

```
FITTING, REG
AND TRATHING
```

UNDERFITTING +BIAS - VARIANCE $\mathbb{E}\left[\hat{\mathcal{F}}(x)\right] = \left[\mathbb{E}\left(\hat{\mathcal{F}}(x)\right) - \hat{\mathcal{F}}(x)\right]^{2} + \mathbb{E}\left(\hat{\mathcal{F}}(x)^{2}\right) - \mathbb{E}\left(\hat{\mathcal{F}}(x)\right)^{2} + \sigma^{2}$

OVERFITTING +VARIANCE -BIAS () SHOULD BALANCE

ACC = #CORRCLASS /SENS/RECALL # TRUEPOS # POSITIVES SPEC = # TRUENEG //PRECISTON = # TRUE POS # DECL.POS

L1: |W| - NON LINEAR - OSOME L2: ||W|| - SHOOTH COND 200 42(K) - COND 200 42(K) LCO + K. SIGN(W)

EXACT $\frac{\partial Err(w)}{\partial w} = -2x^{T}(y-xw)$ INV: Mm² $= \frac{\partial w}{w} = (x^{T}x)^{-1}x^{T}y \qquad \text{MULT: m}^{3}$ MSE = (7-XW) T(Y-XW) GDS WKH = WK + 2dK XT(Y-XW) (MM2+M3

P(Y=11x)= P(x1y=1)P(Y=1) / DISCRIMINATIVE LREG, KNN, NN / GENERATIVE LDA, QDA, NB, HMM

LDA M(M+M) SAMEZ FOR KOLASSES, M FEAUTURES

NBAYES (K-1) +M K Z DIFF BUT DIA GONAL m(mK+m) EDIFF

LOG-ODDS
$$q = \sum_{i} \overline{W_i} \times_{i} = \log \frac{\gamma_{i-p}}{1-p}$$

ODDS

UDDS $\sigma = b^{\alpha} = b^$

roe(r(b)) LOGL(D) = Z Y= LOG(J(WTX)) + (1->=) LOG(1-0 H(d) =-LOG (D)

GDS $\frac{\partial H(\bar{w})}{\partial (\bar{w})} = \frac{N}{N} \sum_{n=1}^{\infty} \left(y_n - O(\bar{w}^T X_n^2) \right)$ with $\bar{w}_{cH} = \bar{w}_c + d \frac{\partial H(\bar{w})}{\partial (\bar{w})} \frac{\partial EO(\bar{w})}{\partial (\bar{w})}$ GAUSSIAN $P(x_1 | \bar{x}_n^2) = \frac{1}{\sqrt{N}} e^{-\frac{(y_n - \bar{w}^T X_n^2)^2}{2 O^2}}$

 $LOG(L(D)) = \sum_{k=0}^{\infty} LOG(\sqrt{2\pi}\sigma^{2}) - \frac{(\gamma_{z} - w^{2}x_{z})^{2}}{2\sigma^{2}} \frac{\partial \sigma(z)}{\partial z} = \sigma(z)(4z)$ $COV = Z = Z \sum_{k=0}^{\infty} \frac{(x_{x} - H_{k})(x_{z} + H_{k})}{N_{0} + N_{1} - Z} \frac{\partial \sigma(z)}{\partial z} = \sigma(z)(4z)$ LOG-L

LDA BOUNDARY: LOG(P(XIY=1)) = -1/2 H, E H, +1/4, E HO P(XIY=0) + X T Z -1 (M, - Mo) WX

/ FEATURES CONDITIONALLY INDEPENDENT

P(x=1x)=P(x=1x,x=) += > P(x|x) a T (x=1x) P(x) O(m) vs O(0m) SMOOTHING: $\theta_{3} = \frac{\# \times_{3} \times_{5} + 1}{\# \times_{5} + 2}$

Q=P(Y=1) ALWAYS ADDITIVE! Or, 1= P(x7=1, Y=1) Or, 0= P(x7=1, Y=0)

 $\frac{P(x=0|X)}{P(x=0|X)} = \frac{P(x=0)}{P(x=0)} + \frac{P(x=0)}{P(x=0)} + \frac{P(x=0)}{P(x=1)} +$

LINEAR REGRESS.

GENERATIVE DISCRIMINATIVE

LOGISTIC REGRESSION

NAIVE BAYES

DTREES

FEAUTURES

IDF = LOG #DOO.

