Computations in Mixed Integer
Programming

A brief sum up of key concepts

GABRIELE DRAGOTTO

This document belongs is part proposal submitted in partial fulfillment of
the requirements for the Comprehensive Examination for the Doctorate in
Mathematics Polytechnique Montreal

Compiled March 13, 2021
Written in Februrary 2020

Contents

1 Mixed Integer Programming Computations 3
1.0.1 A general view 3
1.0.2 On the hardness of MIP 4

1.1 Polyhedral combinatorics 4
1.1.1 Aprimer 4
1.1.2 Seeking for perfection 6
1.1.3 The separation problem 6
1.1.4 Problem-specificcuts 7
1.1.5 General-purpose cuts 8

1.2 Presolving and primal heuristics 9
1.2.1 Presolving o 9
1.2.2 Primal heuristics L. 10

1.3 Branching L 11
1.3.1 Not all separations are equal 11
1.3.2 Nodeselection 11
1.3.3 Variable selection 11

1.4 Machine learning and MIP 13

1 Mixed Integer Programming Computations

A general view From a high-level perspective', MIP computations are
based on an expert blend of Land and Doig (1960) branch-and-bound algo-
rithm, and the cutting-plane approach introduced by Gomory (1958). The
branch-and-bound algorithm solves a series of linear relazation of the original
problem, elegantly splitting the domain of the latter through a series of
branching decisions, and consequently solving restricted subproblems. The
non-convexity due to the integer constraints is then handled indirectly by the
branching scheme. Then, a fathoming procedure prunes nodes that cannot
possibly improve an incumbent feasible solution, if any.

On the other hand, the cutting-plane approach iteratively solves a linear
relaxation by adding valid cuts whenever a fractional solution violates an
integrality constraint. The seminal work of Padberg and Rinaldi (1991)
synthesized bounding and cutting into the so-called branch-and-cut algorithm
(Algorithm 1), in the context of the Traveling Salesman Problem. This
contribution showcased — for the first time — a computationally efficient
combination of cutting planes, and the branch-and-bound algorithm. Since
then, a considerable research effort has been made to bridge theory and
computation in MIP, with a special focus on: (i) the underlying connections
with polyhedral combinatorics, and the computational tractability of the
different families of cutting planes, (ii) the effectiveness of a nourished toolkit
of primal heuristics, (iii) the development of refined branching strategies,
(iv) and, more recently, the integration with ML.

In what follows we consider MIPs in the form of

max{c’z : r € G} (1)
G ={Az>b, x>0, z,€Z YiecT} (2)

Where 7 encapsulates the integral variables, and matrix A € R™*™ has no
special structure. The linear relazation of Gl is

QR::{Abe,xZO,LiniSUiViEI} (3)

where the integrality constraints are dropped. L;, and U; are the lower and
upper bound of the i-th variable, respectively. The branch-and-cut heavily
exploits this relaxation, thereby it is clear how the pre-requisite for tractable
computations is an efficient LP solver.

1For an extended technical and historical review on MIP, we refer the reader to Lodi
(2010), and Jiinger (2009).

Figure 1: A MIP in the form of Equation (1).

On the hardness of MIP From a theoretical standpoint, we would like
to optimize over the convex-hull of G, or C := conv(G), so that any optimal
solution fulfil the integrality requirements in Z. In other words, we aim for
the perfect formulation of the set G, so that the MIP can be solved as a
linear program (Conforti et al., 2014). Such formulation is always guaranteed
to exist when A, and b are rational, as proven by Meyer (1974). When there
are only integer variables — or set Z has cardinality n — then we refer to the
perfect formulation as the integral polyhedron. However, these formulations
can turn out to be computationally untractable, and require non-negligible
computing resources. This is especially true when we model a N'P-hard
problem with MIPs. Coming back to a general MIP, consider the feasibility
problem associated with G, asking to decide whether the set is empty or not.
As a consequence of the result proven by Meyer (1974), we can always check
a certificate in polynomial-time, by simply plugging it into the formulation.
Hence, MIP is in N'P. Therefore, unless P = NP (Garey and Johnson,
2009), these results suggest that computational matters within MIP are
indeed fundamental to solve problems in practice.

1.1 Polyhedral combinatorics

A primer Polyhedral Combinatorics deals with the intrinsic geometrical
properties of the polyhedron associated with G. For the Minkowski-Weyl’s

Algorithm 1 A generic branch-and-cut scheme

1: Input: The description of G, and the vector ¢ of objective coefficients.
2: OQutput: The optimal solution x* or a certificate that none exist.
3: Initialize £ := {0}, and 2* = —oc0
4: while £ # () do
5: Re-initialize z; = —o0, and £, =0
6: Exploration Strategy: pick a subproblem S € £, and set £ = £L\{S}
7: Solve LP: solve the linear relaxation of the problem
8: if the relaxation has a feasible solution then
9: zs < objective, and x4 < solution of .S
10: if x, fulfills integrality requirements and z; > z* then
11: z* + zs, and =¥ + x,
12: Fathoming: delete from £ nodes with upper bounds lower than z*
13: else
14: Cutting: eventually, try to find valid cuts.
15: if x, fulfills integrality requirements then
16: Go to Step 9
17: end if
18: Branching: Split S into k& subproblems, S = Ule S;, and update
19: L=culr,s,
20: end if
21: end if

22: end while
23: return z*, and «*

theorem, a polyhedron can be described as the intersection of finitely many
halfspaces. Alternatively, we can express it as a combination of extreme
points and unbounded positive rays. The dimension of P — dim(P) — is the
maximum number of affinely independent points in P minus 1. We define
as valid inequality for P an inequality of the form 772 > my where z € P.
The face induced by a valid inequality 77z > my on P is F(m,my) = {z €
P: 7Tz =7}, and it is also a polyhedron. If dim(F (7, mp)) is 0 we have a
vertex of P, while if dim(F'(m, 7)) is equal to dim(P) — 1 we have a facet of
P. Hence, the natural question arising is which inequalities are necessary to
give a minimal description of P. The answer is almost straightforward. The
minimal description of P is given by the set of all its facets. Therefore, we
can see that not all inequalities are as necessary as the facet-defining ones.
In this spirit, facet inequalities are favored as strong compared to the other
ones.

