
Guarded Action Language

Yann Thierry-Mieg1

LIP6, CNRS UMR 7606, Université P. & M. Curie – Paris 6
4 place Jussieu, F-75252 Paris Cedex 05, Franceyann.thierry-mieg@lip6.fr

Abstract. This paper presents the Guarded Action Language, a simple yet ex-
pressive and compact language to represent the semantics of concurrent speci-
fications. GAL is natively supported by ITS-tools, an efficient symbolic model-
checker supporting both CTL and LTL. GAL is designed to be the target in a
transformation process from diverse formalisms. This document is areference
for the actual semantics.

1 Introduction

We present the Guarded Action Language (GAL), specifically designed to easily ex-
press a wide range of concurrent semantics. It is supported natively by the efficient
symbolic model-checker ITS-tools. GAL defines no high-level concepts (no explicit
notion of process, channel, . . .), but it offers a lot of flexibility when defining the atom-
icity of operations and compactly expresses non determinism.

We first give an overview of our toolset and its model-checking features in section 2.
We then formally define GAL and its semantics, then its parametric features in section 3.

2 Tool principles

The ITS-toolsform a toolset allowing symbolic model-checking (LTL, CTL,reacha-
bility) for a variety of input formalisms. It supports a composition model called In-
stantiable Transition Systems (ITS [16]), as well as a variety of Petri net extensions or
dialects, and their compositions. We focus in this paper on GAL, a new input language,
both flexible and expressive, for theITS-tools.

2.1 Back-end: ITS-tools

The ITS-toolsrely on Data Decision Diagrams (DDD [7]) and hierarchical Set Deci-
sion Diagrams (SDD [8]) to provide efficient representations of sets of states. So far,
GAL is encoded in DDD only. Operations on these decision diagrams are encoded us-
ing homomorphisms, which the library can automatically anddynamically rewrite to
produce saturation effects in least fixpoint computations [11] and to enable evaluation
of complex expressions [5].

The tool its-reachcan compute reachable states, and shortest witness paths (one
or more if so desired) to target states designated by a boolean predicate. It can also

perform bounded depth exploration of a state space (a.k.a. bounded model-checking).
It implements several heuristics to compute a static variable order for the input model.

The toolits-ctl performs verification of CTL properties (though fairness constraints
are currently not supported). It reuses a component of VIS [3] to transform input formu-
lae into forward CTL form [12]. Forward CTL often allows (butnot always) to use the
forward transition relation alone, which is easier to compute than the backward (prede-
cessor) transition relation. When a statement destroys information (i.e. is not reversible),
backward exploration requires to compute potential domains for variables, based on the
set of reachable states. This leads to an over-approximation, whose refinement is costly
as it requires to intersect decision diagrams (see [4] for more details). Hence forward
CTL verification is more efficient in general, and furthermore many subproblems can
be solved using least fixpoints (e.g. Forward Until) that benefit from saturation at DD
level.

The toolits-ltl performs hybrid (i.e. that build an explicit graph in which each node
stores a set of states as a decision diagram) or fully symbolic verification of LTL prop-
erties. The transformation of the formula into a Büchi automaton and the emptiness
checks of the product for hybrid approaches rely on Spot [13], considered one of the
best tools for this job [14]. Fully symbolic model-checkinguses forward variants of
Emerson-Lei [10] or One-Way Catch Them Young [15]. The hybrid approaches ef-
ficiently exploit saturation and often outperform fully symbolic ones [9]. When the
property is stuttering invariant (e.g.LTL\X) we also offer optimized fully symbolic
algorithms that exploit saturation [2].

TheITS-toolsis free software and was first released in 2009, and it contains roughly
170 klocs of C++. Through our continuous integration platform, we package and dis-
tribute up-to-date binary distributions for common platforms (MacOS 32 or 64, Linux
32 or 64, Windows 64). A set of user-friendly Eclipse pluginsembedding theITS-tools
is also freely available. It includes an Xtext based rich editor (on-the-fly syntax check,
auto-complete, quickfix...) for textual GAL models (and nowTimed Automata in Up-
paal XTA format) as well as a graphical tool for drawing Petrinets, and a wrapper
invoking theITS-toolsfrom Eclipse.

To ease the interaction with this efficient symbolic back-end, we recently focused on
building a general-purpose language to model concurrent specifications with data (ar-
rays, arithmetic. . .). The bridge between this language andthe back-end notably relies
on the expressive symbolic operations defined in [5].