WMXM MXM FIRST M EIGENVECTOR COLUMNS BY EIGENVALUE

```
MIN (X) = SIGN (WTX) ALWAYS CONVERGES IFF LINEARLY
                                                                                                     PERCEPTON
              SVM
                                                                                                                                                                               ERR(W) = Z {O IFF XW X, 20; 1 ELSE}
                                                                                                                                                                          S-VECT \overline{wx} + b \overline{m} = 12  \overline{m} = 12 
                                                                                                   HARD - SWM
                                                                                                                    O(M3)
                                                                                                                                                                            OUTPUT NIW )= SIGN (WTX+6)
                                                                                                                                                                              LO-00 -D LO-1 HINGE LOSS &= LHN (WTX, Y, ) = MAX(1-WTX, 0)
                                                                                                   SOFT-SUM
                                                                                                                                                                                                                                                                => FIN C. ZE: +/211W112 4
                                                                                                                                                                              2 =0 GREAT!
                                                                                                                                                                                                                                                                                       S.T. YXWTXX > 1-E, YX=1.MB
                                                                                                                                                                              E = O ON MARGIN
                                                                                                                                                                            EE(O,1) IN MARGIN
                                                                                                                                                                                                                                                                                      GK= e -11x-Z112
ZOZ
TANK(C, X +2+CZ)
                                                                                                                                                                            E=1 BOUNDARY
                                                                                                                                                                           ETI MISS
                                                                                               KERNEL-T MAP INTO HIGHER DIMENTIONAL SPACE
                                                                                               BOOTSTRAPPING KMODELS ON KSUB TRAINSET - VAR + BIAS (DTREE, KNN)
    ENSAMBLE
                                                                                                                                                                                                RANDOM FOREST FOR (NODE) IM RANDOM VAR BEST TEST
                                                                                                                                                                                                EXT. RANDOM.TR. FOR (TESTS) (M RANDOM AND RAN TEST) BEST TEST
                                                                                                                                                                                                INCREMENTALLY TRAIN -BIAS LW = 2= 1/2 LOG( 1-Ez)
                                                                                                BOOSTING
                                                                                                                                                                                                METACUASS ON TOP OF DIFFERENT APPROACHE
                                                                                                STACKING
                                                                                                NEURALNET
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Z HIDDEN LAXERS
                                                                                                 SIGH, TANK SATURATE
                                                                                                                                                                                                                                                              MOHENTUN M=BA=-1W=7 A= 200 +M
                                                                                                 RELU
                                                                                                 SOFTPLUS SMOTHER BUT COMP.
                                                                                                  INVARIANT TO TRANSFORMATION. STRIDE = SPACING
       CNN
                                                                                                  CON (M.M. P.K) FILTER (MXM)
                                                                                                                                        PINPUTKOUTPUT
                                                                                                  TEMPORALITY + SHARED WEIGHTS END OF SEA SENTIMENT HIDDEN-S-REC ELMAN
       RNN
                                                                                                                                                                                                                                                                                    END OF STEP LANGUAGE CUTPUTS - REC JORDAN
                                                                                                     JORDAN NT = (WOL + UXE+ b)
                                                                                                     JORDAN NT = (WOL + UXE+B)

OL = Q(VNT+C) BPTT WITH GRADIENT CUPPINGOR

TRONGATED

W = Q D QT = 7NT QD QTh
                                                                                                   FIX VANISHING #S-TRACK SELECT INFO FROM PASTX
CEU-STATE INFO FOR MEXTS
       LSTM
                                                                                                                                                                                                                                                                                                                               ENCODER CONTEXT VECTOR
                                                                                                                                                     GATE WHICH TO KEED DECODER CONTEXT VECTOR OF CON
                                                                                                     INPUT
                                                                                                                                                                                                                                                                                                                        TEACHER FORCING FEED RIGHT ANSWER Y(L) AT L+1
                                                                                                  NB - NORMHT \quad E(\lambda = K | X^2) = \frac{b(\lambda = K) \cdot 1!}{\sqrt{5!}} \frac{b(\lambda = K)}{\sqrt{5!}} \frac{1}{\sqrt{5!}} = \frac{b(\lambda = K) \cdot 1!}{\sqrt{5!}} \frac{b(\lambda = K)}{\sqrt{5!}} \frac{1}{\sqrt{5!}} - \frac{c^2}{\sqrt{5!}} \frac{c^2}{\sqrt{
MVAR NAWE
                         BAYES
                                                                                                                                                                                                                                                                                                                                                                          11 P(x=2)=P(x==2|y=1)+P(x==2)1/=0
                                                                                                                                                                                                                                                                                                                                                                         1/P(x=%1 >= K) = P(x==%1 >=K). P(X=K)
                                                                                                                                                                                     ODDS: P(Y=A) x) P(x=9)
```


Canada Excellence Research Chair Data Science for Real-Time Decision-Making

$\underset{\text{COMP551 @ McGill University}}{\textbf{Applied Machine Learning}}$

 $\begin{array}{ll} \textbf{Gabriele Dragotto} \\ \textbf{gabriele.dragotto@polymtl.ca} \end{array}$

Sasticio di agotto e por jimino

Statistical tools

Definition 1. The **joint probability** for 2 discrete random variables X and Y is defined as $P(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$

Figure 1: Example of distribution for 2 variables. From Bishop (2006)

Definition 2. The conditional probability of $Y = y_i$ given $X = x_i$ is $P(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$

Definition 3. The **Bayes theorem** for 2 states that $P(A \mid B) = \frac{P(B|A)P(A)}{P(B)}$

Definition 4. The sum rule for 2 random variables X and Y states that $p(X) = \sum_{Y} p(X, Y)$

Definition 5. The product rule for 2 random variables X and Y states that $p(X,Y) = p(Y|X) \cdot P(X)$ where p(Y|X) is the joint probability of Y given X.

With the Bayes Theorem, the former definition implies Equation (1)

$$p(Y|X) = \frac{p(X|Y) \cdot p(Y)}{p(X)} \quad \text{and} \quad p(X) = \sum_{Y} p(X|Y) \cdot p(Y) \tag{1}$$

Definition 6. The **Kolmogorov product rule** for 2 random variables X and Y states that $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$.

