D2P 10T g C Gabriele Dragotto gabriele.dragotto@studenti.polito.it

P2P and IoT Systems

1 Introduction ARPANET The Advanced Research Projects Agency Network (ARPANET) was an early packet switching network and the first network to implement the protocol suite TCP/IP. • P2P SYSTEM The initial internet was a fast reconfigurable hop based system. CLIENT SERVER Later reconfigured with IP routing system. APP LAYER End2End **OVERLAY** An overlay network is a computer network that is built on top of another **NETWORK** network. **UNDERLAY OVERLAY** CLIENT have an active role and initiate a communication session **HW:** Consumer device **THIN vs FAT** SERVER have a **passive role and respond** to their clients. HW: Powerful. **CONCURRENT** (Thread-per-client or pool) vs ITERATIVE . 3 LAYERS Presentation, Application and Database. 1-TIER: Everything in one. Mainframes 2-TIER: Client-server in which we distribute resources. **P2P SYSTEMS** In the P2P model, all end systems have equivalent capabilities and responsibilities and either party can initiate a communication session 1. PROVIDER & REQUESTOR 2. SYMMETRIC BANDWIDTH 3. SAME SOFTWARE 4. PEER Servents providing and requesting resources 1. POOR SECURITY

- 2. NO CENTRALISED CONTROL
- 3. PERFORMANCE PROBLEMS

2 Evolutic	on of P2P
www	The World Wide Web is an information space where documents and other web resources are identified by Uniform Resource Locators (URLs), interlinked by hypertext links, and can be accessed via the Internet. INTERNET FOR EVERYONE
	 UBIQUITOUS ASYMMETRICAL Low rate links in up, huge links in download FIREWALL
	DYNAMICAL IP ASSIGNMENT PROBLEMS BUT FOR WWW
P2P SYSTEM: NAPSTER	SEPARATION OF SIGNALING AND DATA
	 CENTRAL INDEX SERVER Lists all the data. Single point of failure: NAPSTER was shut down. HANDSHAKE
	Central server exchange information to and from the peers.
	 SCALABILITY OF CENTRAL SERVER FIREWALL Alternate download, ask uploader to connect to downloader
	 3. RELIABILITY dDos attack, legal prosecution 4. SECURITY
	mp3 authenticity and protocol encryptions.
GNUTELLA VO.4	Gnutella is a large peer-to-peer network. It was the first decentralized peer- to-peer network of its kind, leading to other, later networks adopting the model PING PONG QUERY QUERY HIT
	B. SEARCHING STRATEGY
	Query Flooding: a simple computer network routing algorithm in which every incoming packet is sent through every outgoing link except the one it arrived on. AVOID REDUNDANT: TTL and ID
	 OPEN SOURCE AUTONOMOUS, HARD TO SHUT DOWN
	 SIGNALLING TRAFFIC LOW PERFORMANCE FOR LOW SPEEDS NO-FULLY DECENTRALISE
GNUTELLA VO.6	 ULTRAPEERS Supernode is any node that also serves as one of that network's relayers and proxy servers, handling data flow and connections for other users.
	1. LOWER SIGNALING TRAFFIC

Ultra-peers select what to forward.

GNUTELLA 2 A. HUBS: ROUTING TABLE

BOOTSTRAPING A bootstrapping in an overlay network **provides initial configuration information** to newly joining nodes.

FAST TRACK FastTrack is a peer-to-peer protocol that was used by the Kazaa, Grokster, iMesh, and Morpheus file sharing programs. FastTrack was the **most popular file sharing network in 2003,** and used mainly for the exchange of music mp3 files.

1. BOOTSTRAPPING

2. REPUTATION SYSTEM Participation level in terms of resources

1. ASYMMETRIC RESOURCES

- **EDONKEY** The eDonkey Network is a **decentralized, mostly server-based, peer-topeer file sharing** network created in 2000
 - SWARMING

Files are chunked into **smaller pieces** and are **distributed across the network, reducing the load on peers which have complete file.**

3 Searching for Resources

ALGORITHM FOR SEARCHING

System	Per Node State	Communication Overhead	Fuzzy Queries	No False Negatives	Robustness
Central Server	O(n)	O(1)	\checkmark	\checkmark	×
Flooding Search	oding Search O(1)		\checkmark	×	\checkmark
Distributed O(log n) Hash Tables		O(log n)	×	\checkmark	\checkmark

DHT

A distributed hash table (DHT) is a class of a decentralized distributed system that provides a lookup service similar to a hash table FLEXIBLE RELAIABLE SCALABLE

DATAS AND NODES

Every node is responsible for a certain amount of data. • ADAPTATION FOR FAULTS

Faults and error must be **handled by the system**

1. MAP CONTENT AND NODES

With an hash function assign a number in the address space.

