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Let X/C be a smooth projective complex variety. The cohomology of tan-
gent bundle H∗(X,TX) is naturally a graded Lie algebra over C, and it con-
trols the infinitesimal deformation of X. According to Kodaira–Spencer theory,
H1(X,TX) classifies the isomorphism classes of Cartesian diagrams as follows

X X

Spec(C[ϵ]/(ϵ2)) Spec(C)

⌟

,

whileH0(X,TX) is isomorphic to the automorphism of trivial deformation X0 =
X × C. Besides, for each [X ] ∈ H1(X,TX), there is a class cX ∈ H2(X,TX),
such that X can be extended to C[ϵ]/(ϵ3) if and only if [cX , cX ] = 0.

It suggest that the derived global section RΓ∗(X,TX)[1] (with a shifting)
should be regarded as a “groupoid” that classifies the infinitesimal deforma-
tions of X. More generally, a principle introduced by Deligne and Drinfeld
postulates that every formal moduli problem in characteristic 0 is controlled by
a dg-Lie algebra. Through the effort of many people, this principle was finally
enhanced into a theorem by the work of Hinich [Hin01], Pridham [Pri10], and
Lurie [Lur11].

Theorem 0.1. Given a field k/Q, there is an equivalence of ∞-categories

MC : Liedgk
≃−→ FMPk

identifying the homotopy theory of dg-Lie algebras and formal moduli problems.

Remark 0.2 (Recollection of FMPk). A formal moduli problem X over k is
a good functor (of ∞-categories)

X : Art∗k → S,

where A ∈ Art∗k is a connective cdga over k such that π0(A) is an ordinary
augmented local Artinian ring and π∗(A) is finitely generated over π0(A). A
formal moduli problem X should satisfy that

• X(k) is contractible;
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• for each cospan A0
ρ−→ A01 ←− A1 that π0(ρ) is surjective, then

X(A0 ×h
A01

A1) X(A1)

X(A0) X(A01)

⌟

X(ρ)

is a homotopy pullback.

The thrust of proving Theorem 0.1 is an adjunction

D : cdgak//k ⇄ (Liedgk )op : C∗,

where D : A 7→ Tk/A(≃ homk(Lk/A, k)). For each g ∈ Liedgk , C∗(g) has a model
whose underlying graded algebra is

homk(Symk(g[1]), k),

where the differential d = d1 + d2 is a combination of the internal differential
d1 of dual complex and d2 defined by a formula form differential geometry: for
each n-form ω ∈ (Symn

k (g[1]))
∨ and n+ 1 vectors X0, . . . , Xn ∈ g,

d2ω(X0, . . . , Xn) =
∑
±ω([Xi, Xj ], . . .). (1)

A dg-Lie algebra g is said to be coconnected if πn(g) = 0 for n ≥ 0, and is said

to be of finite type if every πn is finitely dimensional. Denote Liedg,ftk,<0 ⊂ Liedgk
the full subcategory of coconnected dg-Lie algebras of finite type.

Theorem 0.3 (Koszul duality of dg-Lie algebras). The functor C∗ induces a
fully faithful embedding

C∗ : Liedg,ftk,<0 ↪→ (cdgak//k)
op,

whose essential image consists of connective completely Noetherian local algebras
A→ k:

• πn(A) = 0 for n < 0;

• π0(A) is an I-complete Noetherian algebra, where I is the augmentation
ideal of π0(A)→ k;

• πn(A) is finitely generated over π0(A).

