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Let X/C be a smooth projective complex variety. The cohomology of tan-
gent bundle H*(X,Tx) is naturally a graded Lie algebra over C, and it con-
trols the infinitesimal deformation of X. According to Kodaira—Spencer theory,
H'(X,Tx) classifies the isomorphism classes of Cartesian diagrams as follows

Z X
Spec(Cle]/(e?)) +—— Spec(C)

while H(X, T'x) is isomorphic to the automorphism of trivial deformation 25 =
X x C. Besides, for each [27] € HY(X,Tx), there is a class co- € H*(X,Tx),
such that 2 can be extended to Cle]/(e?) if and only if [co, ca] = 0.

It suggest that the derived global section RT™*(X,Tx)[1] (with a shifting)
should be regarded as a “groupoid” that classifies the infinitesimal deforma-
tions of X. More generally, a principle introduced by Deligne and Drinfeld
postulates that every formal moduli problem in characteristic 0 is controlled by
a dg-Lie algebra. Through the effort of many people, this principle was finally
enhanced into a theorem by the work of Hinich [Hin01], Pridham [Pril0], and
Lurie [Lurll].

Theorem 0.1. Given a field k/Q, there is an equivalence of co-categories
MC : Lie{® =5 FMP,
identifying the homotopy theory of dg-Lie algebras and formal moduli problems.

Remark 0.2 (Recollection of FMPy). A formal moduli problem X over k is
a good functor (of co-categories)

X : Arty, — S,

where A € Art, is a connective cdga over k such that m9(A) is an ordinary
augmented local Artinian ring and m.(A) is finitely generated over mp(A). A
formal moduli problem X should satisfy that

e X (k) is contractible;



e for each cospan Ay 2 Ay < A; that m(p) is surjective, then

X(AO X}Am Al) —_— X(Al)
X(AO) W X(Aol)

is a homotopy pullback.

The thrust of proving Theorem 0.1 is an adjunction
D :cdgay ) & (Lie}#)oP : C*,

where © : A+ Ty 4(~ homy(LLy 4, k)). For each g € Lieig, C*(g) has a model
whose underlying graded algebra is

homy (Symy,(g[1]), k),

where the differential d = dy + ds is a combination of the internal differential
dy of dual complex and dy defined by a formula form differential geometry: for
each n-form w € (Symy, (g[1]))" and n + 1 vectors Xy, ..., X, € g,

dow(Xo, ..., Xn) = > Fw([Xi, Xj],...). (1)

A dg-Lie algebra g is said to be coconnected if m,(g) = 0 for n > 0, and is said
to be of finite type if every m, is finitely dimensional. Denote Lie(,igfg - Liegg

the full subcategory of coconnected dg-Lie algebras of finite type.

Theorem 0.3 (Koszul duality of dg-Lie algebras). The functor C* induces a
Sfully faithful embedding

* . Ri o
c*: Llei’ig — (cdgay )",

whose essential image consists of connective completely Noetherian local algebras
A—k:

o 1, (A) =0 forn <0;

o mo(A) is an I-complete Noetherian algebra, where I is the augmentation
ideal of mo(A) — k;

o 7, (A) is finitely generated over my(A).

Counterexample 0.4. The coconnectedness is necessary for Theorem 0.3.
Set k = R the Lie algebra cohomology of su(2) is the free cdga C*(su(2)) =~
Ar(R.e3) with |eg| = —3, c¢f.[MT91, Vol.I Theorem 6.5.(2)] [CE48, Theorem
15.2]. Therefore, the corresponding shifted dg-Lie algebra of C*(su(2)) is abelian
and has the underlying module R[3], which differs from su(2)[1].



The dg-Lie algebras that are not coconnected (e.g. ordinary Lie algebras)
are of great interest for formal geometry. It is natural to seek a Koszul dual-
ity for them using cdgas with more structures. Recall that C*(g) has a model
((Symy, g[1])V,d1 + d2), where (Sym,, g[1])" has a second grading by the de-
gree of forms, and d; preserve this grading, while dy increases it by 1, cf.
(1). Thus, C*(g) is naturally endowed with a complete multiplicative filtra-
tion FHC* (called Hodge filtration) such that

FAC*(g) = ((Symy" g[1])Y, d1 + da).

