Eidg. Institut für Reaktorforschung Würenlingen Schweiz

Breeding in Molten Salt Reactors

Lectures at the University of Liège / Belgium 15th May, 1975

M. Taube

Würenlingen, April 1975

EIR-Bericht Nr. 276

BREEDING IN MOLTEN SALT REACTORS

Lectures at the University of Liège / Belgium 15th May, 1975

M. Taube

April 1975

Remerciements

Je remercie M. le Prof. G. DUYCKAERTS de l'Université de Liège, de m'avoir permis de faire cette conférence dans le cadre de la licence speciale en Science Nucléaire.

M. Taube

WHAT IS BREEDING?

WHY IS BREEDING POSSIBLE?

WHAT IS BREEDING GOOD FOR?

Breeding is a process in which two mechanisms are occurring simultaneously. 1) Fissile nuclides are 'burning' and producing energy and neutrons. 2) Some of the neutrons are transforming the so called fertile nuclides into fissile nuclides at a rate greater than the rate at which the fissile nuclides are being consumed.

Breeding is possible because of three factors: 1. Some fissile nuclides have a rather large nett production of neutrons so that more than half of them can be used for breeding. 2. The fertile nuclides are converted to fissile nuclides only by the simple, and energetically not expensive act of neutron capture followed by two spontaneous processes which occur at a much faster rate than the rate of neutron capture. 3. Fertile materials are present in the earths crust at relatively high concentrations. (This also means that these fertile nuclides must be rather stable, beta stable of course, like all heavy nuclides they are alpha unstable. The α -decay rate must be matched to the age of the solar system).

Breeding makes it possible to use not only the uranium-235 (the only naturally occurring fissile nuclide) but also the uranium-238 which occurs in amounts 140 times greater than U-235. These factors permit the use of ores with low uranium and thorium concentrations even down to granites (>50 ppM U+Th).

Practically only some reactor types are suitable for effective breeding:

- all reactors with a fast neutron spectrum (e.g. sodium cooled fast reactor, gas cooled fast reactor, molten salt fast reactor)
- one reactor type with a thermal flux spectrum (molten fluoride thermal reactor).

FISSILE AND FERTILE NUCLIDES

Definitions

	Fissionable Nuclides			
Characteristics	Fissile nuclides Neutrons of any energy can produce fission	Fertile nuclides Only neutrons of high energy (>1 MeV) can induce fission; Neutrons with lower energy are captured and after gamma emission (and in some cases then by beta-decay) a trans- formation into a fissile nuclide occurs.		
Examples	U-233 U-235 Pu-239 Pu-241	$\frac{Th-232}{U-234} \qquad \frac{U-238}{Pu-240}$		
Binding energy of neutrons and barrier to fis- sion	Binding energy of the captured neutron is greater than the fis- sion barrier (more exactly: fission activation energy Q_a) $Q_n > Q_a$	Binding energy of the cap- tured neutron is lower than the fission barrier $Q_n < Q_a$ only fast neutrons with kinetic energy E_c can cause the fission $Q_n + E_c > Q_a$		

for the following reasons

- 1. The fissile nuclides must have $\frac{z^2}{A} > 36 (\frac{z^2}{A})$ fissionability para
 - meter)
- 2. The fissile nuclides must be beta stable, because the half life of beta-decay in this region of A is smaller than 10 years.
- 3. Because for $\frac{Z^2}{A}$ >36 gives in the case Z≥ 92; all realistic fissile nuclides are alpha unstable.
- 4. To exist in the earth's crust the half life of alpha decay of the nuclide must be of the same order of magnitude as the age of the solar system $\geq 10^9$ years.
- 5. Only one nuclide fulfills all these criteria: - U-235

4

THERE IS ONLY ONE FISSILE NUCLIDE EXISTING IN THE EARTH'S CRUST

ONLY TWO NUCLIDES EXISTING IN THE EARTH'S CRUST CAN PLAY THE ROLE OF FERTILE NUCLIDES

The fertile nuclides must fulfill the following obvious criteria

1. They must be abundant on the earth. At least a mean value equivalent to 1 ppM throughout the earth's crust (or more exactly in the outer layer of the earth's crust.

2. Thus they must be beta-stable

- 3. Thus the Z value must lie between 90 and 94 and be even
- 4. These are the isotopes of thorium and uranium with t $1/2 > 10^9$ years

The only two 'natural' isotopes are

Th-232 and U-238

These nuclides can be transformed into fissile nuclides by simple neutron capture and spontaneous beta-decay.