Example 1 (A valid inequality). Consider the set following set G

max{cl z = z; + 10x3 : z € G} (4)
g = {—3.%'1 —2x9 2> 3,11 > 020 € {0, 1}} (5)

Solving the linear-relaxation of this problem yelds the solution (x1,1z2) =
(0, %), and hence xo is not integral. It is easy to see that any cut m1x1+moxy >
mo 1s valid for G when m < 0, mo = —1, and 71 /7o is in [1, %] In particular,
by adding the cut mg = m1 = —1 and solving again the linear relaxation,
we retrieve optimal solution (z1,x2) = (0,1). Assume C = conv(G). Since
dim(C) = 2, and the valid inequality contains 2 points, then —x1 — x9 > —1
s a facet of C.

Seeking for perfection The central question is how to retrieve the perfect-
fomulation of C. This may or may not be the minimal description C. As
mentioned, this perfect-formulation is usually not genuinely easy to find, and
hence may prevent any computational tractability. Hence, the objective is to
capture an enhanced description of G#, which can hopefully yield an optimal
(mixed) integer solution given a specific objective function ¢’ x. There is
a straightforward practical procedure we can exploit to get this enhanced
description, which can be summarized as follow. Start with R and solve its
associated linear relaxation. If the solution Z violates any of the integrality
constraints, then derive a wvalid — and possibly strong — inequality to cut off
the fractional point Z. In other words, we seek for an inequality in the form
of 7l'x > mg for all z € P, and 7% < my. We iteratively solve the linear
relaxation and find such inequalities until we obtain the optimal solution
fulfilling the original integer requirements.

The separation problem The derivation of walid inequalities to
strenghten the description of the relaxation roots in the so-called sepa-
ration problem (Grotschel et al., 1981). Its name stems from the idea of
separing Z from C by finding a violated walid inequality. At each separation
step, we obtain an enhanced description of G < GEn {rTz > m}. A
fundamental result concerning separation is the equivalence between optimiza-
tion and separation. It states that the separation problem can be solved in
polynomial-time only if the original MIP problem can be solved in polynomial
time (Conforti et al., 2014). Informally, if an oracle gives us the best cut at
each separation step for a AP-hard problem, then we can solve the original
problem in polynomial time. Most of the time, this is not the case, and
the separation problem is A/P-hard itself. However, we hope the separation

Figure 2: A valid inequality for the MIP in Figure 1. In this case, the
inequality cuts off the point Z € GF\C, and also defines a facet of C.

problem can be practically solved more quickly than the original one. The
interrogative is hence how the separation problem looks like, namely which
types of walid inequalities we can separate. Generally speaking, we can
separate either problem-specific or general-purpose inequalities.

Problem-specific cuts In the first case, the focal point is to find valid
inequalities for well-defined paradigmatic Combinatorial Optimization prob-
lems, for instance, the Traveling Salesman Problem (Dantzig et al., 1954;
Miller et al., 1960; Padberg and Rinaldi, 1990; Fischetti, 1991; Padberg and
Rinaldi, 1991; Fischetti et al., 1995), the Knapsack Problem (Balas, 1975;
Balas and Zemel, 1978; Gu et al., 1999), the Set Covering Problem (Balas and
Ng, 1989). In this context, the synergies between Combinatorial Optimiza-
tion, polyhedral combinatorics, and MIP provided a long-standing source of
innovations. Many combinatorial optimization problems can be formulated
as MIPs, and vice versa. Thereby, while exploiting problem-specific cuts, we
implicitly assume A has a special structure to derive valid inequalities. A
special note goes to Padberg and Rinaldi (1991), who developed the first
efficient implementation of the so-called branch-and-cut framework for the
Traveling Salesman Problem. The authors indeed separate a variety of valid
inequalities for the problem, for instance, subtour elimination ones.

Example 2 (Knapsack Cover Cuts). Consider the set following knapsack

problem with 4 items

max{cl z = 22z + 1929 + 1723 + 1024 : = € G} (6)
G = {1221 + 929 + 623 + 4oy < 15,2 € {0,1}*} (7)

Intuitively, it is easy to see that picking xo, x3, and x4 yelds a capacity
of 19 > 15. Therefore, a valid inequality would enforce at most 2 of these
elements are selected, namely xo + x3 + 4 < 2. This is called a knapsack
covering inequality. We can strenghten (lift) it by adding item x1, and alter
its coefficient to 2. The facet defining inequality is then 2x1 +xo+x3+ x4 < 2.

General-purpose cuts In the second case, we derive generally valid
inequalities without exploiting any special structure of A. We refer to this
class as general-purpose cutting planes. In this context, we remark the
pioneering theoretical works of Chvatal (1973) and Gomory (1958) on the
so-called C'G-cuts for pure integer programs. The basic reasoning is to obtain
a rounded down inequality from the known-one embedded in the description
of A, namely (AA)xz < [Ab]. The term A € R is often called the vector
of CG-multipliers. In general, such general-purpose cuts are generated by
inducing disjunctive arguments on Chvdtal inequalities (Lodi, 2010). A
disjunction is a clause in the form of A'x > b' v A%2 > b? v ... A%z > V?
satisfied by all solutions in C. Within this context, Disjunctive Programming
(Balas, 2018) stemmed out to study the properties of disjunctions and
their direct implications for MIP cutting-planes. Fischetti et al. (2011)
provides some detailed computational consideration on the separation of
general disjunctive cuts, for instance, the role of normalization. Remarkably,
practically implemented disjunctive cuts are usually two-sided disjunctions,
where namely there are only two disjunctive terms. In general, one can
consider disjunction with more than two terms (Perregaard and Balas, 2001).
An important class of general-purpose cuts is the one of Mized-Integer
Gomory cuts (MIG). Balas et al. (1996) pioneered their implementation
in the late 90s. Nowadays, this is one of the most powerful classes of cuts
implemented in modern solvers (Achterberg, 2009; Bixby et al., 2000). It
is interesting to observe how the theoretical understanding anticipated — in
terms of several decades — the implementations in modern MIP computations
(Cornuéjols, 2007a). In fact, before the breakthrough work of Balas et al.
(1996), general-purpose cutting planes were mostly considered because of
their theoretical interest more than the practical one. Among the other
families of cuts, we briefly cite:

(i) Split cuts, where given ¢ € 7M1, d € 7, we derive a general disjunction
by intersecting G either with YoicrCivi <dor) i ey > d+1 (Balas,
2018). Here the disjunction is one, and results in two different splits.
Mized-Integer Gomory cuts, and lift-and-project, and Mixed-Integer
Roundings cuts are all splits.

(ii) {0,1/2}-CG cuts, namely CG-cuts where all the coefficients of A are
either 0 or 1/2. Caprara and Fischetti (1996) showed that such inequal-
ities naturally arise in some formulations of combinatorial problems
(e.g., the Traveling Salesman Problem).

(iii) Lift-and-project cuts. In their two-sided binary 0-1 form, they are split-
cuts where the disjunction is made on a binary variable z;, ¢ € I so
that 2; <0 or x; > 1 — namely where A € {0, 1} for both sides (Zemel,
1978). The disjunction is then {Azx > b;z; = 0} V {Azx > b;z; = 0}.
Their name derives from the idea of finding such cuts in a higher-
dimensional polyhedron and projecting it back to the original space. In
practice, this means solving a linear program with an enriched number
of variables wrt the original problem. (Balas et al., 1993; Balas and
Bonami, 2009). However, Balas and Perregaard (2003) proved that
two-sided disjunctive lift-and-project cuts can be efficiently extracted
from the simplex-tableau of the linear relaxation.

(iv) Mized Integer Rounding cuts (MIR). The reasoning is similar to the
one for MIG. Consider an inequality in the description of G, and its a
(a;) vector and b (b;) coefficient. Alternatively, we can also consider
an aggregation of constraints. Let fy be b — |b], and similarly f; — for
each variable j € [n] — be a; — [a;j]. The rounding cut relies on the
so-called rounding factor 1 — fy (Nemhauser and Wolsey, 1988).

For a primer on their relationship we refer to Kazachkov (2018), and
Balas and Perregaard (2003), while for a more didactic version to Conforti
et al. (2014), and Cornuéjols (2007b). We remark also that — within a branch-
and-cut framework — we need to distinguish on globally valid cuts (e.g., valid
for any note in the search tree), or locally valid cuts (e.g., valid only for
specific nodes). Indeed, we can either separate globally-valid inequalities or
locally-valid ones.

1.2 Presolving and primal heuristics

Presolving Before the problem is fed to the branch-and-cut algorithm, a
MIP solver usually performs the so-called presolving. In a nutshell, presolving

routines try to detect redundant information and seek to transform the given
model into a possibly simpler one. A few basic routines are, for instance, coef-
ficient reductions, empty or implied rows detection, and bound strengthening
are just a few of these (Savelsbergh, 1994). Achterberg (2009) developed a set
of conflict detection algorithms based on constraint programming. The thesis
showcases both general presolving algorithms and specialized routines for a
class of constraints (e.g., knapsack constraint preprocessing). The extent of
sophistication of presolving techniques plays a fundamental role in modern
MIP solvers. For a more detailed review on the topic, we refer to Achterberg
(2009), and Achterberg et al. (2019).

Example 3 (Basic Presolving). Consider the set following set G

G = {1200z1 + 900x2 + 3003 < 600;
w3 > 1; 21+ a2 < 1; x € {0,1}%} (8)

The coefficients in the first inequality can be reduced to 4xq + 3xo + lxg < 2.
Since the second inequality forces xs to be at its upper bound, then x3 =1,
and the first inequality reads as 4x1 + 3xo < 1. Furthermore, this inequality
s implied from the third one.

Primal heuristics The branch-and-cut algorithm is guaranteed to termi-
nate in a finite amount of time and return either a solution or a certificate of
infeasibility. Furthermore, the fathoming step of the algorithm strongly relies
on the quality of the incumbent solution, and hence the better incumbent the
more the pruning. However, Achterberg (2009) noted that heuristics cannot
significantly speed up optimality proving within solvers. Besides, quickly
finding a feasible solution is often fundamental for the end-user. Primal
heuristics are algorithms seeking for feasible solutions, possibly qualitatively
good ones, within a short execution time. Despite they not guaranteed
to retrieve a solution, they are a fundamental ingredient of modern MIP
computations (Berthold, 2014). According to Fischetti and Lodi (2011), we
can distinguish mainly three categories of primal heuristics:

(i) Rounding Heuristics starts often from an LP solution violating some
integrality requirements. The heuristic tries then to round the violated
components, for instance to the nearest integer value. We refer to
(Achterberg, 2009) for an extended on different rounding techniques.

(ii) Diving Heuristics fix an integer variable to some value starting from the
LP solution. The value and direction of this bounding are given by the

10

diving strategy. Fractional, pseudo-cost, line-search divings are a few
examples. A notorious heuristic in this class is the Feasability Pump
(Fischetti et al., 2005), where the diving is performed by altering the
objective function of the original problem. Specifically, this heuristic
builds two sequences of points that may eventually converge to a
feasible solution (Berthold et al., 2019). The first sequence is made of
LP feasible points, while the second is made of integer points — possibly
infeasible for the LP relaxation.

(iii) Improving Heuristics try to build a better solution starting from a
feasible one. These heuristics often solve smaller MIPs to search
within a neighborhood of the incumbent solution. Local Branching —
introduced by Fischetti and Lodi (2003) — branches on the hamming
distance with respect to the incumbent solution.