2.2 Front-end: Guarded Action Language

To allow theITS-toolsto capture several formalisms we define a simple yet expres-
sive general-purpose language, that essentially describes a generator for a finite Kripke
structure, with as few assumptions as possible on existenceof high-level concepts such
as processes or channels. As such, although direct modelingin GAL is possible, it is
mainly intended to be the target of a model transformation from a language closer to
the end-users.

This choice is aligned with current software engineering trends. Model-driven engi-
neering (MDE) proposes to define domain specific languages (DSL), which contain
a limited set of domain concepts [17]. This input is then transformed using model

transformation technology to produce executable artifacts, tests, documentation or to
perform specific validations. In this setting, GAL is designed as a convenient target
formally expressing model semantics. Its syntax respects standards in programming
languages (close to C or Java syntax), but has features expressing concurrency, synchro-
nizations and fine control over atomicity of operations. With its symbolic back-end, it
helps to bridge the gap between industrial specifications expressed using a DSL and
symbolic model-checking tools.

With the rising importance of MDE in industrial practice, supporting such transfor-
mation based approaches helps to reduce adoption cost of formal methods in software
engineering processes. From this point of view, the user builds a translation to GAL
from another language. Textual GAL files can of course be built directly, but we also
offer an EMF [1] compliant meta-model of GAL that can be used in conjunction with
MDE tools and manipulated programmatically in Java. Several rewriting rules then per-
form simplification and optimization of GAL models, that benefit all input formalisms.
The reduced GAL model can then be used for model-checking using ITS-tools.

In this paper, we show through two examples (the input languages of Divine and
Uppaal) how to build such a transformation to GAL. They highlight the semantic fea-
tures of GAL that make it a good target for such a transformation approach.

3 Guarded Action Language

3.1 Definition

Syntax. GAL offers a rich signature consisting of all C operators formanipulation of
theint data type and of arrays (including nested array expressions). There is no explicit
support for pointers, though they can be simulated with an array heapand indexes into
it. An example of a GAL system that uses its concrete textual syntax is given in Fig.??.

We omit the definition details related to arithmetic and Boolean expressions, that
have the same syntax and semantics as in the C language. We useC 32 bit signed
integer semantics, with overflow effects; this ensures all variables have a finite (if large
232) domain. We assumeZ= [−231, . . . ,231−1] in the following.

Given a set of variables and of arrays, the setInte of integer expressions is the
smallest set containing integers (constants), variables,array access expressions (an ar-
ray name and an expression for the target index), the combinations of expressions with
binary operators+ (add),∗ (multiply), / (divide), % (modulo),− (minus),≪ (left-
shift), ≫ (right-shift), ∧ (bitwise xor),| (bitwise or), & (bitwise and), unary minus−
and bitwise complement ˜ of an integer expression.

Boolean expressionsBoole are inductively defined using constantstrue, false, com-
parisons using< (strictly less than),<= (less than),== equals, != (differs), >=
(greater than),> (strictly greater) between two integer expressions, as well as Boolean
combinations using && (and),|| (or),=> (implies) of two Boolean expressions, or the
! (negation) of a Boolean expression. They can also be embedded into integer expres-
sions,true being interpreted as 1 andfalse as 0.

GAL transition effects are described by statements inStat, a set inductively built:

– 〈lhs= rhs〉 an assignment of an integer expressionrhs to a variable or to the cell of
an array designated bylhs,

– 〈swap(l , r)〉 swaps the values of variables or array cells designated byl andr,

– 〈σ1; . . . ;σk〉 a sequence ofk semi-colon separated statements. We notenop (no-
operation) the empty sequence of statements,

– 〈ite(c,σt ,σ f)〉 a conditional if-then-else statement, withc ∈ Boole and two state-
mentsσt andσ f to be executed depending on the truth value ofc,

– 〈 f ixpoint(l)〉 a fixpoint or transitive closure statement, wherel (loop body) is a
statement to be repeatedly executed until the behavior converges,

– 〈abort〉 a statement that drops current exploration, yielding no successors,

– 〈call(λ)〉 a call statement to a labelλ, that non-deterministically invokes one of the
transitions labeledλ. Note that circularcall expressions are forbidden, disallowing
recursion.

