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1 Mixed Integer Programming Computations

A general view From a high-level perspective', MIP computations are
based on an expert blend of Land and Doig (1960) branch-and-bound algo-
rithm, and the cutting-plane approach introduced by Gomory (1958). The
branch-and-bound algorithm solves a series of linear relazation of the original
problem, elegantly splitting the domain of the latter through a series of
branching decisions, and consequently solving restricted subproblems. The
non-convexity due to the integer constraints is then handled indirectly by the
branching scheme. Then, a fathoming procedure prunes nodes that cannot
possibly improve an incumbent feasible solution, if any.

On the other hand, the cutting-plane approach iteratively solves a linear
relaxation by adding valid cuts whenever a fractional solution violates an
integrality constraint. The seminal work of Padberg and Rinaldi (1991)
synthesized bounding and cutting into the so-called branch-and-cut algorithm
(Algorithm 1), in the context of the Traveling Salesman Problem. This
contribution showcased — for the first time — a computationally efficient
combination of cutting planes, and the branch-and-bound algorithm. Since
then, a considerable research effort has been made to bridge theory and
computation in MIP, with a special focus on: (i) the underlying connections
with polyhedral combinatorics, and the computational tractability of the
different families of cutting planes, (ii) the effectiveness of a nourished toolkit
of primal heuristics, (iii) the development of refined branching strategies,
(iv) and, more recently, the integration with ML.

In what follows we consider MIPs in the form of

max{c’z : r € G} (1)
G ={Az>b, x>0, z,€Z YiecT} (2)

Where 7 encapsulates the integral variables, and matrix A € R™*™ has no
special structure. The linear relazation of Gl is

QR::{Abe,xZO,LiniSUiViEI} (3)

where the integrality constraints are dropped. L;, and U; are the lower and
upper bound of the i-th variable, respectively. The branch-and-cut heavily
exploits this relaxation, thereby it is clear how the pre-requisite for tractable
computations is an efficient LP solver.

1For an extended technical and historical review on MIP, we refer the reader to Lodi
(2010), and Jiinger (2009).



Figure 1: A MIP in the form of Equation (1).

On the hardness of MIP From a theoretical standpoint, we would like
to optimize over the convex-hull of G, or C := conv(G), so that any optimal
solution fulfil the integrality requirements in Z. In other words, we aim for
the perfect formulation of the set G, so that the MIP can be solved as a
linear program (Conforti et al., 2014). Such formulation is always guaranteed
to exist when A, and b are rational, as proven by Meyer (1974). When there
are only integer variables — or set Z has cardinality n — then we refer to the
perfect formulation as the integral polyhedron. However, these formulations
can turn out to be computationally untractable, and require non-negligible
computing resources. This is especially true when we model a N'P-hard
problem with MIPs. Coming back to a general MIP, consider the feasibility
problem associated with G, asking to decide whether the set is empty or not.
As a consequence of the result proven by Meyer (1974), we can always check
a certificate in polynomial-time, by simply plugging it into the formulation.
Hence, MIP is in N'P. Therefore, unless P = NP (Garey and Johnson,
2009), these results suggest that computational matters within MIP are
indeed fundamental to solve problems in practice.

1.1 Polyhedral combinatorics

A primer Polyhedral Combinatorics deals with the intrinsic geometrical
properties of the polyhedron associated with G. For the Minkowski-Weyl’s



Algorithm 1 A generic branch-and-cut scheme

1: Input: The description of G, and the vector ¢ of objective coefficients.
2: OQutput: The optimal solution x* or a certificate that none exist.
3: Initialize £ := {0}, and 2* = —oc0
4: while £ # () do
5:  Re-initialize z; = —o0, and £, =0
6: Exploration Strategy: pick a subproblem S € £, and set £ = £L\{S}
7:  Solve LP: solve the linear relaxation of the problem
8:  if the relaxation has a feasible solution then
9: zs < objective, and x4 < solution of .S
10: if x, fulfills integrality requirements and z; > z* then
11: z* + zs, and =¥ + x,
12: Fathoming: delete from £ nodes with upper bounds lower than z*
13: else
14: Cutting: eventually, try to find valid cuts.
15: if x, fulfills integrality requirements then
16: Go to Step 9
17: end if
18: Branching: Split S into k& subproblems, S = Ule S;, and update
19: L=culr,s,
20: end if
21:  end if