TO PERMIT BREEDING THE NUMBER OF NEUTRONS EMITTED PER FISSION SHOULD BE LARGE

The scheme of neutron induced fission of Pu-239

The value of prompt neutrons fission = v

1. The value of v for uranium isotopes 2.5

- 2. The value of v for plutonium isotopes 2.9
- 3. The value of ν increases when the energy of the captured neutron is ~1 MeV

Nuclide	Thermal reactor		Fast reactor		
	γ	η	γ	η	
U-235 U-233	2.43	2.09 2.25	2.57 2.51	2.30 2.31	
Pu-239 U-238	2.87	2.08 -	2.88 2.66	2.40 very	
Th-232	-	-	2.36	small very small	
Pu-240 Pu-241 Pu-242	2.87 2.97 2.18	0 2.18 0	3.00 3.1 3.2	1.21 2.06 1.26	

Table All data approcimate

The ratio of non-fissioned atoms to fissioned atoms is called α $\alpha = \frac{\sigma(n,q)}{\sigma(n,f)}$ (in this example $\alpha = \frac{17}{83} = 0.20$)

We define: σ absorption = $\sigma(n,) + \sigma(n, f)$ The real number of emitted neutrons per neutron absorbed equals:

$$\eta = v \frac{\sigma(n,f)}{\sigma(n,f) + \sigma(n,\gamma)} = v \cdot \frac{1}{1+\alpha} \qquad \eta = 2.88 \frac{83}{(83+17)} = 2.40$$
$$\eta = 2.88 \frac{1}{(1+0.2)} = 2.40$$

The value of η is strongly energy dependent The value of η differs for different fissile nuclides

THE NEUTRON BALANCE FOR FISSION AND BREEDING IS AS FOLLOWS:

Molten Sa breeder f	lit (thermal) f or ~100 neutro	luoride		Molten breeder	salt for	(fast) chlor ~100 neutron	ide s	
Nuclide	Absorption	Fission		Nuclide	2	Absorption	Fission	
232 _{Th}	44.7	0.03		²³⁸ U(n,	γ)	22.51		
233 _{Pa}	0.02			(n,	f)	2.99	8.23	
233 _U	41.4	92.3		²⁵⁹ Pu ((n,γ)	5.58	85 55	
234 _U	3.7	0.01		240	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	20.90	09.99	
235 _U	3.4	6.8		Pu ((n, γ)	2.24	4.72	ore
236 ₁₁	0.3			Na	· y - /	0.26		υ
237	0.7			Cl nat		3.16		
Np 6	0.5			Fе Mo		2.04		
°Li 7	0.1			Fission	ı	0.50		
(Li	0.7			product	S	0.50		_
⁹ Be	0.3	0.9		²³⁸ U(n,	γ)	23.15		
19 _F	0.8			(n,	f)	0.55	1.50	ket
Graphite	2.3			Na Cl nat		0.08		an
Fission	0.7			Leakage	9	2.90		p1
Leakage	1.0			Breedir	ng rat	cio core	0.716	
(ηE		2.2317)				blanke	t 0.670	
Breeding	ratio (total)	1.0708				total	1.386	
			4			And the second	· · · · · · · · · · · · · · · · · · ·	

Balance for Thermal Fission U-233

Balance for Fast Fission of Pu-239 (Fission Products not shown)

DEFINITION OF BREEDING RATIO AND BREEDING GAIN

BR = <u>average rate of production of fissile nuclides</u> average rate of loss of fissile nuclides

 $\underset{maximum}{\text{BR}} \cong \text{Breeding potential} = \eta - 1$

- G = Breeding gain = BR-1 = η -2; for breeder G>0
 - for typical fast reactors; value of breeding gain, G 1) oxide fuel 0.25 (at present for 300 MWe LMFBR; $G = 0.12 \pm 0.03)$ nitride fuel 0.30 0.4 : 0.47 carbide fuel (gas cooled FBR) molten chloride 0.35 2) for thermal breeder molten fluoride 0.06 all other fuels solid and liquid <0.00

BR =	Mechanism	Typical value for Pu fuelled fast reactor
(+v	No. of neu- trons per fission	(+2.96
-1	one neutron for fission claim	- 1
-α	loss due to absorbtion in Pu-239	- 0.24
-A	losses in structural material, etc.	-(0.1÷0.25)
-L	leakage of neutrons	-(0.04÷0.06)
-T	losses due to absorbtion in FP	-(0.01÷0.015)
+F.	rate of fission of U-238	+(0.19 : 0.22).
.(v-1)	neutrons from U-238 fission	.(2.70-1))
$\left(\frac{1}{1+\alpha}\right)$	rate of ab- sorbtion in Pu-239 in (n,γ) reaction	$\left(\frac{1}{(1+0.24)}\right)$
BRfas	st ⁼	1.25 + 1.40

FOR THE CHEMIST, THE POSSIBILITY OF INTERNAL OR EXTERNAL BREEDING IS OF IMPORTANCE

			and the second sec		
	Primary Step			Secondary Step	
Cycle	Fertile	Intermediate	Fissile	Intermediate	Fissile
Thorium	Th-232 90	Pa-233 91	U-233 92	U-234 .92	U-235 92
Uranium	U-238 92	Np-238 93	Pu - 239 94	Pu-240 94	Pu-241 94

Fissile and Fertile Materials Micro-mixing (U,Pu)0₂

2 minung (0,1 a)

Macro-mixing UO_2 particles + PuO_2 particles

In fused salt: PuCl₃ in fuel, UCl₃ in coolant/fertile material

Note: for ~3000 MW(th) radius of core is ~100 cm thickness of blanket is ~100 cm

DEFINITION OF DOUBLING TIME

Doubling time T_o is the period of time (years) in which a breeder produces enough fresh fissile material to fuel a new breeder react with the same power level (T_{eff} includes the inventory of fissile materials out of core e.g. cooling, being transported and reprocessed). The compound doubling time T_{comp}^{eff} takes into account that in a breeder system, the new breeder can be fuelled with fissile material coming from the total system and not only from one reactor.

