Cheng Zhang SpR——

S czhang03.github.io
Q) czhang03
Research Statement B Curriculum vitae

“the possibility of making explicit, elegant computations has always come out |[..] as
a byproduct of a thorough conceptual understanding..” — Alexander Grothendieck

Many challenges in computer science can be formulated as program equivalences, where we seek to
establish that two programs behave similarly or identically. For example, the correctness of compilers
and decompilers can be defined by the equivalence of the input and output programs. Similarly, the
correctness of machine-learning model compression can be verified by the equivalence of the model's
behavior before and after compression. The integrity of privacy and security algorithms can also be
characterized by their indistinguishability from ideal scenarios. More surprisingly, problems like network
reachability, network traffic isolation, program logic, and computational effects, can all be formalized and
analyzed using equations [1, 2, 3, 4, 5].

While general program equivalences remain undecidable, Kleene Algebra (KA), an abstract algebraic system
rooted in automata theory, has shown great promise in both proving and automating program equivalences
in various domains. The theoretical elegance of Kleene Algebra have inspired a wealth of foundational
research [6, 7, 8, 9, 10, 11]; and the practical systems based on Kleene Algebra have excelled in compiler
verification [12], (probabilistic) network systems [1, 13, 14, 15], weak memory model [16], and distributed
systems [17]. Notably, some of these tools have matched or even outperformed state-of-the-art tools in
their respective domains.

My research is nicely positioned at the intersection of theory and practice of Kleene Algebra, enabling me
to collaborate with researchers and students with diverse backgrounds, and produce interesting results on
both sides. My research workflow usually involves learning about specific application domains, applying the
perspective of Kleene Algebra to understand and tackle practical problems, then refining theory to achieve
the most elegant solutions. This approach has proven to be effective for me, yielding both rich theoretical
frameworks and efficient tools, while also identifying promising open problems for future exploration. My
current work has been applied to program logics [2, 18] and decompiler validation [19]; all published in
top-tier conferences like POPL and ICALP. Additionally, my theoretical ventures have demonstrated the
limitations of alignment reasoning in relational verification, resolved a long-standing open problem in
Kleene Algebra [20], developed an algebraic perspective of the reduction technique in Kleene Algebra [18],
and developed efficient algorithm to check the equivalence of uninterpreted programs [21].

s Past and Ongoing Works

mmm  TopKAT: A Unified View Of Program Logic

Incorrectness logic [22], although simple, has shown great potential for bug detection across various
semantic domains [23, 24, 25]. To unify the theory of incorrectness logic in these domains, we tried to
use Kleene Algebra with Tests (KAT) as an algebraic semantic foundation. This task was soon proven to
be impossible [2]: we showed that the theory of KAT is insufficient to encode incorrectness logic, mainly
because KAT lacks the relational domain operation. Surprisingly, instead of adding a fully-fledged domain
operator, we only need to add a top element. We named our framework Kleen algebra with top and tests
(TopKAT), and unlike KAT extensions with domain operators [26, 27], TopKAT preserves the complexity

1/8


mailto:czhang03@bu.edu
https://czhang03.github.io
https://github.com/czhang03
https://cdn.jsdelivr.net/gh/czhang03/CV@master/CV.pdf

class of KAT [2].

However, upon diving into the theory of TopKAT, we discovered its unexpected limitation: despite its
power to subsume both propositional Hoare and incorrectness logic, TopKAT is incomplete with respect
to its relational model. Our followup work [18] resolves this weakness by focusing on the inequalities
used to encode incorrectness and Hoare logic, which we named “domain-comparison inequalities”. In this
work, we used techniques in universal algebra to streamline the definition of reduction [28, 29]. This new
perspective greatly simplified previous completeness proofs, and also allowed us to prove the relational
completeness with regard domain-comparison inequalities. This result has not only demonstrated the
effectiveness of reasoning about incorrectness and Hoare logics using TopKAT, but also other logics like
reachability logic [30] as well.