22: end while
23: return z*, and «*

theorem, a polyhedron can be described as the intersection of finitely many
halfspaces. Alternatively, we can express it as a combination of extreme
points and unbounded positive rays. The dimension of P — dim(P) — is the
maximum number of affinely independent points in P minus 1. We define
as valid inequality for P an inequality of the form 772 > my where z € P.
The face induced by a valid inequality 77z > my on P is F(m,my) = {z €
P: 7Tz =7}, and it is also a polyhedron. If dim(F (7, mp)) is 0 we have a
vertex of P, while if dim(F'(m, 7)) is equal to dim(P) — 1 we have a facet of
P. Hence, the natural question arising is which inequalities are necessary to
give a minimal description of P. The answer is almost straightforward. The
minimal description of P is given by the set of all its facets. Therefore, we
can see that not all inequalities are as necessary as the facet-defining ones.
In this spirit, facet inequalities are favored as strong compared to the other
ones.



Example 1 (A valid inequality). Consider the set following set G

max{cl z = z; + 10x3 : z € G} (4)
g = {—3.%'1 —2x9 2> 3,11 > 020 € {0, 1}} (5)

Solving the linear-relaxation of this problem yelds the solution (x1,1z2) =
(0, %), and hence xo is not integral. It is easy to see that any cut m1x1+moxy >
mo 1s valid for G when m < 0, mo = —1, and 71 /7o is in [1, %] In particular,
by adding the cut mg = m1 = —1 and solving again the linear relaxation,
we retrieve optimal solution (z1,x2) = (0,1). Assume C = conv(G). Since
dim(C) = 2, and the valid inequality contains 2 points, then —x1 — x9 > —1
s a facet of C.

Seeking for perfection The central question is how to retrieve the perfect-
fomulation of C. This may or may not be the minimal description C. As
mentioned, this perfect-formulation is usually not genuinely easy to find, and
hence may prevent any computational tractability. Hence, the objective is to
capture an enhanced description of G#, which can hopefully yield an optimal
(mixed) integer solution given a specific objective function ¢’ x. There is
a straightforward practical procedure we can exploit to get this enhanced
description, which can be summarized as follow. Start with R and solve its
associated linear relaxation. If the solution Z violates any of the integrality
constraints, then derive a wvalid — and possibly strong — inequality to cut off
the fractional point Z. In other words, we seek for an inequality in the form
of 7l'x > mg for all z € P, and 7% < my. We iteratively solve the linear
relaxation and find such inequalities until we obtain the optimal solution
fulfilling the original integer requirements.

The separation problem The derivation of walid inequalities to
strenghten the description of the relaxation roots in the so-called sepa-
ration problem (Grotschel et al., 1981). Its name stems from the idea of
separing Z from C by finding a violated walid inequality. At each separation
step, we obtain an enhanced description of G < GEn {rTz > m}. A
fundamental result concerning separation is the equivalence between optimiza-
tion and separation. It states that the separation problem can be solved in
polynomial-time only if the original MIP problem can be solved in polynomial
time (Conforti et al., 2014). Informally, if an oracle gives us the best cut at
each separation step for a AP-hard problem, then we can solve the original
problem in polynomial time. Most of the time, this is not the case, and
the separation problem is A/P-hard itself. However, we hope the separation



Figure 2: A valid inequality for the MIP in Figure 1. In this case, the
inequality cuts off the point Z € GF\C, and also defines a facet of C.

problem can be practically solved more quickly than the original one. The
interrogative is hence how the separation problem looks like, namely which
types of walid inequalities we can separate. Generally speaking, we can
separate either problem-specific or general-purpose inequalities.

Problem-specific cuts In the first case, the focal point is to find valid
inequalities for well-defined paradigmatic Combinatorial Optimization prob-
lems, for instance, the Traveling Salesman Problem (Dantzig et al., 1954;
Miller et al., 1960; Padberg and Rinaldi, 1990; Fischetti, 1991; Padberg and
Rinaldi, 1991; Fischetti et al., 1995), the Knapsack Problem (Balas, 1975;
Balas and Zemel, 1978; Gu et al., 1999), the Set Covering Problem (Balas and
Ng, 1989). In this context, the synergies between Combinatorial Optimiza-
tion, polyhedral combinatorics, and MIP provided a long-standing source of
innovations. Many combinatorial optimization problems can be formulated
as MIPs, and vice versa. Thereby, while exploiting problem-specific cuts, we
implicitly assume A has a special structure to derive valid inequalities. A
special note goes to Padberg and Rinaldi (1991), who developed the first
efficient implementation of the so-called branch-and-cut framework for the
Traveling Salesman Problem. The authors indeed separate a variety of valid
inequalities for the problem, for instance, subtour elimination ones.