Counterexample 0.4. The coconnectedness is necessary for Theorem 0.3.
Set k = R the Lie algebra cohomology of su(2) is the free cdga C∗(su(2)) ≃
∧R(R.e3) with |e3| = −3, cf.[MT91, Vol.I Theorem 6.5.(2)] [CE48, Theorem
15.2]. Therefore, the corresponding shifted dg-Lie algebra of C∗(su(2)) is abelian
and has the underlying module R[3], which differs from su(2)[1].
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The dg-Lie algebras that are not coconnected (e.g. ordinary Lie algebras)
are of great interest for formal geometry. It is natural to seek a Koszul dual-
ity for them using cdgas with more structures. Recall that C∗(g) has a model(
(Symk g[1])

∨, d1 + d2
)
, where (Symk g[1])

∨ has a second grading by the de-
gree of forms, and d1 preserve this grading, while d2 increases it by 1, cf.
(1). Thus, C∗(g) is naturally endowed with a complete multiplicative filtra-
tion FHC∗ (called Hodge filtration) such that

FH
n C∗(g) =

(
(Sym≥n

k g[1])∨, d1 + d2
)
.

Toën–Vessozi conjectured that, when g is finitely dimensional, the assignment
FHC∗ is a fully faithful embedding into augmented filtered cdgas1. Addition-
ally, Brantner–Mathew generalised Lurie–Pridham’s theorem into positive char-
acteristics using partition Lie algebras. Therefore, it might be interesting to
investigate the following question:

Target
Establishing a Koszul duality for non-coconnective Lie algebras

in arbitrary characteristics, utilizing the Hodge filtration.

The first challenge is choosing a suitable algebraic context: cdgas and dg-Lie
algebras behave badly in positive characteristics as quasi-isomorphisms and the
expected fibrations do not induce a model structure.

Example 0.5. Consider a morphism of cdgas f : A → B over Fp. There is
no factorization of f into a trivial cofibration followed by a fibration (degrewise

surjection). Otherwise, there is A
g,≃−−→ A′ p

−−−↠ B, where, for each x ∈ pi∗(B),
there is some y ∈ π∗(A

′) ∼= π∗(A) sucht that p(y) = xp. However, such a lifting
does not exist in general.

Away from characteristic 0, there are two inequivalent natural generaliza-
tions of commutative rings, that are E∞-ring spectra and animated (commu-
tative) rings. We choose animated rings2 for our purpose in derived algebraic
geometry. Recall that the ∞-category of animated rings is defined as

AniRing := FunΣ(Poly
op,S),

where Σ means taking the full subcategory of sifted-colimit-preserving functors.
There is a monadic free-forgetful adjunction

ModZ,≥0 ⇄ AniRing

whose monad gives rise to the left derived functor LSym of ordinary Sym.
We have seen that the Koszul duality of non-coconnective “Lie algebras”

should be some non-connective filtered algebras. A non-connective generalistion

1Their conjecture is more general, which is formulated for dg-Lie algebroids, cf. [TV23,
§1.3.1] for the question and [Fu24, Main Theorem 1.2] for an answer

2We say simplicial commutative rings in Europe (at least in France).
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of AniRing requires to extend LSym into a sifted-colimit-preserving functor act-
ing on Sp. The crucial method is the right-left extension in [BM19, §3][BCN21,
§2]. We also recollect the basics of (generalized) ∞-operads, which helps to
treat different types algebras uniformly.

1 Right-left derived functors

An additive∞-category A is an∞-category with finite products and coproducts
such that hA is an ordinary additive category. The ∞-category of left A -
modules is defined as

ModA := Fun⊕(A
op,Sp),

where ⊕ means direct-sum-preserving.

Example 1.1. Let R be an ordinary ring and A := VectωR be the category of
finitely generated free modules. The module category ModA is precisely ModR,
the unbounded derived ∞-category of R-chain complexes.

A left A -module is said to be perfect if it is compact in ModA . The full sub-
category PerfR of perfect left A -modules is the minimal stable sub-∞-category
containing A and closed under retractions. Moreover, the natural pairing

PerfA ×PerfA op → Sp

defined by extending (A,B) 7→ hom(B,A) gives rise to an equivalence PerfA ≃
PerfopA op . Denote the essential image of PerfA op,≥0 in PerfA as PerfA ,⪕0, which
consists of the dually connective perfect modules.