mmm  CF-GKAT, control flow verification in nearly linear time

Control-flow manipulation is a prevalent task in software engineering, thus verifying its correctness is
crucial to ensure software reliability. Our work, building upon foundational researches on Guarded Kleene
Algebra with Tests (GKAT) [6] and the theory of non-local control flow in Kleene Algebra [31], greatly
simplifies process of control-flow verification. Specifically, We extended GKAT automaton to handle
common control structures, including break, return, goto, and indicator variables; while preserving its
efficiency and correctness. These extensions enable us to validate a large class of control-flow restructuring
algorithms [12, 32, 33, 34]. And its efficiency and correctness allow our works to be invoked automatically
on-the-fly, or be used as a framework in a proof assistant.

mmm  Ffficient Symbolic On-the-fly Algorithm for GKAT

In the process of implementing CF-GKAT, we have identified several ways to improve the efficiency of GKAT
equivalences. For example, when there is a large amount of primitive test (primitive conditional statements
used in if-statement and while-loops), the memory usage and runtime of the original algorithm [6] will
blowup exponentially. The large memory usage is typically resolved using derivatives to produce the
automaton on-the-fly [7, 35], whereas the long runtime can be optimized using symbolic automaton [36].

In collaboration with two undergrad students, our latest work marries these two ideas, and built a theory of
symbolic GKAT coalgebra, which gives rises to several efficient symbolic equivalence-checking algorithms
for GKAT. Unlike similar works on KAT [36], the structure of GKAT enables us to export the complex
boolean logic into a fast and reliable solvers like z3; further improving the efficiency of our implementation.
Our rust implementation can decide large equivalences (with more than 500 commands pre expression) in
seconds with only couple megabytes of memory usage. This work also characterized the exact complexity
of GKAT, which is co-NP-complete.

mmm  Kleene Algebra With Commutativity Hypothesis

Commutativity hypotheses have long been recognized for its importance in control-flow analysis [37],
and recent work [38] has also established its vital role in relational verification. Contrary to its broad
applications, the theory of KA with commutativity hypotheses remains stale; specifically, the decidability of
the theory has made no progress since the question was raised by Kozen [37]. Independently, Kuznetsov [39]
has shown that Kleene Algebra with commutativity is indeed undecidable. We, on the other hand, has
shown the same result without using the induction or right unfolding rule [40]. Our result exhibits a large
class of equational theories that are all undecidable when extended commutativity hypotheses, generalizing
the result of Kuznetsov.

2/8



s \/ision for Future Work

My work has underscored the vast potential of algebraic methods in program verification, an approach
that has gained significant attention recently as researchers seek to leverage the wealth of mathematical
theory in real-world applications. For my future work, | am committed to continue bringing foundational
research into the real-world, and discovering new interesting theoretical directions thorough practice.

Besides refining my current work and incorporating more practical features into systems like TopKAT and
CF-GKAT, | also aim to expand the theory of algebraic reasoning into exciting new domains. One such
domain is distributed systems and concurrency, where, despite a substantial body of semantic work [41, 42,
43, 44, 45], there is a notable gap between algebraic foundations and the developments of practical tools.

Two significant problems that plague concurrent programming and distributed systems are deadlocks and
data-races. Although various tools have been designed to detect these undesirable behaviors [46, 47, 48,
49|, many of these tools are language-specific and lack connections to existing semantic works. | aim to
study these problems from an algebraic perspective based on well-developed semantic foundation, with the
goal of developing both generic proof systems and efficient automation. Specifically, | believe there are
two practical approaches which could benefit from said algebraic approach.

mmm  Session Types With Refinement Branching

Session types is a type system that specifies and verifies message-passing concurrency between two parties.
While session type systems completely eliminate problems like deadlocks and data races [50, 51], they
also impose restrictions on the types of programs that programmers can write. For instance, in leader
election protocols, each server communicates the ID of the elected leader to its neighbor and select a
protocol to execute depends on whether its ID coincide with the leader’s. Traditional session types only
allow protocol selection to depend on boolean values, which means that communicating the ID of the
elected leader would require a stream of binary-valued packets to be reflected in the type annotations. This
approach is not only computationally inefficient but also requires burdensome type for the programmer to
annotate. More expressive versions of session types, such as dependent session types [52, 53] can resolve
this problem, but their type equality and type checking are often undecidable.

