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Statistical tools

Definition 1. The joint probability for 2 discrete random variables X
and Y is defined as P (X = xi, Y = yj) =

nij

N

Figure 1: Example of distribution for 2 variables. From Bishop (2006)

Definition 2. The conditional probability of Y = yj given X = xi is
P (Y = yj |X = xi) =

nij

ci

Definition 3. The Bayes theorem for 2 states that P (A | B) = P (B|A)P (A)
P (B)

Definition 4. The sum rule for 2 random variables X and Y states that
p(X) =

󰁓
Y p(X,Y )

Definition 5. The product rule for 2 random variables X and Y states
that p(X,Y ) = p(Y |X) · P (X) where p(Y |X) is the joint probability of Y
given X.

With the Bayes Theorem, the former definition implies Equation (1)

p(Y |X) =
p(X|Y ) · p(Y )

p(X)
and p(X) =

󰁛

Y

p(X|Y ) · p(Y ) (1)

Definition 6. The Kolmogorov product rule for 2 random variables X
and Y states that P (A | B) = P (A∩B)

P (B) .

If the random variable is continue, the introduced concepts cha:

󰁝 +∞

−∞
p(x)dx = 1 p(x) ≥ 0 ∀x (2)

P (x ≤ z) =

󰁝 z

−∞
p(x)dx P ′(x) = p(x) (3)
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1 Introduction

A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P , if its performance at
tasks in T , as measured by P , improves with experience E

Class Notes by Hamilton (2019)

ML

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

In a broader scope, AI can be seen as the field of Computer Science aiming
to automate actions, decision and learning process typical of human beings.
A sub field of AI is machine learning, which implements in machines
the capability of extracting knowledge from data (Goodfellow et al., 2016).
This approach relies heavily on the representation of the data it recieves
(eg, regression only analyses some features). The subfield of representation
learning concerns with an approach capable of guessing the right represen-
tation to use in order to produce the output.
Finally, deep learning aims to build lower level representation of data, and
hence builds up complex representations from simpler ones. This former
approach

Machine Learning

Supervised

Classification

Multi-class Multi-label

Regression

Unsupervised

Clustering

Mixture Models Hierarchical Clustering

Anomaly Detection Generative Modeling

Reinforcement
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1.1 Fitting, regularization and validation

Definition 7. A training set is a formatted set of data. Each column
is named variable, feature or attribute and each row constitutes a training
example or instance. The desired outcome is named target or output variable.

Definition 8. An overfitted model is a statistical model that contains more
parameters than can be justified by the data. The model has a lower true
error on a different hypotesys than the chosen one, hence high variance/low
bias.

Counter with: model comparison, cross-validation, regularization, early
stopping, pruning, Bayesian priors, or dropout. Reduce variance at the cost
of some bias.

Definition 9. Underfitting occurs when a statistical model or machine
learning algorithm cannot adequately capture the underlying structure of the
data. The model has then low variance/high bias.

1.2 Errors

Assuming a machine learning algorithm predicts y = f(x) + 󰂃 where
󰂃 ∼ (µ = 0,σ2), then the error can be decomposed in bias and variance:

Error E[y − f̃(x̄)] = (Bias[f̃(x̄)])2 + V ar[f̃(x̄)] + σ2 (4)

Bias E[f̃(x̄)]− f̃(x̄) (5)

Variance E[f̃(x̄)2]− E[f̃(x̄)]2 (6)

(7)

Definition 10. Bias occurs when a statistical model or machine learning
algorithm cannot capture relations between input and output variables. un-
derfitting.

Definition 11. Variance models the sensitivity between small changes in
the input. overfitting.
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Accuracy A =
#CorrectlyClassified

#Samples
(8)

Sensitivity/Recall R =
#TruePositives

#Positives
(9)

Specificity Sc =
#TrueNegatives

#Negatives
(10)

Precision P =
#TruePositives

#DeclaredPositives
(11)

Error rate Er =
#FalseNegatives+#FalsePositives

#Samples
(12)

F1 score F1 = 2
P ·R
P +R

(13)

TruePositives FalseNegatives

FalsePositives TrueNegatives

Table 1: The confusion matrix structure

1.2.1 Cross Validation

Definition 12. k-fold cross validation splits the training-set in k parti-
tions, training on k−1 and verifying on the remaining one. It increases the
computational time by a factor of k.