Proposition 1.2. Let A be an additive ∞-category and V an ∞-category with
sifted colimits. Then, the restriction

FunΣ(ModA ,V) ≃−→ Funσ(PerfA ,⪕0,V)

is an equivalence, whose inverse is given by left Kan extensions. Here, σ means
preserving finite stable geometric realizations.

Proof. Cf. [BCN21, Propsition 2.40].

In particular, left Kan extension induces a monoidal equivalence

EndΣ(PerfA ,⪕0)
≃−→ End

PerfA ,⪕0

Σ (ModA ),

where the right-hand side consists of sifted-colimit-preserving endo-functor that
preserves PerfA ,⪕0.

Brantner–Campos–Nuiten also provides a practical method to obtain func-
tors in Funσ(PerfA ,⪕0,V), cf. [BCN21, Proposition 2.46]:
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Proposition 1.3. Let A be an additive ∞-category and V an ∞-category with
sifted colimits. If F : A → V is the colimit of a coutable sequece

F1 → F2 → . . . ,

where each Fi : A → V is of finite degree. Then, the right Kan extension FR

of F along A ↪→ PerfA ,⪕0 belongs to Funσ(PerfA ,⪕0,V).

Given such an F : A → V, the left extension FRL of FR is called the
right-left derived functor of F , which is sifted-colimit-preserving.

Since the ordinary symmetric power Sym admits a splitting filtration Sym =
⊕n∈N Symn, it suits into the case of Proposition 1.3. We obtain a right-left
derived functor LSym of Sym acting on ModZ as expected. However, as LSym
does not preserve perfect modules, the above propositions give cannot give a
monad structure on LSym.

This problem is overcame by considering derived ∞-operads.
We start with underived symmetric sequences. Let BΣ be the ordinary 1-

category of finite sets and isomorphisms, which supports naturally a cocartesian
symmetric monoidal structure. For any presentalbe symmetric monoidal ∞-
category C, its ∞-category of symmetric sequences

sSeq(C) := Fun(N(BΣ), C)

admits a natural symmetric monoidal structure ⊗ given by Day convolution.
Moreover, sSeq(C) has the universal property of being a symmmetric monoidal
∞-category under C freely generated by 1, posing a unit of C at arity 1, i.e.

F 7→ F (1) : EndLC/(sSeq(C))
≃−→ sSeq(C).

The composite product ◦ is the opposite of the composition in EndLC/(sSeq(C))
and satisfies the formula

M ◦N ≃ ⊕n∈N(M(n)⊗N⊗n)hΣn ,

which agrees to the picture of decorated tree grafting. An ∞-operad refers to
an A∞-algebra in sSeq(C). For instance, the unit of levelwise tensor product
admits a natural operadic structure, which governs the E∞-algebras in C.

When C = ModR for some ordinary commutative ring R, we want to consider
a derived variant of sSeq(C). The motivation is simple: as homotopy orbit
(−)hΣn

does not send Mod♡R[Σn]
to discrete R-modules for n ≥ 2 and general

R, sSeq(ModR) does not have enought objects to encode LSym. To fix this, we
should include the finite free R-modules with non-free Σn-action as projective
generators. More precisely, consider the smallest additive sub-1-category

R[OΣn ] ⊂ Mod♡R[Σn]

containing R[Σn/H], the equivariant R-modules generated by some H < Σn,
and write ⊕n∈NR[OΣn ] ⊂ sSeq(ModR) as R[OΣ]

3.

3Please keep in mind that this is a formal notation rather an actual group ring.
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Definition 1.4. The ∞-category of derived symmetric sequences or genuine
symmetric sequences over R is defined as

sSeqgenR := ModR[OΣ] .

The next step is to construct the derived analogues of ⊗, ⊗lev and ◦ on
sSeqgenR . One can observe that R[OΣ] is closed under the truncated monoidal

structures ⊗, ⊗lev and ◦ in sSeq♡R. Besides, these monoidal structures are locally
polynomial in the following sense:

Definition 1.5. A functor F : A → B between additive∞-categories is said to
be locally polynomial if (1) F is a countable sequential colimit (F1 → F2 → . . .)
of Fi : A → B functors of finite degree and (2) the sequence F1(X)→ F2(X)→
. . . stabilizes at some point for every X ∈ A .