A final note goes to the MIPping approach, introduced Fischetti et al. (2009).
In a nutshell, the MIP solver is conceived as a black-box, and fundamental
decisions within the branch-and-cut are transformed into MIPs. Therefore,
the solver leverages on itself to formulate smaller (and hopefully easier to
solve) subproblems to rescue the solution of the original problem.

1.3 Branching

Not all separations are equal The branching process involves two
separate decisions. First, the node selection to determine the next node to
be processed. Secondly, the variable selection problem determines which
variable to branch on. Note that the problem S at a given node can be split
into k£ subproblems, S = Ule S;. However, modern MIP solvers, branching
on general inequalities is seldom (Achterberg, 2009).

Node selection The two most popular rules are best first, and depth
first (Achterberg et al., 2005; Lodi, 2010). The first one explores the nodes
promising the best bound — the one with the highest lower bound in a
maximization problem. Despite this rule seeks for the most promising
solution, it might be computationally intensive since it jumps between
possibly different parts of the search tree. Indeed, the depth first strategy
reoptimizes — usually with the dual-simplex — the same LP with an added
constraint due to the branching.

Variable selection Instead of branching on general inequalities, a more
common choice is to branch on a specific variable. In particular, a fractional

11

[] [
[] [
[[
T < @) P > &+
[} [} [] [] [} [} []

Figure 3: Branching on the variable on the horizontal axis. Note that we
can see branching as a general disjunctive argument. Indeed, the branching
decision defines a facet of C, as in Figure 2.

variable x; with ¢ € I violating the integral requirements in the solution of
the LP relaxation. Thereby, we create two subproblems with the disjunction
x; < |Z;| or z; > |Z;] + 1. The two dichotomical subproblems are usually
referred as left — or down — branch, and right — or up — branch, respectively.
For a pictorial representation, see Figure 3. The key question is how to
determine the variable to branch on. We can sum up the most common
branching rules as follow:

(i)

The most infeasible brancing selects as branching variable the one
closest to 0.5 — namely the farthest from being integral. The least
infeasible brancing is dual to the latter one, and selects as branching
variable the one closest from being integer. Achterberg et al. (2005)
shows that these rules both perform no better than a random choice.

Pseudocosts branching (Benichou et al., 1971) try to estimate the
per-unit decrease of the lower bound associated to each variable x;.
In specific, we associate two scores Pi+, and P, to estimate the per-
unit decrease in the bound. Let the fractional variable z; take value
T; = |&;] + fi, where f; > 0 is its fractional part. Then, at a node
4, DI” = P f;, and DJ* = P;"(1 — f;) are the down branch and up

branch estimates, respectively. We remark Pf, P are updated as

12

soon as the branch-and-cut branches on variable i. Hence, these two
statistics are not available early in the search tree.

(iii) Strong branching computes — instead of estimating — the impact on
the bound for each branching candidate (Applegate et al., 1995, 2006).
Hence, it solves two LPs for each of the latter.

(iv) Reliability pseudocost branching hybridize strong and pseudocosts
branching. The rule triggers strong branching on variables with unini-
tialized pseudocosts. Furthermore, it sets a reliability threshold on
the minimum value of the pseudocosts associated to each variable
(Achterberg et al., 2005).

(v) Hybrid branching combines five different scores taken from MIP and
constraint satisfaction contexts (Achterberg and Berthold, 2009)

As remarked by Lodi (2010), branching decisions — intrinsically heuristic in
their nature — are indeed a crucial component of the MIP technology.

1.4 Machine learning and MIP

ML tasks usually involve the estimation of some unknown parameter from
raw — and possibly noisy — data. A recent survey on CO and ML from
Bengio et al. (2018) highlights some methodological characteristics of the
interaction between C'O and ML. First, one may seek for an ML algorithm
to predict the final solution of a combinatorial problem. In this case, the
learning process exploits the peculiar structure of the problem. This approach
is then of less interest to the MIP framework because of its constrained
generalization capabilities. However, it is still amusing for specific problems.
For instance, Dai et al. (2018) tries to learn greedy algorithms for three
combinatorial problems. Larsen et al. (2018) proposes a novel way to learn
tactical solutions to planning problems under uncertainty. Thereby, ML deals
with the stochasticity due to the incomplete information. Another option is to
exploit ML to learn algorithmic configurations. lommazzo (2019) selects the
solver configuration for a given instance using ML. Bonami et al. (2018) learn
whether to linearize or not the objective function of Mixed-Integer Quadratic
Programming Problems in CPLEX. In a different context, Fischetti et al.
(2019) seeks to predict whether a MIP will be solved to optimality before
reaching a given time limit. As noted by Lodi and Zarpellon (2017) — these
approaches are more suitable for integrations with a general MIP framework,
since they generalize beyond C'O and specific problems. In particular, several

13

authors worked within the integration of branching and ML. Gasse et al.
(2019) recently proposed a graph convolutional neural network to learn
variable selection policies within a branching scheme. Khalil et al. (2016)
propose a support vector machine ranking system to imitate strong branching.
For a full survey on learning and branching, we refer to Lodi and Zarpellon
(2017). To conclude, because of the heuristic nature of MIP computations,
the scope of integration of ML and MIP is broad and appealing for future
research.

14

References

Achterberg, T., 2009. Constraint Integer Programming. Ph.D. thesis. Tech-
nischen Universitdt Berlin.

Achterberg, T., Berthold, T., 2009. Hybrid Branching, in: van Hoeve, W.J.,
Hooker, J.N. (Eds.), Integration of AT and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems. Springer Berlin
Heidelberg, Berlin, Heidelberg. volume 5547, pp. 309-311. URL: http:
//1link.springer.com/10.1007/978-3-642-01929-6_23, doi:10.1007/
978-3-642-01929-6_23.

Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., Weninger, D., 2019.
Presolve Reductions in Mixed Integer Programming. INFORMS Journal
on Computing , ijoc.2018.0857URL: http://pubsonline.informs.org/
do0i/10.1287/ijoc.2018.0857, doi:10.1287/ijoc.2018.0857.

Achterberg, T., Koch, T., Martin, A., 2005. Branching rules revisited.
Operations Research Letters 33, 42-54. URL: https://linkinghub.
elsevier.com/retrieve/pii/S0167637704000501, doi:10.1016/j.orl.
2004.04.002.

Applegate, D., Bixby, R., Chvatal, V., Cook, W., 1995. Finding cuts in the
TSP (A preliminary report). volume 95. Citeseer.

Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J., 2006. The traveling
salesman problem: a computational study. Princeton university press.

Balas, E., 1975. Facets of the knapsack polytope. Mathematical Programming
8, 146-164. URL: http://link.springer.com/10.1007/BF01580440,
doi:10.1007/BF01580440.

Balas, E., 2018. Disjunctive programming. Springer Berlin Heidelberg, New
York, NY.

Balas, E., Bonami, P., 2009. Generating lift-and-project cuts from the LP
simplex tableau: open source implementation and testing of new variants.
Math. Prog. Comp. 1, 165-199. URL: http://link.springer.com/10.
1007/s12532-009-0006-4, do0i:10.1007/s12532-009-0006-4.

Balas, E., Ceria, S., Cornuéjols, G., 1993. A lift-and-project cutting plane
algorithm for mixed 0—1 programs. Mathematical Programming 58, 295—
324. URL: http://link.springer.com/10.1007/BF01581273, doi:10.
1007/BF01581273.

15

http://link.springer.com/10.1007/978-3-642-01929-6_23
http://link.springer.com/10.1007/978-3-642-01929-6_23
http://dx.doi.org/10.1007/978-3-642-01929-6_23
http://dx.doi.org/10.1007/978-3-642-01929-6_23
http://pubsonline.informs.org/doi/10.1287/ijoc.2018.0857
http://pubsonline.informs.org/doi/10.1287/ijoc.2018.0857
http://dx.doi.org/10.1287/ijoc.2018.0857
https://linkinghub.elsevier.com/retrieve/pii/S0167637704000501
https://linkinghub.elsevier.com/retrieve/pii/S0167637704000501
http://dx.doi.org/10.1016/j.orl.2004.04.002
http://dx.doi.org/10.1016/j.orl.2004.04.002
http://link.springer.com/10.1007/BF01580440
http://dx.doi.org/10.1007/BF01580440
http://link.springer.com/10.1007/s12532-009-0006-4
http://link.springer.com/10.1007/s12532-009-0006-4
http://dx.doi.org/10.1007/s12532-009-0006-4
http://link.springer.com/10.1007/BF01581273
http://dx.doi.org/10.1007/BF01581273
http://dx.doi.org/10.1007/BF01581273

Balas, E., Ceria, S., Cornuéjols, G., Natraj, N., 1996. Gomory cuts
revisited. Operations Research Letters 19, 1-9. URL: https://
linkinghub.elsevier.com/retrieve/pii/0167637796000077, doi:10.
1016/0167-6377 (96) 00007-7.

Balas, E., Ng, S.M., 1989. On the set covering polytope: 1. All the facets with
coefficients in {0, 1, 2}. Mathematical Programming 43, 57-69. URL: http:
//1link.springer.com/10.1007/BF015682278, doi:10.1007/BF01582278.

Balas, E., Perregaard, M., 2003. A precise correspondence between
lift-and-project cuts, simple disjunctive cuts, and mixed integer go-
mory cuts for 0-1 programming. Mathematical Programming 94, 221—
245. URL: http://link.springer.com/10.1007/s10107-002-0317-y,
d0i:10.1007/510107-002-0317-y.

Balas, E., Zemel, E., 1978. Facets of the Knapsack Polytope From Minimal
Covers. SIAM Journal on Applied Mathematics 34, 119-148. URL:
http://epubs.siam.org/doi/10.1137/0134010, doi:10.1137/0134010.

Bengio, Y., Lodi, A., Prouvost, A., 2018. Machine Learning for Combinatorial
Optimization: a Methodological Tour d’Horizon. arXiv:1811.06128 [cs,
stat] URL: http://arxiv.org/abs/1811.06128. arXiv: 1811.06128.

Benichou, M., Gauthier, J.M., Girodet, P., Hentges, G., Ribiere, G., Vincent,
0., 1971. Experiments in mixed-integer linear programming. Mathemati-
cal Programming 1, 76-94. URL: http://link.springer.com/10.1007/
BF01584074, doi:10.1007/BF01584074.

Berthold, T., 2014. Heuristic algorithms in global MINLP solvers. Ph.D. the-
sis. Technischen Universitét Berlin. URL: http://www.zib.de/berthold/
Berthold2014.pdf.

Berthold, T., Lodi, A., Salvagnin, D., 2019. Ten years of feasibility pump, and
counting. EURO J Comput Optim 7, 1-14. URL: http://1link.springer.
com/10.1007/s13675-018-0109-7, doi:10.1007/s13675-018-0109-7.

Bixby, E.R., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R., 2000. MIP:
Theory and Practice — Closing the Gap, in: Powell, M.J.D., Scholtes,
S. (Eds.), System Modelling and Optimization. Springer US, Boston,
MA. volume 46, pp. 19-49. URL: http://link.springer.com/10.1007/
978-0-387-35514-6_2, doi:10.1007/978-0-387-35514-6_2.