Assignments and control structures defined above are very standard and behave as
usual. The swap statement is introduced because GAL lack temporary variables. The
call(λ) statement models non-determinism; the transition chosen is any transition bear-
ing labelλ, allowing a state to have several successors. Theabort statements produces
the empty set of successors. More formally:

Definition 1. A GAL system over a set Lab of labels containing⊤ is a tupleG = 〈Vars,
Arrays,Trans〉 where:

– Vars is a set of integer variables,

– Arrays is a set of integer arrays; for a∈ Arrays, we let|a| designate its fixed size,

– Trans⊆ Lab×Boole×Stat is a set of transitions; for t= 〈λ,g,σ〉 ∈ Trans,λ∈ Lab
is the label of t, g∈ Boole is theguardof t, andσ ∈ Stat is thebodyof t.

Semantics.The semantics of GAL is defined as a transition system whose set of states
is S = Z|Vars|×Πa∈ArraysZ

|a|, giving a value to each variable and array cell. Because
Z is assumed to be finite,S is finite (resolving most decidability issues). Interpretation
e(s) of an expressione in a states yields a constant value belonging to the range ofe
(integer or boolean). Whenlhs designates the left-hand side of an assignment, it must
be either a variable (x) or an array access expression (tab[i]). In either case we letlhs(s)
denote the fully resolved variable, when interpreting the array index expression in state
s. Conversely for any variable or array cellv, we notes[v] the value ofv in states.

The semantics of statements and transitions are defined co-inductively.

Definition 2. Let G = 〈Vars,Arrays,Trans〉 be a GAL system over Lab. We noteS =
Z

|Vars|×Πa∈ArraysZ
|a| the set of states ofG . We define co-inductively semantics of state-

ments∆stat ⊆ 2S ×Stat×2S and semantics of transitions∆trans⊆ 2S ×Trans×2S as
follows:

– for S,S′ ⊆ S andσ ∈ Stat,〈S,σ,S′〉 ∈ ∆stat if and only if































































































































if σ = 〈lhs= rhs〉,S′ is the least subset ofS satisfying∀s∈ S,∃s′ ∈ S′ such that

s′[lhs(s)] = rhs(s)∧∀v 6= lhs(s),s′[v] = s[v]

if σ = 〈nop〉, S′ = S

if σ = 〈σ1; . . . ;σk〉,∃S0 . . .Sk ⊆ S

S0 = S,Sk = S′,∀i ∈ [0. . .k−1],〈Si ,σi ,Si+1〉 ∈ ∆stat

if σ = 〈swap(l , r)〉,S′ is the least subset ofS satisfying∀s∈ S,∃s′ ∈ S′ such that

s′[l(s)] = r(s)∧s′[r(s)] = l(s)∧∀v 6= l(s)∧v 6= r(s),s′[v] = s[v]

if σ = 〈ite(c,σt ,σ f)〉,let Sc = {s∈ S| c(s)} and S¬c = S\Sc,

S′ = S′c∪S′¬c, where〈Sc,σt ,S′c〉,〈S¬c,σ f ,S′¬c〉 ∈ ∆stat

if σ = 〈 f ixpoint(l)〉,∃ n∈N,∃ S0 . . .Sn ⊆ S ,

S0 = S,Sn = S′,∀i ∈ [0. . .n−1],〈Si , l ,Si+1〉 ∈ ∆stat

and〈Sn, l ,Sn〉 ∈ ∆stat and∄k< n,〈Sk, l ,Sk〉 ∈ ∆stat

if σ = 〈call(λ)〉, let Tλ ⊆ Trans designate transitions with labelλ,
S′ =

⋃
t∈Tλ

S′t | 〈S, t,S
′
t〉 ∈ ∆trans

if σ = 〈abort〉, S′ = /0
– for S,S′ ∈ S and t = 〈λ,g,σ〉 ∈ Trans, 〈S, t,S′〉 ∈ ∆trans if and only if 〈{s∈ S |

g(s)},σ,S′〉 ∈ ∆stat

We now define the semantics ofG as a transition systemJGK = 〈S ,T〉 such that T⊆
S ×S . We define T as union of transitions labelled by⊤:
T =

⋃
s∈S {〈s,s′〉|∃〈{s}, t,S′〉 ∈ ∆trans∧s′ ∈ S′∧ t has label⊤}.

