A Koszul duality of partition Lie algebras(-oids)

Jiaqi Fu

November 2024

Let X/\mathbb{C} be a smooth projective complex variety. The cohomology of tangent bundle $H^*(X, T_X)$ is naturally a graded Lie algebra over \mathbb{C} , and it controls the infinitesimal deformation of X. According to Kodaira–Spencer theory, $H^1(X, T_X)$ classifies the isomorphism classes of Cartesian diagrams as follows

while $H^0(X, T_X)$ is isomorphic to the automorphism of trivial deformation $\mathscr{X}_0 = X \times \mathbb{C}$. Besides, for each $[\mathscr{X}] \in H^1(X, T_X)$, there is a class $c_{\mathscr{X}} \in H^2(X, T_X)$, such that \mathscr{X} can be extended to $\mathbb{C}[\epsilon]/(\epsilon^3)$ if and only if $[c_{\mathscr{X}}, c_{\mathscr{X}}] = 0$.

It suggest that the derived global section $R\Gamma^*(X, T_X)[1]$ (with a shifting) should be regarded as a "groupoid" that classifies the infinitesimal deformations of X. More generally, a principle introduced by Deligne and Drinfeld postulates that every formal moduli problem in characteristic 0 is controlled by a dg-Lie algebra. Through the effort of many people, this principle was finally enhanced into a theorem by the work of Hinich [Hin01], Pridham [Pri10], and Lurie [Lur11].

Theorem 0.1. Given a field k/\mathbb{Q} , there is an equivalence of ∞ -categories

$$\mathrm{MC}: \mathrm{Lie}_k^{\mathrm{dg}} \xrightarrow{\simeq} \mathcal{FMP}_k$$

identifying the homotopy theory of dg-Lie algebras and formal moduli problems.

Remark 0.2 (Recollection of \mathcal{FMP}_k). A formal moduli problem X over k is a good functor (of ∞ -categories)

$$X : \operatorname{Art}_k^* \to \mathcal{S},$$

where $A \in \operatorname{Art}_k^*$ is a connective cdga over k such that $\pi_0(A)$ is an ordinary augmented local Artinian ring and $\pi_*(A)$ is finitely generated over $\pi_0(A)$. A formal moduli problem X should satisfy that

• X(k) is contractible;

• for each cospan $A_0 \xrightarrow{\rho} A_{01} \leftarrow A_1$ that $\pi_0(\rho)$ is surjective, then

$$\begin{array}{c} X(A_0 \times^h_{A_{01}} A_1) \longrightarrow X(A_1) \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ X(A_0) \xrightarrow[X(\rho)]{} X(A_{01}) \end{array}$$

is a homotopy pullback.

The thrust of proving Theorem 0.1 is an adjunction

$$\mathfrak{D}: \mathrm{cdga}_{k//k} \rightleftharpoons (\mathrm{Lie}_k^{\mathrm{dg}})^{op}: C^*,$$

where $\mathfrak{D}: A \mapsto \mathbb{T}_{k/A}(\simeq \hom_k(\mathbb{L}_{k/A}, k))$. For each $\mathfrak{g} \in \operatorname{Lie}_k^{\operatorname{dg}}, C^*(\mathfrak{g})$ has a model whose underlying graded algebra is

$$\hom_k(\operatorname{Sym}_k(\mathfrak{g}[1]), k),$$

where the differential $d = d_1 + d_2$ is a combination of the internal differential d_1 of dual complex and d_2 defined by a formula form differential geometry: for each *n*-form $\omega \in (\text{Sym}_k^n(\mathfrak{g}[1]))^{\vee}$ and n+1 vectors $X_0, \ldots, X_n \in \mathfrak{g}$,

$$d_2\omega(X_0,\ldots,X_n) = \sum \pm \omega([X_i,X_j],\ldots).$$
(1)

A dg-Lie algebra \mathfrak{g} is said to be *coconnected* if $\pi_n(\mathfrak{g}) = 0$ for $n \ge 0$, and is said to be *of finite type* if every π_n is finitely dimensional. Denote $\operatorname{Lie}_{k,<0}^{\operatorname{dg,ft}} \subset \operatorname{Lie}_k^{\operatorname{dg}}$ the full subcategory of coconnected dg-Lie algebras of finite type.

Theorem 0.3 (Koszul duality of dg-Lie algebras). The functor C^* induces a fully faithful embedding

$$C^*: \operatorname{Lie}_{k,<0}^{\operatorname{dg,ft}} \hookrightarrow (\operatorname{cdga}_{k//k})^{op}$$

whose essential image consists of connective completely Noetherian local algebras $A \rightarrow k$:

- $\pi_n(A) = 0$ for n < 0;
- $\pi_0(A)$ is an *I*-complete Noetherian algebra, where *I* is the augmentation ideal of $\pi_0(A) \to k$;
- $\pi_n(A)$ is finitely generated over $\pi_0(A)$.

Counterexample 0.4. The coconnectedness is **necessary** for Theorem 0.3. Set $k = \mathbb{R}$ the Lie algebra cohomology of $\mathfrak{su}(2)$ is the free cdga $C^*(\mathfrak{su}(2)) \simeq \wedge_{\mathbb{R}}(\mathbb{R}.e_3)$ with $|e_3| = -3$, cf.[MT91, Vol.I Theorem 6.5.(2)] [CE48, Theorem 15.2]. Therefore, the corresponding shifted dg-Lie algebra of $C^*(\mathfrak{su}(2))$ is abelian and has the underlying module $\mathbb{R}[3]$, which differs from $\mathfrak{su}(2)[1]$.

