior knowledge of what subset of the IBC protocol
is implemented by the ledgers in the set for which they
are relaying (e.g. by reading the source code). Datagrams
can be submitted individually as single transactions or
atomically as a single transaction if the ledger supports it.

Different relayers may relay between different ledgers — as
long as each pair of ledgers has at least one correct and
live relayer and the ledgers remain live, all packets flowing
between ledgers in the network will eventually be relayed.

4) Packets, acknowledgements, timeouts

a) Relaying packets in an ordered channel
Packets in an ordered channel can be relayed in either
an event-based fashion or a query-based fashion. For the



former, the relayer should watch the source ledger for events
emitted whenever packets are sent, then compose the packet
using the data in the event log. For the latter, the relayer
should periodically query the send sequence on the source
ledger, and keep the last sequence number relayed, so that
any sequences in between the two are packets that need to
be queried and then relayed. In either case, subsequently,
the relayer process should check that the destination ledger
has not yet received the packet by checking the receive
sequence, and then relay it.

b) Relaying packets in an unordered channel

Packets in an unordered channel can most easily be relayed
in an event-based fashion. The relayer should watch the
source ledger for events emitted whenever packets are
send, then compose the packet using the data in the
event log. Subsequently, the relayer should check whether
the destination ledger has received the packet already by
querying for the presence of an acknowledgement at the
packet’s sequence number, and if one is not yet present the
relayer should relay the packet.

c) Relaying acknowledgements

Acknowledgements can most easily be relayed in an event-
based fashion. The relayer should watch the destination
ledger for events emitted whenever packets are received
and acknowledgements are written, then compose the
acknowledgement using the data in the event log, check
whether the packet commitment still exists on the source
ledger (it will be deleted once the acknowledgement is
relayed), and if so relay the acknowledgement to the source
ledger.

d) Relaying timeouts

Timeout relay is slightly more complex since there is no
specific event emitted when a packet times-out — it is
simply the case that the packet can no longer be relayed,
since the timeout height or timestamp has passed on the
destination ledger. The relayer process must elect to track
a set of packets (which can be constructed by scanning
event logs), and as soon as the height or timestamp of the
destination ledger exceeds that of a tracked packet, check
whether the packet commitment still exists on the source
ledger (it will be deleted once the timeout is relayed), and
if so relay a timeout to the source ledger.

e) Ordering constraints

There are implicit ordering constraints imposed on the
relayer process determining which datagrams must be
submitted in what order. For example, a header must
be submitted to finalise the stored consensus state and
commitment root for a particular height in a light client
before a packet can be relayed. The relayer process is
responsible for frequently querying the state of the ledgers
between which they are relaying in order to determine what
must be relayed when.

f) Bundling

If the host ledger supports it, the relayer process can
bundle many datagrams into a single transaction, which
will cause them to be executed in sequence, and amortise
any overhead costs (e.g. signature checks for fee payment).

g) Race conditions

Multiple relayers relaying between the same pair of modules
and ledgers may attempt to relay the same packet (or
submit the same header) at the same time. If two relayers
do so, the first transaction will succeed and the second
will fail. Out-of-band coordination between the relayers or
between the actors who sent the original packets and the
relayers is necessary to mitigate this.

h) Incentivisation

The relay process must have access to accounts on both
ledgers with sufficient balance to pay for transaction fees.
Relayers may employ application-level methods to recoup
these fees, such by including a small payment to themselves
in the packet data.

Any number of relayer processes may be safely run in
parallel (and indeed, it is expected that separate relayers
will serve separate subsets of the multi-ledger network).
However, they may consume unnecessary fees if they
submit the same proof multiple times, so some minimal
coordination may be ideal (such as assigning particular
relayers to particular packets or scanning mempools for
pending transactions).

V. Usage patterns

A. Call receiver
Essential to the functionality of the IBC handler is an
interface to other modules running on the same ledger, so
that it can accept requests to send packets and can route
incoming packets to modules. This interface should be as
minimal as possible in order to reduce implementation
complexity and requirements imposed on host ledgers.

