74:002

JAN 1 0 1975

TASK I FINAL REPORT DESIGN STUDIES OF STEAM GENERATORS FOR MOLTEN SALT REACTORS

REPORT ND/74/66

FWC CONTRACT 8-25-2431 UCC PURCHASE ORDER SUBCONTRACT NO. 91X-88070C

FOSTER WHEELER CORPORATION

NUCLEAR DEPARTMENT

110 South Orange Avenue, Livingston, New Jersey

Best Copy Available

Page 6-92 Missing

.

and the second se	DOCUMENT NO.	ISSUE	DATE
	TASK I FINAL		
	DESIGN STUDIES OF ST		
	FOR MOLTEN SALT	REACTORS	
	REPORT ND/	74/66	
	FWC CONTRACT	-(*);	
	UCC PURCHASE ORDER SUBCONT.	RACT NO. 91X-880	070C
		Approved <u>J. F. Co</u> J. F. Co Project M <u>MUECCA</u> W. Wolowo Program M <u>D. H. Pai</u> Chief Eng	lanager diuk lanager
	FOSTER WHEELER ENER EQUIPMENT DIVISION-NUC 110 SOUTH ORAN LIVINGSTON, NEW JE	LEAR DEPARTMENT GE AVENUE	

	CHARGE NO. 8-25-2431 DOCUMENT NO. ND/74/66	ISSUE 1	DATE	12/16/74
	DISTRIBUTION LIST			
	Union Carbide Corporation			
	J. L. Crowley (30)			
	Foster Wheeler Energy Corporation			
	R. O. Barratt to J. K. O'Donoghue to Nuclear Files (Retain)			
	W. Wolowodiuk to J. F. Cox (Retain)			
	D. H. Pai to C. Nash to H. Levy (Retain)			
	S. M. Cho to H. L. Chou (Retain)			
	J. Anelli to C. Holderith (Retain)			
	W. R. Apblett (2) to E. D. Montrone (Retain) to G. V. Amoruso (Retain)			
	M. J. Kraje to J. G. Whelley (Retain)			
BI	APPROVED			

		FOSTER	WHEELER	ENERGY	CORPORATION
NUCLEAR	DEPARTMENT				

LIVINGSTON, N. J.

-					LIVINGSION, N. J
	CHARGE NO. 8-25-2	2431 DOCUMENT N	10. ND/74/66	ISSUE 1	DATE 12/16/74
		<u>"I.</u>	EGAL NOTICE"		
	Nertuer the Ou	as prepared as a ited States, nor he Commission:	n account of G the Commissio	overnment sp n, nor any p	oonsored work. Person acting
N MADE	respect t formation formation	warranty or rep o the accuracy, o contained in the apparatus, metho nfringe privately	completeness of is report, or od or process of	r usefulness that the use disclosed in	of the in-
HAVE BEE	resurving	ny liabilities wi from the use of isclosed in this	any informatio	the use of, on apparatus	or for damages method, or
COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE	or Subcontractor or Contractor of Contractor prep mation pursuant	e above, 'person nployee or Contra or of such Contra of the Commission pares, disseminat t to his employme ent or subcontrac	actor of the Co actor to the en a or employee o es, or provide ant or contract	ommission or stent that success to access to with the Co	employee uch employee ctor of such
DICAT					
TUMD 1					
1 1					
SIHL		•			
S IN					
NOTATIONS					
HON					
	BY	APPROVED			PAGE D

ţ

EWC ECEM 172 - 4

LIVINGSTON, N. J.

CHARGE NO.	8-25-2431	DOCUMENT NO.	ND/74/66	ISSUE 1	DATE	2/16/7
Section	No.	Ti	tle		Pa	age No.
I		Title and Si	gnature Pa	ge	(over
II		Distribution	n List			a
III		Legal Notice	•			Ъ
VI		Table of Cor	itents			C
1.0		Abstract				1-1
2.0		Introductior Arrangement		pt		2-1
3.0		Mechanical I	Design Repo	rt		3 - 1
4.0		Thermal/Hydr	caulic Desi	gn		4-a
5.0		Structural I	Peasibility	Analysis		5-a
6.0		Hastelloy N	Steam Corre	osion		6-a
7.0		Manufacturir	ng Engineer:	ing		7-a
		Appendi	cies			
A		Design Calcu	ulations			
В		Thermal/Hydi	caulic Calc	ulations		
С		Structural (Calculation	S		
				N		
s			•		,	
			1	'		
ВҮ	APPR	OVED			PAGE	C

UNARGI	E NO.	8-25-2431	DOCUMENT NO	• ND/74/66	ISSUE	1	DATE 12/16/
_							
1.0	ABS	STRACT					
• •	in Whee Rea the con due Jan per Con 197/	accordance eeler for De ctors under e period Oct ducted unde to a termi uary 31, 19 formed from tract No. 8- 4 through De	with Task I of sign Studies Purchase Ord ober 1971 the r two different nation for the 73. FWC Cont October 7, 1 -25-2431 cove ecember 31, 1	of the Work P of Steam Gen der Subcontra- rough Decembe ent Foster What root No. 2-29 971 through red the work 974.	ork done lan Deta erators ct No. 9 r 1974. eeler co e of the 5-1352 c January performa	by il b for l 1X-8 The ntrac gove overe 31, 1 ed fr	Foster Wheele y Foster Molten Salt 8070C during effort was et numbers ernment on ed the work 1973. FWC rom May 17,
	stea	am generato:	r system cons	oncept preser l heat exchar isting of fou eactor power	nger to b Prunits		a at has
	desi bunc shrc wate prov	igned to min ile. Where oud is used er, steam an vided. The	ressure boun imize the an the shell mu to maintain d molten sal	welded constr dry welds. I nulus between st be of a la the flow over t inlet and o esign provisi ction 3.0.	"he press itself rger dia the bun utlet po	sure and mete idle.	shell is the tube r a flow Suitable
	desc is s	ribed in Se ufficient f	orted herein. ction 4.0 der or the intend	d by thermal/ The therma nonstrates th ded service w ing on the co	l/hydrau at the p ith mini	lic rese: mal	analysis
	comp was the	onents was of conducted of shell and th	in Section 5 conducted. A n the salt in	oroposed designo. An elas lso, simplificulet nozzle, sed upon the actory.	tic anali ied inela	ysis astio	on major c analysis ubeshoot
	anui	ine versions maintenance ion 7.0.	s of a possib procedures w	le manufactur ere prepared	ring and and may	insp be f	ection plan ound in
	Refe	rences are p	provided as a the Appendic	pplicable and	l support	ting	calculations

FWC FORM 172 - 4

PAGE 1-1

				· · · · · · · · · · · · · · · · · · ·		LIVINGSTON, N.
	CHARCE		DOCUMENTE NO		Tagen	
		<u>NO. 8-25-2431</u>	· · · · · · · · · · · · · · · · · · ·	-	ISSUE 1	DATE 12/16/74
			D CONCEPT ARRAI	NGEMENT STUD	<u>r</u>	
JOWN INDICATE WHERE CHANGES HAVE BEEN MADE	2.1	during the pe Design Studie This work was the convenies first segmen The second se report. This completion of This document of Article I No. 91X-88-70 Agreement No. further defin Design Studie dated October codes and sta	eriod from Octo es of Steam Gen s performed in nce of the gove t ran from Octo egment was begu s second segmen f Task I. t is submitted - Statement of OC dated Octobe 3 dated May 1 ned in the Work es of Steam Gen 7, 1971 and a undards applica reement under S	bber 7, 1971 erators for two segments ernment on Ja ober 7, 1971 n on May 17, it limited th in complianc Work of Pur r 7, 1971 as 7, 1974. Th Plan Detail erators for ttached to t ble to this	to December Molten Salt due to a t nuary 31, 1 to January 1974 and e e work scop e with the chase Order ammended b is Statemen by Foster Molten Salt he Subcontra effort have	Reactors. ermination for 973. The 31, 1973. nds with this e to the requirements Subcontract y Supplemental t of Work is Wheeler for Reactors act. All been established
NUTATIONS IN THIS COLUMN INDICATE		to Union Carb	the information bide in progres required under	s reports l	through 12 m	been submitted which were
		· .				
▶ ⊢	 3Y		ROVED			PAGE 2-1

	· · · · · · · · · · · · · · · · · · ·			LIVINGSTON, N.				
CHARGE	NO. 8-25-2431 DOCUMENT	NO. ND/74/66	ISSUE 1	DATE 12/16/7				
2 .2	CONCEPT ARRANGEMENT STUI	<u>DY</u>						
	A concept arrangement st concept that offered the this study was to establ through consulting with ble surface arrangements criteria. For clarity a and criteria established	e most promise. ish the design r Union Carbide ar that might meet nd completeness.	The starting equirements d then to ev these requi	point for and criteria aluate posi- rements and				
	DESIGN REQUIREMENTS AND CRITERIA							
	1. The inlet and outlet salt temperatures, the maximum pressure drops, and the total heat transfer capacity of the steam genera-tors must conform with the overall system operating conditions.							
	a) Full load operating loops - thermal duty = $\frac{1}{4}$	conditions (one 83 MW):	of four cools	ant salt				
		<u>Coolant Sa</u>	lt Wa-	ter/Steam				
	Inlet temperature, F Outlet temperature, F Flow rate, Lb/hr Inlet pressure, psia Outlet pressure, psia	1150 850 15,280,000 235 175 si 60		700 1000 517,000 3800 3600				

modules are used in parallel, they will share the coolant salt loop duty and flows equally. The maximum water/steam side pressure drop of 200 psi may be relaxed if found to be unnecessarily restrictive.

b) Part load operating range at constant steam generator outlet pressure is defined as any condition between 20 and 100% of full load thermal duty. In this load range the coolant salt flow will be varied linearly from 30% flow at 20% load to 100% flow at 100% load. The feedwater inlet temperature will be maintained constant at 700 F over this load range while the water/steam flow will be varied in proportion to load. The turbine inlet steam temperature must be maintained at 1000 F \pm 15 over this load range. If an attemperator is required to maintain the turbine inlet temperature, then the attemperator design becomes a part of the steam generator design.

EWC FORM 172 - 4 NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE

LIVINGSTON, N. J.

 c) Startup operation of the MSER power system is defined as zero to 20% of full load. However, the primary fuel salt requires that initial zero power operation must begin with both the fuel and coolant salt systems circulating isothermally at 1050 F. d) The steam generator must be able to operate at all loads wit tolerable thermal stresses and without freezing the coolant salt Alternately, operation with a frozen salt film may be permissibil if desirable and if operation can be shown to be stable. 2. The type of steam generator, the general location of nozzles the height of the unit, and the minimum tube diameter must be compatible with various design, layout, fabrication, maintenance and inspection considerations. a) The steam generator shall be a once-through, shell and tube heat exchanger with the coolant salt on the shell side and the water/steam in the tubes. b) For purposes of the steam generator design, the coolant salt system is assumed to have forced circulation during all expected operations. Natural circulation under decay heat removal conditions. c) There is no height limit on the steam generator. d) As a guideline, a minimum tube ID of not less than 0.375 inches shall be used. g) A tube plugging allowance of 5% but not exceeding 25 tubes shall be used for preliminary sizing purposes. h) Heat transfer surface may be arranged for vertically up or down tube side flow. 	CHARGE	NO.8 of allos	DOCHMENT NO (/	Tomm	
 2270 to 20% of full load. However, the primary fuel salt requires that initial zero power operation must begin with both the fuel and coolant salt systems circulating isothermally at 1050 F. d) The steam generator must be able to operate at all loads wit tolerable thermal stresses and without freezing the coolant salt Alternately, operation with a frozen salt film may be permissible if desirable and if operation can be shown to be stable. 2. The type of steam generator, the general location of nozzles the height of the unit, and the minimum tube diameter must be compatible with various design, layout, fabrication, maintenance and inspection considerations. a) The steam generator shall be a once-through, shell and tube heat exchanger with the coolant salt on the shell side and the water/steam in the tubes. b) For purposes of the steam generator design, the coolant salt system is assumed to have forced circulation during all expected operation. Natural circulation under decay heat removal conditions. c) There is no height limit on the steam generator. d) As a guideline, a minimum tube ID of not less than 0.375 inches shall be used. e) There are no physical layout limitations. f) The shell side of the steam generator shall be completely drainable. g) A tube plugging allowance of 5% but not exceeding 25 tubes shall be used for preliminary sizing purposes. h) Heat transfer surface may be arranged for relatively easy tube bundle replacement or modular replacement. Both seal-welded flanges and with a surface may be arranged for relatively easy tube bundle replacement or modular replacement. Both seal-welded flanges and out and weld removal techniques shall be onsidered 		10-25-2431	DOCUMENT NO. ND/74/66	ISSUE 1	DATE 12/16/7
 b) Hermal stresses and without freezing the coolant salt Alternately, operation with a frozen salt film may be permissible if desirable and if operation can be shown to be stable. 2. The type of steam generator, the general location of nozzles the height of the unit, and the minimum tube diameter must be compatible with various design, layout, fabrication, maintenance and inspection considerations. a) The steam generator shall be a once-through, shell and tube heat exchanger with the coolant salt on the shell side and the water/steam in the tubes. b) For purposes of the steam generator design, the coolant salt system is assumed to have forced circulation during all expected operation. Natural circulation under decay heat removal conditions. c) There is no height limit on the steam generator. d) As a guideline, a minimum tube ID of not less than 0.375 inches shall be used. e) There are no physical layout limitations. f) The shell side of the steam generator shall be completely drainable. g) A tube plugging allowance of 5% but not exceeding 25 tubes shall be used for preliminary sizing purposes. h) Heat transfer surface may be arranged for relatively easy tube bundle replacement or modular replacement. Both seal-welded flanges and cut and weld removal be chroned for relatively easy tube bundle replacement or modular replacement. Both seal-welded flanges and cut and weld removal be chroned for relatively easy tube bundle replacement or modular replacement. 		requires that the fuel and c	initial zero power operat	e primary fu tion must be	el salt
 ble height of the unit, and the minimum tube diameter must be compatible with various design, layout, fabrication, maintenance and inspection considerations. a) The steam generator shall be a once-through, shell and tube heat exchanger with the coolant salt on the shell side and the water/steam in the tubes. b) For purposes of the steam generator design, the coolant salt system is assumed to have forced circulation during all expected operation. Natural circulation on the shell side, although a desirable feature, is not a design requirement. The tube side may have forced or natural circulation under decay heat removal conditions. c) There is no height limit on the steam generator. d) As a guideline, a minimum tube ID of not less than 0.375 inches shall be used. e) There are no physical layout limitations. f) The shell side of the steam generator shall be completely drainable. g) A tube plugging allowance of 5% but not exceeding 25 tubes shall be used for preliminary sizing purposes. h) Heat transfer surface may be arranged for vertically up or down tube side flow. 		Alternately, of	mal stresses and without peration with a frozen sa	freezing th lt film may	e coolant salt.
 heat exchanger with the coolant salt on the shell side and the water/steam in the tubes. b) For purposes of the steam generator design, the coolant salt system is assumed to have forced circulation during all expected operation. Natural circulation on the shell side, although a desirable feature, is not a design requirement. The tube side may have forced or natural circulation under decay heat removal conditions. c) There is no height limit on the steam generator. d) As a guideline, a minimum tube ID of not less than 0.375 inches shall be used. e) There are no physical layout limitations. f) The shell side of the steam generator shall be completely drainable. g) A tube plugging allowance of 5% but not exceeding 25 tubes shall be used for preliminary sizing purposes. h) Heat transfer surface may be arranged for vertically up or down tube side flow. 3. The steam generator should be arranged for relatively easy tube bundle replacement or modular replacement. Both seal-welded flanges and cut and weld removal technious shall be considered 		compatible with	the unit, and the minimum h various design. lavout.	i tube diamo	ter must be
 system is assumed to have forced circulation during all expected operation. Natural circulation on the shell side, although a desirable feature, is not a design requirement. The tube side may have forced or natural circulation under decay heat removal conditions. c) There is no height limit on the steam generator. d) As a guideline, a minimum tube ID of not less than 0.375 inches shall be used. e) There are no physical layout limitations. f) The shell side of the steam generator shall be completely drainable. g) A tube plugging allowance of 5% but not exceeding 25 tubes shall be used for preliminary sizing purposes. h) Heat transfer surface may be arranged for vertically up or down tube side flow. 3. The steam generator should be arranged for relatively easy tube bundle replacement or modular replacement. Both seal-welded flanges and cut and weld removal technious shall be considered 		neat exchanger	with the coolant salt on	-through, sl the shell s	hell and tube side and the
 d) As a guideline, a minimum tube ID of not less than 0.375 inches shall be used. e) There are no physical layout limitations. f) The shell side of the steam generator shall be completely drainable. g) A tube plugging allowance of 5% but not exceeding 25 tubes shall be used for preliminary sizing purposes. h) Heat transfer surface may be arranged for vertically up or down tube side flow. 3. The steam generator should be arranged for relatively easy tube bundle replacement or modular replacement. Both seal-welded flanges and cut and weld removal techniques shall be considered 		operation. Nat desirable featu may have forced	ned to have forced circul tural circulation on the ure, is not a design requ	ation during shell side, irement. Th	g all expected although a ne tube side
 d) As a guideline, a minimum tube ID of not less than 0.375 inches shall be used. e) There are no physical layout limitations. f) The shell side of the steam generator shall be completely drainable. g) A tube plugging allowance of 5% but not exceeding 25 tubes shall be used for preliminary sizing purposes. h) Heat transfer surface may be arranged for vertically up or down tube side flow. 3. The steam generator should be arranged for relatively easy tube bundle replacement or modular replacement. Both seal-welded flanges and cut and weld removal techniques shall be considered 		c) There is no	height limit on the stea	am generator	•
 f) The shell side of the steam generator shall be completely drainable. g) A tube plugging allowance of 5% but not exceeding 25 tubes shall be used for preliminary sizing purposes. h) Heat transfer surface may be arranged for vertically up or down tube side flow. 3. The steam generator should be arranged for relatively easy tube bundle replacement or modular replacement. Both seal-welded flanges and cut and weld removal techniques shall be considered 		d) As a guidel	ine, a minimum tube ID o:		
 drainable. g) A tube plugging allowance of 5% but not exceeding 25 tubes shall be used for preliminary sizing purposes. h) Heat transfer surface may be arranged for vertically up or down tube side flow. 3. The steam generator should be arranged for relatively easy tube bundle replacement or modular replacement. Both seal-welded flanges and cut and weld removal techniques shall be considered 		e) There are n	no physical layout limita	tions.	
 shall be used for preliminary sizing purposes. h) Heat transfer surface may be arranged for vertically up or down tube side flow. 3. The steam generator should be arranged for relatively easy tube bundle replacement or modular replacement. Both seal-welded flanges and cut and weld removal techniques shall be considered 		f) The shell s drainable.	ide of the steam generato	or shall be	completely
or down tube side flow. 3. The steam generator should be arranged for relatively easy tube bundle replacement or modular replacement. Both seal-welded flanges and cut and weld removal techniques shall be considered		g) A tube plug shall be used fo	ging allowance of 5% but or preliminary sizing pur	not exceedi poses.	ng 25 tubes
tube bundle replacement or modular replacement. Both seal-welded flanges and cut and weld removal techniques shall be considered	.]	h) Heat transfo or down tube sid	er surface may be arrange de flow.	ed for verti	cally up
for easy tube bundle replacement.	t t	tube bundle rep flanges and cut	lacement or modular repla and weld removal technig	cement. Bo	th seal-welded

NUCLEAR DEPARTMENT

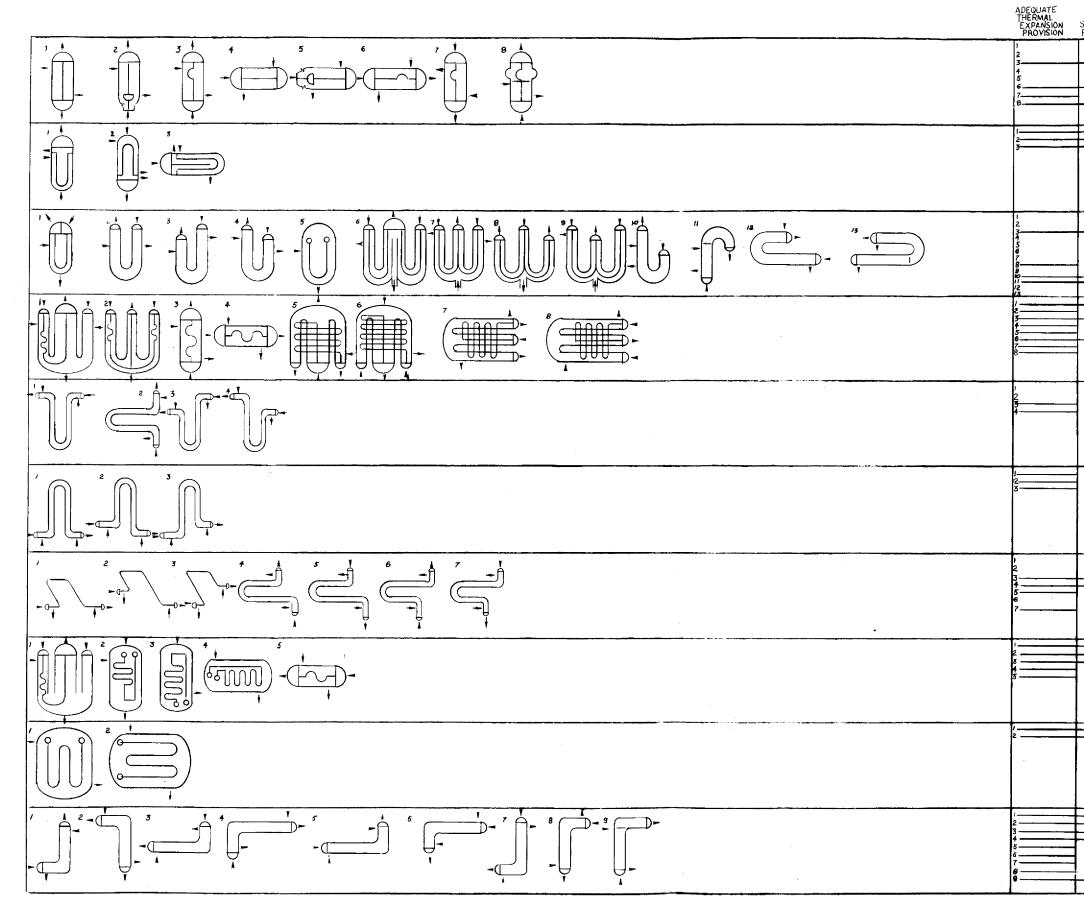
LTV	INGST	ON	λT .	т
- T T V				

 The Space requirements for the installation of the steam generator should be as small as practical commoneurate with economic considerations. It will be necessary to have some data for incremental building and excavation costs. The volumes of both the salt and water/steam in the unit should be kept as low as practical. The use of cover gases to protect structural members should be avoided. The following items shall be considered and accomodated in the design of the steam generator: Baffle and tube supports, as necessary, to prevent damaging vibration. Relative expansion between the shell and tube bundle and between individual tubes. Tube side flow stability under all load conditions. Protection of nozzles and tubesheets against excessive thermal stress due to transients. Relief of the salt-steam mixture resulting from a double-ended steam generator. The remainder of the coolant salt system can withstand a continuous pressure of 220 pai without damage. The steam generator shall be designd as a Class 1 vessel in accordince with the applicable portions of Section III of the 1971 ASME Boiler and Pressure Vessel Code with addenda and the other design standards listed in the corrected Appendixes A and D of the Company's RPP, Enclosure 2. The design shall be based on Hastelloy N material. The physical properties of this Hastelloy N are listed in the corrected Appendixe A and D of the Steam generator which the steam generator design is based shall be obtained from the 1967 ASME Steam Tables. 	CHARG	E NO. 8-25-2431 DOCUMENT NO. ND/74/66 ISSUE	1 DATE 12/16/74
 atta for incremental building and excavation costs. 5. The volumes of both the salt and water/steam in the unit should be kept as low as practical. 6. The use of cover gases to protect structural members should be avoided. 7. The following items shall be considered and accomodated in the design of the steam generator: a. Baffle and tube supports, as necessary, to prevent damaging vibration. b. Relative expansion between the shell and tube bundle and between individual tubes. c. Tube side flow stability under all load conditions. d. Protection of nozzles and tubesheets against excessive thermal stress due to transfents. e. Fabricability of the design including the ability to radiograph all containment welds. f. Relief of the salt-steam mixture resulting from a double-ended steam generator. The remainder of the coolant salt system can withstand a continuous pressure of 220 psi without damage. 8. The steam generator shall be designed as a Class 1 wessel in accordance with the applicable portions of Section III of the 1971 ASME Boiler and Pressure Vessel Code with addenda and the other design standards listed in the corrected Appendixes A and D of the Company's RFP, Enclosure 2. The design shall include the Code consideration for operation in excess of 800 F over a 30 year design life at 80% plant factor. 9. The design of all portions of the steam generator in contact with the salt shall be based on Hastelloy N material. The physical properties of this Hastelloy N are listed in the corrected Appendix C of the Company's RFP, Enclosure 2. 		4. The space requirements for the installation of generator should be as small as prestical as	f the steam
 be kept as low as practical. 6. The use of cover gases to protect structural members should be avoided. 7. The following items shall be considered and accomodated in the design of the steam generator: a. Baffle and tube supports, as necessary, to prevent damaging vibration. b. Relative expansion between the shell and tube bundle and between individual tubes. c. Tube side flow stability under all load conditions. d. Protection of nozzles and tubesheets against excessive thermal stress due to transients. e. Fabricability of the design including the ability to radiograph all containment welds. f. Relief of the salt-steam mixture resulting from a double-ended steam generator tube failure to limit damage to the steam generator. The remainder of the coolant salt system can withstand a continuous pressure of 220 psi without damage. 8. The steam generator shall be designed as a Class 1 vessel in accordance with the applicable portions of Section III of the 1971 ASME Boiler and Pressure Vessel Com with addenda and the other design standards listed in the corrected Appendixes A and D of the Company's RFP, Enclosure 2. The design shall include the Code consideration for operation in excess of 800 F over a 30 year design life at 80% plant factor. 9. The design of all portions of the steam generator in contact with the salt shall be based on Hastelloy N material. The physical properties on which the steam generator account of a steam generator 2. 		data for incremental building and excavation of	y to have some costs.
 be avoided. 7. The following items shall be considered and accomodated in the design of the steam generator: Baffle and tube supports, as necessary, to prevent damaging vibration. Belative expansion between the shell and tube bundle and between individual tubes. c. Tube side flow stability under all load conditions. d. Protection of nozzles and tubesheets against excessive thermal stress due to transients. e. Fabricability of the design including the ability to radiograph all containment welds. f. Relief of the salt-steam mixture resulting from a double-ended steam generator. The remainder of the cool salt system can withstand a continuous pressure of 220 psi without damage. 8. The steam generator shall be designed as a Class 1 vessel in accordance with the applicable portions of Section III of the 1971 ASME Boiler and Pressure Vessel Code with addenda and the other design standards listed in the corrected Appendires A and D of the Company's RFP, Enclosure 2. The design shall include the Code consideration for operation in excess of 800 F over a 30 year design life at 80% plant factor. 9. The design of all portions of the steam generator in contact with the salt shall be based on Hastelloy N material. The physical properties of this Hastelloy N are listed in the corrected Appendit. 10. The steam properties on which the steam generator damage in the other Company's RFP, Enclosure 2.		be kept as low as practical.	
 a. Baffle and tube supports, as necessary, to prevent damaging vibration. b. Relative expansion between the shell and tube bundle and between individual tubes. c. Tube side flow stability under all load conditions. d. Protection of nozzles and tubesheets against excessive thermal stress due to transients. e. Fabricability of the design including the ability to radiograph all containment welds. f. Relief of the salt-steam mixture resulting from a double-ended steam generator. The remainder of the coolant salt system can withstand a continuous pressure of 220 psi without damage. 8. The steam generator shall be designed as a Class 1 vessel in accordance with the applicable portions of Section III of the 1971 ASME Boiler and Pressure Vessel Code with addenda and the other design standards listed in the corrected Appendixes A and D of the Company's RFP, Enclosure 2. The design shall include the Code consideration for operation in excess of 800 F over a 30 year design life at 80% plant factor. 9. The design of all portions of the steam generator in contact with the salt shall be based on Hastelloy N material. The physical properties of this Hastelloy N are listed in the corrected Appendi: C of the Company's RFP, Enclosure 2. 10. The steam properties on which the steam generator design in a steam properties on the steam generator steam generator in contact with the steam properties on which the steam generator design in the corrected Appendit. 		be avoided.	
 b. Relative expansion between the shell and tube bundle and between individual tubes. c. Tube side flow stability under all load conditions. d. Protection of nozzles and tubesheets against excessive thermal stress due to transients. e. Fabricability of the design including the ability to radiograph all containment welds. f. Relief of the salt-steam mixture resulting from a double-ended steam generator tube failure to limit damage to the steam generator. The remainder of the coolant salt system can withstand a continuous pressure of 220 psi without damage. 8. The steam generator shall be designed as a Class 1 vessel in accordance with the applicable portions of Section III of the 1971 ASME Boiler and Pressure Vessel Code with addenda and the other design standards listed in the corrected Appendixes A and D of the Company's RFP, Enclosure 2. The design shall include the Code consideration for operation in excess of 800 F over a 30 year design life at 80% plant factor. 9. The design of all portions of the steam generator in contact with the salt shall be based on Hastelloy N material. The physical properties of this Hastelloy N are listed in the corrected Appendix C of the Company's RFP, Enclosure 2. 10. The steam properties on which the steam generator data is included the code consideration for operation. 	VE BEEN	the design of the steam generator: a. Baffle and tube supports. as necessary, t	
 can withstand a continuous pressure of 220 psi without damage. 8. The steam generator shall be designed as a Class 1 vessel in accordance with the applicable portions of Section III of the 1971 ASME Boiler and Pressure Vessel Code with addenda and the other design standards listed in the corrected Appendixes A and D of the Company's RFP, Enclosure 2. The design shall include the Code consideration for operation in excess of 800 F over a 30 year design life at 80% plant factor. 9. The design of all portions of the steam generator in contact with the salt shall be based on Hastelloy N material. The physical properties of this Hastelloy N are listed in the corrected Appendi: C of the Company's RFP, Enclosure 2. 10. The steam properties on which the steam generator design is 		b. Relative expansion between the shell and t	
 can withstand a continuous pressure of 220 psi without damage. 8. The steam generator shall be designed as a Class 1 vessel in accordance with the applicable portions of Section III of the 1971 ASME Boiler and Pressure Vessel Code with addenda and the other design standards listed in the corrected Appendixes A and D of the Company's RFP, Enclosure 2. The design shall include the Code consideration for operation in excess of 800 F over a 30 year design life at 80% plant factor. 9. The design of all portions of the steam generator in contact with the salt shall be based on Hastelloy N material. The physical properties of this Hastelloy N are listed in the corrected Appendi: C of the Comapny's RFP, Enclosure 2. 10. The steam properties on which the steam generator design in the salt shall be based on Hastelloy N are listed in the corrected Appendi: 	RE CHAN	between individual tubes.	
 can withstand a continuous pressure of 220 psi without damage. 8. The steam generator shall be designed as a Class 1 vessel in accordance with the applicable portions of Section III of the 1971 ASME Boiler and Pressure Vessel Code with addenda and the other design standards listed in the corrected Appendixes A and D of the Company's RFP, Enclosure 2. The design shall include the Code consideration for operation in excess of 800 F over a 30 year design life at 80% plant factor. 9. The design of all portions of the steam generator in contact with the salt shall be based on Hastelloy N material. The physical properties of this Hastelloy N are listed in the corrected Appendi: C of the Comapny's RFP, Enclosure 2. 10. The steam properties on which the steam generator design in the sale shall be based on Hastelloy N are listed in the corrected Appendix C of the Comapny's RFP, Enclosure 2. 		d. Protection of nozzles and tubesheets again, thermal stress due to transients.	st excessive
 can withstand a continuous pressure of 220 psi without damage. 8. The steam generator shall be designed as a Class 1 vessel in accordance with the applicable portions of Section III of the 1971 ASME Boiler and Pressure Vessel Code with addenda and the other design standards listed in the corrected Appendixes A and D of the Company's RFP, Enclosure 2. The design shall include the Code consideration for operation in excess of 800 F over a 30 year design life at 80% plant factor. 9. The design of all portions of the steam generator in contact with the salt shall be based on Hastelloy N material. The physical properties of this Hastelloy N are listed in the corrected Appendi: C of the Comapny's RFP, Enclosure 2. 10. The steam properties on which the steam generator design in the sale shall be based on Hastelloy N are listed in the corrected Appendix C of the Comapny's RFP, Enclosure 2. 	TNDTCB	laulograph all containment welds.	
 8. The steam generator shall be designed as a Class 1 vessel in accordance with the applicable portions of Section III of the 1971 ASME Boiler and Pressure Vessel Code with addenda and the other design standards listed in the corrected Appendixes A and D of the Company's RFP, Enclosure 2. The design shall include the Code consideration for operation in excess of 800 F over a 30 year design life at 80% plant factor. 9. The design of all portions of the steam generator in contact with the salt shall be based on Hastelloy N material. The physical properties of this Hastelloy N are listed in the corrected Appendi: C of the Comapny's RFP, Enclosure 2. 10. The steam properties on which the steam generator design is 		steam generator tube failure to limit steam generator. The remainder of the cool can withstand a continuous pressure of 220	t damage to the
10. The steam properties on which the steam generator decime is	₹ 8.	accordance with the applicable portions of Sect 1971 ASME Boiler and Pressure Vessel Code with the other design standards listed in the correc A and D of the Company's RFP, Enclosure 2. Th include the Code consideration for operation in	tion III of the addenda and ted Appendixes de design shall
10. The steam properties on which the steam generator design is based shall be obtained from the 1967 ASME Steam Tables.	9.	properties of this Hastellov N are listed in the	ml
	10.	The steam properties on which the steam generate based shall be obtained from the 1967 ASME Stear	or design is n Tables.

 borate are 1: RFP, Enclosur a higher templater study, 12. A corrosion a ¹/₄ mill/year of material thic 13. It will be persubunits in s 14. The design of plant life wi of 20% or more be changed at or reactor so will be made As an additional reactor so arrangements were present to be a solution of the solution of th	n the steam side kness. rmissible to divi eries if the desi the steam genera th the steam genera th the steam gene e in power over i a maximum rate o cams etc. and the available. equirement not pro- in the shell of l expansions was ions set forth al ossible. Therefore etup. These seven l expansion provi flexibility to a	all be basical pro- acted App tution of point may l/year of shall be de the s gn study tor shall rator ex ts life. f 4%/min resulti esented the stear to be a bove, a pore, a se	operties pendix B f a diffe y be the on the sa e used in steam gene y indicate l be base operiencin Normall . The de ng temper above, it m generat voided. large num econd set are, in	sodium fluorobor of sodium fluor of the Company' erent salt with subject of a a lt side and erator into two es an advantage ed on a 30 year ng 10,000 cycle ly the load wil etails of number rature ramps t was felt that tor to accomoda aber of surface t of seven basic order of import a design have		
 borate are 1: RFP, Enclosur a higher templater study, 12. A corrosion a ¹/₄ mill/year of material thic 13. It will be persubunits in s 14. The design of plant life wi of 20% or more be changed at or reactor so will be made As an additional reactor so arrangements were present to be a solution of the solution of th	sted in the corre- sted in the corre- e 2. The substit- erature melting p llowance of $\frac{1}{2}$ mil- n the steam side kness. rmissible to divi- eries if the desi the steam genera th the steam genera th the steam genera th the steam genera in power over i a maximum rate o cams etc. and the available. equirement not pro- in the shell of l expansions was ions set forth al- ossible. Therefore etup. These several expansion provi-	sical pro- sical pro- ected App tution or point may l/year of shall be de the s gn study tor shall rator ex ts life. f 4%/min resulti esented the stear to be a bove, a pre, a se	operties pendix B f a diffe y be the on the sa e used in steam gene y indicate l be base operiencin Normall . The de ng temper above, it m generat voided. large num econd set are, in	of sodium fluor of the Company's rent salt with subject of a alt side and selecting erator into two es an advantage ed on a 30 year ng 10,000 cycle ly the load wil etails of number rature ramps t was felt that tor to accomodate aber of surface t of seven basic order of import a design have		
 4 mill/year of material thio 13. It will be persubunits in s 14. The design of plant life wi of 20% or more be changed at or reactor so will be made As an additional reactor so will be made As an additional reactor so belows differential thermal Within the restrice arrangements were provide a sufficient tube difference betw 2. Stratification unit where pred 3. Good Utilization tubing to be us 4. Better Mechanic 	n the steam side kness. rmissible to divi eries if the desi the steam genera th the steam genera th the steam gene e in power over i a maximum rate o cams etc. and the available. equirement not pro- in the shell of l expansions was ions set forth al ossible. Therefore etup. These seven l expansion provi flexibility to a	shall be de the s gn study tor shal rator ex ts life. f 4%/min resulti esented the stear to be a bove, a pore, a se en areas	e used in steam gene y indicate ll be base operiencin Normall . The de .ng temper above, it m generat voided. large num econd set are, in	erator into two es an advantage ed on a 30 year ng 10,000 cycle ly the load wil etails of number rature ramps t was felt that tor to accomoda aber of surface t of seven basic order of import		
 subunits in s 14. The design of plant life wi of 20% or mor be changed at or reactor sc will be made As an additional reactor sc arrangements were presented Adequate thermas sufficient tubes difference betw Stratification unit where presented Good Utilization tubing to be us Better Mechanic 	the steam genera the steam genera th the steam gene in power over i a maximum rate o rams etc. and the available. equirement not pro- in the shell of l expansions was ions set forth al ossible. Therefore etup. These seven l expansion provi flexibility to a	gn study tor shal rator ex ts life. f 4%/min resulti esented the stear to be a bove, a isone, a see en areas	y indicate periencia (periencia Normal) . The de ng temper above, it m generat voided. large num econd set are, in	es an advantage ed on a 30 year ng 10,000 cycle ly the load wil etails of number rature ramps t was felt that tor to accomodate aber of surface t of seven basic order of import a design have		
 plant life wi of 20% or mor be changed at or reactor sc will be made As an additional reactor sc will be made As an additional reactor of bellows differential therman Within the restrictor arrangements were produced differences were scales Adequate therman sufficient tube difference betw Stratification unit where pred Good Utilization tubing to be us Better Mechanic 	th the steam gene in power over i a maximum rate o rams etc. and the available. equirement not pro- in the shell of l expansions was ions set forth al ossible. Therefore etup. These seven l expansion provi flexibility to a	rator ex ts life. f 4%/min resulti esented the stear to be a bove, a f ore, a se en areas	above, it m generat voided. large num econd set are, in	ng 10,000 cycle ly the load wil etails of number rature ramps t was felt that tor to accomoda aber of surface t of seven basic order of import a design have		
 differential therma Within the restrictarrangements were present the structure of the stru	in the shell of l expansions was ions set forth al ossible. Therefo etup. These seve l expansion provi flexibility to a	the stead to be a bove, a i ore, a se en areas	m generat voided. large num econd set are, in	tor to accomoda- aber of surface t of seven basic order of import design have		
 Adequate therma sufficient tube difference betw Stratification unit where pred Good Utilizatio tubing to be us Better Mechanic 	l expansion provi flexibility to a	igion - d	doog thig	design have		
 Stratification unit where pred Good Utilizatio tubing to be us Better Mechanic 	een tubes and she		m] $amma$ \pm	jacent tubes?		
4. Better Mechanic	Problems - are th icting flow will	ere poss	aihle are			
4. Better Mechanic	n of Volume - doe ed as active heat	s the de transfe	esign allo er surface	ow for all the e?		
to be difficult	 4. Better Mechanical Arrangement - do the mechanical details appear to be difficult? 					
5. Equal Active Circuit Length - will the tubes have approximately equal heated lengths?						
6. Tube Side Inspective examined after	tion - can the t the unit has been	ubes be in serv	easily no vice?	ondistructively		

E NOTATIONS IN THIS COLUMN INDICATE

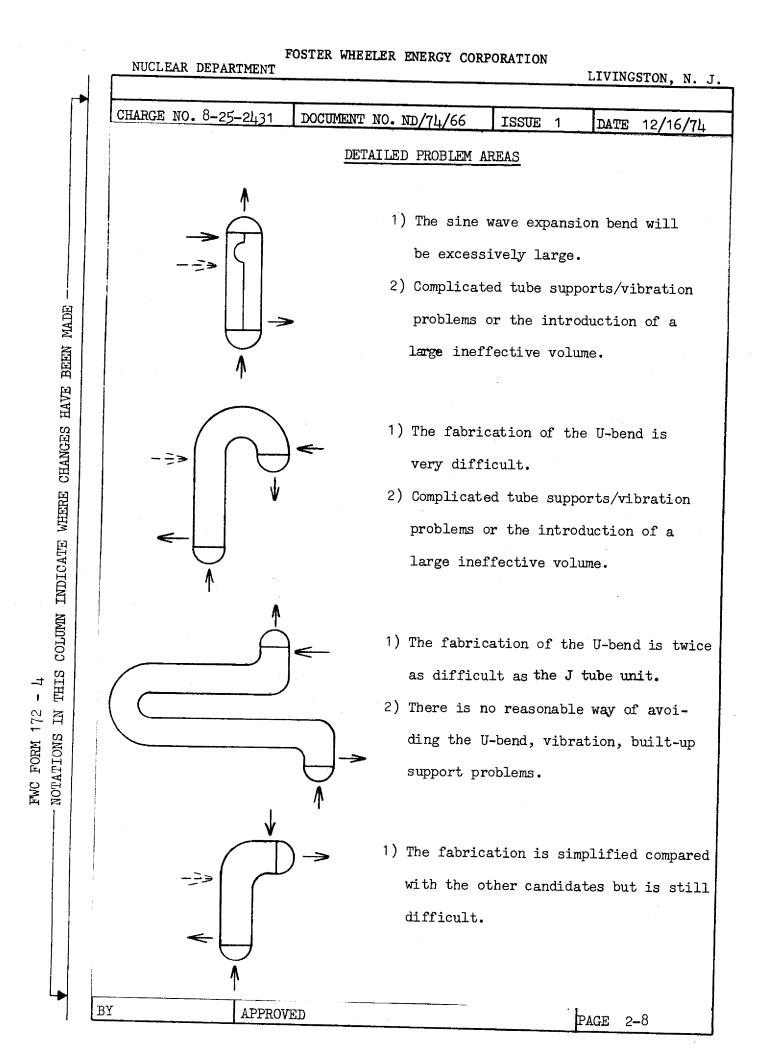
EWC FORM 172 - 4


NUCLEAR DEPARTMENT

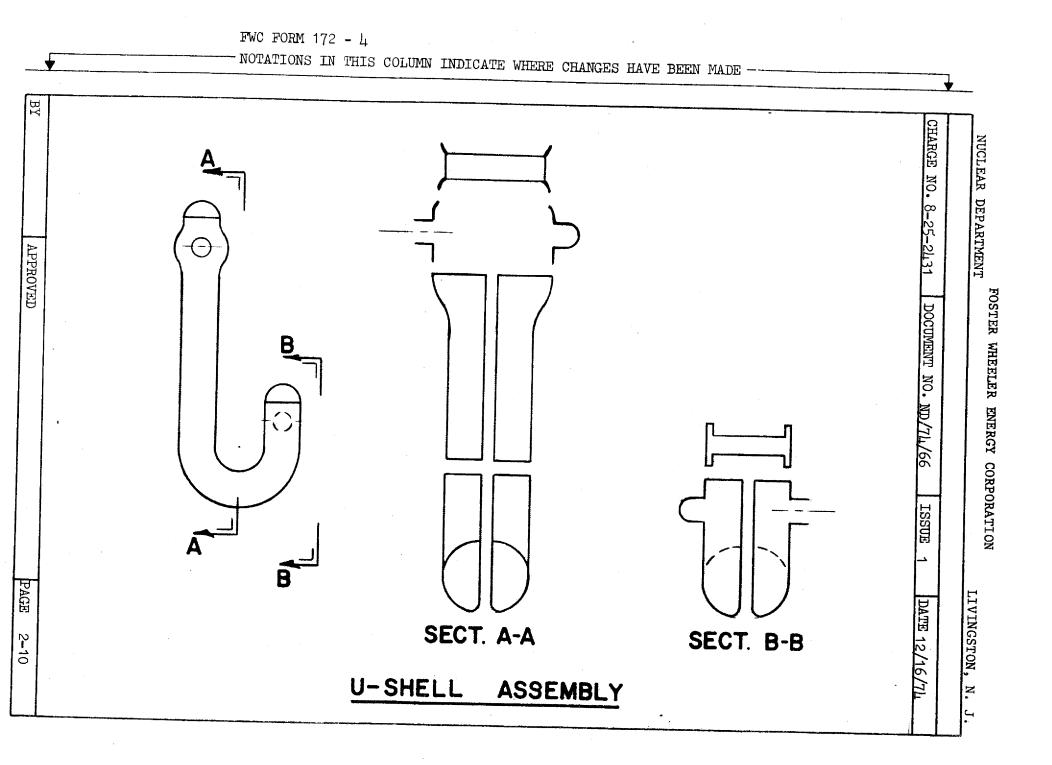
<u>1 CH</u> /	ABGE NO), 8-2	5-2431	TOOTIMIT		171.111	Tam		
			<u>, 24)</u> 1		NT NO. ND	14/66	ISSUE 1	DATE	12/16/74
2	7.	Relat to le:	ive Com nd them	plexity selves f	- do the to straigh	uncerta t forwa:	inties of r d solutio	the desig ns?	n appear
	the pass pass be a did furt The to 7	chart, s that s that able to not pa ther co above 7. The	no lin design design pass ass a ba onsidera descrit	e indica area. area. that des asic des ation. De evalu	gainst th tes that A solid 1 A dash 1 ign area ign area ation red dates and	e seven the cano ine indic ne indic with dif (no line uced the	ace arrang basic des lidate did icates that cates that fficulty.), it was possible their mon	ign areas not affin t the cand the cand When a cand dropped a number of	• On matively didate do idate may andidate from f candidat
	prob Page	olems r es 2-9	relate t through	to the f 2-12 f	Page 2-0 abricatio	. As Pa 1 of the tline th	ge 2-8 sho U-bend on a fabricat	ows the pi	rinciple
							ion it bec		
	ment	s and	criteri	wed the .a with [.]	most pro	nise in amount	meeting th of problem	no doatam	require-
						OT CHICE	deargu.		
	•					.0101000	nestRu•		
							destRu.		•
	· ·						aestku.		•
							aestku.		•
							aestku.		•
							aestku.		•
							aestku.		•
							aestku.		•
							aestku.		•
							aestku.	•	•
							aestku.		•
							aestku.	•	
							aestku.	·	
							aestku.		
							aestku.		
							aestku.		

MOLTEN SALT STEAMGENERATOR SURFACE ARRANGEMENT

É


8

•


STRATIFICATION PROBLEMS	GOOD UTILIZATION OF VOLUME	BETTER MECH. ARRANGMENT	EQUAL ACTIVE CIRCUITLENGT	TUBE SIDE H INSPECTION	RELATIVE COMPLEXITY
	+ — — — — – – – – – – – – – – – – – – –				
				<u>han ang mang sa </u>	
·····					
					formiðræðininu á Allin- ha Uffarri 19
	=====				
					
	· · · · · · · · · · · · · · · · · · ·				

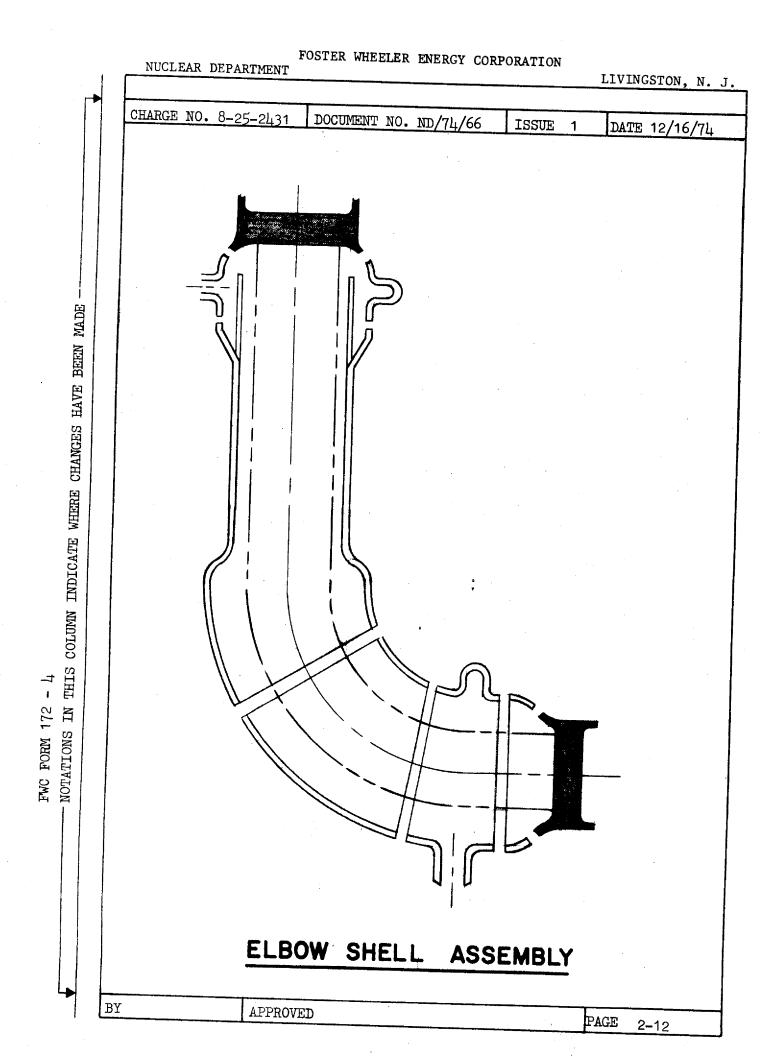
		·····			LIVINGSTON, N
	CHARGE NO. 8	25-2431	DOCUMENT NO. ND/74/66	ISSUE 1	DATE 12/16/47
		U-BEM			
			D SHELL FABRICATION		· .
 	1 т				
BEEN MADE	· • 1	Long shells	s are longitudinally spli	t members.	
EEN	2. L	ong seam w	elding performed in situ		
		6 A	stang periormed in situ	•	•
HAT	3. W	eld distor	tion will cause the shel	ls to go out	of normal
NGES					
CHAI	4. Si	ubsequent 1	re-preparation of circle	seam welds r	equires
년 1	sp	pecial deve	elopment.		
	б сл	om -1- 77			
	J• 01	Launi snell m	members for the U-bend wi	ll be positi	oned and
	th	e long sea	m welded in situ. Circle	seam welds	will require
	re	-preparati	on using similar special	equipment.	
HAVE CHANGES HAVE					
	of		e at each tubesheet will	be done by t	he addition
			pieces which are custom		
	nar	nd holes fo	or completion of NDT proc	edures and r	epair if
	nec	essary.			
	7. The	se problem			
	e i b	moton and	s are somewhat simplifie	d when a smal	l sh ell
	dia	mecer. are (considered.		

PAGE 2-9

		FOSTER	WHEELER	ENERGY	CORPORATION
NUCLEAR I	DEPARTMENT				oold old if i on

ı

FWC FORM 172 - 4


ΒY

APPROVED

PAGE

2–11

CHARGE	NO. 8-25-2431	DOCUMENT NO.	ND/74/66	ISSUE 1	DATE 12/16/7L
					· · · · · · · · · · · · · · · · · · ·
	ELBOW	SHELL FABRICA	TION		
	1. The fab	rication proces	ss utilizes :	shell sectio	ons without
		e to clam shell			
		ng and inspecti			
	2. The prot	olems associate	ed with suppo	orting the t	ubes in the
		ea is not consi			
		the U-bend she			
	3. The inst	allation of th	e tube bundl	e will requ	ire threading
		ubes through			
	installe			oor one supp	or is have been
•					
					•
					•
					•
					•
· · · · · · · · · · · · · · · · · · ·					•

FOSTER WHEELER CORPORATION

CHARGE NO	8-25-2431	DOCUMENT NO. ND-74-66	ISSUE	1	DATE	12/10
			_ *			
• .						
	·					
		SECTION 3.0				
	. •	MECHANICAL DESIGN REPORT				
		PRELIMINARY DESIGN				
		by				
		Charles H. Holderith				
-						
•						
!						
	Approved B	y:				
YO	John C	fulli				
	J. Anelli					
	Supervisor	, Mechanical Design				
	1					
BY 1/ /-	All all to A	PPROVED		PAG	 	OF

FOSTER WHEELER CORPORATION

CHARGE NO 8-25	5-2131	DOCUMENT NO ND-74-66	ISSUE 1	DATE12/16/7
		TABLE OF CONTENTS		
			Page	2
3.1	Design	Description Summary	3-1	ŧ
3.2	Steam	Generator Design Data	3-!	5
3.3	Steam	Generator Arrangement	3-4	5
3.4	Shell	Assembly	3-0	6
	3.4.1	Upper Shell Sub-Assembl	y 3-0	5
	3.4.2	Middle Shell Sub-Assemb	oly 3-'	7
	3.4.3	Lower Shell Sub-Assembl	y 3-4	3
3.5	Bundle	e Assembly	3–8	3
3.6	Channe	al Assembly	3-1	11
3.7	Specia	l Design Features	. 3-	11
3.8	Steam	Generator Drawings (Figu	re No.'s)	
			l	
			<u>.</u>	
ś	·			
		-	<u>-</u> ·	
		:		

CHARGE NO 8-	<u>25–2/131</u>	DOCUMENT NO.	74-66 ISSU	<u>. 1</u>	DATE 12/16
		•			
		LIST_OF_FI	GURES		
3.	1.Genera	al Arrangement		3.1	
3.	2 Head a	and Tubesheet		3.2	
3.	3 Shell	Transition		3.3	
3.	4 Inlet	and Outlet Nozzle	e	3.4	
3.	5 Inter	nal Shroud		3.5	
3.	5 Tube S	Support Plate		3.6	
3.	7 Tube V	Vibration Suppres	sor	3.7	
3.8	3 Tie Ro	od Turnbuckle		3.8	
			٩		
-					
·					

٠

CHARGE NO8-25-2431	DOCUMENT NO. ND-74=66	ISSUE 1	DATE 12/16/74

3.0 Molten Salt Steam Generator Preliminary Design

3.1 Design Description Summary

The Foster Wheeler Steam Generator is a "L" shaped fixed tubesheet heat exchanger as shown in Figure 3.1. The steam generator design is based on a system of four units per loop. The steam generator has 1014 tubes which are attached at each end to a fixed tubesheet.