The dg-Lie algebras that are not coconnected (e.g. ordinary Lie algebras) are of great interest for formal geometry. It is natural to seek a Koszul duality for them using cdgas with more structures. Recall that $C^*(\mathfrak{g})$ has a model $((\operatorname{Sym}_k \mathfrak{g}[1])^{\vee}, d_1 + d_2)$, where $(\operatorname{Sym}_k \mathfrak{g}[1])^{\vee}$ has a second grading by the degree of forms, and d_1 preserve this grading, while d_2 increases it by 1, cf. (1). Thus, $C^*(\mathfrak{g})$ is naturally endowed with a complete multiplicative filtration $F^H C^*$ (called Hodge filtration) such that

$$F_n^H C^*(\mathfrak{g}) = \left((\operatorname{Sym}_k^{\geq n} \mathfrak{g}[1])^{\vee}, d_1 + d_2 \right).$$

Toën–Vessozi conjectured that, when \mathfrak{g} is finitely dimensional, the assignment $F^{H}C^{*}$ is a fully faithful embedding into augmented filtered cdgas¹. Additionally, Brantner-Mathew generalised Lurie-Pridham's theorem into positive characteristics using *partition Lie algebras*. Therefore, it might be interesting to investigate the following question:

Target

Establishing a Koszul duality for non-coconnective Lie algebras in arbitrary characteristics, utilizing the Hodge filtration.

The first challenge is choosing a suitable algebraic context: cdgas and dg-Lie algebras behave badly in positive characteristics as quasi-isomorphisms and the expected fibrations do not induce a model structure.

Example 0.5. Consider a morphism of cdgas $f : A \to B$ over \mathbb{F}_p . There is no factorization of f into a trivial cofibration followed by a fibration (degrewise surjection). Otherwise, there is $A \xrightarrow{g,\simeq} A' \xrightarrow{p} B$, where, for each $x \in pi_*(B)$, there is some $y \in \pi_*(A') \cong \pi_*(A)$ such that $p(y) = x^p$. However, such a lifting does not exist in general.

Away from characteristic 0, there are two inequivalent natural generalizations of commutative rings, that are \mathbb{E}_{∞} -ring spectra and animated (commutative) rings. We choose animated rings² for our purpose in derived algebraic geometry. Recall that the ∞ -category of animated rings is defined as

AniRing :=
$$\operatorname{Fun}_{\Sigma}(\operatorname{Poly}^{op}, \mathcal{S}),$$

where Σ means taking the full subcategory of sifted-colimit-preserving functors. There is a monadic free-forgetful adjunction

$$\operatorname{Mod}_{\mathbb{Z},>0} \rightleftharpoons \operatorname{AniRing}$$

whose monad gives rise to the left derived functor LSym of ordinary Sym.

We have seen that the Koszul duality of non-coconnective "Lie algebras" should be some non-connective filtered algebras. A non-connective generalistion

¹Their conjecture is more general, which is formulated for dg-Lie algebroids, cf. [TV23, §1.3.1] for the question and [Fu24, Main Theorem 1.2] for an answer ²We say simplicial commutative rings in Europe (at least in France).

of AniRing requires to extend LSym into a sifted-colimit-preserving functor acting on Sp. The crucial method is the right-left extension in [BM19, §3][BCN21, §2]. We also recollect the basics of (generalized) ∞ -operads, which helps to treat different types algebras uniformly.

1 Right-left derived functors

An *additive* ∞ -*category* \mathscr{A} is an ∞ -category with finite products and coproducts such that $h\mathscr{A}$ is an ordinary additive category. The ∞ -category of left \mathscr{A} -modules is defined as

$$\operatorname{Mod}_{\mathscr{A}} := \operatorname{Fun}_{\oplus}(\mathscr{A}^{op}, \operatorname{Sp}),$$

where \oplus means direct-sum-preserving.

Example 1.1. Let R be an ordinary ring and $\mathscr{A} := \operatorname{Vect}_{R}^{\omega}$ be the category of finitely generated free modules. The module category $\operatorname{Mod}_{\mathscr{A}}$ is precisely Mod_{R} , the unbounded derived ∞ -category of R-chain complexes.

A left \mathscr{A} -module is said to be perfect if it is compact in $\operatorname{Mod}_{\mathscr{A}}$. The full subcategory Perf_R of perfect left \mathscr{A} -modules is the minimal stable sub- ∞ -category containing \mathscr{A} and closed under retractions. Moreover, the natural pairing

$$\operatorname{Perf}_{\mathscr{A}} \times \operatorname{Perf}_{\mathscr{A}^{op}} \to \operatorname{Sp}$$

defined by extending $(A, B) \mapsto \hom(B, A)$ gives rise to an equivalence $\operatorname{Perf}_{\mathscr{A}^{op}}^{op}$. Denote the essential image of $\operatorname{Perf}_{\mathscr{A}^{op},\geq 0}^{op}$ in $\operatorname{Perf}_{\mathscr{A},\leqslant 0}$, which consists of the *dually connective perfect modules*.

Proposition 1.2. Let \mathscr{A} be an additive ∞ -category and \mathcal{V} an ∞ -category with sifted colimits. Then, the restriction

$$\operatorname{Fun}_{\Sigma}(\operatorname{Mod}_{\mathscr{A}}, \mathcal{V}) \xrightarrow{\simeq} \operatorname{Fun}_{\sigma}(\operatorname{Perf}_{\mathscr{A}, \leqslant 0}, \mathcal{V})$$

is an equivalence, whose inverse is given by left Kan extensions. Here, σ means preserving finite stable geometric realizations.