For this reason, the core IBC logic uses a receive-only call
pattern that differs slightly from the intuitive dataflow. As
one might expect, modules call into the IBC handler to
create connections, channels, and send packets. However,
instead of the IBC handler, upon receipt of a packet from
another ledger, selecting and calling into the appropriate
module, the module itself must call recvPacket on the
IBC handler (likewise for accepting channel creation hand-
shakes). When recvPacket is called, the IBC handler will
check that the calling module is authorised to receive and
process the packet (based on included proofs and known
state of connections / channels), perform appropriate state
updates (incrementing sequence numbers to prevent replay),
and return control to the module or throw on error. The
IBC handler never calls into modules directly.



Although a bit counterintuitive to reason about at first,
this pattern has a few notable advantages:

• It minimises requirements of the host ledger, since
the IBC handler need not understand how to call into
other modules or store any references to them.

• It avoids the necessity of managing a module lookup
table in the handler state.

• It avoids the necessity of dealing with module return
data or failures. If a module does not want to
receive a packet (perhaps having implemented ad-
ditional authorisation on top), it simply never calls
recvPacket. If the routing logic were implemented in
the IBC handler, the handler would need to deal with
the failure of the module, which is tricky to interpret.

It also has one notable disadvantage: without an additional
abstraction, the relayer logic becomes more complex, since
off-ledger relayer processes will need to track the state
of multiple modules to determine when packets can be
submitted.

For this reason, ledgers may implement an additional IBC
“routing module” which exposes a call dispatch interface.

B. Call dispatch
For common relay patterns, an “IBC routing module” can
be implemented which maintains a module dispatch table
and simplifies the job of relayers.

In the call dispatch pattern, datagrams (contained within
transaction types defined by the host ledger) are relayed
directly to the routing module, which then looks up the
appropriate module (owning the channel and port to which
the datagram was addressed) and calls an appropriate
function (which must have been previously registered with
the routing module). This allows modules to avoid handling
datagrams directly, and makes it harder to accidentally
screw-up the atomic state transition execution which must
happen in conjunction with sending or receiving a packet
(since the module never handles packets directly, but rather
exposes functions which are called by the routing module
upon receipt of a valid packet).

Additionally, the routing module can implement default
logic for handshake datagram handling (accepting incoming
handshakes on behalf of modules), which is convenient for
modules which do not need to implement their own custom
logic.

VI. Example application-level module
The section specifies packet data structure and state
machine handling logic for the transfer of fungible tokens
over an IBC channel between two modules on separate
ledgers. The state machine logic presented allows for safe
multi-ledger denomination handling with permissionless
channel opening. This logic constitutes a “fungible token
transfer bridge module”, interfacing between the IBC

routing module and an existing asset tracking module on
the host ledger.

1) Motivation

Users of a set of ledgers connected over the IBC protocol
might wish to utilise an asset issued on one ledger on
another ledger, perhaps to make use of additional features
such as exchange or privacy protection, while retaining
fungibility with the original asset on the issuing ledger. This
application-layer protocol allows for transferring fungible
tokens between ledgers connected with IBC in a way which
preserves asset fungibility, preserves asset ownership, limits
the impact of Byzantine faults, and requires no additional
permissioning.

2) Properties

• Preservation of fungibility (two-way peg)
• Preservation of total supply (constant or inflationary

on a single source ledger and module)
• Permissionless token transfers, no need to whitelist

connections, modules, or denominations
• Symmetric (all ledgers implement the same logic)
• Fault containment: prevents Byzantine-inflation of
tokens originating on ledger A, as a result of ledger
B’s Byzantine behaviour (though any users who sent
tokens to ledger B may be at risk)

3) Packet definition

Only one packet data type, FungibleTokenPacketData,
which specifies the denomination, amount, sending account,
receiving account, and whether the sending ledger is the
source of the asset, is required:

interface FungibleTokenPacketData {
denomination: string
amount: uint256
sender: string
receiver: string

}

The acknowledgement data type describes whether the
transfer succeeded or failed, and the reason for failure (if
any):

interface FungibleTokenPacketAcknowledgement {
success: boolean
error: Maybe<string>

}

4) Packet handling semantics

The protocol logic is symmetric, so that denominations
originating on either ledger can be converted to vouchers
on the other, and then redeemed back again later.