If the random variable is continue, the introduced concepts cha:

$$\int_{-\infty}^{+\infty} p(x)dx = 1 \quad p(x) \ge 0 \,\forall x \tag{2}$$

$$\int_{-\infty}^{+\infty} p(x)dx = 1 \quad p(x) \ge 0 \,\forall x$$

$$P(x \le z) = \int_{-\infty}^{z} p(x)dx \quad P'(x) = p(x)$$
(3)

1 Introduction

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, **improves** with experience E

Class Notes by Hamilton (2019)

In a broader scope, AI can be seen as the field of Computer Science aiming to automate actions, decision and learning process typical of human beings. A sub field of AI is **machine learning**, which implements in machines the capability of extracting knowledge from data (Goodfellow et al., 2016). This approach relies heavily on the representation of the data it recieves (eg, regression only analyses some features). The subfield of representation learning concerns with an approach capable of guessing the right representation to use in order to produce the output.

Finally, deep learning aims to build lower level representation of data, and hence builds up complex representations from simpler ones. This former approach

1.1 Fitting, regularization and validation

Definition 7. A training set is a formatted set of data. Each column is named variable, feature or attribute and each row constitutes a training example or instance. The desired outcome is named target or output variable.

Definition 8. An **overfitted** model is a statistical model that contains more parameters than can be justified by the data. The model has a **lower true error** on a different hypotesys than the chosen one, hence high variance/low bias.

Counter with: model comparison, cross-validation, regularization, early stopping, pruning, Bayesian priors, or dropout. Reduce variance at the cost of some bias.

Definition 9. Underfitting occurs when a statistical model or machine learning algorithm cannot adequately capture the underlying structure of the data. The model has then low variance/high bias.

1.2 Errors

Assuming a machine learning algorithm predicts $y = f(x) + \epsilon$ where $\epsilon \sim (\mu = 0, \sigma^2)$, then the error can be decomposed in bias and variance:

Error
$$\mathbb{E}[y - \tilde{f}(\bar{x})] = (Bias[\tilde{f}(\bar{x})])^2 + Var[\tilde{f}(\bar{x})] + \sigma^2$$
 (4)

Bias
$$\mathbb{E}[\tilde{f}(\bar{x})] - \tilde{f}(\bar{x})$$
 (5)

Variance
$$\mathbb{E}[\tilde{f}(\bar{x})^2] - \mathbb{E}[\tilde{f}(\bar{x})]^2$$
 (6)

(7)

Definition 10. Bias occurs when a statistical model or machine learning algorithm cannot capture relations between input and output variables. underfitting.

Definition 11. Variance models the sensitivity between small changes in the input. overfitting.

Accuracy
$$A = \frac{\#CorrectlyClassified}{\#Samples}$$
 (8)
ity/Recall $R = \frac{\#TruePositives}{\#Positives}$ (9)
Specificity $S_c = \frac{\#TrueNegatives}{\#Negatives}$ (10)
Precision $P = \frac{\#TruePositives}{\#DeclaredPositives}$ (11)
Error rate $E_r = \frac{\#FalseNegatives + \#FalsePositives}{\#Samples}$ (12)

Sensitivity/Recall
$$R = \frac{\#TruePositives}{\#Positives}$$
 (9)

Specificity
$$S_c = \frac{\#TrueNegatives}{\#Negatives}$$
 (10)

Precision
$$P = \frac{\#TruePositives}{\#DeclaredPositives}$$
 (11)

Error rate
$$E_r = \frac{\#False Negatives + \#False Positives}{\#Samples}$$
 (12)

$$F_1 \text{ score} \quad F_1 = 2\frac{P \cdot R}{P + R}$$
 (13)

TruePositives	FalseNegatives
False Positives	TrueNegatives

Table 1: The confusion matrix structure

1.2.1 Cross Validation

Definition 12. k-fold cross validation splits the training-set in k partitions, training on k-1 and verifying on the remaining one. It increases the computational time by a factor of k.

Definition 13. Leave-out-one eliminates one row on the training set, and evaluates the error on it. The error estimation averages on all the iterations.

1.3 Regularization

Definition 14. Lasso penalization - or L1 regularization - add to the loss-function a penalty term proportional to the absolute value of estimated weights. non linear. Sets some coefficients to 0.

Definition 15. Ridge regression - or L2 regularization - add to the lossfunction a penalty term proportional to the square of estimated weights. Smooths some coefficients.

Linear Regression $\mathbf{2}$

The I.I.D assumption states the following:

Definition 16. A set of random variables is independent and identically distributed if each random variable has the same probability distribution as the others and all are mutually independent.

The following equations are the fundamental:

Function
$$f_{\bar{w}_i}(\bar{X}) = \bar{X}\bar{w}_i$$
 (14)

Fn. MSE Error
$$f_{\bar{w}}^*(\bar{X}) = \underset{i}{\operatorname{arg min}} [(\bar{y} - \bar{X}\bar{w}_i)^T(\bar{y} - \bar{X}\bar{w}_i)]$$
 (15)

2.1 Exact approach

We minimize the gradient of the MSE representation.