Toén—Vessozi conjectured that, when g is finitely dimensional, the assignment
FHC* is a fully faithful embedding into augmented filtered cdgas®. Addition-
ally, Brantner-Mathew generalised Lurie-Pridham’s theorem into positive char-
acteristics using partition Lie algebras. Therefore, it might be interesting to
investigate the following question:

Target
Establishing a Koszul duality for non-coconnective Lie algebras
in arbitrary characteristics, utilizing the Hodge filtration.

The first challenge is choosing a suitable algebraic context: cdgas and dg-Lie
algebras behave badly in positive characteristics as quasi-isomorphisms and the
expected fibrations do not induce a model structure.

Example 0.5. Consider a morphism of cdgas f : A — B over F,. There is
no factorization of f into a trivial cofibration followed by a fibration (degrewise

surjection). Otherwise, there is A EIENy N B, where, for each z € pi.(B),
there is some y € m,.(A’) = 7. (A) sucht that p(y) = 2P. However, such a lifting
does not exist in general.

Away from characteristic 0, there are two inequivalent natural generaliza-
tions of commutative rings, that are Ey-ring spectra and animated (commu-
tative) rings. We choose animated rings? for our purpose in derived algebraic
geometry. Recall that the co-category of animated rings is defined as

AniRing := Funy (Poly®, S),

where ¥ means taking the full subcategory of sifted-colimit-preserving functors.
There is a monadic free-forgetful adjunction

Modz >o =2 AniRing

whose monad gives rise to the left derived functor LSym of ordinary Sym.
We have seen that the Koszul duality of non-coconnective “Lie algebras”
should be some non-connective filtered algebras. A non-connective generalistion

ITheir conjecture is more general, which is formulated for dg-Lie algebroids, cf. [TV23,
§1.3.1] for the question and [Fu24, Main Theorem 1.2] for an answer
2We say simplicial commutative rings in Europe (at least in France).



of AniRing requires to extend LSym into a sifted-colimit-preserving functor act-
ing on Sp. The crucial method is the right-left extension in [BM19, §3][BCN21,
§2]. We also recollect the basics of (generalized) oo-operads, which helps to
treat different types algebras uniformly.

1 Right-left derived functors

An additive co-category of is an oo-category with finite products and coproducts
such that h/ is an ordinary additive category. The oo-category of left «7-
modules is defined as

Mody := Fung (<77, Sp),

where @ means direct-sum-preserving.

Example 1.1. Let R be an ordinary ring and &/ := Vecty, be the category of
finitely generated free modules. The module category Mod . is precisely Modpg,
the unbounded derived oco-category of R-chain complexes.

A left o/-module is said to be perfect if it is compact in Mod . The full sub-
category Perfr of perfect left .o/-modules is the minimal stable sub-oco-category
containing &7 and closed under retractions. Moreover, the natural pairing

Perf ., x Perf oyo» — Sp

defined by extending (A, B) — hom(B, A) gives rise to an equivalence Perf o ~
Perfzgop. Denote the essential image of Perf sor >0 in Perf,, as Perf,, 2, which
consists of the dually connective perfect modules.

Proposition 1.2. Let o/ be an additive co-category and V an oco-category with
sifted colimits. Then, the restriction

Funy.(Mod ., V) = Fun, (Perf . 20, V)

s an equivalence, whose inverse is given by left Kan extensions. Here, 0 means
preserving finite stable geometric realizations.

Proof. Cf. [BCN21, Propsition 2.40]. O

In particular, left Kan extension induces a monoidal equivalence
~ Perf‘gj7<0
El’ldz (Perf&y)go) — Endz (MOdQ{),

where the right-hand side consists of sifted-colimit-preserving endo-functor that
preserves Perf, =.

Brantner—-Campos—Nuiten also provides a practical method to obtain func-
tors in Fun, (Perfz 20, V), cf. [BCN21, Proposition 2.46]:



Proposition 1.3. Let o/ be an additive co-category and V an oco-category with
sifted colimits. If F: of — V is the colimit of a coutable sequece

F1—>F2—>...,

where each F; : o/ — V is of finite degree. Then, the right Kan extension F'R
of F along o/ — Perf s ¢ belongs to Fun, (Perf 2o, V).

