Guarded Action Language

Yann Thierry-Mied

LIP6, CNRS UMR 7606, Université P. & M. Curie — Paris 6
4 place Jussieu, F-75252 Paris Cedex 05, Frgaoe. t hi erry-m eg@i p6. fr

Abstract. This paper presents the Guarded Action Language, a simple yet ex-
pressive and compact language to represent the semantics ofresm@peci-
fications. GAL is natively supported by ITS-tools, an efficient symboladei-
checker supporting both CTL and LTL. GAL is designed to be the target in a
transformation process from diverse formalisms. This documentrésesence

for the actual semantics.

1 Introduction

We present the Guarded Action Language (GAL), specificadlgighed to easily ex-
press a wide range of concurrent semantics. It is suppowrédety by the efficient
symbolic model-checker ITS-tools. GAL defines no high-lexencepts (no explicit
notion of process, channel, ...), but it offers a lot of flékipwhen defining the atom-
icity of operations and compactly expresses non determinis

We first give an overview of our toolset and its model-chegKeuatures in section 2.
We then formally define GAL and its semantics, then its patdoeatures in section 3.

2 Tool principles

The ITS-toolsform a toolset allowing symbolic model-checking (LTL, CTigacha-

bility) for a variety of input formalisms. It supports a coogition model called In-

stantiable Transition Systems (ITS [16]), as well as a waioé Petri net extensions or
dialects, and their compositions. We focus in this paper Ah,& new input language,
both flexible and expressive, for thES-tools

2.1 Back-end: ITS-tools

The ITS-toolsrely on Data Decision Diagrams (DDD [7]) and hierarchicat Beci-
sion Diagrams (SDD [8]) to provide efficient representatioh sets of states. So far,
GAL is encoded in DDD only. Operations on these decisionrdiang are encoded us-
ing homomorphisms, which the library can automatically dgdamically rewrite to
produce saturation effects in least fixpoint computatidri§ pnd to enable evaluation
of complex expressions [5].
The toolits-reachcan compute reachable states, and shortest witness paths (0

or more if so desired) to target states designated by a boge=licate. It can also

perform bounded depth exploration of a state space (a.&umded model-checking).
It implements several heuristics to compute a static vigiatder for the input model.

The toolits-ctl performs verification of CTL properties (though fairnesastoaints
are currently not supported). It reuses a component of V®[Bansform input formu-
lae into forward CTL form [12]. Forward CTL often allows (babt always) to use the
forward transition relation alone, which is easier to cotapgthan the backward (prede-
cessor) transition relation. When a statement destroyemation (i.e. is not reversible),
backward exploration requires to compute potential dosinvariables, based on the
set of reachable states. This leads to an over-approximatioose refinement is costly
as it requires to intersect decision diagrams (see [4] forendetails). Hence forward
CTL verification is more efficient in general, and furtheremonany subproblems can
be solved using least fixpoints (e.g. Forward Until) thatddirfrom saturation at DD
level.

The toolits-Itl performs hybrid (i.e. that build an explicit graph in whicicé node
stores a set of states as a decision diagram) or fully symefification of LTL prop-
erties. The transformation of the formula into a Blchi auton and the emptiness
checks of the product for hybrid approaches rely on Spot, [d@hsidered one of the
best tools for this job [14]. Fully symbolic model-checkinges forward variants of
Emerson-Lei [10] or One-Way Catch Them Young [15]. The hylapproaches ef-
ficiently exploit saturation and often outperform fully sholic ones [9]. When the
property is stuttering invariant (e.gT L\ X) we also offer optimized fully symbolic
algorithms that exploit saturation [2].

ThelTS-toolsis free software and was first released in 2009, and it comtaimghly
170 klocs of C++. Through our continuous integration platfowe package and dis-
tribute up-to-date binary distributions for common platfis (MacOS 32 or 64, Linux
32 or 64, Windows 64). A set of user-friendly Eclipse plugémsbedding théT S-tools
is also freely available. It includes an Xtext based richti@djon-the-fly syntax check,
auto-complete, quickfix...) for textual GAL models (and ndimed Automata in Up-
paal XTA format) as well as a graphical tool for drawing Peteis, and a wrapper
invoking thelTS-toolsfrom Eclipse.