Linearity. The semantics of∆stat is defined in terms of sets of states in 2S , thus closely
matching the underlying symbolic operations. The definitions of statement semantics
are all linear (with respect to∪) to the input set, i.e.∀S1,S2⊆ S ,〈S1,σ,S′1〉 and〈S2,σ,S′2〉 ∈
∆stat =⇒ 〈S1∪S2,σ,S′1∪S′2〉 ∈ ∆stat. This is obvious for the abort statement, which
produces no successor, and for the assignment and swap statements, which are deter-
ministic and produce one image per input state. Linearity oftransitions and statements
is co-inductively proven, but well-founded since cyclic label calls are forbidden. If∆stat

is linear, so is the if-then-else statement since it acts on both halves (hence a partition)
of the input set. Similarly, linearity of the call statementstems from its union semantics
and the linearity of called transitions. The sequence statement is linear since it amounts
to a composition of linear effects. Finally, provided thatn exists, the fixpoint statement
is equivalent to a finite sequence of linear effects, hence islinear itself.
Fixpoint. The fixpoint is the only statement that really requires a definition in terms
of sets (to enforce〈Sn, l ,Sn〉 ∈ ∆stat), the other statements semantics could otherwise
be defined directly as subsets ofS × S rather than as subsets of 2S ×2S . The fixpoint
statement offers a high expressive power, and fine control ofthe transition relation.
However care must be taken to ensure its convergence.

If misused, the fixpoint may not terminate, either because itis attempting to build
an infinite set (or rather too large to fit in memory, sinceS is finite), or because the
sequence of sets of states it defines is somehow oscillating.Since we lack a structural
criterion to decide whether a fixpoint will terminate (defining one is difficult in general
even with finiteS , and undecidable if integers are unbounded), divergent fixpoints are
considered malformed and will hopefully be detected at runtime. To avoid restricting

the expressiveness of GAL, we leave to the user the responsibility of ensuring that
fixpoints are well-formed (i.e.n exists). Several classical features can be described with
a correct use of the fixpoint statement:

– When the body statementl expresses a non deterministic choice between an action
a and an empty statement (identity), the effect is that of the least fixpointµ of
lambda-calculus.

– It may also be used to compute a greatest fixpointν of lambda-calculus, for instance
to identify states belonging to a strongly connected component of the transition
system.

– In other cases it can be used to iterate a transformation or rewriting to stability, for
instance if the action is to decrement a given variable until0 is reached. This can
be used to map several states onto a single image, allowing toexpress directly in
GAL classical state-space reductions, such as symmetry reduction [6].

Call. The non-deterministic call construct combined with the sequence is particularly
important to allow expression of transition relations thatare a composition of sum of
effects (e.g action “a or a′” followed by action “b or b′”). Making all the alternatives
explicit (ab,ab′,a′b,a′b′) could lead to an exponential blowup of the representation
size. A sequence of if-then-else constructs can also avoid an exponential blowup of the
representation size with respect to an explicit modeling ofall the alternatives. These
exponential pitfalls unfortunately cannot be avoided by a plain support based approach
like in LTSmin (see section??).

3.2 Parametric GAL

GAL also features parametric constructs to comfortably express common patterns. They
can be degeneralized, and amount to syntactic sugar.
Range.We let a GAL definition contain the definition of named subsetsof Z called
ranges. A transitiont can bear an arbitrary number of formal parameters, each having a
name and range. The parameters can be used like ordinary variables within the defini-
tions of the guard and body oft, though they cannot be assigned new values. They can
also be used within the definition of the label oft, and in the definition of labels used in
any call statements of the body oft.
Parametric transition. Defining such a transitiont is equivalent to defining a set of
transitions, containing one transition for each element inthe cartesian product of the
parameter ranges (i.e. each possible assignment of values to parameters). In each of
these transitions which have no parameters, the guard, bodyand label oft are replaced
by a version where each parameter reference is replaced by a constant (its assigned
value). Occurrence of a parameter in a label (that oft itself or occurring in a call of the
body oft) builds a new label where the parameter is substituted by a string representing
its numeric value.