Our work aims to find a reasonable middle ground by leveraging automaton theory and Kleene Algebra.
We envision a type system that supports branching on communicated values, such as the leader’s ID and
the server's assigned ID, while also provide a robust, efficient, and semantics-based type equality checking
algorithm. This algebraic approach would significantly improve the expressivity of traditional session type
systems while preserving the efficiency of its type checking algorithm.

mmm  Deadlock and Data-Race Detection

In addition to type-based approaches to eliminating deadlocks and data races, | am also interested in
detecting these problems in existing code bases without manual type annotations, particularly in programs
with threads accessing shared memory. Despite the strong semantic foundation provided by Concurrent
Kleene Algebra (CKA), current extensions of CKA lack two important features that are crucial for detecting
deadlocks and data races in real-world programs. Firstly, they do not support the future construct, a
popular concurrent structure used in many real-world languages. Secondly, they lack data dependency and
memory models, which are essential in defining deadlocks and data races.

Augmenting these features to Concurrent Kleene Algebra will provide an algebraic understanding of
real-world concurrent programs. This work will lead to the development of a proof system that can prove
deadlock and data race freedom for a generic class of programs, as well as an automated checker for
detecting deadlocks and data races. Furthermore, it may also enable a fast graph generation algorithm for

3/8



imperative programs like in graph types [54], and a deeper understanding of the connection between graph
types and semantics.

mmm  (Compositional Reduction Framework

However, all of these applications require significant extensions to existing systems of Kleene Algebra, and
demonstrating that these extensions preserve the desirable properties of Kleene Algebra is a non-trivial
task. This challenge has inspired my theoretical research to develop a compositional technique for proving
important properties of extensions of Kleene Algebra.

Specifically, | envision a framework where we can prove theorems for each individual language feature,
such as non-local control-flow, indicator variables, and top, and then combine them to derive a decision
procedure and desirable meta-theorems without requiring additional proof. This result will not only be
mathematically interesting but also save researchers a significant amount of time and effort when developing
practical tools. In the future, we can even build formal libraries that allow users to select language features,
and automatically generate the decision procedure with surrounding theorems. All of these visions are
grounded in the algebraic notion of reduction that we discovered for TopKAT. We have recently found
that this way of thinking is applicable to many existing systems, and its algebraic nature can potentially
facilitate a compositional framework for combining language features.

In conclusion, my research highlights the broad applicability of algebraic reasoning in realistic problems of
computer science. | see tremendous potential in the interplay between practicality and theory, where |
apply foundational techniques to realistic problems and, in turn, identify new theoretical opportunities
from the experience of solving practical issues. | believe that this workflow can lead to not only interesting
mathematics and efficient tools but also long-running projects that can engage students and researchers
from diverse backgrounds.

4/8



mees——— References

[1]

2]

[3]

[4]

[3]

[6]

[7]
[8]

[9]
[10]
[11]

[12]

[13]

Carolyn Jane Anderson et al. “NetKAT: Semantic Foundations for Networks". In: Proceedings of
the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. San Diego
California USA: ACM, Jan. 2014, pp. 113-126. 1sBN: 978-1-4503-2544-8. DOI: 10.1145/2535838.
2535862. (Visited on 12/08/2023).

Cheng Zhang, Arthur Azevedo de Amorim, and Marco Gaboardi. “On Incorrectness Logic and Kleene
Algebra with Top and Tests". In: Proceedings of the ACM on Programming Languages 6.POPL
(Jan. 2022), 29:1-29:30. DOI: 10.1145/3498690.