To ease the interaction with this efficient symbolic backi;eme recently focused on
building a general-purpose language to model concurrestifspations with data (ar-
rays, arithmetic...). The bridge between this languagetlh@dback-end notably relies
on the expressive symbolic operations defined in [5].

2.2 Front-end: Guarded Action Language

To allow thelTS-toolsto capture several formalisms we define a simple yet expres-
sive general-purpose language, that essentially desailgenerator for a finite Kripke
structure, with as few assumptions as possible on existafrfugh-level concepts such
as processes or channels. As such, although direct modeli@@\L is possible, it is
mainly intended to be the target of a model transformatiomfia language closer to
the end-users.

This choice is aligned with current software engineeriegds. Model-driven engi-
neering (MDE) proposes to define domain specific languag&t.Dwhich contain
a limited set of domain concepts [17]. This input is then sfarmed using model

transformation technology to produce executable arsfatetsts, documentation or to
perform specific validations. In this setting, GAL is de®dnas a convenient target
formally expressing model semantics. Its syntax respeatsdards in programming

languages (close to C or Java syntax), but has featuresssipgeconcurrency, synchro-
nizations and fine control over atomicity of operations.Wis symbolic back-end, it

helps to bridge the gap between industrial specificatiopsessed using a DSL and
symbolic model-checking tools.

With the rising importance of MDE in industrial practice pgworting such transfor-
mation based approaches helps to reduce adoption costodfonethods in software
engineering processes. From this point of view, the usdd$uai translation to GAL
from another language. Textual GAL files can of course be kiriéctly, but we also
offer an EMF [1] compliant meta-model of GAL that can be usedanjunction with
MDE tools and manipulated programmatically in Java. Sévereriting rules then per-
form simplification and optimization of GAL models, that ledit all input formalisms.
The reduced GAL model can then be used for model-checkimguEs-tools

In this paper, we show through two examples (the input laggsiaf Divine and
Uppaal) how to build such a transformation to GAL. They hight the semantic fea-
tures of GAL that make it a good target for such a transforomedipproach.

3 Guarded Action Language

3.1 Definition

Syntax. GAL offers a rich signature consisting of all C operatorsrwanipulation of
thei nt data type and of arrays (including nested array expressidhsre is no explicit
support for pointers, though they can be simulated with eaydreapand indexes into
it. An example of a GAL system that uses its concrete textyratex is given in Fig??2.

We omit the definition details related to arithmetic and Bawol expressions, that
have the same syntax and semantics as in the C language. W& 38ébit signed
integer semantics, with overflow effects; this ensuresaiables have a finite (if large
232) domain. We assunig = [—231, ..., 231 _ 1] in the following.

Given a set of variables and of arrays, the Isgf of integer expressions is the
smallest set containing integers (constants), variableay access expressions (an ar-
ray name and an expression for the target index), the cortidaiseof expressions with
binary operatorst (add),« (multiply), / (divide), % (modulo),— (minus), < (left-
shift), > (right-shift), " (bitwise xor),| (bitwise or), & (bitwise and), unary minus
and bitwise complement ~ of an integer expression.

Boolean expressiorBool are inductively defined using constantse, false, com-
parisons using< (strictly less than)<= (less than)== equals, != (differs), >=
(greater than);> (strictly greater) between two integer expressions, asagdBoolean
combinations using && (and)| (or), => (implies) of two Boolean expressions, or the
I (negation) of a Boolean expression. They can also be endokitdio integer expres-
sions,true being interpreted as 1 affalse as O.

GAL transition effects are described by statementStat, a set inductively built:

— (Ihs=rhs) an assignment of an integer expresgiosito a variable or to the cell of
an array designated bigs,

— (swagl,r)) swaps the values of variables or array cells designatédabyr,

— (01;...;0k) a sequence of semi-colon separated statements. We matp (no-
operation) the empty sequence of statements,

— (ite(c,01,0¢)) a conditional if-then-else statement, witke Book and two state-
mentso; andos to be executed depending on the truth value, of

— (fixpoint(l)) a fixpoint or transitive closure statement, whér@oop body) is a
statement to be repeatedly executed until the behaviorecges,

— (abort) a statement that drops current exploration, yielding naessors,

— (call(M)) a call statement to a labg| that non-deterministically invokes one of the
transitions labeled. Note that circularcall expressions are forbidden, disallowing
recursion.