This mechanism is similar in many ways to the way colored Petri net transitions are
defined with respect to their unfolded P/T net version. This construct makes specifica-
tions much more compact and readable in many cases. It also eases traceability when
the GAL model is obtained by a model transformation. It also helps exhibit nice sym-
metry properties of the transition relation, depending on how the parameters are actually

used in the guard and body oft. Lastly, reasoning on parameters before discarding them
through instantiation can allow to significantly reduce thetransition relation represen-
tation size.
Sequential iteration.Given these ranges, we also introduced a limited iteration〈 f or(p :
r){b}〉 statement (for eachp in r, dob), wherep is a parameter with ranger andb is a
body statement. It is equivalent to a sequence of|r| statements〈b1; . . . ;b|r|〉, where each
bi is the statementb where the parameterp is replaced by its value inr. This construct
mostly eases modeling when manipulating arrays. It can be seen as a dual for the use
of parameters in transitions (that builds a sum or union of|r| effects), since it builds a
composition of|r| effects.
Instantiation. GAL models are structurally analyzed before model-checking, allowing
to simplify away the parametric features. This analysis simplifies expressions that can
be statically evaluated, removes structurally unreachable behaviors (e.g. transitions with
false guards), and instantiates parameters with on the fly simplifications. Other simpli-
fications and rewritings (described on the webpage) are alsoavailable, some of which
are more involved such as attempting to rewrite transitionswith several parameters as
a sequence of calls to transitions with a single parameter each. When parameters are in
fact independent (no statement uses them both), having a sequence of choices (rather
than the explosion due to choosing all parameter values at once) leads to a transition re-
lation in desirable composition of sums of effects form, with possibly an exponentially
more compact GAL specification than plain instantiation of parameters.
One-hot.Any variable or array can be tagged with the "hotbit(r)" keyword, indicating
the user wants a one-hot state encoding, where a variable with domain 0..n−1 is en-
coded asn Boolean variables with only one "hot" bit set to 1. Apart fromthis keyword
at declaration, the variable is manipulated normally in theGAL syntax. We then use
a GAL to GAL transformation to instantiate such variables, translating accesses and
assignments to the variable to reflect the one-hot encoding.The translation involves
adding a parameter to represent the current value and testing that its corresponding bit
is hot in transition guards. We further automatically identify and tag variables that could
benefit from one-hot encoding: any variable that is only assigned constants (this allows
to statically compute the range) and whose domain size is greater than a threshold (we
use 8) is set by default to one-hot encoding. By increasing locality, one-hot encodings
can be favorable to DD techniques, for instance this featureis often used to encode
locations of automata in symbolic model-checkers.

At model-checking time, every statement is encoded as a symbolic operation. ITS-
tools then fully exploits commutativity and on-the-fly simplifications at every level of
the evaluation to adaptively exploit the structure of the decision diagram encoding the
states (see [11, 5]).

4 Instantiable Transition Systems

This section recalls the Instantiable Transition Systems (ITS) framework and defines
the Guarded Action Language (GAL). ITS has been designed forthe description of
component based systems, while GAL is a C-like description of the components. Both
are connected with a verification library where the states ofthe resulting systems are

encoded with various kinds of decision diagrams. More precisely, the hierarchical char-
acteristics of systems use Hierarchical Set Decision Diagrams (SDD [?]), while the data
content is encoded with Data Decision Diagrams (DDD [?]), using the recent efficient
algorithms of [?] to encode GAL semantics. In the process, ITS definitions have been
revised with respect to [?] and [?], where they were first introduced, to be simpler while
having the same expressivity.

4.1 ITS type and instances

ITS describe a minimal Labeled Transition System (LTS) style formalism using no-
tions oftypeandinstanceto emphasize locality of actions and to exploit the similarity
of copies of a given type. The composition mechanism is basedsolely on transition
synchronizations(no explicit shared memory or channel).
Notation: For a tuplez= 〈X,Y, · · ·〉, we denote byz.X,z.Y . . . the elementsX,Y,

The following definition sets an abstract contract or interface that must be imple-
mented by concrete ITS types.

Definition 1 An ITS type is a tupleτ = 〈S,A,Locals,Succ〉 where:

– S is a set of states; A is a finite set of public action labels;
– Locals: S 7→ 2S is a local successor function;
– Succ: S×A 7→ 2S is a transition function.

An ITS type can be instantiated, possibly several times. With an instancei is asso-
ciated its ITS typetype(i).

Reachability: Let i be an ITS instance ands,s′ be two states intype(i).S. States′ is
reachable froms if there exist statess0, . . .sn ∈ type(i).S such thats= s0, s′ = sn and
for all j, 1≤ j ≤ n,sj ∈ type(i).Locals(sj−1).