Gradient MSE
$$\frac{\delta Err(\bar{w})}{\delta \bar{w}} = -2X^T(y - X\bar{w})$$
 (16)
 $\Rightarrow X^T(y - X\bar{w}) = 0$ (17)

$$\Rightarrow X^T(y - X\bar{w}) = 0 \tag{17}$$

$$\Rightarrow X^T Y = X^T X \bar{w} \tag{18}$$

$$\Rightarrow \quad \bar{\mathbf{w}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{Y} \tag{19}$$

Operation		Cost
Matrix Inversion Matrix multiplications		nm^2 m^3
Total	4	$\Theta(nm^2 + m^3)$

Some issues:

- Numerical stability
- Singular X: features are dependent (no full column rank). fix? combine, apply functions, interaction terms, etc...

2.2 Gradient descent

Weights are updated step by step depending on the MSE gradient representation. Assuming $Err(\bar{w}_0) > Err(\bar{w}_1) > ... Err(\bar{w}_{step})$, until $|\bar{w}_{k+1}|$ $|\bar{w}_k| > \epsilon$, then:

Updated Weights
$$\bar{w}_{k+1} = \bar{w}_k - \alpha_k \frac{\delta Err(\bar{w}_k)}{\delta \bar{w}_k}$$
 (20)

$$\Rightarrow \quad \bar{w}_{k+1} = \bar{w}_k + 2\alpha_k X^T (y - X\bar{w}) \tag{21}$$

Where the function (parameter) α_k is the learning rate at the k-th step.

- Large α : gradient might **not converge** $\Rightarrow \alpha_k \to 0$ if $k \to 0$.
- Small α : might loop in local minima $\Rightarrow \alpha_k \to 0$ if $k \to 0$.

Claim 1. Robbins-Monroe conditions are sufficient to ensure convergence of the \bar{w}_k to a local minimum of the error function. RMC: $\sum_{k=0}^{\infty} \alpha_k = \infty$ and $\sum_{k=0}^{\infty} \alpha_k^2 < \infty$

RMC:
$$\sum_{k=0}^{\infty} \alpha_k = \infty \text{ and } \sum_{k=0}^{\infty} \alpha_k^2 < \infty$$

For instance, $\alpha(k) = 1/(k+1)$ satisfies the RMC.

Estimating how likely are the features given the output, and the independent probability of the output class.

- **Discriminative learning**: $P(y|\bar{x})$ models the boundary between classes.
- Generative learning: $P(\bar{x}|y)$ models the distribution of each class.

Model	Cost	Assumption
LDA	m(m+n)	Same covariance for k classes, and m features
Naive Bayes	(k-1)+mk	Different covariances but diagonal matrix
QDA	m(mk+n)	Different covariances for k classes

3 Logistic Regression

Definition 17. The logit - or log-odd ratio - is defined as the logarithm of the odds 1/(1-p). Therefore $logit(p) = log \frac{p}{1-p}$

The following equations are the fundamental:

Log-odds
$$a = \sum_{i} w_i x_i = \log \frac{p}{1-p}$$
 (22)

Odds
$$o = b^a = b^{\sum_i w_i x_i}$$
 (23)

Lin. Logistic Fn.
$$\sigma(\bar{w}^T \bar{x}) = \sigma(a) = \frac{1}{1 + e^{-\bar{w}^T \bar{x}}} = \frac{1}{1 + e^{-a}}$$
 (24)

Where the decision boundary approximates the log-odds with a linear function of the features $\bar{w}^T\bar{x}$.

 $\sigma(\bar{w}^T\bar{x})$ is the proability of $y_i = 1$ given the \bar{x} input vector. The goal is to maximize the likelihood, without incurring in numerical instability.

Likelihood
$$L(D) = \prod_{i=1}^{n} \sigma(\bar{w}^T \bar{x})^{y_i} \cdot (1 - \sigma(\bar{w}^T \bar{x}))^{1-y_i}$$
 (25)

log-Likelihood
$$\log L(D) = \sum_{i=1}^{n} y_i \log(\sigma(\bar{w}^T \bar{x})) + (1 - y_i) \log(1 - \sigma(\bar{w}^T \bar{x}))$$
 (26)

Cross Entropy Loss
$$H(d) = -\log L(D)$$
 (27)

Therefore, maximising likelihood corresponds to minimizing the cross entropy. It is easy to note that the inner term of L(D):

1. =
$$\sigma(\bar{w}^T\bar{x})$$
 iff $y_i = 1$

2. =
$$1 - \sigma(\bar{w}^T \bar{x})$$
 iff $y_i = 0$

3.1 Gradient descent

We minimize the gradient of the cross-entropy loss representation. One step is O(nm), vs $O(m^3 + nm^2)$ for exact solution.