2. ASSIGN TO NODES

Addresses ranges are assigned to **single nodes** with a bit of **overlapping.** 3. LOCATE THE DATA

- Start by **bootstrapping and** asking nodes for **successor or predecessor**.
- 4. FAILURE

Addresses are redistributed in **nearby nodes.**

4 Traffic management

PROBLEM FOR ISP	From 2009 to 2014				
	 UPLOAD BANDWIDTH COST Asymmetry between UP&DOWN 64% INTERNET TRAFFIC IS P2P NO DISTRIBUTION HIGH-CONGESTED NETWORKS 				
OVER PROVISIONING	Allocating additional bandwidth in Network planning and design dimensioning.				
	DOESN'T ANSWER TO SHORT-TERM NOT UNIVERSAL SOLUTION				
BLOCKING TRAFFIC	Oratuce if blocking ports and network access point used by P2P systems.				
	DYNAMIC PORTS DYNAMIC ADDRESSES LOWE TRAFIC FOR ISP PACKET INSPECTING HARDWARE				
BANDWIDTH CAPS	Some Internet service providers have harsh restrictions on the amount of bandwidth you can use in a month, charging you extra if you go over your bandwidth cap.				
TRAFIC SHAPING	Traffic shaping is the manipulation and prioritization of network traffic to reduce the impact of heavy users or machines from effecting other users.				
	 HIGH IMPLEMENTATION COSTS DPI analyses header and pattern of first packets in the flow, thus requires advanced equipment and techniques. PATTERN - BEHAVIOUR - STATISTICAL 				
	 GOOD QOS NETWORK NEUTRALITY CONSTRUCTIVE APPROACH TRAFFIC PRIORITISATION 				
NETWORK CACHING	Network caching is the technique of keeping frequently accessed information in a location close to the requester.				
TRAFFIC LOCALISATION	Traffic localisation keep the traffic in smaller subnets avoiding unnecessary routing				
	SEGMENTATION AVOID UNNECESSARY TRAFFIC				

5 BitTorrent protocol

SYSTEM	 TORRENT FILE WEB SERVER FOR TORRENT TRACKER ORIGINAL SEED APPLICATION
	 UP & DOWN MULTISOURCE DOWNLOAD INTEGRITY CHECKS AS PIECE
METADATA FILE	Torrent file is a computer file that contains metadata about files and folders to be distributed, and usually also a list of the network locations of trackers
	 SHA-1 PIECE HASES Content is partitioned (256KB) in smaller packet with calculated hashes TORRENT HASH By putting the TORRENT_HASH to zero. PIECE LENGTH, FILE NAME, CONTENT-LENGTH, URL OF TRACKER
BENCODING	Bencode (pronounced like B-encode) is the encoding used by the peer-to- peer file sharing system BitTorrent for storing and transmitting loosely structured data.
	 STRING. Length:string INTEGERS inumber23 LISTS. Lelementse DICTIONARIES. dkey:valuee
TRACKER	A BitTorrent tracker is a special type of server, one that assists in the communication between peers using the BitTorrent protocol.
	 PRIVATE OR PUBLIC STORES PEERS INFORMATION STATISTICS SINGLE POINT OF FAILURES USED IN DIFFERENT PHASES Start, refresh, stop and completing. HTTP PROTOCOL 160bit HASH to identify torrents in network
DOWNLOAD PROTOCOL	TCP EVERY PEER COMPLETE THE FILE SEED OR LEAVE
PIECE SELECTION	 PIECE AND SUBPIECE SUB-PIECE All selected in one piece before starting a new one. RANDOM SELECTION OF FIRST Until a piece is completed. Then rarest first END-GAME MODE

clients attempt to get the last missing pieces from all of its peers.

