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1 ORIENTATION CORRECTION
As the Quad Frustum Space (QFS) is centered around (0, 0,−1), our
rotation range can only support front-facing orientations. Thus, the
3D orientation vectors of quad proxy planes can be transformed into
a 2D \ − 𝜙 subspace of the spherical coordinate system (Fig. 1(a)).
The resulting orientation range is a symmetrical shape in the \ − 𝜙
space that we determine through sampling (Fig. 1(b)). This shape
is very close to a diamond with only slightly convex curves, which
allows for an efficient conservative approximation using straight
lines. If we detect an out-of-range orientation—a point outside of
the supported orientation range shape—we obtain the minimally
intrusive orientation correction by taking the line from the orienta-
tion towards the origin of the \ −𝜙 space and intersecting it with the
shape describing the supported rotation ranges. In our experiments,
the overcorrection of the rotations is very small in practice. As every
QFS centers the quad frustum around the Z axis, the ranges are in-
variant to the screenspace location of the quad proxy and therefore
depend only on the quad proxy’s size.
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Fig. 1. The orientation of quad proxy planes is transformed into a 2D sub-
space of the spherical coordinate system. This subspace enables to easily
correct extreme orientations.

2 ADDITIONAL FIGURES
Figure 2 and 3 show extended figures of the main evaluation figures
from the paper.

3 IMPLEMENTATION
In this section we discuss implementation details of the QuadStream
pipeline, depicted in Fig. 4.

In our implementation, we sample the view cell for a set of views,
from which we construct G-Buffers; the G-Buffers are used to con-
struct quad proxies for the given projection, potentially splitting
a quad proxy into multiple planes to capture disjoint surfaces. We
internally arrange the quad proxies into a server-only data structure,
called the quad map, which we process to merge neighboring quads
and then bin the merged results according to size. After processing
the initial view, each following proxy view works adds only yet-
uncaptured surfels to the quad map. Each stage of the quad proxy
processing pipeline is run in compute shaders. When processing of
all proxy views is completed, we traverse the quad map in parallel
and arrange the binned surfels into an atlas texture. The atlas texture
is then compressed and streamed over the network to the client.

3.1 Construction and Splitting
Construction and splitting of quad proxies from the G-Buffer is
performed in a compute stage, which operates on rectangular blocks
of texels of size 𝑏𝑥 , 𝑏𝑦 in the G-Buffer. While our method works in
parallel, we outline a serial algorith for clarity (Alg. 1). We use a
single warp per texel block of size 𝑏𝑥 = 𝑏𝑦 = 2 plus 1 texel boundary,
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Fig. 2. A comparison of the novel view renderings for San Miguel.

i.e. 4 × 4 texels. The block texels, together with the boundary, form
the surfel pool of the block.
After loading the surfel pool from the G-Buffer, we construct a

local shared-memory fixed-size array of size (𝑏𝑥 + 2) × (𝑏𝑦 + 2)
and populate it with candidate quad planes for voting (48 bits per
element, line 2). Surfels are assigned to candidate quad-planes by a
two-stage voting and matching process. First, we construct a set of
candidate quad planes, one from each surfel (line 4). Each surfel then
votes on the fitness of each candidate plane, iterating over shared
memory (line 8). During the voting process, each surfel computes its
projected depth offset to the candidate plane; if the offset is below
the threshold 𝛿max, the energy of the quad candidate is increased.
After all surfels vote, we synchronize the threads and perform in-
block parallel sorting of the candidate quad plane array based on
the evaluated fitnesses. At this point, the quad fitness expresses how
well the given quad approximates the geometry of all surfels within
each processing block.
In the second stage, each surfel traverses the sorted candidate

quad array looking for the first match onto which it projects within
𝛿max. Upon finding such a candidate, the surfel marks its G-Buffer
coordinates into the internal memory of the quad candidate (line 13).
Since the quad candidates are sorted according to their fitness, the
candidates which best approximate the whole surface are prioritized.
The output of this stage is 1 to (𝑏𝑥 + 2) × (𝑏𝑦 + 2) planes stored
in a quad map—a 3D buffer which follows the spatial layout of the
G-Buffer. For a G-Buffer with resolution (𝑔𝑥 × 𝑔𝑦 ), the quad map
dimensions are ( 𝑔𝑥

𝑏𝑥
,
𝑔𝑦

𝑏𝑦
, (𝑏𝑥 + 2) × (𝑏𝑦 + 2)). The quad map is used

only by the server; it is not streamed to the client, nor used for novel
view extrapolation.