Given such an F : o/ — V, the left extension FRL of FF is called the
right-left derived functor of F, which is sifted-colimit-preserving.

Since the ordinary symmetric power Sym admits a splitting filtration Sym =
@nen Sym”™, it suits into the case of Proposition 1.3. We obtain a right-left
derived functor LSym of Sym acting on Modz as expected. However, as LSym
does not preserve perfect modules, the above propositions give cannot give a
monad structure on LSym.

This problem is overcame by considering derived co-operads.

We start with underived symmetric sequences. Let BY be the ordinary 1-
category of finite sets and isomorphisms, which supports naturally a cocartesian
symmetric monoidal structure. For any presentalbe symmetric monoidal oo-
category C, its oco-category of symmetric sequences

s3eq(C) := Fun(N(BX),C)

admits a natural symmetric monoidal structure ® given by Day convolution.
Moreover, sSeq(C) has the universal property of being a symmmetric monoidal
oo-category under C freely generated by 1, posing a unit of C at arity 1, i.e.

F— F(1): Endé/(sSeq(C)) =5 sSeq(C).

The composite product o is the opposite of the composition in Endg/ (sSeq(C))
and satisfies the formula

Mo N ~ @®pen(M(n) ® N,z

n)

which agrees to the picture of decorated tree grafting. An oo-operad refers to
an A-algebra in sSeq(C). For instance, the unit of levelwise tensor product
admits a natural operadic structure, which governs the E-algebras in C.
When C = Modg, for some ordinary commutative ring R, we want to consider
a derived variant of sSeq(C). The motivation is simple: as homotopy orbit
(=)nz,, does not send Modz[zn] to discrete R-modules for n > 2 and general
R, sSeq(Modpg) does not have enought objects to encode LSym. To fix this, we
should include the finite free R-modules with non-free ¥,,-action as projective
generators. More precisely, consider the smallest additive sub-1-category

R[0s,] C Modyy, |

containing R[Y,,/H], the equivariant R-modules generated by some H < %,
and write @,enR[Os, | C sSeq(Modg) as R[Ox]?.

3Please keep in mind that this is a formal notation rather an actual group ring.



Definition 1.4. The oo-category of derived symmetric sequences or genuwine
symmetric sequences over R is defined as

sSeqyy " := Modgoy -

The next step is to construct the derived analogues of ®, ®;., and o on
sSeq,". One can observe that R[Os] is closed under the truncated monoidal
structures ®, ®;e, and o in sSeqﬁ. Besides, these monoidal structures are locally
polynomial in the following sense:

Definition 1.5. A functor F': o/ — 2% between additive co-categories is said to
be locally polynomial if (1) F is a countable sequential colimit (F; — F» — ...)
of F; : o/ — 9 functors of finite degree and (2) the sequence Fy(X) — F2(X) —
... stabilizes at some point for every X € 7.

Theorem 1.6. Let AddP°Y be the co-category of additive co-category and locally
polynomial functors. Then, there is a functor

Mod(_) : AddP*Y — Pr->,
Proof. Cf. [BCN21, Theorem 2.52] O

Therefore, the right-left derived functors of ®, ®;e, and o induce monoidal
structures on sSeq%, " for ordinary commutative ring R, where we keep the same
notation. More generally, R[Ox] and sSeq}," can be defined for arbitrary an-
imated ring R using spectral Mackey functors, cf. [BCN21, §2.1, §3.5]. The

monoidal structures on sSeq " can be deduced from the fact that
(R~ R[Os]) : AniRing — Add
is sifted-colimit-preserving, cf. [Fu24, Lemma 2.50].

Definition 1.7. Let R be an animated ring.

(1) The oo-category of derived co-operads is defined as Alg(sSeq%, ", o).

(2) The module category Modpr can be regarded as a left categorical ideal
of (sSeq®®", o) by embedding into arity 0. Then, for some derived oco-operad P,
a P-algebra is by definition a left P-module in Modg.

The unit of levelwise tensor product admits a natural derived operadic struc-
ture, denoted as Com, whose algebra category DAlg(Modg) agrees with the oo-
category DAlgp of derived rings over R introduced in [Rak20, §4]. In particular,
AniRing can be ragarded as the full subcategory of DAlg(Modg) spanned by
connective algebras.