16

https://linkinghub.elsevier.com/retrieve/pii/0167637796000077
https://linkinghub.elsevier.com/retrieve/pii/0167637796000077
http://dx.doi.org/10.1016/0167-6377(96)00007-7
http://dx.doi.org/10.1016/0167-6377(96)00007-7
http://link.springer.com/10.1007/BF01582278
http://link.springer.com/10.1007/BF01582278
http://dx.doi.org/10.1007/BF01582278
http://link.springer.com/10.1007/s10107-002-0317-y
http://dx.doi.org/10.1007/s10107-002-0317-y
http://epubs.siam.org/doi/10.1137/0134010
http://dx.doi.org/10.1137/0134010
http://arxiv.org/abs/1811.06128
http://link.springer.com/10.1007/BF01584074
http://link.springer.com/10.1007/BF01584074
http://dx.doi.org/10.1007/BF01584074
http://www.zib.de/berthold/Berthold2014.pdf
http://www.zib.de/berthold/Berthold2014.pdf
http://link.springer.com/10.1007/s13675-018-0109-7
http://link.springer.com/10.1007/s13675-018-0109-7
http://dx.doi.org/10.1007/s13675-018-0109-7
http://link.springer.com/10.1007/978-0-387-35514-6_2
http://link.springer.com/10.1007/978-0-387-35514-6_2
http://dx.doi.org/10.1007/978-0-387-35514-6_2

Bonami, P., Lodi, A., Zarpellon, G., 2018. Learning a Classification of Mixed-
Integer Quadratic Programming Problems, in: van Hoeve, W.J. (Ed.), Inte-
gration of Constraint Programming, Artificial Intelligence, and Operations
Research. Springer International Publishing, Cham. volume 10848, pp. 595—
604. URL: http://link.springer.com/10.1007/978-3-319-93031-2_
43, doi:10.1007/978-3-319-93031-2_43.

Caprara, A., Fischetti, M., 1996. {0, 1/2}-Chvétal-Gomory cuts. Mathe-
matical Programming 74, 221-235. URL: http://link.springer.com/
10.1007/BF02592196, doi:10.1007/BF02592196.

Chvatal, V., 1973. Edmonds polytopes and a hierarchy of combina-
torial problems. Discrete Mathematics 4, 305-337. URL: https://
linkinghub.elsevier.com/retrieve/pii/0012365X73901672, doi:10.
1016/0012-365X(73)90167-2.

Conforti, M., Cornuéjols, G., Zambelli, G., 2014. Integer Program-
ming. volume 271 of Graduate Texts in Mathematics. Springer Interna-
tional Publishing, Cham. URL: http://link.springer.com/10.1007/
978-3-319-11008-0, doi:10.1007/978-3-319-11008-0.

Cornuéjols, G., 2007a. Revival of the Gomory cuts in the 1990’s. Ann
Oper Res 149, 63-66. URL: http://link.springer.com/10.1007/
$10479-006-0100-1, doi:10.1007/s10479-006-0100-1.

Cornuéjols, G., 2007b. Valid inequalities for mixed integer linear programs.
Mathematical Programming 112, 3-44. URL: http://link.springer.
com/10.1007/s10107-006-0086-0, doi:10.1007/s10107-006-0086-0.

Dai, H., Khalil, E.B., Zhang, Y., Dilkina, B., Song, L., 2018. Learning
Combinatorial Optimization Algorithms over Graphs. arXiv:1704.01665
[cs, stat] URL: http://arxiv.org/abs/1704.01665. arXiv: 1704.01665.

Dantzig, G., Fulkerson, R., Johnson, S., 1954. Solution of a Large-Scale
Traveling-Salesman Problem. Journal of the Operations Research Society
of America 2, 393-410. URL: http://pubsonline.informs.org/doi/
abs/10.1287/opre.2.4.393, doi:10.1287/opre.2.4.393.

Fischetti, M., 1991. Facets of the Asymmetric Traveling Salesman Polytope.
Mathematics of Operations Research 16, 42-56. URL: http://pubsonline.
informs.org/doi/abs/10.1287/moor.16.1.42, doi:10.1287/moor.16.
1.42.

17

http://link.springer.com/10.1007/978-3-319-93031-2_43
http://link.springer.com/10.1007/978-3-319-93031-2_43
http://dx.doi.org/10.1007/978-3-319-93031-2_43
http://link.springer.com/10.1007/BF02592196
http://link.springer.com/10.1007/BF02592196
http://dx.doi.org/10.1007/BF02592196
https://linkinghub.elsevier.com/retrieve/pii/0012365X73901672
https://linkinghub.elsevier.com/retrieve/pii/0012365X73901672
http://dx.doi.org/10.1016/0012-365X(73)90167-2
http://dx.doi.org/10.1016/0012-365X(73)90167-2
http://link.springer.com/10.1007/978-3-319-11008-0
http://link.springer.com/10.1007/978-3-319-11008-0
http://dx.doi.org/10.1007/978-3-319-11008-0
http://link.springer.com/10.1007/s10479-006-0100-1
http://link.springer.com/10.1007/s10479-006-0100-1
http://dx.doi.org/10.1007/s10479-006-0100-1
http://link.springer.com/10.1007/s10107-006-0086-0
http://link.springer.com/10.1007/s10107-006-0086-0
http://dx.doi.org/10.1007/s10107-006-0086-0
http://arxiv.org/abs/1704.01665
http://pubsonline.informs.org/doi/abs/10.1287/opre.2.4.393
http://pubsonline.informs.org/doi/abs/10.1287/opre.2.4.393
http://dx.doi.org/10.1287/opre.2.4.393
http://pubsonline.informs.org/doi/abs/10.1287/moor.16.1.42
http://pubsonline.informs.org/doi/abs/10.1287/moor.16.1.42
http://dx.doi.org/10.1287/moor.16.1.42
http://dx.doi.org/10.1287/moor.16.1.42

Fischetti, M., Glover, F., Lodi, A., 2005. The feasibility pump. Math.
Program. 104, 91-104. URL: http://link.springer.com/10.1007/
$10107-004-0570-3, d0i:10.1007/s10107-004-0570-3.

Fischetti, M., Gonzalez, J.J.S., Toth, P., 1995. The symmetric generalized
traveling salesman polytope. Networks 26, 113-123. URL: http://doi.
wiley.com/10.1002/net.3230260206, doi:10.1002/net.3230260206.