ALGORITHM 1: Quad Construction

1 load (𝑆𝑢𝑟 𝑓 𝑒𝑙𝑃𝑜𝑜𝑙 )
2 shared 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑄𝑢𝑎𝑑𝑠[]
3 for 𝑠 ← 𝑆𝑢𝑟 𝑓 𝑒𝑙𝑃𝑜𝑜𝑙 do
4 𝑝 ← 𝑠 .constructQuadPlane()
5 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑄𝑢𝑎𝑑𝑠 .emplace(𝑝)
end

6 for 𝑠 ← 𝑆𝑢𝑟 𝑓 𝑒𝑙𝑃𝑜𝑜𝑙 do
7 for 𝑔← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑄𝑢𝑎𝑑𝑠 do
8 𝑠 .voteFitness(𝑔, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

end
end

9 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑄𝑢𝑎𝑑𝑠 .sort()
10 for 𝑠 ← 𝑆𝑢𝑟 𝑓 𝑒𝑙𝑃𝑜𝑜𝑙 do
11 for 𝑔← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑄𝑢𝑎𝑑𝑠 do
12 if 𝑠 .distance(𝑔) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
13 𝑔.assignSurfel(𝑠)

end
end

end
14 global 𝑓 𝑖𝑛𝑎𝑙𝑄𝑢𝑎𝑑𝑠[]
15 for 𝑔← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑄𝑢𝑎𝑑𝑠 do
16 if not 𝑠 .surfels.empty() then
17 𝑓 𝑖𝑛𝑎𝑙𝑄𝑢𝑎𝑑𝑠 .emplace(𝑔)

end
end

3.2 Merging & Flattening
Groups of neighbouring quads are identified and merged by process-
ing the 3D quadmap on the GPU. ⌊𝑙𝑜𝑔(𝑚𝑖𝑛(𝑔𝑥 , 𝑔𝑦))⌋+1 consecutive
compute kernels are iteratively launched which operate in parallel.
Each kernel launch 𝑙 loads 4 neighboring quad proxies with a stride
of 2𝑙 . We split the warps into groups of 4 threads, where each thread
loads all final quad planes for the four neighboring quads. We un-
project each quad plane back into viewspace, load them into shared
memory, and perform comparison of the quad plane parameters. If
the computed parameter difference is under a fixed plane similarity
threshold 𝑡𝑆𝑖𝑚 (we use 0.1), we use the 4 planes to compute the
average plane (by averaging the plane parameters) and mark it as
ready for processing in the next kernel launch level. If merging of
four neighbors is not possible or we reached the last kernel launch
𝑙 = ⌊𝑙𝑜𝑔(𝑚𝑖𝑛(𝑔𝑥 , 𝑔𝑦))⌋ + 1 we then transform the planes back into
Quad View Space for the merged quad proxy, retrieve each surfel
of the merged sub-quads, and recompute the surfel depth offsets
projected onto the new quad plane. At this point we have success-
fully determined the final size of the quad proxy and we increase
an atomic counter for the bin corresponding to its size in order to
mark the position of the surfels in the final atlas texture. We again
provide a serial pseudo algorithm in Alg. 2.
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Fig. 3. A comparison of the novel view renderings for all tested methods. FLIP [Andersson et al. 2020] perceptual error was used, measured against ground
truth for the novel view. The atlases used by each method are rendered at equivalent resolution. Note that we both require significantly fewer samples than
previous methods and make more efficient use of texture space in the packed atlas, while also improving on FLIP error vs ground truth for these novel views.
Please zoom in for details.
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Fig. 4. QuadStream server pipeline: We iterate over a set of sampled views
in a view cell; for each view we render a G-Buffer, construct quad proxies
following the rectangular grid of the view projection plane, merge suitable
neighboring quad proxies, and potentially flatten them. After obtaining
a set of quad proxies for all views in the view cell, we construct an atlas
containing both the geometry and shading data and stream it to the client
device. The client uses this package to render novel views and thus perform
framerate upsampling.