 $T_{o} = \frac{\text{Specific inventory (gram fissile/MWth)}}{(1 + \alpha) \cdot G}$ (days)

G = BR-1; breeding gain

r = fuel inventory out of core

L = load factor (hours per 8760 hours in year)

F = fraction of fission in fertile nuclide

$$T_{comp}^{eff} = T_{o} \frac{(1+F)}{L(1-r)} \cdot ln2$$

DOUBLING TIME IS COUPLED WITH FUTURE ENERGY DEVELOPMENT

The rate of doubling (doubling time) of the total energy consumption is ~18 years and may increase in the future.

Doubling time of electrical energy consumption is ~9 years. Doubling time of nuclear power capacity is less than 9 years. Doubling time of breeders should be of the same magnitude. In the future, civilization should reach a steady state when the doubling time for the breeder will satisfy the demand with $T_s > ~30$ years.

Combined Breeder/Reprocessing Plant

A tremendous increase in available uranium ores occurs if one considers not only the classical ores (>1000 ppM uranium) but the very abundant granites with 80 ppM uranium and thorium.

Even if the price of uranium should increase a hundred fold the price of the raw fuel per kWhr will be no higher than it is now for light water reactors (since the uranium contains only $\sim 0.4\%$ of burnable U-235).

The price of electrical energy increases to $3.25 \ e/kWh(e)$

World Resources of Nuclear Fuel

FUTURE ENERGY NEEDS COULD BE VERY GREAT BUT WOULD STILL BE MET FROM NUCLEAR SOURCES IN THE FIRST INSTANCE 3.8×10^9 people x 2 kW/cap. = 7.6 TW = 2.4×10^{20} J/year TODAY: 8×10^9 people x 15 kW/cap. = 120 TW = 38×10^{20} J/year FUTURE: $1 \text{ gram} (U, \text{Th}) = 1 \text{ MW/day} = 8.64 \text{x} 10^{10} \text{J}$ 38x10²⁰J/year 4.4x10¹⁰g/year = 44000 tons Uranium and/or Thorium per year But granite contains 80 ppM U+Th so the annual need for granites as 'fissile' ores will be 550 million tons. At the present time coal production alone is 4 times greater! Granite: Energy cost for 15 ppM U and 60 ppM Th. Granite is the main constituent of the earth's crust (up to 20 km deep) 1000 kg granite = $\frac{10^6 \text{ g}}{68.6 \text{ g/mol}}$ = 1.46 x 10⁴ mol Free enthalpy of formation of granite = 210 kcal/mol ' 8.8x10⁵J/mol Technological free energy (electrolysis?) = 1.8 MJ elec/mol 1.8 MJ therm/mol Technological free energy for 1 ton granite = $5.2 \times 10^{10} J$. Amount of uranium and thorium = 75 ppM = 75 g = 75MWD total = $6.48 \times 10^{12} J$ = 2.6 \times 10^{12} J Amount of electricity at 40% efficiency

1000 ⁰/00

ONE OF THE BIGGEST CONSTRAINTS TO FISSION ENERGY IS THE PROBLEM OF FISSION PRODUCT MANAGEMENT

Each fission releases ~200 MeV; 1 Joule = 3.1×10^{10} fissions. 1 watt = 3.1×10^{10} fissions per second equivalent to 6.2×10^{10} fission product atoms per second.

In steady state very roughly 1 Watt of power ~1 Curie of fission products (1 Curie = 3.7×10^{10} disintegrations per sec).

All fission products are beta unstable (neutron rich nuclei)

Some fission products are long lived, comparable with a human life span or even the life span of an element of social organisation.

THE PROBLEM OF FISSION PRODUCT MANAGEMENT IS VERY DIFFICULT AND REQUIRES A SOPHISTICATED SOLUTION

The possibilities of radioactive waste management are:

- Without the use of nuclear transmutation; that is the fission product nuclides are not changed, but merely removed and isolated; as for example a rocket to the sun, in discused salt mines or in the polar ice-cap.
- 2. By using nuclear transmutation in which the nuclear properties are so fundamentally changed that the transmuted products are short living nuclides which decay after a short retention time to a stable nuclide.

In this second class of waste management techniques a number of exotic methods have been discussed

- gamma laser excitation (does not exist)
- underground neutron irradiation due to fission or thermonuclear explosion (e.g. more than 3000 explosions of 100 kT per year in USA 2000 only)
- bombarding by protons (e.g. a 10 GeV accelerator with 1 Amp)
- neutron irradiation in a thermo-nuclear fission reactor (does not exist)
- neutron irradiation in a fission reactor (only pessimistic opinions).

THERE IS A METHOD FOR 'INCINERATION' OF THE MOST DANGEROUS FISSION PRODUCTS

Shown here are the most dangerous nuclides: per 100 fissioned atoms.