CHOKING MECHANISM	Ensures that nodes cooperate and eliminates the free-rider problem Temporary decision not to upload				
	 A client chokes another client in several situations: A. SECOND CLIENT IS A SEED B. CLIENT UPLOADING AT MAX_UPLOAD C. SECOND CLIENT IS BLACKLISTED 				
	Characteristics: • OPTIMISTIC UNCHOKING Random unchoke one peer.				
ANTI-SNUBBING	Occasionally a peer will be choched by all peers which it was downloading from				
	 OVER A MINUTE A peer is not uploadding, stop sending sub pieces CHOCKED BY EVERYONE If choked by everyone, increase the number of simultaneous optimistic unchokes to more than one 				
UPLOAD ONLY	Upload to the ones which have best upload rates				
ENHANCEMENT PROPOSALS	To overcome a single point of failure type of problem with one central tracker, multitracker metadata extensio n allows to define more than one tracker in the torrent file				
	 UDP TRACKER Reduce the overhead in the tracker communication PEX can be used to trade lists of other peers after two peers are connected UDP TRACKER client will connect to some bootstrap node and from there receive a list of nodes which are also DHT enabled. PEER BECOMES TRACKER 				
UDP TRACKER	 SIMPLE TRANSCODING FOUR MESSAGES connect request, connect response, announce request, announce response PREVENT SPOOFFING connection_id have to match between trackers and client FAILURE'S RETRANSMISSIONS If a packet is not received after n seconds have to be retransmited. 				
PEX	leverages the knowledge of peers that a user is connected to by asking them for the addresses of peers that they are connected to				

DHT PROTOCOL A distributed hash table (DHT) is a class of a decentralized distributed system that provides a lookup service similar to a hash table: (key, value) pairs are stored in a DHT, and any participating node can efficiently retrieve the value associated with a given key.

O(logn) to find a file

- BASED ON KADEMLIA UDP
- PEER
- Client/server listening on a TCP port
- NODE

Client/server listening on a **UDP port**. **NODE:ID** 160Bit for info hases. Chosen random. It returns **contact informations**, like **ip**, **port**, **client_id**, **connectionid**

- MESSAGE TYPES
- QUERY TYPES

CLUSTERING To improve performances, hierarchical architecture group peers into cluster measuring **RTT - TTL**

- 1. SPLIT
- 2. MERGE
- 3. PEER LECHER SUPER PEER
- Super peers maintains state information of all peers in a cluster.
- 4. FUNDAMENTAL CLUSTER

6 P2P Streaming

P2P STREAMING

Peer-to-Peer Assisted Streaming Solution refers to peer-to-peer (P2P) software applications designed to **redistribute video streams in real time** on a P2P network;

- SCHEDULING OF CHUNKS
- PERFECTING QUALITY 10-100s to perfect quality. Then no improvements
 UDP PROTOCOL
- Because **TCP** has a RDP of 250ms (7 frames)
- MESH TOPOLOGIES

A mesh network is a network topology in which **each node relays data** for the network.

- ASYMMETRICITY FOR U-D
- QUALITY DEGRADATION

COMPRESSION BASIC

Lossless compression is a class of data compression algorithms that allows the original data to be perfectly reconstructed from the compressed data. By contrast, **lossy compression** permits reconstruction only of an approximation of the original data, though this usually improves compression rates

- 1. REMOVES FOLLOWING REDUNDANCIES
 - Spatial, temporal and psycho-visual (corners).
- 2. EXPLOIT THEM BY

Predict pixel values in space, time and loose some unnecessary info

3. TYPES OF FRAMES

I-FRAMES. IntracodedP-FRAMES. Predicted. Error propagation!B-FRAMES. Bidirectional predicted frames

ASSESSING VIDEO QUALITY

Tests for assessing video + audio quality as to receive a media file quality rate.

SERVICE INTEGRITY + AUDIOVISUAL QUALITY

1. SUBJECTIVE TESTS

Users are provided **MoS** grades for different media file (quality) and have to **rate them**.

OBJECTIVE TESTS
 Simple pixel based metrics with PSNR and MSE.

 COMPLEXIVE VALUE

Non-linear model combining audio and video quality, with **cross** dependence between video and audio.