Gradient CE
$$\frac{\delta H(\bar{w})}{\delta \bar{w}}$$
 (28)

with
$$\frac{\delta \log(\sigma)}{\delta \bar{w}} = \frac{1}{\sigma}, \quad \frac{\delta \sigma}{\delta \bar{w}} = \sigma(1 - \sigma), \frac{\delta \bar{w}^T x}{\delta \bar{w}} = x,$$
 (29)

$$\frac{\delta(1-\sigma)}{\delta \bar{w}} = -\sigma(1-\sigma) \tag{30}$$

$$\Rightarrow \frac{\delta \mathbf{H}(\bar{\mathbf{w}})}{\delta \bar{\mathbf{w}}} = -\sum_{i=1}^{n} \bar{\mathbf{x}}_{i} (\mathbf{y}_{i} - \sigma(\bar{\mathbf{w}}^{T} \bar{\mathbf{x}}_{i}))$$
(31)

Therefore, the update rule

Updated Weights
$$\bar{w}_{k+1} = \bar{w}_k + \alpha_k \left(-\frac{\delta H(\bar{w})}{\delta \bar{w}}\right)$$
 (32)

3.2 Probabilistic interpretation

The logistic regression can be interpreted through a gaussian distribution of the likelihood.

Gaussian Likelihood
$$P(y_i|\bar{x}_i) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \bar{w}^T \bar{x}_i)^2}{2\sigma^2}}$$
 (33)

Gaussian log-ikelihood
$$\log L(D) = \sum_{i=1}^{n} -\log(\sqrt{2\pi\sigma^2}) - \frac{(y_i - \bar{w}^T \bar{x}_i)^2}{2\sigma^2}$$

(34)

Squared loss
$$(y_i - \bar{w}^T \bar{x}_i)^2$$
 (35)

Therefore, maximising log-likelihood corresponds to minimizing the squared loss. Train models using theoretically grounded loss functions but evaluate using interpretable measures.

4 LDA and QDA

LDA approaches the problem by assuming that the conditional probability density functions $p(\bar{x}|y_i = \%)$ are **gaussian** functions with mean μ_i and same covariance Σ , while QDA assumes different covarances. The Bayes

optimal predicts points as being from the second class if the log-odd ratios is greater than 0.

$$P(\bar{x}|y) = \frac{1}{\sqrt{2\pi\Sigma}} e^{-\frac{(\bar{x}-\mu)^T(\bar{x}-\mu)}{2\Sigma}}$$
 (36)

Covariance
$$\Sigma = \sum_{k=0}^{1} \sum_{j=1}^{n} \frac{(\bar{x}_i - \mu_k)^T (\bar{x}_i - \mu_k)}{N_0 + N_1 - 2}$$
(37)

QDA has **more parameters** to estimate, but greater flexibility to estimate the target function. Estimating Σ is expensive: $O(m^2)!$ The LDA has a linear boundary, namely $w_0 + \bar{x}^T \bar{w}$.

$$\log \frac{P(\bar{x}|y=1)}{P(\bar{x}|y=0)} = \tag{38}$$

$$\log \frac{P(y=1)}{P(x=1)} - \frac{1}{2}\mu_1^T \Sigma^{-1} \mu_1 + \frac{1}{2}\mu_0^T \Sigma^{-1} \mu_0 + x^T \Sigma^{-1} (\mu_1 - \mu_0)$$
 (39)

4.1 Naive Bayes

Definition 18. The strong (naive) assumption states assumes that the features are **conditionally** independent given the output y. Therefore: $P(x_j|y) = P(x_j|y, x_k) \quad \forall j, k \quad \Rightarrow P(x|y) = \prod_i (x_i|y)$

A Naive Bayes classifier with **binary** features has to estimate just O(m) parameters compared to $O(2^m)$. Useful when the number of features is high: linear time parameters and exact form optimization. Hence, no correlation between features is taken into account.

$$\Theta_1 \quad P(y=1) \tag{40}$$

$$\Theta_{i,1} \quad P(x_i = 1|y = 1)$$
 (41)

$$\Theta_{j,0} \quad P(x_j = 1|y = 0)$$
 (42)

$$L(\Theta_1|y) \quad \Theta_1^y (1 - \Theta_1)^{1-y}$$
 (43)

log-Likelihood
$$log_L(D) = log \frac{P(y=1|\bar{x})}{P(y=0|\bar{x})} =$$
 (44)

$$\Rightarrow \log \frac{P(y=1)}{P(y=0)} + \log \frac{\prod_{j=1}^{m} P(x_j|y=1)}{\prod_{j=1}^{m} P(x_j|y=0)}$$
(45)

$$\Rightarrow \log \frac{P(y=1)}{P(y=0)} + \sum_{j=1}^{m} \log \frac{P(x_j|y=1)}{P(x_j|y=0)}$$
 (46)

Therefore, each feature contributes independently to the classification. In order to reduce variance, one can exploit additive smoothing.

Definition 19. The **additive smoothing** - or Laplace smoothing - modifies estimators as: $\hat{\theta}_i = \frac{x_i + \alpha}{N + \alpha d}$ $\forall i \text{ where } d = p_i^{-1}, \text{ namely the probability of class } y_i.$

For instance, the add one smoothing would be: $\Theta_{j,i} = \frac{\#y_i = 1 \land x_j = 1+1}{\#y_i = 1+2}$.

Gaussian Naive Bayes assumes Σ is distinct between classes and diagonal, and P(x|y) is assumed to be a multivariate Gaussian.

5 Decision Trees

Divide the space of features in a detailed way. Learning a tree means learning tests (with categorical/binary outcomes) over each branch. Usually: grow and prune.