Now, we close this section by a recollection of filtered algebras. Consider the
oo-category of filtered R-modules

Fil Modg := Fun(N(Z<), Modg),



where the objects can be written as (... - F1X — FpX — F_1X — ...). The
oo-category fil Vecty of finite free R-modules with a splitting filtration on the
basis is an additive sub-oo-category that generates Fil Modg, i.e.

Modg1 veets, — Fil Modp .
Then, there is a filtered notion of derived symmetric sequences
sSeq%i il

equipped with the monoidal structures ®, ®;e, and o.
The symmetric monoidal embedding to filtration degree 0

(M~ (...0>M— M —...)) : Modg < FilModpg

induces a fully faithful functor

gen

(=)o : sSeqy ™ — sSeq gy -

Particularly, there is a left sSeqf;"-tensored structure on Fil Modg.

Let sSeq%:fn’red C (sSeq;™)1//1 be the full subcategory of reduced objects M,
which means that M(0) = 0 and the chosen map 1 — M (1) is an equivalence.

The functor (—)o induces a left sSeq%™ " **~tensored structure on

FﬂZl Modg C FilModg
spanned by such Fy M that stabilizes when degree > 1, i.e.

S BM = BM - BM S EM S M

and similarly a left sSeq%, nred_gensored structure on Fil<_; Modgr C FilModg
spanned by Fq M such that F,, M ~ 0 for n > 0. The same method also produces
natural left sSeqy mred_actions on the graded module categories Grs, Modg and
Gr§_1 MOdR.

The derived oo-operad Com™ of non-unital derived algebras has arity > 1
components the same as Com but Com™(0) = 0. There are adjunctions of
non-unital derived algebras

adic

Gr
DAlgﬁu ? DAlgnu(FﬂZl MOdR) <:> DAlgnu(GI'21 MOdR) .

2 Divided power Koszul duality
Given some R € AniRing, there is an adjunction

cot : DAlgR" = Modpg : sqz



where cot(A) = Lg/a[—1] with A identified with the corresponding augmented
R-algebra, and sqz(M) equipps M with the trivial algebra structure. Then,
there is a natural monad

Tna‘z‘ve .= (COt Oqu(—)v)v

that might be useful for defining the derived partition Lie algebras. Unfortu-
nately, this monad is not satisfying as it does not preserve sifted colimits.

Brantner—-Mathew rectified this functor by finding a comonadic restriction
of cot - sqz, cf. [BM19, Theorem 4.20]. We adopt the approach of PD Koszul
duality of operads introduced in [BCN21]. It consists of roughly two step: (1)
the functor of cotangent fibre cot could be recovered by bar-cobar adjunction be-
tween derived co-operads and cooperads; (2) taking R-linear dual sends derived
oo-cooperads to “derived oo-operads” with divided powers.

The core of the first step is a categorical bar-cobar construction established
in [Lurl?, §5.2.2] and refined in [BCN21, §3.4].

Theorem 2.1. Let C be a pointed monoidal co-category, and M be a left C-
tensored oo-category. If both C and M admit geometric realizations, there is a
commuting diagram

LMod(M) % LComod(M)

coBar

Alg(C) 4><B: co Alg(C)

where the horizontal arrows are adjunctions.

Here, the oo-category LMod(M) consists of pairs (4, M), where A € Alg(C)
and M is a left A-module in M. The oo-category LComod(M) is spanned
by pairs (C, N) of coalgebras and comodules. For each A € Alg(C), Bar(A) is
calculated by 1® 41, whose comultiplicationis I® 41 ~ I® 4 AR A1l = 1®41® 41.
Similarly, for each A-module M, Bar(M) ~ 1®4 M is equipped with a natural
Bar(A)-comodule structure.

Taking C = sSeq%;, nred there is an ajunction

d
Bar : Op%™"? = co Ops™ ™ : coBar

between reduced derived oo-operads and reduced derived co-cooperads. Brantner—
Heuts claim that the unit map id — coBaroBar is an equivalence in a forth-
coming project, using Ching’s strategy (cf. [Chil2]) for spectral co-operads.

Definition 2.2. The coLie derived oco-cooperad is defined as

coLie} p := Bar(Com™").