ALGORITHM 2: Quad Merging

1 for (𝑥, 𝑦) ∈ (𝑔𝑥 /2𝑙 , 𝑔𝑦/2𝑙 ) do
2 𝑄proxies [4] ←loadNeighbours(𝑥 ,𝑦,𝑙 )
3 for𝑄bLeft ∈ 𝑄proxies [0] do
4 for𝑄bRight ∈ 𝑄proxies [1] do
5 for𝑄tLeft ∈ 𝑄proxies [2] do
6 for𝑄tRight ∈ 𝑄proxies [3] do
7 if similarEnough(simThreshold) then
8 merge(𝑄bLeft,𝑄bRight,𝑄tLeft,𝑄tRight )
9 𝑄proxies [0].remove(𝑄bLeft)

10 𝑄proxies [1].remove(𝑄bRight)
11 𝑄proxies [2].remove(𝑄tLeft)
12 𝑄proxies [3].remove(𝑄tRight)

end
end

end
end

end
13 for 𝑖 ← 0 : 3 do
14 if not𝑄proxies [𝑖 ].empty() then
15 for 𝑝 ← 𝑄proxies [𝑖 ] do
16 if allSurfelsBelowDepth(𝑝 .surfels, dMaxOff) then
17 flattenQuadProxy(𝑝)

end
18 𝑝 .positionInBin← nextFreeBinPosition(𝑝 .size)

end
end

end
end

3.3 Adding Proxy Views
After computing the quad proxy set for the initial view, we augment
it by constructing additional quad proxies from offset viewpoints
which contribute only the disoccluded areas not yet captured in
our quad proxy set (Fig. 4). For each additional proxy view sampled
from the view cell, we first fill the depth buffer using the quad
proxy set that we obtained so far. This is used as an early fragment
rejection step for constructing a G-Buffer for the offset viewpoint.
We then execute the Quad construction, split, merge and flatten
step for the areas of the G-Buffer where new surfels were captured.
As a last proxy view we use a low-resolution wide FOV projection

encompassing the whole view cell to further reduce the possibility
of disocclusion artifacts appearing in the novel views.

3.4 Atlas Construction & Encoding
After all proxy views are processed, we traverse the quad map in
order to arrange the surfels into our raw atlas textures. To this end,
we launch a compute shader that traverses the quad map and queries
the atlas position of each quad within the bin. Since we work on a
very small number of bins (10 bins, supporting a max quad size of
210, one bin per each power of two) and we have their occupancy, we
determine the per-bin offsets into the shading atlas on the CPU. We
ensure to keep a maximum overlap with memory allocations from
the previous frame, i.e., allow for padding to create more overlap.
We then launch a first kernel to determine which allocations from
the previous frames can be reused. To this end, we identify whether
a quad proxy of same size has been generated at the same location
inside the same offset view. If this is the case and the allocation still
falls inside the atlas area assigned to the bin, we mark the allocation
for reuse. In a second kernel launch, we traverse the quad map,
allocate atlas locations for those quad proxies which do not reuse
allocations, load the corresponding surfels for each quad and stitch
them together in the final atlas texture. After obtaining the final
raw textures, we compress them as described in Sec. 4.6 pack them
for streaming to the client.

3.5 Client Rendering
The client rendering can be implemented in three ways: using tes-
sellation shaders, fragment shaders (with ray-marching) or mesh
shaders. Depending on the capabilities of the client GPU, different
implementations are preferable. We at first describe the implemen-
tation for NVIDIA GPUs, followed by the discussion for current
mobile GPUs. Although it is possible to process all quad proxies with
only one approach, rendering flattened quad proxies using mesh
or tessellation shaders is highly inefficient. We therefore process
flattened quad proxies using a standard pipeline consisting of vertex,
geometry and fragment shaders. We use mesh shaders only for the
non-flattened quad proxies.
Using mesh shaders, we reconstruct the geometry for a single

view directly from the received quad proxy buffer. We load a single
quad proxy per task shader invocation (non-flattened) or per ge-
ometry shader invocation (flattened). For the case of a quad proxy
that is a flattened quad (that is, it has no associated surfels), we un-
project the quad plane back into world space using the B−1 matrix
and matrices of projection P from its corresponding proxy view;
intersect it with the associated QuadFrustum to spawn four corner
vertices; and finally transform the corner vertices using the camera
parameters of the novel view. For each vertex with 2D index 𝑣𝑥 , 𝑣𝑦 ,
we determine its normalized UV coordinates on the plane surface
as 𝑢𝑞 = (𝑣𝑥 1