Proof. Cf. [BCN21, Propsition 2.40].

In particular, left Kan extension induces a monoidal equivalence

$$\operatorname{End}_{\Sigma}(\operatorname{Perf}_{\mathscr{A},\leqslant 0}) \xrightarrow{\simeq} \operatorname{End}_{\Sigma}^{\operatorname{Perf}_{\mathscr{A},\leqslant 0}}(\operatorname{Mod}_{\mathscr{A}}),$$

where the right-hand side consists of sifted-colimit-preserving endo-functor that preserves $\operatorname{Perf}_{\mathscr{A},\leqslant 0}$.

Brantner–Campos–Nuiten also provides a practical method to obtain functors in $\operatorname{Fun}_{\sigma}(\operatorname{Perf}_{\mathscr{A}, \leq 0}, \mathcal{V})$, cf. [BCN21, Proposition 2.46]: **Proposition 1.3.** Let \mathscr{A} be an additive ∞ -category and \mathcal{V} an ∞ -category with sifted colimits. If $F : \mathscr{A} \to \mathcal{V}$ is the colimit of a coutable sequece

$$F_1 \to F_2 \to \ldots$$

where each $F_i : \mathscr{A} \to \mathcal{V}$ is of finite degree. Then, the right Kan extension F^R of F along $\mathscr{A} \hookrightarrow \operatorname{Perf}_{\mathscr{A}, \leq 0}$ belongs to $\operatorname{Fun}_{\sigma}(\operatorname{Perf}_{\mathscr{A}, \leq 0}, \mathcal{V})$.

Given such an $F : \mathscr{A} \to \mathcal{V}$, the left extension F^{RL} of F^R is called the right-left derived functor of F, which is sifted-colimit-preserving.

Since the ordinary symmetric power Sym admits a splitting filtration Sym = $\bigoplus_{n \in \mathbb{N}} \text{Sym}^n$, it suits into the case of Proposition 1.3. We obtain a right-left derived functor LSym of Sym acting on $\text{Mod}_{\mathbb{Z}}$ as expected. However, as LSym does not preserve perfect modules, the above propositions give cannot give a monad structure on LSym.

This problem is overcame by considering derived ∞ -operads.

We start with underived symmetric sequences. Let $B\Sigma$ be the ordinary 1category of finite sets and isomorphisms, which supports naturally a cocartesian symmetric monoidal structure. For any presentable symmetric monoidal ∞ category C, its ∞ -category of symmetric sequences

$$\operatorname{sSeq}(\mathcal{C}) := \operatorname{Fun}(N(B\Sigma), \mathcal{C})$$

admits a natural symmetric monoidal structure \otimes given by Day convolution. Moreover, sSeq(C) has the universal property of being a symmetric monoidal ∞ -category under C freely generated by 1, posing a unit of C at arity 1, i.e.

$$F \mapsto F(\mathbb{1}) : \operatorname{End}_{\mathcal{C}/}^{L}(\operatorname{sSeq}(\mathcal{C})) \xrightarrow{\simeq} \operatorname{sSeq}(\mathcal{C}).$$

The composite product \circ is the opposite of the composition in $\operatorname{End}_{\mathcal{C}/}^{L}(\operatorname{sSeq}(\mathcal{C}))$ and satisfies the formula

$$M \circ N \simeq \bigoplus_{n \in \mathbb{N}} (M(n) \otimes N^{\otimes n})_{h \Sigma_n},$$

which agrees to the picture of decorated tree grafting. An ∞ -operad refers to an \mathbb{A}_{∞} -algebra in sSeq(\mathcal{C}). For instance, the unit of levelwise tensor product admits a natural operadic structure, which governs the \mathbb{E}_{∞} -algebras in \mathcal{C} .

When $\mathcal{C} = \operatorname{Mod}_R$ for some ordinary commutative ring R, we want to consider a derived variant of $\operatorname{sSeq}(\mathcal{C})$. The motivation is simple: as homotopy orbit $(-)_{h\Sigma_n}$ does not send $\operatorname{Mod}_{R[\Sigma_n]}^{\heartsuit}$ to discrete R-modules for $n \geq 2$ and general R, $\operatorname{sSeq}(\operatorname{Mod}_R)$ does not have enought objects to encode LSym. To fix this, we should include the finite free R-modules with non-free Σ_n -action as projective generators. More precisely, consider the smallest additive sub-1-category

$$R[\mathcal{O}_{\Sigma_n}] \subset \operatorname{Mod}_{R[\Sigma_n]}^{\heartsuit}$$

containing $R[\Sigma_n/H]$, the equivariant *R*-modules generated by some $H < \Sigma_n$, and write $\bigoplus_{n \in \mathbb{N}} R[\mathcal{O}_{\Sigma_n}] \subset \operatorname{sSeq}(\operatorname{Mod}_R)$ as $R[\mathcal{O}_{\Sigma}]^3$.

³Please keep in mind that this is a formal notation rather an actual group ring.