Bernhard Moller, Peter O'Hearn, and Tony Hoare. “On Algebra of Program Correctness and
Incorrectness”. In: Relational and Algebraic Methods in Computer Science. Ed. by Uli Fahrenberg et
al. Vol. 13027. Cham: Springer International Publishing, 2021, pp. 325-343. 1SBN: 978-3-030-88700-1
978-3-030-88701-8. DOI: 10.1007/978-3-030-88701-8_20. (Visited on 10/28/2021).

Gordon Plotkin and Matija Pretnar. “Handlers of Algebraic Effects”. In: Programming Languages and
Systems. Ed. by Giuseppe Castagna. Vol. 5502. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 80-94. 1SBN: 978-3-642-00589-3 978-3-642-00590-9. DOT: 10.1007/978-3-642-00590-9_7.
(Visited on 11/03/2024).

Gordon Plotkin and John Power. “Adequacy for Algebraic Effects”. In: Foundations of Software
Science and Computation Structures. Ed. by Gerhard Goos et al. Vol. 2030. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 1-24. 1sBN: 978-3-540-41864-1 978-3-540-45315-4. DOTI:
10.1007/3-540-45315-6_1. (Visited on 11/03/2024).

Steffen Smolka et al. “Guarded Kleene Algebra with Tests: Verification of Uninterpreted Programs in
Nearly Linear Time". In: Proceedings of the ACM on Programming Languages 4.POPL (Jan. 2020),
pp. 1-28. 1SSN: 2475-1421. DOI1: 10.1145/3371129.

Todd Schmid et al. Guarded Kleene Algebra with Tests: Coequations, Coinduction, and Completeness.
May 2021. poI: 10.4230/LIPIcs.ICALP.2021.142. arXiv: 2102.08286 [cs].

Bart Jacobs. “A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages”.
In: Algebra, Meaning, and Computation. Ed. by David Hutchison et al. Vol. 4060. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 375—404. 1SBN: 978-3-540-35462-8 978-3-540-35464-2. DOTI:
10.1007/11780274_20. (Visited on 12/28/2023).

Dexter Kozen. “On the Coalgebraic Theory of Kleene Algebra with Tests”. In: (Mar. 2008). (Visited
on 09/12/2022).

Todd Junior Wayne Schmid. “Coalgebraic Completeness Theorems for Effectful Process Algebras”.
Doctoral. UCL (University College London), Jan. 2024. (Visited on 11/04/2024).

Wojciech Ré6zowski et al. Probabilistic Guarded KAT Modulo Bisimilarity: Completeness and Complex-
ity. May 2023. DOI: 10.48550/arXiv.2305.01755. arXiv: 2305.01755. (Visited on 11/04/2024).

Dexter Kozen and Maria-Christina Patron. “Certification of Compiler Optimizations Using Kleene
Algebra with Tests". In: Proceedings of the First International Conference on Computational Logic.
CL '00. Berlin, Heidelberg: Springer-Verlag, July 2000, pp. 568-582. 1SBN: 978-3-540-67797-0.
(Visited on 11/14/2024).

Nate Foster et al. “A Coalgebraic Decision Procedure for NetKAT". In: Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
'15. New York, NY, USA: Association for Computing Machinery, Jan. 2015, pp. 343-355. ISBN:
978-1-4503-3300-9. DOI: 10.1145/2676726.2677011. (Visited on 07/28/2023).

5/8


https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/3498690
https://doi.org/10.1007/978-3-030-88701-8_20
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1145/3371129
https://doi.org/10.4230/LIPIcs.ICALP.2021.142
https://arxiv.org/abs/2102.08286
https://doi.org/10.1007/11780274_20
https://doi.org/10.48550/arXiv.2305.01755
https://arxiv.org/abs/2305.01755
https://doi.org/10.1145/2676726.2677011

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

Steffen Smolka et al. “Scalable Verification of Probabilistic Networks". In: Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation. Phoenix AZ
USA: ACM, June 2019, pp. 190-203. 1SBN: 978-1-4503-6712-7. DOI: 10.1145/3314221.3314639.
(Visited on 08/31/2021).