Assignments and control structures defined above are vangatd and behave as
usual. The swap statement is introduced because GAL lagaery variables. The
call(A) statement models non-determinism; the transition chasanyi transition bear-
ing labelA, allowing a state to have several successors.allwet statements produces
the empty set of successors. More formally:

Definition 1. A GAL system over a set Lab of labels contairinig a tupleG = (Vars
Arrays Trang where:

— Vars is a set of integer variables,
— Arrays is a set of integer arrays; fora Arrays, we leta| designate its fixed size,

— TransC Labx Book x Stat is a set of transitions; fort (A, g,0) € Trans,A € Lab
is the label of t, g= Book is theguardof t, ando € Stat is thebodyof t.

Semantics.The semantics of GAL is defined as a transition system whdsa seates

is § = ZNV3'S x MacarraysZ/@, giving a value to each variable and array cell. Because
7. is assumed to be finitg, is finite (resolving most decidability issues). Interptieta

e(s) of an expressior in a states yields a constant value belonging to the range of
(integer or boolean). Whelins designates the left-hand side of an assignment, it must
be either a variableq or an array access expressitatfi]). In either case we léhs(s)
denote the fully resolved variable, when interpreting tirayaindex expression in state

s. Conversely for any variable or array cellwe notes|v] the value ofv in states.

The semantics of statements and transitions are definatoatively.

Definition 2. Let G = (Vars Arrays Trang be a GAL system over Lab. We ngte=
ZNV3S x MacarraysZ/ the set of states @f. We define co-inductively semantics of state-
mentsAga € 2° x Statx 2° and semantics of transitio$ans C 2° x Transx 25 as
follows:

— for 5 S C S ando € Stat,(S 0,S) € Agta if and only if

if 0 = (lhs=rhs), S is the least subset ¢f satisfyingvs € S 35 € S such that
S[lhs(s)] = rhs(s) A Vv # hs(s),S [v] = §]V]

if = (nop, S =S

if o =(01;...;0k),3%... &% C S
S = S,SK = S,Vi € [0...k—1]7<370'i73+1> € Astat

if o = (swagl,r)),S is the least subset of satisfyingvs € S 3s' € S such that
S[I(s)] =r(s)AS[r(s)] =1(s) AW #I(S)AV£T(S),S[V] =]V

if 0 = (ite(c,01,0¢))let T ={s€ S|c(s)} and S =S\ &,
S =3.US, where(X,0t,3.), (Soc,0¢, 3 ¢) € Astat

if o = (fixpoint(l)),IneN,3S...5 C S,
=S85 =8,Vie[0...n—1],(S,,S1) € Astat
and (Sy,1,Sh) € Astar and Ak < n, (Se. |, &) € Astar

if o = (call(A)), let Ty, C Trans designate transitions with labe|
S= UkteT, §1(5t,8) € Atrans

if o = (abort), S =0

—for SS € § and t= (A\,g,0) € Trans, (St,S) € Ayans if and only if ({s€ S|
g(S)},O',S’) € AStat

We now define the semantics@®fas a transition systefhiG] = (S, T) such that TC
S x S. We define T as union of transitions labelled by
T=Uss {(s,9)|3({s},1,S) € AyransA S € S At has labelT }.

Linearity. The semantics dfisio; is defined in terms of sets of states ify thus closely
matching the underlying symbolic operations. The defingiof statement semantics
are all linear (with respect to) to the input set, i.e&/S;,$ C 5, (S, 0,9)) and($,0.,S,) €
Dstat = (S1US,0,S,US,) € Agtar. This is obvious for the abort statement, which
produces no successor, and for the assignment and swameatdse which are deter-
ministic and produce one image per input state. Linearityaofsitions and statements
is co-inductively proven, but well-founded since cyclibédcalls are forbidden. Wi

is linear, so is the if-then-else statement since it actsath balves (hence a partition)
of the input set. Similarly, linearity of the call statemetgéms from its union semantics
and the linearity of called transitions. The sequence istaite is linear since it amounts
to a composition of linear effects. Finally, provided thaxists, the fixpoint statement
is equivalent to a finite sequence of linear effects, hentiraar itself.