PROACTIVE WAYS 1. OVERLAY ARCHITECTURE

- 2. LAYERED CODING
- 3. MULTIPLE-DESCRIPTION CODING
- 4. TRAFIC LOCALISATION
- 5. SCHEDULING
- 6. INCENTIVE MECHANISM
- 7. SERVER FARMS

OVERLAY ARCHITECTURE Meshes revolutionise the informations flow, making the system **more reliable**

LAYERED CODING	Asynchronous Layered Coding protocol for content delivery in a reliable, massively scalable, multiple-rate, and congestion-controlled manner PATH DIVERSITY
	 N-LAYERS BASIC LAYER As user you are subscribed to the basic one. ADDITIVE (n-1) LAYERS Provide better quality only for users who supports them.
MULTIPLE DESCRIPTION CODING	Coding technique that fragments a single media stream into n substreams The packets of each description are routed over multiple, (partially) disjoint paths. PATH DIVERSITY
	 N-LAYERS NO COMPULSORY LAYER You can join one of the disjunct layers INDEPENDENT DOWNLOAD LIMITATION OF CLIENTS Are not taken into account
SCHEDULING	Chunk and peer scheduling is among the main driver of performance in P2P streaming systems.
	 SEQUENCE OF PACKETS AHEAD Need to be sourced as to keep the streaming ongoing DIFFERENT STRATEGIES RAREST FIRST Good for P2P static distributing URGENT FIRST Will congest the network GEOMETRICAL DISTRIBUTION BASED Associate a probability to each chunk SIZE OF SCHEDULING WINDOWS Different strategies: 30s to 60s
INCENTIVE MECHANISM	Chunk and peer scheduling is among the main driver of performance in P2P streaming systems.
	QUALITY PROPORTIONAL TO CONTRIBUTION DIFFERENT INCENTIVES

Monetary based or **reciprocity-based.**

7 VOIP

VOIP

Voice over Internet Protocol is a methodology and group of technologies for the delivery of **voice communications over Internet Protocol**

- ENCRYPTION
- MULTICAST
- FLAT PRICING
- INTEGRATION
- MULTIDEVICE

GENERATIONS	 GENERATION 1 Server handles the connection between callers. GENERATION 2 Server proxies the connections between callers, which connects. GENERATION 3 Server only provide login and indexing. ALMOST P2P 			
RTP - RTPC	The Real-time Transport Protocol s a network protocol for delivering audio and video over IP networks. RTPC controls the transmission (desc, codecs, gateways)			
SIP	Communications protocc communication se	ol for signaling and controlling multimedia essions in applications of voice apps.		
	 SETUP, CONTROL AND TE Calls, allowing the end-to-en TEXT BASED URL FOR ADDRESS SIMPLE 	RMINATE nd signalling.		
	MESSAGE	DESC		

MESSAGE	DESC
REGISTER	Register and notify the proxy about url and IP
INVITE	Establish a media session between users
ACK	Confirm the connection is reliable
CANCEL	Terminates a pending request
BYE	Tears down the session
OPTIONS	Info about connection capabilities
SUBSCRIBE	Get notifications

SKYPE

Skype is a telecommunications application software product that specialises in providing video chat and voice calls between devices via the **Internet and to regular telephones.**

- 1. PROPETARY SIGNALING
- 2. ENCRYPTION
 - AES256 keys symmetric + RSA for exchange
- 3. NAT AND FIREWALLS
- 4. WORK IN ALL NET CONDITIONS!

ELEMENTS 1. CLIENTS

- 2. SUPERNODES
 - A node that can accept incoming TCP connections and do **signalling.** Cache of super node with **200 elements always online**
- 3. LOGIN SERVERS Authentication ensures names are **unique**
- 4. HTTP SERVERS Used to fetch updates

FIREWALL AVOIDANCE

A. FIREWALL BLOCKS UDP SNs List can not **refresh.** Try with a **TCP to some SNs**

B. FIREWALL BLOCKS LOGIN SERVER

Authentication can not **login.** Try with a **SN as a relay**

CALLING	 DIRECT SIGNALING Carried with TCP FIREWALL BLOCKS UDP Signaling with a SN UDP STREAM Small overheads for media
HOLE PUNCHING	Hole punching is a technique in computer networking for establishing a direct connection between two parties in which one or both are behind firewalls or NAT
CALLS FIREWALL AVOIDANCE	 ASYMMETRIC NAT A. HOLE PUNCHING UDP As to connect A to B B. 4SNs AS RELAY With a TCP stream between client and SNs
	 SYMMETRIC NAT A. HOLE PUNCHING NOT WORKING B. 4SNs AS RELAY With a TCP stream between client and SNs
P2P SIP	Peer-to-peer SIP is an implementation of a distributed VOIP or instant messaging communications application using a P2P with DHT