Theorem 1.6. Let Addpoly be the∞-category of additive∞-category and locally
polynomial functors. Then, there is a functor

Mod(−) : Addpoly → Prst,Σ.

Proof. Cf. [BCN21, Theorem 2.52]

Therefore, the right-left derived functors of ⊗, ⊗lev and ◦ induce monoidal
structures on sSeqgenR for ordinary commutative ring R, where we keep the same
notation. More generally, R[OΣ] and sSeqgenR can be defined for arbitrary an-
imated ring R using spectral Mackey functors, cf. [BCN21, §2.1, §3.5]. The
monoidal structures on sSeqgenR can be deduced from the fact that

(R 7→ R[OΣ]) : AniRing→ Add

is sifted-colimit-preserving, cf. [Fu24, Lemma 2.50].

Definition 1.7. Let R be an animated ring.
(1) The ∞-category of derived ∞-operads is defined as Alg(sSeqgenR , ◦).
(2) The module category ModR can be regarded as a left categorical ideal

of (sSeqgen, ◦) by embedding into arity 0. Then, for some derived ∞-operad P,
a P-algebra is by definition a left P-module in ModR.

The unit of levelwise tensor product admits a natural derived operadic struc-
ture, denoted as Com, whose algebra category DAlg(ModR) agrees with the∞-
category DAlgR of derived rings over R introduced in [Rak20, §4]. In particular,
AniRingR can be ragarded as the full subcategory of DAlg(ModR) spanned by
connective algebras.

Now, we close this section by a recollection of filtered algebras. Consider the
∞-category of filtered R-modules

FilModR := Fun(N(Z≤),ModR),
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where the objects can be written as (. . .→ F1X → F0X → F−1X → . . .). The
∞-category filVectωR of finite free R-modules with a splitting filtration on the
basis is an additive sub-∞-category that generates FilModR, i.e.

ModfilVectωR

≃−→ FilModR .

Then, there is a filtered notion of derived symmetric sequences

sSeqgenR,Fil

equipped with the monoidal structures ⊗, ⊗lev and ◦.
The symmetric monoidal embedding to filtration degree 0(

M 7→ (. . . 0→M →M → . . .)
)
: ModR ↪→ FilModR

induces a fully faithful functor

(−)0 : sSeqgenR ↪→ sSeqgenR,Fil .

Particularly, there is a left sSeqgenR -tensored structure on FilModR.

Let sSeqgen,redR ⊂ (sSeqgenR )1//1 be the full subcategory of reduced objects M ,
which means that M(0) = 0 and the chosen map 1 → M(1) is an equivalence.

The functor (−)0 induces a left sSeqgen,redR -tensored structure on

Fil≥1 ModR ⊂ FilModR

spanned by such F•M that stabilizes when degree ≥ 1, i.e.

. . .→ F3M → F2M → F1M
id−→ F1M

id−→ F1M → . . . ,

and similarly a left sSeqgen,redR -tensored structure on Fil≤−1 ModR ⊂ FilModR
spanned by F•M such that FnM ≃ 0 for n ≥ 0. The same method also produces
natural left sSeqgen,redR -actions on the graded module categories Gr≥1 ModR and
Gr≤−1 ModR.

The derived ∞-operad Comnu of non-unital derived algebras has arity ≥ 1
components the same as Com but Comnu(0) = 0. There are adjunctions of
non-unital derived algebras

DAlgnuR DAlgnu(Fil≥1 ModR) DAlgnu(Gr≥1 ModR)
adic

F 1

Gr
.