6.91 Caesium 133 (stable)* 21.14 135 (2x106 years) 7.54 6.69 137 (30 years) 88 (stable)* 1.44 Strontium 3.62 2.18 90 (28 years) Iodine 127 (stable) 0.38 1.55 129 (1.7x107 y) 1.17 33.18 99 (2.1 \times 10⁵ y) Technetium 5.81 83 (stable) Krypton 0.36 84 (stable) 0.56 2.47 85 (10.7 years) 0.672 *problem of iso-86 (stable) 0.882 topic separation

The incineration is possible due to irradiation in a very high neutron flux, which gives, for example

Cs-137 (n, γ) Cs-138 $\frac{32 \text{ min}}{\beta}$ Ba-138 (stable)

'Decay' and Transmutation of Caesium-137

Z

18

THE NEUTRON TRANSMUTATION OF F.P. NEEDS A VERY HIGH THERMAL NEUTRON FLUX OF 5×10^{16} n cm⁻²s⁻¹

The efficiency of the transmutation is limited by the criteria that the probability of the bombardement of an atom by a neutron is ~10 times greater than the probability of spontaneous beta decay.

 λ (neutron capture) $\geq 10 \cdot \lambda$ (beta decay) We know that for a neutron flux \emptyset (n cm⁻²s⁻¹) and the capture cross section σ_c (cm²/particle) the probability of reaction equals.

 λ reaction = $\emptyset \cdot \sigma$; therefore $\emptyset \cdot \sigma > \lambda decay$ For caesium-137 we have

> $\lambda decay = 7.7 \times 10^{-10} s^{-1}$

For the postulated neutron reaction probability

 $\emptyset > \frac{\lambda \text{decay}}{\sigma \text{cap}} > \emptyset \text{fast}; \emptyset \text{fast} = \frac{7.7 \times 10^{-10}}{0.01 \times 10^{-24}} = 8 \times 10^{16}; \emptyset \text{thermal} = \frac{7.7 \times 10^{-10}}{10.6 \times 10^{-24}}$

Ξ	1,2x10 ¹⁰
	-

	Flux	Possibilities	of transmutat	transmutation	
	Thermal	Source of	Partic	cles	
Power 3	<u>80</u>	Particles	Protons	neutrons	
rating (W/cm ²)	500	Accelerator	30 MeV	-	
Fissile concentration (N	$\frac{3\%}{10\%}$	~30 MeV	protons for		
Nuclei per cm^2	$\frac{8 \times 10^{20}}{30 \times 10^{20}}$		(p, y)(p, n)	(secondary)	
$\sigma_{\text{fission}_{\text{cm}}^{(10^{-24})}}$	$\frac{700}{2}$	Accelerator >1 GeV	l GeV protons for	High flux of neutrons	
$Flux \emptyset$ $ncm^{-2}s^{-1}$, $\emptyset =$	$\frac{6.2 \times 10^{12}}{2.6 \times 10^{15}}$		(p,spall)	primary	
		Nuclear explosion	-	very high flux in very short time	
		C.T.R.	-	High flux,	
Fluence, Ø.t t = (days)	700	thermonuclear reactor		Contraction	
$Ø.t = (ncm^{-2})$	100 3.7x10 ²⁰ 2.2x10 ²²	Fission reactor	-	Very high flux continuously	
the second se	the second se			the proved of the local data and the providence of the local data and the providence of the local data and t	

IT MAY BE POSSIBLE TO COUPLE A BREEDING SYSTEM WITH A HIGH FLUX TRANSMUTATION FISSION REACTOR We postulate a system with breeding potential and with transmutation potential. The compound doubling time Ts must be at least 30 years, since; Ts(year) = $\frac{1000}{365} \cdot \frac{M \cdot (1+F)}{(BR-1)(1+\alpha)} L \cdot \ln 2 = 30$ years from this;_{min}BR = 1 + 2.75 $\cdot \ln 2 \cdot \frac{M \cdot (1+F)}{(30 \cdot (1+\alpha))} L$ for typical values; $\min_{min}BR = 1.077$ we know that: $\max_{max}BR = \frac{\nu - 1 - \alpha - (A + L + T) + F(\nu - 1):}{(1+\alpha)}$ when T is very small (T=transmutation rate) For the desired BR_{min} = 1.077 we obtain: $T = \nu - 1 - \alpha - BR(1+\alpha) - A - L + F(\nu - 1)$

For typical values: T = 0.364

That is, for a breeding system with a breeding potential of BR = 1.4 and for a compound doubling time of 30 years, approx. 0.36 of FP nuclides could be transformed in the fast system.

Organisation of transmutation and breeder system

Our system is:breeding system with compound doubling time 30 years.

- transformation rate 0.36

- 1 burner reactor for transmutation - breeder power reactors

We obtain:

X.BR = (X+1)BR min but we know BR = BR + $\frac{T}{(1+\alpha)}$ from this, for typical values

$$X = BR_{\min} \frac{1+\alpha}{T} = 3.7$$

Result: for about 3.7 power units of breeder reactors and 1 power unit of the breeder transmutation reactor 0.36 of FP nuclides of all reactors can be 'incinerated'. WHAT IS THE CONNECTION BETWEEN BREEDING AND THE FUEL CHARACTERISTICS (PHYSICAL STATE: SOLID/LIQUID, CHEMICAL STATE: METALLIC, CERAMIC, SALT)?