Han Zhang et al. “Netter: Probabilistic, Stateful Network Models”. In: Verification, Model Checking,
and Abstract Interpretation. Ed. by Fritz Henglein, Sharon Shoham, and Yakir Vizel. Vol. 12597.
Cham: Springer International Publishing, 2021, pp. 486-508. 1SBN: 978-3-030-67066-5 978-3-030-
67067-2. DOI: 10.1007/978-3-030-67067-2_22. (Visited on 08/31/2021).

Michalis Kokologiannakis, Ori Lahav, and Viktor Vafeiadis. “Kater: Automating Weak Memory
Model Metatheory and Consistency Checking"”. In: Proceedings of the ACM on Programming
Languages 7.POPL (Jan. 2023), pp. 544-572. 1SSN: 2475-1421. DOI: 10.1145/3571212. (Visited
on 11/14/2024).

A. K. Mclver et al. “Using Probabilistic Kleene Algebra pKA for Protocol Verification”. In: The
Journal of Logic and Algebraic Programming. Relations and Kleene Algebras in Computer Science
76.1 (May 2008), pp. 90-111. 1sSN: 1567-8326. DOI: 10.1016/j.jlap.2007.10.005. (Visited on
02/25/2022).

Cheng Zhang, Arthur Azevedo de Amorim, and Marco Gaboardi. Domain Reasoning in TopKAT.
Apr. 2024. DOI: 10.4230/LIPIcs.ICALP.2024.133. arXiv: 2404.18417 [cs].

Cheng Zhang et al. "CF-GKAT: Efficient Validation of Control-Flow Transformations”. In: Proceedings
of the ACM on Programming Languages POPL (2025).

Arthur Azevedo de Amorim, Cheng Zhang, and Marco Gaboardi. “Kleene Algebra with Commutativity
Conditions Is Undecidable". Apr. 2024. (Visited on 11/14/2024).

Cheng Zhang et al. Efficient Symbolic Algorithms For GKAT Equivalence. 2025.

Peter W. O'Hearn. “Incorrectness Logic". In: Proceedings of the ACM on Programming Languages
4.POPL (Jan. 2020), pp. 1-32. 1sSN: 2475-1421, 2475-1421. po1: 10.1145/3371078.

Azalea Raad et al. "Local Reasoning About the Presence of Bugs: Incorrectness Separation Logic”.
In: Computer Aided Verification. Ed. by Shuvendu K. Lahiri and Chao Wang. Vol. 12225. Cham:
Springer International Publishing, 2020, pp. 225-252. 1SBN: 978-3-030-53290-1 978-3-030-53291-8.
DOI: 10.1007/978-3-030-53291-8_14.

Quang Loc Le et al. “Finding Real Bugs in Big Programs with Incorrectness Logic”. In: Proceedings
of the ACM on Programming Languages 6.00PSLAL (Apr. 2022), pp. 1-27. 1SSN: 2475-1421. DOI:
10.1145/3527325.

Linpeng Zhang and Benjamin Lucien Kaminski. “Quantitative Strongest Post: A Calculus for
Reasoning about the Flow of Quantitative Information”. In: Proceedings of the ACM on Programming
Languages 6.00PSLA1 (Apr. 2022), 87:1-87:29. pOI: 10.1145/3527331.

Jules Desharnais, Bernhard Méller, and Georg Struth. “Kleene Algebra with Domain™. In: ACM
Transactions on Computational Logic 7.4 (Oct. 2006), pp. 798-833. 1ssN: 1529-3785. por: 10.
1145/1183278.1183285.