Example 2 (Knapsack Cover Cuts). Consider the set following knapsack



problem with 4 items

max{cl z = 22z + 1929 + 1723 + 1024 : = € G} (6)
G = {1221 + 929 + 623 + 4oy < 15,2 € {0,1}*} (7)

Intuitively, it is easy to see that picking xo, x3, and x4 yelds a capacity
of 19 > 15. Therefore, a valid inequality would enforce at most 2 of these
elements are selected, namely xo + x3 + 4 < 2. This is called a knapsack
covering inequality. We can strenghten (lift) it by adding item x1, and alter
its coefficient to 2. The facet defining inequality is then 2x1 +xo+x3+ x4 < 2.

General-purpose cuts In the second case, we derive generally valid
inequalities without exploiting any special structure of A. We refer to this
class as general-purpose cutting planes. In this context, we remark the
pioneering theoretical works of Chvatal (1973) and Gomory (1958) on the
so-called C'G-cuts for pure integer programs. The basic reasoning is to obtain
a rounded down inequality from the known-one embedded in the description
of A, namely (AA)xz < [Ab]. The term A € R is often called the vector
of CG-multipliers. In general, such general-purpose cuts are generated by
inducing disjunctive arguments on Chvdtal inequalities (Lodi, 2010). A
disjunction is a clause in the form of A'x > b' v A%2 > b? v ... A%z > V?
satisfied by all solutions in C. Within this context, Disjunctive Programming
(Balas, 2018) stemmed out to study the properties of disjunctions and
their direct implications for MIP cutting-planes. Fischetti et al. (2011)
provides some detailed computational consideration on the separation of
general disjunctive cuts, for instance, the role of normalization. Remarkably,
practically implemented disjunctive cuts are usually two-sided disjunctions,
where namely there are only two disjunctive terms. In general, one can
consider disjunction with more than two terms (Perregaard and Balas, 2001).
An important class of general-purpose cuts is the one of Mized-Integer
Gomory cuts (MIG). Balas et al. (1996) pioneered their implementation
in the late 90s. Nowadays, this is one of the most powerful classes of cuts
implemented in modern solvers (Achterberg, 2009; Bixby et al., 2000). It
is interesting to observe how the theoretical understanding anticipated — in
terms of several decades — the implementations in modern MIP computations
(Cornuéjols, 2007a). In fact, before the breakthrough work of Balas et al.
(1996), general-purpose cutting planes were mostly considered because of
their theoretical interest more than the practical one. Among the other
families of cuts, we briefly cite:



(i) Split cuts, where given ¢ € 7M1, d € 7, we derive a general disjunction
by intersecting G either with YoicrCivi <dor) i ey > d+1 (Balas,
2018). Here the disjunction is one, and results in two different splits.
Mized-Integer Gomory cuts, and lift-and-project, and Mixed-Integer
Roundings cuts are all splits.

(ii) {0,1/2}-CG cuts, namely CG-cuts where all the coefficients of A are
either 0 or 1/2. Caprara and Fischetti (1996) showed that such inequal-
ities naturally arise in some formulations of combinatorial problems
(e.g., the Traveling Salesman Problem).

(iii) Lift-and-project cuts. In their two-sided binary 0-1 form, they are split-
cuts where the disjunction is made on a binary variable z;, ¢ € I so
that 2; <0 or x; > 1 — namely where A € {0, 1} for both sides (Zemel,
1978). The disjunction is then {Azx > b;z; = 0} V {Azx > b;z; = 0}.
Their name derives from the idea of finding such cuts in a higher-
dimensional polyhedron and projecting it back to the original space. In
practice, this means solving a linear program with an enriched number
of variables wrt the original problem. (Balas et al., 1993; Balas and
Bonami, 2009). However, Balas and Perregaard (2003) proved that
two-sided disjunctive lift-and-project cuts can be efficiently extracted
from the simplex-tableau of the linear relaxation.

(iv) Mized Integer Rounding cuts (MIR). The reasoning is similar to the
one for MIG. Consider an inequality in the description of G, and its a
(a;) vector and b (b;) coefficient. Alternatively, we can also consider
an aggregation of constraints. Let fy be b — |b], and similarly f; — for
each variable j € [n] — be a; — [a;j]. The rounding cut relies on the
so-called rounding factor 1 — fy (Nemhauser and Wolsey, 1988).