Breeder reactors are feasable using both thermal and fast neutrons. But for thermal neutrons, breeding is possible only in a very limited region the thorium-232/uranium-233 cycle in a liquid fuel reactor.

	Breeder Reactors				
Neutrons	Thermal		Fast	Fast	
Fertile/fissile Cycle	Th-233	U238/Pu239	Th232/U239	U238/Pu239	
Potential Bree- ding gain G=BR-1-losses	~0.1	< 0	~0.3	~0.45	
Impact of inter- mediate mole- cule	Pa-233 o th =large	breeding not possib- le	Pa-233 σ ^{fast} =small ab	Np-239 ofast negligi- ab ble be- cause t1/2 small	
Consequence	Continuous Pa extraction	-	no limitations, rechanging possi	periodic ble	
Results	liquid fuel (aqueous or _ molten)		no limitations, solid fuel possible		
Maximum losses in core struc- tural material and coolant	~0.1	-	~0.2	~0.3	
Consequences	Moderator D ₂ 0 - or graphite ²		Metals possible, graphite forbidden		
Consequences	No metallic tubes in the core	_	metallic tubes in the core possible		
Impact of coo- ling system	out of core	-	no limitations, in core coo- ling possible		
Fuel system	liquid fuel only, cooled out of core	-	solid and liquid fuel, cooling in/or out of core. Solid fuel ceramis, metals; liquid fuel: chlorides only.		
Example only for liquid fuel reactors	$\begin{array}{ccc} \text{molten} & \text{aqueous} \\ \text{salt} & \text{solu-} \\ \text{'LiF} & \text{tion} \\ \text{BeF}_2 & \text{suspension} \\ \text{ThF}_4 & \text{UO}_2/\text{ThO} \\ \text{UF}_4 & \text{in } \text{D}_2\text{O} \\ \text{graphite} \end{array}$		molten salt NaCl ²³² ThCl ₄ ²³³ UCl ₃	molten salt NaCl 238 _{UCl} 239 _{PuCl} 3	

THE LIQUID FUEL REACTOR ALSO HAS OTHER ADVANTAGES IN RELATION TO THE CLASSICAL SOLID FUEL REACTOR

	Solid Fuel	Liquid Fuel
Pressure	pressure of volatile fission products	no FP pressure: Very low pressure of fuel components
Cooling	cooling only in the core	cooling in the core or
Problems		out of core
Burn-up	periodic recharging	continuously recharging e.g.
	power 40 KW/kg fuel,	Mobile 22 RW/1101C
	burn-up 30000 KWd/kg fuel, dwell time 750 days	dwell time 10 days
Reprocessing	periodic	continous

Heat Transport in the Core

22

Fuel thermal ambient pressure fast overpressure liquid solid metal now not possible (Na) projected LMFBR unpressurised MSBR liquid (fluoride) salt MSFBR Chlorophyl (chloride) LWR -HWR water Coolant not not possible possible English pressurised -French c0₂ gas GCR No No HTGR -HHTHe GCFBR _

GCR	=	Gas Cooled (thermal) Reactor
GCFBR	=	Gas Cooled Fast Breeder Reactor
HHT	=	High Temp. Helium (thermal) Reactor
HWR	=	Heavy Water (thermal) Reactor
LMFBR	=	Liquid Metal Fast Breeder Reactor
LWR	Ξ	Light water (thermal) Reactor
HTGR	=	High Temp. Steam Turbine Reactor
MSBFBR	=	Molten Salt Fast Breeder Reactor
MSBR	=	Molten Salt (thermal) Breeder Reactor

MOLTEN SALT FUEL APPEARS TO BE THE BEST LIQUID FUEL

Only limited possibilities exist for choosing a fuel to operate in the liquid state in a reactor.

The limiting criterium seems to be the radiolysis in the extremely high field of neutrons, fission fragments and gamma rays.

In addition the chemical stability of the dissolved species of thorium, uranium and/or plutonium in the presence of the products of radiolysis is a severe problem. The ionic liquids, that is the molten ionic salts seem to be the most appropriate media for fission fuel (see table of electronegativity overleaf).

Liquid state	state Range of li- Stability		Reactor t	ууре
	quid state (°C)		Thermal	Fast
Aqueous solution	0 <t<300 with<br="">pressure</t<300>	Radiolytic decom- position. Instabi- lity of U and Pu salts in aqueous solution	Possible but negative ex- perience with homoge- neous thorium reactor	no possible due to neutron
Organic solu- tion or suspen- sion	-50 <t<300 decomposition</t<300 	Radiolytic decom- position. Very unstable compound of Pu and U	Possible (?) but no experience	moderation
Metallic solu- tion or suspen- sion	-50 <t<2000< td=""><td>Very stable, some limitations in the solubility of U_{met} and Pu_{met}</td><td>Possible. Some expe- riments in Brookhaven Nat.Lab. USA</td><td>Possible. LAMPRE, Reactor Experi- ments (with Pu alloys? Los Alamos USA</td></t<2000<>	Very stable, some limitations in the solubility of U _{met} and Pu _{met}	Possible. Some expe- riments in Brookhaven Nat.Lab. USA	Possible. LAMPRE, Reactor Experi- ments (with Pu alloys? Los Alamos USA
Molten salt solution	400 <t<1000< td=""><td>Stable to irra- diation but corrosive!</td><td>Possible using fluo- rides. MSBR Experiment (Oak Ridge, USA). 8 MW(th)</td><td>Possible using chlorides. No ex- perimental experience EIR Switzerland</td></t<1000<>	Stable to irra- diation but corrosive!	Possible using fluo- rides. MSBR Experiment (Oak Ridge, USA). 8 MW(th)	Possible using chlorides. No ex- perimental experience EIR Switzerland
Ceramics	1500 <t practically impossible</t 	-	-	

