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“the possibility of making explicit, elegant computations has always come out |[..] as
a byproduct of a thorough conceptual understanding..” — Alexander Grothendieck

Many challenges in computer science can be formulated as program equivalences, where we seek to
establish that two programs behave similarly or identically. For example, the correctness of compilers
and decompilers can be defined by the equivalence of the input and output programs. Similarly, the
correctness of machine-learning model compression can be verified by the equivalence of the model's
behavior before and after compression. The integrity of privacy and security algorithms can also be
characterized by their indistinguishability from ideal scenarios. More surprisingly, problems like network
reachability, network traffic isolation, program logic, and computational effects, can all be formalized and
analyzed using equations [1, 2, 3, 4, 5].

While general program equivalences remain undecidable, Kleene Algebra (KA), an abstract algebraic system
rooted in automata theory, has shown great promise in both proving and automating program equivalences
in various domains. The theoretical elegance of Kleene Algebra have inspired a wealth of foundational
research [6, 7, 8, 9, 10, 11]; and the practical systems based on Kleene Algebra have excelled in compiler
verification [12], (probabilistic) network systems [1, 13, 14, 15], weak memory model [16], and distributed
systems [17]. Notably, some of these tools have matched or even outperformed state-of-the-art tools in
their respective domains.

My research is nicely positioned at the intersection of theory and practice of Kleene Algebra, enabling me
to collaborate with researchers and students with diverse backgrounds, and produce interesting results on
both sides. My research workflow usually involves learning about specific application domains, applying the
perspective of Kleene Algebra to understand and tackle practical problems, then refining theory to achieve
the most elegant solutions. This approach has proven to be effective for me, yielding both rich theoretical
frameworks and efficient tools, while also identifying promising open problems for future exploration. My
current work has been applied to program logics [2, 18] and decompiler validation [19]; all published in
top-tier conferences like POPL and ICALP. Additionally, my theoretical ventures have demonstrated the
limitations of alignment reasoning in relational verification, resolved a long-standing open problem in
Kleene Algebra [20], developed an algebraic perspective of the reduction technique in Kleene Algebra [18],
and developed efficient algorithm to check the equivalence of uninterpreted programs [21].

s Past and Ongoing Works

mmm  TopKAT: A Unified View Of Program Logic

Incorrectness logic [22], although simple, has shown great potential for bug detection across various
semantic domains [23, 24, 25]. To unify the theory of incorrectness logic in these domains, we tried to
use Kleene Algebra with Tests (KAT) as an algebraic semantic foundation. This task was soon proven to
be impossible [2]: we showed that the theory of KAT is insufficient to encode incorrectness logic, mainly
because KAT lacks the relational domain operation. Surprisingly, instead of adding a fully-fledged domain
operator, we only need to add a top element. We named our framework Kleen algebra with top and tests
(TopKAT), and unlike KAT extensions with domain operators [26, 27], TopKAT preserves the complexity

1/8


mailto:czhang03@bu.edu
https://czhang03.github.io
https://github.com/czhang03
https://cdn.jsdelivr.net/gh/czhang03/CV@master/CV.pdf

class of KAT [2].

However, upon diving into the theory of TopKAT, we discovered its unexpected limitation: despite its
power to subsume both propositional Hoare and incorrectness logic, TopKAT is incomplete with respect
to its relational model. Our followup work [18] resolves this weakness by focusing on the inequalities
used to encode incorrectness and Hoare logic, which we named “domain-comparison inequalities”. In this
work, we used techniques in universal algebra to streamline the definition of reduction [28, 29]. This new
perspective greatly simplified previous completeness proofs, and also allowed us to prove the relational
completeness with regard domain-comparison inequalities. This result has not only demonstrated the
effectiveness of reasoning about incorrectness and Hoare logics using TopKAT, but also other logics like
reachability logic [30] as well.

mmm  CF-GKAT, control flow verification in nearly linear time

Control-flow manipulation is a prevalent task in software engineering, thus verifying its correctness is
crucial to ensure software reliability. Our work, building upon foundational researches on Guarded Kleene
Algebra with Tests (GKAT) [6] and the theory of non-local control flow in Kleene Algebra [31], greatly
simplifies process of control-flow verification. Specifically, We extended GKAT automaton to handle
common control structures, including break, return, goto, and indicator variables; while preserving its
efficiency and correctness. These extensions enable us to validate a large class of control-flow restructuring
algorithms [12, 32, 33, 34]. And its efficiency and correctness allow our works to be invoked automatically
on-the-fly, or be used as a framework in a proof assistant.

mmm  Ffficient Symbolic On-the-fly Algorithm for GKAT

In the process of implementing CF-GKAT, we have identified several ways to improve the efficiency of GKAT
equivalences. For example, when there is a large amount of primitive test (primitive conditional statements
used in if-statement and while-loops), the memory usage and runtime of the original algorithm [6] will
blowup exponentially. The large memory usage is typically resolved using derivatives to produce the
automaton on-the-fly [7, 35], whereas the long runtime can be optimized using symbolic automaton [36].