- Easy to represent: Boolean functions
- Hard to represent: Parity function $O(2^m)$, Majority function

Information
$$I(E) = \log_2 \frac{1}{P(E)}$$
 (47)

Entropy
$$H(S) = \sum_{i} p_i I(s_i) = -\sum_{i} p_i \log p_i$$
 (48)

Conditional Entropy
$$H(y|x) = \sum_{i} p(x=i)H(y|x=i)$$
 (49)

Claim 2. The entropy can be interpreted as: average amount of information per symbol, uncertainty before the outcome, number of bits for the symbol.

- Classification: maximize information gain.
- Regression: minimize standard deviation.

In order to avoid overfitting:

- post-pruning: prune the tree once it is fully grown. For each node: prune iff **improves validation accuracy**. Replace decision with majority rule.
- early-stopping: stop the training when no information gain.

Feature Design 6

6.1**NL** Features

Some language processing standard measures:

tf
$$tf_i = \frac{word_i}{\#words}$$
 in document d_k (50)

tf
$$tf_i = \frac{word_i}{\#words}$$
 in document d_k (50)
idf $idf_i = \log \frac{\#documents}{\#documents \text{ with } i}$ in corpus (51)

tf-idf
$$tf - idf_i = tf_i \cdot idf_i$$
 (52)

6.2PCA

Principal component analysis - or truncated SVD - projects into a lower dimensional space a given set of features. Assume the original dimension as \mathbb{R}^m and the final one \mathbb{R}^n with n < m.

PCA-problem
$$\underset{W,U}{\operatorname{arg\,min}} (\sum_{i}^{n} ||X - XWU^{T}||^{2})$$
 (53)

Where:

- $W^{m \times n}$: compression matrix with the first n eigenvectors sorted by eigenvalues. Columns are orthogonal, and i-th column is the i-thdirection with i - th maximal variance.
- $U^{n \times m}$: decompression matrix.

Instance learning

Compute a domain specific distance metric between points in the training set and the ones being tested. The decision boundaries are given by the Voronoi diagram ran on the training data. lazy learning, wait for the query to generalize.

With the k - NN the prediction is the majority/mean of k-nearest points. Try to use gaussian distances.

8 Support Vector Machines

8.1 Percepton

Basic linear classifier. Its error estimates how much $w^t x$ is far away from being correct. The training data is linearly separable iff there is no training error.

Percepton
$$h_w(\bar{x}) = sign(\bar{w}^T \bar{x})$$
 (54)

Percepton Err
$$Err(\bar{w}) = \sum_{i} \{0 \iff y_i \bar{w}^T x_i \ge 0; \text{ else } 1\}$$
 (55)

(56)

Theorem 8.1. If the training data is linearly separable, the percepton will converge to 0 error in a finite number of steps. \heartsuit (Bishop, 2006)

8.2 SVM

Definition 20. A linear SVM is a perceptron with a vector \bar{w} so that the margin is maximized.

The SVM builds the separating hyperplane between two classes of the input space. $\vec{w} \cdot \vec{x} - b = 0$ is the separation hyperplane.

Separation
$$S = \frac{2}{||\bar{w}||}$$
 (57)

The optimization model, that can be trained at most in $O(n^3)$.

$$minimize_{\bar{w}} \quad \frac{1}{2}||\bar{w}||^2 \tag{58}$$

subject to
$$y_i \bar{w}^T \bar{x}_i \ge 1 \quad \forall i = 1, ..., n$$
 (59)

$$||\bar{w}|| = \frac{1}{M} \tag{60}$$

The lagrangian multipliers $\bar{\alpha}$ of the dual are the support vectors. The weight vector is a linear combination of the support vectors.

Definition 21. A support vector is a point laying on the decision boundary.

Lagrangian Form.
$$L(\bar{w}, \bar{\alpha}) = \frac{1}{2} ||\bar{w}||^2 + \sum_{i} \alpha_i (1 - y_i(\bar{w}^T \bar{x}))$$
 (61)

Derivate
$$\frac{\delta L(\bar{w}, \bar{\alpha})}{\delta \bar{w}} = \bar{w} - \sum_{i} \alpha_{i} \bar{x}_{i} y_{i}$$
 (62)

Weights
$$\bar{w} = \sum_{i} \alpha_i \bar{x}_i y_i$$
 (63)

Margin
$$M = M(\bar{\alpha}_i) = \frac{\bar{w}^T \bar{\alpha}_i}{||\bar{w}||} = \frac{1}{||\bar{w}||}$$
 (64)

Output
$$h_{\bar{w}}(\bar{x}) = sign(\sum_{i=1}^{n} \alpha_i y_i(x_i \cdot x)) = sign(\bar{w}^T \bar{x} + b)$$
 (65)

The output of the classifier is given by the dotproduct of the sample x with the support vectors x_i .

8.3 Non-linearly separable class

If the training set is not linearly separable, either:

- Soften the constraint: $L_{0-\infty} \to L_{0-1}$.
- Kernel-trick: use non-linear kernels.

8.3.1 Soft SVM with Hinge loss

Approximate the missclassification penalty with a linear function .