• When acting as the source ledger, the bridge module
escrows an existing local asset denomination on the



sending ledger and mints vouchers on the receiving
ledger.

• When acting as the sink ledger, the bridge module
burns local vouchers on the sending ledgers and une-
scrows the local asset denomination on the receiving
ledger.

• When a packet times-out, local assets are unescrowed
back to the sender or vouchers minted back to the
sender appropriately.

• Acknowledgement data is used to handle failures,
such as invalid denominations or invalid destination
accounts. Returning an acknowledgement of failure is
preferable to aborting the transaction since it more
easily enables the sending ledger to take appropriate
action based on the nature of the failure.

This implementation preserves both fungibility and supply.
If tokens have been sent to the counterparty ledger, they
can be redeemed back in the same denomination and
amount on the source ledger. The combined supply of
unlocked tokens of a particular on both ledgers is constant,
since each send-receive packet pair locks and mints the
same amount (although the source ledger of a particular
asset could change the supply outside of the scope of this
protocol).

5) Fault containment

Ledgers could fail to follow the fungible transfer token
protocol outlined here in one of two ways: the full nodes
running the consensus algorithm could diverge from the
light client, or the ledger’s state machine could incorrectly
implement the escrow & voucher logic (whether inad-
vertently or intentionally). Consensus divergence should
eventually result in evidence of misbehaviour which can be
used to freeze the client, but may not immediately do so
(and no guarantee can be made that such evidence would
be submitted before more packets), so from the perspective
of the protocol’s goal of isolating faults these cases must be
handled in the same way. No guarantees can be made about
asset recovery — users electing to transfer tokens to a ledger
take on the risk of that ledger failing — but containment
logic can easily be implemented on the interface boundary
by tracking incoming and outgoing supply of each asset,
and ensuring that no ledger is allowed to redeem vouchers
for more tokens than it had initially escrowed. In essence,
particular channels can be treated as accounts, where a
module on the other end of a channel cannot spend more
than it has received. Since isolated Byzantine sub-graphs of
a multi-ledger fungible token transfer system will be unable
to transfer out any more tokens than they had initially
received, this prevents any supply inflation of source assets,
and ensures that users only take on the consensus risk of
ledgers they intentionally connect to.

6) Multi-ledger transfer paths

This protocol does not directly handle the “diamond
problem”, where a user sends a token originating
on ledger A to ledger B, then to ledger D, and
wants to return it through the path D -> C ->
A — since the supply is tracked as owned by
ledger B (and the voucher denomination will be
"{portD}/{channelD}/{portB}/{channelB}/denom"),
ledger C cannot serve as the intermediary. This is necessary
due to the fault containment desiderata outlined above.
Complexities arising from long redemption paths may
lead to the emergence of central ledgers in the network
topology or automated markets to exchange assets with
different redemption paths.

In order to track all of the denominations moving around
the network of ledgers in various paths, it may be helpful
for a particular ledger to implement a registry which will
track the “global” source ledger for each denomination.
End-user service providers (such as wallet authors) may
want to integrate such a registry or keep their own mapping
of canonical source ledgers and human-readable names in
order to improve UX.

VII. Testing & deployment
A full version of the interblockchain protocol has been
implemented in Go in the Cosmos SDK [13], an implemen-
tation is in progress in Rust [14], and implementations are
planned for other languages in the future. An off-ledger
relayer daemon has also been implemented in Go [15]. Game
of Zones [16], a live test of the initial software release,
is currently in progress. Over one hundred simulated
zones (separate consensus instances and ledgers) have been
successfully linked together [17].

Production release and deployment to the Cosmos Network
is planned for later this summer. As IBC is a permissionless,
opt-in protocol, adoption will be dependent on ledgers
voluntarily electing to support the specification, in full or
in part. Adoption of IBC does not require connection to
the Cosmos Hub, usage of any particular token, or even
usage of any other piece of Cosmos software — IBC can be
implemented on top of other state machine frameworks such
as Substrate [18], or by standalone ledgers using custom
logic — adherence to the correct protocol is both necessary
and sufficient for successful interoperation.
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IX. Appendices