The steam generator design is such that the flow of molten salt and super critical fluid through the unit is in the direction of natural circulation. Molten salt enters through an inlet nozzle (Figure 3.4), which is perpendicular to the tube bundle, changes direction 90° and decends approximately 100 feet before exiting through an outlet nozzle (Figure 3.4). Supercritical fluid enters through an inlet nozzle located in the center of the lower head (Figure 3.2) and rises through the heat transfer tubes and exits through an outlet nozzle in the center of the upper head. Vent nozzles are positioned at each tubesheet to shell juncture to prevent the possibility of trapped gases resulting in localized hot spots on the shell (Figures 3.1 and 3.2).

AUGA WERE SWH SECHARD ERRYR ERADIUL MULLOD

CHARGE	NO 8-25-2431	DOCUMENT NO.ND-74-66	ISSUE 1	DATE 12/16/7	
		n Salt Steam Generator D			
	<u>A.S.M</u>	.E. Section III Class I	rressure vessel*		
	Primary Sid	de (Shell)			
	Design	Temperature	1150 ⁰ F		
• .	Design	Pressure	300 P.S.I.G.		
	Joint]	Efficiency	100%		
	Allowal	ole Stress	9500 PSI (Pri	mary Membrane)	
	Shell N	Material	Hastelloy-"N"		
	Shell	Inside Diameter	39 2 "		
	Secondary S	Side (Tube)			
	Design	Temperature	1120 ⁰ F		
	Design	Pressure	3800 P.S.I.A.		
	Joint H	Efficiency	100%		
	Allowat	ole Stress	11,600 PSI (F	rimary Membran	
	Number	of Tubes	1014		
	Tube Pi	ltch	1-1/8" Triang	gular	
	Tube Si	ze	3/4" O.D. x .	125 min. wall	
	Effecti	ve Length	140 ft.		
	Tube Ma	terial	Hastelloy-"N"		
	Number	of Tie Rods	13		
	* Designed Winter, 1	to A.S.M.E. Section III 973	Class I with Add	enda thru	
BY	C.H.H. A	PPROVED	PAGE	 2_с ОГ	

FWC FORM 172 - It

CHARGE NO8-25-2431

DATE 12/16/74

1

3.3 Steam Generator Arrangement

The steam generator shown in Figure 3.1 consists of:

Upper Shell Assembly l.

Middle Shell Assembly 2.

Lower Shell Assembly 3.

Bundle Assembly ц.

5. Channel Assembly

The steam generator is installed with the curved short section in the horizontal plane, and the long section in the vertical plane. Support lugs or saddles have not been considered at this time. A functional description of the steam generator can be found in Section 4.0 of this report.

3.4 Shell Assembly

3.4.1 Upper Shell Assembly

The upper shell sub-assembly consists of: expanded shell section, inlet nozzle, intershroud, baffle plate and a shell transition. The upper shell sub-assembly is welded to the tubesheet and the middle shell sub-assembly see Figure 3.1.

The expanded shell section is made from rolled and butt weld Hastelloy - "N" plate. A 20" molten salt inlet nozzle is located midway in this expanded region. This nozzle is a saddle type which was selected so that the nozzle to shell

CEASE HOLES

AND REPART

South South

01111

Ħ

NOTATIONS

ŧ

FWC FORM 172

APPROVED

ONAROR	MO	8-25-2431
OUNTIN	MO.	0-20-2401

DOCUMENT NO. ND-74-66 ISSUE

1

DATE 12/16/74

weld is removed from critically stressed shell to nozzle intersection. The use of a saddle type nozzle permits, without the use of special techniques, the radiography of the nozzle welds.

Within the expanded shell section is a second cylinder which is the intershroud, its purpose is to channel the flow of molten salt to the heat transfer tubes. This intershroud has an impingement baffle which protects the heat transfer tubes from excess flow errosion. The shroud is perforated with holes to allow the molten salt to enter from the expanded shell section and decend through the unit as shown on Figure 3.1.

The lower section of the intershroud and the shell transition are of single piece construction as shown in Figure 3.3. A single piece design is recommended to avoid the use of welds in the high stress area of the junction discontinuity.

The upper baffle plate is positioned between the molten salt inlet nozzle and the tubesheet to act as a thermal barrier to prevent the tubesheet and the I. B. W. welds from being thermally shocked.

3.4.2 Middle Shell Sub-Assembly

The middle shell sub-assembly consists of rolled and butt welded sections of Hastelloy - "N" plate. The middle shell

BY

1

رم ابر ابر

Hills

CEALOR DO

EVENE

TADACTAR

PAGE 3-7

OF

Î				particular and a second second	
1	CHARGE NO	DOCUMENT NO.	ISSUE	DATE	
	8-25-2131	ND-71-66		12/16/14	

acts as a continuation of the intershroud which channels salt flow around the heat transfer tubes.

3.4.3 Lower Shell Sub-Assembly

The lower shell sub-assembly consists of: expanded shell section, outlet nozzle, intershroud, baffle plate and a shell transition. The lower shell sub-assembly is welded to the lower tubesheet and to middle shell sub-assembly.

The expanded shell section is identical with that of the upper shell except the 20" nozzle is used as an outlet for the molten salt.

3.5 Bundle Assembly

The bundle assembly consists of (2) tubesheets, heat transfer tubes, tie-rods, support plates and vibration suppressors. The complete bundle assembly is welded to the shell assembly, for manufacturing sequences see section of this report.

The tubesheets are 15" thick Vacuum Arc or Electroslag Remelt Forgings of Hastelloy - "N" material. The tubesheets are designed to meet the code requirements for stress in perforated plates. The outer rim of the tubesheet is machined to a countour which minimizes the thermal stress by having this rim respond more uniformly to thermal transients with

ļ,

<u>م</u>

H

STREED ENTRY PERSONNEL PERSON

H

NOTATIONS

ŧ

EWC FUER 172

ATT: DOD	1700		
GUARUE	NOQ-	-25 - -2́L31	

DOCUMENT NO. ND-74-66 ISSUE 1

the tube hole ligaments. The lower face of each tubesheet is machined to provide spigots for welding of the heat transfer tubes as shown on Figure 3.2.

The heat transfer tubes are full penetration welded to each tubesheet by using an Internal Bore weld technique. The heat transfer tubes are of Hastelloy - "N" material designed in accordance with A.S.M.E. tubing specifications. Allowances for manufacturing scratches, thinning and corrosion have been included in the tube wall thickness.

The heat transfer tubes are supported in the vertical position by perforated tube support plates commonly used in heat-exchanger equipment. The support plates are of the "Drilled Plate" type as shown on Figure 3.6. This arrangement was chosen in order to provide circulation between the heat transfer tubes, thereby reducing possible stratification problems and preventing solid collection.

The tube support plates and the vibration suppressor grids are supported by (13) 3/4" diameter tie-rods which are located in the tube pattern as shown on Figure 3.6 and 3.7. These tie-rods are threaded into the tube sheets, located at both ends of the unit.

The tie-rods are threaded into the upper tubesheet. The support plates are spaced using sleeves which are 7/8" inside

M M

Hills

の行いてい

The second se

l

百

BY

۰,	CHARGE NO 8-25-2431	DOCUMENT NO. ND-74-66	ISSUE 1	DATE 12/16/74
1		IID 14 00		

diameter. The sleeves are dimpled to assure the proper location concentric to the tie-rods. This type of assembly is joined in the curved region by a turnbuckle as shown on Figure 3.8. The curved region uses a vibration suppressor grid to properly position the tubes in this area. The function of the grid is to allow expansion of the tubes while restraining them against vibration as shown on Figure 3.7. The tie-rods are secured at the last suppressor grid by means of a heavy hex nut which is seal welded in place.

The vibration suppressor grid is comprised of an outer ring that is rolled thru the "Y" axis and is machined to accept a grid of flat bars as shown on Figure 3.7.

The turnbuckle used to join these grids is shown on Figure 3.8. Each turn buckle is positioned within the grid and accepts at each end a curved tie-rod. This threading assembly is made possible by use of a right and left hand thread within the turnbuckle.

The by-pass of liquid to the outside of the support plates and the suppressor grids is minimized by the manufacturing tolerances that can be maintained. The inside shell diameter can be manufactured to $39\frac{1}{2}$ " +3/16" -0" and the supports can be held to an outside diameter of 39 3/8" +1/16 -0.

BY

1-1-1

Hella

SCOULD THEFT BALLS THERE OFFICES

1

NOTATICUS

t

FWC FORM 172

0F

CHARGE NO8-25-2431

DOCUMENT NO.ND-74-66 ISSUE 1

DATE 12/16/74

3.6 Channel Assembly

The channel assembly is comprised of the bundle assembly (described in the preceding section) and the upper and lower hemispherical heads. Each head is joined to the tubesheet by means of a full penetration weld. Located in the center of each head is a 16" nozzle of the saddle type. This type of nozzle allows for full radiography of the closure weld. The 16 nozzle in the lower head serves as the inlet nozzle which carries supercritical fluid into the plenum chamber (lower hemi-head) and then through the heat transfer tubes. Upon exiting the tubes the high pressure steam is collected in the upper plenum (upper hemi-head) and allowed to exit through the 16" outlet nozzle as shown on Figure 3.2.

3.7 Special Design Features

Saddle Nozzle

The saddle type nozzle offers two advantages not found in nozzles of a different design. First, the saddle nozzle permits the radiography of the nozzle to shell weld without the use of special techniques. Secondly, the saddle nozzle removes the weld from the critically stressed nozzle to shell intersection. Internal Bore Weld

The I.B.W. welding process allows design of a tubesheet

Hell-

STUDIES STUDIES

Event and and

110100

24

洦

STOTIATON

t

FWC FORM 172

1				
か	CHARGE NO 8-25-2431	DOCUMENT NO. ND-74-66	ISSUE 1	DATE 12/16/74

that eliminates the crevice created by the standard "through" tubesheet design. The I.B.W. weld is a full penetration weld that can be fully radiographed.

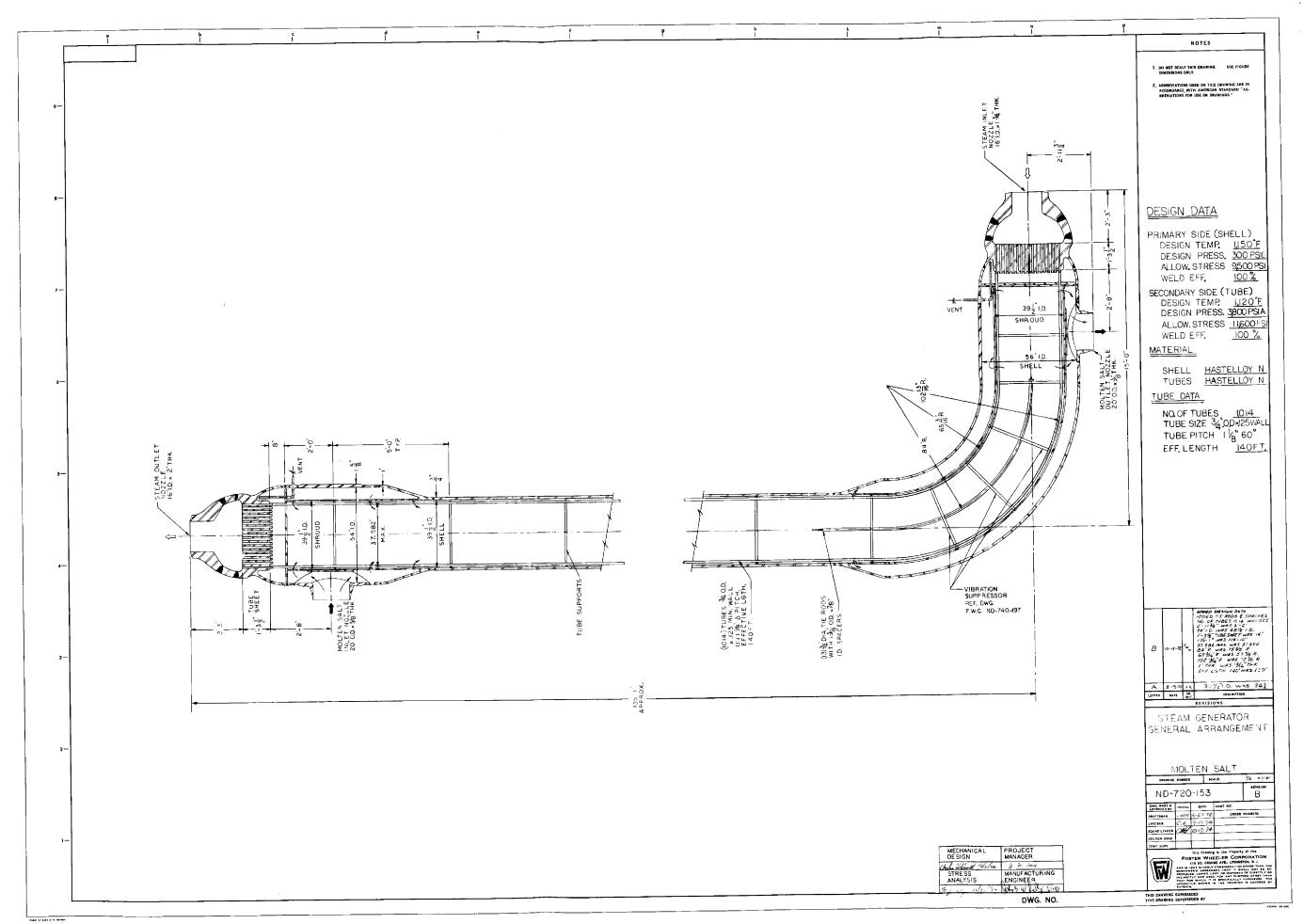
Minimal Flow By-Pass

The close manufacturing tolerances that can be maintained during manufacture of the intershroud, shell cylinder and tubesupports minimizes the by-pass of molten salt to 2 percent of the total flow.

t
22
~~ ~
FURT
FWC

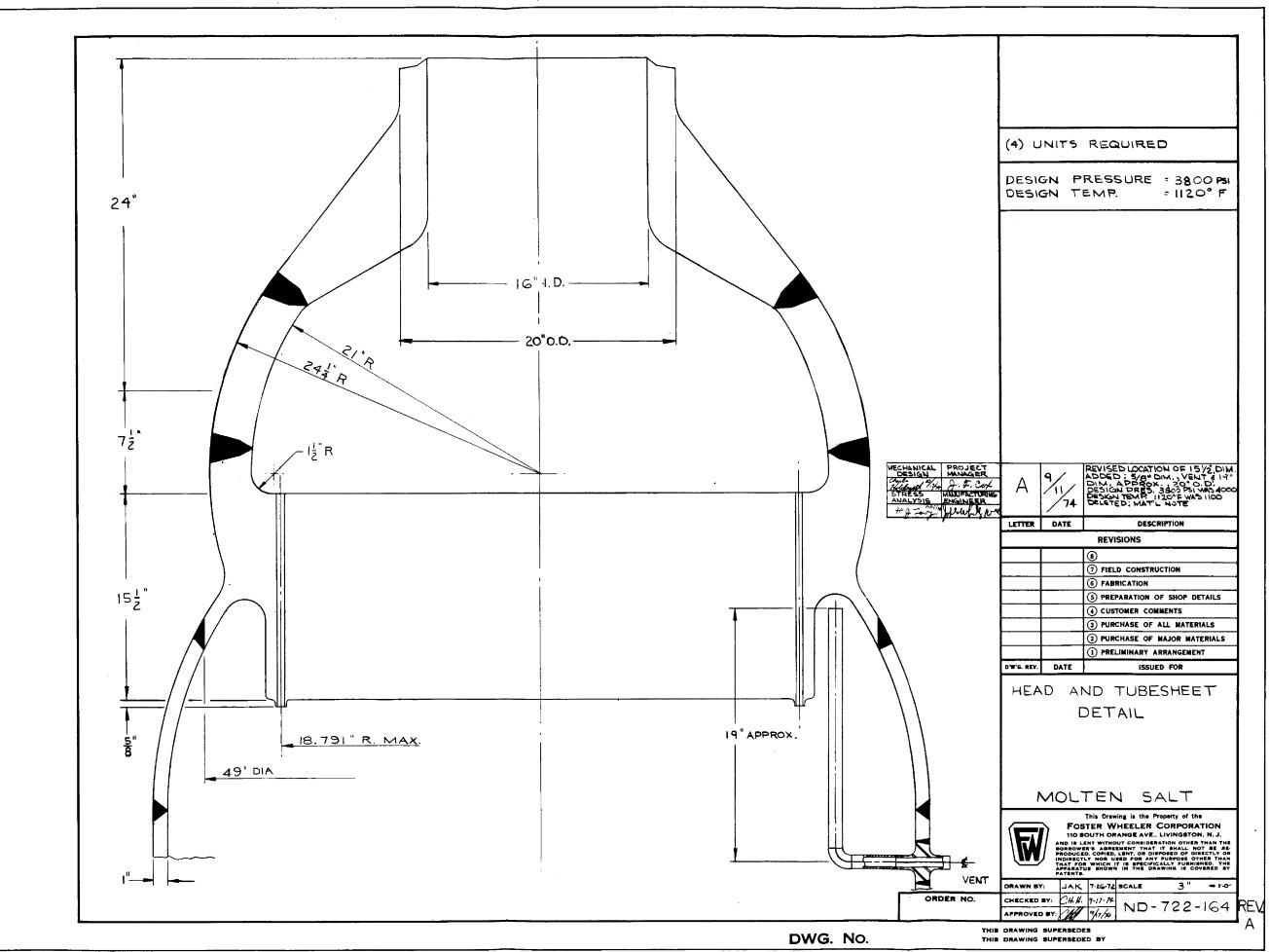
 $P_{i,r}$

HIT


SERVED BREAK SPRINGER JERITOR

9714 M

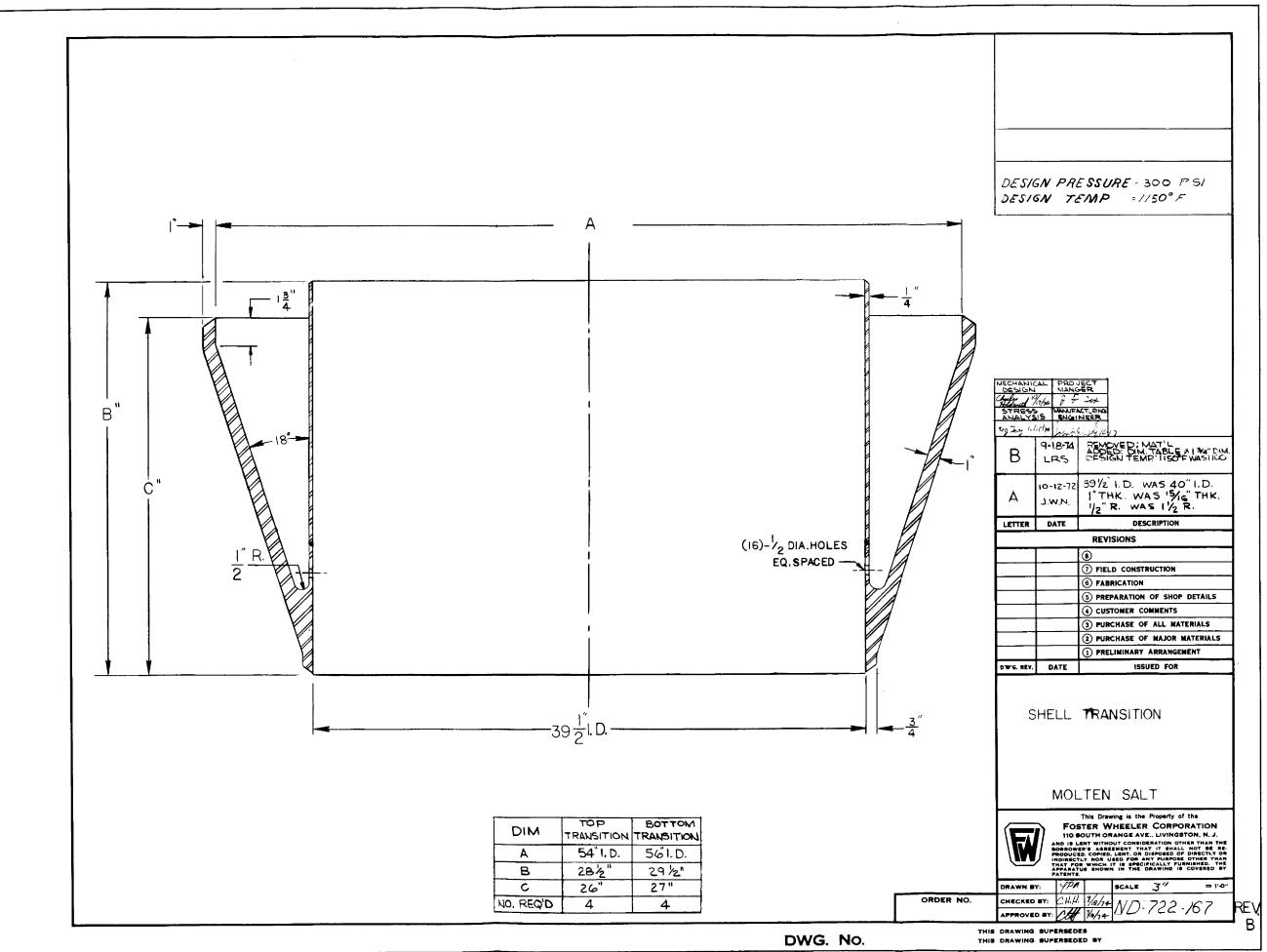
NOTATIONS


BY

0F

¢.

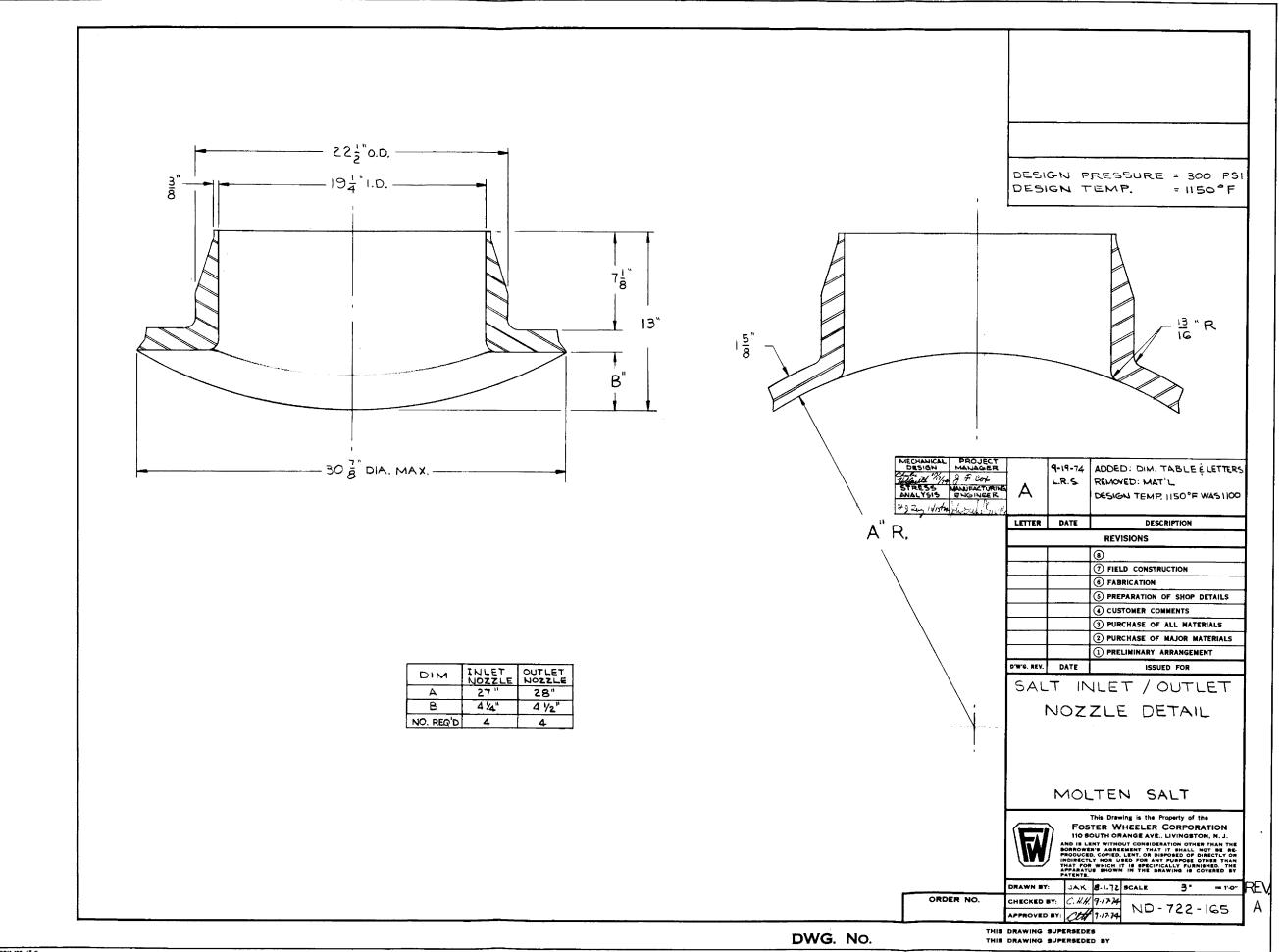
Fig. 3.1



FORM 138- 47-C

ŧ

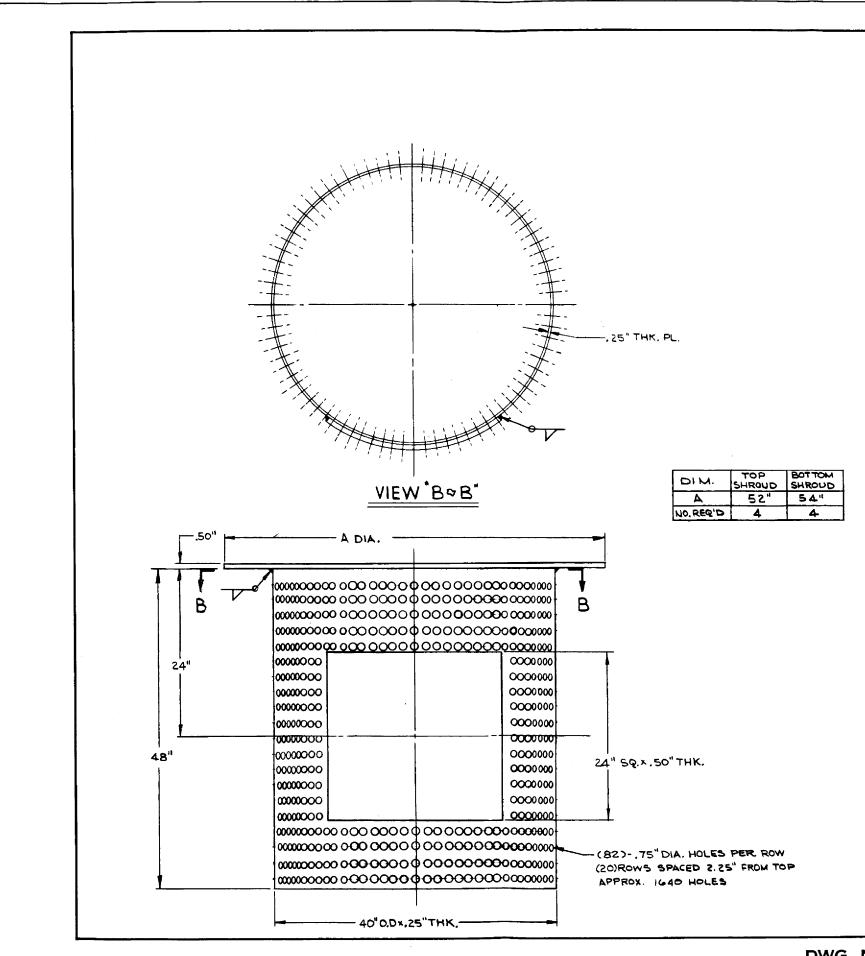
N. .


Fig. 3.2

¢

ζ.

Fig. 3.3

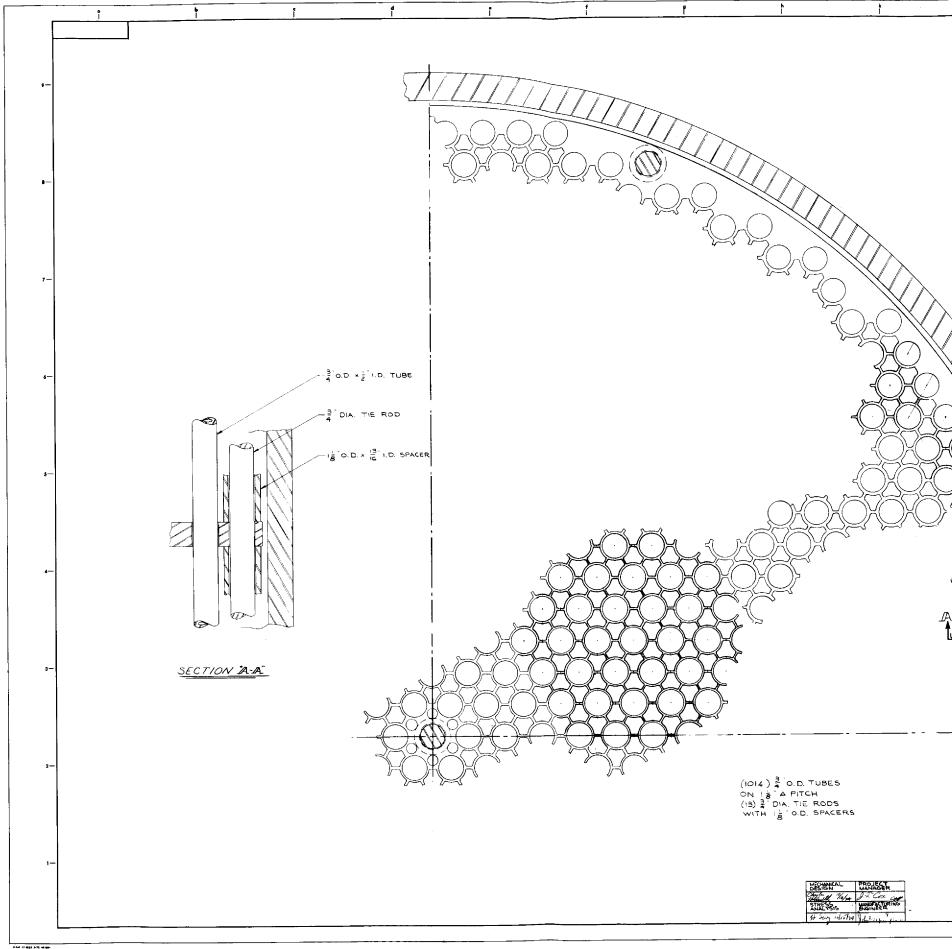


¢

 $\left(\right)$

ŝ,

Fig. 3.4

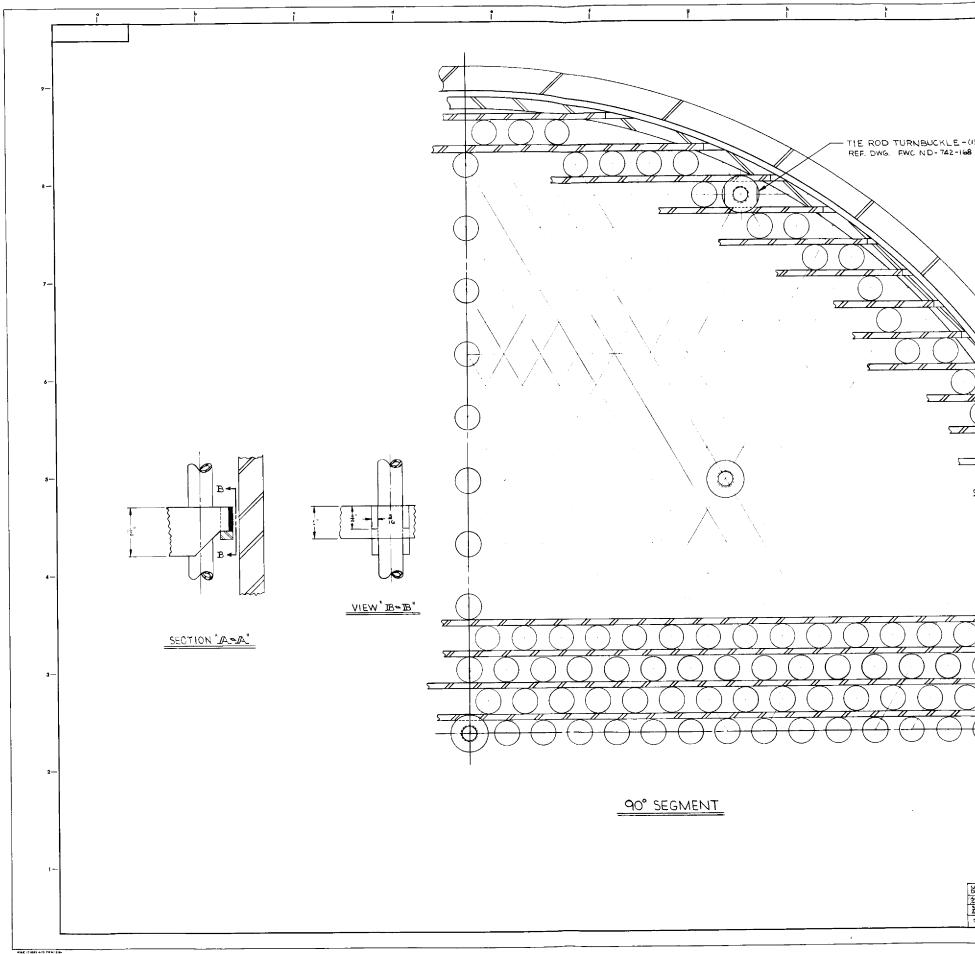


Ϋ.

DWG. NO.

MECHANICAL PROJECT				
DESIGN MANAGER				
STRESS MANUFACTURING				
STRESS MANUFACTURINA ANALYSIS ENGNEER 74 g Zy Hortz How March				
ANALYSIS ENGINEER	LETTER	DATE	DESCRIPTION	
ANALYSIS ENGINEER	LETTER	DATE	REVISIONS	
ANALYSIS ENGINEER	LETTER	DATE	REVISIONS	
ANALYSIS ENGINEER	LETTER	DATE	REVISIONS ③ ⑦ FIELD CONSTRUCTION	
ANALYSIS ENGINEER		DATE	REVISIONS	
ANALYSIS ENGINEER		DATE	REVISIONS ③ ⑦ FIELD CONSTRUCTION ⑤ FABRICATION	
ANALYSIS ENGINEER		DATE	REVISIONS (a) (7) FIELD CONSTRUCTION (6) FABRICATION (5) PREPARATION OF SHOP DETAILS (4) CUSTOMER COMMENTS (3) PURCHASE OF ALL MATERIALS	
ANALYSIS ENGINEER		DATE	REVISIONS (8) (7) FIELD CONSTRUCTION (8) FABRICATION (9) FREPARATION OF SHOP DETAILS (4) CUSTOMER COMMENTS (3) PURCHASE OF ALL MATERIALS (2) PURCHASE OF MAJOR MATERIALS	
ANALYSIS ENGINEER			REVISIONS	
ANALYSIS ENGINEER	LETTER	DATE	REVISIONS (8) (7) FIELD CONSTRUCTION (8) FABRICATION (9) FREPARATION OF SHOP DETAILS (4) CUSTOMER COMMENTS (3) PURCHASE OF ALL MATERIALS (2) PURCHASE OF MAJOR MATERIALS	
ANALYSIS ENGINEER	DWG. REV.	DATE	REVISIONS (3) (7) (8) (7) (8) (8) (9) (9) (10) (10) (11) (11) (12) (12) (12) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (16) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (18) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17)	
ANALYSIS ENGINEER	DWG. REV.	DATE	REVISIONS	
ANALYSIS ENGINEER	DWG. REV.	DATE	REVISIONS (3) (7) (8) (7) (8) (8) (9) (9) (10) (10) (11) (11) (12) (12) (12) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (16) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (18) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17)	
ANALYSIS ENGINEER	DWG. REV.	DATE	REVISIONS (3) (7) (8) (7) (8) (8) (9) (9) (10) (10) (11) (11) (12) (12) (12) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (16) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (18) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17)	
ANALYSIS ENGINEER	DWG. REV.	DATE	REVISIONS (3) (7) (8) (7) (8) (8) (9) (9) (10) (10) (11) (11) (12) (12) (12) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (16) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (18) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17)	
ANALYSIS ENGINEER	DWG. REY.	DATE	REVISIONS Image: Structure in the image: Struct	
ANALYSIS ENGINEER	DWG. REY.	DATE	REVISIONS (3) (7) (8) (7) (8) (8) (9) (9) (10) (10) (11) (11) (12) (12) (12) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (16) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (18) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17) (17)	
ANALYSIS ENGINEER	DWG. REY.	DATE	REVISIONS Image: Construction Image: Constructin Image: C	
ANALYSIS ENGINEER	DWG. REY.	DATE TERN MOLT	REVISIONS Image: Construction Image: Construct Construction	
ANALYSIS ENGINEER	DWG. REY.		REVISIONS Image: Construction Image:	
ANALYSIS ENGINEER	DWG. REY.		REVISIONS Image: Construction Image:	
ANALYSIS ENGINEER			REVISIONS	
ANDERSTURING			REVISIONS	
ANALYSIS ENGNEER			REVISIONS	REV.
ORDER NO.			REVISIONS Image: style style style Image: style style style Image: style style style Image: style style style Image: style style Image: style style Image: style style Image: style	REV.

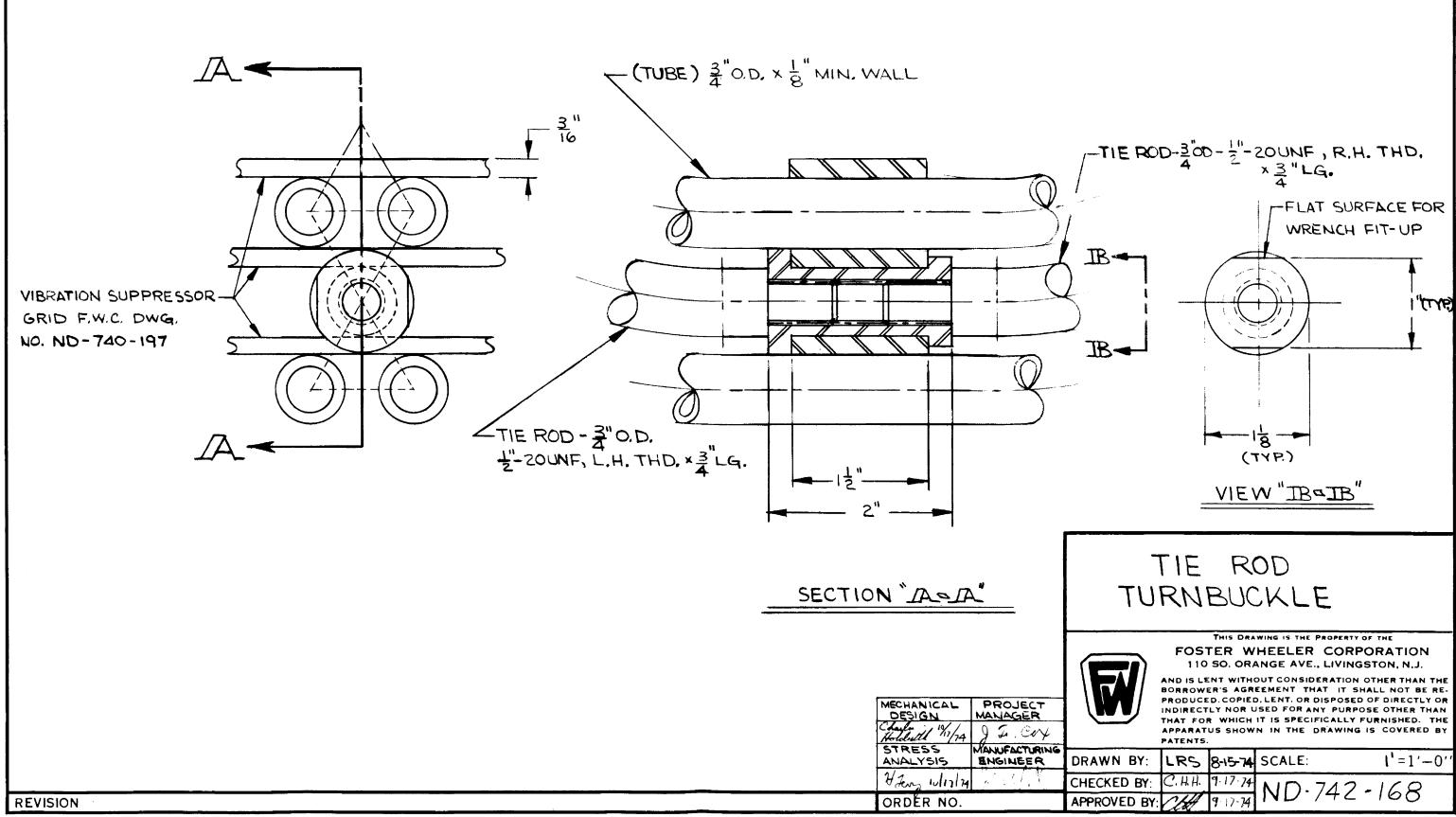
Fig. 3.5



1

Anal.

	٢	
		NOTES
		1. DO NOT SCALE THIS DRAWING. USE FIGURE DIMENSIONS ONLY.
		2. ABBREVIATIONS USED ON THIS DRAWING ARE IN ACCORDANCE WITH AMERICAN STANDARD "AB- BREVIATIONS FOR USE ON DRAWINGS."
		BREVIATIONS FOR USE ON DRAWINGS."
*		
\rightarrow		
\times		
\times		
) \times λ		
$\overline{}$		
\sim		
$H \subseteq \mathbb{X}/\mathbb{A}$		
\sim		
()		
		LETTER DATE OR INST. DESCRIPTION R E V I S I O N S
		TUBE SUPPORT PLATE
		TODE SOFTON PENIE
		MOLTEN SALT
39 Å O.D. 39 Å I.D. 34		DRAWING NUMBER SCALE: FULL = 1.0-
39 <u>2'1.D</u> 3'		ND - 720 - 195
, 4 ,		DRAFTERER JAK, 8-30-72 09028 NUMBERS CHECKER C.N.W. 9-17-74 SOUND LENDER DI 9-17-74
		SECTION HEAD
		This Drewing is the Property of the FOSTER WHEELER COMPORATION 110 BO. OBLINE ATEL UTWEETOR IS J 110 BO. OBLINE ATEL UTWEETOR IS J AND IS LEAST WITHOUT COMPLETATION OFFER THAN THE
		The Drawing is the Property of the Data Whether Line Composition That A the called and Linguistics is a subscription of the Statement of the Statement of the subscription of the Statement of the Statement of the Statement of the subscription of the Statement of the Statement of the Statement of the subscription of the Statement of the subscription of the Statement of t
DWG. NO.		THIS DRAWING SUPERSEDES BY PORM IN 44C


Fig. 3.6

1

m n I I	<u> </u>	NOTES
	F	
		LO NOT SCALE THIS DRAWING. USE FIGURE OIMERSIONS ORLY. ADBREVIATIONS USED ON THIS DRAWING ARE IN
		2. ABBREVIATIONS USED ON THIS DRAWING ARE IN ACCORDANCE WITH AMERICAN STANDARD "AB- BREVIATIONS FOR USE ON DRAWINGS."
-(13) REQ'D. 168		
\backslash		
\backslash		
()		
	λ	
	<u>_</u>	
() () () (·) (] (]		
	_	LETTER DATE DR. DESCRIPTION HIT. REVISIONS
38 a 1.D.		TUBE VIBRATION SUPPRESSOR
RING <u>3"</u> 16 39 ¹ / ₂ ".D. SHELL		(BEND REGION)
SHELL		MOLTEN SALT
		ND-740-197 REVISION
		DRAFTSHAN LS 8-14-74 ORDER NUMBERS
		сония іслова (//// .91-74- всталь наар сонт. виру
MECHANNICAL PROJECT MENIGAN Zand 93/14 & S. Col		
ANALYSIS MANUFACTURING ANALYSIS ENGINEER		To the use of the two the two the two the two
DWG. NO.		THIS DRAWING SUPERSEDES THIS DRAWING SUPERSEDED BY

Fig. 3.7

K&E 17 0253 4-73 TEM 1194.

Š.

Fig. 3.8

CHARGE	NO. 8-25-2431	DOCUMENT 1	NO. ND/74/66	ISSUE 1	TATE	12/16/74
		·····		10000	IDATE	12/10/14
ADE						
BEEN MADE						
			SECTION 4			
HAVE		THE RMAL	/HYDRAULIC DES	SIGN		
			ВХ			
CHANGES						
			H. I. Ch	107-		
WHERE		-	H. L. CHOU			
ATE			Thermal/Hydra	aulic Task]	Leader	
INDICATE						
	•					
COLUMN						
- 14						
EWC FORM 172 NOTATIONS IN	red hir					
FOR LINE	icu by					
EMC FORM	n Cl-					
Dr. S.	M. Cho					
Manage Therma	er 1/Hydraulic Er	gineering				
	-	- •				

NUCLEAR DEPARTMENT

FOSTER WHEELER ENERGY CORPORATION

	CHARGE NO. 8	-25-21,21	DOCIMENT		C Tran		
			T DOCOMENT.	NO. ND/74/6	6 ISSUE	1	e 1 2/16/74
BEEN MADE	4.0 4.1 4.1.1 4.1.2 4.1.2 4.1.2 4.1.3 4.1.4	THERMAL OVERALL HEAT TRA UNCERTAL THERMAL DETAILED PART LOA	<u>TA</u> HYDRAULIC A PERFORMANCE HEAT TRANSF NSFER SURFA NTY ANALYSI DESIGN MARG PERFORMANC D PERFORMAN	ER COEFFIC CE REQUIRE S OF THERMA IN E CALCULATI	CENT IENTS L PARAMETER	RS	PAGES 4-1 4-2 4-2 4-6 4-7 4-9 4-9
LINDLOALE WHERE CHANGES HAVE BEEN	4.1.4.1 4.1.4.2 4.2 4.2.1 4.2.2 4.3 4.3.1 4.3.2 4.4	METHOD 1 METHOD 2 PRESSURE STEAM/WAT SALT SIDE STABILITY STATIC ST DYNAMIC S SYSTEMS F START-UP START-UP WATER CHE	DROP CALCU FER SIDE PRIS PRESSURE D ABILITY STABILITY ELATED TO S SYSTEM AND SYSTEM MISTRY RELIEF SYST	LATIONS ESSURE DROF DROP STEAM GENER WATER CHEM			4-18 4-19 4-20 4-29 4-33 4-33 4-36 4-39 4-46 4-46 4-49 4-55
		•					
N L							

FOSTER WHEELER ENE	RGY CORPORATION
--------------------	-----------------

NUCLEAR DEPARTMENT LIVINGSTON, N. J. CHARGE NO. 8-25-2431 DOCUMENT NO. ND/74/66 DATE 12/16/71 ISSUE 4.0 THERMAL/HYDRAULIC ANALYSIS It is the intent of this analysis to obtain a conceptual design of a steam generator which will operate with a molten salt system and a supercritical steam-power cycle. The steam generater design is of a once-through, counterflow, shell-and-tube type with salt flowing downward on the shell side and water/steam flowing upward in the tubes. Only one steam generator unit is intended for each of the four heat transport circuits which are connected, in parallel, COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE to the Molten Salt Breeder Reactor. An axial (or long) flow approach was utilized after several unsuccessful attempts of meeting the design criteria by a cross flow scheme. The difficulty of solving the problems of tube vibration and the excessive pressure drop on the shell side simultanteously, forced the cross flow approach to be abandoned. However, it is noted that the advantage of cross flow approach is not so significant in a supercritical unit, due to the fact that the thick tube wall, necessary for high pressure, becomes a dominant thermal resistance (about 50%) of over-all thermal performance. The analyses of the basic thermal/hydraulic performances, design uncertainties, flow stabilities, and related systems have been performed and the results are presented in detail in the following sections. THIS A NOTATIONS BY APPROVED PAGE 4-1

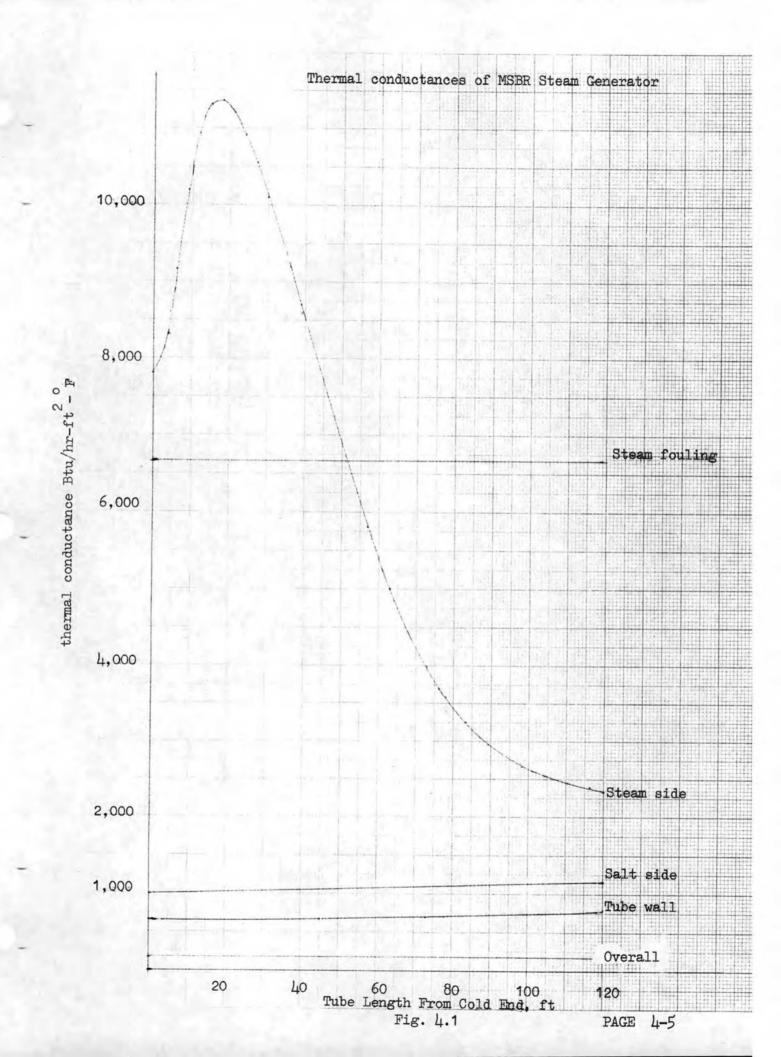
ŧ

FWC FORM 172

	NUCL	EAR DEPA	RTMENT	OSTER WHEELER	ENERGY CORI	PORATION	LIVINGS	TON, N. J.
	CHARGE	NO. 8-2	25-2431	DOCUMENT NO.	ND/74/66	ISSUE 1	DA ITTE	0/46/-1
	4.1	The the of all	PERFORM rmodynam heat tra ady-stat		oort propert.	ies and the	ermal cond	2/16/74 uc tances o obtain
	4.1.1			ANSFER COEFFI		uie steam	generator	•
NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE		The hear steam or wall, su The molt of Oak F ment (MS heat exc applicat for MSBR product, fluorobo on the o means (R thermal) FWEC Mon The stear used and ohase flo Nickel-M Cerence 3 . <u>Steam</u> The c for s tubes is ex	t is tran n tube si upercrit: ten salt lidge Nat SRE) in 1 changer. ion was l is NaF Na ₃ C _r F ₆ rate, an utside s ef.1). performan nthly Pro- n side for is cons: bw and the gn proper folybdenu l Side Con- orrelati uper-cri exposed pressed	nsfered from ide. The the ical steam and side fouling tional Laboration 960's denoted However, the BF ₂ with 66 m with 92 mole , has been for d this corros urface of the The effect o nce of the st ogress Report ouling coeffi idered to be ne five-year cties of the m-Chromium-In efficient on by H. S. S tical water/s	the molten a rmal conduct d steam-side effect was tory. The M d no evidence coolant mi nole % of Li % of NaBF4. bund in loop ion/product steam tubes f molten sat eam generato #10 (Ref. 2 cient of 666 a reasonable period of tu tube wall ma con Alloy), wenson (Ref team flowing at the wall	tances of m fouling w neglected lolten-Salt e of fouling xture chos F, and the Evidence on s circulat is expected s if not real t side for or was report to clean in terial, Ha are tabula	at the din Reactor H ng in the en for tha coolant of f the corr ing sodium ed to depo emoved by ling on t orted in t torted in t torted in t torted in Re-	t, tube lered. rection Experi- MSRE it shosen rosion sit some he he he
-	ВҮ		APPROVE	D			PAGE 4-	2

FWC FORM 172 - 4

NUCLEAR DEPARTMENT


FWC FORM 172 - 4

CHARGE	NO.8-25-2431	Dogunera			
UTARIOE .	NO. 0-25-2431	DOCUMENT NO	• ND/74/66 I	SSUE 1	DATE 12/16/7
	where				
	$h_{i} = 1$	heat transfer	coefficient ins	ide tube	, Btu/hr-ft ² - [°] F
	$\mathbb{D}_{i} = i$	inside diameto	er of tube, ft		
	$K_{i} = 1$	thermal conduc	tivity of fluid	inside 1	tube, Btu/hr-ft
			of fluid, lb/hr		
	$\mu_i = v_o$	riscosity of f f tube, lb/hr	luid at tempera -ft	ture of i	nside surface
	$H_{i} = e_{B}$	nthalpy at te tu/lb	mperature of in	side surf	ace of tube,
	$H_{b} = et$	nthalpy at te	mperature of but	lk fluid,	Btu/1b
			fluid at inside		
	$T_{b} = te$	emperature of	bulk fluid, F		
	v _b = sr	pecific volume	e of bulk fluid,	ft ³ /1b,	and
	v _i = sr sv	ecific volume urface of tube	e of _j fluid at te e ft ³ /lb	mperature	e of inside
В.	<u>Salt Side Co</u>	efficient			
	The Dittus B molten salt expressed by	TOCO TATISTEL	ation was appli coefficient.	ed to det The corre	ermine the lation is
	Nu =	0.023 (Re) ^{0.8}	(Pr) ^{0.4}		
	where Nu = ·	h _o De			
	Re = -	G De			
	Pr = -				
		υ			
ζ	APPROV	ED		L	AGE 4-3

ל-י

FWC FORM 172

CHARG	E NO. 8-25-2431	DOCUMENT NO.	ND/74/66	ISSUE	1 DAT	E 12/16/7
	h	= heat transfe	r coefficien	t of mold	ten salt.	
	0	= heat transfe Btu/hr-ft ² -	F			,
	De	= equivalent d	iameter, ft			
	K ₂	= thermal condu	activity of	molton as	1+ a+ h	-11-
	D	temperature,	Btu/hr-ft-	F		412
	G :	= mass velocit	y of molten	salt, 1b/	hr-ft ²	
	, м _в =	= viscosity of	molten salt	at bulk	tomponat	
) ⁻ b	lb/hr-ft		at buik	vemperat	, ure,
	Cp _b ₌	= specific heat	t at constan	t pressur	e of mol	ten
		salt at bulk	temperature	, Btu/1b-	ЧF	
	All the cor	ductances of a	overall, stea	am side,	molten s	alt
	plotted ver	wall, and stea csus length of	un side foul: steam gener:	ing at fu ator. as	ll load	are from
	coid end, i	n Fig. 4.1. 1	he overall (conductan	ce was c	alcu-
	thickness (l on outside su (0.125" + 7%)	urface of tul since the st	be and ma	ximum tu	be
	critical th	ermodynamic st	ate, special	l care mu	st be ta	ken
	to insure t	that the evaluaties are accur	tions of the	ermodynam	ic and t	rans-
	the tube le	ength was divid	ed into a su	ufficient	number	of
	sections, s	o that the spe ld be treated	cific heat.	Cp. of s	team in	each
	error, and	the concept of	logarithm n	iean temp	erature	e dif-
	ference cou	ld be applied.				
	The length-	averaged mean	values were	calculate	ed for ea	ach
	unit as ful	to determine 1 load conditi	the overall ons and are	performant tabulated	nce of t below	he
	The method	in Ref. 5 was	utilized. I	he attril	outions .	to
	overall res	istance of eac	h are also s	hown.		
			·			
<u> </u>						

NUCLEAR DEPARTMENT

NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE

EWC FORM 172 - 4

FOSTER WHEELER ENERGY CORPORATION

CHARGE NO. 8-25-2431 DO	CUMENT NO. ND/74/66 ISSUE	1 DATE 12/16/74
	<u>Conductance</u> Btu/hr-ft ² -	
Steam side	4401.41	12.0
Molten salt side	1079.21	31.50
tube wall	499.79	48.58
steam side fouling	6667.0	7.92
overall U	340	100
overall log mean temp. di	fference 205.67°F	
4.1.2 HEAT TRANSFER SURF	ACE REQUIREMENTS	
The design criteri follows:	a at full load operating condit	ions are as
	Salt	<u>Water/Steam</u>
Inlet temperature, ^o F	1150	700
Outlet temperature, ^o F	850	1000
Flow rate, lb/hr	15,280,000	2,538,000
Inlet pressure, psia	235	
Outlet pressure, psia		3600
Maximum pressure drop, psi	60	200
Thermal duty = $483 \text{ MW(t)} =$	1.65×10^9 Btu/hr.	
correlations mentions basic thermal/hydra	raulic performance computer pro e the sizing of steam generator ned in Section 4.1.1. This res ulic design of the steam genera f 120 ft. The specifications o ed below:	using the sulted in the
		алан алан алан алан алан алан алан алан

NUCLEAR DEPARTMENT

1

FWC FORM 172 - 4

CHARG	E NO. 8-25-2431 DOCUMENT NO. ND/74/6	66 ISSUE 1 DATE 12/16/
	No. of tubes per unit	1000
	Total length, ft.	120
	Tube O. D. in.	0.75
	Tube thickness, in.	max. wall 0.13375
	Tube I. D. in	min. ID 0.4825
	Transverse tube pitch, in	1.125
	Longitudinal pitch, in	0.974
	Heat transfer rate, Btu/hr	1.646 x 10 ⁹
	Total effective surface area, ft ² (based on tube OD)	23561.8
	Material	Hastelloy N
	possible deviations from design cond complished by statistical approach.	
4.1.2.	 possible deviations from design cond complished by statistical approach. 1 <u>UNCERTAINTY ANALYSIS OF THERMAL PARA</u> In order to obtain an appropriate su high confidence level of the design, gram, entitled SIMPAK, (Ref. 30), wa SIMPAK is a package of subroutines w random numbers, relate data to proba tate the Monte Carlo simulation, con deviation of resultant probability d details of the probability distribut 	MATTERS AMETERS arface margin to maintain a , a statistical computer pro- as utilized. which read in the date, draw ability distributions, facili- upute the mean and standard listributions, and print out
4.1.2	 possible deviations from design cond complished by statistical approach. 1 <u>UNCERTAINTY ANALYSIS OF THERMAL PARA</u> In order to obtain an appropriate su high confidence level of the design, gram, entitled SIMPAK, (Ref. 30), wa SIMPAK is a package of subroutines w random numbers, relate data to proba tate the Monte Carlo simulation, con deviation of resultant probability d 	AMETERS AMETERS AMETERS ANALY AND

LIVINGSTON,	N

J.