The subscript A means that this is defined in the derived context in contrast
to spectral context, while 7 hints the divided powers that do not show up yet.

The next step is to define derived partition Lie algebras by considering
the R-linear dual of coLie}, . However, the underlying module of coLie},
is not perfect. In fact, the underlying (non-derived) symmetric sequence of
coLie}; A is the same as usual shifted coLie cooperad over R, which means that
co Lief, A(p) = ¥P71R for p > 1. Thus, there is no good notion of duality for
coLief, p-coalgebras. Nevertheless, coLie, 5 is almost perfect in sSeqf”. We
can still obtain a meaningful duality by switching to the context of pro-coherent
modules for suitable R.

Definition 2.3. Given &/ an additive co-category, a left A-module M is said to
be almost perfect if, for every n € N, there exist some morphism f, : P, = M
from a perfect module P, such that fib(f,,) is n-connective.

Let Aperf_, C Mod. denote the full subcategory of almost perfect modules.

Intuitively speaking, an almost perfect module M is a bounded below module
with finite generators on each degree. More precisely, Aperf , is the smallest
stable sub-oco-category of Mod,, that contains ./ and closed under geometric
realizations, cf. [Lurl7, Proposition 7.2.4.11] for details.

There is a natural t-structure on Mod, = Fun(7/°P,Sp) transported from
Sp. An additive co-category &7 is said to be left coherent if Aperf inherits a
t-structure from that on Mod,,, coherent if both &/ and 2/°P are left coherent.

Definition 2.4. For a coherent o7, the oo-category of pro-coherent left o7-
modules is defined as

QCY, = Fune, conw (Apert on, Sp)

the oo-category of exact and convergent, where a functor F' : Aperf,, — Sp
is said to be convergent if, for every X € Aperf_.,, the natural morphism
F(X) — lim,, F(7<,X) is an equivalence.

The Yoneda functor induces a fully faithful embedding
Aperf o, — QCY,
whose essential image Aperf?, is called as dually almost perfect left < -modules.

Example 2.5. Let R be a coherent animated ring. Then, the additive oo-
categories Vecty, fil Vect g, gr Vect and R[Oyx] are all coherent. It gives rise to
the oo-categoriesof (filtered, graded) pro-coherent R-modules QCY,, Fil QC}, and
Gr QCIV%, and also the co-category of pro-coherent derived symmetric sequences
sSeq®™V.

Additionally, these additive oo-categories are closed under R-linear dual
(with respect to ®je, for R[Ox]), which induces contravariant autoequivalences.

The theory of right-left functors applies to pro-coherent modules as well.



Theorem 2.6 (Pro-coherent refinement of Theorem 1.6). There is a natural
transformation of symmetric monoidal functors

Mod

/\
Addcoh,poly . fPTst,Z

\/’

QcY
sending each locally polynomial functor to its right-left derived functor.

Proof. Cf. [BCN21, Theorem 2.52]. O

Particularly, if & has a locally polynomial (symmetric) monoidal structure,
then the right-left functor exhibits on QCY, a sifted-colimit-preserving (sym-
metric) monoidal structure. In the framework of pro-coherent modules, (dually)
almost perfect modules enjoy a good duality:

Proposition 2.7. Let & be a coherent additive co-category endowed wih a non-
unital symmetric monoidal structure ® preserving finite direct sums. Assume
that the induced ® on QCY, admits an eventually connective unit 1, and each
object in o is dualizable with the dual object existing in o/ . Then taking duals
gives rise to an equivalence,

(=) :=homqcy, (—,1) : Aperf,, = Aperf ;.
Proof. Cf. [BCN21, Proposition 2.55]. O

Powered by this duality, we are about to reach a statement like

The almost perfect coalgebras of some almost perfect derived oco-cooperd Q are
equivalent to the dually almost perfect algebras of QV.

However, we should be careful about what kind of monad structure is put on
Q. Recall that the composite product o sSeq%™" is defined by

MoN ~ ®pen(M(n) ® N¥)g

where (—)x, refers to the right-left derived functor of ordinary orbit. At the
same time, its R-linear dual is

(MoN)Y = [T ((M(n) @ N®)¥)™,
neN

where (—)*» referst to the derived functor of ordinary fixed points. It means
that (=) is not lax monoidal with respect to o. Instead, we should consider
the restricted product o satisfying the formula

Mo N ~ @nen(M(n) @ NO)En,

The restricted product is the origin of divided powers.