Igor Sedlar. “On the Complexity of Kleene Algebra with Domain”. In: Relational and Algebraic
Methods in Computer Science: 20th International Conference, RAMICS 2023, Augsburg, Germany,
April 3-6, 2023, Proceedings. Berlin, Heidelberg: Springer-Verlag, Apr. 2023, pp. 208—223. ISBN:
978-3-031-28082-5. por: 10.1007/978-3-031-28083-2_13.

6/8


https://doi.org/10.1145/3314221.3314639
https://doi.org/10.1007/978-3-030-67067-2_22
https://doi.org/10.1145/3571212
https://doi.org/10.1016/j.jlap.2007.10.005
https://doi.org/10.4230/LIPIcs.ICALP.2024.133
https://arxiv.org/abs/2404.18417
https://doi.org/10.1145/3371078
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1145/3527325
https://doi.org/10.1145/3527331
https://doi.org/10.1145/1183278.1183285
https://doi.org/10.1145/1183278.1183285
https://doi.org/10.1007/978-3-031-28083-2_13

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Damien Pous, Jurriaan Rot, and Jana Wagemaker. "On Tools for Completeness of Kleene Algebra
with Hypotheses”. In: Relational and Algebraic Methods in Computer Science: 19th International
Conference, RAMICS 2021, Marseille, France, November 2-5, 2021, Proceedings. Berlin, Heidelberg:
Springer-Verlag, Nov. 2021, pp. 378-395. 1SBN: 978-3-030-88700-1. DOI: 10.1007/978-3-030-
88701-8_23.

Dexter Kozen and Frederick Smith. “Kleene Algebra with Tests: Completeness and Decidability”. In:
Computer Science Logic. Ed. by Gerhard Goos et al. Vol. 1258. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1997, pp. 244-259. 1SBN: 978-3-540-63172-9 978-3-540-69201-0. DOT: 10.1007/3-540-
63172-0_43.

Nico Naus et al. Reachability Logic for Low-Level Programs. Mar. 2022. DOI: 10.48550/arXiv.
2204.00076. arXiv: 2204.00076 [cs].

Dexter Kozen. “Nonlocal Flow of Control and Kleene Algebra with Tests". In: 2008 23rd Annual
IEEE Symposium on Logic in Computer Science (June 2008), pp. 105-117. 1sSN: 1043-6871. DOTI:
10.1109/LICS.2008.32.

Khaled Yakdan et al. “No More Gotos: Decompilation Using Pattern-Independent Control-Flow Struc-
turing and Semantics-Preserving Transformations”. In: Proceedings 2015 Network and Distributed
System Security Symposium. San Diego, CA: Internet Society, 2015. 1SBN: 978-1-891562-38-9. DOI:
10.14722/ndss.2015.23185.

Zion Leonahenahe Basque et al. “Ahoy SAILR! There Is No Need to DREAM of C: A Compiler-Aware
Structuring Algorithm for Binary Decompilation™. In: ().

A.M. Erosa and L.J. Hendren. “Taming Control Flow: A Structured Approach to Eliminating
Goto Statements”. In: Proceedings of 1994 IEEE International Conference on Computer Languages
(ICCL'94). May 1994, pp. 229-240. pOI: 10.1109/ICCL.1994.288377.

Janusz A. Brzozowski. “Derivatives of Regular Expressions”. In: Journal of the ACM 11.4 (Oct.
1964), pp. 481-494. 1ssN: 0004-5411. por: 10.1145/321239.321249.

Damien Pous. “Symbolic Algorithms for Language Equivalence and Kleene Algebra with Tests”. In:
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL '15. New York, NY, USA: Association for Computing Machinery, Jan. 2015,
pp. 357-368. 1SBN: 978-1-4503-3300-9. DOI: 10.1145/2676726.2677007.

Dexter Kozen. “Kleene Algebra with Tests and Commutativity Conditions”. In: Tools and Algorithms
for the Construction and Analysis of Systems. Ed. by Gerhard Goos et al. Vol. 1055. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1996, pp. 14-33. ISBN: 978-3-540-61042-7 978-3-540-49874-2. DOLI:
10.1007/3-540-61042-1_35.