CHARCE NO 9 of allow					
CHARGE NO. 8-25-2431	DOCUMENT NO. ND/74/66	ISSUE		D 4 mm	
	10/14/00	TOOOD	1	DATE	12/16/71

The heat transfer data of molten salt obtained with the forcedconvection loop FCL-2 are in good agreement with the empirical correlation of Sieder and Tate (Ref. 1). In Ref. 6, the Seider-Tate type correlation was developed for fuel salt as follows:

Nu = 0.0234 Re^{0.8} Pr^{1/3}
$$(\frac{\mu}{\mu_{s}})^{0.14}$$

with a standard deviation of 6.2% for Re > 12,000 (18.6% for 3σ -deviation) and all the properties read at bulk temperature, except \mathcal{A} s at wall temperature. Since no better information is available, this Sieder-Tate correlation was compared with the Dittus-Boelter correlation, which was used in sizing the steam generator, to predict the uncertainty of coolant salt conductance computed in the performance computer program. It was found, within the temperature range of the shell side fluid, the conductance calculated by Sieder-Tate correlation was about 90.06% of the one calculated by Dittus-Boelter correlation. Therefore, for this uncertainty analysis, the molten salt conductance obtained by Dittus Boelter correlation was first multiplied by 0.9006 and then assumed to have a standard deviation of 8% for more conservation. For thermal conductivity of Hastelloy N, the data obtained from Haynes Stellite were about 4.1% higher than the values used in the performance computer program, (Ref. 7). Therefore, the thermal conductivity of tube wall was first multiplied by 1.022 and then assigned a Standard deviation of 0.7167%. All the above parameters were assumed to have normal distributions to simplify the statistical analysis. The variation of tube wall thickness was limited to the manufacture range of 0.125" + 7%-0%

The modeling method for overall performance of multi-stage heat exchangers used in Ref. 5 was adopted here to significantly reduce the Monte Carlo computation time. All the heat transfer correlations were included as part of the SIMPAK program so that the inter-dependent variables such as inside diameter of tube, flow rate, mass velocity, heat transfer coefficients, could be related to one another and computed simultaneously. The input data were uncertainties of heat transfer correlations, variation of tube wall thickness, and overall performance parameters of basic design at full load conditions. The SIMPAK did 500 Monte Carlo trials and the cumulative probability of the total surface area of steam generator, based on constant duty and

COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE THIS Ä NOTATIONS

ł

FWC FORM 172

BY

	NUCLEAR DE	PARTMENT	MISELER ENERGI	CORPORATION	
1					LIV
		т.			
7					

INGSTON, N. J.

CHARGE NO.	8-25-2431	DOCUMENT NO.	ND/74/66	ISSUE	1	DATE	12/16/74
tem	perature pro	file. was obt	ainod og ska				

was obtained as shown in Table 4.1 and Fig. 4.2. It is noted that the flow rates of salt and steam were held constant. When one considers the malfunctions of pumps, flow rates of salt and steam may fluctuate. Assuming + 10% variation of flow rates, a second calculation was made and the results are shown in Table 4.2 and Fig. 4.3. These results are only approximate in the sense that the large fluctuations of flow rates would eventually change the total duty and temperature distribution along the unit.

4.1.2.2 THERMAL DESIGN MARGIN

The above analysis indicates that the confidence level of the basic design of 1000 tubes with length of 120 ft (area = 23562 ft²) is about 40%. This is considered to be too low a level of design confidence and therefore additional surface must be provided. For the case of constant flow rates (Table 4.1, Figure 4.2), the required surface to give the 99.9% confidence level is 26002 ft^2 which is corresponding to 1014 tubes with length of 131 ft. For the case varying flow rates,2 the 99.9% confidence level requires a surface area of 26611 ft which corresponds to 1014 tubes with length of 134 ft. The flow by-pass on shell side being 1.2% would require additional 1 ft long.

Therefore the reference design steam generator is designed to contain 1014 tubes, 140 ft. long, plus 13 tie rods. This design gives additional 18% of surface area over the basic design, ang has the highest confidence level (99.9%) to achieve the specified thermal duty and design criteria.

4.1.3 DETAILED PERFORMANCE CALCULATIONS

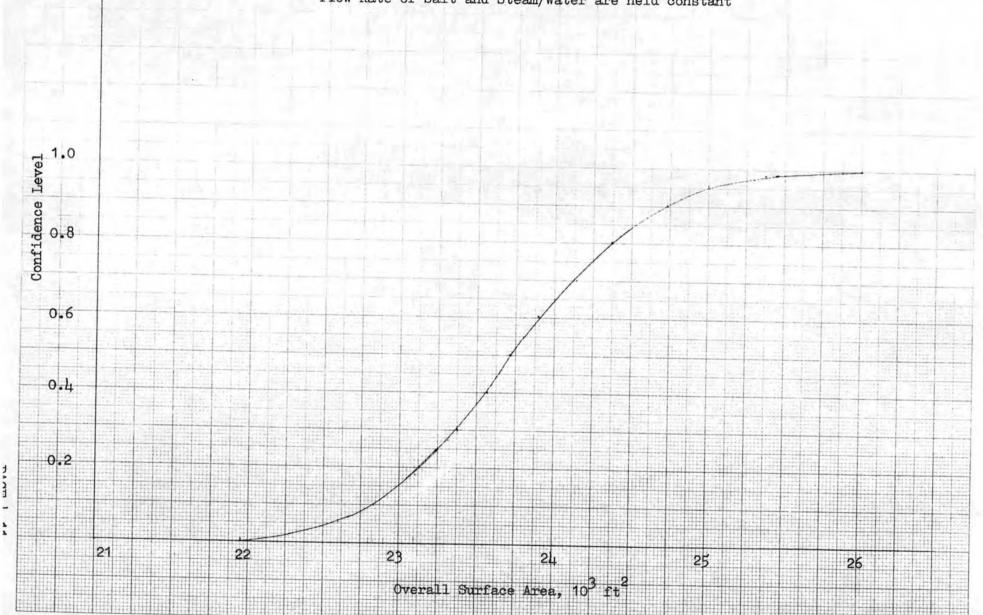
The heat transfer surface requirements shown in Section 4.1.2 were obtained by a performance computer code. This computer code could be easily modified for all the situations and was extensively used for the thermal hydraulic performances. mulating the unit by this performance computer code, the unit Siwas divided into 63 sections in length. For each section the thermodynamic properties, transport properties, pressure drops, and heat transfer coefficients were determined by iterations. From 700°F to 750°F of steam temperature in the inlet region, the change in steam enthalpy per section was limited to not more than 10 Btu/lb. From 750 F to final steam outlet temperature, the change in steam enthalpy per section did not exceed 20 Btu/lb. The 1967 ASME steam tables were used for all steam

COLUMN INDICATE WHERE CHANGES HAVE SIHT NOTATIONS IN

MADE

BEEN

FWC FORM 172 - 4


BY

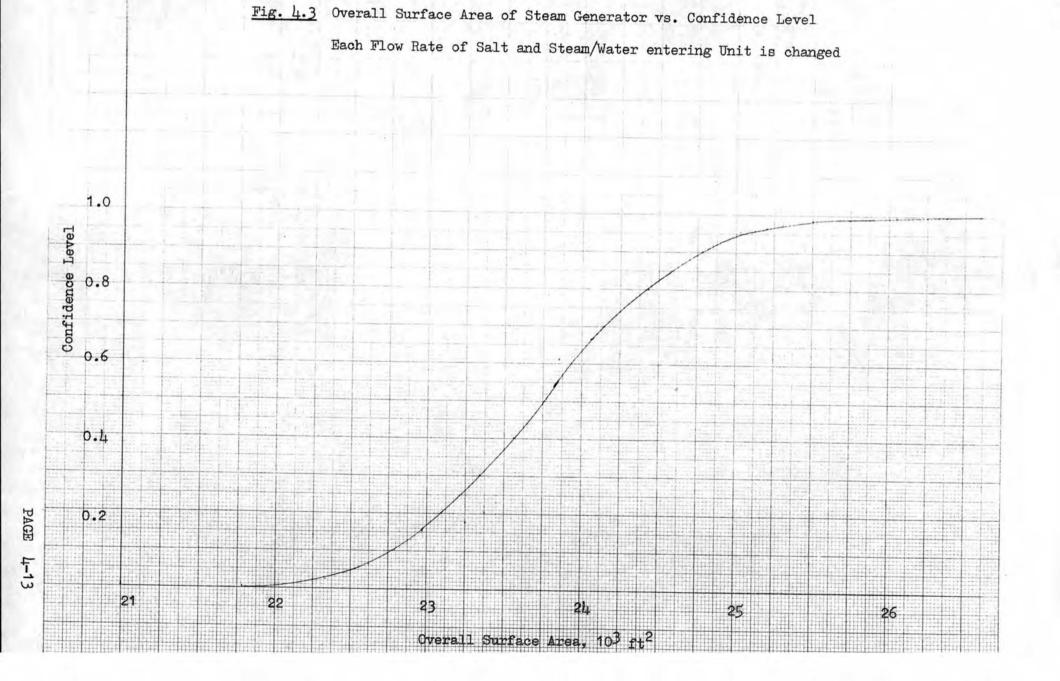
FWC FORM 172 - 4

-NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE --

υQ			Table /		nary Stat VRates c Mean		later are		onstant	of Stear	n Genera	tor	CTHURS NO. 0
			•			d deviat		736 11	5				0-22-CH3
	Confidence l ev el	0.0	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	
	Surface area, ft ²	21,958	22,830	23,134	23,374	23,573	23,719	23,889	24,140	24 , 370	24,729	26,002	
													0/74/66
													ISSUE
								•					1 DATE
													<u> </u>

FOSTER WHEELER ENERGY CORPORATION

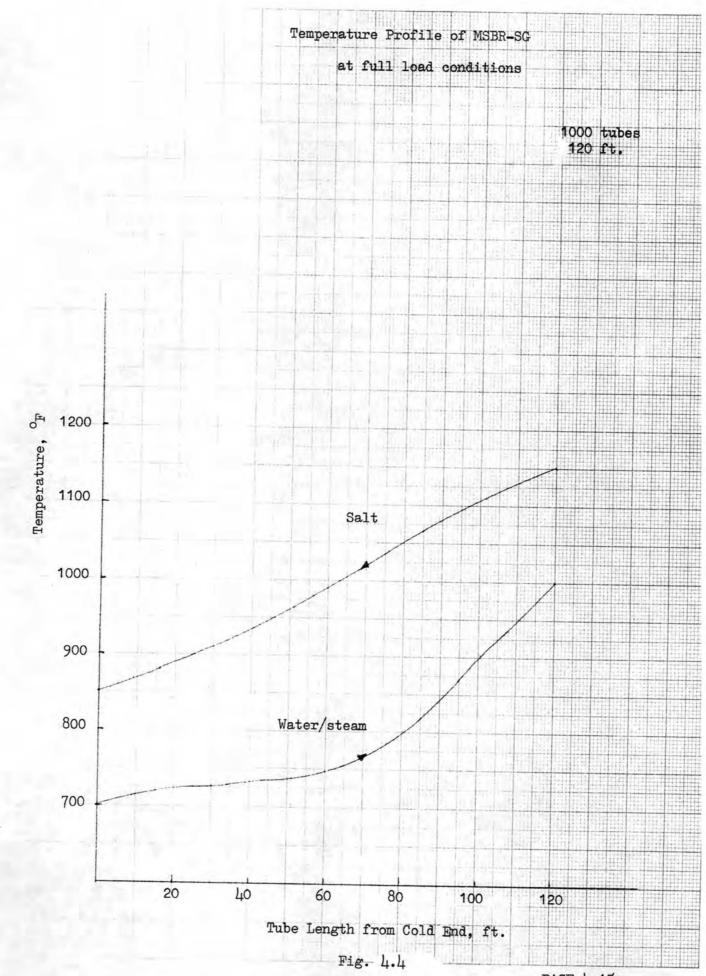
サイトリ


Overall Surface Area of Steam Generator vs. Confidence Level Fig. 4.2

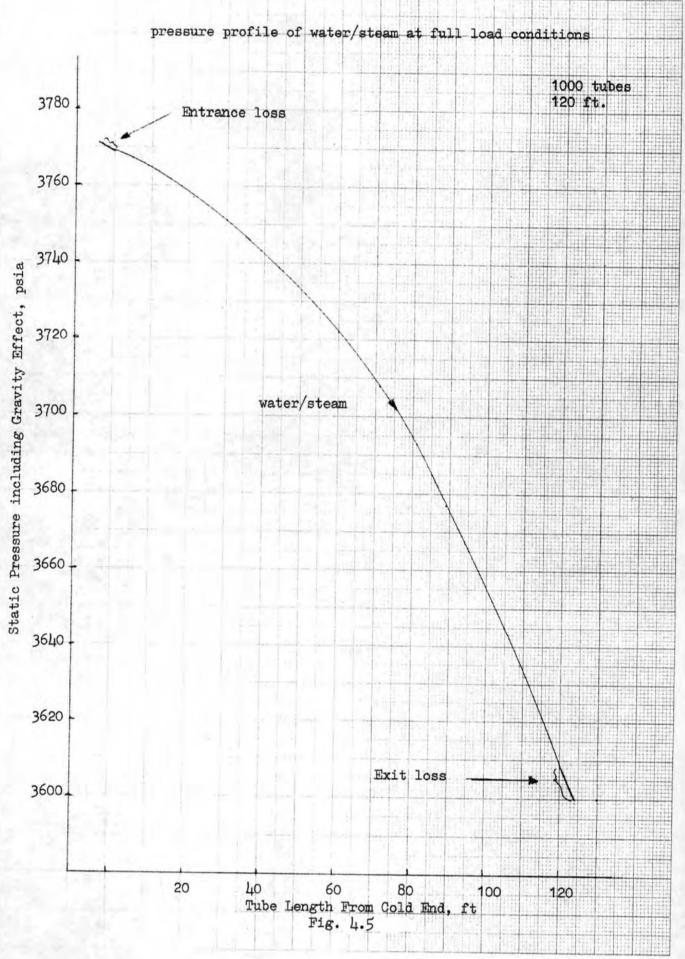
Flow Rate of Salt and Steam/Water are held constant

FWC FORM 172 - 4

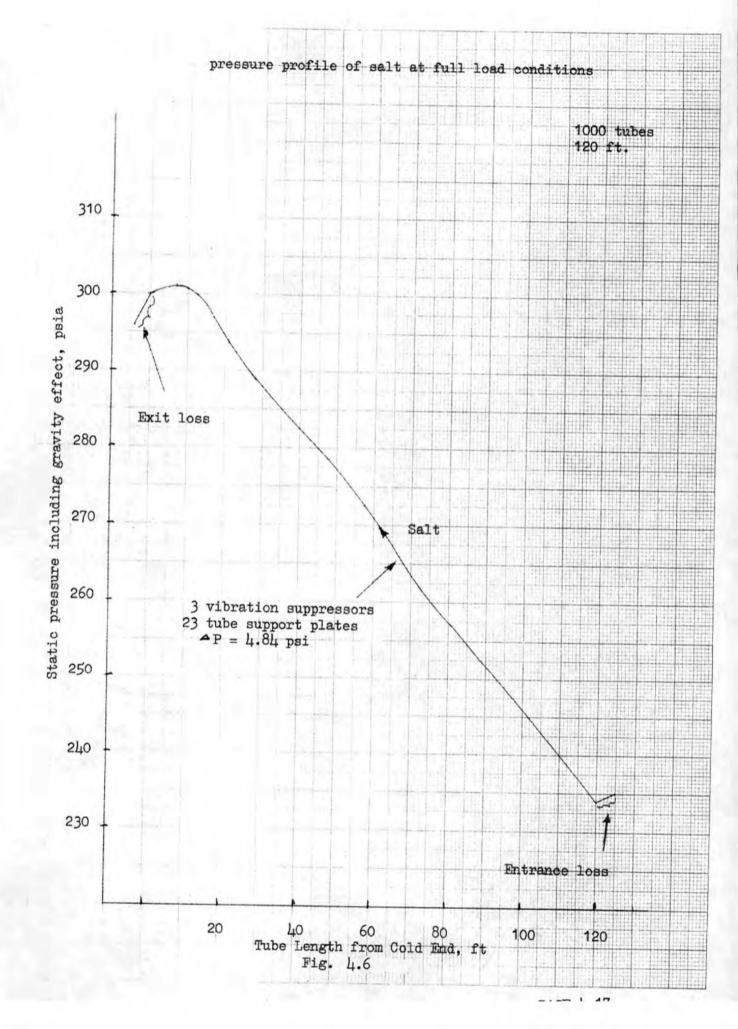
- NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE ------


RV			Table 4.				or Overal					
				Dacii	Mea		t and St	237	er enter: 762 ft ² 779	ing Unit	is Chang	ged
	Confidence Level	0.0	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
	Surface Area, ft ²	21,779	22,789	23,089	23,341	23,568	23,760	23,930	24,147	24,432	24,779	26,611
										•••• •••••••••••••••••••••••••••••••••	•	·

				LIVING	STON, N. J.
CHARGE NO. 8-25-2431 DOCUMENT NO	0. ND/74/66	ISSUE	1	DATE	12/16/74
properties.					
This detailed performance surface requirement and pro- conditions, in accordance 4.1.2).	essure drong g	st fuill	1004	- am a m a d	· · · · · ·
The pressure drops at entra vibration suppressors have mance of the steam generate as a function of position is operation at full load are results of the thermal/hydr load conditions are also su	minor effects or. Temperatu in the steam g shown in Figu raulic analysi	s on the ure and g generator ures 4.4	the press r for	mal pe sure pr stead	rfor- ofiles y state
	Salt			Wat	er/Steam
Inlet temperature, ^o F	1150			700	
Outlet temperature, ${}^{\circ}_{\rm F}$	850.6			1000)
Inlet pressure, psia	235			3770	0.5
Outlet pressure, psia	296			3600)
Flow rate, 1b/hr	15.28 x 10 ⁶			2.5	38 x 10 ⁶
Mass velocity, lb/hr-ft ²	3.363 x 10 ⁶				9 x 10 ⁶
Static pressure difference, psi	- 61				0.5
Total net pressure loss, psi	40.2			158.	1
Thermal duty = 1.646×10^9 Btu/hr					
The pressure drop calculation	ons are presen	ted in S	Secti	.on 4.2	
There are two vent nozzles p juncture to vent trapped gas assist in preventing the sal the cold leg. The low feedw nation of salt at the corner of salt-freezing. For the b the outside tube surface in near the lower tubesheet is and is higher than 800°F at	positioned at ses. These ve t from freezi vater temperat c of cold leg pasic design, the active he about 800 F a	each tub nt nozz] ng at th ure of 7 are the the salt at trans	beshe les w ne ju 700 F poss tem	et-to- ill al. ncture and s ible ca peratur region	shell so of tag- auses re at
BY APPROVED					


- NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE

FWC FORM 172 - 4



PAGE 4-15

Sector Sector

TAAT 1 42

FOSTER	WHEELER	ENERGY	CORPORATION
--------	---------	--------	-------------

NUCLEAR	DEPARTMENT
---------	------------

LIVINGSTON, N. J.

CHARGE NO.	8-25-2431	DOCUMENT NO.	ND /71. /66	TOOTT		T	
			MD/ 14/00	ISSUE	1	DATE	12/16/74

region, the poor heat transfer coefficient on the salt side might create a situation in which the salt-side tube wall temperature could be lowered below the salt freezing point of 725°F. However, the above possibility is remote considering the fact that the steam generator cell of the generating station building is maintained at temperature of $1000^{\circ}F$ (Ref. 23) by external heat source. The salt at the tubesheet-to-shell juncture would absorb additional heat through the heat conduction from heated cell to the shell of steam generator. Therefore, the salt temperature near the cold tubesheet would not be below the salt freezing point of 725°F. The vent nozzles will continuously vent out a small amount of salt to keep the salt always in motion (also for higher heat transfer coefficient) instead of stagnant in this region. From the preceding discussions, the unit will be free from a salt freezing problem. Detailed analysis was not undertaken of this problem in the present study but should be a part of future studies.

4.1.4 PART LOAD PERFORMANCE

Partial load operation is defined as any condition between 20 and 100% of full load thermal duty. The operation from zero to 20% load is designated as startup operation.

Two major limitations, of high priority, when the plant undergoes changes in load are: (a) turbine throttle temperature to be held at 1000°F due to turbine limitations, and (b) the coolant salt temperature at steam generator outlet and fuel salt temperature at reactor inlet to be held above the salt freezing points of 725 and 930°F, respectively, at all loads. The primary fuel salt system will operate at constant flow rate and constant reactor inlet temperature of 1050°F, with the reactor outlet temperature controlled as a function of load. It was found that variation of secondary coolant salt flow would be necessary to maintain the fuel salt reactor inlet temperature sufficiently above its freezing point during part load operations. If the coolant salt decreases linearly with load, the reduced coolant salt flow rate would decrease the coolant salt temperature at the steam generator outlet excessively with the danger of being lower than freezing point (Ref. 10). However, if the reduction of the coolant salt flow is less than the reduction of load (percentagewise), there is a chance that the steam outlet temperature might exceed the limitation of 1000°F. This indicates the difficulties of control during the part load operations.

MADE THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN NOTATIONS IN

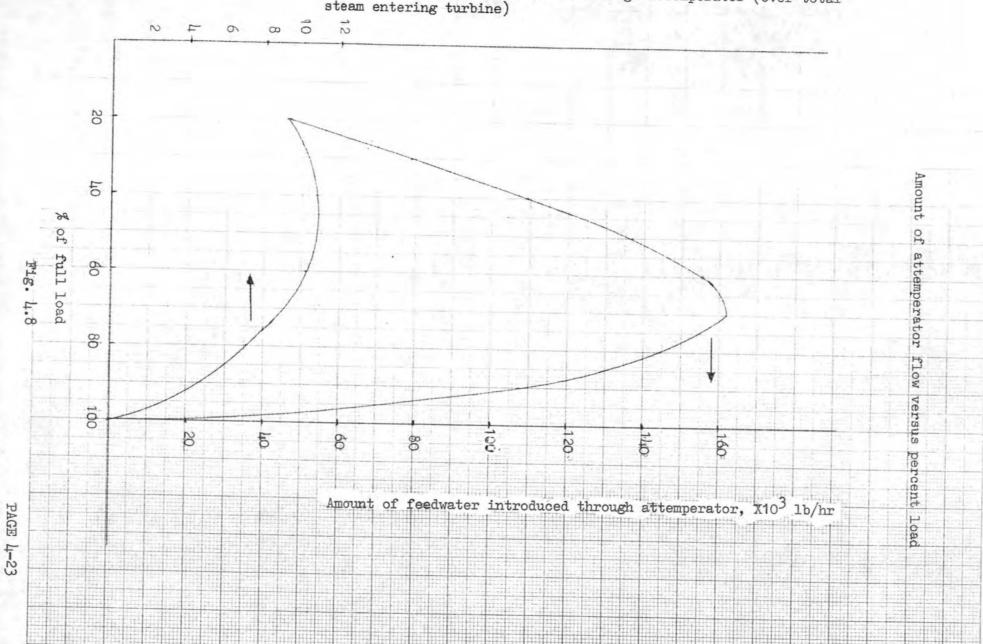
FWC FORM 172 - 4

ΒY

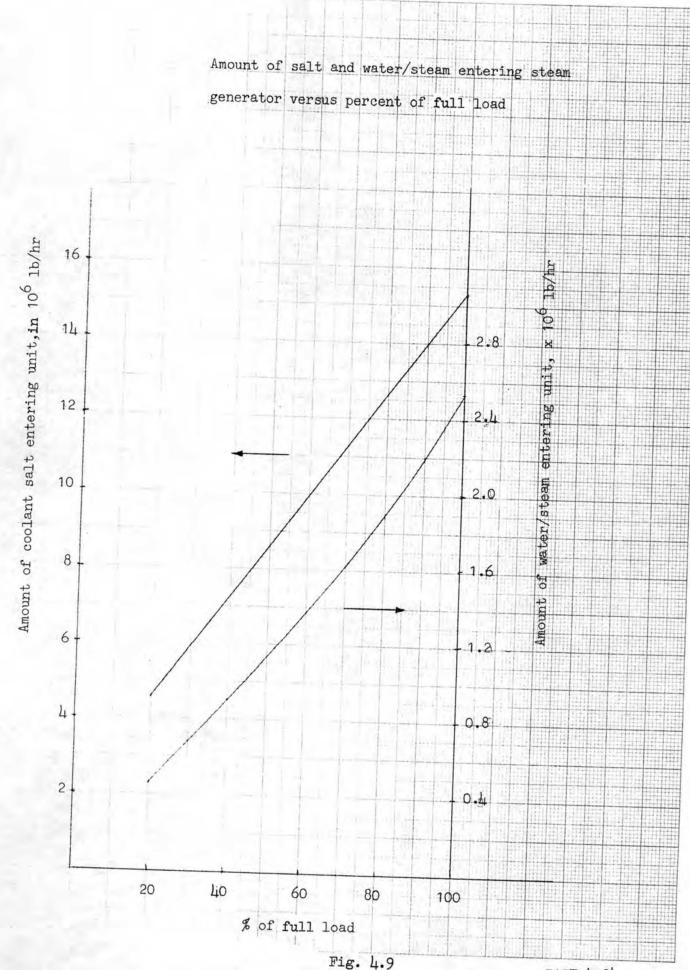
4-19

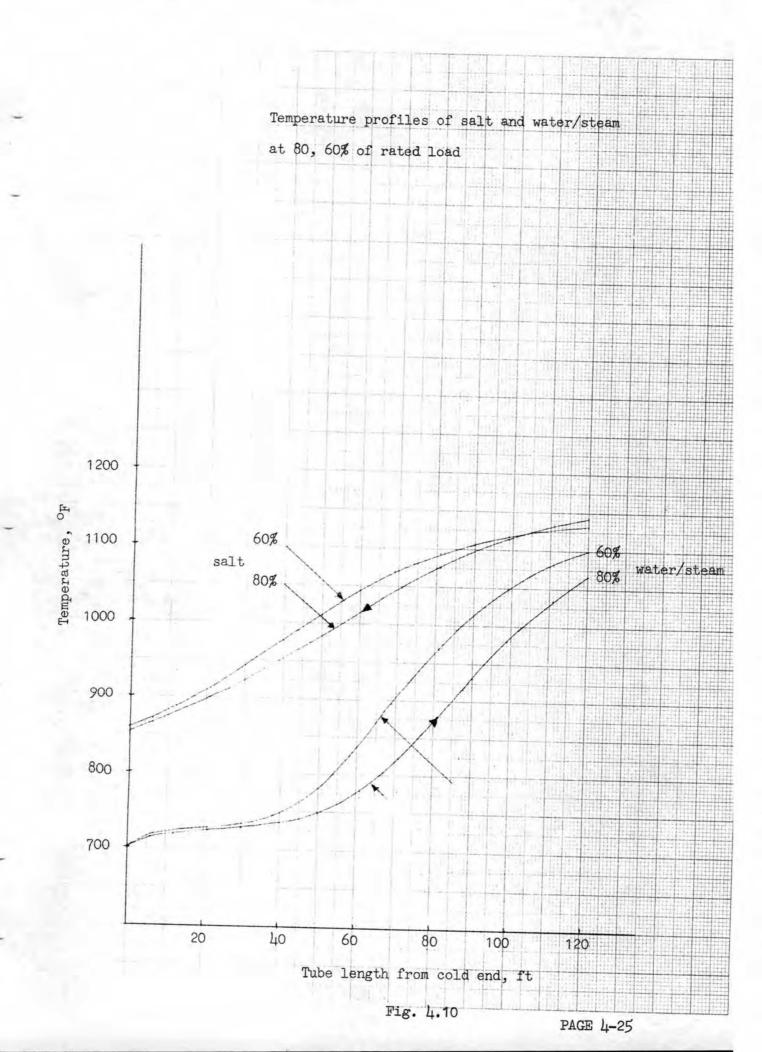
1	FOSTER WHEELER ENERGY CORPORATION NUCLEAR DEPARTMENT LIVINGSTON, N. J.
	CHARGE NO. 8-25-2431 DOCUMENT NO. ND/74/66 ISSUE 1 DATE 12/16/74
E BEEN MADE	Two principal methods for control of part load operation are (1) Varying the coolant salt flow with the flow reduction less than the load reduction (percentagewise) and thus allowing the steam outlet temperature to exceed above the 1000°F design point, with subsequent attemperation of the steam temperature with injected feedwater, (2) Varying the coolant salt flow as method 1 and using a salt throttle valve to bypass some of the coolant salt flow around the primary heat exchanger (from cold to hot legs) to reduce the temperature of the salt entering the steam generator (thus reduce the steam outlet temperature) while keeping coolant salt temperature leaving the steam generator above its full load value of 850°F. These two methods are dis- cussed in detail in the following.
HAVE	4.1.4.1 <u>METHOD 1</u>
INDICATE WHERE CHANGES	Coolant salt flow was varied linearly from 30% flow at 20% thermal load to 100% flow at 100% load. The associated inlet and outlet temperatures of coolant salt are tabulated in Table 4.3 (Ref. 3). The steam inlet temperature was held constant at 700°F, while the steam flow varied in proportion to load (slight deviation from linearity exists due to water bypass for the attem- peratgr). The steam outlet temperature was allowed to rise above 1,000 F at part loads and was subsequently attemperated with the bypassed feedwater at conditions of 700°F and 3700 psia to maintain 1,000°F turbine inlet temperature.
172 - 4 IN THIS COLUMN	The results presented in Figures 4.7 to 4.13 indicate that this method is satisfactory. Figure 4.7 shows the uncontrolled and attemperated final steam temperatures versus percent of full load. Figure 4.8 shows the amount of attemperator flow versus percent load. Figure 4.9 shows the amount of salt and water flow rates entering the unit versus percent of full load. Fi- gures 4.10 to 4.13 show the temperature and pressure profiles of salt and water/steam at part loads.
FWC FORM NOTATIONS	.1.4.1.1 FEASIBILITY OF USING A SPRAY ATTEMPORATOR AT THE OUTLET OF THE STEAM GENERATOR
FM	It has been Foster Wheeler's experience that utilities do not prefer to use spray attemporation between the final stage of superheat and the turbine. However, such an arrangement is accepted only when there is one stage of superheat.
	It has been standard practice at Foster Wheeler that, for large fossil-fired steam generators, two spray attemporator locations are provided between stages of superheat. This
BY	APPROVED PAGE 4-19

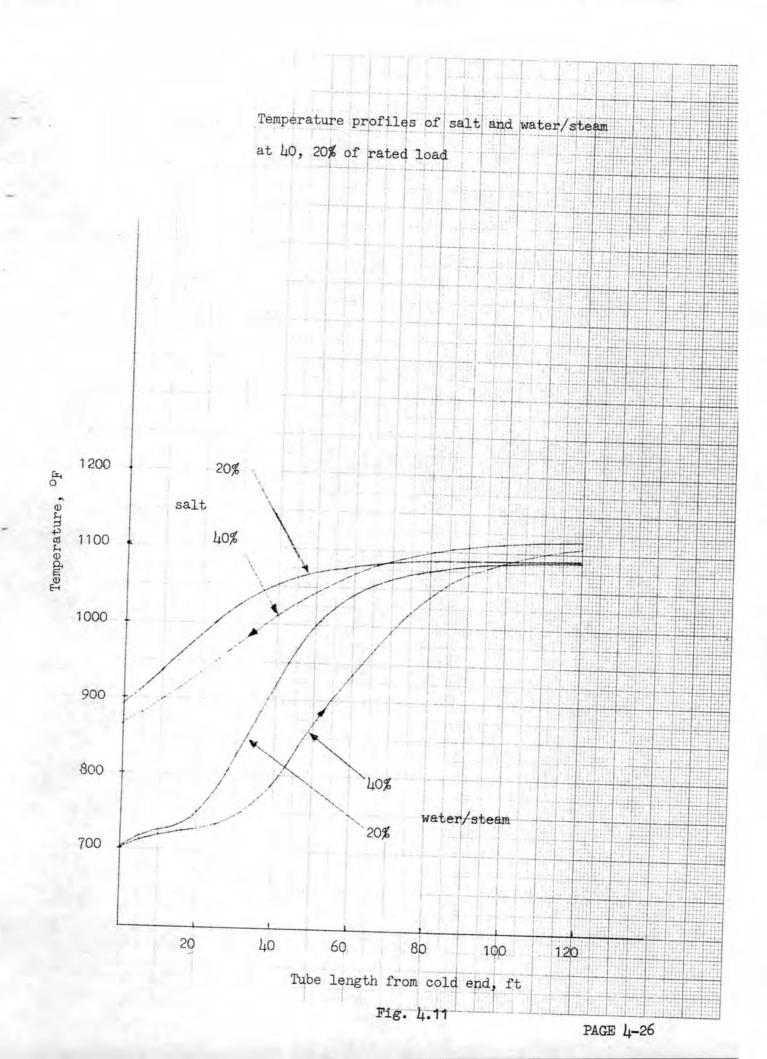
1	FOSTER WHEELER ENERGY CORPORATION NUCLEAR DEPARTMENT LIVINGSTON,	NT
	CHARGE NO. 8-25-2431 DOCUMENT NO. ND/74/66 ISSUE 1 DATE 12/16	5/74
	arrangement allows the superheaters to be designed with lower alloy steels and lower metal temperatures. Also, this arrange ment provides rapid steam temperature control over a wide load range since the steam travel time between point of spraying and point where the temperature is being controlled (the other side of a stage of superheat) is small.	e- d r
	With the present reference design, there are two possible lo- cations for a spray attemporator; (1) at the inlet of the steam generator and (2) at the outlet of the steam generator placing an attemporator at the inlet of the steam generator is not recommended because it would increase the probability of salt freezing at the cold end of the steam generator where the higher pressure (above 3800 psi), colder (below 700° F) wat would result.	
	Locating a spray attemporator at the outlet of the steam gener tor is quite practical. The inlet feedwater can then be used as a source of spray water with proper pressure head and tem- perature for this application. The calculations using this approach that are reported herein indicate that the spray flow quantities that would be required over the load range are reasonable and in line with values required on fossil fired steam generator.	
	It is noted that the change of moisture carry-over to the turbine that could damage the high pressure stages does not exist because of high steam temperatures (1000°F and above) and supercritical pressures (above 3600 psi). Another factor aiding this situation is the long length of piping that will undoubtedly be required between the steam generators and the turbine.	
4	1.4.2 <u>METHOD 2</u>	
	Partial decoupling of the secondary coolant salt loop from the primary fuel salt loop could be accomplished by short-circuiting a fraction of the coolant salt around the primary heat exchanger. This would require a throttling device which is not presently developed. The present steam generator design is not based on this scheme, however, this method would provide useful infor- mation for control study.	
	In this study, the steam inlet and outlet temperatures were held constant at 700 and 1000° F, respectively, during part load operations for which steam flow rate changes linearly with load. The salt flow rate and salt inlet temperature which would maintain the salt outlet temperature at 850° F \pm 15° were to be determined.	
BY	APPROVED	
<u> </u>	PAGE 4-20	

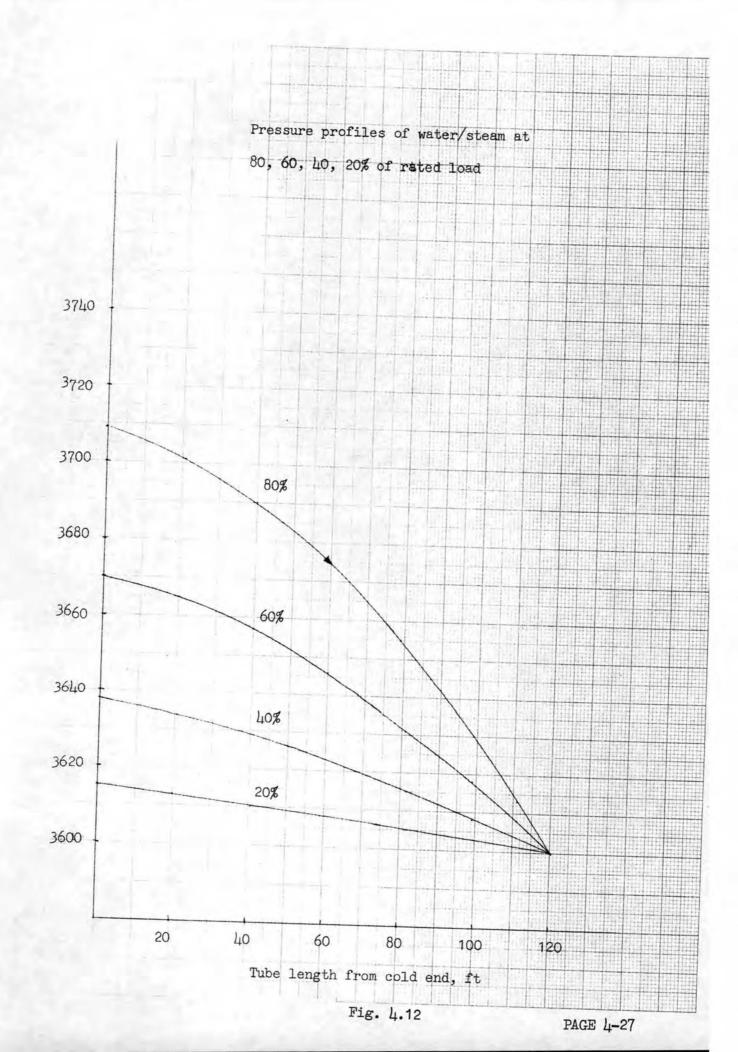

EWC FORM 172 - 4

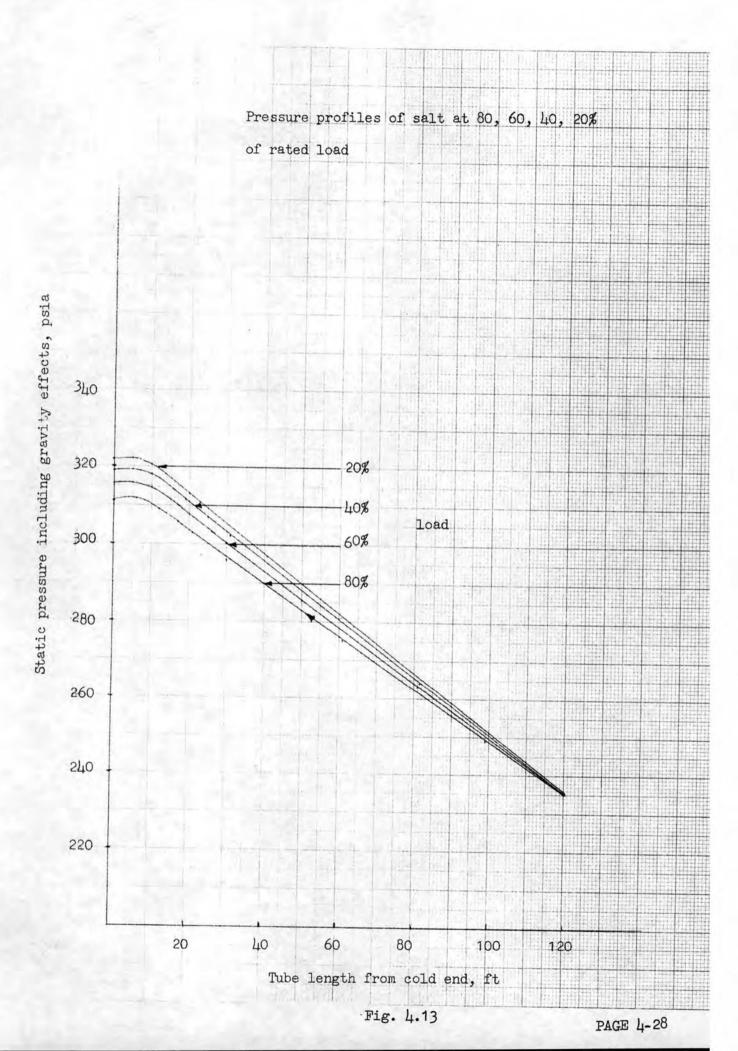
CHARGE	NO.8-25-2431	DOCTIMUM TO	NTD /71 ///			
		DOCUMENT NO.	, 1ND/ (4/66	ISSUE 1	DATE	12/16
	<u>Table 4.3</u> Co Va	olant Salt Te rying load.	mperatures	and Coolant	Salt flo	w wit
Load, 9	<u><u> </u></u>	ow, %	Salt inlet <u>Temperature</u>	0 	Salt ou <u>Tempera</u>	
100	100	0.00	1150		850	
90	9	1.25	1147		851	
80	82	2.50	11 <u>44</u>		853	
70	73	•75	1139		855	
60	65	.00	1134		857	
50	56	•25	1127		860	
40	47	•50	1117		865	
30	38	.75	1106			
20 Base on salt sy		.00 Design Heat t reactor in]	1091	nd operatio Ture of 1050	874 891 n of the F.	fuel
Base on	30. ORNI Reference	Dogion Hard	1091	nd operatio Ture of 1050	891	fuel


FWC FORM 172 - 4

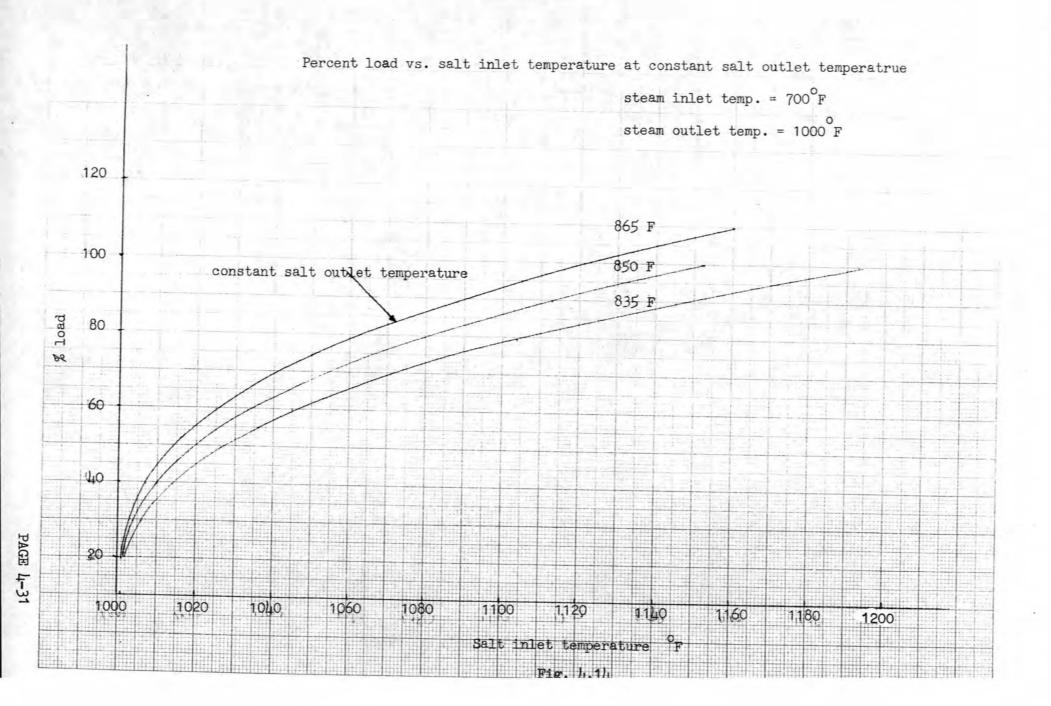

PAGE 4-22

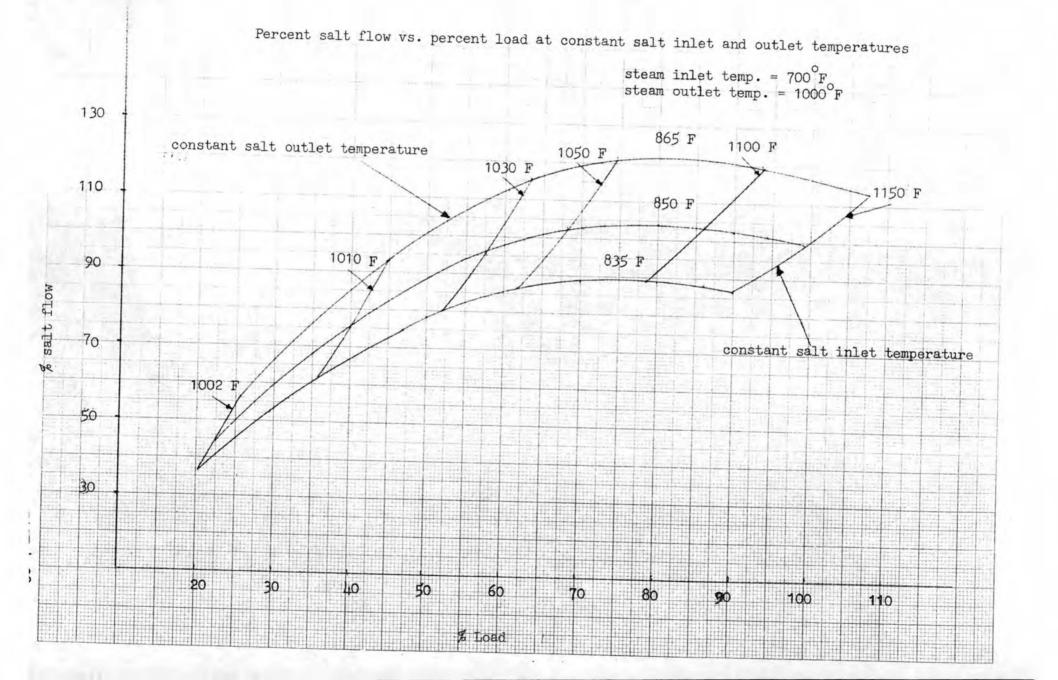



Percent of feedwater introduced through attemperator (over total steam entering turbine)



PAGE 4-24


		CLEAR DEPART	MENT	OSTER I	WILLE	K ENE	RGY COF	RPOR	ATION		LIVING	STON, N.
ſ	CHARC	E NO. 8-25-2	21.24					_				
		10. 0-25-2	2431	DOCUM	ENT NC). ND/	74/66	II	SSUE	1	DATE	12/16/74
		Therefore the salt throughou	t the	range	of 20	to 110	% of 1	rate	d load	ere d d.	850, 8 compute	865 ⁰ F,
IAVE BEEN MADE		The result and Fig. 1 sented in third order informatic part load temperatur more than coolant sa 850°F. Th from a con	Fig. 1 er inte on for range ce from 100% c	4.15 we erpolat contro of abo 1040 of cool	ere ge tion r ol ana out 64 to 111 ant sa	nerate outine lysis. to 97 40°F, alt at	d from to pr Fig. %, wit the st full	n Ta covid h co ch co cam load	ble 4. de val 15, sh colant gener i to m	ure 4 by uabl iows sal ator aint	lines using e over that fo t inle would ain the	pre- a all or a t demand
E SEC	4.2	PRESSURE D	ROP CA	LCULAT:	IONS							
LUMN INDICATE WHERE CHANGES HAVE BEEN		The perform nerator bas shell and the included the head losses drops betwee active heat nozzle over fluids.	tube sine effe due t en in] transf	ide pre ects of to fric let/out	essure elevention let n	drops ation and fl ozzles	betwe head a uid ac , tube	en and cele sul	so cal two tu veloci eratic pport	lcula ibesh ity h m. plat	ted th eets, ead, a The pro es and	e which nd essure the
CUMIN	4.2.1	STEAM/WATER	SIDE	PRESSU	RE DRO	<u>OP</u>						
IN THIS CO		The absolut of tube, 0 lation. Sin to 1.0 x 10 Colebrook-WM pressed as:	$\frac{1}{2}$	e flow	is in	turbi	lent r	e pr regi	on (Re	e dro = 1	p calc •9 x 1	07
NOTATIONS		$\frac{1}{\sqrt{f}}$ +	2 log	$\left(\frac{k_s}{D}\right)$)= 1	.14 –	2 log	(1 -	+ 9.35	Re	D f I) ⁽ s
	,	where f: f ^K s: a	rictio bsolut	n fact e roug	or hness	ft.		•				
		D: i	nside	diameta numbe:	er of		ft					
	Y		ROVED					-				


PAGE 4-29

NUCLEAR	DEPARTMENT

EWC FORM 172 - 4

CHARGE NO	8-25-2431	DOCUMENT NO. ND/74/0	66 ISSUE 1	DATE 12/16/7
	Table 4.4		ce - Method II	
		Salt Flow Rate and	Salt Inlet Tempera	ture
Salt Or	tlet	Salt Inlet	Salt Flow	
Temperatu	ure, F	Temperature ^O F	Rate, %	Load,
835	° _F	1001.8	35.60	
		1005.9	52.18	19.8
		1013.8	66.58	29.7
		1026.3	77.84	39.6
		1045.2	85.08	49.6
		1071.0	88.55	59.6
		1104.1	88.83	69.6
		1145.6	86.60	79.6
		1193.2	86.69	89.7
_	0		83.55	99•7
850	F	1001.3	39.28	19. 8 [.]
		1004.2	57.86	29.7
		1009.7	74.51	39.6
		1019.1	88.00	49.6
		1033.3	97.57	59.6
		1053.3	102.64	69.6
		1079.8	104.02	79.68
		1113.0	102.39	89.71
	•	1152.6	98.91	99.8
865) F	1000.9	1.2 71.	
-		1002.9	43.74	19.8
		1007.0	64.69	29.71
		1014.1	83.85	39.69
		1025.0	99.92	49.65
		1023.0	111.87	59.65
		1040.5	119.04	69.66
		1061.6 1088.4	121.62	79.70
			120.50	89.76
		1121.5	116.77	99.85
		1160.2	111.75	109.97
		St	team inlet temp. =	700 ⁰ F
			- ceam outlet temp. =	•
			eam flow rate = ch	
			wi	th load
BY	APPROV		P/	

- COLOR MICLION DUDING CONFORMITON	FOSTER	WHEELER	ENERGY	CORPORATION
------------------------------------	--------	---------	--------	-------------

NUCLEAR DEPARTMENT

CHARGE	NO. 8-25-2431 DOCUMENT NO. ND/74/66 ISSUE 1	DATE 12/16/7			
	The pressure losses occurred between the inlet no lower tubesheet, and between the upper tubesheet nozzle were calculated per FWEC fluid flow formul The results are summarized in Table 4.5, with har attached in Appendix B. Pressure profiles of ste at full and part loads are also presented in Sect	ozzle and the and the exit las (Ref. 12). d calculations			
4.2.2	SALT SIDE PRESSURE DROP				
	There are 23 tube support plates in vertical and portions, three vibration suppressors in bend reg in inlet region and four shrouds in outlet region drops occurred at nozzles, shrouds, tube support bration suppressors were hand-calculated per FWEC nual (Ref. 12). These values were added to the p calculated by the active heat transfer region per The results are summarized in Table 4.6. Hand-ca attached in Appendix B.	ion, one shroud The pressure plates and vi- Standard Ma- ressure drops formance code.			
	The Colebrook-White formula was used for friction culation. Unit pressure profiles in shell side a Section 4.1.3 and 4.1.4.	factor cal- re shown in			
4.3	STABILITY				
	Historically, the early studies of flow instabili veloped from operational difficulties with fossil A number of boiler-tube failures and thermal perf gradation were attributed to water/steam flow ins Units designed in supercritical pressure region at the same problem as well as in the subcritical reg	-fired boilers. ormance de- tability. lso suffered			
In boiling systems, fluctuations are always present because variations of the rate of bubble formation and population, of flow regimes, of the heat transfer coefficient, etc. Conse- quently these fluctuations may induce the flow instabilities In the supercritical region, rapid changes of thermophysical properties are observed in the vicinity of the critical poin The propagations of variations of properties, in particular of the density and of the enthalpy, through the system intro- time and space lags of transformation which under certain co- tions can cause unstable flow. Two major classifications of unstable phenomena are defined static and dynamic instabilities. Both of them could be ana					
	by conservation equations of mass, momentum, energy	gy and the			

FWC FORM 172 - 4

· ·

- NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE -

ВҮ			<u>T</u>	able 4.5 Stea	am-side Pressur	e and pressure	drops		CHARGE NO.
	Load	Entrance P. psia	△P at nozzle, tubesheet, psi	P. leaving tubesheet, psia	△P between tubesheets, psi	P. entering tubesheet, psia	△P at nozzle, tubesheet, psi	Exit P. psia	
APPROVED	100	3770.5	1.6	3768.9	160	3608.9	8.9	3600	8-25-2431
VED	80	3715.5	1.1	3714.4	109	3605.4	5.4	3600	DOCUMENT
	60	3673.7	0.6	3673.1	70	3603.1	3.1	3600	
	40	3639.7	0.3	3639.4	38	3601.4	1.4	3600	NO. ND/
	20	3615.5	0.1	3615.4	15	3600.4	0.4	3600	ND/74/66
									ISSUE
									1 DATE
					•				E 12/16/74

FWC FORM 172 - 4

V

- NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE -

BY				Table 4.6	Salt-side p	ressure and pr	ressure drops			CHARGE NO.
A I	Load	Entrance P. psia	△P at nozzle, shroud, psi	P entering tube bundle, psi	≥P at tube support plates, psi	∧P at tube bundle, psi	P leaving tube bundle, psia	AP at shroud, nozzle, psi	Exit P psia	8- - 2
APPROVEN	100	235	1.1	233.9	4.8	-70.8	299.9	3.8	296.1	2431
5	80	235	0.7	234.3	3.3	-76.2	307.2	2.4	304.8	DOCUMENT
	60	235	0.5	234.5	2.1	-80.4	312.9	1.4	311.5	ENT NO.
	40	235	0.3	234.7	1.1	-84	317.6	0.6	317.0). ND/74/66
	20	235	0.1	234.9	0.4	-87	321.5	0.2	321.3	4/66
						1				ISSUE 1 DATE 12/16/74

FOSTER WHEELER ENERGY CORPORATION

1	NUCLEAR DEPARTMENT			<u></u>		LIVINGS	STON, N. J.
	CHARGE NO. 8-25-2431	DOCUMENT NO.	ND/74/66	ISSUE	1	DATE	12/16/74

proper equation of state. Static instability lies in the steadystate laws, while dynamic instability is time-variant phenomena.