10



Definition 2.8. Let R be a coherent animated ring.
(1) A derived PD oco-operad over R refers to an A-algebra in (sSeq% ™", 5).
(2) The PD Koszul dual of a reduced derived oc-operad P is defined as
KDPY(P) := Bar(P)" with the natural derived PD oo-operad structure. More
specially, Lie}, A 1= KDP4(Com™") is called the derived partition Lie operad.

Roughly speaking, a (derived) partition Lie algebra L over R is a pro-
coherent R module equpped with a left Lie}, -action

ft: Bn>1(Lief A (n) @ LE")%r — L.

3 A filtered Koszul duality of Lie} y-algebras

The functoriality of Theorem 2.6 and the laxity of
(=) ¢ (sSeq®™""P,0) — (sSeqh™",0)

induces a commuting diagram of adjunctions as follows

” Bar (=)Y
DAlgn (QCE) (T COAlgCOLiCE’A(QC}%) (f AlgLioz’A(QCé)op

adicHFl (7)1HF1 L constﬂcolim

Bar -
DAIlg™ (Fils; QC}) % coAlg,, Lief o (Fil>1 QC}) ? AlgLieHA (Fil<_1 QCR)P -

il ll v el

Bar (=)
DAlgnu(Gr21 QCE) <Bi COAlgcoLiej,%’A (Ger QCE) ﬁ AlgLiegA (GI’S,1 QCE)OP

Here, (—)! is formally given by the adjoint functor theorem, whose underlying
module can be calculated as (L)Y for dually almost perfect L. The functor const

send partition Lie algebras L to (L LNy O .) the constant filtered algebras,
where colim(F, L) is taking the underlying object.

Definition 3.1. The Hodge-filtered Chevalley—Filenberg complex C* is defined
as the composition

(5’* := coBar o(—)/ o colim ) : Algpien A(QC%) — DAIg™(Fil>; QC))?7.
The filtration on C* is always complete by construction, and this func-

tor sends sifted colimits to sifted limits. When R is a regular ring over Q,
Algpier | (QC},) agrees with the co-category of (shifted) dg-Lie algebras over R,

and C* can be modeled by the explicit filtration defined before.

Theorem 3.2. There is a fully faithful embedding

Cc* Algpien A(Aperflvz) < DAIg"™" (Fil>; QCr)?,

11



whose essential image consists of complete A — R such that Gri A is almost
perfect over R, and the natural morphism LSympg(Gri)A — Gr A of graded
algebras is an equivalence.

Sketch of proof. (Cf. [Fu24, Theorem 3.25]) The functor const is obviously fully
faithful, so we can consider the filtered Lie}, -algebras in the form of

(L% L)
with L dually almost perfect. Its dual is a complete filtered co Lie};, 5-colagebra

.= 0= LY,

whose graded pieces form a trivial coalgebra. Then, we show that coBar sends a
trivial graded co Lie}; 5-coalgebra C' to the free graded derived algebra LSymp C'.
By our construction, Gr commutes with everything, so Gr CN'*(L) ~ LSymy LV
as graded drived algebras. _

The above calculation shows that KDP4oC* (L) is a constant filtered Lief a-
algebra whose underlying algebra is L itself. O

Example 3.3. Set k = Fy the field with two elements. The homotopy opera-
tions on a Lie} 5-algebra L concentrating in degree 0 and 1 consist of ([—, —], (—)h
a restricted Lie structure on g; := m(L), a gi-representation structure on
g0 := mo(L) and a new additive operation R! : g; — go.

FC o Deo®

[
0:.-1C go

2
For instance, the Frobenius kernel po := ker(Gy, % Gm,k) Is an infinites-
imal group with the underlying scheme Spec(k[z]/(z?)). The formal moduli
problem By correspond to a Lief s-algebra L ~ k.Dy & k.Do with |D;| = i.
Its homotopy operations are determined by [D;, D;] = 0, (D) = D, and
RY(D1) = Do, cf. [Fu24, §3.4] for details.
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