A. Connection handshake

1) Initiating a handshake

function connOpenInit(
identifier: Identifier,
desiredCounterpartyConnectionIdentifier: Identifier,
counterpartyPrefix: CommitmentPrefix,
clientIdentifier: Identifier,
counterpartyClientIdentifier: Identifier) {

abortTransactionUnless(validateConnectionIdentifier(identifier))
abortTransactionUnless(provableStore.get(connectionPath(identifier)) == null)
state = INIT
connection = ConnectionEnd{state, desiredCounterpartyConnectionIdentifier, counterpartyPrefix,

clientIdentifier, counterpartyClientIdentifier, getCompatibleVersions()}
provableStore.set(connectionPath(identifier), connection)

}
2) Responding to a handshake initiation

function connOpenTry(
desiredIdentifier: Identifier,
counterpartyConnectionIdentifier: Identifier,
counterpartyPrefix: CommitmentPrefix,
counterpartyClientIdentifier: Identifier,
clientIdentifier: Identifier,
counterpartyVersions: string[],
proofInit: CommitmentProof,
proofConsensus: CommitmentProof,
proofHeight: uint64,
consensusHeight: uint64) {

abortTransactionUnless(validateConnectionIdentifier(desiredIdentifier))
abortTransactionUnless(consensusHeight <= getCurrentHeight())
expectedConsensusState = getConsensusState(consensusHeight)
expected = ConnectionEnd{INIT, desiredIdentifier, getCommitmentPrefix(), counterpartyClientIdentifier,

clientIdentifier, counterpartyVersions}
version = pickVersion(counterpartyVersions)
connection = ConnectionEnd{TRYOPEN, counterpartyConnectionIdentifier, counterpartyPrefix,

clientIdentifier, counterpartyClientIdentifier, version}
abortTransactionUnless(

connection.verifyConnectionState(proofHeight, proofInit, counterpartyConnectionIdentifier, expected))
abortTransactionUnless(connection.verifyClientConsensusState(

proofHeight, proofConsensus, counterpartyClientIdentifier, consensusHeight, expectedConsensusState))
previous = provableStore.get(connectionPath(desiredIdentifier))
abortTransactionUnless(

(previous === null) ||
(previous.state === INIT &&

previous.counterpartyConnectionIdentifier === counterpartyConnectionIdentifier &&
previous.counterpartyPrefix === counterpartyPrefix &&
previous.clientIdentifier === clientIdentifier &&
previous.counterpartyClientIdentifier === counterpartyClientIdentifier &&
previous.version === version))

identifier = desiredIdentifier
provableStore.set(connectionPath(identifier), connection)

}



3) Acknowledging the response

function connOpenAck(
identifier: Identifier,
version: string,
proofTry: CommitmentProof,
proofConsensus: CommitmentProof,
proofHeight: uint64,
consensusHeight: uint64) {

abortTransactionUnless(consensusHeight <= getCurrentHeight())
connection = provableStore.get(connectionPath(identifier))
abortTransactionUnless(connection.state === INIT || connection.state === TRYOPEN)
expectedConsensusState = getConsensusState(consensusHeight)
expected = ConnectionEnd{TRYOPEN, identifier, getCommitmentPrefix(),

connection.counterpartyClientIdentifier, connection.clientIdentifier,
version}

abortTransactionUnless(connection.verifyConnectionState(proofHeight, proofTry,
connection.counterpartyConnectionIdentifier, expected))

abortTransactionUnless(connection.verifyClientConsensusState(
proofHeight, proofConsensus, connection.counterpartyClientIdentifier,
consensusHeight, expectedConsensusState))

connection.state = OPEN
abortTransactionUnless(getCompatibleVersions().indexOf(version) !== -1)
connection.version = version
provableStore.set(connectionPath(identifier), connection)

}
4) Finalising the connection

function connOpenConfirm(
identifier: Identifier,
proofAck: CommitmentProof,
proofHeight: uint64) {

connection = provableStore.get(connectionPath(identifier))
abortTransactionUnless(connection.state === TRYOPEN)
expected = ConnectionEnd{OPEN, identifier, getCommitmentPrefix(),

connection.counterpartyClientIdentifier,
connection.clientIdentifier, connection.version}

abortTransactionUnless(connection.verifyConnectionState(
proofHeight, proofAck, connection.counterpartyConnectionIdentifier, expected))

connection.state = OPEN
provableStore.set(connectionPath(identifier), connection)