Fischetti, M., Lodi, A., 2003. Local branching. Mathematical Pro-
gramming 98, 23-47. URL: http://link.springer.com/10.1007/
$10107-003-0395-5, d0i:10.1007/s10107-003-0395-5.

Fischetti, M., Lodi, A., 2011. Heuristics in Mixed Integer Program-
ming, in: Wiley Encyclopedia of Operations Research and Man-
agement Science. John Wiley & Sons, Inc., Hoboken, NJ, USA, p.
eorms0376. URL: http://doi.wiley.com/10.1002/9780470400531.
eorms0376, doi:10.1002/9780470400531.e0rms0376.

Fischetti, M., Lodi, A., Salvagnin, D., 2009. Just MIP it!, in: Maniezzo,
V., Stiitzle, T., Vo, S. (Eds.), Matheuristics. Springer US, Boston,
MA. volume 10, pp. 39-70. URL: http://link.springer.com/10.1007/
978-1-4419-1306-7_2, d0i:10.1007/978-1-4419-1306-7_2.

Fischetti, M., Lodi, A., Tramontani, A., 2011. On the separation of disjunctive
cuts. Math. Program. 128, 205-230. URL: http://link.springer.com/
10.1007/s10107-009-0300~-y, doi:10.1007/s10107-009-0300-7y.

Fischetti, M., Lodi, A., Zarpellon, G., 2019. Learning MILP Resolution
Outcomes Before Reaching Time-Limit, in: Rousseau, L.M., Stergiou,
K. (Eds.), Integration of Constraint Programming, Artificial Intelligence,
and Operations Research. Springer International Publishing, Cham. vol-
ume 11494, pp. 275-291. URL: http://link.springer.com/10.1007/
978-3-030-19212-9_18, do0i:10.1007/978-3-030-19212-9_18.

Garey, M.R., Johnson, D.S.; 2009. Computers and intractability: a guide
to the theory of NP-completeness. A series of books in the mathematical
sciences. 27. print ed., Freeman, New York [u.a]. OCLC: 551912424.

Gasse, M., Chetelat, D., Ferroni, N., Charlin, L., Lodi, A., 2019. Exact
Combinatorial Optimization with Graph Convolutional Neural Networks.
Proceding of NIPS 2019 , 13.

18

http://link.springer.com/10.1007/s10107-004-0570-3
http://link.springer.com/10.1007/s10107-004-0570-3
http://dx.doi.org/10.1007/s10107-004-0570-3
http://doi.wiley.com/10.1002/net.3230260206
http://doi.wiley.com/10.1002/net.3230260206
http://dx.doi.org/10.1002/net.3230260206
http://link.springer.com/10.1007/s10107-003-0395-5
http://link.springer.com/10.1007/s10107-003-0395-5
http://dx.doi.org/10.1007/s10107-003-0395-5
http://doi.wiley.com/10.1002/9780470400531.eorms0376
http://doi.wiley.com/10.1002/9780470400531.eorms0376
http://dx.doi.org/10.1002/9780470400531.eorms0376
http://link.springer.com/10.1007/978-1-4419-1306-7_2
http://link.springer.com/10.1007/978-1-4419-1306-7_2
http://dx.doi.org/10.1007/978-1-4419-1306-7_2
http://link.springer.com/10.1007/s10107-009-0300-y
http://link.springer.com/10.1007/s10107-009-0300-y
http://dx.doi.org/10.1007/s10107-009-0300-y
http://link.springer.com/10.1007/978-3-030-19212-9_18
http://link.springer.com/10.1007/978-3-030-19212-9_18
http://dx.doi.org/10.1007/978-3-030-19212-9_18

Gomory, R.E., 1958. Outline of an algorithm for integer solutions to linear
programs. Bull. Amer. Math. Soc. 64, 275-279. URL: http://www.ans.
org/journal-getitem?pii=S0002-9904-1958-10224-4, do0i:10.1090/
S0002-9904-1958-10224-4.

Grotschel, M., Lovasz, L., Schrijver, A., 1981. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica 1, 169-197.
URL: http://link.springer.com/10.1007/BF02579273, doi:10.1007/
BF02579273.

Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P., 1999. Lifted Cover In-
equalities for 0-1 Integer Programs: Complexity. INFORMS Journal on
Computing 11, 117-123. URL: http://pubsonline.informs.org/doi/
abs/10.1287/ijoc.11.1.117, doi:10.1287/ijoc.11.1.117.

Tommazzo, G., 2019. Algorithmic configuration by learning and optimization.

Jiinger, M. (Ed.), 2009. 50 years of integer programming, 1958-2008: the
early years and state-of-the-art surveys. Springer, Heidelberg.

Kazachkov, A.M., 2018. Non-recursive cut generation. Ph.D. thesis. Carnegie
Mellon University. URL: https://kilthub.cmu.edu/ndownloader/
files/12255308.

Khalil, E.B., Bodic, P.L., Song, L., Nemhauser, G., Dilkina, B., 2016. Learn-
ing to Branch in Mixed Integer Programming. Proceding of NIPS 2019 ,
8.

Land, A.H., Doig, A.G., 1960. An Automatic Method of Solving Discrete
Programming Problems. Econometrica 28, 497. URL: https://www. jstor.
org/stable/19101297origin=crossref, doi:10.2307/1910129.

Larsen, E., Lachapelle, S., Bengio, Y., Frejinger, E., Lacoste-Julien, S.,
Lodi, A., 2018. Predicting Tactical Solutions to Operational Planning
Problems under Imperfect Information. arXiv:1807.11876 [cs, stat] URL:
http://arxiv.org/abs/1807.11876. arXiv: 1807.11876.