The two functionsLocalsandSuccare used for different purposes:Locals repre-
sents moves that may occur within an instance autonomously or independently from
the rest of the system. Hence it returns states reachable through occurrences of local
events. The functionSuccproduces successors by explicitly synchronizing actions via
an action label from the alphabet. Note thatSuccis the only way to control the behavior
of a (sub)system from outside.

Remarks. This definition is enriched in practice by specifying an initial state, as well
as state-based predicates giving a Kripke state labeling for model-checking purposes.

The transition relation of a full system can only be defined interms of subsystem
synchronizations usingSuccand of independent local behaviors. Hence, a full system
is defined by a single instance of a particular type in a specific initial state: the system
is self-contained and thus reachability only depends on thedefinition ofLocals.

4.2 Composite ITS types

We now define acomposite ITS type, designed to offer support for the hierarchical
composition of ITS instances. This new version, adapted from [?], is aligned with stan-
dard labeled synchronized product definitions (e.g [?,?]). An example of composition
is given in Fig.??using our concrete syntax.

Notations: For a tupleI = (i1, . . . , in) of ITS instances,|I | denotes the sizen of I , SI

is the settype(i1).S× . . .× type(in).S. For s∈ SI and i an instance, we denotes[i] the
component ofs that corresponds toi.

Given a tupleI of ITS instances and a setLab of labels, we inductively define the
setStatC of composite statements by:

– 〈call(i,λ)〉 a call statement to a labelλ of type(i), that invokes a transition ofi
labelled byλ,

– 〈callself(λ)〉 a call statement to a labelλ of Lab, that invokes a transitiion of the
current composite type, labelled byλ. This allows to structure the transition relation
and chain behaviors. We syntactically forbid cycles of self-calls.

– 〈σ0; . . . ;σk〉 a sequence of semi-colon separated statements inStatC.

Definition 2 A composite over alphabet Lab is a tuple C= 〈I ,Sync〉 where:

– I is a tuple of ITS instances, said to becontainedby C. We further require that the
type of each ITS instance already exists when defining I, in order to prevent circular
or recursive type definitions.

– Sync⊆ Lab×StatC is the finite set of synchronizations, where for t= 〈λ,σ〉 ∈Sync,
λ is the label of t andσ its body.

Next state function by a statement:The functionNextI : SI ×StatC 7→ 2SI , used in
definition 3 below, is defined fors,s′ ∈ SI andσ ∈ StatC by:

s′ ∈ NextI (s,σ) iff










∃s0 . . .sk+1,s0 = s,sk+1 = s′, ∀i ∈ [1. . .k],si+1 ∈ NextI (si ,σi) if σ = 〈σ0; . . . ;σk〉

s′[i] ∈ type(i).Succ(s[i],λ)∧∀ j ∈ I , j 6= i,s′[j] = s[j] if σ = 〈call(i,λ)〉
∃t = 〈λ,σ′〉 ∈ Sync, such that s′ ∈ NextI (s,σ′) if σ = 〈callself(λ)〉

Definition 3 Let C= 〈I ,Sync〉 be a composite over alphabet Lab. The ITS typeτC =
〈S,A,Locals,Succ〉 corresponding to C, is defined by:

– S= SI ; A = Lab\{⊤};
– Locals: S 7→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I ,s′[i] ∈ type(i).Locals(s[i])∧∀ j ∈ I , j 6= i,s′[j] = s[j]
or ∃t = 〈⊤,σ〉 ∈ Sync,s′ ∈ NextI (s,σ)

– Succ: S×A 7→ 2S is defined for s,s′ ∈ S,λ ∈ A by:
s′ ∈ Succ(s,λ) iff there exist t= 〈λ,σ〉 ∈ Sync,s′ ∈ NextI (s,σ).

Definition 3 thus describes an implementation of the genericITS type contract.
It contains either elementary instances (such as LTS, or theguarded action language
introduced later in this paper), or inductively other instances of composite nature.

In this definition,Locals(s) is defined as the set of states resulting from the action of
Localsin any nested instance (without affecting the other instances), or states reachable
from s through the occurrence of any synchronization associated to the local label⊤.
The set of successorsSucc(s,λ) is obtained by applying the effect of labelλ, which can
trigger a sequence of successive calls. This sequence is then fired atomically.