BOTH THERMAL AND FAST FLUX MOLTEN SALT BREEDER REACTORS ARE POSSIBLE

	Thermal	Fast
Breeding ratio	max. 1.06	1.3 - 1.5 (?)
Possibility of transmutation	no	yes, 0.35
Fuel cycle	Th-U ₂₃₃ only because, in this case only, is η thermal >1.2	U-Pu ₂₃₉ and/or Th-U ₂₃₃
Chemistry of molten salt	Fluorides only. positive experience exists	Chlorides, or fluorides (?) no experience with chlorides
Structural materials	Only graphite-direct contact, no metals (no parasitic capture)	metals in core permitted.
Cooling	Out of core cooling	Either in core or out of core cooling
Present day develop- ment	USA - Oak Ridge; France Fontenay aux Roses; India - Trombay?	UK., -Harwell, Winfrith (?); Switzerland: Würenlingen EIR
Moderation of neutrons	Fluoride in large amounts acts as a weak moderator	The moderation factor for chlorine is 3 times lower and the concentration is also smaller

25

MOLTEN FLUORIDE VERSUS MOLTEN CHLORIDE FUEL - I

Criteria for molten salt as fuel: Melting point: lower than $500-600^{\circ}C$ Boiling point higher than $1500^{\circ}C$ (partial pressure) Density: as high as possible, $\rho = 3 \text{ gcm}^{-3}$ Capture cross section low $\sigma_{\text{capture}}^{\text{thermal}} < 0.16$; $\sigma_{\text{capt}}^{\text{fast}}$ small

Cross section for nuclear reactions low; e.g. for ³⁵Cl (n,p)³⁵S Elastic scattering: high for thermal, low for fast (see previous page) Radiolytic stability high and fast recombination (previous page) Chemically stable (large free enthalpy of formation), no precipitates Simple technology, low corrosivity Low viscosity (low pumping requirements) ~l centipoise Low price, good availability, non poisonous

26

		Fluoride	Chloride		
Reactor Type		Thermal (fast possible)	only fast because σ_{capt} Cl is large		
Components -	fertile	ThF ₄ only	UC1 ₃ or UC1 ₄ (unstable!)		
	fissile	UF4 or UF3	PuCl ₃ only		
	dilutent	LiF Possible but also BeF ₂ plays the role of moderator NaF forbidden since T _{melt} is too high	LiCl forbidden since BeCl ₂ they act as moderators NaCl possible		
Moderator		Li.F, BeF ₂ not suffi- cient. Graphite is nec- cessary: does not react with molten fluoride	none		
Metallic tubes in the core		not permitted due to neutron balance	permitted, e.g. a molybdenum/iron duplex		

MOLTEN FLUORIDE VERSUS MOLTEN CHLORIDE FUEL - II MELTING POINTS

The free energy of formation for fluorides is greater than that for chlorides.

The formation of oxides of uranium is retarded in fluorides. The ratio $\Delta G (HF/H_2O)$ is not the same as $\Delta G (HC1/H_2O)$. Carbon tetra-fluoride is a product of graphite and fluorides.

MOLTEN FLUORIDE VERSUS MOLTEN CHLORIDES FUEL - IV STABILITY AGAINST FISSION AND CORROSION PRODUCTS

For molten fluoride the crucial mechanism

 $UF_4(d) + 1/2 Cr(Ss) UF_3(d): K^{900K} = 1.38 \times 10^{-4}$

Numerical Values given for ΔG^{1000K} in 2LiF-BeF₂ solution

MOLTEN SALT FLUORIDE BREEDER (THERMAL) POWER REACTOR

1 GW(el), MSBR (Oak Ridge concept) Fuel: ⁷LiF (71.7 mol%), BeF₂ (16%), ThF₄ (12%), ²³³UF₄ (0.3%) T_{fuel} = 839-978 K T_{melt} = 772 K Breeding ratio = 1.06 Doubling time = 22 years Density (~908 K) = 3330 kg/m³. Heat Capacity = 1.36 J g⁻¹K⁻¹ Viscosity (~908 K) = 0.01 N s m⁻² Structural material: graphite (in core) Hastelloy N

Problem of delayed neutron precursors.