Timos Antonopoulos et al. “An Algebra of Alignment for Relational Verification”. In: Proceedings of
the ACM on Programming Languages 7.POPL (Jan. 2023), 20:573-20:603. poI: 10.1145/3571213.

Stepan L. Kuznetsov. “On the Complexity of Reasoning in Kleene Algebra with Commutativity
Conditions". In: Theoretical Aspects of Computing — ICTAC 2023. Ed. by Erika Abraham, Clemens
Dubslaff, and Silvia Lizeth Tapia Tarifa. Cham: Springer Nature Switzerland, 2023, pp. 83-99. ISBN:
978-3-031-47963-2. DOTI: 10.1007/978-3-031-47963-2_7.

Arthur Azevedo de Amorim, Cheng Zhang, and Marco Gaboardi. “Kleene Algebra with Commutativity
Conditions Is Undecidable”. Apr. 2024.

Tony Hoare et al. “Concurrent Kleene Algebra and Its Foundations”. In: The Journal of Logic and
Algebraic Programming. Relations and Kleene Algebras in Computer Science 80.6 (Aug. 2011),
pp. 266—296. 1SSN: 1567-8326. DOI: 10.1016/j.jlap.2011.04.005. (Visited on 10/08/2021).

7/8


https://doi.org/10.1007/978-3-030-88701-8_23
https://doi.org/10.1007/978-3-030-88701-8_23
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.48550/arXiv.2204.00076
https://doi.org/10.48550/arXiv.2204.00076
https://arxiv.org/abs/2204.00076
https://doi.org/10.1109/LICS.2008.32
https://doi.org/10.14722/ndss.2015.23185
https://doi.org/10.1109/ICCL.1994.288377
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/2676726.2677007
https://doi.org/10.1007/3-540-61042-1_35
https://doi.org/10.1145/3571213
https://doi.org/10.1007/978-3-031-47963-2_7
https://doi.org/10.1016/j.jlap.2011.04.005

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Tobias Kappé et al. “Concurrent Kleene Algebra with Observations: From Hypotheses to Complete-
ness". In: Foundations of Software Science and Computation Structures. Ed. by Jean Goubault-Larrecq
and Barbara Kénig. Vol. 12077. Cham: Springer International Publishing, 2020, pp. 381-400. ISBN:
978-3-030-45230-8 978-3-030-45231-5. DOI: 10.1007/978-3-030-45231-5_20. (Visited on
07/18/2023).

Tobias Kappé et al. “Concurrent Kleene Algebra: Free Model and Completeness™ In: Programming
Languages and Systems. Ed. by Amal Ahmed. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2018, pp. 856—-882. 1SBN: 978-3-319-89884-1. DOI1: 10.1007/978-3-319-
89884-1_30.

Jana Wagemaker et al. "Partially Observable Concurrent Kleene Algebra”. In: LIPIcs, Volume 171,
CONCUR 2020 171 (2020), 20:1-20:22. 1SSN: 1868-8969. DOI: 10.4230/LIPIcs.CONCUR.2020.20.
arXiv: 2007.07593 [cs]. (Visited on 11/08/2024).

Annabelle Mclver, Tahiry Rabehaja, and Georg Struth. “Probabilistic Concurrent Kleene Algebra”.
In: Electronic Proceedings in Theoretical Computer Science 117 (June 2013), pp. 97-115. 1SSN:
2075-2180. poI: 10.4204/EPTCS.117.7. (Visited on 02/03/2022).

Amy Williams, William Thies, and Michael D. Ernst. “Static Deadlock Detection for Java Libraries”.
In: ECOOP 2005 - Object-Oriented Programming. Ed. by David Hutchison et al. Vol. 3586. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 602-629. 1SBN: 978-3-540-27992-1 978-3-540-
31725-8. por: 10.1007/115631142_26. (Visited on 11/10/2024).