}

B. Channel handshake
1) Initiating a handshake

function chanOpenInit(
order: ChannelOrder,
connectionHops: [Identifier],
portIdentifier: Identifier,
channelIdentifier: Identifier,
counterpartyPortIdentifier: Identifier,
counterpartyChannelIdentifier: Identifier,
version: string): CapabilityKey {

abortTransactionUnless(validateChannelIdentifier(portIdentifier, channelIdentifier))
abortTransactionUnless(connectionHops.length === 1)
abortTransactionUnless(provableStore.get(channelPath(portIdentifier, channelIdentifier)) === null)



connection = provableStore.get(connectionPath(connectionHops[0]))
abortTransactionUnless(connection !== null)
abortTransactionUnless(authenticateCapability(portPath(portIdentifier), portCapability))
channel = ChannelEnd{INIT, order, counterpartyPortIdentifier,

counterpartyChannelIdentifier, connectionHops, version}
provableStore.set(channelPath(portIdentifier, channelIdentifier), channel)
channelCapability = newCapability(channelCapabilityPath(portIdentifier, channelIdentifier))
provableStore.set(nextSequenceSendPath(portIdentifier, channelIdentifier), 1)
provableStore.set(nextSequenceRecvPath(portIdentifier, channelIdentifier), 1)
provableStore.set(nextSequenceAckPath(portIdentifier, channelIdentifier), 1)
return channelCapability

}

2) Responding to a handshake initiation

function chanOpenTry(
order: ChannelOrder,
connectionHops: [Identifier],
portIdentifier: Identifier,
channelIdentifier: Identifier,
counterpartyPortIdentifier: Identifier,
counterpartyChannelIdentifier: Identifier,
version: string,
counterpartyVersion: string,
proofInit: CommitmentProof,
proofHeight: uint64): CapabilityKey {

abortTransactionUnless(validateChannelIdentifier(portIdentifier, channelIdentifier))
abortTransactionUnless(connectionHops.length === 1)
previous = provableStore.get(channelPath(portIdentifier, channelIdentifier))
abortTransactionUnless(

(previous === null) ||
(previous.state === INIT &&
previous.order === order &&
previous.counterpartyPortIdentifier === counterpartyPortIdentifier &&
previous.counterpartyChannelIdentifier === counterpartyChannelIdentifier &&
previous.connectionHops === connectionHops &&
previous.version === version)

)
abortTransactionUnless(authenticateCapability(portPath(portIdentifier), portCapability))
connection = provableStore.get(connectionPath(connectionHops[0]))
abortTransactionUnless(connection !== null)
abortTransactionUnless(connection.state === OPEN)
expected = ChannelEnd{INIT, order, portIdentifier,

channelIdentifier,
[connection.counterpartyConnectionIdentifier],
counterpartyVersion}

abortTransactionUnless(connection.verifyChannelState(
proofHeight,
proofInit,
counterpartyPortIdentifier,
counterpartyChannelIdentifier,
expected

))
channel = ChannelEnd{TRYOPEN, order, counterpartyPortIdentifier,

counterpartyChannelIdentifier, connectionHops, version}
provableStore.set(channelPath(portIdentifier, channelIdentifier), channel)
channelCapability = newCapability(channelCapabilityPath(portIdentifier, channelIdentifier))



provableStore.set(nextSequenceSendPath(portIdentifier, channelIdentifier), 1)
provableStore.set(nextSequenceRecvPath(portIdentifier, channelIdentifier), 1)
provableStore.set(nextSequenceAckPath(portIdentifier, channelIdentifier), 1)
return channelCapability

}

3) Acknowledging the response

function chanOpenAck(
portIdentifier: Identifier,
channelIdentifier: Identifier,
counterpartyVersion: string,
proofTry: CommitmentProof,
proofHeight: uint64) {

channel = provableStore.get(channelPath(portIdentifier, channelIdentifier))
abortTransactionUnless(channel.state === INIT || channel.state === TRYOPEN)
abortTransactionUnless(authenticateCapability(channelCapabilityPath(portIdentifier, channelIdentifier), capability))
connection = provableStore.get(connectionPath(channel.connectionHops[0]))
abortTransactionUnless(connection !== null)
abortTransactionUnless(connection.state === OPEN)
expected = ChannelEnd{TRYOPEN, channel.order, portIdentifier,

channelIdentifier,
[connection.counterpartyConnectionIdentifier],
counterpartyVersion}

abortTransactionUnless(connection.verifyChannelState(
proofHeight,
proofTry,
channel.counterpartyPortIdentifier,
channel.counterpartyChannelIdentifier,
expected