Fixpoint. The fixpoint is the only statement that really requires a dt&fimin terms

of sets (to enforcéS,,|,S,) € Astar), the other statements semantics could otherwise
be defined directly as subsets 9k § rather than as subsets of 2 25. The fixpoint
statement offers a high expressive power, and fine contrthefransition relation.
However care must be taken to ensure its convergence.

If misused, the fixpoint may not terminate, either becauseattempting to build
an infinite set (or rather too large to fit in memory, singés finite), or because the
sequence of sets of states it defines is somehow oscill&inge we lack a structural
criterion to decide whether a fixpoint will terminate (defigione is difficult in general
even with finiteS, and undecidable if integers are unbounded), divergenobifitp are
considered malformed and will hopefully be detected atinuat To avoid restricting

the expressiveness of GAL, we leave to the user the resplitysdd ensuring that
fixpoints are well-formed (i.e exists). Several classical features can be described with
a correct use of the fixpoint statement:

— When the body statemehéexpresses a non deterministic choice between an action
a and an empty statement (identity), the effect is that of #ast fixpointu of
lambda-calculus.

— It may also be used to compute a greatest fixpooitlambda-calculus, for instance
to identify states belonging to a strongly connected corepbmf the transition
system.

— In other cases it can be used to iterate a transformationaitireg to stability, for
instance if the action is to decrement a given variable nidl reached. This can
be used to map several states onto a single image, allowiagpi@ss directly in
GAL classical state-space reductions, such as symmetugtied [6].

Call. The non-deterministic call construct combined with theusgge is particularly
important to allow expression of transition relations taet¢ a composition of sum of
effects (e.g actioné or &” followed by action ‘b or bY”). Making all the alternatives
explicit (ab,ab’,a’b,a’’) could lead to an exponential blowup of the representation
size. A sequence of if-then-else constructs can also avogkponential blowup of the
representation size with respect to an explicit modelinglbthe alternatives. These
exponential pitfalls unfortunately cannot be avoided byadnpsupport based approach
like in LTSmin (see sectiofl?).

3.2 Parametric GAL

GAL also features parametric constructs to comfortablyespcommon patterns. They
can be degeneralized, and amount to syntactic sugar.

Range.We let a GAL definition contain the definition of named subg#tZ. called
ranges A transitiont can bear an arbitrary number of formal parameters, eacihgavi
name and range. The parameters can be used like ordinaapheriwithin the defini-
tions of the guard and body 6fthough they cannot be assigned new values. They can
also be used within the definition of the labeltpénd in the definition of labels used in
any call statements of the bodytof

Parametric transition. Defining such a transitioh is equivalent to defining a set of
transitions, containing one transition for each elemernheicartesian product of the
parameter ranges (i.e. each possible assignment of valygsrameters). In each of
these transitions which have no parameters, the guard, dudijabel ot are replaced
by a version where each parameter reference is replaced bystaat (its assigned
value). Occurrence of a parameter in a label (thatitsfelf or occurring in a call of the
body oft) builds a new label where the parameter is substituted byreysepresenting
its numeric value.

This mechanism is similar in many ways to the way colorediPetrtransitions are
defined with respect to their unfolded P/T net version. Thisstruct makes specifica-
tions much more compact and readable in many cases. It ades é@ceability when
the GAL model is obtained by a model transformation. It alstps exhibit nice sym-
metry properties of the transition relation, depending @n the parameters are actually

used in the guard and bodytfLastly, reasoning on parameters before discarding them
through instantiation can allow to significantly reduce ttaasition relation represen-
tation size.

Sequential iteration.Given these ranges, we also introduced a limited iterdtion(p:
r){b}) statement (for eacp in r, dob), wherep is a parameter with rangeandb is a
body statement. Itis equivalent to a sequencie|aftatementsby; ... ; b |), where each
b; is the statemertt where the parameteqris replaced by its value in This construct
mostly eases modeling when manipulating arrays. It can ée ae a dual for the use
of parameters in transitions (that builds a sum or uniofr [oéffects), since it builds a
composition ofir| effects.