Zuber (Ref. 13) described three mechanisms which could induce thermohydraulic oscillations at supercritical pressure. One is caused by the variation of the heat transfer coefficient at the pseudo critical point, which is defined as the point where C_p reaches its maximum value. The second is caused by the effects of large compressibility and the resultant low velocity of sound in the critical region. The third mechanism is caused by the large variation of flow brought about by density variations of the fluid during the heating process.

Both static and dynamic stabilities for the present steam generator are discussed in detail in the following sections.

4.3.1 STATIC STABILITY

4.3.1.1 INTRODUCTION

Static instability is an amplification of steady state disturbances which encompass tube circuit configuration, heating imbalances, flow rate perturbations, etc. The static instability of primary design importance in steam generators is the excursive instability, which at supercritical pressure, is the equivalent of the "Ledinegg" excursive instability in boiling steam at subcritical pressures. A flow is subjected to a static instability when the flow conditions, changed by a small perturbation, will not return to original steady state conditions (Ref 17).

The significance of the static stability is best analyzed by plotting the pressure drop-flow characteristic as schematically shown in Fig. 4.16. A system of many parallel heated tubes is considered with attention focused on only one tube where various levels of heat input are allowed. The quantity of heat input depends qualitatively on the situation of heating medium distribution among the heated tubes. Demand curves Q1, Q2, and Q3 denote increased levels of heating medium quantity surrounding the concerned heated tube. A constant inlet-to-outlet pressure difference is imposed as indicated by the horizontal line H. Intersections with curve Q1 showing the possible operating points for a constant pressure drop supply system (or any pump characteristics) are indicated by C, D or E. Operation at point D or E will be stable whereas that at point C will be unstable. For example, if at point

MADE

A

BY

MA DF.

BEEN

HAVE

CHANGES

COLUMN INDICATE WHERE

THIS 4

日

NOTATIONS

ΒY

F

FWC FORM 172

LIVINGSTON, N. J.

	· · · · · · · · · · · · · · · · · · ·						ļ
CHARGE NO. 8-25-2431	DOCUMENT NO.	ND/74/66	ISSUE	1	DATE	12/16/74	

either D or E the flow is perturbated to increase (decrease), the pressure drop of the heated tube increases (decreases). i.e., the demand of the system is larger (less) than the external supply, and consequently the flow will return to its original value. However, if the flow is perturbated to increase (decrease) at point C, the external system supplies more (less) than that required to maintain the flow. Consequently the flow rate will increase (decrease) until the new operating point E (D) is reached. Therefore, the shape of curve Q1, especially at point C, as shown in Fig. 4.6 should be avoided to insure static stability within the possible range of load operations (Ref. 21). Figure 4.16 also explains the sensitivity of flow maldistribution in the same system. For the sake of argument, assume the operating point is at E. With an increase in heating medium flow around the local tube to Q2, the flow decreases monotonically to point A. Purturbations in any of the system variables can cause a flow excursion or rapid deceleration to a stable point B. Further increase in heating medium surrounding the tube to Q3 results in operation at point F. Therefore, the heating imbalance among circuits will induce flow maldistribution in a system of many parallel heated tubes (Ref. 18).

Another phenomenon which should be considered is the potential of flow reversal (Ref. 18). In a long, vertically-oriented unit, the large hydrostatic head of the steam column may lead to flow reversal. This can occur when the difference in hydraulic heads between two parallel downflow tubes exceed the friction pressure drop. It has been recognized that a superheater with heated downcomers undergoes a potentially critical period during start-up, because at initial low flow the friction pressure drop may be less than the hydrostatic head (Ref. 20). However, the static head can be an important factor in stabilizing upward flow.

4.3.1.2 ANALYSIS METHOD

For a constant pressure drop supply system, the preceding introduction leads to the statement that the operating point is stable if the derivative of the pressure drop - flowrate curve is positive. The mathematical form is (Ref. 22)

$$\frac{\delta \triangle P}{\delta W} > 0$$

where

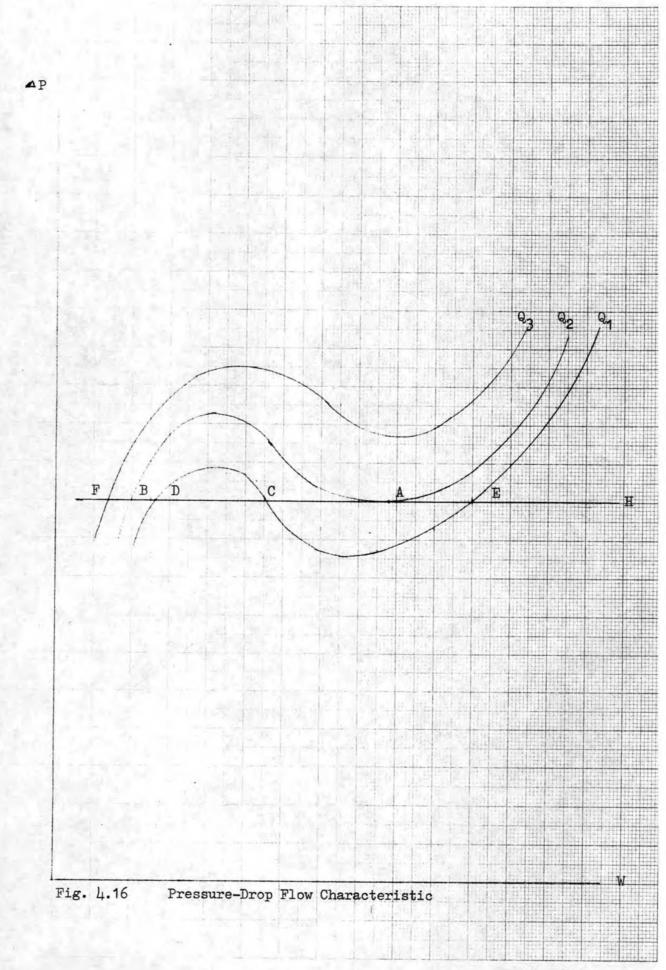
W = flow rate lb/hr.P = pressure drop psi

APPROVED

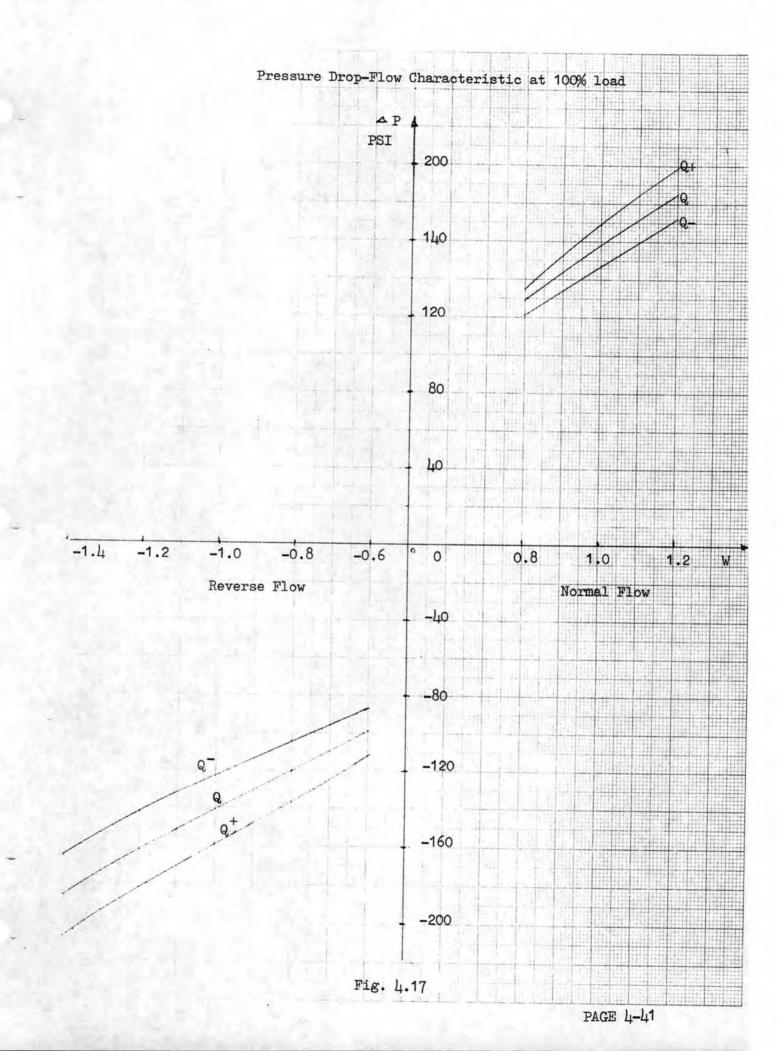
4-37

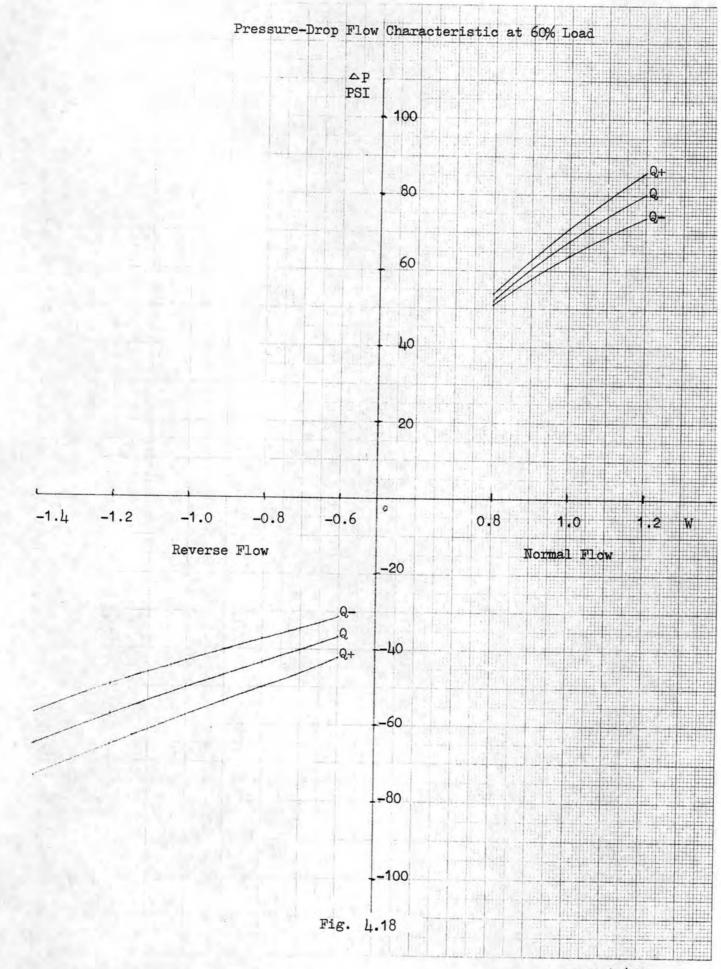
		T		T	· · · · · · · · · · · · · · · · · · ·
CHARC	E NO. 8-25-2431	DOCUMENT NO.	ND/74/66	ISSUE 1	DATE 12/16/7
	The static s generator wa load. At ea conditions w steam was pe of molten sa input to the investigated distribution thermal hydr and Water Pr used to genes each load.	tability aspects analyzed for ch load, the we ere kept const rturbed. The lt, resulting individual tu the flow sens in a system of aulic performant essure Drop Con rate pressure of The potential of	t of the re- conditions ater/steam ant and the effect of fi in the varia be, was also itivity of w f parallel h nce computer nputer Progra drop-flow ch	ave been de e steady-st m, energy a ference des at 100, 60 and molten flow rate low maldist ations of t considere vater/steam e ated tube code and cam" (Ref.	is well eveloped ate con- and the ign steam and 20% salt inlet of water/ ribution he heat d. This flow mal- s. The the "Steam 14) were ics for
	Method 1 of S	or the calcula Section 4.1.4.	ions of par was applie	t-load cond d.	litions,
4.3.1.	3 <u>RESULTS AND 1</u>	DISCUSSION			
	flow rate whi to that at no Curve Q denot local tube un and curves Q+ molten salt d deration resp culating the inlet (bottom flow directio	of static stabi to 4.20. Used of is the rational operating des the condition der the normal and Q- denoted istribution supectively. Pre- pressure diffe) to outlet (t n. Fig. 4.20 show the peak erse flow.	in these f o of flow r condition on of molte flow distr the 110% a rrounding t ssure drop rence from op) plenums is a continu	igures is t ate under p of a specif n salt surn ibution con nd 90% of t he tube und was defined normal wate regardless	the relative perturbation ied load. counding a adition, the normal ter consi- by cal- r/steam of the
4.3.1.1	CONCLUSIONS				
	LION OF SLATI	comparison of : c instability, the reference (able.	the analysi	g leada to	the een
BY	APPRO				T

 CHARGE NO. 8-25-2h31 DOCUMENT NO.ND/7h/66 ISSUE 1 DATE 12/16/7h The static stability is insured for the slopes of all the curves are positive (\$AP/\$W ≥ 0). These curves also indicate the unit is insensitive to the flow maldistribution among the parallel circuits. The onset of flow reversal is limited to very small pressure difference of 0.58 psi (Fig. 4.20). This possibility may not exist due to the fact that the external pressure supply system is expected to practically always be operating at a much higher range. 4.3.2 DYNAMIC STABILITY The dynamic stability work was performed by Gulf General Atomic in 1972 under a contract to FWC. The GGA report Ref (15) in its original form is presented in the Appendix B for further reference. An abstract of the GGA report is presented here. 4.3.2 INTRODUCTION Dynamic instability encompasses the possibility of small density perturbations in the steam generator. In this regard, density wave perturbations are analagous to the velocity perturbations in incompressible flow which can give rise to sustained flow disturbances and eventually produce a transition from laminar to turbulent flow. Since the compressible flow of the steam is already turbulent, unstable density wave perturbations will not lead to a flow transition but will lead to other undesirable effects such as mechanical vibration or thermal cycling of the tubes. Because the perturbations and possible instabilities are time variant phenomena, the instability is classified as dynamic as opposed to static instability. 		R DEPARTMENT	OSTER WHEELER ENERGY CORF		LIVING	STON, N.	
 The static stability is insured for the slopes of all the curves are positive (\$ △P/\$ W > 0). These curves also indicate the unit is insensitive to the flow maldistribution among the parallel circuits. The onset of flow reversal is limited to very small pressure difference of 0.58 psi (Fig. 4.20). This possiblity may not exist due to the fact that the external pressure supply system is expected to practically always be operating at a much higher range. 4.3.2 <u>DYNAMIC STABILITY</u> The dynamic stability work was performed by Gulf General Atomic in 1972 under a contract to FWC. The GGA report Ref (15) in its original form is presented in the Appendix B for further reference. An abstract of the GGA report is presented here. 4.3.2.1 <u>INTRODUCTION</u> Dynamic instability encompasses the possibility of small density perturbations in the steam generator. In this regard, density wave perturbations are analgous to the velocity perturbations in incompressible flow which can give rise to sustained flow disturbances and ventually produce a transition from laminar to turbulent flow. Since the compressible flow will not lead to a flow transition but will lead to other undesirable effects such as mechanical vibration or thermal cycling of the tubes. Because the perturbations and possible instability are lime variant phenomena, the instability is classified as	CHARGE N	0. 8-25-2431	DOCUMENT NO. ND/71/66	ISSUE	1 DATE	12/16/71	
4.3.2.1 <u>INTRODUCTION</u> Dynamic instability encompasses the possibility of small density perturbations in the steam producing sustained and growing disturbances within the steam generator. In this regard, density wave perturbations are analagous to the velocity perturbations in incompressible flow which can give rise to sustained flow disturbances and eventually produce a transition from laminar to turbulent flow. Since the compressible flow of the steam is already turbulent, unstable density wave perturbations will not lead to a flow transition but will lead to other undesirable effects such as mechanical vibration or thermal cycling of the tubes. Because the perturbations and possible instabilities are time variant phenomena, the instability is classified as		curves are po indicate the among the par limited to ver 4.20). This the external tically always <u>OYNAMIC STABIL</u> The dynamic sta n 1972 under a ts original for	sitive $(A > P/SW > 0)$. Tunit is insensitive to thallel circuits. The onserve small pressure differe possiblity may not exist pressure supply system is be operating at a much <u>ITY</u> ability work was performent contract to FWC. The Gorm is presented in the A	hese curve e flow main t of flow nce of 0.9 due to the expected higher rar d by Gulf GA report ppendix B	es also ldistribu reversal 58 psi (F e fact the to prac- nge. General A Ref (15) for furth	tion is ig. at tomic in	
density perturbations in the steam producing sustained and growing disturbances within the steam generator. In this regard, density wave perturbations are analagous to the velocity perturbations in incompressible flow which can give rise to sustained flow disturbances and eventually produce a transition from laminar to turbulent flow. Since the compressible flow of the steam is already turbulent, unstable density wave perturbations will not lead to a flow transition but will lead to other undesirable effects such as mechanical vibration or thermal cycling of the tubes. Because the perturbations and possible instabilities are time variant phenomena, the instability is classified as							
4.3.2.2 ANALYSIS METHOD		density pertu growing distu regard, densi velocity pert give rise to produce a tra the compressi unstable dens transition bu as mechanical Because the p time variant	urbations in the steam pro- urbances within the steam ty wave perturbations are surbations in incompressi- sustained flow disturbance main from laminar to the ble flow of the steam is sity wave perturbations with t will lead to other under vibration or thermal cyco- perturbations and possible phenomena, the instabilit	oducing su generator e analagou ble flow w ces and ev turbulent already t ill not le esirable e cling of t e instabil cy is clas	stained a c. In thi is to the which can ventually flow. Si surbulent, ad to a f effects su he tubes. ities are	nd s nce low ch	

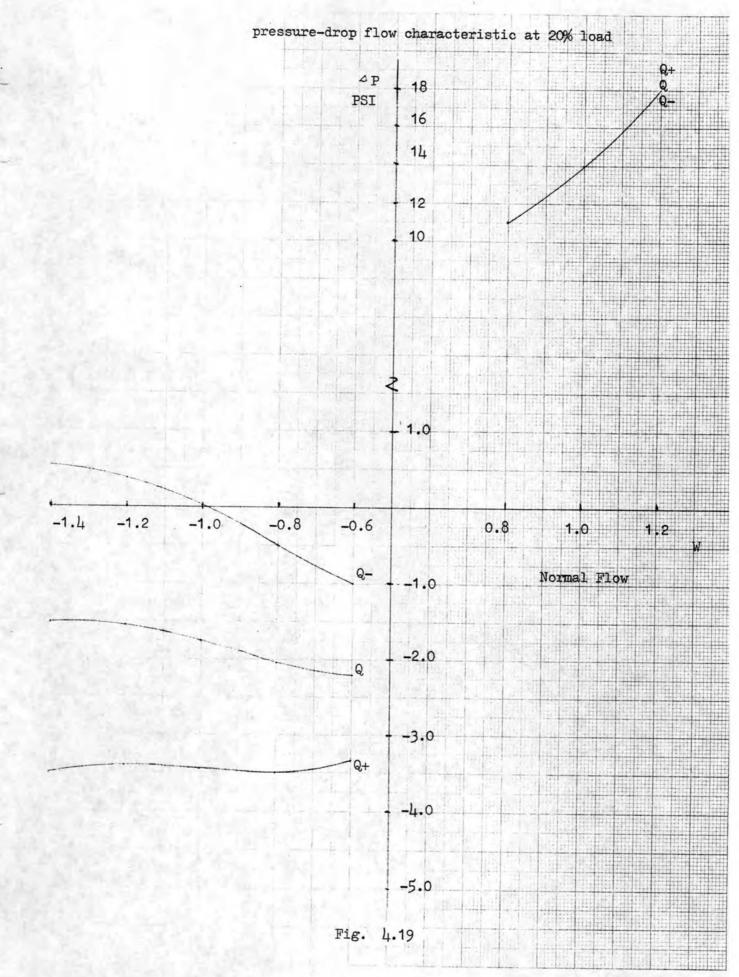

For this investigation an existing code, DYNAM, was modified to permit analysis of the dynamic stability characteristics in the supercritical region. The DYNAM code is based on a method in which the governing equations are derived from conservation principles for mass, momentum, and energy. These time-dependent equations, simplified by considering a single spatial coordinate along the tube axis, are

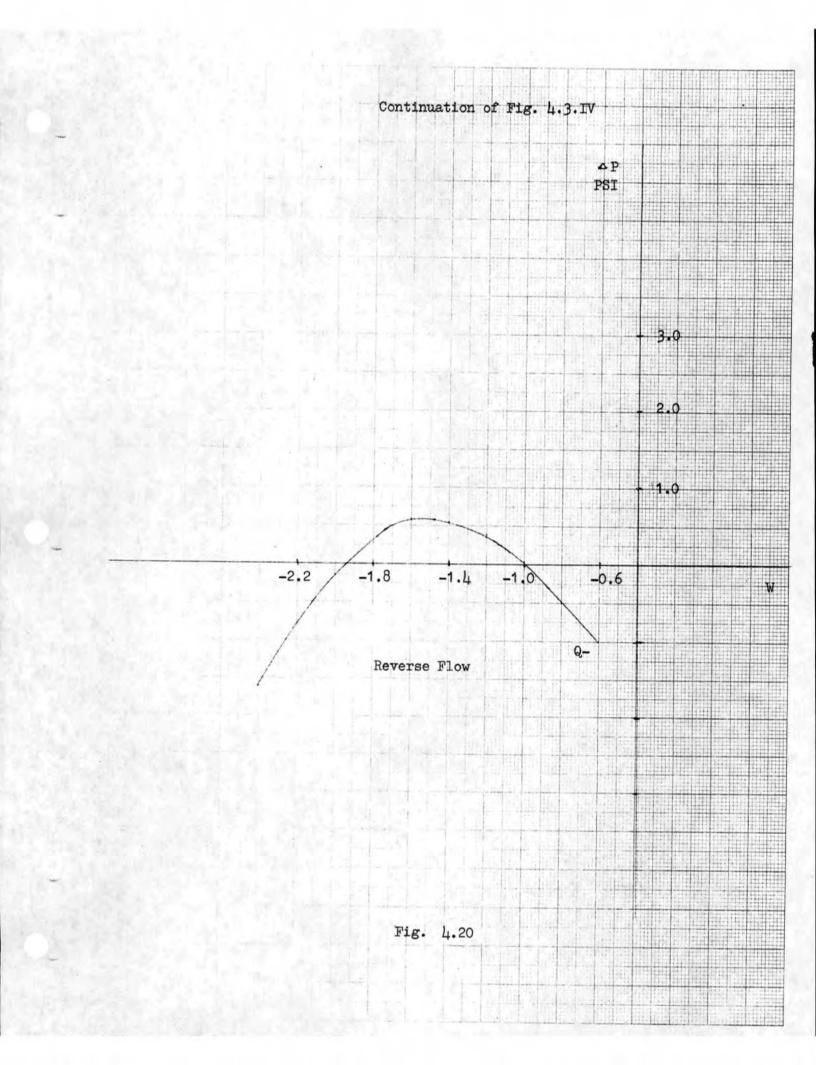
FWC FORM 172 - 4


ΒY


APPROVED

PAGE 4-39


PAGE 4-40



PAGE 4-42

1000

PAGE 4-43

NUCLEAR DEPARTMENT

LIVINGSTON, N. J.

		_				
CHARGE NO. 8-25-2/31					·····	
CHARGE NO. 8-25-2431	DOCUMENT NO.	ND/74/66	ISSUE	1	התייעת	10/16/171

linearized, Laplace-transformed, and integrated over small spatial increments. The resultant linear perturbation equations are examined within the framework of feedback control theory to determine if the design is stable or unstable. Specifically, the Nyquist stability criterion has been used to predict the stability characteristics of the steam generator. The steps in this procedure were discussed fully in GGA report (Ref. 15).

4.3.2.3 CONCLUSIONS AND RECOMMENDATIONS

The results of the GGA report indicate that the system is highly stable and will not amplify naturally occurring small scale perturbations. Analyses of the effects of inlet orificing, exit orificing, and pressure level indicate trends opposite to those observed in subcritical, two-phase systems. Stability is enhanced for this supercritical flow by increasing exit orificing, reducing system pressures toward the critical pressure, reducing flow rates and reducing heating rates. By comparison the stability of subcritical two-phase flows is enhances by increasing inlet orificing and increasing system pressures.

The results of the analysis tend to agree with the idea that stability can be qualitatively checked by considering the density ratio between the inlet and the outlet conditions as a function of the system pressure. In the supercritical region, an increasing density ratio with pressure tends toward instability and a decreasing density ratio toward stability. Below the critical point, the ratio of the density of saturated water at the inlet to the density of the saturated or superheated steam at the outlet decreases with increasing pressure toward the critical point. Above the critical point, the ratio of the density of the supercritical steam at the inlet to the density of supercritical steam at the outlet increases with increasing pressure for a constant heat input. Hence the opposite trend of the effect of pressure on stability above and below the critical point is not surprising. Similar arguments can be made for the effects of other parameters by considering their effect upon the density ratio. Quantitatively, systems with density ratios less than 50, which correspond to the pressures greater than 600 psia for water (Ref. 16), are generally stable. In the present case, the density ratio is much lower than 50 and the system is highly stable.

COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE THIS 4 FWC FORM 172 A NOTATIONS

I

BY

APPROVED

PAGE 4-45

NUCI	LEAR DEPA	FOS	TER WHEELER	ENERGY CORF	ORATION		
	LAK DEFA					LIVINGST	DN, N. J
CHARGI	E NO. 8-	25-2431 I	OCUMENT NO.	ND/74/66	ISSUE 1	DATE 1	2/16/74
	must confi the t criti tests	be pointed irm the system cal system in the su irm the sta	d out that a stem behavious f subcritica ns are quite upercritical	ative analys the system i experimental or. Test da al systems, l e limited. region be p he system as	s highly st tests are ta are avai nowever dat It is recom	able, it required t lable on a on super mended tha	0
4.4	SYSTEMS	RELATED 1	O STEAM GEN	ERATOR			
4.4.1	START-U	P SYSTEM A	ND WATER CH	EMISTRY			
4.4.1.	1 <u>START</u>	UP SYSTEM	Į				
	must genera and wi system before coolar must n the st zero l load o steam as pre capaci	therefore ator to th ith a mini- ns must be heat with t salt ter reach 1000 team generation for capacity a esently envity boiler	respective provide for e steam powe mum imposit: filled and hdrawal can mperature. F utilizing atgr, and th DO F in the requires a seand a furthe visioned by (Ref. 24).	of the fuel ly (Ref. 23) the initial er system wi ion of therm circulating be initiate The tempera g a startup ion it will 5 to 100% 10 startup boil or increase ORNL would :	• The star coupling of thout freez al shock. isothermal d by decrea ture of the boiling bef vary betwee oad. The 5 er of some to a 10% in require a 4	rt-up syste of the stea ing of sal The salt ly at 1000 sing the feedwater ore enteri n 1000 F a % initial 225,000 lb/ itial load 50,000 lb/	em am t o F ng t /hr
	includ 1000°F a desu plant The st	es an auxi supercrit perheater start-up a artup proc	liary start ical steam, and a steam nd shutdown	essary to p t standby, a -up boiler o an auxilian dryer. The system is s the salt and ections.	and shutdown apable of j y boiler fe overall My	n. This producing eedpump, SBR steam	
4.4.1.1	.1 <u>SALT :</u>	SYSTEMS					
	starte	ed to circ	lary and sec ulate helium	cell electri condary circ in the sal ry system re	ulation pum t systems	ps are	
		T					
BY		APPROVED				РАGE Ц-	46

EWC FORM 172 - 4

LIVINGSTON, N. J.

CHARGE NO.	8-25-2431	DOCUMENT NO.	ND/74/66	ISSUE 1	DATE	10/16/21
					Thurp	12/10/14

is filled with coolant salt from the heated drain tank, and salt circulation is started. When the primary system reaches 1000° F, it is filled from the fuel salt drain tank, and salt circulation is commenced. Both salt systems will continue to be circulated isothermally at 1000 F until power generation is started. The primary and secondary-salt flow rates are at the levels required for the zero-power level. The reactor is then brought critical at essentially zero power and salt circulating in both systems, including the steam generators at about 1000 F.

4.4.1.1.2 STEAM POWER SYSTEM

NUCLEAR DEPARTMENT

Concurrent with the salt systems being electrically heated, the steam system is also being heated. Feedwater is circulated through the mixer, pressure booster pump, attemperator, boiler extraction valve (BE), desuperheater, condenser, deminearalizer, low-pressure feedwater heater, and deaerator. A fraction of the feedwater is circulated through the auxiliary boiler, while the remainder is circulated through the highpressure feedwater heaters before returning to the mixer to complete the cold clean up circuit. Circulation of the feedwater continues in this manner until the chemical requirements of the feedwater for cold cleanup have been met. Cold cleanup of the steam system is accomplished with all four of the steam generators by-passed. When cold clean up is completed, the feedwater flow through the heater string is diverted from the mixer and recirculated back to the hotwell or through the shell side of one of the high pressure heaters before passing to the condenser. Feedwater flow through the auxiliary boiler to the mixer is adjusted to the startup value.

The auxiliary boiler is then started. As the auxiliary boiler load is raised, the steam produced is used to supply the main turbine seals and deaerator. The steam downstream of the boiler extraction valve (BE) passes through the desuperheater. This steam is used for heating the feedwater in the highpressure feedwater heaters, for warming and rolling the boiler feed pump drive turbine, for warming the steam piping, and for rolling the main turbine.

The steam/feedwater temperature is held below 500° F until feedwater requirements for hot cleanup have been met. When the auxiliary boiler reaches full pressure and temperature, the steam at about 3600 psia and 1000° F at the discharge of the mixer can be admitted to the steam generator. The steam

EWC FORM 172 - 4 NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES

ΒY

MADE

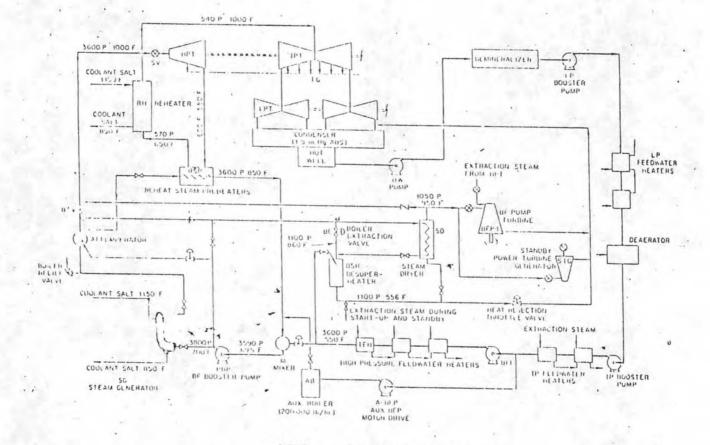
BEEN

HAVE

LIVIN	GSTON.	N.	J.
-------	--------	----	----

 generator bypass flow is then decreased until the full auxiliary boiler flow passes through the steam generator. When the steam system is ready to take on load, the control of reactor is adjusted as required to maintain the desire salt temperatures as the feedwater flow is increased. While the steam/water flow is being established in the steam generators, the temperature of the feedwater recirculaing to the condenser will be raised to 550° p at the discharge of the last high-pressure heater. The thermal load on the steam generator is then increased by lowering the feedwater inlet temperature from 1000° F to 700° P by mixing this feedwater flow is reached, the boiler feed booster pumps are started and the feedwater pressure to the steam generator is raised to about 3800 psia, which permits the use of the exit steam from the steam generator passing through reheat the and flow passes and the reactor power is adjusted accordingly. At this point in the startup procedure part of the steam generator untue (SE) to drive the main turbines which have previously been warmed, can now be gradually brought up to speed and temperature, first using steam will give a turbine valve opening equivalent to that at about 20% load with 3600 psia through the to that at about 20% load with 3600 psia this point in the startup procedure part of the steam generator nade the reactor power is adjusted accordingly. At this point in the startup procedure part of the steam generator value (SE) to drive the main turbines which have previously been warmed, can now be gradually brought up to speed and temperature, first using steam will give a turbine valve opening equivalent to that at about 20% load with 3600 psia throuthin gonditions, so that the throttle pressure rise may occur without having to move the turbine control valves. As the steam load is elowly increased, the reactor power is matched to the load, and salt temperatures are kept at the desired level. The load is held essemilally constant until the system co
 of reactor is adjusted as required to maintain the desire salt temperatures as the feedwater flow is increased. While the steam/water flow is being established in the steam generators, the temperature of the feedwater recirculaing to the condenser will be raised to 550° F at the discharge of the last high-pressure heater. The thermal load on the steam generator is then increased by lowering the feedwater inlet temperature from 1000 F to 700°F by mixing this feedwater from last heater and the 1000 F steam from the auxiliar boiler in the mixer. When the 700°F feedwater temperature is reached, the boiler feed booster pumps are started and the feedwater pressure to the steam generator is raised to about 3800 psia, which permits the use of the exit steam from the steam generator passing through reheat steam preheaters to heat the feedwater in the mixer instead of the auxiliary boiler. The auxiliary boiler system is then taken off line making the system self supporting. The load is gradually increased and the reactor power is adjusted accordingly. At this point in the startup procedure part of the steam generator valve (BE) to drive the main boiler feed pumps, etc. If the load is about 5%, the main turbines which have previously been warmed, can now be gradually brought up to speed and temperature, first using steam from the hot standby equipment (steam dryer). This steam from the hot standby equipment (steam dryer). This steam load is slowly increased, the reactor power is matched to the load, and salt temperatures are kept at the desired level. The load is held essentially constant until the system comes to equilibrium, at which point the reactor outlet temperature to the desired level. The load is held essentially constant until the system comes to equilibrium, at which point the reactor outlet temperature set point is adjusted to meet the requirements for subsequent load-following control.
<pre>matched to the load, and salt temperatures are kept at the desired level. The load is held essentially constant until the system comes to equilibrium, at which point the reactor outlet temperature set point is adjusted to meet the require- ments for subsequent load-following control. As the load increases, the main turbines will use steam taken directly from the steam generator. The boiler-turbine</pre>
taken directly from the steam generator. The boiler-turbine

FWC FORM 172 - 4


CHARGE NO. 8-25-2431 DOCUMENT NO. ND/74/66 ISSUE 1 PATE 12/16/ while the feedwater flow is increased until, with a wide open boller-turbine valve, the throttle pressure is 3600 psia and the load is about 20%. At this power level the normal control system regulates the reactor outlet temperature as a function of load, and the steam temperature controller holds the steam temperature at 1000°F. h.4.1.2 WATER CHENISTRY The steam power system of the NSBR plant will not require special water treatment. Aside from the steam generator, material of construction shall not differ from present-day focal fueled supercritial cycles (Ref. 20) of startup boller. The recommended limits for feedwater conditions at the econo- mizer inlet are given in the following table for normal opera- ting conditions and during start-up (Ref. 25). Normal Operation Start-w Total dissolved solids - ppb 50 - Total copper - ppb 50 - PH 9.3 - 9.7 9.3 - 9.7 9.3 - 9.7 PH 9.3 - 9.7 9.3 - 9.7 1.0 During the start-up period, there will be variations in the concentrations of the various feedwater contaninants due to changes in temperature and flow conditions and placing into service of cycle components. The feedwater contactivity must be below 1.0 mmho before lighting the burners of the startup boller. Also after firing has started, the fluid temperature at the roof outlet of ghe startup boller must not be permitted to rise above 500 F uutil the iron cont	OTTADOD NO	0	T		T		
bolision bolision 2000 pile value, the throttle pressure is 3600 pile and the load is about 20%. At this power level the normal control system regulates the reactor outlet temperature as a function of load, and the steam temperature controller holds the steam temperature at 1000°F. 4.h.1.2 WATER CHEMISTRY The steam power system of the MSER plant will not require special water treatment. Aside from the steam generator, material of construction shall not differ from present-day fossil fueled supercritial cycles (Ref. 20) of startup boiler. The recommended limits for feedwater conditions at the economizer inlet are given in the following table for normal operating conditions and during start-up (Ref. 25). Normal Operation Start-up Total dissolved solids - ppb 50 Total copper - ppb 5 Total silica - ppb 5 pH 9.3 - 9.7 9.3 - 9. Conductivity - mmhos 0.5 1.0 During the start-up period, there will be variations in the startup boiler. Also after firing has started, the fluid temperature at the roof outlet of the startup boiler must not be permitted to rise above 500° function the iron content of the startup boiler at the roof outlet of the startup boiler must not be permitted to rise above 500° function the iron content of the feedwater entering the economizer is less than 50 ppb. The limits given in the above table for the startup conditions are for continuous operation. Transient value bideor	CHARGE NO	•_8 <u>-25-2431</u>	DOCUMENT NO.	ND/74/66	ISSUE 1	DATE 12/	16/
The steam power system of the MSER plant will not require special water treatment. Aside from the steam generator, material of construction shall not differ from present-day fossil fueled supercritial cycles (Ref. 20) of startup boiler.The recommended limits for feedwater conditions at the econo- mizer inlet are given in the following table for normal opera- ting conditions and during start-up (Ref. 25).Normal OperationStart-upTotal dissolved solids - ppb50Total dissolved solids - ppb750Total iron- ppb510Dissolved oxygen- ppb510During the start-up period, there will be variations in the concentrations of the various feedwater contaminants due to changes in temperature and flow conditions and placing into service of cycle components. The feedwater contaminants of the startup boiler. Also after firing has started, the fluid temperature at the roof outlet of the startup boiler must not be permitted to rise above 500 F until the iron content of the feedwater entering the economizer is less than 50 ppb. The limits given in the above table for the startup where bicker tions are for continuous operation. Transient values bicker to condi- tions are for continuous operation. Transient values bicker		the load is system regu of load, an	about 20%. At lates the react d the steam tem	throttle pr this power or outlet t	ressure is 36 r level the n	00 psia an ormal cont	d rol
Special water treatment. Aside from the steam generator, material of construction shall not differ from present-day fossil fueled supercritial cycles (Ref. 20) of startup boiler.The recommended limits for feedwater conditions at the econo- mizer inlet are given in the following table for normal opera- ting conditions and during start-up (Ref. 25).Normal OperationStart-upTotal dissolved solids - ppb50Total iron- ppb50Total copper- ppb52030Dissolved oxygen- ppb2030Dissolved oxygen- ppb2030Dissolved oxygen- ppb2030Dissolved oxygen- ppb2030Dissolved oxygen- ppb510Dissolved oxygen- ppb510Dissolved oxygen- ppb510During the start-up period, there will be variations in the concentrations of the various feedwater contaminants due to 	4.4.1.2	WATER CHEMI	STRY				
Total dissolved solids - ppb50Total iron- ppb7Total copper- ppb5Total copper- ppbTotal silica- ppb2030Dissolved oxygen- ppb510pH9.3 - 9.79.3 - 9.79.3 - 9.7Conductivity- mmhos0.51.0During the start-up period, there will be variations in the concentrations of the various feedwater contaminants due to changes in temperature and flow conditions and placing into service of cycle components. The feedwater conductivity must be below 1.0 mmho before lighting the burners of the startup boiler. Also after firing has started, the fluid temperature at the roof outlet of the startup boiler must not be permitted to rise above 500 F until the iron content of the feedwater entering the economizer is less than 50 ppb. The limits given in the above table for the startup conditions are for continuous operation. Transient values bighter		special wat material of fossil fuel The recommendation mizer inlet	er treatment. construction sl ed supercritial nded limits for are given in th	Aside from nall not di cycles (Re feedwater ne followin	the steam gen ffer from pro f. 20) of sta conditions at g table for r	herator, esent-day artup boile	
Total iron- ppb750Total copper- ppb520Total silica- ppb2030Dissolved oxygen- ppb510pH $9.3 - 9.7$ $9.3 - 9.7$ Conductivity- mmhos 0.5 1.0During the start-up period, there will be variations in the concentrations of the various feedwater contaminants due to changes in temperature and flow conditions and placing into service of cycle components. The feedwater conductivity must be below 1.0 mmho before lighting the burners of the startup boiler. Also after firing has started, the fluid temperature at the roof outlet of the startup boiler must not be permitted to rise above 500 F until the iron content of the feedwater entering the economizer is less than 50 ppb. The limits given in the above table for the startup conditions are for continuous operation. Transient values bicker				Normal	Operation	Start	t-ur
FP150Total copper- ppb520Total silica- ppb2030Dissolved oxygen- ppb510pH9.3 - 9.79.3 - 9.7Conductivity- mmhos0.51.0During the start-up period, there will be variations in the concentrations of the various feedwater contaminants due to changes in temperature and flow conditions and placing into service of cycle components. The feedwater conductivity must be below 1.0 mmho before lighting the burners of the startup boiler. Also after firing has started, the fluid temperature at the roof outlet of the startup boiler must not be permitted to rise above 500 F until the iron content of the feedwater entering the economizer is less than 50 ppb. The limits given in the above table for the startup conditions are for continuous operation. Transient values bicker	Total dis	solved solid	ls — ppb		50	-	
Total silica- ppb2030Dissolved oxygen- ppb510pH9.3 - 9.79.3 - 9.Conductivity- mmhos0.51.0During the start-up period, there will be variations in the concentrations of the various feedwater contaminants due to changes in temperature and flow conditions and placing into service of cycle components. The feedwater conductivity must be below 1.0 mmho before lighting the burners of the startup boiler. Also after firing has started, the fluid temperature at the roof outlet of the startup boiler must not be permitted to rise above 500 F until the iron content of the feedwater entering the economizer is less than 50 ppb. The limits given in the above table for the startup condi- tions are for continuous operation. Transient values bichor	Total iro	n	- ppb		7	Ę	60
ppc2030Dissolved oxygen- ppb510pH9.3 - 9.79.3 - 9.Conductivity- mmhos0.51.0During the start-up period, there will be variations in the concentrations of the various feedwater contaminants due to changes in temperature and flow conditions and placing into service of cycle components. The feedwater conductivity must be below 1.0 mmho before lighting the burners of the startup boiler. Also after firing has started, the fluid temperature at the roof outlet of the startup boiler must not be permitted to rise above 500 F until the iron content of the feedwater entering the economizer is less than 50 ppb. The limits given in the above table for the startup condi- tions are for continuous operation. Transient values higher	Total cop	per	- ppb		5	2	20
pH 9.3-9.7 9.3-9. Conductivity - mmhos 0.5 1.0 During the start-up period, there will be variations in the concentrations of the various feedwater contaminants due to changes in temperature and flow conditions and placing into service of cycle components. The feedwater conductivity must be below 1.0 mmho before lighting the burners of the startup boiler. Also after firing has started, the fluid temperature at the roof outlet of the startup boiler must not be permitted to rise above 500 F until the iron content of the feedwater entering the economizer is less than 50 ppb. The limits given in the above table for the startup condi- tions are for continuous operation. Transient values bicker	Total sil	ica	- ppb		20	3	0
Conductivity - mmhos 0.5 1.0 During the start-up period, there will be variations in the concentrations of the various feedwater contaminants due to changes in temperature and flow conditions and placing into service of cycle components. The feedwater conductivity must be below 1.0 mmho before lighting the burners of the startup boiler. Also after firing has started, the fluid temperature at the roof outlet of the startup boiler must not be permitted to rise above 500 F until the iron content of the feedwater entering the economizer is less than 50 ppb. The limits given in the above table for the startup condi- tions are for continuous operation. Transient values higher	Dissolved	oxygen	- ppb		5	1	0
During the start-up period, there will be variations in the concentrations of the various feedwater contaminants due to changes in temperature and flow conditions and placing into service of cycle components. The feedwater conductivity must be below 1.0 mmho before lighting the burners of the startup boiler. Also after firing has started, the fluid temperature at the roof outlet of the startup boiler must not be permitted to rise above 500 F until the iron content of the feedwater entering the economizer is less than 50 ppb. The limits given in the above table for the startup condi- tions are for continuous operation. Transient values higher	рH			9.3	- 9.7	9.3 -	9.
concentrations of the various feedwater contaminants due to changes in temperature and flow conditions and placing into service of cycle components. The feedwater conductivity must be below 1.0 mmho before lighting the burners of the startup boiler. Also after firing has started, the fluid temperature at the roof outlet of the startup boiler must not be permitted to rise above 500 F until the iron content of the feedwater entering the economizer is less than 50 ppb. The limits given in the above table for the startup condi- tions are for continuous operation. Transient values higher	Conductiv	ity	- mmhos	C	.5	1.	0
	2 2 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	concentration changes in t service of constant startup boil temperature not be permine of the feedwe The limits goions are for	ns of the vario emperature and ycle components w 1.0 mmho befor er. Also after at the roof out tted to rise abo ater entering the iven in the abo r continuous ope	us feedwate flow condit . The feed re lighting firing has let of the ove 500 F u he economiz ove table f eration. T	r contaminan ions and play water conduct the burners started, the startup boild ntil the iron er is less th or the startup ransient value	ts due to cing into tivity of the e fluid er must n content nan 50 ppb up condi-	•
	ζ	APPRO					

NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE -

FWC FORM 172 - 4

CHARGE	NO. 8-25-2431	DOCUMENT NO. N	m/7h/66	ISSUE 1	DATE 12/16/
			<u>D/ 14/00</u>		1
		and if they do e may have to be obtained.			
		two basic approa to the levels be			
	system and ma cified ging w condens ppm is pH is o	ze the corrosion : This is accom- intaining the pH level. Oxygen ith hydrazine ar ser. A nominal maintained at controlled by ac s morpholine or	plished by I of the con is removed, nd mechanica hydrazine r the economi dding ammoni	removal of densate at by chemical l deaeration esidual of zer inlet. a or a vola	oxygen the spe- scaven- n in the 0.020 Feedwater
	system: conden: densate matter	corrosion produ : Corrosion pro ser leakage are e demineralizer. are removed as t filter as well	oducts, sili removed by Both ioni the unit ac	con and sal the full fl zed and sus ts as a hig	ts from ow con- pended
4.4.2	PRESSURE RELI	EF SYSTEM			
	the ASME Boil	erator was desig er and Pressure lass A vessels	Vessel Code	Section II	I, Nuclear
			shell s	ide	tube side
·		° F	1150)	1120
Desi	gn temperature	, -			
	gn temperature gn pressure, p		300)	3800
Desi	-	sia	300 9500		3800 11600
Desi	gn pressure, p wable stress, There is no v salt and stea corrosive to (Ref. 1). The pressure	sia	9500 ic reaction mixture of steam gener as designed	between the salt and wa rator (Haste to protect	11600 coolant ter is lloy N) the steam
Desi	gn pressure, p wable stress, There is no v salt and stea corrosive to (Ref. 1). The pressure generator and	sia psi iolent exotherm m, however, the the material of relief system wa	9500 ic reaction mixture of steam gener as designed	between the salt and wa rator (Haste to protect	11600 coolant ter is lloy N) the steam

EWC FORM 172 - 4

Ref.(23)

Fig. 4.21

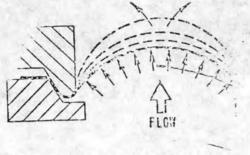
CHARGE NO. 8-25-2431	DOCUMENT NO. ND/74/66	ISSUE 1	DATE	12/16/74

highly corrosive mixture, should steam tube suddenly rupture. It was assumed that the coolant salt system could withstand a continuous pressure of 220 psi without damage (Ref. 3).

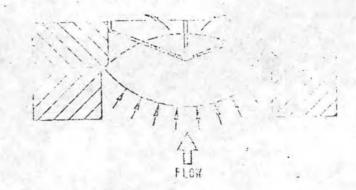
The present ASME Code Section III, which governs because of emergency cooling consideration, accepts only relief valves as primary relief devices. However, the corrosive property of the mixuure of salt and steam, requirement of rapid pressure relief, are against using relief valves as an appropriate primary relief device. A new subsection NH under Section III is in preparation for inclusion in the new edition of the Code which is expected to recognize rupture disks as primary relief devices for certain types of overpressure conditions (Ref. 27). The Molton-Salt steam generator would be listed as an over pressure condition to which the rupture disk or equivalent device is applicable.

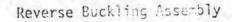
There are three basic types of rupture disks; prebulged disk, reverse buckling assembly and the snap-over assembly. addition, the rupture disk for the British PFR is a hinged plate supporting a nickel membrane, which serves as the sodium seal; the plate itself is held by a shear pin, designed to fail approximately twice the normal operating pressure (Ref. 28). However, it was learned that response time observed in testing the PFT design was about 10.25 milliseconds slower than with the prebulged disk. All of these four approaches are shown in Fig. 4.22 (Ref. 17). The evaluation and comparison of these four types were discussed in Ref. 27 and Ref. 29. The reverse buckling assembly was recommended and therefore used for this design. The reverse buckling disk has several advantages. It is under compression rather than tension, and the controling factor, elastic modulus, is insensitive to environmental conditions. The reversing pressure can be predicted accurately, and collapse occurs within $\pm 2\%$ of the normal pressure rating. It has 10 - 15 times the life expectancy of, and is thicker than, the prebulged type. It can be used at system operating pressure up to 90% of the rated burst pressure. It needs no vacuum support and withstands repeated pressurevacuum cycles.