Lodi, A., 2010. Mixed Integer Programming Computation, in: Jiinger,
M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R.,
Reinelt, G., Rinaldi, G., Wolsey, L.A. (Eds.), 50 Years of Integer Program-
ming 1958-2008. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 619—
645. URL: http://link.springer.com/10.1007/978-3-540-68279-0_
16, doi:10.1007/978-3-540-68279-0_16.

19

http://www.ams.org/journal-getitem?pii=S0002-9904-1958-10224-4
http://www.ams.org/journal-getitem?pii=S0002-9904-1958-10224-4
http://dx.doi.org/10.1090/S0002-9904-1958-10224-4
http://dx.doi.org/10.1090/S0002-9904-1958-10224-4
http://link.springer.com/10.1007/BF02579273
http://dx.doi.org/10.1007/BF02579273
http://dx.doi.org/10.1007/BF02579273
http://pubsonline.informs.org/doi/abs/10.1287/ijoc.11.1.117
http://pubsonline.informs.org/doi/abs/10.1287/ijoc.11.1.117
http://dx.doi.org/10.1287/ijoc.11.1.117
https://kilthub.cmu.edu/ndownloader/files/12255308
https://kilthub.cmu.edu/ndownloader/files/12255308
https://www.jstor.org/stable/1910129?origin=crossref
https://www.jstor.org/stable/1910129?origin=crossref
http://dx.doi.org/10.2307/1910129
http://arxiv.org/abs/1807.11876
http://link.springer.com/10.1007/978-3-540-68279-0_16
http://link.springer.com/10.1007/978-3-540-68279-0_16
http://dx.doi.org/10.1007/978-3-540-68279-0_16

Lodi, A., Zarpellon, G., 2017. On learning and branching: a sur-
vey. TOP 25, 207-236. URL: http://link.springer.com/10.1007/
$11750-017-0451-6, doi:10.1007/s11750-017-0451-6.

Meyer, R.R., 1974. On the existence of optimal solutions to integer and mixed-
integer programming problems. Mathematical Programming 7, 223-235.
URL: http://1link.springer.com/10.1007/BF015685518, doi:10.1007/
BF01585518.

Miller, C.E., Tucker, A.W., Zemlin, R.A.; 1960. Integer Programming Formu-
lation of Traveling Salesman Problems. Journal of the ACM (JACM)
7, 326-329. URL: http://dl.acm.org/doi/10.1145/321043.321046,
doi:10.1145/321043.321046.

Nemhauser, G., Wolsey, L., 1988. Integer and Combinatorial Optimiza-
tion: Nemhauser/Integer and Combinatorial Optimization. John Wiley &
Sons, Inc., Hoboken, NJ, USA. URL: http://doi.wiley.com/10.1002/
9781118627372, doi:10.1002/9781118627372.

Padberg, M., Rinaldi, G., 1990. Facet identification for the symmetric
traveling salesman polytope. Mathematical Programming 47, 219-257.
URL: http://link.springer.com/10.1007/BF01580861, doi:10.1007/
BF01580861.

Padberg, M., Rinaldi, G., 1991. A Branch-and-Cut Algorithm for the
Resolution of Large-Scale Symmetric Traveling Salesman Problems. STAM
Review 33, 60-100. URL: http://www. jstor.org/stable/2030652.

Perregaard, M., Balas, E., 2001. Generating Cuts from Multiple-Term
Disjunctions, in: Goos, G., Hartmanis, J., van Leeuwen, J., Aardal, K.,
Gerards, B. (Eds.), Integer Programming and Combinatorial Optimization.
Springer Berlin Heidelberg, Berlin, Heidelberg. volume 2081, pp. 348—
360. URL: http://link.springer.com/10.1007/3-540-45535-3_27,
doi:10.1007/3-540-45535-3_27. series Title: Lecture Notes in Computer
Science.

Savelsbergh, M.W.P.; 1994. Preprocessing and Probing Techniques for Mixed
Integer Programming Problems. ORSA Journal on Computing 6, 445—
454. URL: http://pubsonline.informs.org/doi/abs/10.1287/ijoc.
6.4.445, doi:10.1287/ijoc.6.4.445.

20

http://link.springer.com/10.1007/s11750-017-0451-6
http://link.springer.com/10.1007/s11750-017-0451-6
http://dx.doi.org/10.1007/s11750-017-0451-6
http://link.springer.com/10.1007/BF01585518
http://dx.doi.org/10.1007/BF01585518
http://dx.doi.org/10.1007/BF01585518
http://dl.acm.org/doi/10.1145/321043.321046
http://dx.doi.org/10.1145/321043.321046
http://doi.wiley.com/10.1002/9781118627372
http://doi.wiley.com/10.1002/9781118627372
http://dx.doi.org/10.1002/9781118627372
http://link.springer.com/10.1007/BF01580861
http://dx.doi.org/10.1007/BF01580861
http://dx.doi.org/10.1007/BF01580861
http://www.jstor.org/stable/2030652
http://link.springer.com/10.1007/3-540-45535-3_27
http://dx.doi.org/10.1007/3-540-45535-3_27
http://pubsonline.informs.org/doi/abs/10.1287/ijoc.6.4.445
http://pubsonline.informs.org/doi/abs/10.1287/ijoc.6.4.445
http://dx.doi.org/10.1287/ijoc.6.4.445

Zemel, E., 1978. Lifting the facets of zero—one polytopes. Mathematical
Programming 15, 268-277. URL: http://link.springer.com/10.1007/
BF01609032, doi:10.1007/BF01609032.

21

http://link.springer.com/10.1007/BF01609032
http://link.springer.com/10.1007/BF01609032
http://dx.doi.org/10.1007/BF01609032

	Mixed Integer Programming Computations
	A general view
	On the hardness of MIP
	Polyhedral combinatorics
	A primer
	Seeking for perfection
	The separation problem
	Problem-specific cuts
	General-purpose cuts

	Presolving and primal heuristics
	Presolving
	Primal heuristics

	Branching
	Not all separations are equal
	Node selection
	Variable selection

	Machine learning and MIP