2 Divided power Koszul duality

Given some R ∈ AniRing, there is an adjunction

cot : DAlgnuR ⇄ ModR : sqz
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where cot(A) = LR/A[−1] with A identified with the corresponding augmented
R-algebra, and sqz(M) equipps M with the trivial algebra structure. Then,
there is a natural monad

Tnäıve := (cot ◦ sqz(−)∨)∨

that might be useful for defining the derived partition Lie algebras. Unfortu-
nately, this monad is not satisfying as it does not preserve sifted colimits.

Brantner–Mathew rectified this functor by finding a comonadic restriction
of cot ⊣ sqz, cf. [BM19, Theorem 4.20]. We adopt the approach of PD Koszul
duality of operads introduced in [BCN21]. It consists of roughly two step: (1)
the functor of cotangent fibre cot could be recovered by bar-cobar adjunction be-
tween derived∞-operads and cooperads; (2) taking R-linear dual sends derived
∞-cooperads to “derived ∞-operads” with divided powers.

The core of the first step is a categorical bar-cobar construction established
in [Lur17, §5.2.2] and refined in [BCN21, §3.4].

Theorem 2.1. Let C be a pointed monoidal ∞-category, and M be a left C-
tensored ∞-category. If both C and M admit geometric realizations, there is a
commuting diagram

LMod(M) LComod(M)

Alg(C) coAlg(C)

Bar

π

coBar

π

Bar

coBar

,

where the horizontal arrows are adjunctions.

Here, the∞-category LMod(M) consists of pairs (A,M), where A ∈ Alg(C)
and M is a left A-module in M. The ∞-category LComod(M) is spanned
by pairs (C,N) of coalgebras and comodules. For each A ∈ Alg(C), Bar(A) is
calculated by 1⊗A1, whose comultiplication is 1⊗A1 ≃ 1⊗AA⊗A1→ 1⊗A1⊗A1.
Similarly, for each A-module M , Bar(M) ≃ 1⊗A M is equipped with a natural
Bar(A)-comodule structure.

Taking C = sSeqgen,redR , there is an ajunction

Bar : Opgen,redR ⇄ coOpgen,red : coBar

between reduced derived∞-operads and reduced derived∞-cooperads. Brantner–
Heuts claim that the unit map id → coBar ◦Bar is an equivalence in a forth-
coming project, using Ching’s strategy (cf. [Chi12]) for spectral ∞-operads.

Definition 2.2. The coLie derived ∞-cooperad is defined as

coLieπR,∆ := Bar(Comnu).
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The subscript ∆ means that this is defined in the derived context in contrast
to spectral context, while π hints the divided powers that do not show up yet.

The next step is to define derived partition Lie algebras by considering
the R-linear dual of coLieπR,∆. However, the underlying module of coLieπR,∆

is not perfect. In fact, the underlying (non-derived) symmetric sequence of
coLieπR,∆ is the same as usual shifted coLie cooperad over R, which means that

coLieπR,∆(p) = Σp−1R for p ≥ 1. Thus, there is no good notion of duality for
coLieπR,∆-coalgebras. Nevertheless, coLieπR,∆ is almost perfect in sSeqgenR . We
can still obtain a meaningful duality by switching to the context of pro-coherent
modules for suitable R.

Definition 2.3. Given A an additive∞-category, a left A-module M is said to
be almost perfect if, for every n ∈ N, there exist some morphism fn : Pn → M
from a perfect module Pn such that fib(fn) is n-connective.

Let AperfA ⊂ ModA denote the full subcategory of almost perfect modules.

Intuitively speaking, an almost perfect moduleM is a bounded below module
with finite generators on each degree. More precisely, AperfA is the smallest
stable sub-∞-category of ModA that contains A and closed under geometric
realizations, cf. [Lur17, Proposition 7.2.4.11] for details.

There is a natural t-structure on ModA = Fun(A op,Sp) transported from
Sp. An additive ∞-category A is said to be left coherent if AperfA inherits a
t-structure from that on ModA , coherent if both A and A op are left coherent.