Definition 13. Leave-out-one eliminates one row on the training set, and
evaluates the error on it. The error estimation averages on all the iterations.

1.3 Regularization

Definition 14. Lasso penalization - or L1 regularization - add to the
loss-function a penalty term proportional to the absolute value of estimated
weights. non linear . Sets some coefficients to 0.

Definition 15. Ridge regression - or L2 regularization - add to the loss-
function a penalty term proportional to the square of estimated weights.
Smooths some coefficients.
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2 Linear Regression

The I.I.D assumption states the following:

Definition 16. A set of random variables is independent and identically
distributed if each random variable has the same probability distribution
as the others and all are mutually independent.

The following equations are the fundamental:

Function fw̄i(X̄) = X̄w̄i (14)

Fn. MSE Error f∗
w̄(X̄) = argmin

i
[(ȳ − X̄w̄i)

T (ȳ − X̄w̄i)] (15)

2.1 Exact approach

We minimize the gradient of the MSE representation.

Gradient MSE
δErr(w̄)

δw̄
= −2XT (y −Xw̄) (16)

⇒ XT (y −Xw̄) = 0 (17)

⇒ XTY = XTXw̄ (18)

⇒ w̄ = (XTX)−1XTY (19)

Operation Cost

Matrix Inversion 1 nm2

Matrix multiplications 3 m3

Total 4 Θ(nm2 +m3)

Some issues:

• Numerical stability

• Singular X: features are dependent (no full column rank).
fix? combine, apply functions, interaction terms, etc...

2.2 Gradient descent

Weights are updated step by step depending on the MSE gradient rep-
resentation. Assuming Err(w̄0) > Err(w̄1) > ...Err(w̄step), until |w̄k+1 −
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w̄k| > 󰂃, then:

Updated Weights w̄k+1 = w̄k − αk
δErr(w̄k)

δw̄k
(20)

⇒ w̄k+1 = w̄k + 2αkX
T (y −Xw̄) (21)

Where the function (parameter) αk is the learning rate at the k − th step.

• Large α: gradient might not converge ⇒ αk → 0 if k → 0.

• Small α: might loop in local minima ⇒ αk → 0 if k → 0.

Claim 1. Robbins-Monroe conditions are sufficient to ensure convergence
of the w̄k to a local minimum of the error function.
RMC:

󰁓∞
k=0 αk = ∞ and

󰁓∞
k=0 α

2
k < ∞

For instance, α(k) = 1/(k + 1) satisfies the RMC.
—————————————————————————————————

Classification

Probabilistic

Discriminative

LReg, NN, kNN

Generative

LDA, QDA, NBayes, HMM

Decision Boundary

SVMs, D-trees

P (y = 1|x̄) = P (x̄|y = 1)P (y = 1)

P (x̄)

Estimating how likely are the features given the output, and the independent
probability of the output class.

• Discriminative learning: P (y|x̄) models the boundary between classes.

• Generative learning: P (x̄|y) models the distribution of each class.

Model Cost Assumption

LDA m(m+ n) Same covariance for k classes, and m features
Naive Bayes (k − 1) +mk Different covariances but diagonal matrix
QDA m(mk + n) Different covariances for k classes
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3 Logistic Regression

Definition 17. The logit - or log-odd ratio - is defined as the logarithm of
the odds 1/(1− p). Therefore logit(p) = log p

1−p

The following equations are the fundamental:

Log-odds a =
󰁛

i

wixi = log
p

1− p
(22)

Odds o = ba = b
󰁓

i wixi (23)

Lin. Logistic Fn. σ(w̄T x̄) = σ(a) =
1

1 + e−w̄T x̄
=

1

1 + e−a
(24)

Where the decision boundary approximates the log-odds with a linear
function of the features w̄T x̄.
σ(w̄T x̄) is the proability of yi = 1 given the x̄ input vector. The goal is to
maximize the likelihood, without incurring in numerical instability.