Hinge Loss
$$\xi = L_{hin}(\bar{w}^T \bar{x}_i, y_i) = \max\{1 - \bar{w}^T \bar{x}_i, 0\}$$
 (66)

Therefore optimize the following:

$$\operatorname{minimize}_{\bar{w},\xi} \quad C \sum_{i} \xi_{i} + \frac{1}{2} ||\bar{w}||^{2}$$

$$\tag{67}$$

subject to
$$y_i \bar{w}^T \bar{x}_i \ge 1 - \xi_i \quad \forall i = 1, .., n \quad (\mathbf{Lagr} : \bar{\alpha})$$
 (68)

$$\xi_i \ge 0 \quad \forall i = 1, .., n \quad (\mathbf{Lagr} : \overline{\beta})$$
 (69)

With $C \to \infty$ it gives an hard-SVM.

• $\alpha = 0$: points outside margin.

- $\xi = 0$: points on/outside the margin.
- $\xi \in (0,1)$: points within the margin (on with $\alpha_i > 0$).
- $\xi = 1$: points on decision line.
- $\xi > 1$: missclassified.

8.3.2 Kernel machines

The method allows to compute dot-products without explicitly computing coordinates in the new feature space. Optimizing with the dual requires just the computation of the kernel function.

Gaussian Kernel
$$K = (\bar{x}, \bar{z}) = e^{\frac{-||\bar{x} - \bar{z}||^2}{2\sigma^2}}$$
 (70)

Sigmoid Kernel
$$K = (\bar{x}, \bar{z}) = \tanh(c_1\bar{x} \cdot \bar{z} + c_2)$$
 (71)

Figure 2: Kernel mapping $\mathbb{R}^2 \to \mathbb{R}^3$

9 Ensamble methods

• Bootstrapping-Bagging: K different models trained on different sub training sets (eg, sampling with replacement). Reduce variance and increase bias: DTree, kNN.

- Boosting: K different models incrementally trained. Reduce bias: AdaBoost.Empirically, low chance of overfitting. misclassified are dangerous: can be weighted too much.
- Stacking: different classifiers combined with a meta-classifier. Features: classifiers output.

9.1 Bagging

1 Random Forest Train K different trees with k bootstraps. for each node do Pick m random variables Determine $test=max\{InfoGain\}$ end for Predict using ensamble

Each tree has high variance, but the ensemble uses averaging, which reduces variance.

2 Extremely randomized trees

```
Train K different trees with k bootstraps.

while desired depth do

for number of tests do

Pick m random variables

Determine a random test

end for

Select test=max{InfoGain}

end while

Predict using ensamble
```

The smaller m is, the more randomized the trees are.

9.2 Boosting

Iterate training with focus on misclassified instances in the previous epoch.

With AdaBoost, the learner has a weight defined with:

3 Boosting

while error under threshold do
for classifier do
Train with more focus on misclassified instances
end for
end while
Predict using ensamble

Learner weight
$$\alpha_i = \frac{1}{2} \log(\frac{1 - \epsilon_i}{\epsilon_i})$$
 (72)

10 Neural Network

Generally can suffer from overtraining (overfitting) occurs when weights take on large magnitudes. Train with $P_{aram} = I \cdot O + b$ with respectively Input, Output sizes and bias.

• Feed-forward: output of layer j is input of j + 1. Fully connected: all units in j are input of all units in j + 1.

Sigmoid
$$\sigma(x) = \frac{e^x}{1 + e^x}$$
 (73)

Sigmoid derivate
$$\frac{\delta \sigma(x)}{\delta x} = \sigma(x)(1 - \sigma(x))$$
 (74)

Hidden unit
$$h_i = \sigma(\bar{w}^T \bar{x} + b) \quad \forall i$$
 (75)

4 FF-NN

$$\begin{split} \bar{h}^0 &= 0 \\ \textbf{for } i &= 1, ... H \ \textbf{do} \\ \bar{h}^i &= \sigma(\bar{W}^i \bar{h}^{i-1} + \bar{b}^i) \\ \textbf{end for} \\ y_{out} &= \phi(\bar{W}^{out} \bar{h}^H + \bar{b}^{out}) \end{split}$$

Error
$$J = \frac{1}{2}(\tilde{y} - y)^2$$
 (76)
Error derivate (out) $\frac{\partial J}{\partial \bar{w}_{out}} = \frac{\partial J}{\partial \tilde{y}} \frac{\partial \tilde{y}}{\partial \bar{w}_{out}} = (\tilde{y} - y) \bar{h}_{last} = \delta_o \bar{h}_{last}$ (77)

Error derivate (hidden)
$$\frac{\partial J}{\partial \bar{w}_j} = \frac{\partial J}{\partial \tilde{y}} \frac{\partial \tilde{y}}{\partial \bar{w}_j} = \delta_o \frac{\partial \tilde{y}}{\partial \bar{w}_j} = \delta_o \frac{\partial \tilde{y}}{\partial \bar{h}_j} \frac{\partial \bar{h}_j}{\partial \bar{w}_j}$$
 (78)

$$\Rightarrow \delta_o \bar{w}_{o,j} \sigma(\bar{w}^T \bar{x} + \bar{b}) (1 - \sigma(\bar{w}^T \bar{x} + \bar{b})) \bar{x}$$
 (79)

$$\Rightarrow \delta_{h,i}\bar{x} \tag{80}$$

5 Stochastic GDS

while no convergence do

Pick a training \bar{x}

1 Feed \bar{x} and get y

2 Compute $\frac{\partial J}{\partial \bar{w}_{out}}$

for Hidden unit i do

3 Compute share of correction $\frac{\partial J}{\partial \bar{w}_i}$

end for

4 Update weights

Hidden: $\bar{w}_j = \bar{w}_j - \alpha \frac{\partial J}{\partial \bar{w}_i}$ Output: $\bar{w}_{out} = \bar{w}_{out} - \alpha \frac{\partial J}{\partial \bar{w}_{out}}$

end while

Claim 3. Any function can be approximated to arbitrary accuracy by a network with 2 hidden layers.