30

<u>A FAST BREEDER REACTOR WITH MOLTEN CHLORIDES COULD HAVE IN CORE COOLING</u> Total power: 2050 MW(th) Core volume 7.75 m³ (2m x 2.36 m) Fuel: PuCl₃ (15 mol%) NaCl (85 mol%). T_{melt} = 685°C; ρ = 2.34 gcm⁻³ Coolant, fertile: ²³⁸UCl₃ (65 mol%) NaCl (35 mol%) T_{melt} = 710°C; ρ = 4.00 gcm⁻³ Specific power: 220 W/cm³ core; 705 W/g Pu Velocity: Fuel 2 m s⁻¹; coolant 9 m s⁻¹ Number of tubes in the core: 20,000 (1.26/1.20 cm dia.) Reprocessing: continous, 3 gs⁻¹; dwell time: 10 days Breeding ratio: internal 0.716; outer 0.67 total 1.386 (corrected) Mean fast flux across core: 7 x 10¹⁵ n cm⁻²s⁻¹ fast flux in the centre: 1.2 x 10¹⁶n cm⁻²s⁻¹ Temperature reactivity coefficent ($\delta k(\%/\delta T(^{\circ}C)$) fuel = 3.8 x 10⁻²; coolant +1.29 x 10⁻²

Structural material: Fe (1.45 kg/l): Mo(0.465 kg/l)

THE VERY COMPLEX PROBLEM OF CONTINOUS REPROCESSING OF THE FUEL IN A MOLTEN FLUORIDE REACTOR HAS BEEN SOLVED

The operation of a molten salt thermal reactor as a high performance breeder is made possible by the continuous reprocessing of the fuel salt in a plant located at the reactor site. The most important operation consists in removing fission products (rare-earths) and isolating Pa-233 from the high flux region during its decay to U-233 in order to reduce neutron absorption.

- It is also neccessary for:
- the removal of excess U-233
- addition of fresh amounts of Th-232
- the proper redox potential to be maintained
- the oxides to be removed
- corrosion products to be maintained at tolerable levels

In order to achieve the breeding ratio of 1.06 - 1.07 the following fission products must be removed as shown.

Nave Bartins		-	
Noble Metals			
Se, Nb, Mo, Tc, Ru, Rh	, Ag, Sb, Te, Pe	d	
Semi-Noble Metals			
Zr, Cd, In, Sn			
Noble Gases			
Kr, Xe			8
Volatile Fluorides			
Br, 1			
Non-Volatile Fluorides			
Rb, Cs, Sr, Ba			
Protactinium			
Actinides			
Np, Pu			

Reprocessing in MSBR

THE EXISTING REPROCESSING SCHEME IS TOO CONSERVATIVE. IT DOES NOT TAKE INTO ACCOUNT THE PROBLEMS OF RADIOACTIVE WASTE MANAGEMENT

	PRESENT STATE	POSSIBLE FUTURE FORM		
Reprocessing	periodic	quasi-continuous		
Removal of F.P.	in a mixture	as individium		
Transmutation of hazar- dous F.P.	no	possible in a special central station		
Actinides (Np, Am, Cm)	removal to radio- active waste	recycled in a special power reactor?		

Reprocessing in the Future

THE LONG TERM HAZARDOUS TRANSPLUTONIUM ELEMENTS CAN BE FULLY BURNED-UP IN A FISSION REACTOR

Parallel to the burning of U and Pu also synthesis of Np, Am, Cm, Bk and Cf is going.

At present time the actinides, other than U and Pu, are removed to the waste.

The problem of the hazard from these actinides in long term must be solved.

The recycling of actinides bach to the power reactors gives the solution of problem.

The methods of the recycling must be developed.

CHEMISTRY OF FLUORIDE FUEL

Fluorides are the only salts with acceptable σ_{abs} , requisite stability (AG) and melting point.

Oxidation state UF_3 due to stability and low T_{melt} PuF₃ the most stable but in both cases ThF₄ the only one T_{melt} is very high

Components

1) ⁷LiF and BeF₂ for lowering T_{melt} 2) for moderating 3) ⁷Li because: $\frac{6}{3}$ Li(n, α) T, σ_{th} = 953 barn 4) LiF/BeF₂ for low viscosity

Tritium production:

in spite of ⁷Li the products are (for ~l GW(el)) 233 U(n,f) ternary:30 Ci/day ⁷Li(n,an) ³T : 1200 " ⁶Li(n,a) ³T : 1200 "

Graphite - as moderator and structural material ($\rho = 1.9 \text{ gcm}^{-3}$) 4 UF₄ + C CF₄ + 4UF₃: e.g. pressure CF₄ = 10⁻⁸ bar.

The problem of xenon-135: This F.P. is adsorbed in the open pore volume in the graphite; accesible void volume ~10% graphit replacement in the core ~each 2 years

Disproportionation

 $4UF_3(d) = 3UF_4(d) + U: K^{900K} = 6.3 \times 10^{-7}$

Instability in the presence of oxygen-containing materials:

 $UF_{4} + O_{2} \quad UO_{2} + \dots$

solubility of UO₂ in molten salt ~40 ppM also precipitation of Pa_2O_5 , PuO_2

FLUORIDES

F.P. Balance: $UF_4 \rightarrow 2 \text{ atom F.P.} + 4F \rightarrow$ $\rightarrow Me^{I}F + Me^{II}F_2 + Me^{III}F_3 + Me^{0} + + F_2$

The Breeding Ratio is very sensitive to the removal rate of RE and Pa-233.