Likelihood L(D) =

n󰁜

i=1

σ(w̄T x̄)yi · (1− σ(w̄T x̄))1−yi (25)

log-Likelihood logL(D) =
󰁓n

i=1 yi log(σ(w̄
T x̄))+(1−yi) log(1−σ(w̄T x̄))

(26)

Cross Entropy Loss H(d) = − logL(D) (27)

Therefore, maximising likelihood corresponds to minimizing the cross en-
tropy. It is easy to note that the inner term of L(D):

1. = σ(w̄T x̄) iff yi = 1

2. = 1− σ(w̄T x̄) iff yi = 0
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3.1 Gradient descent

We minimize the gradient of the cross-entropy loss representation.
One step is O(nm), vs O(m3 + nm2) for exact solution.

Gradient CE
δH(w̄)

δw̄
(28)

with
δ log(σ)

δw̄
=

1

σ
,

δσ

δw̄
= σ(1− σ),

δw̄Tx

δw̄
= x, (29)

δ(1− σ)

δw̄
= −σ(1− σ) (30)

⇒ δH(w̄)

δw̄
= −

n󰁛

i=1

x̄i(yi − σ(w̄Tx̄i)) (31)

Therefore, the update rule

Updated Weights w̄k+1 = w̄k + αk(−
δH(w̄)

δw̄
) (32)

3.2 Probabilistic interpretation

The logistic regression can be interpreted through a gaussian distribution
of the likelihood.

Gaussian Likelihood P (yi|x̄i) =
1√
2πσ2

e−
(yi−w̄T x̄i)

2

2σ2 (33)

Gaussian log-ikelihood logL(D) =

n󰁛

i=1

− log(
󰁳

2πσ2)− (yi − w̄T x̄i)
2

2σ2

(34)

Squared loss (yi − w̄T x̄i)
2 (35)

Therefore, maximising log-likelihood corresponds to minimizing the squared
loss. Train models using theoretically grounded loss functions but evaluate
using interpretable measures.

4 LDA and QDA

LDA approaches the problem by assuming that the conditional proba-
bility density functions p(x̄|yi = %) are gaussian functions with mean µi

and same covariance Σ, while QDA assumes different covarances. The Bayes
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optimal predicts points as being from the second class if the log-odd ratios
is greater than 0.

P (x̄|y) 1√
2πΣ

e−
(x̄−µ)T (x̄−µ)

2Σ (36)

Covariance Σ =

1󰁛

k=0

n󰁛

j=1

(x̄i − µk)
T (x̄i − µk)

N0 +N1 − 2
(37)

QDA has more parameters to estimate, but greater flexibility to esti-
mate the target function. Estimating Σ is expensive: O(m2)!
The LDA has a linear boundary, namely w0+x̄T w̄.

log
P (x̄|y = 1)

P (x̄|y = 0)
= (38)

log
P (y = 1)

P (x = 1)
− 1

2
µT
1 Σ

−1µ1 +
1

2
µT
0 Σ

−1µ0+xTΣ−1(µ1 − µ0) (39)

4.1 Naive Bayes

Definition 18. The strong (naive) assumption states assumes that the fea-
tures are conditionally independent given the output y. Therefore:
P (xj |y) = P (xj |y, xk) ∀ j, k ⇒ P (x|y) =

󰁔
i(xi|y)

A Naive Bayes classifier with binary features has to estimate just O(m)
parameters compared to O(2m). Useful when the number of features is high:
linear time parameters and exact form optimization. Hence, no correlation
between features is taken into account.

Θ1 P (y = 1) (40)

Θj,1 P (xj = 1|y = 1) (41)

Θj,0 P (xj = 1|y = 0) (42)

L(Θ1|y) Θy
1(1−Θ1)

1−y (43)

log-Likelihood logL(D) = log
P (y = 1|x̄)
P (y = 0|x̄) = (44)

⇒ log
P (y = 1)

P (y = 0)
+ log

󰁔m
j=1 P (xj |y = 1)

󰁔m
j=1 P (xj |y = 0)

(45)

⇒ log
P (y = 1)

P (y = 0)
+

m󰁛

j=1

log
P (xj |y = 1)

P (xj |y = 0)
(46)
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Therefore, each feature contributes independently to the classification.
In order to reduce variance, one can exploit additive smoothing.