Definition 1.4. The ∞ -category of derived symmetric sequences or genuine symmetric sequences over R is defined as

$$\operatorname{sSeq}_R^{\operatorname{gen}} := \operatorname{Mod}_{R[\mathcal{O}_{\Sigma}]}.$$

The next step is to construct the derived analogues of \otimes , \otimes_{lev} and \circ on $sSeq_R^{gen}$. One can observe that $R[\mathcal{O}_{\Sigma}]$ is closed under the truncated monoidal structures \otimes , \otimes_{lev} and \circ in $sSeq_R^{\heartsuit}$. Besides, these monoidal structures are *locally polynomial* in the following sense:

Definition 1.5. A functor $F : \mathscr{A} \to \mathscr{B}$ between additive ∞ -categories is said to be *locally polynomial* if (1) F is a countable sequential colimit $(F_1 \to F_2 \to \ldots)$ of $F_i : \mathscr{A} \to \mathscr{B}$ functors of finite degree and (2) the sequence $F_1(X) \to F_2(X) \to \ldots$ stabilizes at some point for every $X \in \mathscr{A}$.

Theorem 1.6. Let $\mathcal{A}dd^{\text{poly}}$ be the ∞ -category of additive ∞ -category and locally polynomial functors. Then, there is a functor

$$\operatorname{Mod}_{(-)} : \mathcal{A}dd^{\operatorname{poly}} \to \mathcal{P}r^{\operatorname{st},\Sigma}.$$

Proof. Cf. [BCN21, Theorem 2.52]

Therefore, the right-left derived functors of \otimes , \otimes_{lev} and \circ induce monoidal structures on $\operatorname{sSeq}_R^{\operatorname{gen}}$ for ordinary commutative ring R, where we keep the same notation. More generally, $R[\mathcal{O}_{\Sigma}]$ and $\operatorname{sSeq}_R^{\operatorname{gen}}$ can be defined for *arbitrary* animated ring R using spectral Mackey functors, cf. [BCN21, §2.1, §3.5]. The monoidal structures on $\operatorname{sSeq}_R^{\operatorname{gen}}$ can be deduced from the fact that

$$(R \mapsto R[\mathcal{O}_{\Sigma}])$$
: AniRing $\to \mathcal{A}dd$

is sifted-colimit-preserving, cf. [Fu24, Lemma 2.50].

Definition 1.7. Let R be an animated ring.

(1) The ∞ -category of *derived* ∞ -*operads* is defined as Alg(sSeq_R^{gen}, \circ).

(2) The module category Mod_R can be regarded as a left categorical ideal of $(\operatorname{sSeq}^{\operatorname{gen}}, \circ)$ by embedding into arity 0. Then, for some derived ∞ -operad \mathcal{P} , a \mathcal{P} -algebra is by definition a left \mathcal{P} -module in Mod_R .

The unit of levelwise tensor product admits a natural derived operadic structure, denoted as Com, whose algebra category $DAlg(Mod_R)$ agrees with the ∞ category $DAlg_R$ of derived rings over R introduced in [Rak20, §4]. In particular, AniRing_R can be ragarded as the full subcategory of $DAlg(Mod_R)$ spanned by connective algebras.

Now, we close this section by a recollection of filtered algebras. Consider the ∞ -category of filtered *R*-modules

$$\operatorname{Fil} \operatorname{Mod}_R := \operatorname{Fun}(N(\mathbb{Z}^{\leq}), \operatorname{Mod}_R),$$

where the objects can be written as $(\ldots \to F_1 X \to F_0 X \to F_{-1} X \to \ldots)$. The ∞ -category fil Vect^{ω}_R of finite free *R*-modules with a splitting filtration on the basis is an additive sub- ∞ -category that generates Fil Mod_{*R*}, i.e.

$$\operatorname{Mod}_{\operatorname{fil}\operatorname{Vect}_{\mathcal{P}}^{\omega}} \xrightarrow{\simeq} \operatorname{Fil}\operatorname{Mod}_{R}$$

Then, there is a filtered notion of derived symmetric sequences

$$sSeq_{R,Fi}^{gen}$$

equipped with the monoidal structures \otimes , \otimes_{lev} and \circ .

The symmetric monoidal embedding to filtration degree 0

$$(M \mapsto (\dots 0 \to M \to M \to \dots)) : \operatorname{Mod}_R \hookrightarrow \operatorname{Fil} \operatorname{Mod}_R$$

induces a fully faithful functor

$$(-)_0 : \mathrm{sSeq}_R^{\mathrm{gen}} \hookrightarrow \mathrm{sSeq}_{R,\mathrm{Fil}}^{\mathrm{gen}}.$$

Particularly, there is a left sSeq_R^gen-tensored structure on Fil Mod_R .

Let $\operatorname{sSeq}_R^{\operatorname{gen,red}} \subset (\operatorname{sSeq}_R^{\operatorname{gen}})_{1/1}$ be the full subcategory of *reduced* objects M, which means that M(0) = 0 and the chosen map $1 \to M(1)$ is an equivalence. The functor $(-)_0$ induces a left $\operatorname{sSeq}_R^{\operatorname{gen,red}}$ -tensored structure on

$$\operatorname{Fil}_{>1}\operatorname{Mod}_R \subset \operatorname{Fil}\operatorname{Mod}_R$$

spanned by such $F_{\bullet}M$ that stabilizes when degree ≥ 1 , i.e.

$$\dots \to F_3M \to F_2M \to F_1M \xrightarrow{id} F_1M \xrightarrow{id} F_1M \to \dots,$$

and similarly a left $\operatorname{sSeq}_R^{\operatorname{gen,red}}$ -tensored structure on $\operatorname{Fil}_{\leq -1} \operatorname{Mod}_R \subset \operatorname{Fil} \operatorname{Mod}_R$ spanned by $F_{\bullet}M$ such that $F_nM \simeq 0$ for $n \geq 0$. The same method also produces natural left $\operatorname{sSeq}_R^{\operatorname{gen,red}}$ -actions on the graded module categories $\operatorname{Gr}_{\geq 1} \operatorname{Mod}_R$ and $\operatorname{Gr}_{\leq -1} \operatorname{Mod}_R$.