Structural material for reprocessing: TZM: molybdenum alloy

for	fuel	system	Has	stelloy	Ν	(modi	lfied)	(wt%)	
Ni	75		Si	0.1		С	0.06		,
Мо	12		W	0.1		Р	0.015		
Cr	7		Al	0.1		S	0.015		
Fe	4		Ti	1.0		В	0.001	(10 ppM)	
Mn	0.2		Co	0.2					
$\mathrm{H}\mathbf{f}$	1.0		Та	2.0					

Cost of salt 57\$/pound, in this U-233 \$13/g; total cost 23x10⁶ \$

37

ANALYTICAL PROBLEMS FOR MOLTEN FLUORIDE FUELS ARE OF THE HIGHEST IMPORTANCE

In order to fully exploit the unique features of the molten salt reactor concept it will be neccessary to carry out all analyses automatically on line with transducers located directly in the salt streams in the reactor and reprocessing plant. The most significant items to be measured are

- Redox conditions of the fuel: the U^{3+}/U^{4+} ratio which influences the rate of corrosion and the distribution of certain fission products and tritium in the reactor. This is due to the disproportionation

 $4UF_{3} \rightarrow 3UF_{11} + U^{O}$ (only in molten state)

(by spectrophotometric methods also voltammetry)

- corrosion product concentration (Cr⁺² Ti⁺³, voltammetry)
- oxide levels (by hydrofluorination: MeO + HF \rightarrow H_2O + MeF_x) 50 ppM precision
- bismuth (polarographic method 50 ppG)
- hydrogen and tritium (diffusion to Pd-electrode some ppM)
- protactinium
- certain fission products (remote gamma spectrometry and for noble metals mass spectrometry)

<u>Note:</u> Most of these techniques are carried out in hot laboratories. The electrochemical technique appears to be the prime candidate for practical on-line fuel analysis because of the simplicity of its transducers.

The analytical and general chemical problems in the molten chlorides are also of interest because an important step in the continuous reprocessing technique is the liquid bismuth/molten chloride reduction extraction metal transfer process. IN A HIGH NEUTRON FLUX CHLORINE TRANSFORMS TO SULPHUR AND PHOSPHOROUS Chlorine 35 reacts with neutrons: 35 Cl(n,p); 35 Cl(n,a) 32 P Separation of 35 Cl/ 37 Cl is relatively easy because

- 1 37Cl in the naturally occurring Cl is 24.5%
- 2 the ratio $\frac{37-35}{35} = 0.057$
- 3 Chlorine is volatile

WITH MOLTEN CHLORIDE FUEL IT SEEMS THAT A CONTINUOUS GAS EXTRACTION SYSTEM IS POSSIBLE

Iodine isotopes as precursors of delayed neutrons

Isotopic separation e.g. Caesium

THE BALANCE OF CHLORINE DURING THE FISSION PROCESS IS "NEGATIVE" PuCl₃ (n,f) E' + E" + 3Cl (n,f) 0.008 Se + 0.003 Br + 0.942 Kr + 1.05 RbCl + 5.49 SrCl₂ + 3.03 YCl₃ + 21.5 ZrCl₃ + 0.29 NbCl₅(?) + 18.16 MoCl₂ + 4.01 Tc + 31.45 Ru + 1.73 Rh + 12.66 Pd + 1.88 AgCl + 0.66 + 0.66 CdCl₂ + 0.06 InCl + 0.325 SnCl₂ + 0.67 SbCl₃ + + 7.65 TeCl₂ + 6.18 I + 21.23 Xe + 13.35 CsCl + 9.50 BaCl₂ + 5.78 LaCl₃ + 13.98 CeCl₃ + 4.28 PrCl₃ + 11.87 NdCl₃ + 1.44 PmCl₃ + 3.74 SmCl₃ + 0.60 EvCl₂ + 0.03 CdCl₃

100 PuCl₃ (n,f) 200 ECl_{1.5}

LITERATURE

For molten salt reactors only, estimated to the recent publication Harder B.R., Compatibility and reprocessing in use of molten UClz alcalichlorides mixtures as reactor fuel in Long G., Stanaway W.P. "Sympos. Reprocessing Nuclear Fuels" Ed. P. Chiotti, USAEC, Con-690801 (1969) MSBR- a review of its status and future Nuclear McNeese L.E., Rosenthal M.W. News. Sept. 1974 The development status of molten-salt breeder Rosenthal M.W., Haubenreich P.N., reactor. Oak Ridge, ORNL-4812, 1972 Briggs R.B. Steady-state burning of fission products in a fast Taube M. thermal molten salt breeding power reactor. Ann.Nucl.Sci. Engin. 1, 283 (1974) Taube M., Molten plutonium chlorides fast breeder cooled by Ligou J. molten uranium chlorides. Ann.Nucl.Sci. Engin. 1, 277 (1974) Taube M., The transmutation of fission products (Cs-137, Sr-90) in a liquid fuelled fast fission reactor Ligou J., Bucher K.H. with thermal column. EIR-Report Nr. 270, Feb. 1975