8 P2P Security

WHY	 WHY WHO WHERE? NO CENTRAL AUTHORITY DATA INTEGRITY 				
CLASSIFICATION	 BY TARGET Network, overlay or application layer BY EFFECTS Interruption, interception, modification, fabrication GOALS Passive or active IMPACT Disruptive or degrading				
APP-LAYER	 LEGAL ISSUES DATA BACKUP SERVICES SYBIL ATTACKS NODEIDs SECURE ROUTING 				
SYBIL ATTACK	The Sybil attack in computer security is an attack wherein a reputation system is subverted by forging identities in peer-to-peer networks.				
	 INFO ABOUT NODES, DATA, USERS dDOS HASH(IP)=NODE_ID Need to have a lot of IPs as to do this attack. 				
NODE IDS	The NODE ID attack tries to obtain a specific node ID				
	 INFO ABOUT NODES, DATA, USERS dDOS RANSOMING NODE-ID ADD COMPUTATIONAL CHALLENGES As to compute the NodeID 				
SECURE ROUTING	Some malicious nodes may try to forward modified or invalid messages				
	SUPERNODES SYMMETRIC ENCRYPTION SECURE NODE-IDS				
TOR	Tor is free software for enabling anonymous communication. ONION LAYERS				
	 ENTRY RELAYS Provide access to the network RANDOM PATH KEY EXCHANGE Symmetric over a temporary RSA				

• LAYERS PER RELAY Every relay decrypts just a small portion of the envelop.

9 BitCoin

BITCOIN

Bitcoin is a worldwide **cryptocurrency and digital payment system** called the first decentralised digital currency, as the system works without a central repository or single administrator.

- P2P BASED
- VALUE ON SCARCITY
- BLOCKCHAIN
 - Links **between block** in the P2P network.
- TRUST = MATH
- FEE
 - Optional. **Miner** prioritise higher fees
- PUZZLE
 - amount of needed leading O's in output bit-string
- PUB/PRIVATE KEY SYSTEM

TRANSACTION LIST - NO WALLETS

• NO-TIMESTAMP - DOUBLE TRANSACTION

Differences in propagation time. As soon as the **block is solved** is placed before another one which is **unsolved**. Mathematical race protects the network

10 IoT Introduction

DEFINITION	INITION IoT is the network of physical devices embedded with electronics, software sensors, actuators, and network connectivity which enable these object connect and exchange data with the external environment. THING to THING					
	 VERTICAL INTERFACES EMBEDDED COMMUNCIATION TECH AUTOMATED DECISION MAKING HUMAN UNATTENDED 					
	 A. RFID ROOTS The RFID ancestor helped bringing to life IoT. B. WSN NETWORK Network of sensors communicate and gives data to an automated decision making intelligence 					
LAYERS	 LAYER 0: HARDWARE 10+ Years battery 1-2USD and small scale and reliability. LAYER 1: PHYSICAL How can we assure that the LAYERO requirements are met? LAYER 2: DATA LINK Small bursts of data Periodic Huge number of devices LAYER 3: NETWORK Addressing, propagation of overhead ad coexistence with human traffic. LAYER 4: TRANSPORT Delay vs reliability. LAYER 5: SESSION No security privacy and trust. LAYER 6: PRESENTATION Data visualisation for automated decision and translation into formal language 					
CONCEPTS	 M2M or MTC EDGE or FOG COMPUTING INDUSTRIAL or INDUSTRY 4.0 TACTILE INTERNET or INTERNET OF SKILL BIGDATA LIGHTWEIHGHT CRYPTOGRAPHY 					

11 Wide-area IoT

A Radio Access Technology or (RAT) is the underlying physical connection method for a radio **based communication network**. Bluetooth, Wi-Fi, and 3G, 4G or LTE.