For a primer on their relationship we refer to Kazachkov (2018), and
Balas and Perregaard (2003), while for a more didactic version to Conforti
et al. (2014), and Cornuéjols (2007b). We remark also that — within a branch-
and-cut framework — we need to distinguish on globally valid cuts (e.g., valid
for any note in the search tree), or locally valid cuts (e.g., valid only for
specific nodes). Indeed, we can either separate globally-valid inequalities or
locally-valid ones.

1.2 Presolving and primal heuristics

Presolving Before the problem is fed to the branch-and-cut algorithm, a
MIP solver usually performs the so-called presolving. In a nutshell, presolving



routines try to detect redundant information and seek to transform the given
model into a possibly simpler one. A few basic routines are, for instance, coef-
ficient reductions, empty or implied rows detection, and bound strengthening
are just a few of these (Savelsbergh, 1994). Achterberg (2009) developed a set
of conflict detection algorithms based on constraint programming. The thesis
showcases both general presolving algorithms and specialized routines for a
class of constraints (e.g., knapsack constraint preprocessing). The extent of
sophistication of presolving techniques plays a fundamental role in modern
MIP solvers. For a more detailed review on the topic, we refer to Achterberg
(2009), and Achterberg et al. (2019).

Example 3 (Basic Presolving). Consider the set following set G

G = {1200z1 + 900x2 + 3003 < 600;
w3 > 1; 21+ a2 < 1; x € {0,1}%} (8)

The coefficients in the first inequality can be reduced to 4xq + 3xo + lxg < 2.
Since the second inequality forces xs to be at its upper bound, then x3 =1,
and the first inequality reads as 4x1 + 3xo < 1. Furthermore, this inequality
s implied from the third one.

Primal heuristics The branch-and-cut algorithm is guaranteed to termi-
nate in a finite amount of time and return either a solution or a certificate of
infeasibility. Furthermore, the fathoming step of the algorithm strongly relies
on the quality of the incumbent solution, and hence the better incumbent the
more the pruning. However, Achterberg (2009) noted that heuristics cannot
significantly speed up optimality proving within solvers. Besides, quickly
finding a feasible solution is often fundamental for the end-user. Primal
heuristics are algorithms seeking for feasible solutions, possibly qualitatively
good ones, within a short execution time. Despite they not guaranteed
to retrieve a solution, they are a fundamental ingredient of modern MIP
computations (Berthold, 2014). According to Fischetti and Lodi (2011), we
can distinguish mainly three categories of primal heuristics:

(i) Rounding Heuristics starts often from an LP solution violating some
integrality requirements. The heuristic tries then to round the violated
components, for instance to the nearest integer value. We refer to
(Achterberg, 2009) for an extended on different rounding techniques.

(ii) Diving Heuristics fix an integer variable to some value starting from the
LP solution. The value and direction of this bounding are given by the
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diving strategy. Fractional, pseudo-cost, line-search divings are a few
examples. A notorious heuristic in this class is the Feasability Pump
(Fischetti et al., 2005), where the diving is performed by altering the
objective function of the original problem. Specifically, this heuristic
builds two sequences of points that may eventually converge to a
feasible solution (Berthold et al., 2019). The first sequence is made of
LP feasible points, while the second is made of integer points — possibly
infeasible for the LP relaxation.

(iii) Improving Heuristics try to build a better solution starting from a
feasible one. These heuristics often solve smaller MIPs to search
within a neighborhood of the incumbent solution. Local Branching —
introduced by Fischetti and Lodi (2003) — branches on the hamming
distance with respect to the incumbent solution.

A final note goes to the MIPping approach, introduced Fischetti et al. (2009).
In a nutshell, the MIP solver is conceived as a black-box, and fundamental
decisions within the branch-and-cut are transformed into MIPs. Therefore,
the solver leverages on itself to formulate smaller (and hopefully easier to
solve) subproblems to rescue the solution of the original problem.

1.3 Branching

Not all separations are equal The branching process involves two
separate decisions. First, the node selection to determine the next node to
be processed. Secondly, the variable selection problem determines which
variable to branch on. Note that the problem S at a given node can be split
into k£ subproblems, S = Ule S;. However, modern MIP solvers, branching
on general inequalities is seldom (Achterberg, 2009).