Definition 19. The additive smoothing - or Laplace smoothing - modifies
estimators as: θ̂i =

xi+α
N+αd ∀i where d = p−1

i , namely the probability of class
yi.

For instance, the add one smoothing would be: Θj,i =
#yi=1∧xj=1+1

#yi=1+2 .

Gaussian Naive Bayes assumes Σ is distinct between classes and di-
agonal, and P (x|y) is assumed to be a multivariate Gaussian.

5 Decision Trees

Divide the space of features in a detailed way. Learning a tree means
learning tests (with categorical/binary outcomes) over each branch. Usually:
grow and prune.

• Easy to represent: Boolean functions

• Hard to represent: Parity function O(2m), Majority function

Information I(E) = log2
1

P (E)
(47)

Entropy H(S) =
󰁛

i

piI(si) = −
󰁛

i

pi log pi (48)

Conditional Entropy H(y|x) =
󰁛

i

p(x = i)H(y|x = i) (49)

Claim 2. The entropy can be interpreted as: average amount of information
per symbol, uncertainity before the outcome, number of bits for the symbol.

• Classification: maximize information gain.

• Regression: minimize standard deviation.

In order to avoid overfitting:

• post-pruning: prune the tree once it is fully grown.
For each node: prune iff improves validation accuracy. Replace
decision with majority rule.

• early-stopping: stop the training when no information gain.
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6 Feature Design

6.1 NL Features

Some language processing standard measures:

tf tfi =
wordi
#words

in document dk (50)

idf idfi = log
#documents

#documents with i
in corpus (51)

tf-idf tf − idfi = tfi · idfi (52)

6.2 PCA

Principal component analysis - or truncated SVD - projects into a lower
dimensional space a given set of features. Assume the original dimension as
Rm and the final one Rn with n < m.

PCA-problem argmin
W,U

(

n󰁛

i

||X −XWUT ||2) (53)

Where:

• Wm×n: compression matrix with the first n eigenvectors sorted by
eigenvalues. Columns are orthogonal, and i− th column is the i− th
direction with i− th maximal variance.

• Un×m: decompression matrix.

7 Instance learning

Compute a domain specific distance metric between points in the
training set and the ones being tested. The decision boundaries are given
by the Voronoi diagram ran on the training data. lazy learning, wait for the
query to generalize.

With the k −NN the prediction is the majority/mean of k-nearest points.
Try to use gaussian distances.
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8 Support Vector Machines

8.1 Percepton

Basic linear classifier. Its error estimates how much wtx is far away from
being correct. The training data is linearly separable iff there is no training
error.

Percepton hw(x̄) = sign(w̄T x̄) (54)

Percepton Err Err(w̄) =
󰁛

i

{0 ⇐⇒ yiw̄
Txi ≥ 0; else 1} (55)

(56)

Theorem 8.1. If the training data is linearly separable, the percepton will
converge to 0 error in a finite number of steps. ♥ (Bishop, 2006)

8.2 SVM

Definition 20. A linear SVM is a perceptron with a vector w̄ so that the
margin is maximized.

The SVM builds the separating hyperplane between two classes of the
input space. 󰂓w · 󰂓x− b = 0 is the separation hyperplane.

Separation S =
2

||w̄|| (57)

The optimization model, that can be trained at most in O(n3).

minimizew̄
1

2
||w̄||2 (58)

subject to yiw̄
T x̄i ≥ 1 ∀i = 1, .., n (59)

||w̄|| = 1

M
(60)

The lagrangian multipliers ᾱ of the dual are the support vectors. The weight
vector is a linear combination of the support vectors.

Definition 21. A support vector is a point laying on the decision boundary.
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Lagrangian Form. L(w̄, ᾱ) =
1

2
||w̄||2 +

󰁛

i

αi(1− yi(w̄
T x̄)) (61)

Derivate
δL(w̄, ᾱ)

δw̄
= w̄ −

󰁛

i

αix̄iyi (62)

Weights w̄ =
󰁛

i

αix̄iyi (63)

Margin M = M(ᾱi) =
w̄T ᾱi

||w̄|| =
1

||w̄|| (64)

Output hw̄(x̄) = sign(

n󰁛

i

αiyi(xi · x)) = sign(w̄T x̄+ b) (65)

The output of the classifier is given by the dotproduct of the sample x
with the support vectors xi.