Instantiation. GAL models are structurally analyzed before model-chegkatiowing
to simplify away the parametric features. This analysispdiies expressions that can
be statically evaluated, removes structurally unreaehiadhaviors (e.g. transitions with
false guards), and instantiates parameters with on therflglgications. Other simpli-
fications and rewritings (described on the webpage) areaadaitable, some of which
are more involved such as attempting to rewrite transitieitls several parameters as
a sequence of calls to transitions with a single parametdr. &dhen parameters are in
fact independent (no statement uses them both), havingueseg of choices (rather
than the explosion due to choosing all parameter valuescat)d@ads to a transition re-
lation in desirable composition of sums of effects formhapbssibly an exponentially
more compact GAL specification than plain instantiation afgmeters.

One-hot. Any variable or array can be tagged with the "hotbit(r)" keyd; indicating
the user wants a one-hot state encoding, where a varialiledeihain O.n— 1 is en-
coded as Boolean variables with only one "hot" bit set to 1. Apart frémis keyword
at declaration, the variable is manipulated normally in %L syntax. We then use
a GAL to GAL transformation to instantiate such variableanslating accesses and
assignments to the variable to reflect the one-hot encoding.translation involves
adding a parameter to represent the current value andgektits corresponding bit
is hot in transition guards. We further automatically idigrand tag variables that could
benefit from one-hot encoding: any variable that is onlygrssil constants (this allows
to statically compute the range) and whose domain size &tgréhan a threshold (we
use 8) is set by default to one-hot encoding. By increasinglity, one-hot encodings
can be favorable to DD techniques, for instance this feaiaten used to encode
locations of automata in symbolic model-checkers.

At model-checking time, every statement is encoded as aalerdperation. ITS-
tools then fully exploits commutativity and on-the-fly silfigations at every level of
the evaluation to adaptively exploit the structure of theisien diagram encoding the
states (see [11, 5]).

4 Instantiable Transition Systems

This section recalls the Instantiable Transition SystelnS)(framework and defines
the Guarded Action Language (GAL). ITS has been designeth®description of

component based systems, while GAL is a C-like descriptidch@components. Both
are connected with a verification library where the statethefresulting systems are

encoded with various kinds of decision diagrams. More grdygj the hierarchical char-
acteristics of systems use Hierarchical Set Decision Riagr(SDD P]), while the data
content is encoded with Data Decision Diagrams (DI, [using the recent efficient
algorithms of P] to encode GAL semantics. In the process, ITS definition®Hmen
revised with respect t&?] and [?], where they were first introduced, to be simpler while
having the same expressivity.

4.1 ITS type and instances

ITS describe a minimal Labeled Transition System (LTS)esfgirmalism using no-
tions oftypeandinstanceto emphasize locality of actions and to exploit the similari
of copies of a given type. The composition mechanism is basély on transition
synchronizationgno explicit shared memory or channel).
Notation: For a tuplez= (X,Y,---), we denote by.X,zY ... the elementX,Y,....

The following definition sets an abstract contract or irgeef that must be imple-
mented by concrete ITS types.

Definition 1 AnITStypeis a tuplet = (S A Locals Sucg where:

— Sis aset of states; A is a finite set of public action labels;
— Locals: S+ 25is a local successor function;
— Succ, Sx A~ 25is a transition function.

An ITS type can be instantiated, possibly several timesh\Afit instancé is asso-
ciated its ITS typeyp€i).

Reachability: Let i be an ITS instance argls' be two states itypg(i).S. States' is
reachable frons if there exist statesy, ... s, € type(i).Ssuch thats= s, s = s, and
forall j, 1< j <n,s; e type(i).Localgsj_1).

The two functiond_ocalsand Succare used for different purposdsocalsrepre-
sents moves that may occur within an instance autonomoustydependently from
the rest of the system. Hence it returns states reachaleghroccurrences of local
events. The functioSuccproduces successors by explicitly synchronizing actioas v
an action label from the alphabet. Note tBatcds the only way to control the behavior
of a (sub)system from outside.