10.1 Activation function

Should be easy differentiable and **non-linear**.

- Sigmoid, tanH: easily saturate.
- reLU: strong empirical results.
- softplus: smoother than reLU but harder to train.
- softmax: generalizes multiclass tasks.

Figure 3: Most common activation functions

10.2 Backpropagation

Reverse-mode automatic differentiation (RV-AD) can efficiently compute the derivative of every node in a computation graph. Very sensible to learning rates. Empirically implemented in AdamOpt.

Figure 4: Differentiation paradigms from Hamilton (2019)

Momentum
$$M = \beta \Delta_{i-1} \bar{w}$$
 (81)

Momentum Update
$$\Delta_i \bar{w} = \alpha \frac{\partial J}{\partial \bar{w}} + M$$
 (82)

With momentum:

- Pros:
 - Avoid **small** local-minima.
 - Keep \bar{w} moving when error is flat.
- Cons:
 - Avoid **global minima**.
 - It's an additional parameter.

11 Convonutional Neural Network

Individual cortical neurons respond to stimuli only in a restricted region of the visual field known as the receptive field. The receptive fields of different neurons partially overlap such that they cover the entire visual field.

(Wikipedia, 2019)

Each layer transforms an input 3D **tensor** to an output 3D tensor using a differentiable function.

- Very high-dimensional inputs
- Multiple layers of inputs
- Invariance: light, rotations, translations

Main working scheme:

- Local receptive field for each first hidden unit (all channels), and shared parameters for each receptive field. For each conv: $(n \cdot m \cdot l)k$ parameters, with $n \times m$ filter, k output, and l input sizes.
- Pooling: aggregates result of convolutional layers.

Figure 5: Convolution operation on a MxNx3 image matrix with a 3x3x3 Kernel. From TowardsDataScience (2019)

• Stride: spacing between receptive fields.

Definition 22. The **dropout** independently sets each hidden unit activity to zero with probability p

Definition 23. The Batch Normalization normalizes the input layer by adjusting and scaling the activations.

12 Recurrent Neural Network

RNN is a class of artificial neural network where connections between nodes form a directed graph along a **temporal sequence**. Weights are **shared** over time-steps. Output can be:

- End of the sequence: for instance, sentiment classification.
- End of time-step: for instance, generative language.

Recurrence can be based on:

- Hidden states: Elman RNN $\bar{h}_t = (\bar{W}\bar{h}_{t-1} + \bar{U}\bar{x}_t + \bar{b})$
- Outputs: Jordan RNN $\bar{h}_t = (\bar{W}\bar{o}_{t-1} + \bar{U}\bar{x}_t + \bar{b})$

Output
$$\bar{o}_t = \phi(\bar{V}\bar{h}_t + \bar{c})$$
 (83)

Network are trained with backpropagation through time (BPTT). Sometimes the gradient is **truncated** for large sequences (see Figure 7).

Figure 6: RNN scheme from Goodfellow et al. (2016)

Figure 7: RNN BPTT from Hamilton (2019)

With long term dependencies: usually exploding/vanishing gradient: $\bar{h}_t = \bar{W}\bar{h}_{t-1}$ with $\bar{W} = \bar{Q}\bar{D}\bar{Q}^T$, and therefore $\bar{h}_t = \bar{Q}\bar{\mathbf{D}}^{\mathbf{d}}\bar{Q}^T\bar{h}_0$. Hence, use Gradient Clipping.

12.1 LSTM Units

Fix the **vanishing** grandient issue. Each cell is composed of **gates**, sigmoid layers to control information flow.

- ullet Hidden state tracking: selects info from past for the next prediction.
- Cell State: selects info for future **predictions**.

Types of gates:

- Forget gate: amount of information to keep from previous cell.
- Input gate: what input is kept from previous cell.
- Output gate: what info from the cell is needed to predict.

12.2 Encoder-decoder RNN

Get different size output by **encoding** the input with a RNN - context vector-, and the output with a different RNN. The context vector can be enhanced with attention: namely, the decoder weights part of the context vector.

Definition 24. The **teacher forcing** is a training procedure in which the model receives the ground truth output y(t) as input at time t+1. (Goodfellow et al., 2016)

References

Bishop, C. M., 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg.

Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y., 2016. Deep learning. Vol. 1. MIT press Cambridge.

Hamilton, W., 2019. Comp551 lectures. University Lecture.

 $Towards Data Science,\ 2019.\ Towards data science.\ Online.$

Wikipedia, 2019. Wikipedia.org. The Online Encyclopedia.