))
channel.state = OPEN
channel.version = counterpartyVersion
provableStore.set(channelPath(portIdentifier, channelIdentifier), channel)

}

4) Finalising a channel

function chanOpenConfirm(
portIdentifier: Identifier,
channelIdentifier: Identifier,
proofAck: CommitmentProof,
proofHeight: uint64) {

channel = provableStore.get(channelPath(portIdentifier, channelIdentifier))
abortTransactionUnless(channel !== null)
abortTransactionUnless(channel.state === TRYOPEN)
abortTransactionUnless(authenticateCapability(channelCapabilityPath(portIdentifier, channelIdentifier), capability))
connection = provableStore.get(connectionPath(channel.connectionHops[0]))
abortTransactionUnless(connection !== null)
abortTransactionUnless(connection.state === OPEN)
expected = ChannelEnd{OPEN, channel.order, portIdentifier,

channelIdentifier,
[connection.counterpartyConnectionIdentifier],
channel.version}

abortTransactionUnless(connection.verifyChannelState(
proofHeight,
proofAck,
channel.counterpartyPortIdentifier,



channel.counterpartyChannelIdentifier,
expected

))
channel.state = OPEN
provableStore.set(channelPath(portIdentifier, channelIdentifier), channel)

}
5) Initiating channel closure

function chanCloseInit(
portIdentifier: Identifier,
channelIdentifier: Identifier) {

abortTransactionUnless(authenticateCapability(channelCapabilityPath(portIdentifier, channelIdentifier), capability))
channel = provableStore.get(channelPath(portIdentifier, channelIdentifier))
abortTransactionUnless(channel !== null)
abortTransactionUnless(channel.state !== CLOSED)
connection = provableStore.get(connectionPath(channel.connectionHops[0]))
abortTransactionUnless(connection !== null)
abortTransactionUnless(connection.state === OPEN)
channel.state = CLOSED
provableStore.set(channelPath(portIdentifier, channelIdentifier), channel)

}
6) Confirming channel closure

function chanCloseConfirm(
portIdentifier: Identifier,
channelIdentifier: Identifier,
proofInit: CommitmentProof,
proofHeight: uint64) {

abortTransactionUnless(authenticateCapability(channelCapabilityPath(portIdentifier, channelIdentifier), capability))
channel = provableStore.get(channelPath(portIdentifier, channelIdentifier))
abortTransactionUnless(channel !== null)
abortTransactionUnless(channel.state !== CLOSED)
connection = provableStore.get(connectionPath(channel.connectionHops[0]))
abortTransactionUnless(connection !== null)
abortTransactionUnless(connection.state === OPEN)
expected = ChannelEnd{CLOSED, channel.order, portIdentifier,

channelIdentifier,
[connection.counterpartyConnectionIdentifier],
channel.version}

abortTransactionUnless(connection.verifyChannelState(
proofHeight,
proofInit,
channel.counterpartyPortIdentifier,
channel.counterpartyChannelIdentifier,
expected

))
channel.state = CLOSED
provableStore.set(channelPath(portIdentifier, channelIdentifier), channel)

}

C. Packet Handling
1) Sending a packet

function sendPacket(packet: Packet) {
channel = provableStore.get(channelPath(packet.sourcePort, packet.sourceChannel))
abortTransactionUnless(channel !== null)
abortTransactionUnless(channel.state !== CLOSED)



abortTransactionUnless(authenticateCapability(
channelCapabilityPath(packet.sourcePort, packet.sourceChannel), capability))