The derived ∞ -operad Com^{nu} of non-unital derived algebras has arity ≥ 1 components the same as Com but Com^{nu}(0) = 0. There are adjunctions of non-unital derived algebras

$$\operatorname{DAlg}_{R}^{nu} \xrightarrow[F^{1}]{\operatorname{Alg}}^{nu}(\operatorname{Fil}_{\geq 1} \operatorname{Mod}_{R}) \xrightarrow[F^{1}]{\operatorname{Gr}} \operatorname{DAlg}^{nu}(\operatorname{Gr}_{\geq 1} \operatorname{Mod}_{R})$$
.

2 Divided power Koszul duality

Given some $R \in$ AniRing, there is an adjunction

$$\cot: \mathrm{DAlg}_R^{nu} \rightleftharpoons \mathrm{Mod}_R: \mathrm{sqz}$$

where $\cot(A) = \mathbb{L}_{R/A}[-1]$ with A identified with the corresponding augmented R-algebra, and $\operatorname{sqz}(M)$ equipps M with the trivial algebra structure. Then, there is a natural monad

$$T^{na\"ive} := (\cot \circ \operatorname{sqz}(-)^{\vee})^{\vee}$$

that might be useful for defining the *derived partition Lie algebras*. Unfortunately, this monad is not satisfying as it does not preserve sifted colimits.

Brantner–Mathew rectified this functor by finding a comonadic restriction of cot \dashv sqz, cf. [BM19, Theorem 4.20]. We adopt the approach of PD Koszul duality of operads introduced in [BCN21]. It consists of roughly two step: (1) the functor of cotangent fibre cot could be recovered by bar-cobar adjunction between derived ∞ -operads and cooperads; (2) taking *R*-linear dual sends derived ∞ -cooperads to "derived ∞ -operads" with divided powers.

The core of the first step is a categorical bar-cobar construction established in [Lur17, §5.2.2] and refined in [BCN21, §3.4].

Theorem 2.1. Let C be a pointed monoidal ∞ -category, and \mathcal{M} be a left C-tensored ∞ -category. If both C and \mathcal{M} admit geometric realizations, there is a commuting diagram

$$\begin{array}{ccc} \operatorname{LMod}(\mathcal{M}) & \xrightarrow[\operatorname{coBar}]{\operatorname{CoBar}} \operatorname{LComod}(\mathcal{M}) \\ & & & & & \downarrow^{\pi} \\ \operatorname{Alg}(\mathcal{C}) & \xrightarrow[\operatorname{coBar}]{\operatorname{CoBar}} co\operatorname{Alg}(\mathcal{C}) \end{array}$$

where the horizontal arrows are adjunctions.

Here, the ∞ -category LMod(\mathcal{M}) consists of pairs (A, M), where $A \in \operatorname{Alg}(\mathcal{C})$ and M is a left A-module in \mathcal{M} . The ∞ -category LComod(\mathcal{M}) is spanned by pairs (C, N) of coalgebras and comodules. For each $A \in \operatorname{Alg}(\mathcal{C})$, Bar(A) is calculated by $1 \otimes_A 1$, whose comultiplication is $1 \otimes_A 1 \simeq 1 \otimes_A A \otimes_A 1 \to 1 \otimes_A 1 \otimes_A 1$. Similarly, for each A-module M, Bar $(M) \simeq 1 \otimes_A M$ is equipped with a natural Bar(A)-comodule structure.

Taking $\mathcal{C} = sSeq_R^{gen, red}$, there is an ajunction

$$\operatorname{Bar}:\operatorname{Op}_{R}^{\operatorname{gen},\operatorname{red}}\rightleftarrows co\operatorname{Op}^{\operatorname{gen},\operatorname{red}}:\operatorname{coBar}$$

between reduced derived ∞ -operads and reduced derived ∞ -cooperads. Brantner– Heuts claim that the unit map $id \to \operatorname{coBar} \circ \operatorname{Bar}$ is an equivalence in a forthcoming project, using Ching's strategy (cf. [Chi12]) for spectral ∞ -operads.

Definition 2.2. The *coLie derived* ∞ *-cooperad* is defined as

$$co \operatorname{Lie}_{R,\Delta}^{\pi} := \operatorname{Bar}(\operatorname{Com}^{nu}).$$

The subscript Δ means that this is defined in the derived context in contrast to spectral context, while π hints the divided powers that do not show up yet.

The next step is to define derived partition Lie algebras by considering the *R*-linear dual of $co \operatorname{Lie}_{R,\Delta}^{\pi}$. However, the underlying module of $co \operatorname{Lie}_{R,\Delta}^{\pi}$ is not perfect. In fact, the underlying (non-derived) symmetric sequence of $co \operatorname{Lie}_{R,\Delta}^{\pi}$ is the same as usual shifted coLie cooperad over *R*, which means that $co \operatorname{Lie}_{R,\Delta}^{\pi}(p) = \Sigma^{p-1}R$ for $p \geq 1$. Thus, there is no good notion of duality for $co \operatorname{Lie}_{R,\Delta}^{\pi}$ -coalgebras. Nevertheless, $co \operatorname{Lie}_{R,\Delta}^{\pi}$ is almost perfect in sSeq_R^{en}. We can still obtain a meaningful duality by switching to the context of pro-coherent modules for suitable *R*.