Stephen P. Masticola. “Static Detection of Deadlocks in Polynomial Time”. In: (1993). poI:
10.7282/T3-95QX-2391. (Visited on 11/10/2024).

Dawson Engler and Ken Ashcraft. “RacerX: Effective, Static Detection of Race Conditions and
Deadlocks"”. In: SIGOPS Oper. Syst. Rev. 37.5 (Oct. 2003), pp. 237-252. 1SSN: 0163-5980. DOT:
10.1145/1165389.945468. (Visited on 11/10/2024).

Mayur Naik et al. “Effective Static Deadlock Detection”. In: 2009 IEEE 31st International Conference
on Software Engineering. Vancouver, BC, Canada: IEEE, 2009, pp. 386—-396. 1SBN: 978-1-4244-3453-4.
DOI: 10.1109/ICSE.2009.5070538. (Visited on 11/10/2024).

Luis Caires and Frank Pfenning. “Session Types as Intuitionistic Linear Propositions”. In: CONCUR
2010 - Concurrency Theory. Ed. by Paul Gastin and Francois Laroussinie. Berlin, Heidelberg: Springer,
2010, pp. 222-236. 1SBN: 978-3-642-15375-4. DOIL: 10.1007/978-3-642-15375-4_16.

Philip Wadler. “Propositions as Sessions”. In: SIGPLAN Not. 47.9 (Sept. 2012), pp. 273-286. ISSN:
0362-1340. DOI: 10.1145/2398856.2364568. (Visited on 11/22/2024).

Bernardo Toninho, Luis Caires, and Frank Pfenning. “Dependent Session Types via Intuitionistic Linear
Type Theory"”. In: Proceedings of the 13th International ACM SIGPLAN Symposium on Principles and
Practices of Declarative Programming. PPDP '11. New York, NY, USA: Association for Computing
Machinery, July 2011, pp. 161-172. 1SBN: 978-1-4503-0776-5. DOI: 10.1145/2003476.2003499.
(Visited on 11/19/2024).

Bernardo Toninho, Luis Caires, and Frank Pfenning. “A Decade of Dependent Session Types”. In:
23rd International Symposium on Principles and Practice of Declarative Programming. Tallinn
Estonia: ACM, Sept. 2021, pp. 1-3. 1SBN: 978-1-4503-8689-0. DOI: 10.1145/3479394.3479398.
(Visited on 11/19/2024).

Stefan K Muller. “Language-Agnostic Static Deadlock Detection for Futures”. In: Proceedings of
the 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming.
Edinburgh United Kingdom: ACM, Mar. 2024, pp. 68-79. 1sBN: 9798400704352. DOI: 10.1145/
3627535.3638487. (Visited on 11/10/2024).

8/8


https://doi.org/10.1007/978-3-030-45231-5_20
https://doi.org/10.1007/978-3-319-89884-1_30
https://doi.org/10.1007/978-3-319-89884-1_30
https://doi.org/10.4230/LIPIcs.CONCUR.2020.20
https://arxiv.org/abs/2007.07593
https://doi.org/10.4204/EPTCS.117.7
https://doi.org/10.1007/11531142_26
https://doi.org/10.7282/T3-95QX-2391
https://doi.org/10.1145/1165389.945468
https://doi.org/10.1109/ICSE.2009.5070538
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1145/2398856.2364568
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/3479394.3479398
https://doi.org/10.1145/3627535.3638487
https://doi.org/10.1145/3627535.3638487

	Past and Ongoing Works
	TopKAT: A Unified View Of Program Logic
	CF-GKAT, control flow verification in nearly linear time
	Efficient Symbolic On-the-fly Algorithm for GKAT
	Kleene Algebra With Commutativity Hypothesis

	Vision for Future Work
	Session Types With Refinement Branching
	Deadlock and Data-Race Detection
	Compositional Reduction Framework

	References