Node selection The two most popular rules are best first, and depth
first (Achterberg et al., 2005; Lodi, 2010). The first one explores the nodes
promising the best bound — the one with the highest lower bound in a
maximization problem. Despite this rule seeks for the most promising
solution, it might be computationally intensive since it jumps between
possibly different parts of the search tree. Indeed, the depth first strategy
reoptimizes — usually with the dual-simplex — the same LP with an added
constraint due to the branching.

Variable selection Instead of branching on general inequalities, a more
common choice is to branch on a specific variable. In particular, a fractional
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Figure 3: Branching on the variable on the horizontal axis. Note that we
can see branching as a general disjunctive argument. Indeed, the branching
decision defines a facet of C, as in Figure 2.

variable x; with ¢ € I violating the integral requirements in the solution of
the LP relaxation. Thereby, we create two subproblems with the disjunction
x; < |Z;| or z; > |Z;] + 1. The two dichotomical subproblems are usually
referred as left — or down — branch, and right — or up — branch, respectively.
For a pictorial representation, see Figure 3. The key question is how to
determine the variable to branch on. We can sum up the most common
branching rules as follow:

(i)

The most infeasible brancing selects as branching variable the one
closest to 0.5 — namely the farthest from being integral. The least
infeasible brancing is dual to the latter one, and selects as branching
variable the one closest from being integer. Achterberg et al. (2005)
shows that these rules both perform no better than a random choice.

Pseudocosts branching (Benichou et al., 1971) try to estimate the
per-unit decrease of the lower bound associated to each variable x;.
In specific, we associate two scores Pi+, and P, to estimate the per-
unit decrease in the bound. Let the fractional variable z; take value
T; = |&;] + fi, where f; > 0 is its fractional part. Then, at a node
4, DI” = P f;, and DJ* = P;"(1 — f;) are the down branch and up

branch estimates, respectively. We remark Pf, P are updated as
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soon as the branch-and-cut branches on variable i. Hence, these two
statistics are not available early in the search tree.

(iii) Strong branching computes — instead of estimating — the impact on
the bound for each branching candidate (Applegate et al., 1995, 2006).
Hence, it solves two LPs for each of the latter.

(iv) Reliability pseudocost branching hybridize strong and pseudocosts
branching. The rule triggers strong branching on variables with unini-
tialized pseudocosts. Furthermore, it sets a reliability threshold on
the minimum value of the pseudocosts associated to each variable
(Achterberg et al., 2005).

(v) Hybrid branching combines five different scores taken from MIP and
constraint satisfaction contexts (Achterberg and Berthold, 2009)

As remarked by Lodi (2010), branching decisions — intrinsically heuristic in
their nature — are indeed a crucial component of the MIP technology.

1.4 Machine learning and MIP

ML tasks usually involve the estimation of some unknown parameter from
raw — and possibly noisy — data. A recent survey on CO and ML from
Bengio et al. (2018) highlights some methodological characteristics of the
interaction between C'O and ML. First, one may seek for an ML algorithm
to predict the final solution of a combinatorial problem. In this case, the
learning process exploits the peculiar structure of the problem. This approach
is then of less interest to the MIP framework because of its constrained
generalization capabilities. However, it is still amusing for specific problems.
For instance, Dai et al. (2018) tries to learn greedy algorithms for three
combinatorial problems. Larsen et al. (2018) proposes a novel way to learn
tactical solutions to planning problems under uncertainty. Thereby, ML deals
with the stochasticity due to the incomplete information. Another option is to
exploit ML to learn algorithmic configurations. lommazzo (2019) selects the
solver configuration for a given instance using ML. Bonami et al. (2018) learn
whether to linearize or not the objective function of Mixed-Integer Quadratic
Programming Problems in CPLEX. In a different context, Fischetti et al.
(2019) seeks to predict whether a MIP will be solved to optimality before
reaching a given time limit. As noted by Lodi and Zarpellon (2017) — these
approaches are more suitable for integrations with a general MIP framework,
since they generalize beyond C'O and specific problems. In particular, several
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authors worked within the integration of branching and ML. Gasse et al.
(2019) recently proposed a graph convolutional neural network to learn
variable selection policies within a branching scheme. Khalil et al. (2016)
propose a support vector machine ranking system to imitate strong branching.
For a full survey on learning and branching, we refer to Lodi and Zarpellon
(2017). To conclude, because of the heuristic nature of MIP computations,
the scope of integration of ML and MIP is broad and appealing for future
research.
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