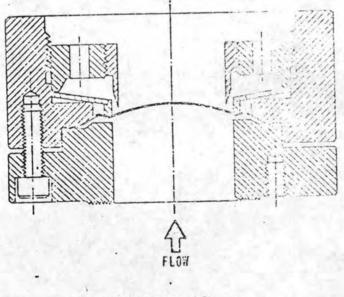
The reverse buckling disk, for a given geometry buckling, is controlled by elastic modulus of the material. Within the operating range $(1150 \text{ F} - 850^{\circ}\text{F})$ the elastic modulus of Hastelloy N varies only about 6%. Therefore the Hastelloy N, which is also, chemically, very compatible with coolant salt, could be suggested be the material for the reverse bulking disk.

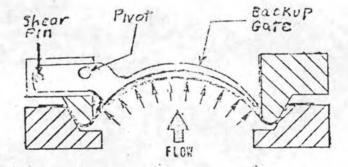

FWC FORM 172 - 4 NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE

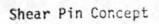
ΒY

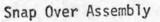

APPROVED


	NO. 8-25-243	1 DOCTIME	NT NO. ND/74/	'66 T	ISSUE		-	4-1
			<u>11 10. 10/14/</u>	00	TOODE	1	DATE	12/16
	Ine steam ge	nerator co	r gases to pr ell of _o the gen t 1000 F to p	norati	na atat	ion 1		
	Reversed buck sures up to pressure was disk (thickn area to dump system from	determine ess = 0.08 the mixtu continuous	s can be used e rated burst ed to be 350 p in) would pr ure of reactions pressure ris at each of th	press psia. rovide on proc	A 20 i adequa lucts,	he ra n. di te re thus	ated b amete: lief preven	urst r nting
	the rupture of be of the sar would have or freeboard to tanks are ess guide vanes. ience centrif	e closed. disk to a ne size of he dump ta hold the sentially These gu fugal forc	re, the block The mixture dump tank. T rupture disk nk of capacit mixture and v conventional ide vanes ca es that separ	would The con . Eac y of 2 rent ou tanks use th rate mo	be dumy mecting th steam 500 ft 500 ft the s with in me mixtu	y pip gen wit steam itern	hrough es wou eraton h ampl . The al spi o expe	ld c le c ral-
	or solid read The gaseous p separator is from the gase are discharge	production usually in cous discharge	ucts from the s are dischar nstalled to r arge. and ens	gaseo ged to	us read the se	tion para	produ tor.	acts. The
	The gaseous I separator is from the gase	production usually in cous discharge	ucts from the s are dischar nstalled to r arge. and ens	gaseo ged to	us read the se	tion para	produ tor.	acts. The
	The gaseous I separator is from the gase	production usually in cous discharge	ucts from the s are dischar nstalled to r arge. and ens	gaseo ged to	us read the se	tion para	produ tor.	acts. The
•	The gaseous I separator is from the gase	production usually in cous discharge	ucts from the s are dischar nstalled to r arge. and ens	gaseo ged to	us read the se	tion para	produ tor.	acts. The
	The gaseous I separator is from the gase	production usually in cous discharge	ucts from the s are dischar nstalled to r arge. and ens	gaseo ged to	us read the se	tion para	produ tor.	acts. The
	The gaseous I separator is from the gase	production usually in cous discharge	ucts from the s are dischar nstalled to r arge. and ens	gaseo ged to	us read the se	tion para	produ tor.	acts. The
	The gaseous I separator is from the gase	production usually in cous discharge	ucts from the s are dischar nstalled to r arge. and ens	gaseo ged to	us read the se	tion para	produ tor.	acts. The
· ·	The gaseous I separator is from the gase	production usually in cous discharge	ucts from the s are dischar nstalled to r arge. and ens	gaseo ged to	us read the se	tion para	produ tor.	acts. The
	The gaseous I separator is from the gase	production usually in cous discharge	ucts from the s are dischar nstalled to r arge. and ens	gaseo ged to	us read the se	tion para	produ tor.	acts. The
· · ·	The gaseous I separator is from the gase	production usually in cous discharge	ucts from the s are dischar nstalled to r arge. and ens	gaseo ged to	us read the se	tion para	produ tor.	acts. The
· · ·	The gaseous I separator is from the gase	production usually in cous discharge	ucts from the s are dischar nstalled to r arge. and ens	gaseo ged to	us read the se	tion para	produ tor.	acts. The
· · ·	The gaseous I separator is from the gase	production usually in cous discharge	ucts from the s are dischar nstalled to r arge. and ens	gaseo ged to	us read the se	tion para	produ tor.	acts. The
	The gaseous I separator is from the gase	production usually in cous discharge	ucts from the s are dischar nstalled to r arge. and ens	gaseo ged to	us read the se	tion para	produ tor.	acts. The
	The gaseous I separator is from the gase	production usually in cous discharge	ucts from the s are dischar nstalled to r arge. and ens	gaseo ged to	us read the se	tion para	produ tor.	acts. The
	The gaseous I separator is from the gase	production usually in cous discharge	ucts from the s are dischar nstalled to r arge. and ens	gaseo ged to	us read the se	tion para	produ tor.	acts. The
	The gaseous I separator is from the gase	production usually in cous discharge	ucts from the s are dischar nstalled to r arge. and ens	gaseo ged to	us read the se	tion para	produ tor.	acts. The
	The gaseous I separator is from the gase	production usually in cous discharge	ucts from the s are dischar nstalled to r arge. and ens	gaseo ged to	us read the se	tion para	produ tor.	acts. The


FWC FORM 172 - 4




Prebulged Disk Assembly



 PREFERENCES The Development Status of Molten-Salt Breeder Reactors, ORNL - 4812, August 1972, Oak Ridge National Laboratory. Design Studies of Steam Generator for Molten Salt Reactors Monthly Progress Report #10, August 1 - August 31, Poster Wheeler Corporation. Proposed Scope of Work and Requirements for Design Studies of Steam Generators for Molten Salt Reactors, Enclosure 2, Union Carbide Corporation, March 1971. Heat Transfer to Supercritical Water in Smooth - Bore Tubes, H. S. Swenson, J. R. Carver, C. R. Kakarala, Journal of Heat Transfer, November 1965. GGA - HTCR Steam Generator Evaluation of Surface Mismatch Using Probability Methods, L. Rianhard, R. M. Costello, P. J. Prabhn, W. T. Klamm, Foster Wheeler Corporation, July 1970. Molten-Salt Reactor Program, Semiannual Progress Report, Period ending August 31, 1972, ORNL - 4832, March 1973, Oak Ridge National Laboratory. Private communication from W. Apblett to J. Polcer on thermal conductivity data of Hastelloy N (6/20/74). Design study of steam generators for Molten Salt Reactors Monthly progress Report #10, August 1 - August 31, 1974, Foster Wheeler Corporation. Design study of steam generators for Molten Salt Reactors Monthly Progress Report #10, August 1 - August 31, 1974, Foster Wheeler Corporation. A general summary of the ORNL 1000 MW(e) Molten-Salt Breeder Reactor Reference Design, Enclosure 1, Union Carbide Corporation, November, 1970. Fluid Dynamics, J. V. Daily, D.R.F. Harleman, Addison- Wesley Publishing Company, Inc., 1966. Engineering Department Manual, Volume I, Basic Design, Poster Wheeler Corporation. An Analysis of Thermally Induced Flow Oscillations in the Near-critical and Super-critical Thermodynamic Region, Novak Zuber, General Electric Company, May 25, 1966. 	CHARGE	NO.	8-25-2431	DOCUMENT NO. ND/74/66	ISSUE	1 DATE	12/16			
 ORNL - 4812, August 1972, Oak Ridge National Laboratory. 2. Design Studies of Steam Generator for Molten Salt Reactors Monthly Progress Report #10, August 1 - August 31, Foster Wheeler Corporation. 3. Proposed Scope of Work and Requirements for Design Studies of Steam Generators for Molten Salt Reactors, Enclosure 2, Union Carbide Corporation, March 1971. 4. Heat Transfer to Supercritical Water in Smooth - Bore Tubes, H. S. Swenson, J. R. Carver, C. R. Kakarala, Journal of Heat Transfer, November 1965. 5. GGA - HTGR Steam Generator Evaluation of Surface Mismatch Using Probability Methods, L. Rianhard, R. M. Costello, P. J. Prabhu, W. T. Klamm, Foster Wheeler Corporation, July 1970. 6. Molten-Salt Reactor Program, Semiannual Progress Report, Period ending August 31, 1972, ORNL - 4832, March 1973, Oak Ridge National Laboratory. 7. Private communication from W. Apblett to J. Poloer on thermal conductivity data of Hastelloy N (6/20/74). 8. Design study of steam generators for Molten Salt Reactors Monthly progress Report #0, May 20 - June 30, 1974, Foster Wheeler Corporation. 9. Design study of steam generators for Molten Salt Reactors Monthly Progress Report #10, August 1 - August 31, 1974, Foster Wheeler Corporation. 10. A general summary of the ORNL 1000 MW(e) Molten-Salt Breeder Reactor Reference Design, Enclosure 1, Union Carbide Corporation, November, 1970. 11. Fluid Dynamics, J. W. Daily, D.R.F. Harleman, Addison- Wesley Publishing Company, Inc., 1966. 12. Engineering Department Manual, Volume I, Basic Design, Foster Wheeler Corporation. 13. An Analysis of Thermally Induced Flow Oscillations in the Near-critical and Super-critical Thermodynamic Region, 	4.5	RE	FERENCES							
 Monthly Progress Report #10, August 1 - August 31, Foster Wheeler Corporation. 3. Proposed Scope of Work and Requirements for Design Studies of Steam Generators for Molten Salt Reactors, Enclosure 2, Union Carbide Corporation, March 1971. 4. Heat Transfer to Supercritical Water in Smooth - Bore Tubes, H. S. Swenson, J. R. Carver, C. R. Kakarala, Journal of Heat Transfer, November 1965. 5. GGA - HTCR Steam Generator Evaluation of Surface Mismatch Using Probability Methods, L. Rianhard, R. M. Costello, P. J. Prabhu, W. T. Klamm, Foster Wheeler Corporation, July 1970. 6. Molten-Salt Reactor Program, Semiannual Progress Report, Period ending August 31, 1972, ORNL - 4832, March 1973, Oak Ridge National Laboratory. 7. Private communication from W. Applett to J. Polcer on thermal conductivity data of Hastelloy N (6/20/74). 8. Design study of steam generators for Molten Salt Reactors Monthly progress Report #6, May 20 - June 30, 1974, Foster Wheeler Corporation. 9. Design study of steam generators for Molten Salt Reactors Monthly Progress Report #10, August 1 - August 31, .1974, Foster Wheeler Corporation. 10. A general summary of the ORNL 1000 Mw(e) Molten-Salt Breeder Reactor Reference Design, Enclosure 1, Union Carbide Corporation, November, 1970. 11. Fluid Dynamics, J. W. Daily, D.R.F. Harleman, Addison- Wesley Publishing Company, Inc., 1966. 12. Engineering Department Manual, Volume I, Basic Design, Foster Wheeler Corporation. 13. An Analysis of Thermally Induced Flow Oscillations in the Near-critical and Super-critical Thermodynamic Region, 		1.	The Develo ORNL - 481	opment Status of Molten-Sa 2, August 1972, Oak Ridg	alt Breede e National	er Reacto Laborat	ors, cory.			
 of Steam Generators for Molten Salt Reactors, Enclosure 2, Union Carbide Corporation, March 1971. Heat Transfer to Supercritical Water in Smooth - Bore Tubes, H. S. Swenson, J. R. Carver, C. R. Kakarala, Journal of Heat Transfer, November 1965. GGA - HTGR Steam Generator Evaluation of Surface Mismatch Using Probability Methods, L. Rianhard, R. M. Costello, P. J. Prabhu, W. T. Klamm, Foster Wheeler Corporation, July 1970. Molten-Salt Reactor Program, Semiannual Progress Report, Period ending August 31, 1972, ORNL - 4832, March 1973, Oak Ridge National Laboratory. Private communication from W. Apblett to J. Polcer on thermal conductivity data of Hastelloy N (6/20/74). Design study of steam generators for Molten Salt Reactors Monthly progress Report #6, May 20 - June 30, 1974, Foster Wheeler Corporation. Design study of steam generators for Molten Salt Reactors Monthly Progress Report #10, August 1 - August 31,.1974, Foster Wheeler Corporation. A general summary of the ORNL 1000 MW(e) Molten-Salt Breeder Reactor Reference Design, Enclosure 1, Union Carbide Corporation, November, 1970. Fluid Dynamics, J. W. Daily, D.R.F. Harleman, Addison- Wesley Publishing Company, Inc., 1966. Engineering Department Manual, Volume I, Basic Design, Foster Wheeler Corporation. An Analysis of Thermally Induced Flow Oscillations in the Near-critical and Super-critical Thermodynamic Region, 		2.	Monthly Pr	cogress Report #10, Augus						
 Tubes, H. S. Swenson, J. R. Carver, C. R. Kakarala, <u>Journal of Heat Transfer</u>, November 1965. 5. GGA - HTGR Steam Generator Evaluation of Surface Mismatch Using Probability Methods, L. Rianhard, R. M. Costello, P. J. Prabhu, W. T. Klamm, Foster Wheeler Corporation, July 1970. 6. Molten-Salt Reactor Program, Semiannual Progress Report, Period ending August 31, 1972, ORNL - 4832, March 1973, Oak Ridge National Laboratory. 7. Private communication from W. Apblett to J. Polcer on thermal conductivity data of Hastelloy N (6/20/74). 8. Design study of steam generators for Molten Salt Reactors Monthly progress Report #8, May 20 - June 30, 1974, Foster Wheeler Corporation. 9. Design study of steam generators for Molten Salt Reactors Monthly Progress Report #10, August 1 - August 31, 1974, Foster Wheeler Corporation. 10. A general summary of the ORNL 1000 MW(e) Molten-Salt Breeder Reactor Reference Design, Enclosure 1, Union Carbide Corporation, November, 1970. 11. Fluid Dynamics, J. W. Daily, D.R.F. Harleman, Addison- Wesley Publishing Company, Inc., 1966. 12. Engineering Department Manual, Volume I, Basic Design, Foster Wheeler Corporation. 13. An Analysis of Thermally Induced Flow Oscillations in the Near-critical and Super-critical Thermodynamic Region, 		3.	of Steam G	enerators for Molten Sal	t Reactors					
 Using Probability Methods, L. Rianhard, R. M. Costello, P. J. Prabhu, W. T. Klamm, Foster Wheeler Corporation, July 1970. 6. Molten-Salt Reactor Program, Semiannual Progress Report, Period ending August 31, 1972, ORNL - 4832, March 1973, Oak Ridge National Laboratory. 7. Private communication from W. Apblett to J. Polcer on thermal conductivity data of Hastelloy N (6/20/74). 8. Design study of steam generators for Molten Salt Reactors Monthly progress Report #8, May 20 - June 30, 1974, Foster Wheeler Corporation. 9. Design study of steam generators for Molten Salt Reactors Monthly Progress Report #10, August 1 - August 31, 1974, Foster Wheeler Corporation. 10. A general summary of the ORNL 1000 MW(e) Molten-Salt Breeder Reactor Reference Design, Enclosure 1, Union Carbide Corporation, November, 1970. 11. Fluid Dynamics, J. W. Daily, D.R.F. Harleman, Addison- Wesley Publishing Company, Inc., 1966. 12. Engineering Department Manual, Volume I, Basic Design, Foster Wheeler Corporation. 13. An Analysis of Thermally Induced Flow Oscillations in the Near-critical and Super-critical Thermodynamic Region, 		4.	Tubes, H.	S. Swenson, J. R. Carver,	, C. R. Ka		e.			
 Period ending August 31, 1972, ORNL - 4832, March 1973, Oak Ridge National Laboratory. 7. Private communication from W. Apblett to J. Polcer on thermal conductivity data of Hastelloy N (6/20/74). 8. Design study of steam generators for Molten Salt Reactors Monthly progress Report #8, May 20 - June 30, 1974, Foster Wheeler Corporation. 9. Design study of steam generators for Molten Salt Reactors Monthly Progress Report #10, August 1 - August 31,.1974, Foster Wheeler Corporation. 10. A general summary of the ORNL 1000 MW(e) Molten-Salt Breeder Reactor Reference Design, Enclosure 1, Union Carbide Corporation, November, 1970. 11. Fluid Dynamics, J. W. Daily, D.R.F. Harleman, Addison- Wesley Publishing Company, Inc., 1966. 12. Engineering Department Manual, Volume I, Basic Design, Foster Wheeler Corporation. 13. An Analysis of Thermally Induced Flow Oscillations in the Near-critical and Super-critical Thermodynamic Region, 		5.	Using Prob P. J. Prat	oability Methods, L. Riand Dhu, W. T. Klamm, Foster W	hard, R. M	[. Coste]	.lo,			
 thermal conductivity data of Hastelloy N (6/20/74). 8. Design study of steam generators for Molten Salt Reactors Monthly progress Report #8, May 20 - June 30, 1974, Foster Wheeler Corporation. 9. Design study of steam generators for Molten Salt Reactors Monthly Progress Report #10, August 1 - August 31, 1974, Foster Wheeler Corporation. 10. A general summary of the ORNL 1000 MW(e) Molten-Salt Breeder Reactor Reference Design, Enclosure 1, Union Carbide Corporation, November, 1970. 11. Fluid Dynamics, J. W. Daily, D.R.F. Harleman, Addison- Wesley Publishing Company, Inc., 1966. 12. Engineering Department Manual, Volume I, Basic Design, Foster Wheeler Corporation. 13. An Analysis of Thermally Induced Flow Oscillations in the Near-critical and Super-critical Thermodynamic Region, 		6.	Period end	ling August 31, 1972, ORNI						
 Monthly progress Report #8, May 20 - June 30, 1974, Foster Wheeler Corporation. 9. Design study of steam generators for Molten Salt Reactors Monthly Progress Report #10, August 1 - August 31, 1974, Foster Wheeler Corporation. 10. A general summary of the ORNL 1000 MW(e) Molten-Salt Breeder Reactor Reference Design, Enclosure 1, Union Carbide Corporation, November, 1970. 11. Fluid Dynamics, J. W. Daily, D.R.F. Harleman, Addison- Wesley Publishing Company, Inc., 1966. 12. Engineering Department Manual, Volume I, Basic Design, Foster Wheeler Corporation. 13. An Analysis of Thermally Induced Flow Oscillations in the Near-critical and Super-critical Thermodynamic Region, 		7.					n			
 Monthly Progress Report #10, August 1 - August 31,.1974, Foster Wheeler Corporation. 10. A general summary of the ORNL 1000 MW(e) Molten-Salt Breeder Reactor Reference Design, Enclosure 1, Union Carbide Corporation, November, 1970. 11. Fluid Dynamics, J. W. Daily, D.R.F. Harleman, Addison- Wesley Publishing Company, Inc., 1966. 12. Engineering Department Manual, Volume I, Basic Design, Foster Wheeler Corporation. 13. An Analysis of Thermally Induced Flow Oscillations in the Near-critical and Super-critical Thermodynamic Region, 		8.	Monthly pr	cogress Report #8, May 20			lctors			
 Breeder Reactor Reference Design, Enclosure 1, Union Carbide Corporation, November, 1970. 11. Fluid Dynamics, J. W. Daily, D.R.F. Harleman, Addison- Wesley Publishing Company, Inc., 1966. 12. Engineering Department Manual, Volume I, Basic Design, Foster Wheeler Corporation. 13. An Analysis of Thermally Induced Flow Oscillations in the Near-critical and Super-critical Thermodynamic Region, 		9.	Monthly Pr	ogress Report #10, August						
 Wesley Publishing Company, Inc., 1966. 12. Engineering Department Manual, Volume I, Basic Design, Foster Wheeler Corporation. 13. An Analysis of Thermally Induced Flow Oscillations in the Near-critical and Super-critical Thermodynamic Region, 		10.	Breeder Re	actor Reference Design, H	Inclosure					
Foster Wheeler Corporation. 13. An Analysis of Thermally Induced Flow Oscillations in the Near-critical and Super-critical Thermodynamic Region,		11.								
Near-critical and Super-critical Thermodynamic Region,		12.			ume I, Bas	ic Desię	n,			
		13.	Near-criti	cal and Super-critical Th	nermodynam	ic Regio	n,			

FWC FORM 172 - 4

ſ	NUCLE	CAR DE	PARTMENT			1	LIVINGSTON, N.
ŀ	CHARGE	NO. 8.	-25-2431	DOCUMENT NO.	ND/74/66	ISSUE 1	DATE 12/16/71
		14.	Foster Wh	eeler Corporat	ion.		puter Programs,
		15.	the Molte	of Dynamic Flo m-Salt Breeder wlf-GA - A124	Reactor, B.	. E. Boyack,	erators for Gulf General
		16.	engineers	Geries on Boili , University (, 1965.P.195	ing and Two-j of California	phase Flow fo a, Berkeley,	or heat transfe California,
		17.		Two-Phase Flor gles, L. S. To			ıre,
		18.	Critical	nd Dynamic Stal Review of the GA-5555, Octo	Literature,	eam-Water Sys L. E. Efferd	stems Part 1, ling, General
		19.	Supercrit	tical Furnace 1	Design, Fost	er Wheeler Co	orporation.
		20.	Steam Ger R. P. Wel	xperiences with nerators and t lden, H. H. Pr XIV, March, 19	heir Effect att, FWC, <u>Am</u>	on Design Cr:	iteria,
		21.	Steam Ger	Evaluation of nerator, S. M. 1971, Liquid M	Cho, etc.,	LMEC-Memo-70	um-Heated -20,
		22.	Performan S. M. Cho	nce Changes of o, K. A. Gardn	a Sodium-He er, etc., 71	ated Steam G -HT-15, <u>ASME</u>	enerator,
		23.	Conceptus Breeder 1	al Design Stud Reactor ORNL-4	y of a Singl 541, ORNL.	e-Fluid Molt	en-Salt
		24.	Startup S Departmen 1972.	Steam ORNL 100 nt, FWC, Inter	O MW(e) MSBR Office Corr	, C. R. Clar espondence,	k, Service September 29,
		25.	Operatin, Cleanup,	g Instructions FWC.	, Section 3,	Feedwater a	nd Cycle
		26.	Design s Monthly 1974, FW	tudies of Stea Progress Repor C.	m Generators t #11, Septe	a for Molten ember 1 - Sep	Salt Reactors tember 30,
	BY		ADT	PROVED			PAGE 4–56

EWC FORM 172 - 4

•	CHADOR							<u> </u>				GSTON,	
	CHARGE I	<u>NU.</u> 8	3-25-2431	DOCL	MENT 1	10. ND	/74/66	5	ISSUE	1	DATE	12/16	/74
		27.	State-of- J. P. Ver	the-a Kamp,	rt of NEDM-	Ruptur 13981,	e Dis GE,	ks fo July,	r LMF 1973	BR A <u>1</u> •	oplica	tion,	
		28.	Status of AEC, Marc	LMFB 197	R Rehe 3.	at in	Weste	rn Eu	rope ·	- 197	2, WAS	5H -1 219),
		29.	Evaluation Rupture D:	1 and isk <i>1</i>	Procu Assemb	rement lies,	Guid ORNL-	e For IM - 40	Three 46, 01	e Typ RNL,	es of Januai	Metal] y, 1 97	lic 73.
		30.		Progra Stan]	ams Fo: Ley I.	r The Buchi	Analy: n. 8-	sis o	f Com	പ്രം	Decisi	on	
												,	
												·	
			•									۰.	
			· .										
F	 ВҮ		APPROV							·	PAGE	4-57	

					LIVINGSTON,	11
	CHARGE NO. 8-25-2	431 DOCUM	MENT NO. ND/74/66	ISSUE 1	DATE 12/1	6/
1						
			SECTION 5			
		STRUCT	URAL FEASIBILITY A	NALYSIS		
			ВҮ			
			RAN -			
			DR. N. J. LEVY	P		
			· ·			
	Approved by					
	6 3. 2 las	h				
	C. F. Nash Structural Analy	sis Section	n Manager			
			Ŭ			

TABLE OF CONTENTSPages5.1Stress Analysis of the Salt Inlet Nozzle5-15.1.1Introduction5-15.1.2Summary and Conclusion5-15.1.3Stresses Due to Pressure5-65.1.4Stresses Due to Temperature Transients5-85.1.5Simplified Inelastic Analysis5-105.1.6Fatigue Analysis and Creep Fatigue Interaction5-115.2Stress Analysis of the MSBR Tubesheet-Header Assembly5-135.2.1Introduction and Summary5-135.2.2Loading Conditions5-165.2.3Some Details of the Finite Element Model5-195.2.4Simplified Inelastic Analysis5-305.2.5Fatigue Analysis and Creep Fatigue Interaction5-335.3Stress Analysis of the MSBR Shell5-355.3.1Introduction and Summary5-355.3.2Shell Stresses at Location A5-415.3.3Shell Stresses at Location B5-425.3.4Shell-Shroud Juncture Stresses5-435.3.5Simplified Inelastic Analysis5-495.3.6Fatigue Analysis and Creep Fatigue Interaction5-31		CHARGE	NO. 8-25-2431	DOCUMENT NO. ND/74/	66 ISSUE	1 DATE 12	2/16/71
5.1Stress Analysis of the Salt Inlet Nozzle5-15.1.1Introduction5-15.1.2Summary and Conclusion5-15.1.3Stresses Due to Pressure5-65.1.4Stresses Due to Temperature Transients5-85.1.5Simplified Inelastic Analysis5-105.1.6Fatigue Analysis and Creep Fatigue Interaction5-115.2Stress Analysis of the MSER Tubesheet-Header Assembly5-135.2.1Introduction and Summary5-135.2.2Loading Conditions5-165.2.3Some Details of the Finite Element Model5-195.2.4Simplified Inelastic Analysis5-305.2.5Fatigue Analysis of the MSER Shell5-355.3Stress Analysis of the MSER Shell5-355.3.1Introduction and Summary5-355.3.2Shell Stresses at Location A5-415.3.3Shell Stresses at Location B5-425.3.4Shell-Shroud Juncture Stresses5-435.3.5Simplified Inelastic Analysis5-49				TABLE OF CO	VTENTS		
5.1.1Introduction5-15.1.2Summary and Conclusion5-15.1.3Stresses Due to Pressure5-65.1.4Stresses Due to Temperature Transients5-85.1.5Simplified Inelastic Analysis5-105.1.6Fatigue Analysis and Creep Fatigue Interaction5-115.2Stress Analysis of the MSBR Tubesheet-Header Assembly5-135.2.1Introduction and Summary5-135.2.2Loading Conditions5-165.2.3Some Details of the Finite Element Model5-195.2.4Simplified Inelastic Analysis5-305.2.5Fatigue Analysis of the MSBR Shell5-335.3Stress Analysis of the MSBR Shell5-355.3.1Introduction and Summary5-355.3.2Shell Stresses at Location A5-415.3.4Shell Stresses at Location B5-425.3.5Simplified Inelastic Analysis5-435.3.6Simplified Inelastic Analysis5-435.3.7Shell Stresses at Location B5-425.3.8Shell-Shroud Juncture Stresses5-435.3.5Simplified Inelastic Analysis5-49						Pag	es
5.1.2Summary and Conclusion5-15.1.3Stresses Due to Pressure5-65.1.4Stresses Due to Temperature Transients5-85.1.5Simplified Inelastic Analysis5-105.1.6Fatigue Analysis and Creep Fatigue Interaction5-115.2Stress Analysis of the MSER Tubesheet-Header Assembly5-135.2.1Introduction and Summary5-135.2.2Loading Conditions5-165.2.3Some Details of the Finite Element Model5-195.2.4Simplified Inelastic Analysis5-305.2.5Fatigue Analysis and Creep Fatigue Interaction5-335.3Stress Analysis of the MSER Shell5-355.3.1Introduction and Summary5-355.3.2Shell Stresses at Location A5-415.3.4Shell-Shroud Juncture Stresses5-435.3.5Simplified Inelastic Analysis5-49		5.1	Stress Analysis	of the Salt Inlet No	ozzle	5-	1
5.1.3Stresses Due to Pressure5-65.1.4Stresses Due to Temperature Transients5-85.1.5Simplified Inelastic Analysis5-105.1.6Fatigue Analysis and Creep Fatigue Interaction5-115.2Stress Analysis of the MSER Tubesheet-Header Assembly5-135.2.1Introduction and Summary5-135.2.2Loading Conditions5-165.2.3Some Details of the Finite Element Model5-195.2.4Simplified Inelastic Analysis5-305.2.5Fatigue Analysis and Creep Fatigue Interaction5-335.3Stress Analysis of the MSER Shell5-355.3.1Introduction and Summary5-355.3.2Shell Stresses at Location A5-415.3.3Shell Stresses at Location B5-425.3.4Shell-Shroud Juncture Stresses5-435.3.5Simplified Inelastic Analysis5-49		5.1.1	Introduction			5-	·l
5.1.4Stresses Due to Temperature Transients5-85.1.5Simplified Inelastic Analysis5-105.1.6Fatigue Analysis and Creep Fatigue Interaction5-115.2Stress Analysis of the MSER Tubesheet-Header Assembly5-135.2.1Introduction and Summary5-135.2.2Loading Conditions5-165.2.3Some Details of the Finite Element Model5-195.2.4Simplified Inelastic Analysis5-305.2.5Fatigue Analysis and Creep Fatigue Interaction5-335.3Stress Analysis of the MSER Shell5-355.3.1Introduction and Summary5-355.3.2Shell Stresses at Location A5-415.3.4Shell-Shroud Juncture Stresses5-435.3.5Simplified Inelastic Analysis5-49		5.1.2	Summary and Con	clusion		5-	1
5.1.5Simplified Inelastic Analysis5-105.1.6Fatigue Analysis and Creep Fatigue Interaction5-115.2Stress Analysis of the MSER Tubesheet-Header Assembly5-135.2.1Introduction and Summary5-135.2.2Loading Conditions5-165.2.3Some Details of the Finite Element Model5-195.2.4Simplified Inelastic Analysis5-305.2.5Fatigue Analysis and Creep Fatigue Interaction5-335.3Stress Analysis of the MSER Shell5-355.3.1Introduction and Summary5-355.3.2Shell Stresses at Location A5-415.3.3Shell Stresses at Location B5-425.3.4Shell-Shroud Juncture Stresses5-435.3.5Simplified Inelastic Analysis5-49		5.1.3	Stresses Due to	Pressure		5-	.6
5.1.6Fatigue Analysis and Creep Fatigue Interaction5-115.2Stress Analysis of the MSER Tubesheet-Header Assembly5-135.2.1Introduction and Summary5-135.2.2Loading Conditions5-165.2.3Some Details of the Finite Element Model5-195.2.4Simplfied Inelastic Analysis5-305.2.5Fatigue Analysis and Creep Fatigue Interaction5-335.3Stress Analysis of the MSER Shell5-355.3.1Introduction and Summary5-355.3.2Shell Stresses at Location A5-415.3.4Shell-Shroud Juncture Stresses5-435.3.5Simplified Inelastic Analysis5-49		5.1.4	Stresses Due to	Temperature Transier	its	5-	8
5.2Stress Analysis of the MSER Tubesheet-Header Assembly5-135.2.1Introduction and Summary5-135.2.2Loading Conditions5-165.2.3Some Details of the Finite Element Model5-195.2.4Simplfied Inelastic Analysis5-305.2.5Fatigue Analysis and Creep Fatigue Interaction5-335.3Stress Analysis of the MSER Shell5-355.3.1Introduction and Summary5-355.3.2Shell Stresses at Location A5-415.3.3Shell Stresses at Location B5-425.3.4Shell-Shroud Juncture Stresses5-435.3.5Simplified Inelastic Analysis5-49		5.1.5	Simplified Inel	astic Analysis		5-	10
5.2.1Introduction and Summary5-135.2.2Loading Conditions5-165.2.3Some Details of the Finite Element Model5-195.2.4Simplfied Inelastic Analysis5-305.2.5Fatigue Analysis and Creep Fatigue Interaction5-335.3Stress Analysis of the MSER Shell5-355.3.1Introduction and Summary5-355.3.2Shell Stresses at Location A5-415.3.3Shell Stresses at Location B5-425.3.4Shell-Shroud Juncture Stresses5-435.3.5Simplified Inelastic Analysis5-49		5.1.6	Fatigue Analysi	s and Creep Fatigue]	nteraction	5-	11
5.2.2Loading Conditions5-165.2.3Some Details of the Finite Element Model5-195.2.4Simplfied Inelastic Analysis5-305.2.5Fatigue Analysis and Creep Fatigue Interaction5-335.3Stress Analysis of the MSBR Shell5-355.3.1Introduction and Summary5-355.3.2Shell Stresses at Location A5-415.3.3Shell Stresses at Location B5-425.3.4Shell-Shroud Juncture Stresses5-435.3.5Simplified Inelastic Analysis5-49		5.2	Stress Analysis	of the MSBR Tubeshee	t-Header Ass	sembly 5-	13
5.2.3Some Details of the Finite Element Model5-195.2.4Simplfied Inelastic Analysis5-305.2.5Fatigue Analysis and Creep Fatigue Interaction5-335.3Stress Analysis of the MSER Shell5-355.3.1Introduction and Summary5-355.3.2Shell Stresses at Location A5-415.3.3Shell Stresses at Location B5-425.3.4Shell-Shroud Juncture Stresses5-435.3.5Simplified Inelastic Analysis5-49		5.2.1	Introduction and	d Summary		5-	13
5.2.4Simplfied Inelastic Analysis5-305.2.5Fatigue Analysis and Creep Fatigue Interaction5-335.3Stress Analysis of the MSBR Shell5-355.3.1Introduction and Summary5-355.3.2Shell Stresses at Location A5-415.3.3Shell Stresses at Location B5-425.3.4Shell-Shroud Juncture Stresses5-435.3.5Simplified Inelastic Analysis5-49		5.2.2	Loading Conditio	ons		5-	16
5.2.5Fatigue Analysis and Creep Fatigue Interaction5-335.3Stress Analysis of the MSBR Shell5-355.3.1Introduction and Summary5-355.3.2Shell Stresses at Location A5-415.3.3Shell Stresses at Location B5-425.3.4Shell-Shroud Juncture Stresses5-435.3.5Simplified Inelastic Analysis5-49		5.2.3	Some Details of	the Finite Element M	odel	5-1	19
5.3Stress Analysis of the MSBR Shell5-355.3.1Introduction and Summary5-355.3.2Shell Stresses at Location A5-415.3.3Shell Stresses at Location B5-425.3.4Shell-Shroud Juncture Stresses5-435.3.5Simplified Inelastic Analysis5-49		5.2.4	Simplfied Inelas	stic Analysis		5-	30
5.3.1 Introduction and Summary5-355.3.2 Shell Stresses at Location A5-415.3.3 Shell Stresses at Location B5-425.3.4 Shell-Shroud Juncture Stresses5-435.3.5 Simplified Inelastic Analysis5-49		5.2.5	Fatigue Analysis	s and Creep Fatigue I	nteraction	5-)	33
5.3.2Shell Stresses at Location A5-415.3.3Shell Stresses at Location B5-425.3.4Shell-Shroud Juncture Stresses5-435.3.5Simplified Inelastic Analysis5-49	5	5.3	Stress Analysis	of the MSBR Shell		5-3	35
5.3.3 Shell Stresses at Location B5-425.3.4 Shell-Shroud Juncture Stresses5-435.3.5 Simplified Inelastic Analysis5-49	5	5.3.1	Introduction and	l Summary		5-3	35
5.3.4Shell-Shroud Juncture Stresses5-435.3.5Simplified Inelastic Analysis5-49	5	5.3.2	Shell Stresses a	at Location A		5–1	ļl
5.3.5 Simplified Inelastic Analysis 5-49	5	6•3•3	Shell Stresses a	at Location B		51	₄ 2
	5	.3.4	Shell-Shroud Jur	acture Stresses		5-1	<u>,</u> 13
5.3.6 Fatigue Analysis and Creep Fatigue Interaction 5-50	5	•3•5	Simplified Inela	stic Analysis		5 - 1	1 9
	5	.3.6	Fatigue Analysis	and Creep Fatigue In	nteraction	5-5	50
					•		

ATTADATE NO. 8 OF OLD			
CHARGE NO. 8-25-2431	DOCUMENT NO. ND/74/66	ISSUE 1	DATE 12/16/
			Pages
5.4 Stress Analysis	of the MSBR Tubes		5-52
5.4.1 Introduction and	l Summary		5 - 52
5.4.2 Tube Primary Str	esses		5 - 54
5.4.3 Thermal Stresses	8		
5.4.4 Flow Induced Vib			559
5.4.5 Simplified Inela			5-62
5.4.6 Fatigue Analysis			5-64
5.5 Tube Rupture Ana			5-64
	1 9 818		5-66
		· .	

PAGE

<u>5-c</u>

NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE ---FWC FORM 172 - 4

BY

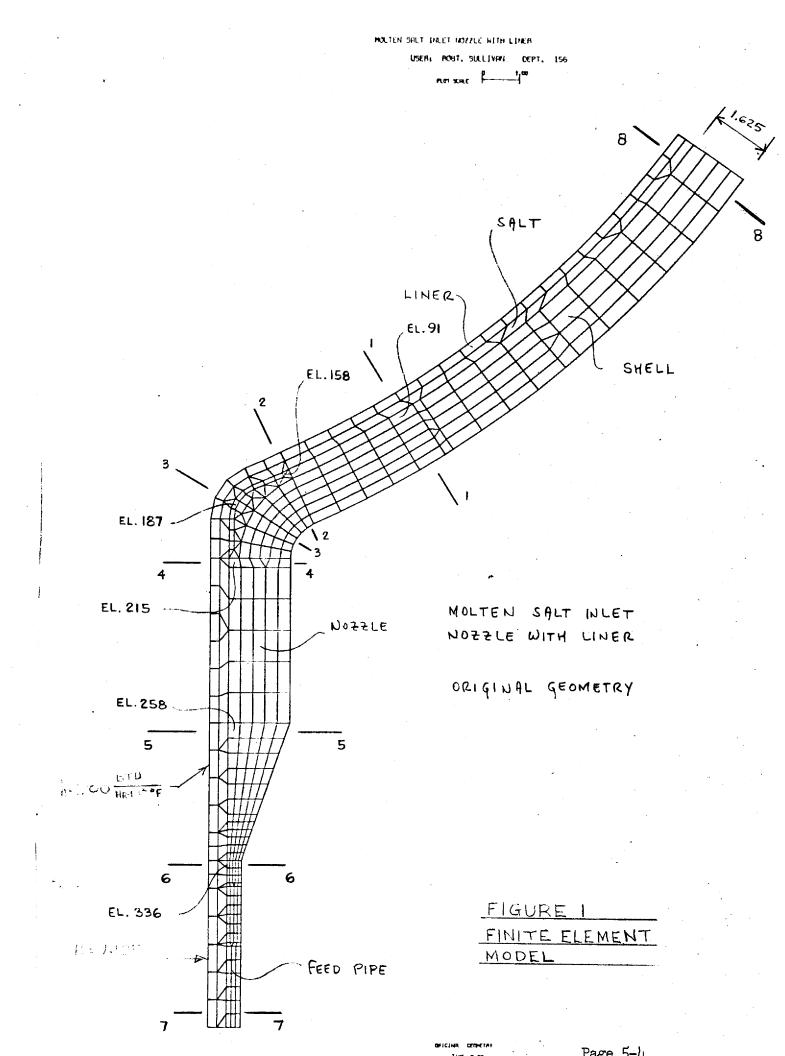
APPROVED

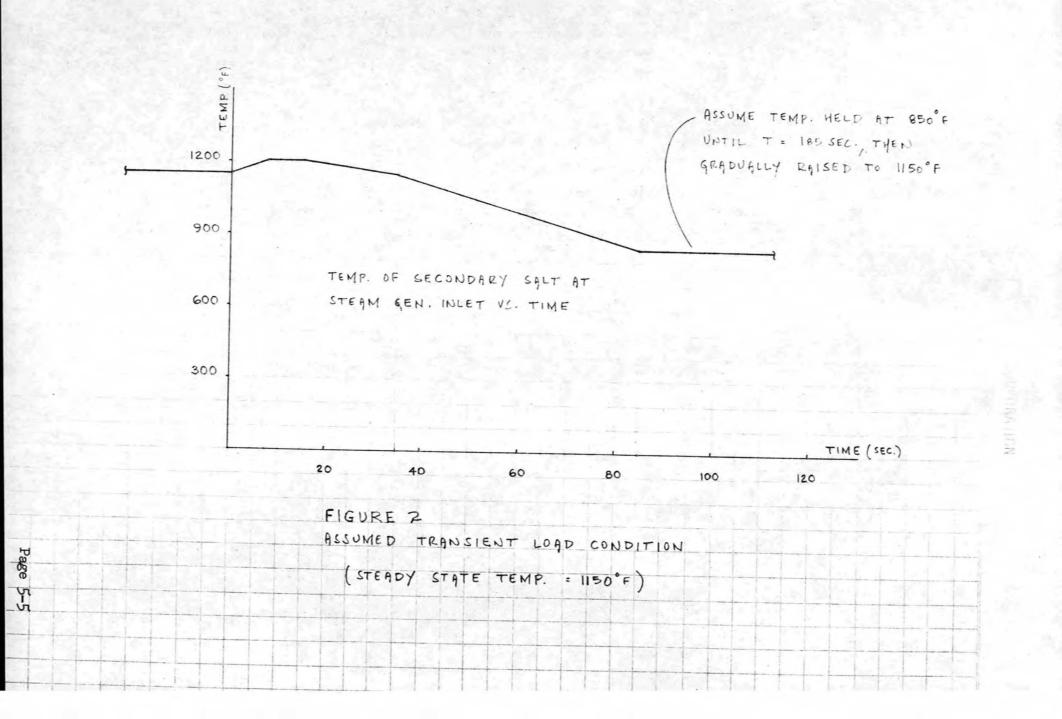
	GE NO 8-25-243	DOCUMENT NO.	ND/74/66	ISSUE 1	DATE 12/16/71
5.1		SIS OF THE SALT	INLET NOZZLE		
5.1.1	INTRODUCTION	<u>I</u>			
	that the noz no worse that simulation o sient shown and down tran and thermal not included pressure load tions due to these tempera by using Fost The finite el were calculat	discusses the ana generator. Dur: zle will be subje n those described f the MSBR. In the in Figure 2, which maint, was assume expansion loads of because they are dings, however, we the assumed trans ature distribution ter Wheeler's ver lement model is subted using Bree's	Ing its servi ected to ther in ORNL-TM- the interest the interest of for this due to the mode enot available vere consider sient condit ons and presse sion of Wilse hown in Figure	ce life, it i mal transient 3767, HYBRID of conservati nation of mos analysis. De lten salt fee le at this ti ed. Temperat ion, and stre ure loads, we on's Finite E	is expected to which are computer .sm, the tran- st severe up ad weight ed pipe were me. Internal ure distribu- sses due to re obtained lement Program.
5.1.2	orceb compute	er program.		<u>-</u> u	
	The purpose of the sodium in other loads a of the ASME B it was conclu liner. With allowable lim table, it is are dependent	of our analysis w let nozzle under inticipated. Bas oiler and Pressu ded that both the the liner, stress its. Table I su concluded the des on the magnitude	the severe f ed upon analy re Vessel Cod e nozzle and ses were calconnarizes the sign is feasi	thermal trans ress specified le, and in Coord shell require culated to be results. Base blo Final	ients and d in Section III de Case 1331-5, ed a thermal within the sed on the
	presently una	vailable).		O	
- -				• •	
	н. С. С. С				
	•				

	ΨА Ϝ	8LE 1		DATE 12/16/7
STRESS SUMMA	RY, MSBR MOLTEN		ר איז די היד איז איז ד י	T-D
				<u>191</u>
Section (Location)	StressCalculatedStressStress RangCategory(psi)		ge St r e	
1-1	P (design)	4043	S = @^115	
(Shell)	P _m (operating)	3170	@ĭ115 S _{mt} =	0 F 7500 F 30 yrs.
	$(P_{L}+P_{L}+Q)_{R}$	19019 (I		F 30 yrs. 67,500
2-2	P_{m} (design)	51.00	95	
(Shell at nozzle)	P _m (operating)	4000	75	00
	$(P_{L}+P_{b}+Q)_{R}$	26,480 (EL.	158) 67 , 5	00
3-3	$P_{m}^{}$ (design)	5360	95	00
(Intersect. Shell & Noz.)	P_{m} (operating)	4200	75	00
	$(P_L P_b + Q)_R$	33,396 (El.	187) 67 , 5	00
24-24	P_{m} (design)	5236	95	00
(Nozzle at Shell)	P_{m} (operating)	4100	750	00
-	$(P_L P_b + Q)_R$	19,108 (El.	215) 67 , 50	00
5-5	P_{m} (design)	2499	950	00
(Noz. at Start of Reduced Wall)	P_{m} (operating)	1960	750	0
,	$(P_L P_b + Q)_R$	10,794 (E1.	258) 67 , 50	00
6-6	P_{m} (design)	6415	950	00
(Nozzle at Fe e d Pipe)	P (operating)	5025	750	0
	$(P_{L}P_{b}+Q)_{R}$	9,278 (El.	336) 67 , 50	0
				· · · · · · · · · · · · · · · · · · ·
BY	PPROVED		PAGE	б _о ОF

FWC FORM 172 - 4

1


I


1

1 1

FWC FORM 172 - 14

CHARGE NO 8-25-243	1 DOCUMENT NO. 1	ND/74/66	ISSUE	1	DATE 1	2/1
	TABLE	El (CONT'D	<u>)</u>			
Section (Location)	Stress Category	Calculat stress Ra		Allowab]) Limit	le Stress t (psi)	3
7-7	P (design)	7840		9500		6
(Feed Pipe)	P_{m} (operating)	6140		7500		
<u></u>	$(P_{L}P_{b}+Q)_{R}$	does not	control			
8-8	P _m (design)	$\frac{\text{pr}}{2\text{t}} = 270$	0	9500		<u>i di Bayan</u>
(Shell)	P _m (operating)	210		7500		
	$(P_L P_b + Q)_R$	does not	control			
Note: Allowables See Section 5.1.6	are at 1150 F fo r cre ep f ati gue	interactic	n and ir	elastic s	strain ar	ıal
		interactic	n and ir	elastic s	strain ar	ıal
	for creep fatigue				strain ar	เล]
See Section 5.1.6	for creep fatigue				strain ar	1 2]
See Section 5.1.6	for creep fatigue				strain ar	ıal
See Section 5.1.6	for creep fatigue				strain ar	ıal
See Section 5.1.6	for creep fatigue				strain ar	1 a]
See Section 5.1.6	for creep fatigue				strain ar	121
See Section 5.1.6	for creep fatigue				strain ar	
See Section 5.1.6	for creep fatigue				strain ar	
See Section 5.1.6	for creep fatigue				strain ar	ual.