Definition 2.3. Given \mathscr{A} an additive ∞ -category, a left A-module M is said to be *almost perfect* if, for every $n \in \mathbb{N}$, there exist some morphism $f_n : P_n \to M$ from a perfect module P_n such that $\operatorname{fib}(f_n)$ is n-connective.

Let $\operatorname{Aperf}_{\mathscr{A}} \subset \operatorname{Mod}_{\mathscr{A}}$ denote the full subcategory of almost perfect modules.

Intuitively speaking, an almost perfect module M is a bounded below module with finite generators on each degree. More precisely, $\text{Aperf}_{\mathscr{A}}$ is the smallest stable sub- ∞ -category of $\text{Mod}_{\mathscr{A}}$ that contains \mathscr{A} and closed under geometric realizations, cf. [Lur17, Proposition 7.2.4.11] for details.

There is a natural t-structure on $\operatorname{Mod}_{\mathscr{A}} = \operatorname{Fun}(\mathscr{A}^{op}, \operatorname{Sp})$ transported from Sp. An additive ∞ -category \mathscr{A} is said to be *left coherent* if $\operatorname{Aperf}_{\mathscr{A}}$ inherits a t-structure from that on $\operatorname{Mod}_{\mathscr{A}}$, *coherent* if both \mathscr{A} and \mathscr{A}^{op} are left coherent.

Definition 2.4. For a coherent \mathscr{A} , the ∞ -category of *pro-coherent* left \mathscr{A} -modules is defined as

$$QC_{\mathscr{A}}^{\vee} := Fun_{ex,conv}(Aperf_{\mathscr{A}^{op}}, Sp)$$

the ∞ -category of exact and *convergent*, where a functor F: Aperf_{\mathscr{A}} \to Sp is said to be *convergent* if, for every $X \in \operatorname{Aperf}_{\mathscr{A}^{op}}$, the natural morphism $F(X) \to \lim_{n \to \infty} F(\tau_{\leq n} X)$ is an equivalence.

The Yoneda functor induces a fully faithful embedding

$$\operatorname{Aperf}_{\mathscr{A}^{op}} \hookrightarrow \operatorname{QC}_{\mathscr{A}}^{\vee}$$

whose essential image $\operatorname{Aperf}_{\mathscr{A}}^{\vee}$ is called as *dually almost perfect left* \mathscr{A} *-modules*.

Example 2.5. Let R be a coherent animated ring. Then, the additive ∞ -categories $\operatorname{Vect}_R^{\omega}$, fil Vect_R , gr $\operatorname{Vect}_R^{\omega}$ and $R[\mathcal{O}_{\Sigma}]$ are all coherent. It gives rise to the ∞ -categories of (filtered, graded) pro-coherent R-modules $\operatorname{QC}_R^{\vee}$, Fil $\operatorname{QC}_R^{\vee}$ and $\operatorname{Gr} \operatorname{QC}_R^{\vee}$, and also the ∞ -category of *pro-coherent derived symmetric sequences* $\operatorname{sSeq}_R^{\operatorname{gen},\vee}$.

Additionally, these additive ∞ -categories are closed under *R*-linear dual (with respect to \otimes_{lev} for $R[\mathcal{O}_{\Sigma}]$), which induces contravariant autoequivalences.

The theory of right-left functors applies to pro-coherent modules as well.

Theorem 2.6 (Pro-coherent refinement of Theorem 1.6). There is a natural transformation of symmetric monoidal functors

sending each locally polynomial functor to its right-left derived functor.

Proof. Cf. [BCN21, Theorem 2.52].

Particularly, if \mathscr{A} has a locally polynomial (symmetric) monoidal structure, then the right-left functor exhibits on $QC_{\mathscr{A}}^{\vee}$ a sifted-colimit-preserving (symmetric) monoidal structure. In the framework of pro-coherent modules, (dually) almost perfect modules enjoy a good duality:

Proposition 2.7. Let \mathscr{A} be a coherent additive ∞ -category endowed with a nonunital symmetric monoidal structure \otimes preserving finite direct sums. Assume that the induced \otimes on $QC_{\mathscr{A}}^{\vee}$ admits an eventually connective unit 1, and each object in \mathscr{A} is dualizable with the dual object existing in \mathscr{A} . Then taking duals gives rise to an equivalence,

$$(-)^{\vee} := \hom_{\mathrm{QC}_{\mathscr{A}}^{\vee}}(-, \mathbb{1}) : \mathrm{Aperf}_{\mathscr{A}} \xrightarrow{\simeq} \mathrm{Aperf}_{\mathscr{A}}^{\vee, op}.$$

Proof. Cf. [BCN21, Proposition 2.55].

Powered by this duality, we are about to reach a statement like

The almost perfect coalgebras of some almost perfect derived ∞ -cooperd Q are equivalent to the dually almost perfect algebras of Q^{\vee} .

However, we should be careful about what kind of monad structure is put on \mathcal{Q}^{\vee} . Recall that the composite product $\circ sSeq_R^{gen,\vee}$ is defined by

$$M \circ N \simeq \bigoplus_{n \in \mathbb{N}} (M(n) \otimes N^{\otimes n})_{\Sigma_n}$$

where $(-)_{\Sigma_n}$ refers to the right-left derived functor of ordinary orbit. At the same time, its *R*-linear dual is

$$(M \circ N)^{\vee} \simeq \prod_{n \in \mathbb{N}} \left((M(n) \otimes N^{\otimes n})^{\vee} \right)^{\Sigma_n},$$

where $(-)^{\Sigma_n}$ referst to the derived functor of ordinary fixed points. It means that $(-)^{\vee}$ is not lax monoidal with respect to \circ . Instead, we should consider the *restricted product* $\overline{\circ}$ satisfying the formula

$$M \,\overline{\circ}\, N \simeq \bigoplus_{n \in \mathbb{N}} (M(n) \otimes N^{\otimes n})^{\Sigma_n}.$$

The restricted product is the origin of divided powers.