abortTransactionUnless(packet.destPort === channel.counterpartyPortIdentifier)
abortTransactionUnless(packet.destChannel === channel.counterpartyChannelIdentifier)
connection = provableStore.get(connectionPath(channel.connectionHops[0]))
abortTransactionUnless(connection !== null)
latestClientHeight = provableStore.get(clientPath(connection.clientIdentifier)).latestClientHeight()
abortTransactionUnless(packet.timeoutHeight === 0 || latestClientHeight < packet.timeoutHeight)
nextSequenceSend = provableStore.get(nextSequenceSendPath(packet.sourcePort, packet.sourceChannel))
abortTransactionUnless(packet.sequence === nextSequenceSend)
nextSequenceSend = nextSequenceSend + 1
provableStore.set(nextSequenceSendPath(packet.sourcePort, packet.sourceChannel), nextSequenceSend)
provableStore.set(packetCommitmentPath(packet.sourcePort, packet.sourceChannel, packet.sequence),

hash(packet.data, packet.timeoutHeight, packet.timeoutTimestamp))
}

2) Receiving a packet

function recvPacket(
packet: OpaquePacket,
proof: CommitmentProof,
proofHeight: uint64,
acknowledgement: bytes): Packet {

channel = provableStore.get(channelPath(packet.destPort, packet.destChannel))
abortTransactionUnless(channel !== null)
abortTransactionUnless(channel.state === OPEN)
abortTransactionUnless(

authenticateCapability(channelCapabilityPath(packet.destPort, packet.destChannel), capability))
abortTransactionUnless(packet.sourcePort === channel.counterpartyPortIdentifier)
abortTransactionUnless(packet.sourceChannel === channel.counterpartyChannelIdentifier)
abortTransactionUnless(provableStore.get(packetAcknowledgementPath(packet.destPort,

packet.destChannel, packet.sequence) === null))
connection = provableStore.get(connectionPath(channel.connectionHops[0]))
abortTransactionUnless(connection !== null)
abortTransactionUnless(connection.state === OPEN)
abortTransactionUnless(packet.timeoutHeight === 0 || getConsensusHeight() < packet.timeoutHeight)
abortTransactionUnless(packet.timeoutTimestamp === 0 || currentTimestamp() < packet.timeoutTimestamp)
abortTransactionUnless(connection.verifyPacketData(

proofHeight,
proof,
packet.sourcePort,
packet.sourceChannel,
packet.sequence,
concat(packet.data, packet.timeoutHeight, packet.timeoutTimestamp)

))
if (acknowledgement.length > 0 || channel.order === UNORDERED)

provableStore.set(
packetAcknowledgementPath(packet.destPort, packet.destChannel, packet.sequence),
hash(acknowledgement)

)
if (channel.order === ORDERED) {

nextSequenceRecv = provableStore.get(nextSequenceRecvPath(packet.destPort, packet.destChannel))
abortTransactionUnless(packet.sequence === nextSequenceRecv)
nextSequenceRecv = nextSequenceRecv + 1
provableStore.set(nextSequenceRecvPath(packet.destPort, packet.destChannel), nextSequenceRecv)

}
return packet



}

3) Acknowledging a packet

function acknowledgePacket(
packet: OpaquePacket,
acknowledgement: bytes,
proof: CommitmentProof,
proofHeight: uint64): Packet {

channel = provableStore.get(channelPath(packet.sourcePort, packet.sourceChannel))
abortTransactionUnless(channel !== null)
abortTransactionUnless(channel.state === OPEN)
abortTransactionUnless(authenticateCapability(

channelCapabilityPath(packet.sourcePort, packet.sourceChannel), capability))
abortTransactionUnless(packet.destPort === channel.counterpartyPortIdentifier)
abortTransactionUnless(packet.destChannel === channel.counterpartyChannelIdentifier)
connection = provableStore.get(connectionPath(channel.connectionHops[0]))
abortTransactionUnless(connection !== null)
abortTransactionUnless(connection.state === OPEN)
abortTransactionUnless(provableStore.get(packetCommitmentPath(packet.sourcePort,

packet.sourceChannel, packet.sequence))
=== hash(packet.data, packet.timeoutHeight, packet.timeoutTimestamp))

abortTransactionUnless(connection.verifyPacketAcknowledgement(
proofHeight,
proof,
packet.destPort,
packet.destChannel,
packet.sequence,
acknowledgement