CHARG	E NO8-25-24	31 DOCUMEN	T NO. ND/7	24/66 IS	SUE l	DATE 1	1/16/
5.1.3	STRESSES 1	DUE TO PRESSU	RE				
		finite elemen of the nozzl ined. They a				vari ous O psi	
	Section 1-	<u>-1</u>		·			
	Element	<u> </u>	<u>ර</u> ැ	σ_{T}	$\sigma_{ m rz}$		
	86 87 88 89 90 91	1692 1584 1508 1462 1459 1509	701 737 740 702 629 <u>511</u>	4078 4003 3928 3850 3772 <u>3693</u>	1137 1186 1209 1210 1194 1164		
	Avg.	1536	670	3887	1183		
	Average pr.	incipal stres	ses are				
	0 ₁ = 2362						
	0 ₂ = -156	> S = 4043					
	Ú ₃ = 3887						
	Section 2-2	2					
	Element	<u> </u>	$\sigma_{\mathbf{z}}$	$\sigma_{\mathtt{T}}$	σ_{rz}		
	126 127 128 129 130 156 157 1 5 8	3862 2149 1285 559 -174 -701 -1002 -1683	2146 1594 1032 489 -2 -571 -773 -667	6421 5813 5456 5143 4840 4547 4321 <u>4198</u>	2430 1443 843 396 19 -88 -583 -657		
	Avg.	537	405	5092	475		
1	Ú ₁ = 950	$C_2 = -8$	J ₃ = 50	92			
	S = 5100						
BY		APPROVED			PAGE 5-	-6 OF	·

CHARGE	NO 8-25-24	31 DOCUME	NT NO. ND/7L	./66 ISSUE	1	DATE 12/16/
	Section 3-	3				
	Element	<u> </u>	Ó z	б _т	0 _{rz}	
	141 142 143 144 145 184 185 186 187	1868 1761 1354 900 465 62 236 -175 -375	3841 1875 793 71 -453 -769 -812 -934 -988	6308 5868 5592 5411 5302 5237 5322 5303	2112 1123 545 132 -163 -223 -448 -398	
	Avg.	677	292	<u>5358</u> 5522	<u>-352</u>	
	ΰ ₁ = 808		$d_3 = 59$		259	
	s = 5360	۷				
	Section 4-4					
-	Element	<u> </u>	Gz	Δr	<u>(Jrz</u>	
	210 211 212 213 214 215	222 299 401 146 -47 -253	2701 1686 1174 632 30 <u>-722</u>	5102 4989 5021 4875 4818 <u>4725</u>	566 986 1083 898 658 235	
	vg.	128	917	4922	738	
(ジ ₁ = 1360	0 ₂ = -33	$4 0_3 = 1$	1922	_	
	S = 5236				•	
<u>S</u>	ection 5-5					
E	lement	<u> </u>	<u> </u>	<u> </u>	Orz	
	254 255 256 257 258	-60 -34 -63 -131 -210	-750 26 948 1949 <u>3056</u>	1698 2008 2361 2746 <u>3180</u>	-193 0 115 137 40	
Av	rg.	-100	1046	2399	20	
ន	= 2499					

FWC FORM 172 - 4

FOSTER WHEELER CORPORATION

	E NO 8-25-2431	DOCUMEN	TNO. ND/	74/66 I	ssue _l	DA	TE 12/16/7
	Section 6-6	6	E C	E		<	
	Element	<u> </u>	<u> </u>	<u> </u>	· -	S _{rz}	
	332 333	182 76	5872 4890	6772 6509		207 3	
	334 335	-43 -168	4223 3645	6336 6189	_	120 149	
	336	<u>-279</u>	3051	6041		<u>-84</u>	
	Avg.	<u>-</u> 46	4336	6369		-29	
	S = 6415						
5.1.4	STRESSES DUE	TO TEMPER	ATURE TRAN	SIENTS			
	From the fini ture transien and are given into the stre	its at var below.	ious locat Note that	ions of t pressure (he nozzle stresses	were cal do not en	culated
	Section 1-1	~	£	,			
		Û	\sim	A labeled and a labeled at the second	_		
		Úr_	Ćz	\mathcal{O}_{T}	Orz		
	Down Trans Up Trans Range	$ \begin{array}{r} $	4949 <u>73</u> 4876	20490	8284	(1 5 3 S (33 Se	ec) c)
	Up Trans	13570 <u>247</u> 13323	4949 <u>73</u> 4876	20490 <u>1361</u> 19129		(153 S (33 Se	ec) c)
ne ver staffer - see some over det utgen ter some en en er en er	Up Trans Range	13570 <u>247</u> 13323	4949	20490 <u>1361</u> 19129	8284	(153 S (33 Se	ec) c)
na seu na mar a como seu de alguna de la mar a mar de la marte de la marte	Up Trans Range $0_1 = 18,090$	13570 <u>247</u> 13323	4949 <u>73</u> 4876	20490 <u>1361</u> 19129	8284	(153 S (33 Se	ec) c)
n an share - an share an a gherror - an share a share a na ann an share an an share an a	Up Trans Range $0_1 = 18,090$ S = 19019	13570 <u>247</u> 13323	4949 <u>73</u> 4876	20490 <u>1361</u> 19129	8284 <u>351</u> 7933 8870	(153 Se (33 Se (153 Se (33 Sec	c) ec)
na ban dalam " sala berah da dalam ban dalam katala dalam	Up Trans Range $0_1 = 18,090$ S = 19019 Section 2-2 Down Trans Up Trans Range	$13570 \\ \underline{247} \\ 13323 \\ 0_2 = 1 \\ 18390 \\ \underline{-3016} \\ 21406 \\ 13570 \\ \underline{-3016} \\ 21406 \\ 13570 \\ \underline{-3016} \\ 21406 \\ 1000 \\ \underline{-3016} \\ -301$	$ \begin{array}{r} 4949 \\ \overline{73} \\ \overline{4876} \\ 110 \\ \overline{0_3} \\ 3625 \\ \underline{-829} \\ \overline{4454} \\ \overline{4454} \end{array} $	20490 1361 19129 $= 19129$ 25200 1351 23849	8284 <u>351</u> 7933 8870 <u>-1299</u> 10,169	(33 Se (153 Se	c) ec)
	Up Trans Range $0_1 = 18,090$ S = 19019 Section 2-2 Down Trans Up Trans Range $0_1 = 26,170$	$13570 \\ \underline{247} \\ 13323 \\ 0_2 = 100 \\ 18390 \\ \underline{-3016} $	$ \begin{array}{r} 4949 \\ \overline{73} \\ \overline{4876} \\ 110 \\ \overline{0_3} \\ 3625 \\ \underline{-829} \\ \overline{4454} \\ \overline{4454} \end{array} $	20490 <u>1361</u> 19129 = 19129 25200	8284 <u>351</u> 7933 8870 <u>-1299</u> 10,169	(33 Se (153 Se	c) ec)
	Up Trans Range $0_1 = 18,090$ S = 19019 Section 2-2 Down Trans Up Trans Range	$13570 \\ \underline{247} \\ 13323 \\ 0_2 = 1 \\ 18390 \\ \underline{-3016} \\ 21406 \\ 13570 \\ \underline{-3016} \\ 21406 \\ 13570 \\ \underline{-3016} \\ 21406 \\ 1000 \\ \underline{-3016} \\ -301$	$ \begin{array}{r} 4949 \\ \overline{73} \\ \overline{4876} \\ 110 \\ \overline{0_3} \\ 3625 \\ \underline{-829} \\ \overline{4454} \\ \overline{4454} \end{array} $	20490 1361 19129 $= 19129$ 25200 1351 23849	8284 <u>351</u> 7933 8870 <u>-1299</u> 10,169	(33 Se (153 Se	c) ec)
	Up Trans Range $0_1 = 18,090$ S = 19019 Section 2-2 Down Trans Up Trans Range $0_1 = 26,170$	$13570 \\ \underline{247} \\ 13323 \\ 0_2 = 1 \\ 18390 \\ \underline{-3016} \\ 21406 \\ 13570 \\ \underline{-3016} \\ 21406 \\ 13570 \\ \underline{-3016} \\ 21406 \\ 1000 \\ \underline{-3016} \\ -301$	$ \begin{array}{r} 4949 \\ \overline{73} \\ \overline{4876} \\ 110 \\ \overline{0_3} \\ 3625 \\ \underline{-829} \\ \overline{4454} \\ \overline{4454} \end{array} $	20490 1361 19129 $= 19129$ 25200 1351 23849	8284 <u>351</u> 7933 8870 <u>-1299</u> 10,169	(33 Se (153 Se	c) ec)
	Up Trans Range $0_1 = 18,090$ S = 19019 Section 2-2 Down Trans Up Trans Range $0_1 = 26,170$	$13570 \\ \underline{247} \\ 13323 \\ 0_2 = 1 \\ 18390 \\ \underline{-3016} \\ 21406 \\ 13570 \\ \underline{-3016} \\ 21406 \\ 13570 \\ \underline{-3016} \\ 21406 \\ 1000 \\ \underline{-3016} \\ -301$	$ \begin{array}{r} 4949 \\ \overline{73} \\ \overline{4876} \\ 110 \\ \overline{0_3} \\ 3625 \\ \underline{-829} \\ \overline{4454} \\ \overline{4454} \end{array} $	20490 1361 19129 $= 19129$ 25200 1351 23849	8284 <u>351</u> 7933 8870 <u>-1299</u> 10,169	(33 Se (153 Se	c) ec)
	Up Trans Range $0_1 = 18,090$ S = 19019 Section 2-2 Down Trans Up Trans Range $0_1 = 26,170$	$13570 \\ \underline{247} \\ 13323 \\ 0_2 = 1 \\ 18390 \\ \underline{-3016} \\ 21406 \\ 13570 \\ \underline{-3016} \\ 21406 \\ 13570 \\ \underline{-3016} \\ 21406 \\ 1000 \\ \underline{-3016} \\ -301$	$ \begin{array}{r} 4949 \\ \overline{73} \\ \overline{4876} \\ 110 \\ \overline{0_3} \\ 3625 \\ \underline{-829} \\ \overline{4454} \\ \overline{4454} \end{array} $	20490 1361 19129 $= 19129$ 25200 1351 23849	8284 <u>351</u> 7933 8870 <u>-1299</u> 10,169	(33 Se (153 Se	c) ec)

	CHARGE NO 8-25-2	431 DOCUMEN	T NO. ND/74/66	ISSUE	1	DATE 12/16/74
	SECTION 3-3				· · · · · · · · · · · · · · · · · · ·	
		0 _r	0z	5-		Orz_
	DOWN TRANS UP TRANS RANGE	1859 <u>-503</u> 2362	9190 <u>-1852</u> 1042	31300 <u>1787</u> 29513		4725 (153 SEC) -822 (33 SEC) 5546
	() =7287	√ ₂ =3883	G ₃ =29513			
	C =33,396					
MADE	SECTION 4-4					
HAVE BEEN	DOWN TRANS UP TRANS RANGE	-30 -191 161	17030 - <u>2060</u> 19090	21440 2206 19234		-564 (153 SEC) 267 (33 SEC) -831
CHANGES H	໌ ₁ =19126 S=19108	€ ₂ =126	G ₃ =19234			
WHERE	SECTION 5-5					
DICATE W	DOWN TRANS UP TRANS RANG E	-167 -158 -9	9300 1677 7623	12180 <u>1395</u> 10785		-27 35 -62
COLUMN INDICATE	'=7623 (S=10,794	2=-9	ර ₃ =10785			
THIS	SECTION 6-6	•				· · · · · ·
		<u> </u>	0 <u>i</u> .	б _т	· -	0 _{rz}
-NOTATIONS	DOWN TRANS UP TRAN S RANGE	-73 <u>-218</u> 145	10900 1478 9422	10460 <u>3867</u> 6593		-25 -52 27
	(1=9423) (2=145) (3=9422) (3=9422)	}				
	ВХ	APPROVED			PAGE	∠_o OF

CHARGE NO	8-25-2431 DOCUM	ENT NO. ND/74/66	ISSUE 1	DATE 12/16/
, ,				· · · · ·
5.1.5	SIMPLIFIED INEI	ASTIC ANALYSIS		
	(see Chapter VI Bree analysis, severe thermal	ns were calculated of the LMFBR Pipin it is assumed that cycles (sum of load design life, the t	ng Design Guide there are a to 1 scrams and re). In the tal of 200 actor scrams).
	given in the tu	of the creep law us besheet report. Th Foster Wheeler, an	ne Bree analysi	s has been
	Location	<u>Total Strain/(</u>	Cycle Tota	al Strain
	1-1	Negligible	e Ne	egligible
	2-2	Negligible	No	egligible
	3-3	lxl0 ^{-l}		0.02%
	4-4	Negligible	e Nea	gligible
	5-5	Negligible	e Neg	gligible
	6-6	4×10-4		0.08%
	Ref.: Computer	Run NHJLO9F		· .
	ner oompuber	Itali Milo 1031		
		•		

ł

_								
	CHARGE	NO 8-25-2	L31 DOCUME	NT NO. ND/74/	66	ISSUE	1	DATE 12/16/74
	5.1.6			CREEP FATIGU				
		stress of	With a maxim 16.70 Ksi,	e analysis wa uum stress ra the Code Case us, fatigue	nge of e gives	33.40 an in	Ksi, or ar finite num	1 alternating
		CREEP FAT	GUE INTERAC	TION				
NGES HAVE BEEN MADE		elastic-pl dependent program, o The user a and stress were obtai Iron 8", o erties wer Temperatur program au	lastic-creep pressure, t one construct also supplies to rupture .ned from "D June 1, 1961 re obtained res to 1300 tomatically	veloped a cor analysis of emperature, a subroutines properties of ata for Nicke , while fatig from "Bases f F", ORNL Cent computes str reep and fatig	a cyli and axi am of t descri of the el-Moly gue and for Des tral Fi resses	nder su al load he load bing th materia bdenum- stress ign of les Num and str	ubjected t ds. To us ding (see he creep, al. Creep -Chromium- s to ruptu MSBR Syst hber 73-1- rains as a	to time se the below). fatigue, properties Iron Alloy, are prop- ems for 23. The function
LE CHM		damage are	computed i	n accordance have the hig	with A	SME Cod	le Case 13	31-5.
INDICATE WHERE CHANGES	•	with 1.625	s analyzed. " wall thic	The nozzle kness and app ogram are sho	was ide roxima	ealized tely 9"	las a cvl	inder
COLUMN INDICA		× *****	۲ ۲	Load Scraw				ΔT=-13°F
STHI					-AT:2	1 ⁻ !° F		
NT SNOTLETON	s	<u>r</u> = 5360 olving for = 950 psi	р	4	·	1 Cycl	e= 5200 hi	-5.
	<u>E</u> 2	$\frac{AT}{(1-1)} = \frac{31}{-18}$,300 (up tra 352 (down tr	nsient) ansient)				
		$f = \frac{217^{\circ}F}{-13^{\circ}F}$						
	w	here $E = 26$.2 x 10 ⁶ , ∞	<= 7.72 x 10 ⁻	-6			
	BY		APPROVED				PAGE 5-1	1 OF

CHARGE	NO 8-25-2431	DOCUMENT NO. ND/74/66	ISSUE 1	DATE 12/16/
	PROGRAM RESU	τmS		
	the strain fo	total of 50 cycles, each reactor scram. The pro or each of the remaining ifference in strain betw	gram was run f cvcles was es	or 5 cycles and
	Maximum total	l strain = 0.29 + 45 (0.	01) = 0.74%	
	Creep damage	= 0.00222 + 45 (0.048 x	$10^{-2}) = 0.023$	8
	Maximum straj	in range = 0.248%		
		$ge = 50/10^5 = 5 \times 10^{-4}$	(movimum tomos	
			(martingin rembe	ravure = 1150 F)
	Ref: Compute	NR MUN FOULTOCO		
	iner: compute	er run EBHJLO6C		
			,	
			•	
SY .	AF	PROVED	PA	GE 5-12 OF

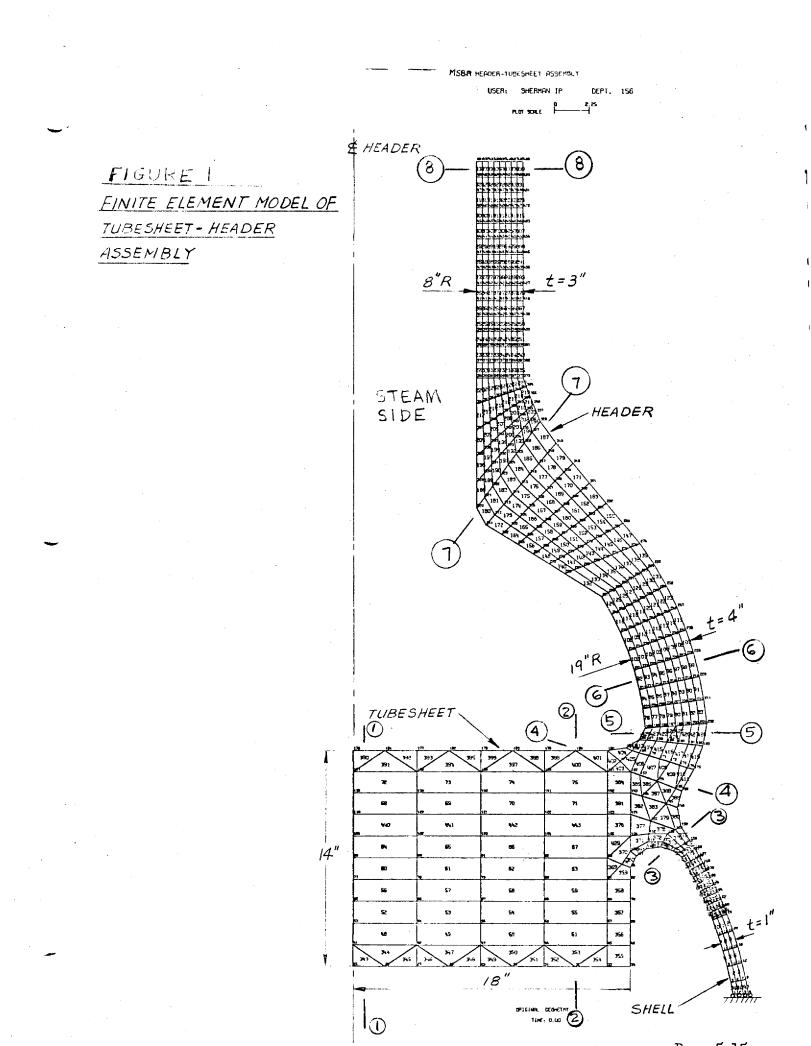
FWC FORM 172 - 4

	CHARGE	NO 8-25	-2431	DOCUMENT NO	• ND/74/66	ISSUE	1	DATE]	2/16/71
	5.2	פייים שמי							
				IS OF MSBR TU	BESHEET-HEAI	DER ASSEM	BLY		
	5.2.1	INTRODU	CTION A	AND SUMMARY			- ·		
		A finite Figure 1 stresses ASME Coo	e eleme 1. Thi s. The de Case	l in analyzin ration's Fini ent model of is model was ese stresses e 1331-5 as a	te Element C the structur used to dete were compare guide.	omputer : e was mad rmine bo d to the	Program (de and is th pressu allowabl	Referenc shown i: re and t es, using	e 1). n hermal g
TAVE BEEN MADE		contact transier sients w 100 to 4 (Figure more sev	with m nts spe were fo 10% in 3), re rere that	gure 1, the u steam, while olten salt. cified in Re- und to occur 3 seconds (F spectively. an inlet. Thes are identi	the lower point The severes ference 2. during a Ran lgure 2) and Outlet stear perefore, bec	rtion of t thermal The sever np Change Insertion transie	the tubes l stresses rest up ar in Load on of Two ents were	sheet is s occur (nd down f Demand f Safety F found to	in during tran- from lods be
COUNTRIN DATIN		Eight lo in Figur and loca ranges w together primary are base	cation: e l.] l membr ere obt with a stresse d on op	s of possible Primary membr rane plus ber tained at 11 allowables, a es are due to perating (30 allowables i	e high stress ane, local m ding plus se locations. re shown in a design pr vear life) c	ses were membrane condary The stre Table 1. ressure o ondition	analyzed plus prim stress in ss intens Except	and are hary bend itensity ities ob where in	shown ling, tained, dicated
		prus secu	Judary	rding to Code stress inten iven for refe	sitv. the RS	m limit. d	s no limi of Sectio	t on prin n III of	mary the
			⊥ ودن∟	all primary nelastic str o be within	ains. compute	ed by Bra	are withi ee's simpi	n the all lified me	low- ethod,
	() 5	Computer shown in	plots Figure	of the stress s 5 to 13.	ses due to to	emperatur	re transie	ents are	•
			-						

5-13

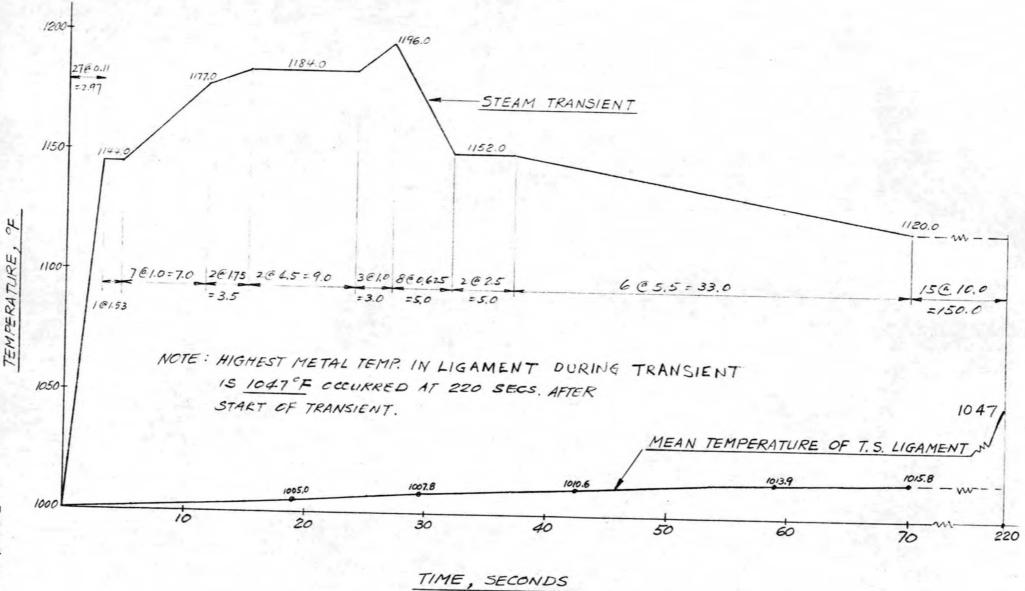
TABLE 1

STRESS SUMMARY - MSBR TUBESHEET - HEADER ASSEMBLY


				
Location (Section)	Stress Category	Allowable Str e ss Limit (PSI)	Calculated Stress Range (PSI)	Maximu Temper ture,
	P m	S _{mt} = 13,000	8,570	1075
(Center of T.S.) (Operating Pressure)	гр	KS _t = 14,100	13,040	
	$(P_{L}+P_{b}+Q)_{R}$	$3S_{\rm m} = 69,600$	23,360	
2-2	P _m	13,000	12,160	1075
(Edge of T.S.)	P _L +P _b	13,200	8,080	Í.
	$\left(\begin{array}{c} P_{L}+P_{b}+Q \\ L \end{array}\right)_{R}$	69,600	14,220	
3-3	P _m	8,000	6,150	1150
(T.S Shell Juncture)	$(P_{L}+P_{b}+Q)_{R}$	67,500	49,810	
24-24	P m	19,000	6,550	1000
(T.S Header Juncture)	$(P_{L}+P_{b}+Q)_{R}$	71,500	20,310	
5-5 (T.S. Header	P m	19,000	7,150	1000
(1.5. Header Juncture)	$\begin{pmatrix} P_{L}+P_{b}+Q \\ L & b & R \end{pmatrix}$	71,500	60,840	
6-6	P m	19,000	8,470	1000
(Header Wall)	$(P_{L}+P_{b}+Q)_{R}$	71,500	31,320	
7-7	P	19,000	12,970	1000
	$(P_{L} + P_{b} + Q)$	71,500	37,090	
8-8	P _m	19,000	12,530	1000
	$(P_L + P_b + Q)_R$	71,500	does not control	

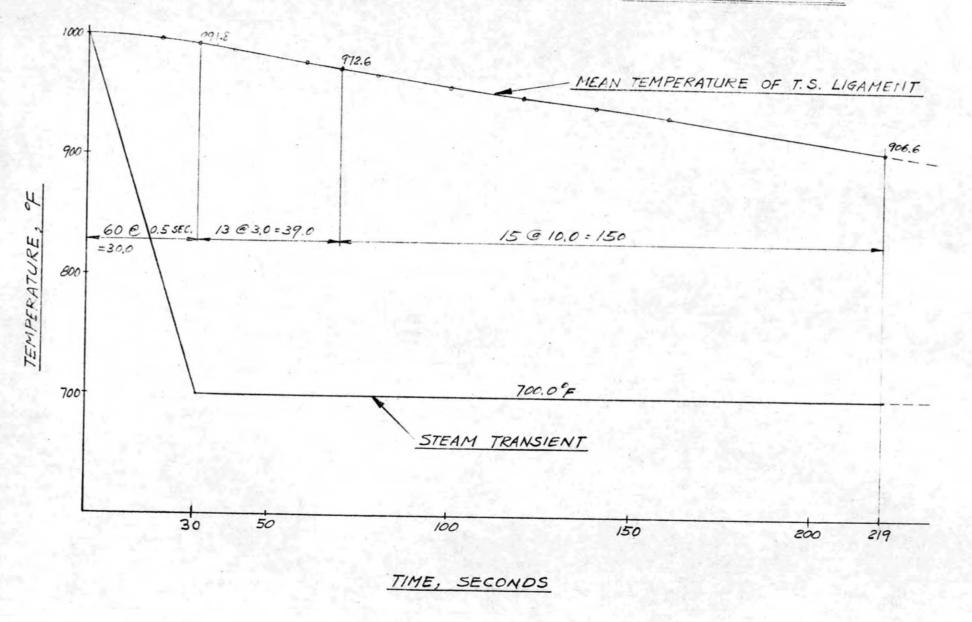
NOTE: 1. There are no primary bending stresses at Section 3-3 through 8-8

2. See Section 5.2.5 for creep fatigue interaction.


3. See Appendix C-2 for material properties and allowables.

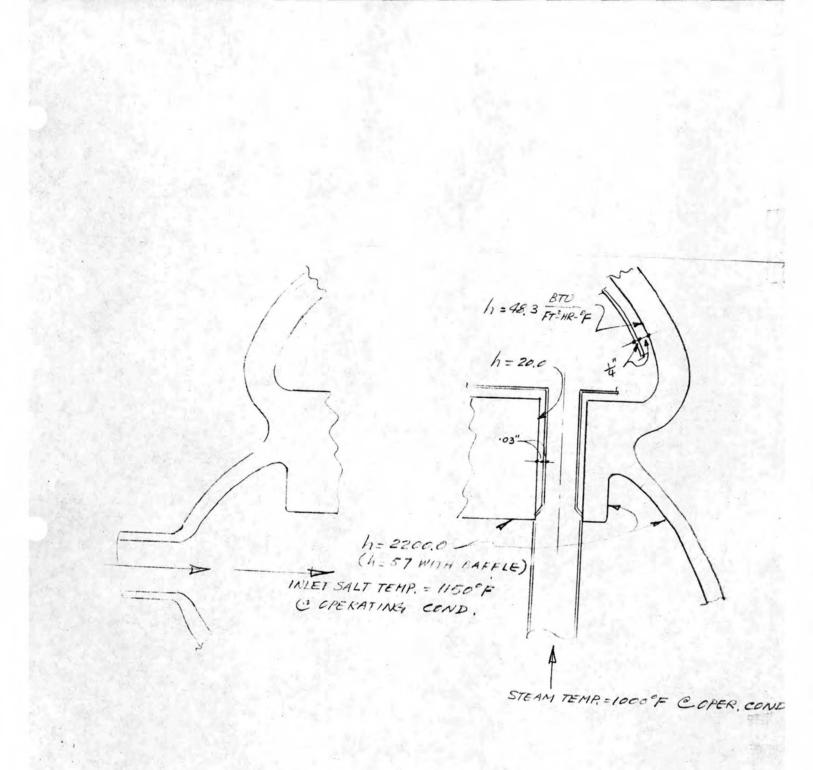
*Primary plus secondary stress ranges conservatively include peak portions.

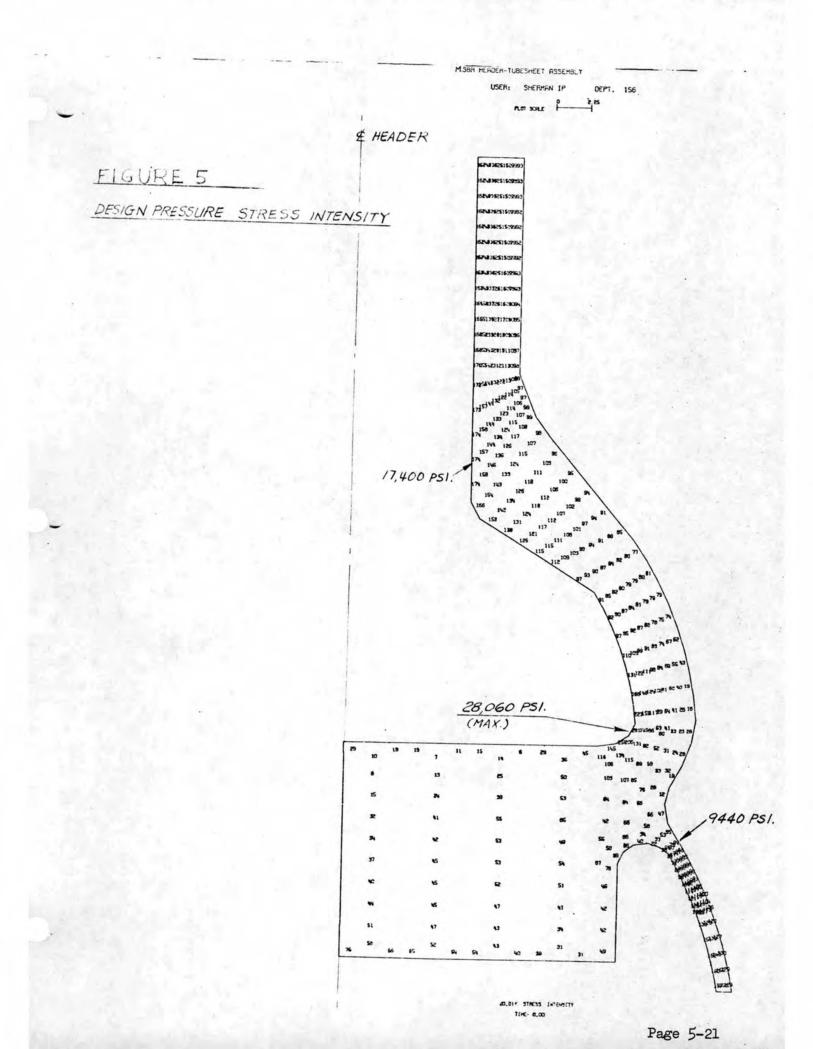
CHARGE	NO 8-25-2431	DOCUMENT NO.	ND/74/66	ISSUE	1	DATE 12/16/7
						_
5.2.2	LOADING CONDI	TIONS				
	is 3600 psi, dition of 400 side was cons	perating press while that on 00 psi on the s servatively cho a 4000 psi ste	the salt si steam side w osen. The p	de is 175 p ith zero p rimary stre	psi. A ressure	design con- on the salt
· .	stress intens the thermal t	establish the m sities at the v ransients of F shown on Figure	various loca Reference 2	tions of powere examinations were examination of the second secon	ossible ned. T	e high stress. The following
	Severest Up 1	Pransient: Ran in	np Change in 3 Seconds (Load Dama Load Scram	ge from)	a 100 to 40%
	Severest Down	n Transient:]	Insertion of	Two Safet	y Ro ds	(Reactor Scr
	The following	g load combinat	tions were o	computed:		
	2) Pressure 3) Pressure	+ reactor scra + load scram - + reactor scra + load scram	+ steady sta			
	With pressure stress intens	e always acting sity range is (g, the maximestablished	num primary by one of	r plus ہ the fol	secondary llowing:
	B) Condition	n (1) minus con n (1) alone (o: n (3) alone (o:	r condition	(2) alone) (4) alone))	
	Appendix C-l in Table l, c	includes the conly the highes	alculation st case is r	for all 3 eported.	cases.	However,
BY	1	APPROVED			PAGE	5-16 OF

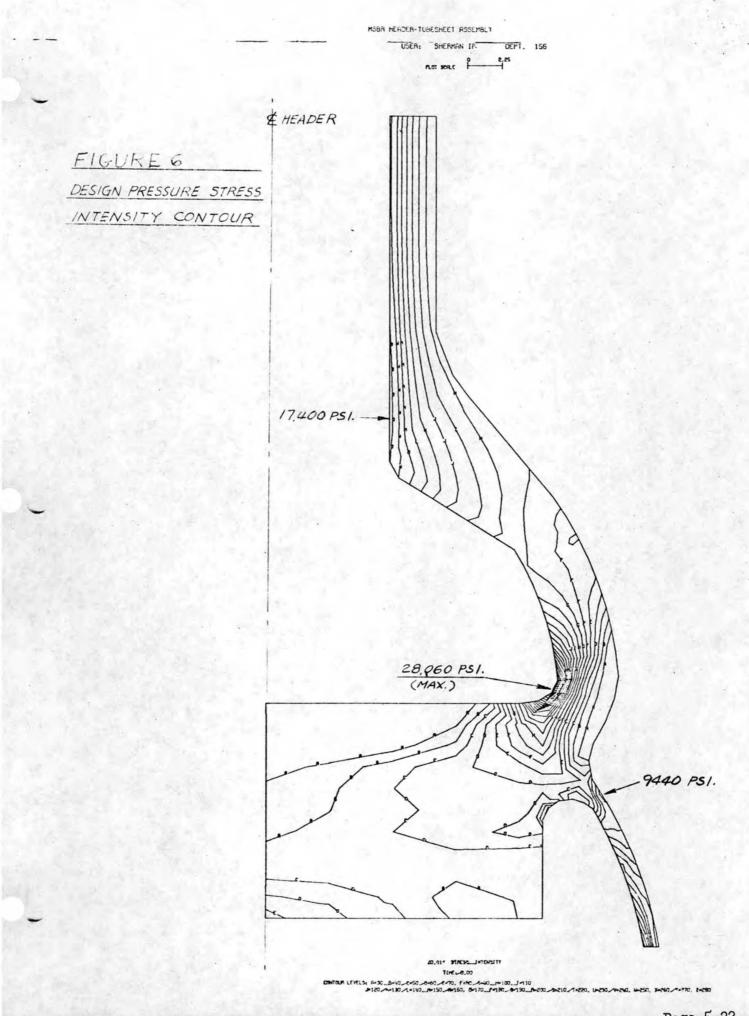

FIGURE 2. OUTLET STEAM TRANSIENT DUE TO CHANGE OF LOAD FROM 100% TO 40% IN 3 SECONDS, ALL CONTROLS OPERATING

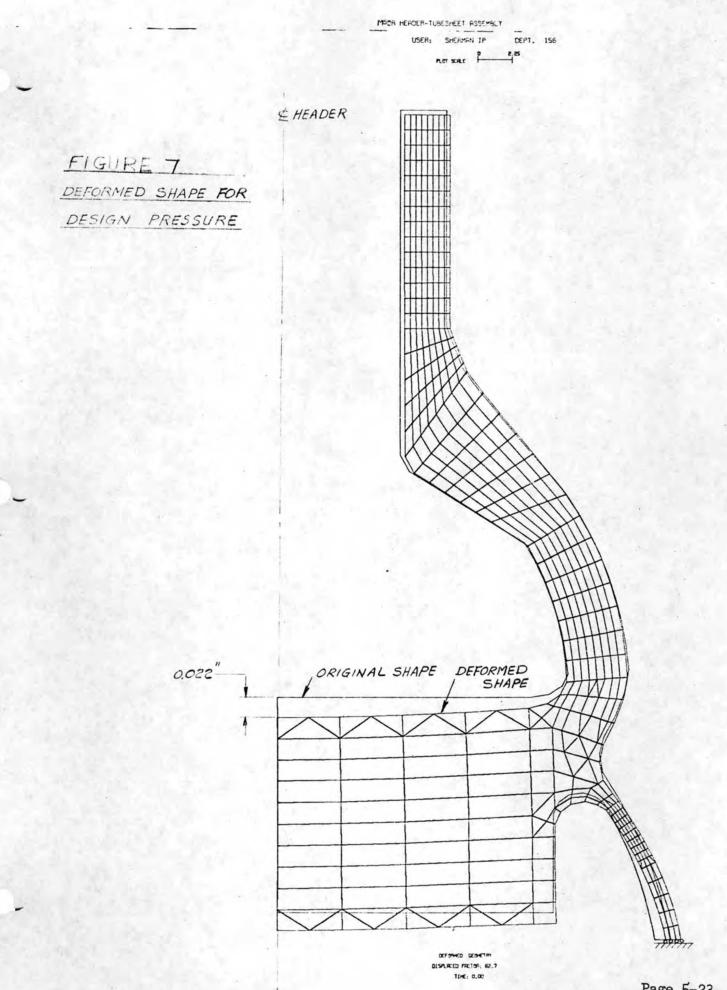
Page 5-17

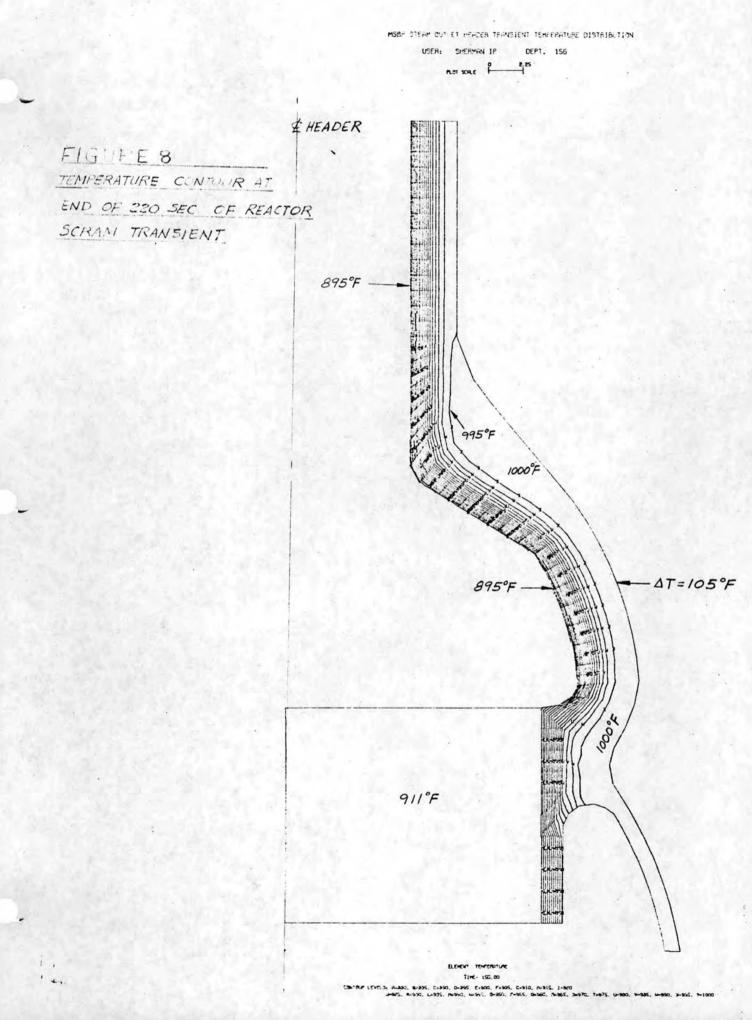
1

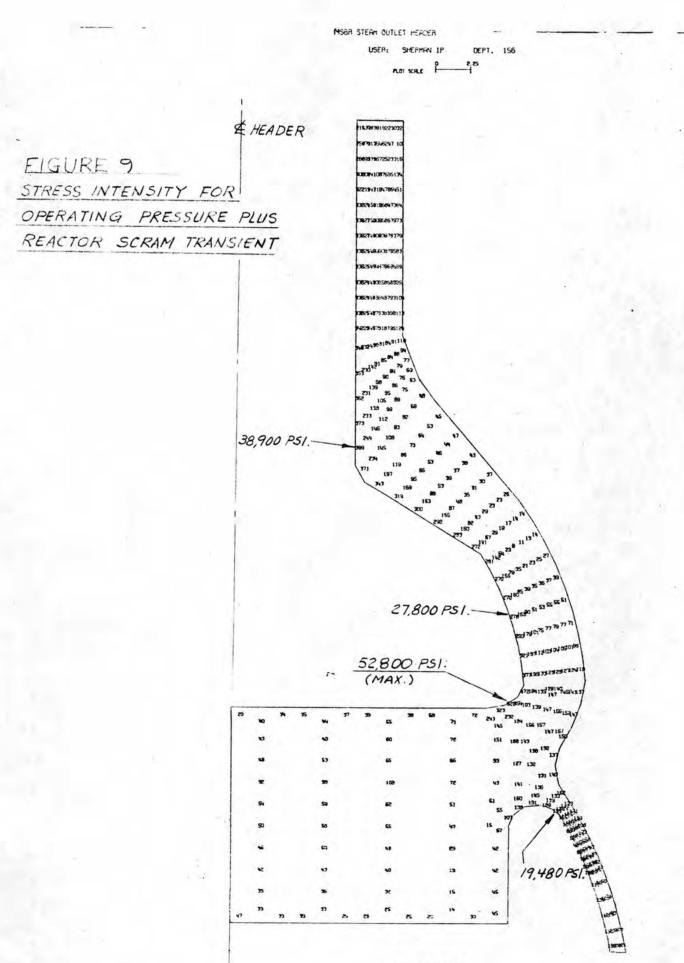

FIGURE'S OUTLET HEADER STEAM TRANSIENT DUE TO REACTOR SCRAM WITH THERMAL LINER

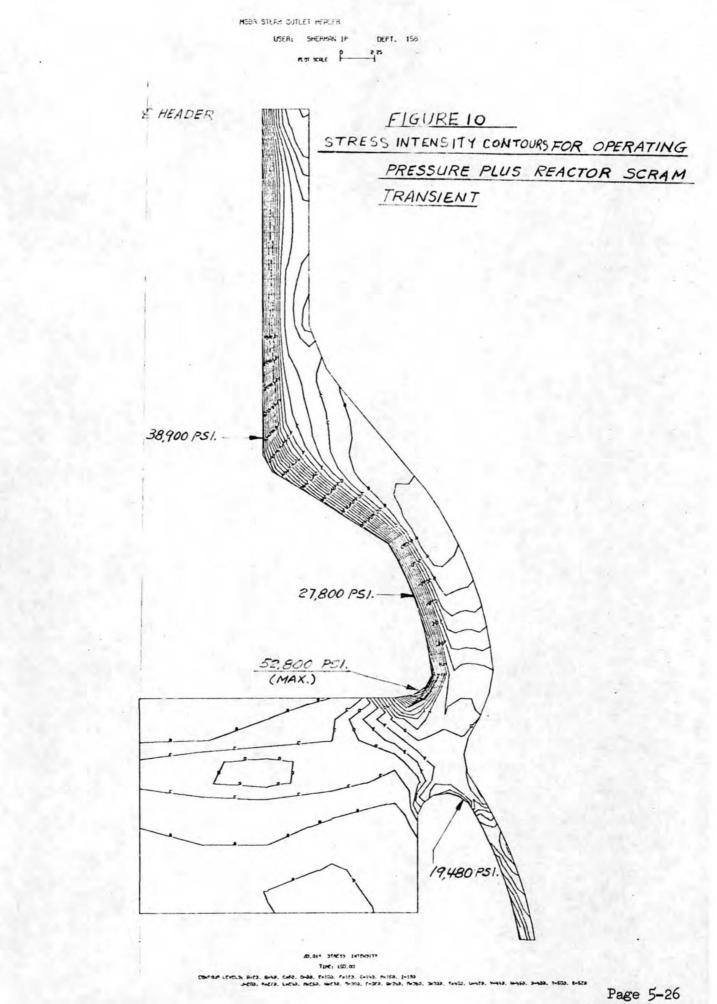

Page 5-18

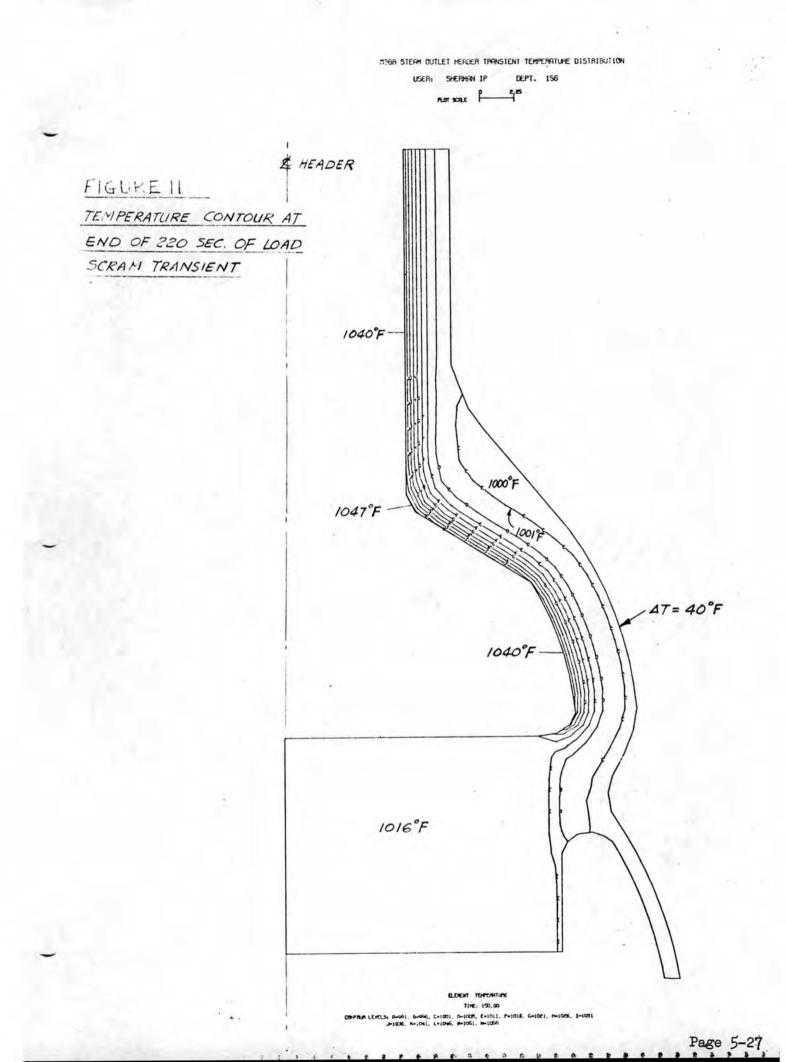

(

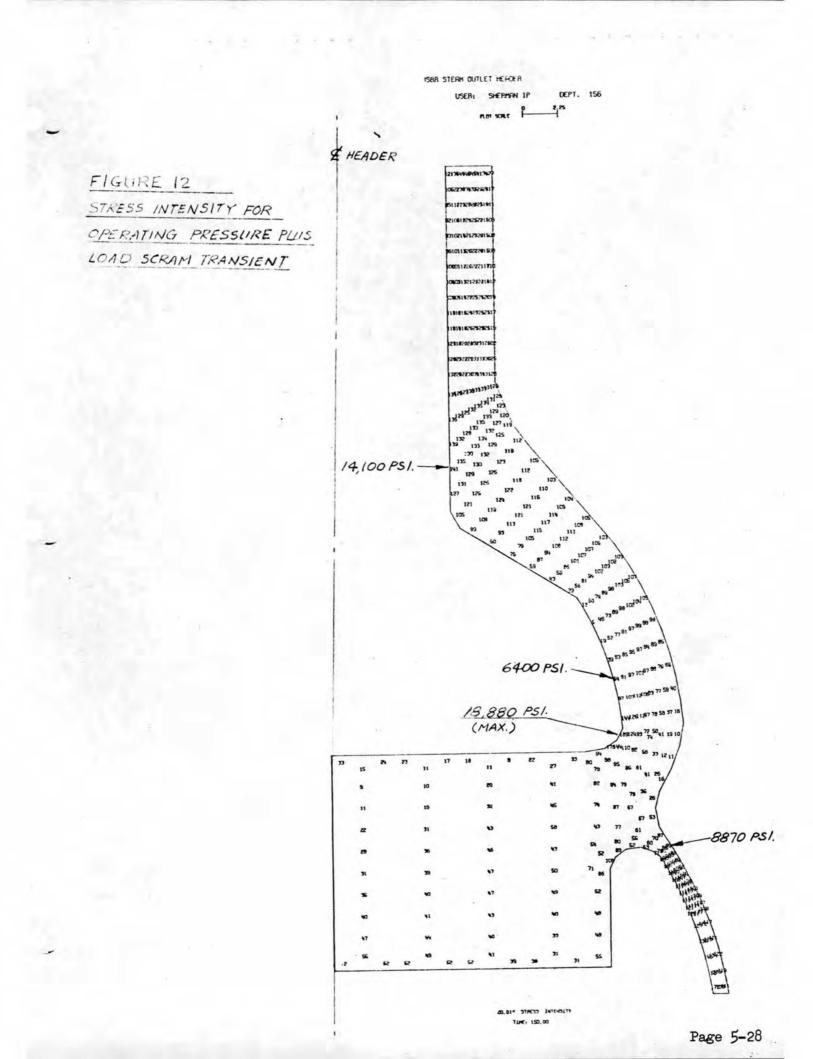

CHAR	GE NO	8-25-24	31 DOCUM	ENT NO.	ND/74/66	ISSUE	. 1		
							<u> </u>	DATE	12/16
5.2.	3 SOM	ር እርጥለተ፣		T] #1					
	-				ELEMENT M				
	Fig asse	ure 1 sh embly.	nows the f The model	finite (element mod	del of t	he tubes	sheet-hea	der
	The	liner (see Figur	ro(1)	sed TOL DO.	th press	ure and	thermal	analysi
	cost	tly to a	nalvze.	Instant		и опе що	uer woul	d have b	ecome
	simu	lated t	he therma	l resis	tance of t	the line:	r was us	ed.	which
	The	average	temperat	ure res	ponse of t	he p erf a	orated r	egion of	+b -
	liga	ment.	The avera	ore line	mont term	ate ini	te elem	ent model	l of the
	due	to the j	load scrai	o _o… mand m		ratures	obtaine	d from th	nis mode
	of t	he comp ⁻	lete fini		-y. mee	lements	in the	perforate	d regio
	have	the abo	ove tempe	no tumo		(rrgure) were	"forced"	to
	in th	ne perfo	prated rea	as dete gion of	ermined front the tubes	om Secti heet.	on III c	of the AS	ME Code
	•								
								• .	
							• •		




FIGURE 4 FILM COEFFICIENTS






20.01* 314233 147643177 Tire: 152.00

*

. . .

CHARGE	NO 8-25-2	431 DOCUME	NT NO. ND/71	1/66 ISSUE 1	DATE 12/1
				······································	
5.2.4	SIMPLIFIE	D INELASTIC	ANALYSIS		
	Inelastic	strains wer	e calculated	l by Bree's simplif	ied method (Re-
	ference 3 total of). In the 200 severe t With a 30-y	Bree Analysi hermal cycle	is, it is assumed t es (sum of load scr Life, the time per	hat there are a mans and reactor
	Bree Anal	ysis of Refe wing results	rence 3 has	used is given on the been computerized med (Reference: Co	by Foster Wheel
	Location	Primary <u>Stress,ksi</u>	Secondary <u>Stress,ksi</u>	Total Strain/Cycl	e,% Total Stra
	1-1	8.57	23.36	10-4	0.02%
	2-2	12.16	14.22	10-4	0.02%
	3-3	6.15	49.81	5 x 10 ⁻⁴	0.1%
	4-4	6.55	20.31	0	0
· ·	5-5	7.15	60.84	8×10^{-4}	0.16%
	6-6	8.47	31.32	2×10^{-4}	0.04%
	7–7	12.97	37.09	8×10^{-4}	0.16%
			• •		
		•			
					· · ·
		•	•		

JER VATION OF CREEP CONSTANTS FOR

THE POWER LAW

WHERE : MC = CREEP RATE (ACCOUNTS OF FOR SECONDARY CREEP EFF. J = STEADY - STATE APPLIED PRIMARY LOAD. Å, M = CREEP CONSTANTS O. MATERIAL AT TEMPERATL

REFER TO FIG. 10 OF " DATA FOR NICKEL-MOLYBDENUM-CHROMIUM- IRON ALLOY, INOK-8".

FCK TEMP = HCC F :

 $\dot{\eta}_{c} = 2 \times 10^{-8} = A (9.95 \times 10^{3})^{71} \qquad \textcircled{0}$ $\dot{\eta}_{c} = 4 \times 10^{-7} = A (2 \times 10^{4})^{71} \qquad \textcircled{0}$

Scumal ere,

20 = 2.01005 ".

21 = 4.3

A = 1.28 × 10-25

FCK TENIP. = 1200 F :

 $\begin{aligned} \dot{\eta}_{c} &= 4 \times 10^{-7} = A (10^{4})^{11} \\ \dot{\eta}_{c} &= 4.5 \times 10^{-5} = A (3 \times 10^{6})^{11} \\ \frac{10^{-2}}{1.125} &= (\frac{1}{3})^{11} \\ c.co 889 &= 0.3334^{11} \\ H &= 4.3 \\ A &= \frac{4 \times 10^{-7}}{(10^{4})^{9.3}} = \frac{2.52 \times 10^{-24}}{10^{-24}} \end{aligned}$

FOR TEMP: = 1300 F :

 $\dot{H}_{c} = 9 \times 10^{-8} = A (4 \times 10^{3})^{7}$ $\dot{H}_{c} = 9 \times 10^{-5} = A (2 \times 10^{4})^{7}$ $10^{-3} = (\frac{1}{5})^{71}$ $0.001 = 0.2^{71}$

71 = .4.3 $A = \frac{9 \times 10^{-5}}{(2 \times 10^{4})^{2.3}} = 2.88 \times 10^{-23}$

CHARGE	NO 8-25-243	1 DOCUMENT	NO. ND/74/66	ISSUE	1	DATE 12/16/71
5.2.5	A prelimina	ry fatigue	REEP FATIGUE IN analysis was ma results were o	de with the		
	obtained at		Pof Domo	g_]+	N	
	Location	<u>S Ksi</u>	Ref. Page	Salt	<u>N all</u>	
	1–1	33.62	C-1-5	16.81	15000	
	2-2	22.76	C-1-9	11.38	00	
	3-3	49.81	C-1-10	24.91	2,500	
	4-4	20.31	C-1-11	10.16	~	•
	5-5	60.84	C-1-13	30.42	1,300	
	6–6	31.32	C-1-15	15.66	20,000)
	7-7	37.09	C-1-16	18.55	10,000)
	With only 2	00 severe t	hermal cycles,	maximum fa	tigue dan	mage is 200/
	With only 2	00 severe t which occu	hermal cycles, rs at location	maximum fa	tigue dan	mage is 200/
	With only 2 1300 = 0.15	00 severe t which occu	hermal cycles, rs at location	maximum fa	tigue dan	mage is 200/
	With only 2 1300 = 0.15	00 severe t which occu	hermal cycles, rs at location	maximum fa	tigue dan	mage is 200/
	With only 2 1300 = 0.15	00 severe t which occu	hermal cycles, rs at location	maximum fa	tigue dan	mage is 200/
	With only 2 1300 = 0.15	00 severe t which occu	hermal cycles, rs at location	maximum fa	tigue dan	mage is 200/
	With only 2 1300 = 0.15	00 severe t which occu	hermal cycles, rs at location	maximum fa	tigue dan	mage is 200/
	With only 2 1300 = 0.15	00 severe t which occu	hermal cycles, rs at location	maximum fa	tigue dan	mage is 200/
	With only 2 1300 = 0.15	00 severe t which occu	hermal cycles, rs at location	maximum fa	tigue dan	mage is 200/
	With only 2 1300 = 0.15	00 severe t which occu	hermal cycles, rs at location	maximum fa	tigue dan	mage is 200/
	With only 2 1300 = 0.15	00 severe t which occu	hermal cycles, rs at location	maximum fa	tigue dan	mage is 200/
	With only 2 1300 = 0.15	00 severe t which occu	hermal cycles, rs at location	maximum fa	tigue dan	mage is 200/
	With only 2 1300 = 0.15	00 severe t which occu	hermal cycles, rs at location	maximum fa	tigue dan	mage is 200/