- 1. MASSIVE AMOUNT OF DEVICES
- 2. ENERGY CONSUMPTION
- 3. COMMUNCIATION RANGE
- 4. SIMPLICITY OF SOLUTION
- 1. APPROACH1: WIFI
 - 1. SCALABILITY
 - 2. LOW-COVERAGE
 - **3. DEVICES LIMIT**
 - 4. OVERHEADS
- 2. APPROACH2: LTE

• 2.4Ghz TO 900Mhz

- 1. SCALABILITY
 - 2. ENERGY REQUIREMENTS
- **3. SIGNALLING FOR CELLS**
- 3. SIGFOX LoRaWAN IEE 802.11ah NB-IoT
- DOWNSIZING

Penetrability, power consumption, higher range

• 5MHz LTE to 180kHz to NB-IoT

Higher TX power **increases the range**

NAME	RATES	DpC	HW PRICE	RANGE
SIGFOX	UP: 100bps DOWN: 600bps	Millions	€2-5	>30 km
LoRaWAN	300-50K bps	Millions	€2-5	>30 km
WiFi Ha-Low	150K-7800K bps	8192	€4-8	>1 km
NB-IoT	UP: 20-250Kbps DOWN: 35-240Kbps	Millions	€2-5	>30 km

12 Local-area IoT Protocols

STANDARDISATIO

One of the biggest challenges in communication systems is interoperability

- 1. COMPATIBILITY
 - 2. INTEROPERABILITY
 - 3. COMMODISATION
 - 4. SAFETY
 - 5. QUALITY

RAT

	Bluetooth low energy	802.15.4	Wi-Fi	NFC	iRDA
Remote control	*	1	1	*	1
Security	×	1	~	×	
Health and fitness	1			*	*
Home and building	~	*	*	*	
Industrial	*		1	*	
Positioning	1	1	1		
Payment		*	*	×	*
Automotive	*	×	1	×	*
Comments	Largest ecosystem (phones, tablets, etc.). Low power.	Low power but closed ecosystem. Well- established in specific use cases e.g. smart energy.	Large ecosystem but high power consumption. Infrastructure connectivity is a bonus.	Low power but very short range.	Needs line of sight.
		Bluetooth low energy	802.15.4	Wi-Fi	
Cost		¥.	√ (√)	× .	
Security		×	 	~	
Power consumption		✓	~	×	
Ecosystem		1	×	~	
Reliability		✓	1	1	
Ease of use		~	-	~	
Range		×	✓(✓)	~	

13 5G and D2D

DEFINITION

5G planning aims at **higher capacity than current 4G**, allowing a **higher density** of mobile broadband users, and supporting **D2D** communication

- THOUSAND OF USERS
- HIGH SPEEDS
- 10-20 Gbps in the cell
 SPECTRAL EFFICENCY
- LOW-LATENCY
- D2D
- D2L
- IoT

APPLICATIONS . IOT

- SMART DEVICES
- SMART CITIES
- TACTILE INTERNET
- AR & VR
- UBIQUITOUS INTERNET
- HIGH USER MOBILITY

REQUIREMENTS User Experience

- 1. USER EXPERIENCE
- 2. EXPERIENCED DATA RATES
- 3. LATENCY

Devices requirements

- 1. MULTI BAND AND MODE
- 2. RESOURCE/SIGNALING EFFICENCY
- 3. DEVICE POWER EFFICIENCY
- 4. OPERATOR CAPABILITIES ON DEVICE

System performance

- 1. CONNECTION DENSITY
- 2. TRAFFIC ENSITY
- 3. SPECTRUM
- 4. COVERAGE
- 5. SECURITY
- 6. AVAILABILITY

Deployment and operation

- 1. COST EFFICIENCY
- 2. ENERGY EFFICIENCY
- 3. OPERATIONS
- 4. UPGRADES
- 5. ULTRA-LOW-COST

D2D APPS D2D communication in cellular networks is defined as direct communication between **two mobile users without traversing the Base Station** (BS) or core network.

IN-BAND COMMUNICATION

Different from out-of-band Bluetooth

- WEARABLE
- PROXIMITY TECHNOLOGIES
- INFRASTRUCTURE
- EMERGENCY
- M2M
- ADVERTISEMENT
- HOW TO MARKET
- BATTERY
- BENEFITS OP AND US