Definition 2.4. For a coherent A , the ∞-category of pro-coherent left A -
modules is defined as

QC∨
A := Funex,conv(AperfA op ,Sp)

the ∞-category of exact and convergent, where a functor F : AperfA → Sp
is said to be convergent if, for every X ∈ AperfA op , the natural morphism
F (X)→ limn F (τ≤nX) is an equivalence.

The Yoneda functor induces a fully faithful embedding

AperfA op ↪→ QC∨
A ,

whose essential image Aperf∨A is called as dually almost perfect left A -modules.

Example 2.5. Let R be a coherent animated ring. Then, the additive ∞-
categories VectωR, fil VectR, grVect

ω
R and R[OΣ] are all coherent. It gives rise to

the∞-categoriesof (filtered, graded) pro-coherent R-modules QC∨
R, Fil QC∨

R and
GrQC∨

R, and also the ∞-category of pro-coherent derived symmetric sequences
sSeqgen,∨R .

Additionally, these additive ∞-categories are closed under R-linear dual
(with respect to ⊗lev for R[OΣ]), which induces contravariant autoequivalences.

The theory of right-left functors applies to pro-coherent modules as well.
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Theorem 2.6 (Pro-coherent refinement of Theorem 1.6). There is a natural
transformation of symmetric monoidal functors

Addcoh,poly Prst,Σ

Mod

QC∨

ι

sending each locally polynomial functor to its right-left derived functor.

Proof. Cf. [BCN21, Theorem 2.52].

Particularly, if A has a locally polynomial (symmetric) monoidal structure,
then the right-left functor exhibits on QC∨

A a sifted-colimit-preserving (sym-
metric) monoidal structure. In the framework of pro-coherent modules, (dually)
almost perfect modules enjoy a good duality:

Proposition 2.7. Let A be a coherent additive∞-category endowed wih a non-
unital symmetric monoidal structure ⊗ preserving finite direct sums. Assume
that the induced ⊗ on QC∨

A admits an eventually connective unit 1, and each
object in A is dualizable with the dual object existing in A . Then taking duals
gives rise to an equivalence,

(−)∨ := homQC∨
A
(−,1) : AperfA

≃−→ Aperf∨,op
A .

Proof. Cf. [BCN21, Proposition 2.55].

Powered by this duality, we are about to reach a statement like

The almost perfect coalgebras of some almost perfect derived ∞-cooperd Q are
equivalent to the dually almost perfect algebras of Q∨.

However, we should be careful about what kind of monad structure is put on
Q∨. Recall that the composite product ◦ sSeqgen,∨R is defined by

M ◦N ≃ ⊕n∈N(M(n)⊗N⊗n)Σn
,

where (−)Σn refers to the right-left derived functor of ordinary orbit. At the
same time, its R-linear dual is

(M ◦N)∨ ≃
∏
n∈N

(
(M(n)⊗N⊗n)∨

)Σn
,

where (−)Σn referst to the derived functor of ordinary fixed points. It means
that (−)∨ is not lax monoidal with respect to ◦. Instead, we should consider
the restricted product ◦̄ satisfying the formula

M ◦̄N ≃ ⊕n∈N(M(n)⊗N⊗n)Σn .

The restricted product is the origin of divided powers.
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Definition 2.8. Let R be a coherent animated ring.
(1) A derived PD ∞-operad over R refers to an A∞-algebra in (sSeqgen,∨R , ◦̄).
(2) The PD Koszul dual of a reduced derived ∞-operad P is defined as

KDpd(P) := Bar(P)∨ with the natural derived PD ∞-operad structure. More
specially, LieπR,∆ := KDpd(Comnu) is called the derived partition Lie operad.

Roughly speaking, a (derived) partition Lie algebra L over R is a pro-
coherent R module equpped with a left LieπR,∆-action

µ : ⊕n≥1(Lie
π
R,∆(n)⊗ L⊗n)Σn → L.