𝑤−1 ) −
1
2𝑣𝑞 = (𝑣𝑦 1

ℎ−1 ) −
1
2 . For a quad proxy centered

around G-Buffer texel coordinates 𝑠𝑥 , 𝑠𝑦 and G-Buffer resolution
𝑟𝑥 , 𝑟𝑦 , we obtain the vertex global UV coordinates in the G-Buffer
𝑢𝑔 = 𝑢𝑞 × 𝑤

𝑟𝑥
+ 𝑔𝑥

𝑟𝑥−1 , 𝑣𝑔 = 𝑣𝑞 × ℎ
𝑟𝑦
+ 𝑔𝑦

𝑟𝑦−1 . The view-ray for the
given vertex in Quad View Space is then defined by two points:
𝑅𝐴 = BP−1

[
𝑢𝑔 𝑣𝑔 𝑛𝑒𝑎𝑟𝑍

]
and 𝑅𝐵 = BP−1

[
𝑢𝑔 𝑣𝑔 𝑓 𝑎𝑟𝑍

]
.

We obtain the intersection point between the view ray and quad
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plane I =
[
𝑖𝑥 𝑖𝑦 𝑖𝑧

]
, project it to clip space 𝐼𝑐𝑙𝑖𝑝 = P ×

[
𝐼 1

]
and obtain its depth 𝐷 =

𝐼𝑐𝑙𝑖𝑝𝑍
𝐼𝑐𝑙𝑖𝑝𝑊

. The vertex then queries the atlas
texture for its depth offset𝑑 and obtains its final depth𝐷 𝑓 𝑖𝑛𝑎𝑙 = 𝐷+𝑑
in projection 𝑃 . We then unproject this surfel back to world space,
from Quad View Space, via the view space.
The Quest 2 is capable of achieving its 72 FPS target framer-

ate at the suggested eye resolution (1440×1584) while rendering
as many as 700k–1M triangles each frame. To unlock this perfor-
mance, we enable dynamic fixed foveation rendering and further
avoid tessellation/geometry shaders to enable compatibility with the
OVR_multiview extension. Instead, we unpack and pre-tessellate re-
ceived QuadStream buffers to yield necessary per-vertex attributes
(position + UV) which we store in a vertex buffer. Doing so takes
19ms for Robot Lab and 25ms for San Miguel, however, note that
these tasks must only run once for each received capture, and can
be implemented as part of a background task for handling input
stream updates. Finally, we disable costly order-independent blend-
ing between quads; instead, we pre-fill the color buffer by solidly
rendering all quads marked as transparent and discarding associated
depth buffer updates. For scenes with only opaque objects, doing so
suffices to remove any visible gaps between quads.
Similar to other mobile GPU architectures, the XR2 chip of the

Quest 2 bins triangles before performing tiled rendering. Due to
the high number of triangles and the simple fragment shading, a
significant amount of each frame (23−28%) was spent in the binning
stage in both scenes. However, we observed that the implicit spatially
ordered layout of quads in the buffer and atlas already alleviates

this burden: compared to an input with the same quads ordered
randomly, binning completes almost 50% faster when processing
the spatially organized quads in our captures.

3.5.1 Shading and Transparency. As our quad proxies may require
correctly ordered alpha blending, we use a 3-stage process to recon-
struct them on the client. First, we render all opaque quad proxies;
next, we render all transparent quad proxies into a separate frame
buffer. We then composite the two buffers together. The metadata
of each quad proxy tells us whether it is opaque or transparent,
allowing us to efficiently avoid processing unnecessary vertices and
fragments. In the transparent rendering stage, we use atomics to
capture the 𝑁 closest fragments and their color. We use the depth
map from the opaque pass for early Z rejection in the transparency
pass; the stencil buffer from the transparent pass is used for mask-
ing fragment execution in the composition pass, and we launch
work only where the transparency buffers are not empty. We note
that fully resolving transparency is necessary only around object
silhouettes and transparent objects. For non-transparent scenes, our
quad merging strategy conveniently places small quads around the
silhouettes of most objects (the exception being a flattened quad), so
transparency resolution is executed only for the few pixels necessary
around object boundaries.
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