In collaboration with two undergrad students, our latest work marries these two ideas, and built a theory of
symbolic GKAT coalgebra, which gives rises to several efficient symbolic equivalence-checking algorithms
for GKAT. Unlike similar works on KAT [36], the structure of GKAT enables us to export the complex
boolean logic into a fast and reliable solvers like z3; further improving the efficiency of our implementation.
Our rust implementation can decide large equivalences (with more than 500 commands pre expression) in
seconds with only couple megabytes of memory usage. This work also characterized the exact complexity
of GKAT, which is co-NP-complete.

mmm  Kleene Algebra With Commutativity Hypothesis

Commutativity hypotheses have long been recognized for its importance in control-flow analysis [37],
and recent work [38] has also established its vital role in relational verification. Contrary to its broad
applications, the theory of KA with commutativity hypotheses remains stale; specifically, the decidability of
the theory has made no progress since the question was raised by Kozen [37]. Independently, Kuznetsov [39]
has shown that Kleene Algebra with commutativity is indeed undecidable. We, on the other hand, has
shown the same result without using the induction or right unfolding rule [40]. Our result exhibits a large
class of equational theories that are all undecidable when extended commutativity hypotheses, generalizing
the result of Kuznetsov.
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s \/ision for Future Work

My work has underscored the vast potential of algebraic methods in program verification, an approach
that has gained significant attention recently as researchers seek to leverage the wealth of mathematical
theory in real-world applications. For my future work, | am committed to continue bringing foundational
research into the real-world, and discovering new interesting theoretical directions thorough practice.

Besides refining my current work and incorporating more practical features into systems like TopKAT and
CF-GKAT, | also aim to expand the theory of algebraic reasoning into exciting new domains. One such
domain is distributed systems and concurrency, where, despite a substantial body of semantic work [41, 42,
43, 44, 45], there is a notable gap between algebraic foundations and the developments of practical tools.

Two significant problems that plague concurrent programming and distributed systems are deadlocks and
data-races. Although various tools have been designed to detect these undesirable behaviors [46, 47, 48,
49|, many of these tools are language-specific and lack connections to existing semantic works. | aim to
study these problems from an algebraic perspective based on well-developed semantic foundation, with the
goal of developing both generic proof systems and efficient automation. Specifically, | believe there are
two practical approaches which could benefit from said algebraic approach.

mmm  Session Types With Refinement Branching

Session types is a type system that specifies and verifies message-passing concurrency between two parties.
While session type systems completely eliminate problems like deadlocks and data races [50, 51], they
also impose restrictions on the types of programs that programmers can write. For instance, in leader
election protocols, each server communicates the ID of the elected leader to its neighbor and select a
protocol to execute depends on whether its ID coincide with the leader’s. Traditional session types only
allow protocol selection to depend on boolean values, which means that communicating the ID of the
elected leader would require a stream of binary-valued packets to be reflected in the type annotations. This
approach is not only computationally inefficient but also requires burdensome type for the programmer to
annotate. More expressive versions of session types, such as dependent session types [52, 53] can resolve
this problem, but their type equality and type checking are often undecidable.

Our work aims to find a reasonable middle ground by leveraging automaton theory and Kleene Algebra.
We envision a type system that supports branching on communicated values, such as the leader’s ID and
the server's assigned ID, while also provide a robust, efficient, and semantics-based type equality checking
algorithm. This algebraic approach would significantly improve the expressivity of traditional session type
systems while preserving the efficiency of its type checking algorithm.

mmm  Deadlock and Data-Race Detection

In addition to type-based approaches to eliminating deadlocks and data races, | am also interested in
detecting these problems in existing code bases without manual type annotations, particularly in programs
with threads accessing shared memory. Despite the strong semantic foundation provided by Concurrent
Kleene Algebra (CKA), current extensions of CKA lack two important features that are crucial for detecting
deadlocks and data races in real-world programs. Firstly, they do not support the future construct, a
popular concurrent structure used in many real-world languages. Secondly, they lack data dependency and
memory models, which are essential in defining deadlocks and data races.

Augmenting these features to Concurrent Kleene Algebra will provide an algebraic understanding of
real-world concurrent programs. This work will lead to the development of a proof system that can prove
deadlock and data race freedom for a generic class of programs, as well as an automated checker for
detecting deadlocks and data races. Furthermore, it may also enable a fast graph generation algorithm for
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imperative programs like in graph types [54], and a deeper understanding of the connection between graph
types and semantics.

mmm  (Compositional Reduction Framework

However, all of these applications require significant extensions to existing systems of Kleene Algebra, and
demonstrating that these extensions preserve the desirable properties of Kleene Algebra is a non-trivial
task. This challenge has inspired my theoretical research to develop a compositional technique for proving
important properties of extensions of Kleene Algebra.

Specifically, | envision a framework where we can prove theorems for each individual language feature,
such as non-local control-flow, indicator variables, and top, and then combine them to derive a decision
procedure and desirable meta-theorems without requiring additional proof. This result will not only be
mathematically interesting but also save researchers a significant amount of time and effort when developing
practical tools. In the future, we can even build formal libraries that allow users to select language features,
and automatically generate the decision procedure with surrounding theorems. All of these visions are
grounded in the algebraic notion of reduction that we discovered for TopKAT. We have recently found
that this way of thinking is applicable to many existing systems, and its algebraic nature can potentially
facilitate a compositional framework for combining language features.

In conclusion, my research highlights the broad applicability of algebraic reasoning in realistic problems of
computer science. | see tremendous potential in the interplay between practicality and theory, where |
apply foundational techniques to realistic problems and, in turn, identify new theoretical opportunities
from the experience of solving practical issues. | believe that this workflow can lead to not only interesting
mathematics and efficient tools but also long-running projects that can engage students and researchers
from diverse backgrounds.
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