3 A filtered Koszul duality of LieπR,∆-algebras

The functoriality of Theorem 2.6 and the laxity of

(−)∨ :
(
sSeqgen,∨,op

R , ◦
)
→

(
sSeqgen,∨R , ◦̄

)
induces a commuting diagram of adjunctions as follows

DAlgnu(QC∨
R) coAlgcoLieπR,∆

(QC∨
R) AlgLieπR,∆

(QC∨
R)

op

DAlgnu(Fil≥1 QC∨
R) coAlgcoLieπR,∆

(Fil≥1 QC∨
R) AlgLieπR,∆

(Fil≤−1 QC∨
R)

op

DAlgnu(Gr≥1 QC∨
R) coAlgcoLieπR,∆

(Gr≥1 QC∨
R) AlgLieπR,∆

(Gr≤−1 QC∨
R)

op

Bar

adic

coBar

(−)∨

(−)1

(−)¡

constF 1

Bar

Gr

F 1

coBar

(−)∨

Gr

colim

(−)¡

Gr

Bar

coBar

(−)∨

(−)¡

.

Here, (−)¡ is formally given by the adjoint functor theorem, whose underlying
module can be calculated as (L)∨ for dually almost perfect L. The functor const

send partition Lie algebras L to (L
id−→ L→ . . .) the constant filtered algebras,

where colim(F∗L) is taking the underlying object.

Definition 3.1. The Hodge-filtered Chevalley–Eilenberg complex C̃∗ is defined
as the composition(

C̃∗ := coBar ◦(−)¡ ◦ colim
)
: AlgLieπR,∆

(QC∨
R)→ DAlgnu(Fil≥1 QC∨

R)
op.

The filtration on C̃∗ is always complete by construction, and this func-
tor sends sifted colimits to sifted limits. When R is a regular ring over Q,
AlgLieπR,∆

(QC∨
R) agrees with the∞-category of (shifted) dg-Lie algebras over R,

and C̃∗ can be modeled by the explicit filtration defined before.

Theorem 3.2. There is a fully faithful embedding

C̃∗ : AlgLieπR,∆
(Aperf∨R) ↪→ DAlgnu(Fil≥1 QC∨

R)
op,
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whose essential image consists of complete A → R such that Gr1 A is almost
perfect over R, and the natural morphism LSymR(Gr1)A → GrA of graded
algebras is an equivalence.

Sketch of proof. (Cf. [Fu24, Theorem 3.25]) The functor const is obviously fully
faithful, so we can consider the filtered LieπR,∆-algebras in the form of

(L
id−→ L→ . . .)

with L dually almost perfect. Its dual is a complete filtered coLieπR,∆-colagebra

. . .→ 0→ L∨,

whose graded pieces form a trivial coalgebra. Then, we show that coBar sends a
trivial graded coLieπR,∆-coalgebra C to the free graded derived algebra LSymR C.

By our construction, Gr commutes with everything, so Gr C̃∗(L) ≃ LSymR L∨

as graded drived algebras.
The above calculation shows that KDpd ◦C̃∗(L) is a constant filtered LieπR,∆-

algebra whose underlying algebra is L itself.

Example 3.3. Set k = F2 the field with two elements. The homotopy opera-
tions on a Lieπk ,∆-algebra L concentrating in degree 0 and 1 consist of ([−,−], (−){2})
a restricted Lie structure on g1 := π1(L), a g1-representation structure on
g0 := π0(L) and a new additive operation R1 : g1 → g0.

g1

g0

[−,−] (−){2}

R1

[g1,−]

For instance, the Frobenius kernel µ2 := ker(Gm,k
(−)2−−−→ Gm,k) is an infinites-

imal group with the underlying scheme Spec(k[x]/(x2)). The formal moduli
problem Bµ2 correspond to a Lieπk ,∆-algebra L ≃ k.D1 ⊕ k.D0 with |Di| = i.

Its homotopy operations are determined by [Di, Dj ] = 0, (D1)
{2} = D1 and

R1(D1) = D0, cf. [Fu24, §3.4] for details.
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