Definition 2.8. Let R be a coherent animated ring.

(1) A derived PD ∞ -operad over R refers to an \mathbb{A}_{∞} -algebra in (sSeq_R^{\text{gen},\vee}, $\bar{\circ}$).

(2) The *PD Koszul dual* of a reduced derived ∞ -operad \mathcal{P} is defined as $\mathrm{KD}^{\mathrm{pd}}(\mathcal{P}) := \mathrm{Bar}(\mathcal{P})^{\vee}$ with the natural derived PD ∞ -operad structure. More specially, $\mathrm{Lie}_{R,\Delta}^{\pi} := \mathrm{KD}^{\mathrm{pd}}(\mathrm{Com}^{nu})$ is called the *derived partition Lie operad*.

Roughly speaking, a *(derived) partition Lie algebra* L over R is a procoherent R module equpped with a left $\text{Lie}_{R,\Delta}^{\pi}$ -action

$$\mu: \oplus_{n\geq 1}(\operatorname{Lie}_{R,\Delta}^{\pi}(n)\otimes L^{\otimes n})^{\Sigma_n} \to L$$

3 A filtered Koszul duality of $\operatorname{Lie}_{R,\Delta}^{\pi}$ -algebras

The functoriality of Theorem 2.6 and the laxity of

$$(-)^{\vee}: (\mathrm{sSeq}_R^{\mathrm{gen},\vee,op},\circ) \to (\mathrm{sSeq}_R^{\mathrm{gen},\vee},\bar{\circ})$$

induces a commuting diagram of adjunctions as follows

$$\begin{array}{ccc} \mathrm{DAlg}^{nu}(\mathrm{QC}_{R}^{\vee}) & \xrightarrow[\mathrm{coBar}]{\mathrm{coBar}} & co\operatorname{Alg}_{co\operatorname{Lie}_{R,\Delta}^{\pi}}(\mathrm{QC}_{R}^{\vee}) & \xrightarrow[(-)^{\vee}]{\mathrm{coIim}} & \operatorname{Alg}_{\operatorname{Lie}_{R,\Delta}^{\pi}}(\mathrm{QC}_{R}^{\vee})^{op} \\ & \operatorname{adic} & & (-)_{1} & & f^{1} & & \operatorname{const} & \operatorname{fcoIim} \\ \end{array} \\ \begin{array}{ccc} \mathrm{Alg}^{nu}(\mathrm{Fil}_{\geq 1} \operatorname{QC}_{R}^{\vee}) & \xrightarrow[\mathrm{coBar}]{\mathrm{coIim}} & co\operatorname{Alg}_{co\operatorname{Lie}_{R,\Delta}^{\pi}}(\mathrm{Fil}_{\geq 1} \operatorname{QC}_{R}^{\vee}) & \xrightarrow[(-)^{\vee}]{\mathrm{coIim}} & \operatorname{Alg}_{\operatorname{Lie}_{R,\Delta}^{\pi}}(\mathrm{Fil}_{\leq -1} \operatorname{QC}_{R}^{\vee})^{op} \\ & & & \operatorname{Gr} & & & \operatorname{Gr} & & \\ \end{array} \\ \begin{array}{ccc} \mathrm{Gr} & & & & \operatorname{Gr} & & \\ \mathrm{Gr}_{\geq 1} \operatorname{QC}_{R}^{\vee}) & \xrightarrow[\mathrm{coBar}]{\mathrm{co}\operatorname{Lie}_{R,\Delta}^{\pi}} & co\operatorname{Alg}_{co\operatorname{Lie}_{R,\Delta}^{\pi}}(\mathrm{Gr}_{\geq 1} \operatorname{QC}_{R}^{\vee}) & \xrightarrow[(-)^{\vee}]{\mathrm{coim}} & & \operatorname{Alg}_{\operatorname{Lie}_{R,\Delta}^{\pi}}(\mathrm{Gr}_{\leq -1} \operatorname{QC}_{R}^{\vee})^{op} \end{array} \end{array}$$

Here, $(-)^i$ is formally given by the adjoint functor theorem, whose underlying module can be calculated as $(L)^{\vee}$ for dually almost perfect L. The functor const send partition Lie algebras L to $(L \xrightarrow{id} L \to ...)$ the constant filtered algebras, where colim (F_*L) is taking the underlying object.

Definition 3.1. The Hodge-filtered Chevalley–Eilenberg complex \widetilde{C}^* is defined as the composition

$$\left(\widetilde{C}^* := \operatorname{coBar} \circ (-)^{\mathsf{i}} \circ \operatorname{colim}\right) : \operatorname{Alg}_{\operatorname{Lie}_{R,\Delta}^{\pi}}(\operatorname{QC}_R^{\vee}) \to \operatorname{DAlg}^{nu}(\operatorname{Fil}_{\geq 1} \operatorname{QC}_R^{\vee})^{op}.$$

The filtration on \widetilde{C}^* is always complete by construction, and this functor sends sifted colimits to sifted limits. When R is a regular ring over \mathbb{Q} , $\operatorname{Alg}_{\operatorname{Lie}_{R,\Delta}^{\pi}}(\operatorname{QC}_{R}^{\vee})$ agrees with the ∞ -category of (shifted) dg-Lie algebras over R, and \widetilde{C}^* can be modeled by the explicit filtration defined before.