FWC FORM 172 - 4

CREEF FATIGUE INTERACTION Creep fatigue interaction was performed by the method described in the nozzle portion of this report. Location 7-7 proved to be the most severely loaded section, and only that section was analyzed. The section was idealized as a cylinder with 8" inside radius and 4" thickness. The following loading was applied: $PR_m/t = p \times 8/4 = 12970 \times 3600/4000$ (refer to Appendix C-1 for sourc of 12,970) solving for p, p = 5836 psi $E+4T = 22181$ $AT = \{156$ $2(1-\nu) = -8362$ $AT = \{-59$ where $E = 26.7 \times 10^6$, $\alpha = 7.43 \times 10^{-6}$ PROGRAM RESULTS The same type of loading histogram was used for the tubesheet as was used for the inlet nozzle. There are a total of 50 cycles, each cycle consisting of 3 load scrams and 1 reactor soram. The program was run for five cycles and the strain for each remaining cycle was estimated by taking the difference in strains between the fourth and fifth cycles. Maximum total strength = 0.432 + 45 (0.01) = 0.88% Creep damage = 0.0135 + 45 (.0026) = 0.13 Maximum strain range = 0.381% (Maximum temp = 1000°F) Fatigue damage = 50/500 = 0.1 Total creep fatigue damage = 0.23<1. Ref: Computer Run EBHJL06C	4	NO 8-25-2431	DOCUMENT NO.	ND/74/66	ISSUE	1 DATE 12/16/7
the nozzle portion of this report. Location 7-7 proved to be the most severely loaded section, and only that section was analyzed. The section was idealized as a cylinder with 8" inside radius and 4" thickness. The following loading was applied: $PR_m/t = p \ge 8/4 = 12970 \ge 3600/4000$ (refer to Appendix C-1 for sourc of 12,970) solving for p, p = 5836 psi $E \ge 4T = 22184$) $\Delta T = \begin{cases} 156 \\ -59 \end{cases}$ where $E = 26.7 \ge 10^6$, $\alpha = 7.43 \ge 10^{-6}$ <u>PROGRAM RESULTS</u> The same type of loading histogram was used for the tubesheet as was used for the inlet nozzle. There are a total of 50 cycles, each cycle consisting of 3 load scrams and 1 reactor scram. The program was run for five cycles and the strain for each remaining cycle was estimated by taking the difference in strains between the fourth and fifth cycles. Maximum total strength = 0.432 + 45 (0.01) = 0.88% Creep damage = 0.0135 + 45 (.0026) = 0.13 Maximum strain range = 0.381% (Maximum temp = 1000°F) Fatigue damage = 50/500 = 0.1		CREEP FATIGUE	INTERACTION			
of 12,970) solving for p, p = 5836 psi $\frac{E \cdot AT}{2(1-\nu)} = 22184 \int AT = \{156 \\ -59 \}$ where E = 26.7 x 10 ⁶ , $\alpha = 7.43 \times 10^{-6}$ <u>PROGRAM RESULTS</u> The same type of loading histogram was used for the tubesheet as was used for the inlet nozzle. There are a total of 50 cycles, each cycle consisting of 3 load scrams and 1 reactor scram. The program was run for five cycles and the strain for each remaining cycle was estimated by taking the difference in strains between the fourth and fifth cycles. Maximum total strength = 0.432 + 45 (0.01) = 0.88% Creep damage = 0.0135 + 45 (.0026) = 0.13 Maximum strain range = 0.381% Maximum temp = 1000°F) Fatigue damage = 50/500 = 0.1 Total creep fatigue damage = 0.23<1.		the nozzle po most severely The section w	mtion of this 7 loaded secti 7as idealized	report. Lon, and only as a cylind	ocation 7-7 y that sect er with 8"	proved to be the ion was analyzed. inside radius and
$\frac{E \cdot \Delta T}{2 (1-\nu)} = 2218 L \Delta T = \begin{cases} 156 \\ -59 \end{cases}$ where $E = 26.7 \times 10^6$, $\alpha = 7.43 \times 10^{-6}$ $\frac{PROGRAM RESULTS}{The same type of loading histogram was used for the tubesheet as was used for the inlet nozzle. There are a total of 50 cycles, each cycle consisting of 3 load scrams and 1 reactor scram. The program was run for five cycles and the strain for each remaining cycle was estimated by taking the difference in strains between the fourth and fifth cycles. Maximum total strength = 0.432 + 45 (0.01) = 0.88% Creep damage = 0.0135 + 45 (.0026) = 0.13 Maximum strain range = 0.381% Maximum temp = 1000°F) Fatigue damage = 50/500 = 0.1 Total creep fatigue damage = 0.23<1.$		pRm/t = p x 8	3/4 = 12970 x	3600/4000 (1 	refer to Ap of 1 2,970)	pendix C-l for sourc
where $E = 26.7 \times 10^6$, $\alpha = 7.43 \times 10^{-6}$ <u>PROGRAM RESULTS</u> The same type of loading histogram was used for the tubesheet as was used for the inlet nozzle. There are a total of 50 cycles, each cycle consisting of 3 load scrams and 1 reactor scram. The program was run for five cycles and the strain for each remaining cycle was estimated by taking the difference in strains between the fourth and fifth cycles. Maximum total strength = $0.432 + 45 (0.01) = 0.88\%$ Creep damage = $0.0135 + 45 (.0026) = 0.13$ Maximum strain range = 0.381% Fatigue damage = $50/500 = 0.1$ Total creep fatigue damage = $0.23 < 1$.		solving for p	p = 5836 ps i			
PROGRAM RESULTSThe same type of loading histogram was used for the tubesheet as was used for the inlet nozzle. There are a total of 50 cycles, each cycle consisting of 3 load scrams and 1 reactor scram. The program was run for five cycles and the strain for each remaining cycle was estimated by taking the difference in strains between the fourth and fifth cycles.Maximum total strength = $0.432 + 45 (0.01) = 0.88\%$ Creep damage = $0.0135 + 45 (.0026) = 0.13$ Maximum strain range = 0.381% Fatigue damage = $50/500 = 0.1$ Total creep fatigue damage = $0.23 < 1$.		$\frac{E \star \Delta T}{2 (1 - \nu)} = 22$	$\begin{bmatrix} 184\\ 62 \end{bmatrix} \Delta T = \begin{cases} 15\\ -5 \end{cases}$	6 9		
The same type of loading histogram was used for the tubesheet as was used for the inlet nozzle. There are a total of 50 cycles, each cycle consisting of 3 load scrams and 1 reactor scram. The program was run for five cycles and the strain for each remaining cycle was estimated by taking the difference in strains between the fourth and fifth cycles. Maximum total strength = $0.432 + 45 (0.01) = 0.88\%$ Creep damage = $0.0135 + 45 (.0026) = 0.13$ Maximum strain range = 0.381% Fatigue damage = $50/500 = 0.1$ Total creep fatigue damage = $0.23<1$.		where $E = 26$.	7×10^6 , $x =$	7.43 x 10-6		
was used for the inlet nozzle. There are a total of 50 cycles, each cycle consisting of 3 load scrams and 1 reactor scram. The program was run for five cycles and the strain for each remaining cycle was estimated by taking the difference in strains between the fourth and fifth cycles. Maximum total strength = $0.432 + 45 (0.01) = 0.88\%$ Creep damage = $0.0135 + 45 (.0026) = 0.13$ Maximum strain range = 0.381% Fatigue damage = $50/500 = 0.1$ Total creep fatigue damage = $0.23 < 1$.		PROGRAM RESUL	TS			· · · ·
Creep damage = $0.0135 + 45 (.0026) = 0.13$ Maximum strain range = 0.381% Fatigue damage = $50/500 = 0.1$ Total creep fatigue damage = $0.23<1$. (Maximum temp = $1000^{\circ}F$)		was used for each cycle co program was r cycle was est:	the inlet noz nsisting of 3 un for five c imated by tak:	zle. There load scrams ycles and th ing the diff	are a total and 1 read a strain fo	l of 50 cycles, ctor scram. The or each remaining
Maximum strain range = 0.381% Fatigue damage = 50/500 = 0.1 Total creep fatigue damage = 0.23<1.						
(Maximum temp = 1000°F) Fatigue damage = 50/500 = 0.1 Total creep fatigue damage = 0.23<1.		Maximum total	strength = 0	.432 + 45 (c	0.01) = 0.88	3%
Fatigue damage = 50/500 = 0.1 Total creep fatigue damage = 0.23<1.					,	3%
		Creep damage	= 0.0135 + 45	(.0026) = 0	0.13	
Ref: Computer Run EBHJL06C		Creep damage : Maximum strain	= 0.0135 + 45 n range = 0.38	(.0026) = C	0.13	
		Creep damage Maximum strain Fatigue damage	= 0.0135 + 45 n range = 0.38 e = 50/500 = ((.0026) = C 31%).1	0.13	
		Creep damage Maximum strain Fatigue damage Total creep fa	= 0.0135 + 45 n range = 0.38 e = 50/500 = (atigue damage	(.0026) = 0 31%).1 = 0.23<1.	0.13	
		Creep damage Maximum strain Fatigue damage Total creep fa	= 0.0135 + 45 n range = 0.38 e = 50/500 = (atigue damage	(.0026) = 0 31%).1 = 0.23<1.	0.13	
		Creep damage Maximum strain Fatigue damage Total creep fa	= 0.0135 + 45 n range = 0.38 e = 50/500 = (atigue damage	(.0026) = 0 31%).1 = 0.23<1.	0.13	
		Creep damage Maximum strain Fatigue damage Total creep fa	= 0.0135 + 45 n range = 0.38 e = 50/500 = (atigue damage	(.0026) = 0 31%).1 = 0.23<1.	0.13	
		Creep damage Maximum strain Fatigue damage Total creep fa	= 0.0135 + 45 n range = 0.38 e = 50/500 = (atigue damage	(.0026) = 0 31%).1 = 0.23<1.	0.13	
		Creep damage Maximum strain Fatigue damage Total creep fa	= 0.0135 + 45 n range = 0.38 e = 50/500 = (atigue damage	(.0026) = 0 31%).1 = 0.23<1.	0.13	

CHARGE	NO 8-25	-2431	DOCUMENT	NO. ND	/74/66	ISSUE	1	DATE 12/10	5/74
5.3	STRESS A	ANALYSI	S OF THE	MSBR SH	IELL				
	······································								
5.3.	1 INTRO	DUCTION	AND SUM	ARY					
	stres	ses. T		ations of				rmal transi were select	
	calcu were c 2. At used t	lation. letermi t locat to dete	Tempera ned using ion C, th	ture di g the fine e finit essure s	stributi nite ele e elemen	ons and ment mod t model	thermal s els shown shown in	ed by hand tresses in Figure Figure 3 wa ributions,	ıs
	locati 300 ps second of 235 down t that a (Load of Two	lons. si or a lary st psi, thermal a "Ramp Scram) o Safet	Primary s n operati ress inte the seven transien Change i is the m	stresses ing presensity r rest up it. Exa in Load iost sev (Reactor	are due sure of anges ar thermal mination from 100 ere up t	e to a de 235 psi, e due to transien of Refe % to 40% ransient	an opera t, and th rence 1 i in 3 Sec	sure of imary plus ting pressu e severest ndicates onds" Insertion	ıre
	rules not pl	of ASM Lace a sity ra	E Code Ca stress li	ise 1331 mit on	-5. Alt the prim	hough the ary plus	ccordance e Code Ca sec o ndar d for ref	y stress	
							ds on the e (< 200 p	shell was si).	
								<u>-</u> *	
					. •				

DESIGN CONDITION	A B C	TABLE I Stress Category Pm PL+Pb Pm PL+Pb	- STRESS SUMMARY - MS Calculated Stress Intensity 8.2 8.2 0.3	$\frac{BR SHELL}{Allowable}$ $S_0=9.5$ $1.5S_0=14.25$
DESIGN CONDITION	A B	Stress Category Pm PL+Pb	Calculated Stress Intensity 8.2 8.2	Allowable
DESIGN CONDITION	A B	Stress Category Pm PL+Pb	Calculated Stress Intensity 8.2 8.2	Allowable
DESIGN CONDITION	A B	Stress Category Pm PL+Pb	Calculated Stress Intensity 8.2 8.2	Allowable
DESIGN CONDITION	A B	Category P _m P _L +P _b	Stress Intensity 8.2 8.2	
DESIGN CONDITION	A B	Pm PL+Pb	8.2 8.2	
DESIGN	В		8.2	S ₀ =9.5 1.5S ₀ =14.25
DESIGN			8.2	$1.5S_0 = 14.25$
DESIGN		P _m PL+P _b	0.2	
DESIGN	С	PL+Pb		
	с		0.3	$S_0=9.5$ 1.5S_0=14.25
	-	р		
Z		Pm PL+Pb	8.2	S _o =9.5 1.5S _o =14.25
			10.5	1.550 = 14.25
I CI	A	D		
TI		Pm PL+Pb	6.4	S _{mt} =7.5 KS _t =7.8
CONDITION		P _L +P _b +Q	38.9	$\frac{KS_{t}=7.8}{3S_{m}=67.5}$
	В			
Ň		Pm PL+Pb	.2	S _{mt} =7.5 KS _t =9.3
RAT		$P_L + P_b + Q$	4.1	$KS_{\pm}=9.3$
OPE	C I	D		
	J	$P_{\rm m}$ P _I +P _L		$S_{mt} = 7.5$
		P _L +P _b +Q		$\frac{KS_{t}=7.8}{3S_{t}=67.5}$
OPERATING	See Appen	$\frac{P_{m}}{P_{L}+P_{b}}$ $\frac{P_{L}+P_{b}+Q}{P_{L}+P_{b}+Q}$ ables are at 1150° dix C-2 for mater	6.4 8.0 45.0	$3S_{m} = 67.5$ $S_{mt} = 7.5$ $KS_{t} = 7.8$ $3S_{m} = 67.5$

FWC FORM 172 - 4

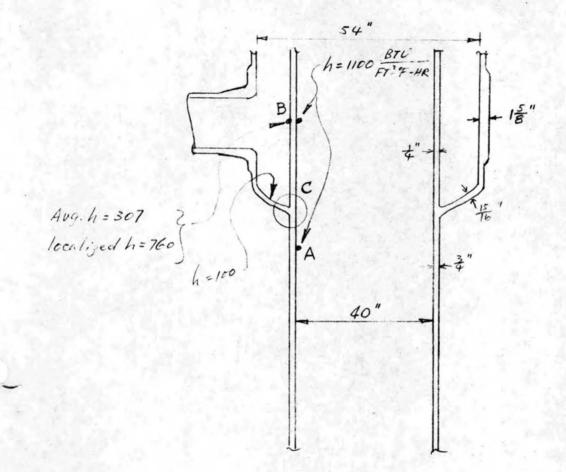
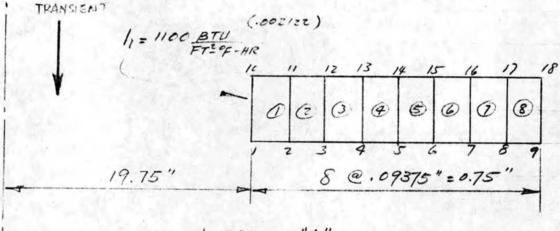



FIGURE 1

LOCATION "A"

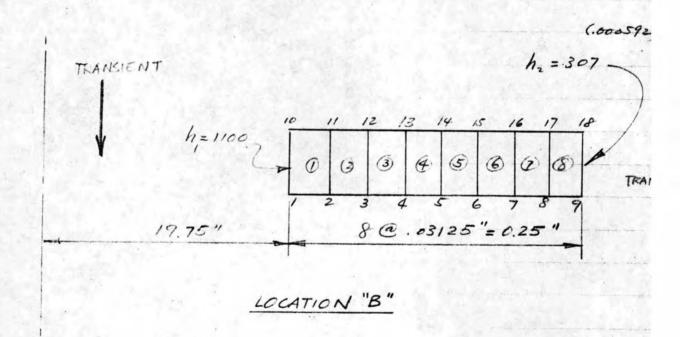
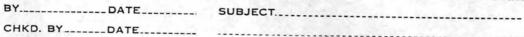
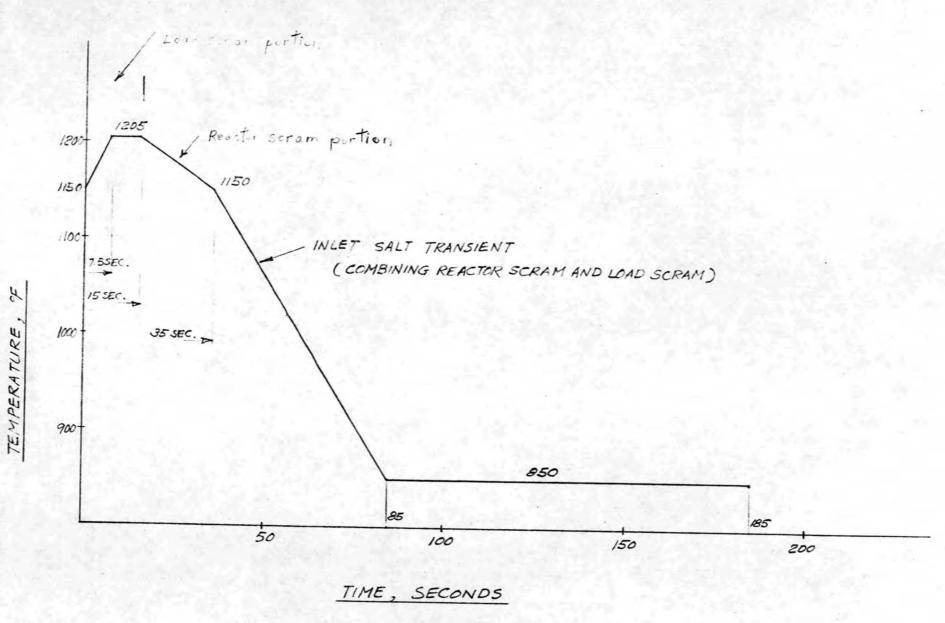
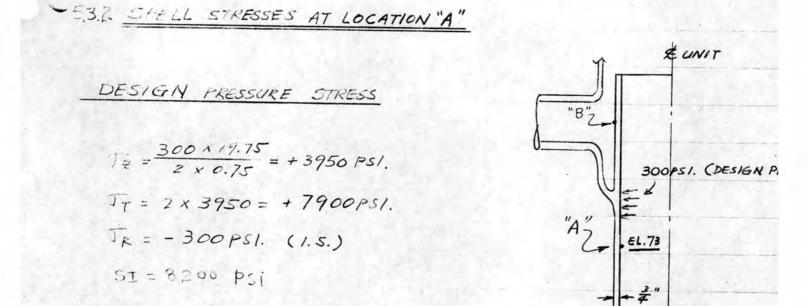



FIGURE 2: FINITE ELEMENT MODELS

FOSTER WHEELER CORPORATION 110 SOUTH ORANGE AVE., LIVINGSTON, N.


SHEET NO OF JOB NO.....


FORM (285)-47

FIGULE 4

COMBINED INLET SALT TRANSIENT DUE TO REACTOR SCRAM AND LOAD SCRAM

1

TRANSIEN'T TE	MPERATU	IRE STRESS	ES	19.75"	
	JR	<u>J</u> z	JT	VRZ	STRESS IN
REACTOR SCRAM	90	15,800	31,690	-20	31,610
CLOAD SCRAM	-20	-3,780	-7.300	10	7,280
1 + 2 + OPER, PRESS	110	19,580	38,990	-30	38,880

$$T_{1}, T_{2} = \frac{1}{2} \left(19,580 + 110 \right) \pm \left[\left(\frac{19,580 - 110}{2} \right)^{2} + \left(-30 \right)^{2} \right]^{\frac{1}{2}}$$

= 9845 ± 9735

= 19,580, 110

 $T_3 = V_T = 38,990$

STRESS INTENSITY = 38,990-110 = 38,880 PS1.

NOTE: MAX. KEACTOR SCRAM STRESS OCCURS AT END OF 85 SEC. AFTER START OF SCRAM. $\Delta T = 171^{\circ}F$. MAX. LOAD. SCRAM STRESS OCCURS AT END OF 15 SEC. AFTER START OF SCRAM. $\Delta T = 38^{\circ}F$.

5.3.3 SHELL STRESSES AT LOCATION "B"

DESIGN PRESSURE STRESS

$$T_T = T_Z = 0$$

 $T_R = -300 PSI.$ (AT THE SURFACES

TRANSIENT	TEMPER	ATURE STRE.	SSES		
	TR	Jz	UT	URZ	STRESS
@ REACTOR SCRAM	4	1538	2282	2	2278
@ LOAD SCRAM _	-3	-1267	-1837	-1	1833
() + @ + OP. PRESSURE	7	2805	4119	3	4112

$$T_{1}, T_{2} = \frac{1}{2} \left(2805 + 7 \right) \pm \left[\left(\frac{2805 - 7}{2} \right)^{2} + (3)^{2} \right]^{\frac{1}{2}}$$

$$= 1406 \pm 1399$$

$$= 2805, 7$$

$$T_{2} = 5 = 4119$$

STRESS INTENSITY = 4119 -7 = 4112 PS1.

NOTE: MAX. REACION SCRAM STRESS COCURS AT END OF 67 SEC. AFTER START OF SCRAM. AT = 15°F MAX. LCAD SCRAM STRESS OCCURS AT END OF 7.5 SEC. AFTER START OF SCRAM. AT = 12°F

FOSTER WHEELER C	ORPORATION 110 SOUTH ORAN	ORANGE AVE., LIVINGSTON, N		
BYDATE 5/3/14	SUBJECT.	SHEET NO / OF		
CUVD BY DATE		JOB NO		

5.3.4 SHELL SHOUD JUNCTURE STRESSES

I PRESLUKE STRESSES (MAXIMUM STRESSES AT ELEMENTS 63-61 DUE TO 300 PSI DESIGN PRESSURE)

FROM FIGURE 5 WE OBTAIN THE FOLLOWING MEMBRANE STRESSES

 $\sigma_r^m = 0.0236 \text{ ksi}$ $\sigma_z^m = 4.19$

 $5_{x}^{m} = 10.31$ $5_{rz}^{m} = 0.361$

PRINCIPAL STRESSES:

 $\sigma_1 = 10.31 \text{ ksi}$ $\sigma_2 = 4.221$ $\sigma_3 = -0.007$

MATIMUM STRESS INTENSITY = 10.32 KSi = PL

FROM FIGURES, WE OBTAIN THE MAXIMUM LINEALIZED BENDING STRESSES:

 $T_{r}^{b} = 0.361$ $\sigma_{z}^{b} = 4.38$ $\sigma_{t}^{b} = 1.21$ $\sigma_{rz}^{b} = 0.668$

FOSTER WHEELER	CORPORATION
----------------	-------------

110 SOUTH ORANGE AVE., LIVINGSTON, N.

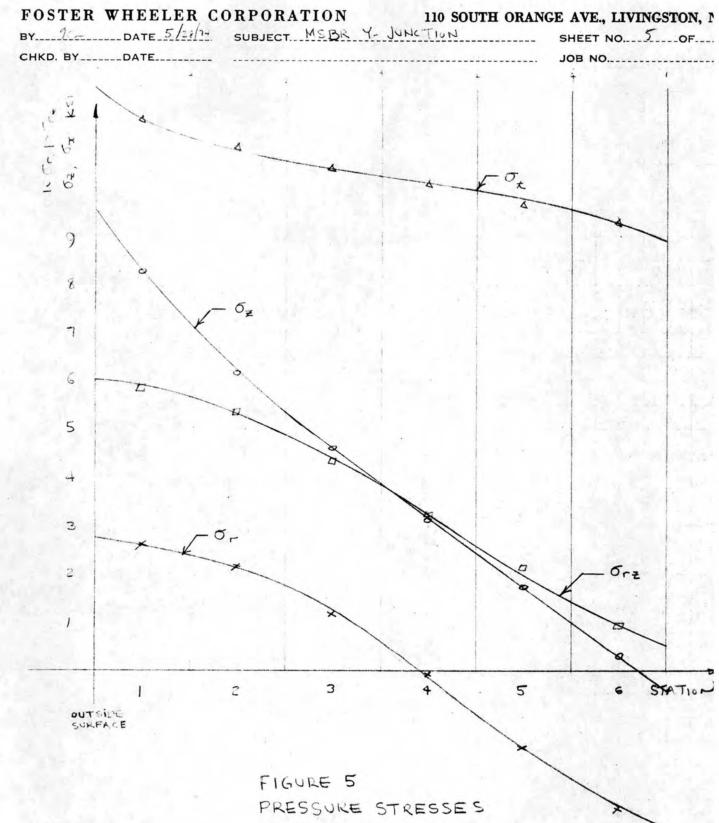
BY.____DATE_____SUBJECT.____ CHKD. BY DATE

SHEET NO. IA OF JOB NO.....

$$P_m = 8.2 \text{ ksi} < S_o = 9.5 \text{ ksi}$$
 @ 1150°F

PL= 8.07 < KSz= 1.25 × 8 - 0.25 × 6.43 = 8.39

FORM (285) .47


FOSTER WHEELER C	ORPORATION 110 SOUTH ORAN	GE AVE., LIVINGSTON, N.
BYDATE	SUBJECT	
CHKD. BY DATE		JOB NO

I PRESSURE + THERMAL STRESS: MAXIMUM STRESS INTENSITY RANGE (REF. 6)

	ELEMENTS	63-68	(SEE FI	g's 6-7;	LINEARIZED STRES
	5-	52	5.	Grz	ARE GIVEN BELOW
113, 522. 17 SEC. Range:	0.11 -0.36 0.47	31.78 - <u>13.62</u> 45.4	40.78 0.58* 41.36	-0.69	REACTOR SCRAM LOAD SCRAM 45.0

A value of -13.93 was previously conservatively calculated and was used in the fatigue and creep fatigue interaction. Page 5-45 FORM (2005)-47

SP 183874

ELEMENTS 63-68

FOSTER WHEELER CORPORATION 110 SOUTH ORANGE AVE., LIVINGSTON, N. BY______DATE______DATE______ SUBJECT.______SHEET NO._____OF.____ CHKD. BY_____DATE______ JOB NO.______

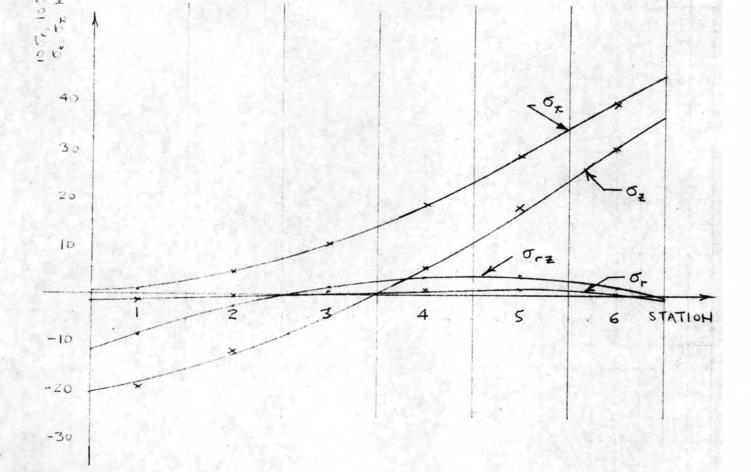
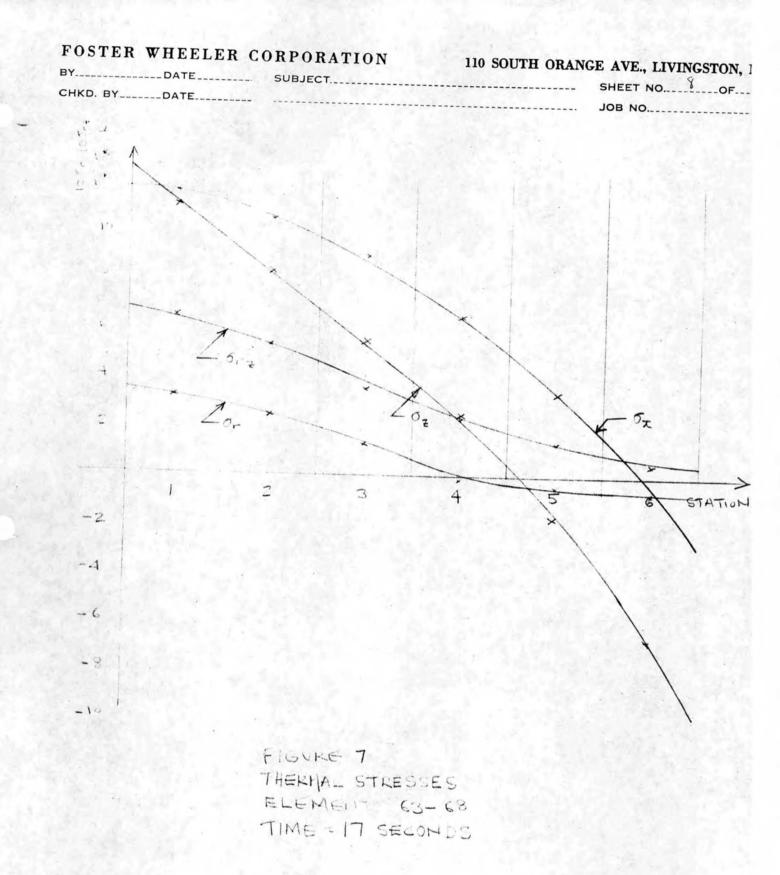



FIGURE 6 THERMAL STRESSES ELEMENTS 63-68 TIME= 113 SECONDS

CHARGE NO	8-25-2431	DOCUMENT	NO.ND/74/66	ISSUE	1	DATE 12/16/
5.3.5	SIMPLIFIED	INELASTIC	ANALYSIS			
	Inelastic s	trains wer	e calculated	by Bree's	simplifie	ed method
	are a total and reactor	of 200 se scrams).	e Bree analys evere thermal With a 30-ye	cycles (su ear design	n of load	d scrams
	The derivat:	ion of the	= 1314 hours	ed in the B		ysis is
	given in the	e tubeshee	et section of	this repor	t.	
			Reference 31 e obtained:	nas been co	nputeriz	ed. The
Location	Primary	Stress S	econdary Str	ess Strai	n/Cycle%	<u>Total Stra</u>
A	820	0	38880	5 x	10-4	0.1<1
В	30	0	4112		0	0
С	807	0	55000	8x	10-4	0.16<1
	• • • •					
		•				•
	С. С					
				• •		
	· · ·					
		•				

CHARGE N	0 8-25-2431	DOCUMENT N	0. ND/74/66	ISSUE	1	DATE 12/16/74
5.3.6	FATIGUE ANA	LYSIS AND CR	EEP FATIGUE	INTERACTION	<u>1</u>	
	A prelimina: from Code Ca	ry fatigue a ase 1331-4.	nalysis was The follow	made using ing results	the fat: were obt	igue curves tained:
	Location	S, Ksi	Salt	Nall		
	Α	38.9	19.5	6000		•
	В	4.1	2.1	ø		· .
	С	54.3	27.2	1500		
	With only 20 is 200/1500	00 cycles of = 0.13.	significat	n stress, ma	xi mum fa	atigue damage
	CREEP FATIGU	IE INTERACTI	ON			
	the nozzle s shown in tha loadings, wh <u>pr</u> = 8.07; p t	t section. ich are giv	The shell s en below.	shroud junct	ure had	i is also the highest
	$\frac{\text{E}_{4}\text{AT}}{2(1-\nu)} = \frac{1}{2}$).8 A	T = 290 F (- 97 F ((down transi (up transien	ent) t)	
	where E = 27 E = 25	.45 x 10 ⁶ .8 x 10 ⁶	= 7.17 = 7.81	25 x 10 -6 . x 10 -6		transient) transient)
	In addition					
	PROGRAM RESU		⁷ was appli e	d to simula	te tne p	
	PROGRAM RESU There are a scrams and 1 and the stra	<u>LTS</u> total of 50 reactor sci in for each	cycles, eac ram. The pr of the rema	ch cycle con ogram was r ining cycle	sisting un for f s was es	s tress of 3 load ive cycles t in ated by
	PROGRAM RESU There are a scrams and 1 and the stra	<u>LTS</u> total of 50 reactor scr in for each ifference in	cycles, eac ram. The pr of the rema n strains be	ch cycle con cogram was r ining cycle tween the f	sisting un for f s was es ourth an	s tress of 3 load ive cycles t in ated by
	PROGRAM RESU There are a scrams and 1 and the stra taking the d	<u>LTS</u> total of 50 reactor sch in for each ifference in 1 st r ain = (cycles, eac ram. The pr of the rema n strains be D.487 + 45 (th cycle con rogram was r ining cycle tween the f 0.041) = 2.	sisting un for f s was es ourth an	s tress of 3 load ive cycles t in ated by
	PROGRAM RESU There are a scrams and 1 and the stra taking the d Maximum tota	LTS total of 50 reactor scr in for each ifference in 1 strain = (= 0.0547 +	cycles, eac ram. The pr of the rema n strains be 0.487 + 45 (45 (0.0120)	th cycle con rogram was r ining cycle tween the f 0.041) = 2.	sisting un for f s was es ourth an	st ress of 3 load ive cycles t in ated by
	PROGRAM RESU There are a scrams and 1 and the stra taking the d Maximum tota Creep damage Maximum stra	LTS total of 50 reactor scr in for each ifference in 1 strain = (= 0.0547 +	cycles, eac ram. The pr of the rema n strains be 0.487 + 45 (45 (0.0120)	th cycle con rogram was r ining cycle tween the f 0.041) = 2.	sisting un for f s was es ourth an	ive cycles

CHARGE 1	10 .8-25-2431	DOCUMENT	r NO. NI	D/74/66	ISSUE	1	DATE_12/16	/7
	Fatigue da	mage = 50/	1000 -		ה+ וׂוגׂ	6 5		
						Οr		
	Total cree		_		<1			
	Ref.: Com	puter Run	EBHJLO1	C				
	* Some sli	oht thicke	ning in	the ar	ea of the	shell shr	oud junctur	<u>.</u>
	may be ne value of	ecessary t	o reduce	e the to	otal strai	n below t	the allowabl	e.e
	Varue or	Z /0 •					•	
					•			
		•						
	· · · ·							
	•							
				•			· · ·	
	· ·							
BY	Δ	PROVED				PAGE	OF	

	RGE NO 8-25	-2431	DOCUMEN	NT NO. ND/	7µ/66	ISSUE 1	1	DATE	
								DATE 12/	16/
5	.4 STRESS	ANALYSI	SOFTH	E MSBR TU	BES				
5	.4.1 INTROI	DUCTION	AND SUM	MARY					
	expans and st than t gradie Restra of the	ion st eam is he tra nt the ined th fact t	resses. greates nsient c rmal str nermal e that the	The temp t during ondition) esses occ xpansion	erature the stead and, the ur during stresses	loy N mater ient, and r difference dy state co erefore, th g steady st occur in t perature i	estrain betweer nditior e highe ate.	ned them 1 the sa 1 (rathen 2st radia	nal Lt : il
	the avo with th	erage t he aid	ube temj of the c	perature.	These	stresses w	ere cal	culated	n
	Table I in acco are due expansi differe and res on prim	l gives ordance to a ion. 0 ential, straine	s a summa with th 3600 psi perating radial d therma	ary of the le rules of design p stresses temperatu l expansi dary stre	e results of Code C pressure are due re gradie on. Alt	Stresses ase 1331-5 and restrai to a 3425 ents during hough there	ned the psi pro stead is no	gn stres ermal essure y state,	ses
	11			Landou L	or refere	ence purpos	es.		se,
	found t	hat nat	tural fr	equencia	, were c	f the tubes alculated. least 50% is satisfa	It wa	e flow .s than	
									•
				•					•
									•
								•	•
									•
		· · · · · · · · · · · · · · · · · · ·							

CHARGE NO 8-25	-2431 DOCUMENT NO. N	1D/74/66 ISSUE 1	DATE 12/16/7
Ψ			
<u> </u>	ABLE 1 - SUMMARY OF R		
Condition	Stress <u>Category</u>	Calculated Value (ksi)	Allowable (ksi
Design	Pm	11.67	S = 11.8 @1120°H
	PL+Pb	11.67	1.55 ₀ =17.7
Operating	Pm	11.4	S _{mt} =11.8
	P _L +P _b	11.4	KS _t =12.2
	$(P_L + P_b + Q)_R$	29.3	35 _m =67.5
*Maximum aver	age through the wall	tube temperature.	
	.4.6 for creep fatigu		
pee whhenmax	C-2 for material prop	erties and allowable	S.
·			

FWC FORM 172 - I4

FOSTER WHEELER C	ORPORATION 110 SOUTH ORAL	NGE AVE., LIVINGSTON, N.
BYDATE	SUBJECT	SHEET NO OF
CHKD. BY DATE		JOB NO

54.2 The PRIMARY STRESSES
A) Pressure Stresses

$$P^{2}_{1} = 260 \text{ psi} (\text{ (aT he of now, TE stresses - which are considered primary)} \\ f_{1} = 0.25 + 30 (...) = 0.260 = b & \text{ Te heat 0.1025} \\ f_{2} = 0.25 + 30 (...) = 250 \text{ (a - 575 = a)} & \text{ b + a = 0.1025} \\ Tr = -P \frac{ar(b - m)}{rr(b - a - 1)} & Tr = P \frac{a^{-1}}{rr(b - a - 1)} & Tr = \frac{a^{-1}}{b - a} \int_{0}^{b} \frac{P A^{-1}}{rr(b - a - 1)} & Tr = \frac{a^{-1}}{b - a} \int_{0}^{b} \frac{P A^{-1}}{rr(b - a - 1)} & Tr = \frac{a^{-1}}{b - a} \int_{0}^{b} \frac{P A^{-1}}{rr(b - a - 1)} & Tr = \frac{a^{-1}}{rr(b - 1)} & Tr = \frac{a^{-1}}{r$$

FORM (285)-47

FOSTER WHEELER CORPORATION 110 SOUTH ORANGE AVE., LIVINGSTON, N.

BY_____DATE_____SUBJECT CHKD. BY DATE -----JOB NO.....

$$\overline{\sigma}_{r} = \frac{-p(0.2575)}{2.6175} = -0.417 p$$

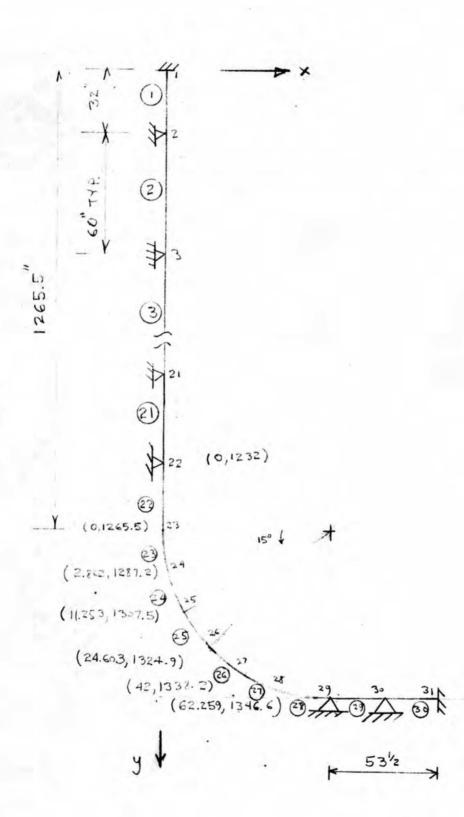
$$\overline{5}_{\theta} = \frac{P(5.2575)}{0.1025} = 2.512 P$$

$$\overline{D}_{2} = \frac{P(0.2575)^{2}}{0.36^{2} - 0.2575^{2}} = 1.048 \text{ p}$$

$$T_{r} = \frac{1}{p} \left(a + r = a\right)$$

$$T_{r} = \frac{b^{2} + a^{2}}{b^{2} - a^{2}} = \frac{0.1959}{0.06329} = 3.095p \quad (r = a)$$

Phint MEMBRANE PRESSURE STRESSES


- 1.048 -

FORM (285).47

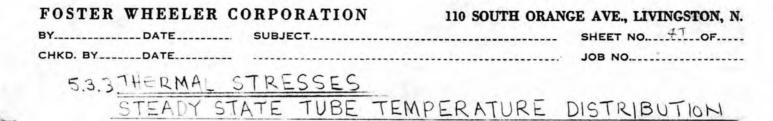
CHARGE	NO 8-25-2431	DOCUMENT	NO. ND/74/6	6 ISSUE 1	DATE	12/16
Н) -	TOBE THERMAL	EXPANSION				
		sion stress	ses will exi	ce b etw een the st in the tube es.		
			Tube	Shell	ΔT	
	Inlet Tempera	ture	1083	1150	67	
	Outlet Tempera	ature	756	850 Average A T	<u>_94</u> = 80.50	
	average temper	rature diff	ference of 8	s prepared (Fi 0.5 F between 00 psi was obt	the tubes and	l ying Isheli
	Reference: F	WC Compute	r Run EBHLEV	YC, July 8, 19	74.	
				•		
					. •	

110 SOUTH ORANGE AVE., LIVINGSTON, N.

BY.....DATE...... SUBJECT.....

FIGURET STRUDL MODEL FOR TUBE THERMAL EXPANSION STRESSES

FORM (285)-47


Page 5-57

FOSTER WHEELER C	ORPORATION 110 SOUTH OR	ANGE AVE., LIVINGSTON, N.
BYDATE	SUBJECT	SHEET NO OF
CHKD. BYDATE		JOB NO

$$\frac{\text{DESIGN}}{\text{O}_{r} = -0.417 + 3.600 = -1.5\text{ksi}} \\ \overline{\text{O}_{0}} = 2.512 \times 3.600 = 9.04 \\ \overline{\text{O}_{2}} = 2.512 \times 3.600 = 9.04 \\ \overline{\text{O}_{2}} = 1.048 \times 3.000 + 6.4 = 10.17 \\ \end{array}$$

$$\frac{\text{Max}}{\text{SI}} = |1.67 \\ < S_{0} = 11.8 \text{ Ksi} @ 1120^{\circ}\text{F} \\ < S_{0} = 11.8 \text{ Ksi} @ 1120^{\circ}\text{F} \\ < S_{0} = 11.8 \text{ Ksi} @ 1120^{\circ}\text{F} \\ \frac{\text{Max}}{\text{SI}} = \frac{1.97 \times 10^{\circ}}{1048 + 0.417} + 6.4 = 11.4 \\ \frac{\text{Max}}{\text{Max}} = \frac{1.97 \times 10^{\circ}}{1048 + 0.417} + 6.4 = 11.4 \\ \frac{\text{Max}}{\text{Max}} = \frac{1.97 \times 10^{\circ}}{1048 + 0.417} + 6.4 = 11.4 \\ \frac{\text{Max}}{\text{Max}} = \frac{1.97 \times 10^{\circ}}{1048 + 0.417} + \frac{3.600 + 6.4}{105} + 11.4 \\ \frac{\text{Max}}{1075^{\circ}\text{F}} = \frac{1.97 \times 10^{\circ}}{1075^{\circ}\text{F}} = 1.4 \\ \frac{\text{Max}}{1075^{\circ}\text{F}} = 1.4 \\ \frac{\text{Max}}{1075^{\circ}\text{F}} = 1.4 \\ \frac{1.4}{105} \times 10^{\circ}\text{F} = 1.4 \\ \frac{1.4}{105} \times 10^{\circ}\text{F}$$

FORM (285)-47

 $T_{i} = 1210$ (STEAM OUTLET) $k = 11.0 @ 1080^{\circ}F$ $T_{i} = 700$ (STEAM INLET) $k = 9.05 @ 775^{\circ}F$ T= 850 (SODIUM OUTLET) T= 1150 (SODIUM INLET) h:= 4541 (STEAM INLET - SODIUM OUTLET) hi= 1439 (STEAM OUTLET - SODIUM INLET) h.= 972 (STEAM INLET - SODIUM OUTLET) ho= 1134 (STEAM WILET - SODIUM INLET) $q = h_i (2\pi r_i)(T_i - T_i^5) = \frac{2\pi k}{\ln^6/r_i} (T_o - T_i) = h_o (2\pi r_o)(T_o^5 - T_o)$ $T_i - T_i^{f} = \frac{g}{2\pi hr}$ To- Ti = - 2 Tr K/In Form. $T_{1}^{5} - T_{1}^{5} = g \left[\frac{1}{2\pi h_{1}r_{2}} + \frac{1}{2\pi h_{1}r_{2}} + \frac{1}{2\pi h_{0}r_{0}} \right]$ FORM (285).4 Page 5-59

FOSTER	WHEELER	CORPORATION
1.	-1 1	

110 SOUTH ORANGE AVE., LIVINGSTON, N., SHEET NO. 5.T. OF.

BY_____ DATE_____ SUBJECT._____ CHKD. BY_____ DATE_____

JOB NO.....

$$g = 2 \operatorname{Tr} \left[\left[T_{0}^{5} - T_{1}^{5} \right] \left[\frac{1}{h_{i}r_{i}} + \frac{\ln r_{i}/r_{i}}{k} + \frac{1}{h_{0}r_{0}} \right]^{-1} \right]$$

$$T_{i} = T_{i}^{5} + \left[T_{0}^{5} - T_{1}^{5} \right] \left[1 + \frac{h_{i}r_{i}}{k} \ln \frac{r_{0}}{r_{i}} + \frac{h_{i}r_{i}}{h_{0}r_{0}} \right]^{-1} \right]$$

$$T_{i} = T_{0}^{5} - \left[T_{0}^{5} - T_{0}^{5} \right] \left[1 + \frac{h_{0}r_{0}}{k} \ln \frac{r_{0}}{r_{i}} + \frac{h_{0}r_{0}}{h_{i}r_{i}} \right]^{-1} \right]$$

$$T_{i} - T_{i} = \left[T_{0}^{5} - T_{1}^{5} \right] \left[1 + \frac{h_{0}r_{0}}{k} \ln \frac{r_{0}}{r_{i}} + \frac{h_{0}r_{0}}{h_{i}r_{i}} \right]^{-1} \right]$$

FOR STEPH INCET - SODIUM OUTLET

$$T_{i} = 700 + 150 \left[1 + \frac{4541 \times 0.25/12}{9.05} \ln 1.5 + \frac{2}{3} \frac{4541}{972} \right]^{-1}$$

 $T_{L} = 718 F$

$$T_{0} = 850 - 150 \left[1 + \frac{972 \times 0.375/12}{9.05} \ln 1.5 + \frac{3}{2} \frac{972}{4541} \right]^{-1}$$

$$T_{0} = 794 F \qquad T_{mean} = 756 F \qquad 14$$

$$T_{s} - T_{t} = 15_{0} \left[1 + \frac{9.05 \times 12}{454_{1} \times 0.25} + \frac{9.05 \times 12}{972 \times 0.375} \right]^{-1}$$

$$T_{s} - T_{t} = 76^{\circ} F$$

$$\sigma = \frac{E \times}{2(1-v)} (T_{s} - T_{t}) = \frac{27.5 \times 7.09}{1.4} (76) = 10,600 \text{ psi}$$

$$F_{0E} = 5TEFEE \text{ or } 1ET - 50010F \text{ INLET}$$

$$T_{t} = 1010 + 140 \left[1 + \frac{1439 \times 0.25/12}{11.0} \ln 1.5 + \frac{2}{3} \frac{1439}{1134} \right]^{-1}$$

$$T_{t} = 1057^{\circ} F$$

$$T_{0} = 1150 - 140 \left[1 + \frac{1134 - 0.315/12}{11.0} \ln 1.5 + \frac{3}{2} \frac{1134}{1439} \right]^{-1}$$
FORM (2005)...
$$T_{0} = 1110^{\circ} F$$

$$T_{mean} = 1083.5$$
Page 5-60

DATE SUBJECT..... CHKD. BY DATE

BY.

JOB NO.....

 $T_{-} - T_{-} = |40[1 + \frac{11.0 \times 12}{1439 \times 0.25 \cdot \ln 1.5} + \frac{11.0 \times 12}{1134 \times 0.375 \times \ln 1.5}]^{-1}$ T.- T. = 52°F $T = \frac{E_{X}}{2(1-2)} (T_{-} - T_{-}) = \frac{26.3 \times 7.6}{1.4} (S_{2}) = 7420 \text{ psi}$

CHARGE NO 8-	25-2431	DOCUMENT NO. ND	/74/66	ISSUE	1	DATE 12	/16/
5.3.4 FLOW	INDUCE	D VIBRATION					
The re i	ls a pos	sibility of flow	induced	vibratio	n onlur in	the her	4
area o	t the tu	pes. The direct	ion of no	ssible v	ibration	ic chown	u
une nat	Jural ire	Supports have be equency to 50% a	en provid bove the	ed as sh vortex s	own, to i hedding.	ncrease and minim	mize
the pos	sibilit	y of vibration.			0,		
The nat	ural fro	equency is calcu	lated bel	ow.			
				•			
			•				
				•			
				. *			
	•						
			.*			× 1	
•		• •		· .			
					••••		

110 SOUTH ORANGE AVE., LIVINGSTON, N. 1

BYDATE	SUBJECT
CHKD. BYDATE	

SHEET NO.....OF.....

Take Natural Friquery

Rm x = 103"

(Presents version + R in direction perovolucion + to plane of band) +

Figure Z: Tube and Supports in Bend Area

 $K_{1} = \sqrt{\frac{E_{1}}{\mu}} = \sqrt{\frac{16.3 \times 1.6 \times 0.0124 C_{y} 386.4}{0.977 y}} = 40.34 \times 10^{3}$

L= SHAN LENGTH = 103- 11/8 = 40.45

F - A SIMPLY SUPP. - ED BEAM

- w= TT K1 = 38.7 cps
- 1 A FILE FILES BEFN
- E AVERALE

1 = = = (38.7+96.5)=62.C

THE VORTER SHEDDING FREINERCY = 40 LPS

THE VERY IN SHEDDING THE THEN 50% HIGHER FORM (200)-47 THE VERY SHEDDING FREQUENCY, AND FLOW HEDDING VIENT ION SHE OF BE MINIMAL. Page 5-6

5.3.5 <u>SIMPLIED INFLASTIC AMMINES</u> Inelastic strains were calculated by Bree's simplified method (see Chapter VI of the IMFER Phying Design Childe). In the Bree are Chapter VI of the IMFER Phying Design Childe). In the Bree analysis, it is assumed that there are a total 0.200 severe thermal cycles (sum of load scrams and reactor scrams). With a 30-year design life, the time per cycle is 262,600/200 = 131h on the stress reaction of the creep law used in the Bree analysis is as the following results were obtained. The derivation of the creep law used in the Bree analysis is given in the tubesheet report. The Bree analysis has been computerized by Foster Wheeler, and the following results were obtained. P _m P ₁ P ₁ P ₉ +Q) _R €/cycle x 6x 0.006 196 Sef: Computer Run NHJLO?P In computer run, input data is conservative. A preliminary fatigue analysis was made with the aid of Code Case of 11.0. Ksi, the Code Case gives an infinite number of allowable cycles. Thus, fatigue should be no problem.		E NO 8-25-2431	DOCUMENT NO. ND/714	/66 ISSU	E <u>1</u>	DATE 12/16
Inelastic strains were calculated by Bree's simplified method (see Chapter VI of the IMTER Piping Design Guide). In the Bree analysis, it is assumed that there are a total of 200 severe thermal cycles (sum of load scrams and reactor scrams). With a 30-year design life, the time per cycle is 262,800/200 = 1314 hours. The derivation of the creep law used in the Bree analysis is given in the tubesheet report. The Bree analysis has been computerized by Foster Wheeler, and the following results were obtained. $\frac{P_m}{11.4} \frac{P_L P_b + Q)_R}{11.4 + 10.6} \frac{\mathcal{E}/cycle \#}{3x10^{-4}} \frac{\mathcal{E} \#}{0.06 \times 1\%}$ Ref: Computer Run NHJLO7P In computer run, input data is conservative. $3.3.6 \frac{FATIGUE ANALYSIS}{11.0 \times 10^{-1}}$ A preliminary fatigue analysis was made with the aid of Code Case 131-4. With a stress range of 22,0Ksi, or an alternating stress of 11.0 Ksi, the Code Case gives an infinite number of allowable cycles. Thus, fatigue should be no problem.	5.3.5	SIMPLFIED INEI	ASTIC ANALYSIS			
(see Chapter VI of the IMPER Piping Design Guide). In the Bree emalysis, it is assumed that there are a total of 200 severe thermal cycles (sum of load scrams and reactor scrams). With a 30-year design life, the time per cycle is 262,800/200 = 131h hours. The derivation of the creep law used in the Bree analysis is given in the tubesheet report. The Bree analysis has been computerized by Foster Wheeler, and the following results were obtained. $\frac{P_m}{11.h} \qquad \frac{P_L P_b + Q)_R}{11.h + 10.6} = 22.0 \qquad \frac{E/cycle \%}{3x10^{-4}} \qquad \frac{E\%}{0.06}_{1\%}$ Ref: Computer Run NHJLO7P In computer run, input data is conservative. $3.3.6 \qquad \frac{FATIGUE ANALYSIS}{11.0 \ Ksi} \qquad ha stress range of 22,0Ksi, or an alternating stressof 11.0 \ Ksi, the Code Case gives an infinite number of allowablecycles. Thus, fatigue should be no problem.$				hy Breata	aimplified	mothed
 thermal cycles (sum of load scrams and reactor scrams). With a 30-year design life, the time per cycle is 262,800/200 = 1314 hours. The derivation of the creep law used in the Bree analysis is given in the tubesheet report. The Bree analysis has been computerized by Foster Wheeler, and the following results were obtained. F_m <u>FLPb+Q)R</u> <u>E/cycle \$\$ 6\$ 0.06<1\$\$ 11.0.1000 = 22.0</u> <u>3x10⁻¹⁴</u> <u>0.06<1\$\$ 1\$\$ 0.06<1\$\$\$ 1\$\$ 0.06<1\$\$ 0.06<1\$\$ 1\$\$ 0.06<1\$\$ 1\$\$ 0.06<1\$\$ 0.</u>		(see Chapter V	I of the LMFBR Pipi	ng Design Gu	uide). In	the Bree
hours. The derivation of the creep law used in the Bree analysis is given in the tubesheet report. The Bree analysis has been computerized by Foster Wheeler, and the following results were obtained. $\frac{P_m}{11.4} \frac{P_L P_b + Q)_R}{11.4 + 10.6} = 22.0 \frac{C/cycle \#}{3x10^{-4}} \frac{E\#}{0.06x_{1\%}}$ Ref: Computer Run NHJLO7P In computer run, input data is conservative. 3.3.6 FATIGUE ANALYSIS A preliminary fatigue analysis was made with the aid of Code Case 1331-4. With a stress range of 22.0 Ksi, or an alternating stress of 11.0 Ksi, the Code Case gives an infinite number of allowable cycles. Thus, fatigue should be no problem.		thermal cycles	s (sum of load scrams	s and reacto	or scrams).	. With
given in the tubesheet report. The Bree analysis has been computerized by Foster Wheeler, and the following results were obtained. $\frac{P_{m}}{11.h} \frac{P_{L}P_{b} + Q)_{R}}{11.h + 10.6} = 22.0 \frac{\epsilon/cycle \#}{3x10^{-4}} \frac{\epsilon \#}{0.06\epsilon}$ Ref: Computer Run NHJLO7P In computer run, input data is conservative. 5.3.6 <u>FATICUE ANALYSIS</u> A preliminary fatigue analysis was made with the aid of Code Case 1331-4. With a stress range of 22.0 Ksi, or an alternating stress of 11.0 Ksi, the Code Case gives an infinite number of allowable cycles. Thus, fatigue should be no problem.		a 30-year desi hours.	gn life, the time pe	er cycle is	262,800/20	00 = 1314
<pre>the following results were obtained. P_m ll.4 ksi P_LP_b+Q)_R</pre>		The derivation given in the t	of the creep law us ubesheet report.	sed in the H	Bree analys	sis is
 Ref: Computer Run NHJLO7P In computer run, input data is conservative. 3.3.6 FATIGUE ANALYSIS A preliminary fatigue analysis was made with the aid of Code Case 1331-4. With a stress range of 22.0Ksi, or an alternating stress of 11.0 Ksi, the Code Case gives an infinite number of allowable cycles. Thus, fatigue should be no problem. 		The Bree analy the following	sis has been compute results were obtaine	erized by Fo	oster Wheel	er, and
 Ref: Computer Run NHJLO7P In computer run, input data is conservative. 3.3.6 FATIGUE ANALYSIS A preliminary fatigue analysis was made with the aid of Code Case 1331-4. With a stress range of 22.0Ksi, or an alternating stress of 11.0 Ksi, the Code Case gives an infinite number of allowable cycles. Thus, fatigue should be no problem. 						•
 Ref: Computer Run NHJLO7P In computer run, input data is conservative. 3.3.6 FATIGUE ANALYSIS A preliminary fatigue analysis was made with the aid of Code Case 1331-4. With a stress range of 22.0Ksi, or an alternating stress of 11.0 Ksi, the Code Case gives an infinite number of allowable cycles. Thus, fatigue should be no problem. 		P m				E%
 Ref: Computer Run NHJLO7P In computer run, input data is conservative. 3.3.6 FATIGUE ANALYSIS A preliminary fatigue analysis was made with the aid of Code Case 1331-4. With a stress range of 22.0Ksi, or an alternating stress of 11.0 Ksi, the Code Case gives an infinite number of allowable cycles. Thus, fatigue should be no problem. 		ll.4 ksi	11.4+10.6 = 22.0	3x10-4	-	0.06< 1%
In computer run, input data is conservative. 5.3.6 FATIQUE ANALYSIS A preliminary fatigue analysis was made with the aid of Code Case 1331-4. With a stress range of 22.0Ksi, or an alternating stress of 11.0 Ksi, the Code Case gives an infinite number of allowable cycles. Thus, fatigue should be no problem.						,.
A preliminary fatigue analysis was made with the aid of Code Case 1331-4. With a stress range of 22.0Ksi, or an alternating stress of 11.0 Ksi, the Code Case gives an infinite number of allowable cycles. Thus, fatigue should be no problem.		T				
A preliminary fatigue analysis was made with the aid of Code Case 1331-4. With a stress range of 22.0Ksi, or an alternating stress of 11.0 Ksi, the Code Case gives an infinite number of allowable cycles. Thus, fatigue should be no problem.		in compu	ter run, input data	is conserva	tive.	
A preliminary fatigue analysis was made with the aid of Code Case 1331-4. With a stress range of 22.0Ksi, or an alternating stress of 11.0 Ksi, the Code Case gives an infinite number of allowable cycles. Thus, fatigue should be no problem.						
1331-4. With a stress range of 22.0Ksi, or an alternating stress of 11.0 Ksi, the Code Case gives an infinite number of allowable cycles. Thus, fatigue should be no problem.						
1331-4. With a stress range of 22.0Ksi, or an alternating stress of 11.0 Ksi, the Code Case gives an infinite number of allowable cycles. Thus, fatigue should be no problem.	5.3.6	FATIGUE ANALYS	IS			
cycles. Thus, fatigue should be no problem.				made with	the sid of	Codo Cago
		A preliminary : 1331-4. With a	fatigue analysis was a stress range of 22	OKsi. or a	n alternat	ing stress
		A preliminary : 1331-4. With a of 11.0 Ksi, th	fatigue analysis was a stress range of 22 he Code Case gives a	.0Ksi, or a n infinite	n alternat	ing stress
		A preliminary : 1331-4. With a of 11.0 Ksi, th	fatigue analysis was a stress range of 22 he Code Case gives a	.0Ksi, or a n infinite	n alternat	ing stress
		A preliminary : 1331-4. With a of 11.0 Ksi, th	fatigue analysis was a stress range of 22 he Code Case gives a	.0Ksi, or a n infinite	n alternat	ing stress
		A preliminary : 1331-4. With a of 11.0 Ksi, th	fatigue analysis was a stress range of 22 he Code Case gives a	.0Ksi, or a n infinite	n alternat	ing stress
		A preliminary : 1331-4. With a of 11.0 Ksi, th	fatigue analysis was a stress range of 22 he Code Case gives a	.0Ksi, or a n infinite	n alternat	ing stress
		A preliminary : 1331-4. With a of 11.0 Ksi, th	fatigue analysis was a stress range of 22 he Code Case gives a	.0Ksi, or a n infinite	n alternat	ing stress
		A preliminary : 1331-4. With a of 11.0 Ksi, th	fatigue analysis was a stress range of 22 he Code Case gives a	.0Ksi, or a n infinite	n alternat	ing stress
		A preliminary : 1331-4. With a of 11.0 Ksi, th	fatigue analysis was a stress range of 22 he Code Case gives a	.0Ksi, or a n infinite	n alternat	ing stress
		A preliminary : 1331-4. With a of 11.0 Ksi, th	fatigue analysis was a stress range of 22 he Code Case gives a	.0Ksi, or a n infinite	n alternat	ing stress
		A preliminary : 1331-4. With a of 11.0 Ksi, th	fatigue analysis was a stress range of 22 he Code Case gives a	.0Ksi, or a n infinite	n alternat	ing stress
		A preliminary : 1331-4. With a of 11.0 Ksi, th	fatigue analysis was a stress range of 22 he Code Case gives a	.0Ksi, or a n infinite	n alternat	ing stress
		A preliminary : 1331-4. With a of 11.0 Ksi, th	fatigue analysis was a stress range of 22 he Code Case gives a	.0Ksi, or a n infinite	n alternat	ing stress
		A preliminary : 1331-4. With a of 11.0 Ksi, th	fatigue analysis was a stress range of 22 he Code Case gives a	.0Ksi, or a n infinite	n alternat	ing stress

r- b-	CHAI				T			
		ROE NO 8-25-2431	DOCUMENT NO. N	D/74/66	ISSUE	1	DATE 12/16/	74
		CREEP FATIGUE	INTERACTION					
		of 3425 psi wa steady state r 28 F radialAT stresses. Dur	interaction was tion of the rep s applied for t adial temperatu was applied to ing the transie he tubes are mi	he 30-year re gradient simulate th nt conditio	life of is 52°	pressure of the unit F. In add	differ en tial . The dition, a	
		PROGRAM RESULT	<u>s</u>					
MADE	an fannan ar - an	Maximum total	strain = 0.65%					
BEEN		Creep damage =	0.095			·		
HAVE B		Maximum strain	range = 0.258%					
		Fatigue damage	= 0.05	(Maximum	temperat	ure = 110	0 F)	
CHANGES		Total creep fat	igue damage = C	.15<1.0				
CE CI		Ref: Computer	run EBHJLO1C					
WHE							•	
INDICATE WHERE		· · ·						
IUNI								
COLUMN								
1								
- 4 THIS								
172 5 IN								
FWC FORM 172 NOTATIONS IN								
FWC								
	L							
	BY	APF	ROVED			PAGE 5-6	SE OF	