Remarks. This definition is enriched in practice by specifying anialistate, as well

as state-based predicates giving a Kripke state labelingéalel-checking purposes.
The transition relation of a full system can only be defineteis of subsystem

synchronizations usin§uccand of independent local behaviors. Hence, a full system

is defined by a single instance of a particular type in a speiciiial state: the system

is self-contained and thus reachability only depends omnidfimition of Locals

4.2 Composite ITS types

We now define acomposite ITS typedesigned to offer support for the hierarchical
composition of ITS instances. This new version, adaptea {fg, is aligned with stan-
dard labeled synchronized product definitions (€.,8]). An example of composition
is given in Fig.?? using our concrete syntax.

Notations: For a tuplel = (i4,...,in) of ITS instances|l| denotes the sizr of |, §
is the setypg(i1).Sx ... xtyp€gin).S Fors € § andi an instance, we denos] the
component obthat corresponds tio

Given a tupld of ITS instances and a skab of labels, we inductively define the
setStat of composite statements by:

— (call(i,A)) a call statement to a labal of typg(i), that invokes a transition df
labelled by,

— (callsgif(A)) a call statement to a labal of Lab, that invokes a transitiion of the
current composite type, labelled hyThis allows to structure the transition relation
and chain behaviors. We syntactically forbid cycles of-selfs.

— (0p;...;0k) a sequence of semi-colon separated statemeiSain

Definition 2 A composite over alphabet Lab is a tuple € (I, Syng where:

— lis atuple of ITS instances, said to bentainedoy C. We further require that the
type of each ITS instance already exists when defining | dardo prevent circular
or recursive type definitions.

— SyncC Labx Stat is the finite set of synchronizations, where fer {A, o) € Sync,
A is the label of t andy its body.

Next state function by a statement:The functionNexi : § x Stat — 2%, used in
definition 3 below, is defined f®;s € § ando € Stat by:
s € Nexi(s,0) iff
3%.. .1, =5%1="5, Vie[l...kl,5+1 € Nexi(s,0i) if 0= (00;...;0k)
si] e typeg(i).Sucgs|il,\) AVj €1, j #i,9[j] = 9] if o= (call(i,A))
3t = (A,0d’) € Sync such that € Nexj (s,0’) if 0= (callsgf(M))

Definition 3 Let C= (I,Syn¢ be a composite over alphabet Lab. The ITS type-
(S A, Locals Sucg corresponding to C, is defined by:

- S=5;A=Lab\{T}
— Locals: S+ 25is defined for 8’ € S by: $ € Localys) iff

Ji € 1,9][i] € typg(i).Localgs[i]) AVj €1, j #1i,5[j] = 5[j]
{ or 3t =(T,0) € Syn¢s € Nexi(s,0)

— Succ Sx A 2Sis defined for 8 € SA € A by:
s € Sucgs, M) iff there exist t= (A\,0) € Syncs' € Nexi(s,0).

Definition 3 thus describes an implementation of the gendi& type contract.

It contains either elementary instances (such as LTS, ogtiaeded action language
introduced later in this paper), or inductively other imstas of composite nature.

In this definition,Localgs) is defined as the set of states resulting from the action of
Localsin any nested instance (without affecting the other insahor states reachable
from sthrough the occurrence of any synchronization associat#tktlocal labelT .

The set of successoBicgs, M) is obtained by applying the effect of lalbdelwhich can
trigger a sequence of successive calls. This sequenceniitbeé atomically.

5

Conclusion

The symbolic model-checker ITS-tools, its Eclipse basétbettont-end, source code
as well as user documentation are freely available from tabpagehttp:// ddd.
['ip6.fr. It now offers easy access to symbolic model-checking foridewange of
formalisms thanks to its support for the general purposedabAction Language.

References

1.
2.

10.

11.

12.

Eclipse Modeling Frameworkat t p: / / ww. ecl i pse. or g/ nodel i ng/ enf /.

A. Ben Salem, A. Duret-Lutz, F. Kordon, and Y. Thierry-Mieg. $yotic Model Checking

of stutter invariant properties Using Generalized Testing Automata20th International
Conference on Tools and Algorithms for the Construction and Analysistéi8g (TACAS)
volume ? ofLecture Notes in Computer Sciengmge to be published, Grenoble, France,
April 2014. Springer.