Theorem 3.2. There is a fully faithful embedding

$$\widetilde{C}^*$$
: Alg_{Lie^π_R} (Aperf^{\nee}_R) \hookrightarrow DAlg^{nu}(Fil_{≥1} QC^{\nee}_R)^{op},

whose essential image consists of complete $A \to R$ such that $\operatorname{Gr}_1 A$ is almost perfect over R, and the natural morphism $\operatorname{LSym}_R(\operatorname{Gr}_1)A \to \operatorname{Gr} A$ of graded algebras is an equivalence.

Sketch of proof. (Cf. [Fu24, Theorem 3.25]) The functor const is obviously fully faithful, so we can consider the filtered $\text{Lie}_{R,\Delta}^{\pi}$ -algebras in the form of

$$(L \xrightarrow{id} L \to \ldots)$$

with L dually almost perfect. Its dual is a complete filtered $co \operatorname{Lie}_{R,\Delta}^{\pi}$ -colagebra

$$\ldots \to 0 \to L^{\vee},$$

whose graded pieces form a trivial coalgebra. Then, we show that coBar sends a trivial graded $co \operatorname{Lie}_{R,\Delta}^{\pi}$ -coalgebra C to the free graded derived algebra $\operatorname{LSym}_R C$. By our construction, Gr commutes with everything, so $\operatorname{Gr} \widetilde{C}^*(L) \simeq \operatorname{LSym}_R L^{\vee}$ as graded drived algebras.

The above calculation shows that $\mathrm{KD}^{\mathrm{pd}} \circ \widetilde{C}^*(L)$ is a constant filtered $\mathrm{Lie}_{R,\Delta}^{\pi}$ algebra whose underlying algebra is L itself.

Example 3.3. Set $k = \mathbb{F}_2$ the field with two elements. The homotopy operations on a $\operatorname{Lie}_{k,\Delta}^{\pi}$ -algebra L concentrating in degree 0 and 1 consist of $([-, -], (-)^{\{2\}})$ a restricted Lie structure on $\mathfrak{g}_1 := \pi_1(L)$, a \mathfrak{g}_1 -representation structure on $\mathfrak{g}_0 := \pi_0(L)$ and a new additive operation $R^1 : \mathfrak{g}_1 \to \mathfrak{g}_0$.

$$\begin{bmatrix} -,- \end{bmatrix} \bigcirc^{l} \mathfrak{g}_{1} \longrightarrow (-)^{\{2\}} \\ \downarrow \mathbb{R}^{1} \\ [\mathfrak{g}_{1},-] \bigcirc^{l} \mathfrak{g}_{0}$$

For instance, the Frobenius kernel $\mu_2 := \ker(\mathbb{G}_{m,k} \xrightarrow{(-)^2} \mathbb{G}_{m,k})$ is an infinitesimal group with the underlying scheme $\operatorname{Spec}(k[x]/(x^2))$. The formal moduli problem $B\mu_2$ correspond to a $\operatorname{Lie}_{k,\Delta}^{\pi}$ -algebra $L \simeq k.D_1 \oplus k.D_0$ with $|D_i| = i$. Its homotopy operations are determined by $[D_i, D_j] = 0$, $(D_1)^{\{2\}} = D_1$ and $R^1(D_1) = D_0$, cf. [Fu24, §3.4] for details.

References

- [BCN21] Lukas Brantner, Ricardo Campos, and Joost Nuiten. PD operads and explicit partition Lie algebras. arXiv preprint arXiv:2104.03870, 2021.
- [BM19] Lukas Brantner and Akhil Mathew. Deformation theory and partition Lie algebras. arXiv preprint arXiv:1904.07352, 2019.

- [CE48] Claude Chevalley and Samuel Eilenberg. Cohomology theory of Lie groups and Lie algebras. Transactions of the American Mathematical society, 63(1):85–124, 1948.
- [Chi12] Michael Ching. Bar-cobar duality for operads in stable homotopy theory. *Journal of Topology*, 5(1):39–80, 2012.
- [Fu24] Jiaqi Fu. A duality between lie algebroids and infinitesimal foliations. arXiv preprint arXiv:2410.04950, 2024.
- [Hin01] Vladimir Hinich. DG coalgebras as formal stacks. Journal of pure and applied algebra, 162(2-3):209–250, 2001.
- [Lur11] Jacob Lurie. Derived algebraic geometry X: Formal moduli problems. Preprint from the web page of the author, 2011.
- [Lur17] Jacob Lurie. Higher algebra, 2017.
- [MT91] Mamoru Mimura and Hiroshi Toda. *Topology of Lie groups, I and II*, volume 91. American Mathematical Soc., 1991.
- [Pri10] Jon Pridham. Unifying derived deformation theories. Advances in Mathematics, 224(3):772–826, 2010.
- [Rak20] Arpon Raksit. Hochschild homology and the derived de Rham complex revisited. *arXiv preprint arXiv:2007.02576*, 2020.
- [TV23] Bertrand Toën and Gabriele Vezzosi. Algebraic foliations and derived geometry: the Riemann-Hilbert correspondence. Sel. Math., New Ser., 29(1):47, 2023. Id/No 5.