5 Conclusion

The symbolic model-checker ITS-tools, its Eclipse based editor front-end, source code
as well as user documentation are freely available from the webpagehttp://ddd.
lip6.fr. It now offers easy access to symbolic model-checking for a wide range of
formalisms thanks to its support for the general purpose Guarded Action Language.

References

1. Eclipse Modeling Framework.http://www.eclipse.org/modeling/emf/.
2. A. Ben Salem, A. Duret-Lutz, F. Kordon, and Y. Thierry-Mieg. Symbolic Model Checking

of stutter invariant properties Using Generalized Testing Automata. In20th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume ? ofLecture Notes in Computer Science, page to be published, Grenoble, France,
April 2014. Springer.

3. R. K. Brayton, G. D. Hachtel, A. L. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-T.
Cheng, S. A. Edwards, S. P. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan, S. Sar-
wary, T. R. Shiple, G. Swamy, and T. Villa. VIS: A System for Verificationand Synthesis.
In R. Alur and T. A. Henzinger, editors,Computer Aided Verification, 8th International Con-
ference, CAV ’96,, volume 1102 ofLecture Notes in Computer Science, pages 428–432, New
Brunswick, NJ, USA, July 1996. Springer.

4. M. Colange. Symmetry Reduction and Symbolic Data Structures for Model Checking of
Distributed Systems. PhD thesis, Université Pierre et Marie Curie, Paris, France, December
2013.

5. M. Colange, S. Baarir, F. Kordon, and Y. Thierry-Mieg. TowardsDistributed Software
Model-Checking using Decision Diagrams. In25th International Conference on Computer
Aided Verification (CAV), volume 8044 ofLecture Notes in Computer Science, pages 830–
845. Springer Verlag, July 2013.

6. M. Colange, F. Kordon, Y. Thierry-Mieg, and S. Baarir. State Space Analysis using Sym-
metries on Decision Diagrams. In12th International Conference on Application of Concur-
rency to System Design (ACSD’2012), pages 164–172, Hamburg, Germany, June 2012. IEEE
Computer Society.

7. J.-M. Couvreur, E. Encrenaz, E. Paviot-Adet, D. Poitrenaud, and P.-A. Wacrenier. Data
decision diagrams for Petri net analysis.Application and Theory of Petri Nets 2002, pages
129–158, 2002.

8. J.-M. Couvreur and Y. Thierry-Mieg. Hierarchical decision diagrams to exploit model struc-
ture. Formal Techniques for Networked and Distributed Systems-FORTE 2005, pages 443–
457, 2005.

9. A. Duret-Lutz, K. Klai, D. Poitrenaud, and Y. Thierry-Mieg. Self-loop aggregation prod-
uct—a new hybrid approach to on-the-fly ltl model checking. InAutomated Technology for
Verification and Analysis, pages 336–350. Springer, 2011.

10. E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic strikes
back.Science of Computer Programming, 8(3):275–306, June 1987.

11. A. Hamez, Y. Thierry-Mieg, and F. Kordon. Hierarchical Set Decision Diagrams and Auto-
matic Saturation. InApplications and Theory of Petri Nets 2008, ICATPN 2008, Xian, China,
volume 5062 ofLNCS, 2008.

12. H. Iwashita, T. Nakata, and F. Hirose. Ctl model checking based on forward state traversal.
In Computer-Aided Design, 1996. ICCAD-96. Digest of Technical Papers., 1996 IEEE/ACM
International Conference on, pages 82–87. IEEE, 1996.

13. LRDE. Spot: a library for LTL model-checking.http://spot.lip6.fr/.
14. K. Y. Rozier and M. Y. Vardi. Ltl satisfiability checking. InProceedings of the 14th Interna-

tional SPIN Conference on Model Checking Software, pages 149–167, Berlin, Heidelberg,
2007. Springer-Verlag.

15. F. Somenzi, K. Ravi, and R. Bloem. Analysis of symbolic SCC hull algorithms. InProc. of
FMCAD’02 (FMCAD’02), volume 2517 ofLNCS, pages 88–105. Springer.

16. Y. Thierry-Mieg, D. Poitrenaud, A. Hamez, and F. Kordon. Hierarchical set decision di-
agrams and regular models.Tools and Algorithms for the Construction and Analysis of
Systems, 5505:1–15, 2009.

17. M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C.L. Kats, E. Visser, and
G. Wachsmuth.DSL Engineering - Designing, Implementing and Using Domain-Specific
Languages. dslbook.org, 2013.