. R. K. Brayton, G. D. Hachtel, A. L. Sangiovanni-Vincentelli, F. SomigA. Aziz, S.-T.

Cheng, S. A. Edwards, S. P. Khatri, Y. Kukimoto, A. Pardo, S. QadeK. Ranjan, S. Sar-
wary, T. R. Shiple, G. Swamy, and T. Villa. VIS: A System for Verificateamd Synthesis.
InR. Alur and T. A. Henzinger, editor§omputer Aided Verification, 8th International Con-
ference, CAV '96,volume 1102 of.ecture Notes in Computer Scienpages 428-432, New
Brunswick, NJ, USA, July 1996. Springer.

. M. Colange. Symmetry Reduction and Symbolic Data Structures for Model Checking of

Distributed SystemaPhD thesis, Université Pierre et Marie Curie, Paris, France, Dezmemb
2013.

. M. Colange, S. Baarir, F. Kordon, and Y. Thierry-Mieg. TowaRistributed Software

Model-Checking using Decision Diagrams. 26th International Conference on Computer
Aided Verification (CAV)volume 8044 ofLecture Notes in Computer Scienpages 830—
845. Springer Verlag, July 2013.

. M. Colange, F. Kordon, Y. Thierry-Mieg, and S. Baarir. State $pawcalysis using Sym-

metries on Decision Diagrams. Ir2th International Conference on Application of Concur-
rency to System Design (ACSD’202ages 164—-172, Hamburg, Germany, June 2012. IEEE
Computer Society.

. J.-M. Couvreur, E. Encrenaz, E. Paviot-Adet, D. Poitrenaud, RrA. Wacrenier. Data

decision diagrams for Petri net analysipplication and Theory of Petri Nets 2002ages
129-158, 2002.

. J.-M. Couvreur and Y. Thierry-Mieg. Hierarchical decision dégs to exploit model struc-

ture. Formal Techniques for Networked and Distributed Systems-FORTE pag&s 443—
457, 2005.

. A. Duret-Lutz, K. Klai, D. Poitrenaud, and Y. Thierry-Mieg. Self-fpaggregation prod-

uct—a new hybrid approach to on-the-fly Itl model checkingAtlritomated Technology for
Verification and Analysigpages 336—350. Springer, 2011.

E. A. Emerson and C.-L. Lei. Modalities for model checking: Btang time logic strikes
back. Science of Computer Programmirg(3):275-306, June 1987.

A. Hamez, Y. Thierry-Mieg, and F. Kordon. Hierarchical SetB®n Diagrams and Auto-
matic Saturation. IApplications and Theory of Petri Nets 2008, ICATPN 2008, Xian, Ghina
volume 5062 oL NCS 2008.

H. lwashita, T. Nakata, and F. Hirose. Ctl model checking basddravard state traversal.
In Computer-Aided Design, 1996. ICCAD-96. Digest of Technical RapE396 IEEE/ACM
International Conference qipages 82—-87. IEEE, 1996.

13.
14.

15.

16.

17.

LRDE. Spot: a library for LTL model-checkingt tp: //spot.lip6.fr/.

K. Y. Rozier and M. Y. Vardi. Ltl satisfiability checking. Proceedings of the 14th Interna-
tional SPIN Conference on Model Checking Softwages 149-167, Berlin, Heidelberg,
2007. Springer-Verlag.

F. Somenzi, K. Ravi, and R. Bloem. Analysis of symbolic SCC hullritlgms. InProc. of
FMCAD’02 (FMCAD’02) volume 2517 o NCS pages 88-105. Springer.

Y. Thierry-Mieg, D. Poitrenaud, A. Hamez, and F. Kordon. Hiehn&al set decision di-
agrams and regular modelslools and Algorithms for the Construction and Analysis of
Systems5505:1-15, 2009.

M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, LLKats, E. Visser, and
G. Wachsmuth.DSL Engineering - Designing, Implementing and Using Domain-Specific
Languagesdslbook.org, 2013.