8.3 Non-linearly separable class

If the training set is not linearly separable, either:

• Soften the constraint: L0−∞ → L0−1.

• Kernel-trick: use non-linear kernels.

8.3.1 Soft SVM with Hinge loss

Approximate the missclassification penalty with a linear function .

Hinge Loss ξ = Lhin(w̄
T x̄i, yi) = max{1− w̄T x̄i, 0} (66)

Therefore optimize the following:

minimizew̄,ξ C
󰁛

i

ξi +
1

2
||w̄||2 (67)

subject to yiw̄
T x̄i ≥ 1− ξi ∀i = 1, .., n (Lagr : ᾱ) (68)

ξi ≥ 0 ∀i = 1, .., n (Lagr : β̄) (69)

With C → ∞ it gives an hard-SVM.

• α = 0: points outside margin.
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• ξ = 0: points on/outside the margin.

• ξ ∈ (0, 1): points within the margin (on with αi > 0).

• ξ = 1: points on decision line.

• ξ > 1: missclassified.

8.3.2 Kernel machines

The method allows to compute dot-products without explicitly com-
puting coordinates in the new feature space. Optimizing with the dual
requires just the computation of the kernel function.

Gaussian Kernel K = (x̄, z̄) = e
−||x̄−z̄||2

2σ2 (70)

Sigmoid Kernel K = (x̄, z̄) = tanh(c1x̄ · z̄ + c2) (71)

Figure 2: Kernel mapping R2 → R3

9 Ensamble methods

• Bootstrapping-Bagging: K different models trained on different sub
training sets (eg, sampling with replacement).
Reduce variance and increase bias: DTree, kNN.
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• Boosting: K different models incrementally trained.
Reduce bias: AdaBoost.Empirically, low chance of overfitting.
misclassified are dangerous: can be weighted too much.

• Stacking: different classifiers combined with a meta-classifier.
Features: classifiers output.

9.1 Bagging

1 Random Forest
Train K different trees with k bootstraps.
for each node do

Pick m random variables
Determine test=max{InfoGain}

end for
Predict using ensamble

Each tree has high variance, but the ensemble uses averaging, which
reduces variance.

2 Extremely randomized trees

Train K different trees with k bootstraps.
while desired depth do

for number of tests do
Pick m random variables
Determine a random test

end for
Select test=max{InfoGain}

end while
Predict using ensamble

The smaller m is, the more randomized the trees are.

9.2 Boosting

Iterate training with focus on misclassified instances in the previous
epoch.

With AdaBoost, the learner has a weight defined with:

17



3 Boosting

while error under threshold do
for classifier do

Train with more focus on misclassified instances
end for

end while
Predict using ensamble

Learner weight αi =
1

2
log(

1− 󰂃i
󰂃i

) (72)

10 Neural Network

Generally can suffer from overtraining (overfitting) occurs when weights
take on large magnitudes. Train with Param = I · O + b with respectively
Input, Output sizes and bias.

• Feed-forward: output of layer j is input of j + 1.
Fully connected: all units in j are input of all units in j + 1.

Sigmoid σ(x) =
ex

1 + ex
(73)

Sigmoid derivate
δσ(x)

δx
= σ(x)(1− σ(x)) (74)

Hidden unit hi = σ(w̄T x̄+ b) ∀i (75)

4 FF-NN
h̄0 = 0
for i = 1, ...H do

h̄i = σ(W̄ ih̄i−1 + b̄i)
end for
yout = φ(W̄ outh̄H + b̄out)

18



Error J =
1

2
(ỹ − y)2 (76)

Error derivate (out)
∂J

∂w̄out
=

∂J

∂ỹ

∂ỹ

∂w̄out
= (ỹ − y)h̄last = δoh̄last

(77)

Error derivate (hidden)
∂J

∂w̄j
=

∂J

∂ỹ

∂ỹ

∂w̄j
= δo

∂ỹ

∂w̄j
= δo

∂ỹ

∂h̄j

∂h̄j
∂w̄j

(78)

⇒ δow̄o,jσ(w̄
T x̄+ b̄)(1− σ(w̄T x̄+ b̄))x̄ (79)

⇒ δh,j x̄ (80)

5 Stochastic GDS
while no convergence do

Pick a training x̄
1 Feed x̄ and get y
2 Compute ∂J

∂w̄out

for Hidden unit i do
3 Compute share of correction ∂J

∂w̄j

end for
4 Update weights

Hidden: w̄j = w̄j − α ∂J
∂w̄i

Output: w̄out = w̄out − α ∂J
∂w̄out

end while

Claim 3. Any function can be approximated to arbitrary accuracy by a
network with 2 hidden layers.