))
if (channel.order === ORDERED) {

nextSequenceAck = provableStore.get(nextSequenceAckPath(packet.sourcePort, packet.sourceChannel))
abortTransactionUnless(packet.sequence === nextSequenceAck)
nextSequenceAck = nextSequenceAck + 1
provableStore.set(nextSequenceAckPath(packet.sourcePort, packet.sourceChannel), nextSequenceAck)

}
provableStore.delete(packetCommitmentPath(packet.sourcePort, packet.sourceChannel, packet.sequence))
return packet

}

4) Handling a timed-out packet

function timeoutPacket(
packet: OpaquePacket,
proof: CommitmentProof,
proofHeight: uint64,
nextSequenceRecv: Maybe<uint64>): Packet {

channel = provableStore.get(channelPath(packet.sourcePort, packet.sourceChannel))
abortTransactionUnless(channel !== null)
abortTransactionUnless(channel.state === OPEN)
abortTransactionUnless(authenticateCapability(

channelCapabilityPath(packet.sourcePort, packet.sourceChannel), capability))
abortTransactionUnless(packet.destChannel === channel.counterpartyChannelIdentifier)
connection = provableStore.get(connectionPath(channel.connectionHops[0]))
abortTransactionUnless(packet.destPort === channel.counterpartyPortIdentifier)
abortTransactionUnless(

(packet.timeoutHeight > 0 && proofHeight >= packet.timeoutHeight) ||
(packet.timeoutTimestamp > 0 &&



connection.getTimestampAtHeight(proofHeight) > packet.timeoutTimestamp))
abortTransactionUnless(provableStore.get(packetCommitmentPath(packet.sourcePort,

packet.sourceChannel, packet.sequence))
=== hash(packet.data, packet.timeoutHeight, packet.timeoutTimestamp))

if channel.order === ORDERED {
abortTransactionUnless(nextSequenceRecv <= packet.sequence)
abortTransactionUnless(connection.verifyNextSequenceRecv(

proofHeight,
proof,
packet.destPort,
packet.destChannel,
nextSequenceRecv

))
} else

abortTransactionUnless(connection.verifyPacketAcknowledgementAbsence(
proofHeight,
proof,
packet.destPort,
packet.destChannel,
packet.sequence

))
provableStore.delete(packetCommitmentPath(packet.sourcePort, packet.sourceChannel, packet.sequence))
if channel.order === ORDERED {

channel.state = CLOSED
provableStore.set(channelPath(packet.sourcePort, packet.sourceChannel), channel)

}
return packet

}

5) Cleaning up packet data

function cleanupPacket(
packet: OpaquePacket,
proof: CommitmentProof,
proofHeight: uint64,
nextSequenceRecvOrAcknowledgement: Either<uint64, bytes>): Packet {

channel = provableStore.get(channelPath(packet.sourcePort, packet.sourceChannel))
abortTransactionUnless(channel !== null)
abortTransactionUnless(channel.state === OPEN)
abortTransactionUnless(authenticateCapability(

channelCapabilityPath(packet.sourcePort, packet.sourceChannel), capability))
abortTransactionUnless(packet.destChannel === channel.counterpartyChannelIdentifier)
connection = provableStore.get(connectionPath(channel.connectionHops[0]))
abortTransactionUnless(connection !== null)
abortTransactionUnless(packet.destPort === channel.counterpartyPortIdentifier)
abortTransactionUnless(nextSequenceRecv > packet.sequence)
abortTransactionUnless(provableStore.get(packetCommitmentPath(packet.sourcePort,

packet.sourceChannel, packet.sequence))
=== hash(packet.data, packet.timeoutHeight, packet.timeoutTimestamp))

if channel.order === ORDERED
abortTransactionUnless(connection.verifyNextSequenceRecv(

proofHeight,
proof,
packet.destPort,
packet.destChannel,
nextSequenceRecvOrAcknowledgement

))



else
abortTransactionUnless(connection.verifyPacketAcknowledgement(

proofHeight,
proof,
packet.destPort,
packet.destChannel,
packet.sequence,
nextSequenceRecvOrAcknowledgement

))
provableStore.delete(packetCommitmentPath(packet.sourcePort, packet.sourceChannel, packet.sequence))
return packet

}
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