10.1 Activation function

Should be easy differentiable and non-linear.

• Sigmoid, tanH: easily saturate.

• reLU: strong empirical results.

• softplus: smoother than reLU but harder to train.

• softmax: generalizes multiclass tasks.
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Figure 3: Most common activation functions

10.2 Backpropagation

Reverse-mode automatic differentiation (RV −AD) can efficiently com-
pute the derivative of every node in a computation graph. Very sensible to
learning rates. Empirically implemented in AdamOpt.

Figure 4: Differentiation paradigms from Hamilton (2019)
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Momentum M = β∆i−1w̄ (81)

Momentum Update ∆iw̄ = α
∂J

∂w̄
+M (82)

With momentum:

• Pros:

– Avoid small local-minima.

– Keep w̄ moving when error is flat.

• Cons:

– Avoid global minima.

– It’s an additional parameter.

11 Convonutional Neural Network

Individual cortical neurons respond to stimuli only in a restricted re-
gion of the visual field known as the receptive field. The receptive fields
of different neurons partially overlap such that they cover the entire visual
field.

(Wikipedia, 2019)

Each layer transforms an input 3D tensor to an output 3D tensor using
a differentiable function.

• Very high-dimensional inputs

• Multiple layers of inputs

• Invariance: light, rotations, translations

Main working scheme:

• Local receptive field for each first hidden unit (all channels), and
shared parameters for each receptive field. For each conv: (n ·m · l)k
parameters, with n×m filter, k output, and l input sizes.

• Pooling: aggregates result of convonutional layers.
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Figure 5: Convolution operation on a MxNx3 image matrix with a 3x3x3
Kernel. From TowardsDataScience (2019)

• Stride: spacing between receptive fields.

Definition 22. The dropout independently sets each hidden unit activity
to zero with probability p

Definition 23. The Batch Normalization normalizes the input layer by
adjusting and scaling the activations.

12 Recurrent Neural Network

RNN is a class of artificial neural network where connections between
nodes form a directed graph along a temporal sequence. Weights are
shared over time-steps. Output can be:

• End of the sequence: for instance, sentiment classification.

• End of time-step: for instance, generative language.

Recurrence can be based on:

• Hidden states: Elman RNN h̄t = (W̄ h̄t−1 + Ū x̄t + b̄)

• Outputs: Jordan RNN h̄t = (W̄ ōt−1 + Ū x̄t + b̄)

Output ōt = φ(V̄ h̄t + c̄) (83)

Network are trained with backpropagation through time (BPTT ). Some-
times the gradient is truncated for large sequences (see Figure 7).
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Figure 6: RNN scheme from Goodfellow et al. (2016)

Figure 7: RNN BPTT from Hamilton (2019)

With long term dependencies: usually exploding/vanishing gradient:
h̄t = W̄ h̄t−1 with W̄ = Q̄D̄Q̄T , and therefore h̄t = Q̄D̄dQ̄T h̄0. Hence, use
Gradient Clipping.
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12.1 LSTM Units

Fix the vanishing grandient issue. Each cell is composed of gates,
sigmoid layers to control information flow.

• Hidden state tracking: selects info from past for the next prediction.

• Cell State: selects info for future predictions.

Types of gates:

• Forget gate: amount of information to keep from previous cell.

• Input gate: what input is kept from previous cell.

• Output gate: what info from the cell is needed to predict.

12.2 Encoder-decoder RNN

Get different size output by encoding the input with a RNN - context
vector-, and the output with a different RNN . The context vector can be
enhanced with attention: namely, the decoder weights part of the context
vector.

Definition 24. The teacher forcing is a training procedure in which the
model receives the ground truth output y(t) as input at time t+1. (Goodfellow
et al., 2016)
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