CHARGE	NO 8-25-2431	DOCUMENT NO	• ND/74/66	ISSUE 1	DATE 12/16/74
5.5	TUBE RUPTURE .	ANALYSES			
	Atomics Compa	ny. Detailed 8)which is ir	description	ormed by the Gulf s of the analyses s original form i	are contained
	rupture on the of a tube rup in a state of profile. Num difference con Company. The 850°F was used psi which is a one-half the u	e shell cylin ture on the s plane strain erical calcu de system, PI bilinear str d. The resul well above th iltimate stre	der and the a hell was exar loaded by in lations were SCES, develop ess-strain re ts indicate a e yield stren ngth (85,500	ern: the effect adjacent tube. T mined by modeling nternal pressure done by using th bed by Physics In elation of Hastel a maximum stress ngth (27,600 psi) psi) of the shel for 9%) in the di	he effect the shell of varying e finite ternational loy N at of 42,900 , but only l material.
	modeling the a an appropriate the stress-str The loads act force and the indicate that the adjacent f	adjacent tube e elastic-pla rain curve of ing on the be resistive fo the ultimate tube would no d which was a	as a lumped- stic moment-o the tube mat am model cons rce of the mo strength is t rupture. H bout 40 perce	jacent tube was en- mass continuous curvature diagram cerial (Hastelloy sisted of a transvolten-salt. The not exceeded and However, a deflected ont of the length	beam with derived from N at 850°). verse inertial results , therefore, tion of 24.5"
	the shell resp the applied pu available on n was also conse the tube ruptu	oonse due to ressure was c ruptures. Th ervative in t ure was assum er, for a mor	a tube ruptur hosen as an u e assumption hat the press ed to act alc e accurate pr	clusion reached co re was conservativ upper bound of the of a plane strain sure load resultin ong the entire axis rediction, much kn	ve in that e data n state ng from is of the

BY

PAGE 5-66 OF

٩

l

CHAR	JE NO	0 8-25-243	31 000	UMENT	NO. ND/7	4/66	ISSUE	1	DA	TE 12/
5.6	ਹਰਾਹ	ERENCES								
5.0			-							
	1.	Foster Wh by M. B.		Comput	ter Prog	ram R.	LO15 by :	R. E. Ni	ickell,	revis
	2.	Hybrid Co	mputer	Simula	ation of	the I	ISBR by	0. W. Bu	urke, C	RNL-TM
	3.	LMFBR Pip	ping De	sign Gı	uide by	C. F.	Braun &	Company	7.	
	4.	Bases for ORNL-73-1		n of MS	SBR Syst	ems fo	or Tempe	ratures	to 130	0 F,
	5.	Tubesheet temperatu (reactor	ure), E	BMSBRCI	-l (loa	R2A (] d redu	pressure action t:), EBMSI ransient	BREC (s;), EBM	teady SBRCF-
	6.	Shell con	puter	runs, I	EBMSBR2C	-1 (P	cessure)	, EBMSBR	20-2 (therma
	7.	Data for 1961.	Nickel	- Moly	bdenum (Chromi	lum - Ire	on Alloy	, Iron	-8, Ju
	8.		inson a	nd D. A	. Wesle	y, Tut	e Ruptu	re Analy	rsis of	a Cou
		Flow Heat Foster Wh	eeler	nger, (Energy	ulf-GA-4 Corpora	A 1241 tion.	4, Nov.	20, 197	2, Pre	p ar ed
	9.	Flow Heat Foster Wh Nozzle co stresses)	meeler Mennen	Energy	Corpora [.]	tion.				
	9.	Foster Wh	meeler Mennen	Energy	Corpora [.]	tion.				
	9.	Foster Wh	meeler Mennen	Energy	Corpora [.]	tion.				
	9.	Foster Wh	meeler Mennen	Energy	Corpora [.]	tion.				
	9.	Foster Wh	meeler Mennen	Energy	Corpora [.]	tion.				
	9.	Foster Wh	meeler Mennen	Energy	Corpora [.]	tion.				
	9.	Foster Wh	meeler Mennen	Energy	Corpora [.]	tion.				
	9.	Foster Wh	meeler Mennen	Energy	Corpora [.]	tion.				
	9.	Foster Wh	meeler Mennen	Energy	Corpora [.]	tion.				
	9.	Foster Wh	meeler Mennen	Energy	Corpora [.]	tion.				
	9.	Foster Wh	meeler Mennen	Energy	Corpora [.]	tion.				
	9.	Foster Wh	meeler Mennen	Energy	Corpora [.]	tion.				
	9.	Foster Wh	meeler Mennen	Energy	Corpora [.]	tion.				

					r		r		LIVING	
	CHARGE	NO. 8	8-25-	2431	DOCUMENT NO	.ND/74/66	ISSUE	1	DATE	12/16/7
						SECTION 6				
					HASTELLOY	N STEAM CO	RROSIO	N		
						BY				
					Don	got Im	~ 11/	\sim		
					GEORGE	V. AMORUS	0	2		
			•					•		
			•							
	Appro	ved	Ъу					•	·	
	CF	2m	100	ti						
	E. D.				tallurgist					
		Lanc	CIII	er ne	Lallurgist					
	W.K	Qaj	en)	L						
	W. R. Chief	Apb Met	let y allui	Jr.					•	
·				0						
	······									
	BY			APPRO	VED				PAGE	6-a

CHARGE NO.	8-25-2431 DOCUMENT NO. ND/74/66 ISSUE 1 DATE	12/16/7
	TABLE OF CONTENTS	DAGEG
6.0	REVIEW OF HASTELLOY N STEAM CORROSION	PAGES 6-1
6.1	ABSTRACT	6-1
6.2	SUMMARY	6-2
6.3	INTRODUCTION	6-4
6.4	DISCUSSION	6-5
6.4.1	EARLY STUDIES	6-5
6.4.2	OAK RIDGE NATIONAL LABORATORY STUDIES	6-11
6.4.2.1	GENERAL CORROSION TESTS	6-11
6.4.2.2		6-15
6.4.2.3	DUPLEX TUBING TESTS	6-18
6.4.3	CRITICAL REVIEW OF STEAM GENERATOR TUBING MATERIALS	6-21
6.4.3.1	DESIGN REQUIREMENTS AND CRITERIA	6-21
6.4.3.2	CORROSION RESISTANCE TO MOLTEN FLUORIDE SALTS	6-23
6.4.3.3	CORROSION RESISTANCE TO SUPERCRITICAL STEAM	6-25
6.4.4	CRITICAL REVIEW OF HASTELLOY N AND DUPLEX TUBING	6-26
6.4.4.1	HASTELLOY N	6-26
6.4.4.2	DUPLEX TUBING	6-27
6.5	CONCLUSIONS/RECOMMENDATIONS	6-28
6.6	REFERENCES	6-31
6.7	TABLES 1-26 INCLUSIVE	6-43
6.8	FIGURES 1-45 INCLUSIVE	6-71
		-

FOSTER WHEELER ENERGY CORPORATION

CHARGE	<u>NO.</u> 8-	25-2431	DOCUMENT NO.	ND/74/66	ISSUE 1	DATE 12/16/74
6.0	<u>REVIE</u> ABSTR		STELLOY N	STEAM CC	DRROSION	
	The 1 of hig public GEAP papers alloy and ni	iteratu gh temp shed in l), ORNI s concer steels, ickel ba	Corrosion (2), EURAE rning the c ferritic	Abstracts, C(3) and m corrosion b and austen	ASME Tra ASME Tra iscellane ehavior c itic stai	cluded a review Investigations ansactions, cous technical of various low nless steels team environ-
	Partic behavi vice s constr and se	ular at or of H ince th uction	tention wa astelloy N e alloy is for the re heat tran	s focussed in high t the prefe	on the c emperatur rred mate	
	be use	d for t	e search i oys or com he steam g Reactor.	bingtione /	of ollowed	valuation of that could the Molten
	presen Labora long t	tly und tory the	er investi	gation at t isfy the tu	the Oak R bing requ	gle commercial her than those idge National sirements for tability,
·	evalua: duplex	tion of tubing	Hastellov	N under co N under co	with res Instant st	which require spect to the ress and new reased corro-
	(Studie Contrac	es prepa et AT(04	ared for U. (-3)-189 Pr	S. Atomic oject Agre	Jose, Cal Energy Co ement 13	mmission under
Ţ	V 7405- (3)Join	eng 26. t Europ	e Atomic E	Energy Co	Atomio F	, Tenn. Studies under Contract nergy Commis-

.

FOSTER WHEELER E	NERGY CORPORATION
------------------	-------------------

	CHARGE	NO. 8-25-2	31		DOCU	MENT	NO	• ND	/74,	/66		IS	SUE	1		DATE	1	2/16	/74
	6.2	<u>SUMMARY</u> The lite Presentl	rat	ur	e st	urve	PV .	sho	a e	tho	*	4							
B		presentl performa supercri cyclic 1 Breeder	nce tic Dad	o al in	of Ha ste	aste eam ondi	ello env	pr oy vir	ope N i Snm	r⊥y n h	r a igl	ss(h (ess tem	or per	at:	redi ure/	ct pro	the essu	
ES HAVE BEEN MADE		The surv in ORNL f steam cos Run Stear Plant of concernin high temp	ro P th g era	sid lan e l the atu	on t nt i Flor e co ure	eva est n K ida rro wat	fa nox Po sio er/	vi vi wei ste	it le Co eha	pro ies , T orp avi en	gra lo enr , or vir	ams Dca 1. li of	ate an tt Ha	ond d a d t le ast nts	uct t T he dat el1	ed a VA 1 Bart a ex	at Bul cow kis N i	two 1 sts n	
OLUMN INDICATE WHERE CHANGES		The publi (< 1 ppb tures of unstresse taining t resistanc	10(d s ita)0° sta	°-11 anda	00°	F a and	nd	st pre dif	ear essi	n e ure Jure	env es	of	onm 35	ent 00	s at psi	r t	emp ess	era- ure,
COLUMN INDICA		The avera 15,000 ho extremely spalling of NiO ₂ ,	th con MoO	iin ta 2,	i ox: inin a s	ide ng (spir	fo fo com nel	arı rme ple an	es dí xo ds	trc s t xid mal	om cen les .1	•0. ac: co qua	l iou ons ant	04 s, ist iti	mi an in les	ls. d no g pr of	T n im Cr	he ari: 203.	_
FWC FORM 172 - 4 NOTATIONS IN THIS		The alloy irregular penetrati investiga depositio tubing in	ons cor	v s esi	aryi have ulti	ing at	fra fra fra	ıız Om İbu:	ed .4- .ed	nod •8	ul. mi	ar/ 1 j	/b1 in	ist dep	er th	typ whi	e ch	ORN	
FWC F NOTAT		However, s ducted in environmen having dep were elect Hastelloy nodules ma contents i	ts the ro N t y h	g @ s c 1yt tes hav	102 of 1 tica st s ve b	2°F •5 11y pec een	an mil re ime fo	id 3 .s w mov	opm 000(ere ed inc) s) p e n fr dica	upe si, ote om ati	erc th th	ri he af e	tic pr ter sur	al ese ox fac	stea nce ide es c	am of la of	pi yer	ts s
	5	(1)Pure st steam norm	eam all	n a Ly	- use	sed d in	in 1 c	th omm	is erc	tex ial	κt L o	is nc	ac e-t	tu: hru	al1 1 b	y hi oile	gh rs	pui	rity
4	ву	A	PPR	OVF	 ED						•			<u> </u>		AGE			

FOSTER WHEELER ENERGY CORPORATION

CHARGE NO. 8-25-2431DOCUMENT NO. ND/74/66ISSUE 1DATE 12/16/74The study also showed that unstressed modified Hastelloy N compositions containing low molybdenum (12%) and iron (.05%) contents exhibit deep localized intergranular oxide penetrations up to 10 mils after 10,000 hours exposure in pure deoxygenated supercritical steam environments. Intergranular penetrations of this type have not been observed in modified alloys of similar compositions to which additions of .5%-2.1% Titanium have been added.The published data indicates that constantly stressed Hastelloy N alloys may be prone to stress corrosion cracking in pure and impure supercritical steam environ- ments.Some data shows that Hastelloy N in the ground and annealed condition is relatively immune to stress corro- sion cracking processes when subjected to impure steam environments containing small quantities of oxygen and sodium chloride while tube burst tests conducted by ORNL at the Bull Run Steam Plant and General Electric at the Vallecitos Atomic Laboratory indicate that constantly stressed Hastelloy N material in the as received, and machined condition is susceptible to stress corrosion cracking in pure as well as impure steam environments.Evaluation of the published tube burst test data indi- cates that the erratic behavior may be due in part to the technique used to apply constant stresses induced during tube cold drawing processes and/or the effects of macro/micro residual stresses suprimposed by machin- ing operations.Summarily, the data indicates that there is no single tubing material that can meet all percquisite require- meets to guarante satisfactory material performance for long term service in molten salt/supercritical steam environments.Summarily, the data indicates t
 A compositions containing low molybdenum (12%) and iron (.05%) contents exhibit deep localized intergranular oxide penetrations up to 10 mils after 10,000 hours exposure in pure deoxygenated supercritical steam environments. Intergranular penetrations of this type have not been observed in modified alloys of similar compositions to which additions of .5%-2.1% Titanium have been added. The published data indicates that constantly stressed Hastelloy N alloys may be prone to stress corrosion cracking in pure and impure supercritical steam environments. Some data shows that Hastelloy N in the ground and annealed condition is relatively immune to stress corrosion cracking processes when subjected to impure steam environments containing small quantities of oxygen and sodium chloride while tube burst tests conducted by ORNL at the Buil Run Steam Plant and General Electric at the Vallecitos Atomic Laboratory indicate that constantly stressed Hastelloy N material in the as received, and machined condition is susceptible to stress corrosion cracking in pure as well as impure steam environments. Evaluation of the published tube burst test data indicates that the erratic behavior may be due in part to the technique used to apply constant stresses induced during tube cold drawing processes and/or the effects of macro/micro residual stresses superimposed by machining operations. Summarily, the data indicates that there is no single tubing material that can meet all prerequisite requirements to guarantee satisfactory material performance for long term service in molten salt/supercritical steam environments.
 Evaluation of the published tube burst test data indicates that the erratic behavior may be due in part to the technique used to apply constant stresses to thinly machined (.010"020") tube wall specimens and failure to consider the effects of residual stresses induced during tube cold drawing processes and/or the effects of macro/micro residual stresses superimposed by machinning operations. Summarily, the data indicates that there is no single tubing material that can meet all prerequisite requirements to guarantee satisfactory material performance for long term service in molten salt/supercritical steam environments. The use of duplex tubing to provide increased corrosion protection to the outside and inside surfaces of the steam generator tubing appears to be a prudent compromise requiring further consideration and test evaluation.
The use of duplex tubing to provide increased corrosion protection to the outside and inside surfaces of the steam generator tubing for be a prudent compro- mise requiring further consideration and test evalua-
protection to the outside and inside surfaces of the steam generator tubing appears to be a prudent compro- mise requiring further consideration and test evalua-

ł

1

ī

ţ

FWC FORM 172 - 4

FOSTER WHEELER ENERGY CORPORATION

NUCLEAR DEPARTMENT

1 1

EWC FORM 172 - 4

LIVINGSTON, N. J.

		25 2/21			<u> </u>				
	ARGE NO. 8	-25-2431	DOCUMENT N	0. ND/74/66	ISSUE 1	DATE	12/16/74		
	On this basis, and on the assumption that the reactor equipment would be made of modified Hastelloy N, the extensive data on the properties of the unirradiated Hastelloy N were used in ORNL design studies for the reactor equipment. These properties are shown in Table 2.								
	The maximum allowables stresses shown in Tables 3 and 4 were established and reviewed by the ASME Boiler and Pressure Vessel Code Committee and stress values approved for use under Case 1315 for Unfired Pressure Vessels and under Case 1345 for Nuclear Vessels.								
	little missed cost,	e other d for st relativ	commercia eam tubin elv unatt	eveloped ex t service i l value and g applicati ractive fab um content.	t possess was curs	ed rela orily d	tively is-		
	Chromium has long been recognized as the principal elemental constituent required to confer increased oxidation and corrosion resistance to alloys subjec to air and steam environments at low and particular at elevated temperatures.						d		
	resist salts	ance to (1150°F)	high temp	eder Reactor the Hastelloy N nultaneously maximum corrosion perature coolant molten fluoride side and supercritical steam at and 3800 psi pressure on the					
	gation fundam of Has alterna	s in ord ental da telloy N ate stea	er to der ta useful and to a generat	conducted ure water/s ive directl in evaluat limited ex or tubing m der Reactor	team mate y or indi ing the p tent othe	erial in rectly erforma	vesti-		
6.	4 <u>DISCUSS</u>	ION							
6.4	1 <u>EARLY</u> S	TUDIES							
	ments w	as found	din a mat	ving the com perature wat cerial inves Institute	er/steam	enviro	n –		
BY		APPROVI	<u>רי</u>		······	PAGE 6-			

FOSTER WHEELER ENERGY CORPORATION

LIV	VING	STON	N	т

CHARC	E NO. 8-25-2431			
Onano	E NU. 8-25-2431	DOCUMENT NO. ND/74/66	ISSUE 1	DATE 12/16/74
	the Interna	ational Nickel Co. in	1	
	investigat	ion was undertaken pr	early 195	9. This
	the crackin	ng behavior of Incone	incipally ·	to evaluate
	by Coriou a	and his coworkers ² at	t buu repor	rted earlier
	Studies at	Saclay, France in 19	59.	r of Nuclear
	nickel base	dy which involved the alloys for comparat:	use of sev	veral other
	annealed IN	IOR-8 (Hastelloy N) s	lve purpose	es, an
		YUNU IIS VIAID naint	L	
		LUCIAVE TO BIGH BASH		
	water at a	temperature of 662°F	for 4000 h	, degassed ours.
	Visual exam	ination of the strong	od Hast 11	
	-reerach ar	LEI EXDOSUTA Showad +	he eucli	
	frosty but	free of any evidence	of crackin	s to be
	results of	1956, W. K. Boyd and an investigation whic	H. A. Pray	³ reported th
	determine t	he corrosion resistan	n was unde	rtaken to
	subjected to	o degassed supercriti	ce of twel	ve alloys (1)
	tures rangin	ng from 800°F-1350°F	cal water	at tempera-
	5000 psi.	8	and pressu	res to
	While this j	investigation was con		
	corrosion pr	operties of the vari	cerned prim	narily with
		IDDITED STRAGE A FAM	+ + -	-
		FILE ELLECTS OF CODE	tant other	2 7 2 3
	two of the s	stainless steel alloy:	s (316 and	347).
	of six inch	y, the constant stres lengths of 1/2" O.D. 2) so that the	ss samples	consisted
	jig (Figure	2) so that the press	tubing sea	led in a
		VELWEEN THE OUTSIDE .		~ .
	I		trino the	
		C LESL SDECIMENS AVA	• • ?" • • • • •	all thick-
	the desired	stress levels were at	tained.	e length
	The concept	and tube jig configur	ation was l	1
	/	Y CURSLANI STRAGE FA	0170] 0 6 0	
	beauvior ser	veu as a model tor or	her invoct	
	future mater:	ials investigations.	ner invest	igators in
	(1)AMS 50	$\overline{516}$, 410, 302, 309, 3	10, 347, A	rmco 17-4PH.
	Hastelloy X.	Allegheny A 286, In	conel X, H	astelloy F an
	ture in 1000	s was 90% of stress n hours: 15 000 pai fo	ecessary to	o cause rup-
	for 347 .	hours; 15,000 psi fo	r 316 and 2	12,000 psi
		·		
	APPROVI	ED	ъ Т	AGE 6-6
			64 .	

FWC FORM 172 - 4

FOSTER WHEELER ENERGY CORPORATION LIVINGSTON, N. J. NUCLEAR DEPARTMENT ISSUE DATE 12/16/74 DOCUMENT NO. ND/74/66 8-25-2431 1 In a literature survey published in Jan. 1962 by C. N. coworkers⁴ a review was made of availand able data concerning the corrosion behavior of ferritic, austenitic steels and nickel base alloys in order to select candidate alloys for use in high temperature nuclear superheated steam environments. In this review, a number of alloys were recommended for further study for nuclear superheat applications. These alloys included Incoloy, Inconel, modified 300 austenitic series such as 310, 304 L types but with low nitrogen and carbon, Hastelloy X, AISI 406, and RA 330. Also recommended for preliminary screening tests because of attractive high temperature mechanical properties were Hastelloy N, Ni-o-nel (modified), IN 102, R-20, Discaloy and 17-14 Cu-Mo. In July 1963, F. A. Comprelli, and coworkers' published the results of the follow up materials investigation conducted to evaluate the relative performance of various alloys in actual and simulated superheated steam environments. The purpose of the investigation was to select sheath or cladding materials for use in the design/fabrication of fuel elements which would be subject in service to nuclear superheat environments at temperatures of 550°F to 1350°F; pressures up to 1500 psi; oxygen contents in steam up to 20 ppm; stiochiometric hydrogen, high velocity (200 ft/sec. max.) steam, containing moisture up to 1% with small amounts of solid impurities; stress levels up to the yield point (often applied cyclically) and neutron fluxes up to 10^{22} nvt accumulated total. In this study, unstressed and constantly stressed tubular test specimens diagramically shown in Figure 3 were placed in the CL-1 superheat test facility loop shown in Figure 4 and exposed to 1050°F superheated steam containing 20 ppm oxygen and flowing past the test specimens at a velocity approximately 20 feet per second.

Additional stressed specimens coated with chloride salts deposited on surfaces were inserted into the Auxiliary Coupon Section (ACS), a low flow bleed off from the CL-1 steam supply. The specimens in this loop were exposed to 1160°F static superheated steam environments containing levels of oxygen and hydrogen similar to the CL-1 steam supply.

COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE THIS ł EWC FORM 172 A NOTATIONS

CHARGE NO.

Spalaris

BY

FOSTER WHEELER	ENERGY	CORPORATION
----------------	--------	-------------

6-8

PAGE

СН	ARGE NO. 8-2	25-2431	DOCUMENT N	0. ND/74/66	ISSUE 1	
						DATE 12/16/7
	The Has	stelloy	N. tubul	ar test spo	ecimens con	taining
	appired	i stres	ses of 19	. 300 and 21		
	exposed	l in do	th the CL	-l and ACS	corrogion	tost loops
	ror up	10 300	o nours.	The examination of the termination of termi	ation after	r ovnooume
	exceede	no inu d the	creen-rund	that the ap	plied stre	sses
					gth of the a	
	However	metal	lographic	examinatio	on showed th	he constantly
	1050°F	a spec	lmens subj	ected in t	he CL-1 te	st 100p @ '
	intergr	anular	cracking	extending	am exhibite to a depth	ed localized
	after 1	000 ho	urs exposi	ire and a u	niform sea	or 4 mls Le penetra-
	tion de	pth of	.16 mils	after 3000	hours expo	osure.
					stressed s	
	coated	with cl	hloride de	nosits nri	or to subje	specimen
	LUG ACS	тоор (9 1160°F s	tatic supe	rheated sta	am avhihi
		piece :	untergranu	lar penetr	ation after	· 266 hours
	exposur	e and a	a uniform	scale thic	kness of 4	mle aftor
	LIIE 200	nour e	exposure p	eriod. An	other chlor	ida danaatt
	coaced	unstres	ssed speci	men in the	ACS test 1	oon exhibite
	Incergra	anurar	penetrati hours ex	ons to a m	aximum dept	h of 2.5
		CI 111,	mours ex	posure.		
	The loca	alized	intergran	ular penet	rations of	the Hastello
	n specti	liens we	re attrib	uted prima	rilv to a h	ighly pro-
	rerentia	ar oxid	ation mec	hanism ass	ociated wit	h the low
	chromiur	n conte	nt of the	alloy rat	her than th	e applied
	stress.	The p	hotomicro	graphs ill:	ustrating f	he annear-
	the fail	led Has	tellov N	ar cracking	g which occ	urred in
						n Figure 5.
	As a res	sult of	this beh	avior, Has	telloy N wa	s eliminated
	from fur Fuel She	ctner c	onsiderat	ion as a ma	aterial for	Superheat
	ruer Sne	eatns.			•	
	The fina	l sele	ction of a	candidate ·	alloys was	mado and
	Included	the f	ollowing a	allovs in d	order of br	oference
	incoloy,	lncon	ei (at lou	v stresses)	Hastellov	X, Ni-o-nel,
	ALDI 400	and 3	IV stainle	ess steel.	Other all	ove alimin-
	ated fro	m furt	her consid	leration in	addition :	to Hastellow
	n were z	-1/4 C	roloy and	5 Crolov 7	'i due to fl	heir
	CACC331V	t stal	е раттаяр	in 1050°F	steam.	
	A summar	y of the	he various	materials	investiga	ted and the
	tests us	εα το ά	letermine	their rela	tive perfor	mance is
	shown in	Table	5.			

FWC FORM 172 - 4

FOSTER	WHEELER	ENERGY	CORPORATION
--------	---------	--------	-------------

PAGE

6-9

CHARGE	NO. 8-25-2431	DOCUMENT NO.	ND/74/66	ISSUE 1	DATE 12/16/7
	This study e	stablished	the basis	for ev alu	ating_compar
	tive materia	l behavior	in subsequ	ient studi	es ⁶⁻¹⁰ which
	ultimately 1	ed to the s	election o	of Incolov	800 as the
	reference fur reactor (SHR	el-cladding .) systems.	, material	for use i	n superheat
	In a paper ¹¹	published	in 1963, H	I. J. Pess	l of the
	General Elec	tric Co. (H	APO) descr	ibes the :	results of
	autoclave co	rrosion tes	ting of Ha	stelloy N	and various
	iron and nic	kel base al $3-4$ norm 0 .	loys after	: 100 days	exposure to
	oxygenated ((1022°F) and	3000 psi p	ressure.	ed steam (₫ 550°C
	A graph exce	rpted from	this paper	and illus	strating the
	relative beh	avior of th	e various	materials	subjected
	to the test	environment	is shown	in Figure	6. The dat
	shows that H average oxid	astelloy N	test speci	mens exhil	oited an
	.16 mils and	were pitte	d to depth	s of 1.5 m	nils.
	In Nov. 1965	, T. T. Cla	udson and	R. E. West	erman of
	the Pacific	Northwest L	aboratory	published ¹	¹² the resul
	of another i	nvestigatio f coucrel b	n to evalu	ate the co	prosion
	resistance o Hastelloy N	for nuclear	applicati	ature allo ons.	ys includin
	The investig	ation consi	sted essen	tiallv of	subjecting
	ten candidat	e alloys to	short ter	m (100-300) hours)
	screening te	sts involvi	ng exposur	e at tempe	ratures of
	815°C-1150°C	to low pre	ssure wate	r vapor (1	5 torrs in
	helium) to s temperature	nuclear app	lications.	lronments	in high
	The results	of the inve	stigation	which are	summarized
	in Table 6 an	nd graphica	lly illust	rated in F	'igures 7
	to 9 show the	at the Hast	elloy N al	loy exhibi	ted excelle
	short term h oxidizing en	vironment.	Lure Corro	sion benav	ior in an
	Another paper	, publishe	d in Nov.	1965 Ъу Т.	T. Claudson
	and H. J. Pes	ssl ¹³ descr:	ibes the r	esults of	an investi-
	gation conduc	ted to eval	Luate vari	ous iron a	nd nickel
	base alloys : temperature :	feactor and	ications	for mediu	m and high
		eactor app.	LICALIONS.		

NUMEL TO D NOTATIONS IN THAT'S

FWC FORM 172 - 4

BY

FOSTER WHEELER ENERGY CORPORATION

NUCLEAR DEPARTMENT

1

FWC FORM 172 - 4

LIVINGSTON, N. J.

	CHARGE NO. 8-25-2431 DOCUMENT NO. ND/74/66 ISSUE 1 DATE 12/16/7
	The investigation included extensive autoclave test- ing of selected alloys in oxygenated and deoxygenated superheated steam environments at temperatures of 1022°F and pressures of 1000, 3000 and 5000 psi for 2400 hours exposure.
	This study established the following tentative group- ing of alloys with increasing steam oxidation resistance:
	l. Type 304, 316, 406 and 430 SS showed weight gains from about 50-300 mg/dm ² or over .2 mils of penetra-tion.
	2. Fe-25 Cr-3A1-0.6Y, Hastelloy N, PDRL-102 and Inconel X750 showed weight gains from about 8-75 mg/dm ² or 0.1 to 0.2 mil penetration.
	3, Incoloy 800, AISI 446 SS, Hastelloy X280, Hastelloy R 235 and Fe-24 Cr-5Al showed weight gains below 15 mg/dm ² or less than 0.1 mil penetration.
	The oxygen content and the pressure of the steam appeared to affect the various alloys in different ways. While the ferritic stainless steels and the Fe-Cr-Al base alloys seemed to offer better resis- tance in oxygenated steam, the austenitic and martensitic stainless steels and the nickel base superalloys were more resistant to deoxygenated steam.
	The weight gain data obtained for the iron and nickel base alloys in superheated steam at 1022°F and 1000 and 3000 psi pressure are summarized in Table 7 and graphically plotted in Figure 10 A. Barographs illustrating the corrosion of various alloys after 100 days exposure in deoxygenated (< 50 ppb) and oxygenated (3-4 ppm) steam @ 1022°F and 3000 psi are shown in Figure 11. Additional barographs illustrating the descaled corrosion penetrations of the various alloys after 100 days exposure in deoxygenated steam @ 1022°F and 3000 and 5000 psi pressures are shown in Figure 12.
	A portion of the Hastelloy N to steam corrosion described above was reviewed and summarized by H. E. McCoy and J. R. Weir, Jr. in a report ¹⁴ published in June 1967. The summary is shown in Table 8.
B	APPROVED PAGE 6-10

 6.4.2 OAK RIDGE NATIONAL LABORATORY STUDIES 6.4.2.1 GENERAL CORROSION TESTS The need for advanced materials technology required in a proposed Molten Salt Breeder Reactor¹⁵ led to a series of material development programs one of which involved tests to determine the compatibility of Hastelloy N in supercritical steam. In this service, the outside surfaces of the steam generating tubing material contacts the molten coolant salt while the inside surface contacts supercritical steam having a maximu temperature and pressure of 1000°F and 3800 psi respectively. Because of the higher pressure of the steam, tube failure results in steam being forced into the coolant salt circuit with deleterious effects arising therefrom. The ORML material evaluation programs involving Hastelloy N and other steam generators alloys are currently being conducted at two steam corrosion test facilities located at TVA's Bull Run Steam Plant of the Florida Power Corp. in collaboration with Southern Nuclear Engineering (SNE) in Dunedin, Florida. The TVA Bull Run Steam Plant Corrosion Test Loop Facility was designed primarily to evaluate the behavior of standard and modified Hastelloy X alloys and a number of other alloys in supercritical steam environments (1000°F and 3,500 psi pressure. The corrosion facility at Barrow was designed to evaluate (a) the corrosion facility at Barrow was designed to evaluate (a) the corrosion facility at Barrow was designed to evaluate (a) the corrosion facility of 980 MN. The facility is located argumentation and stress corrosion cracking propensities of various steam generator alloys. The TVA Bull Run Steam Plant¹⁶ is a coal fired plant with a supercritical steam evico add and power generation applications and (b) the general corrosion and stress corrosion cracking propensities of various steam generator alloys.
tion capability of 980 MW. The facility is least

EWC FORM 172 - 4

LIVINGSTON, N. J.

	CHARGE NO. 8-25-2431 DOCUMENT NO. ND/74/66 ISSUE	
	CHARGE NO. 8-25-2431 DOCUMENT NO. ND/74/66 ISSUE	1 DATE 12/16/74
	steam is extremely clean at this locatio < 1 ppb 0 ₂ ; < 3 ppb Na; < 5 ppb Cu; < 15 and < 6 ppb Fe.	ppb SiO ₂ ;
	Hydrogen is added to scavenge oxygen and trolled at $9.40-9.45$ with ammonia. The conductivity in the condensed steam is 1 3×10^{-7} ohm ⁻¹ cm ⁻¹ .	alactriant
	In the test loop, which is schematically in Figure 13 and shown photographically the steam enters the 4" diameter schedul 316 stainless steel test chamber at a ra mately 16-17 lbs/min. flowing longitudin specimens, through the filter and the fl and into the condenser. The steam press reduced to approximately 1 psig in the f A thermocouple well was installed in the holder to monitor temperature and this t supports the sample holder. The Grayloc removable with the specimen holder. The are coupons made from sheet material of 0 0.020", 0.035", and 0.060" in thickness.	in Figure 14, e 160 type te of approxi- ally past the ow restricter, ure is low restricter. specimen ube also flange is
	The corrosion test coupons are 0.5" and 20.1875" holes at each end for mounting or in the specimen holder. The working volu facility is about 2" x 2" x 2" and approx specimens were included in the first load was subsequently increased to 140. The work the steam across the specimens is approxift/sec and the mass flow rate is about 10	n the bolts ume of the kimately 100 ding. This velocity of imately 20 000 lb/hr.
	Specimens from some commercial heats of s melted and vacuum melted Hastelloy N and two pound laboratory melts and larger com of modified Hastelloy N were included in loading of the facility which went on str The results of Hastelloy N behavior in th critical steam corrosion tests were syste reported by B. McNabb and H. McCoy in ORN Semiannual Progress reports.(17-26)	from several mercial melts the first ream on 8/7/69. se super-
BY	APPROVED	PAGE 6-12

NUCLEAR DEPARTMENT

FWC FORM 172 - 4

LIVINGSTON, N. J.

.

LOW ALLOY FERRITE STEELSFor comparative purposes, the evaluation included exposure of five low-alloy ferritic steels containing chromium contents varying from 1.1% to 8.7% to super- critical steam @ 1000°F and 3,500 psi for 14,000 hours. The data which is graphically illustrated in Figures 19A, B, indicate the maximum and minimum weig changes for this group of alloys may vary at any give time by only a factor of 2.The oxidation behavior of similar alloys in air is quite different and is graphically illustrated in Figure 20. The data shows that in an air environment approximately 8% chromium is required to prevent spalling of the oxide.STAINLESS STEELS/NICKEL BASE ALLOYSA graph illustrating the general corrosion of the Croloys (1-9%Cr) and several stainless steel and nickel base alloys is shown in Figure 21.METALLOGRAPHIC EXAMINATIONA photomicrograph illustrating the appearance of the surface of a typical Hastelloy N specimen exposed to supercritical steam for 4,000 hours is shown in Figure 22. A photomicrograph illustrating the chemical composition of surface and matrix consti- tuents of a standard Hastelloy N alloy exposed for 10,000 hours to supercritical steam is shown in Figure 23A. The high iron content detected in oxide nodules was attributed to iron mass transport from low-alloy ferritic steel piping in the steam unit. Composite photomicrograph shown in Figure 23B illustrate the cross sectional appearances of nodule bisters and intergranular pnetrations observed in several Hastelloy N alloys. It will be noted that	LOW ALLOY FERRITE STEELS For comparative purposes, the evaluation included exposure of five low-alloy ferritic steels containing chromium contents varying from 1.1% to 8.7% to super- critical steam @ 1000°F and 3,500 psi for 14,000 hours. The data which is graphically illustrated in Figures 19A, B, indicate the maximum and minimum weigh changes for this group of alloys may vary at any given time by only a factor of 2. The oxidation behavior of similar alloys in air is quite different and is graphically illustrated in Figure 20. The data shows that in an air environment, approximately 8% chromium is required to prevent spalling of the oxide. <u>STAINLESS STEELS/NICKEL BASE ALLOYS</u> A graph illustrating the general corrosion of the Croloys (1-9%Cr) and several stainless steel and nickel base alloys is shown in Figure 21. <u>METALLOGRAPHIC EXAMINATION</u> A photomacrograph illustrating the appearance of the surface of a typical Hastelloy N specimen exposed to supercritical steam for 4,000 hours is shown in Figure 22. A photomicrograph illustrating the chemical composition of surface and matrix consti- tuents of a standard Hastelloy N alloy exposed for 10,000 hours to supercritical steam is shown in Figure 23. The high iron content detected in oxide		EAR DEPARTME	NT	R ENERGY CORP		LIVING	STON, N. J
For comparative purposes, the evaluation included exposure of five low-alloy ferritic steels containing chromium contents varying from 1.1% to 8.7% to super- critical steam @ 1000°F and 3,500 psi for 14,000 hours. The data which is graphically illustrated in Figures 19A, B, indicate the maximum and minimum weig changes for this group of alloys may vary at any give time by only a factor of 2.The oxidation behavior of similar alloys in air is quite different and is graphically illustrated in Figure 20. The data shows that in an air environment approximately 8% chromium is required to prevent spalling of the oxide.STAINLESS STEELS/NICKEL BASE ALLOYSA graph illustrating the general corrosion of the Croloys (1-9%Cr) and several stainless steel and nickel base alloys is shown in Figure 21.METALLOGRAPHIC EXAMINATIONA photomacrograph illustrating the appearance of the surface of a typical Hastelloy N specimen exposed to supercritical steam for 4,000 hours is shown in Figure 23. A photomicrograph illustrating the chemical composition of surface and matrix consti- tuents of a standard Hastelloy N alloy exposed for 10,000 hours to supercritical steam is shown in Figure 23A. The high iron content detected in oxide nodules was attributed to iron mass transport from low-alloy ferritic steel piping in the steam unit. Composite photomicrograph shown in Figure 23B illustrate the cross sectional appearances of nodule bisters and intergranular penetrations observed in several Hastelloy N alloys. It will be noted that	 For comparative purposes, the evaluation included exposure of five low-alloy ferritic steels containing chromium contents varying from 1.1% to 8.7% to supercritical steam & 1000°F and 3,500 psi for 14,000 hours. The data which is graphically illustrated in Figures 19A, B, indicate the maximum and minimum weigh changes for this group of alloys may vary at any given time by only a factor of 2. The oxidation behavior of similar alloys in air is quite different and is graphically illustrated in Figure 20. The data shows that in an air environment, approximately 8% chromium is required to prevent spalling of the oxide. STAINLESS STEELS/NICKEL BASE ALLOYS A graph illustrating the general corrosion of the Croloys (1-9%Cr) and several stainless steel and nickel base alloys is shown in Figure 21. METALLOGRAPHIC EXAMINATION A photomacrograph illustrating the appearance of the surface of a typical Hastelloy N specimen exposed to supercritical steam for 4,000 hours is shown in Figure 23A. The high iron content detected in oxide nodules was attributed to iron mass transport from low-alloy ferritic steel piping in the steam unit. Composite photomicrograph shown in Figure 23B illustrate the cross sectional appearances of nodule blisters and intergranular penetrations observed in several Hastelloy N alloys. It will be noted that deep intergranular penetrations exist in a similar alloy having 2.1% Titanium anded. 	CHARGE	NO. 8-25-24	31 DOCUMENT NO	. ND/74/66	ISSUE 1	DATE	12/16/74
chemical composition of surface and matrix consti- tuents of a standard Hastelloy N alloy exposed for 10,000 hours to supercritical steam is shown in Figure 23A. The high iron content detected in oxide nodules was attributed to iron mass transport from low-alloy ferritic steel piping in the steam unit. Composite photomicrographs shown in Figure 23B illustrate the cross sectional appearances of nodule blisters and intergranular penetrations observed in several Hastelloy N alloys. It will be noted that	<pre>chemical composition of surface and matrix consti- tuents of a standard Hastelloy N alloy exposed for 10,000 hours to supercritical steam is shown in Figure 23A. The high iron content detected in oxide nodules was attributed to iron mass transport from low-alloy ferritic steel piping in the steam unit. Composite photomicrographs shown in Figure 23B illustrate the cross sectional appearances of nodule blisters and intergranular penetrations observed in several Hastelloy N alloys. It will be noted that deep intergranular penetration occurs in a modified Hastelloy N alloy having low molybdenum (12%) and iron (.05%) content while no penetrations exist in a similar alloy having 2.1% Titanium added. The investigators indicate that the addition of con- centrations as low as 0.5% Titanium prevent the deep intergranular penetrations observed in Hastelloy N alloys containing low molybdenum (12%) and iron (.05%)</pre>		For comp exposure chromium critical hours. Figures changes time by The oxid quite di Figure 2 approxim spalling <u>STAINLES</u> A graph	parative purpo of five low- n contents var steam @ 1 The data whic 19A, B, indic for this grou only a factor ation behavio fferent and i 0. The data ately 8% chros of the oxide <u>S STEELS/NICK</u> illustrating	ses, the ev alloy ferri ying from 1 000°F and 3 h is graphi ate the max p of alloys of 2. r of simila s graphical shows that mium is req EL BASE ALL the general	tic steel .1% to 8. ,500 psi cally ill imum and may vary r alloys ly illust in an air uired to <u>OYS</u> corrosion	s cont 7% to for 14 ustrat ninimu at an in air rated envir preven	aining super- ,000 ed in m weight y given is in onment, t
Hastelloy N alloy having low molybdenum (12%) and iron (.05%) content while no penetrations exist in a similar alloy having 2.1% Titanium added. The investigators indicate that the addition of con- centrations as low as 0.5% Titanium prevent the deep intergranular penetrations observed in Hastelloy N			nickel b <u>METALLOG</u> A photom surface supercri Figure 2 chemical tuents o 10,000 h Figure 2 nodules low-allo Composit illustra blisters several deep int Hastello iron (.0 similar The inve centrati intergra	ase alloys is <u>RAPHIC EXAMINA</u> acrograph illo of a typical b tical steam for 2. A photomic composition of f a standard b ours to supero 3A. The high was attributed y ferritic ste e photomicrogo te the cross s and intergran Hastelloy N alloy ergranular pero y N alloy having 2 stigators indo ons as low as nular penetrat	shown in F ATION ustrating t Hastelloy N or 4,000 ho crograph il of surface Hastelloy N critical st iron conte d to iron m eel piping raphs shown sectional a nular penet lloys. It netration of ing low mol nile no pene 2.1% Titani icate that 0.5% Titani	igure 21. he appears specimen urs is sho lustrating and matrix alloy exp eam is sho nt detects ass transp in the ste in Figure ppearances rations of will be no ccurs in a ybdenum (] etrations um added. the additi ium preven	ance of exposed own in const ovn in dosed for eam un eam eam eam eam eam eam eam eam eam eam	f the ed to ti- for oxide com in t. odule in at fied in a con- deep v N

FOSTER	WHEELER	ENERGY	CORPORATION
--------	---------	--------	-------------

BY

FWC FORM 172 - 4

FWC FORM 172 - 4

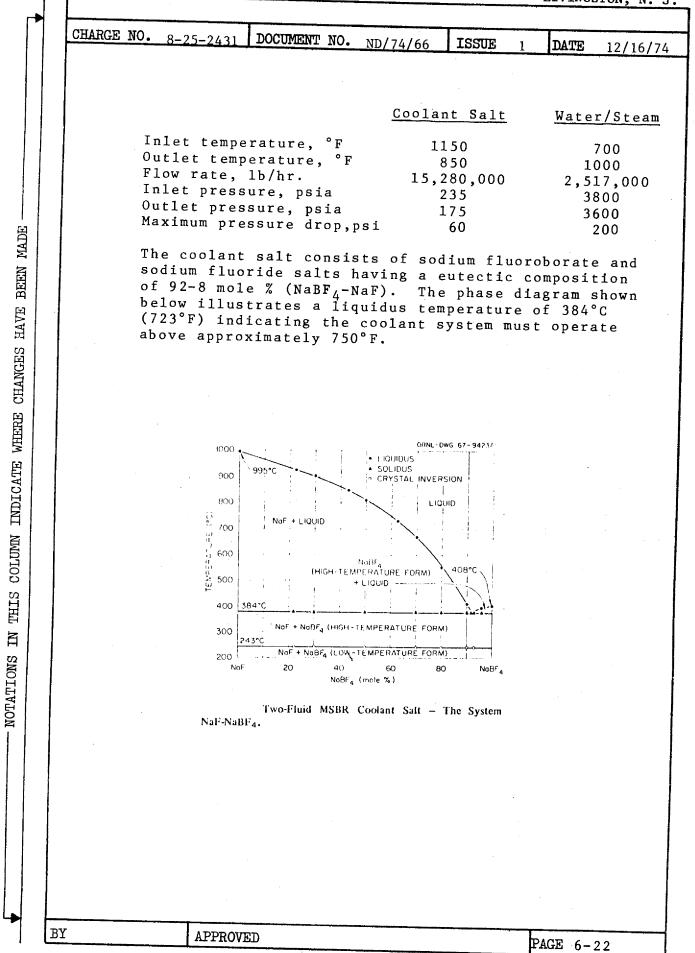
LIVINGSTON. N. J.

CHARGE	NO. 8	8-25-2431	DOCUMENT NO	• ND/7////	ISSUE	1 DATE 12/16/74
		222431	1 DOOMANT NO	• NU//4/66		1 INRIE 12/16/74
	Two	of the gr	roup of fou	ir Hastello	ov N tube	burst test
	spec.	imens ra	iled premat	urelv. Th	e higheet	straggod
	spec.	imens (/,	/,000 psi:	010" wall	thickneed	the failed
	TU OI	ne (I) ho	our and the	e next high	est stres	sed spooimon
	(52,	500 psi;	0.015" wal	l thicknes.	s) failed	l in 3.7 hours.
	These	e specime	ens which w	vere remove	d after 1	000 hours
	expos	sure were	e stressed	considerab	ly above	the yield
	cal e	35 (40,00 examinati	JU psi) at	1000°F. T	he subseq	uent metallurgi
	count	ed cause	es of failu	ralled spe	cimen su	ence of flaws,
	poor	machinin	ig of gage	sections o	r inaccur	ence of flaws,
	measu	rement o	f wall thi	cknesses.	- indeedi	acres In
	A pho	tograph	of the two	tube burs	t specime	ns and a
	ρποτο	microgra	ph lllustr	ating the	cracking	initiating
	rom	the insi	de surface	s (steam s	ide) of o	ne of the
	raite	ed specim	ens are sh	own in Fig	ures 25A,	В.
	The t	wo faile	d tubular	test speci	mens were	subsequently
	герта	сец ру с	wo similar	tvoe tube	specimen	e etraced
	g 56,	000 psi	(0.014" wa	11) and 50	,000 psi	(0.016" wall).
5	Subse	quently,	four addi	tional tub	e burst s	pecimens were
-	LIISLA	iiea in	the test f	acilitv in	order to	incresse
	ne i	ale of d	ata accumu	Lation. TI	ie specim	en design was
-	Luent	ical to	the other (iouble-wal [·]	tube hu	rst specimons
t T	ecte	t that t	he annulus	between th	ie tubes i	was not con-
ı t	for i	ndicatio	n of failu	the cham	per by ca	pillary tubing
v	vere	measured	periodica	llv and ru	ial diame	tral strains es estimated
Ł	у со	mparison	with the :	instrumente	ed tests.	es estimated
C	ne o	f the sp	ecimens wit	h the high	aest strea	as (58.000
H	sij.	railed so	ometime dui	ing the fi	rst 1000	hours of
e	xpos	ure. A g	smail crack	t developed	l in the i	inner tube
d	.nu p.	ressurize	ed the annu	ilus hetwee	n the tub	Voc Whon
t	he a	nnul ar re	egion colla	e was reduc	ed, the p	pressure in
F	igur	e 26. Th	le specimer	ipsed the t had a hai	ube, as s	ack extending
a	THOSE	L LNE ent	ire length	of the re	duced sec	tion of the
E	ube v	vall. Nt	imerous cra	cks formed	on the i	inside and
0	utsid	le surfac	es of the	tube.		

c	HARGE	NO.	8-2	5-243	1 D	OCUM	ENT 1	1.07	ND/7	4/66	5	Те	SUE	1	Ţ		1	2/16/7
Γ									_		-	110	SUE	4	[·	DATE		2/10//
		pr an th eq As 79 in sho In 8/2	essi d as irty irty sumi 2 ho cerg own the 31/7	ire (a i a i a i a i a i a i a i a i a i a i	excu escu)) m to his exp lar 'igu ian	rsi lt inu wa osu cr re re	on t the tes stre stre acks 27. l pr b a	ogre	cou 750 ssu his of ase e a rme ess	ld ps re 37 62, , t ppe d i rep	hav ig dro 50 000 he ara n t	ye (mon ppe psi ps fai nce he 23 t	nent ed t ig w i c lur fai	rio	ed ily zer ld he cc ls	when occ o in have spe urre num ampl endi	n a ur a ci d e ng	red, bout een men. after ous are
		sti wa]	ess 1 t	es v hick	ary: ness	ing ses	fro var	rst m 28 ying	spe 3,00 g fi	ecin)Ot :om	nen to 0.0	s w 72, 010	ere 000 8"	in ps to	t d i 0.(est (spe)302	at ci: ")	nen
		res mor sid	pec e h era	igh1	ps. ly. y st defo	Th Th res	le i sed tion	rail nves spe n wh	led stig scim	at atc ens	4.(0, re	27. por	4 a teđ	nd th	99. nat :	7 1 the	nours
		duc men and	til at in	e fra	actu int canu	re, erm lar	bei bei edia fra	st s ing ite	tre alm str	ss ost ess	lev sh	vel nea: ave	exh rwh lbs	nib: nil: nd	ite e t	d th he s	ie Spe	peci most ci- hear
	·	tio of ins mac	nal the pect	test scat ed a d fl	ten ter nd aw	od com 1 m	onme eter Cont pare il d	nts min rol d w eep	le e i sp ith and	d t f f eci: an d 6	o t law men el 2 m	he s c ect ils	con oul vere ric lo	ndud d b al- ng.	et e ltr di	of a the ason s ch a	dd ca ic rg	use ally e
		wall With 1 mi in a	. ma 1 an 1 i . 0.	y-tw qual chin app n th 020" i an	ed lie e wa	thia d pr all ll n	gre ckne cess thi nach	atei sses ure ckne	rti 5ra 0f ess	nan ange 35(wou	th ed 00 uld	es fro psi in	tan m 0 , a cre	dar .01 de ase	d. 1" cre th	Sp to ease ne s	ec •0 o tr	imen 20". f
BY				APPRO										-				

FOSTER	WHEELER	ENERGY	CORPORATION
--------	---------	--------	-------------

CHARGE	NO.	8-25-243	1 рос	UMENT N	0 ND/74	/66	ISSUE	1		10/1//7
						,	TOPOR		DATE	12/16/7
	wit spe les tes The bel ted con ing pro A pl men	control 00°F at th an ar ecimen f is than t after errati ieved t flaws sequenc the ef perties hotogra s which	a con gon ailed a sin over c beh o be in th e, no fects of H ph of fail	interna interna d after nilar s r 7000 navior due in defin o defin s of pu lastell the t ed aft	stress 1 pres 565.2 pecime hours. observ part 1y mac ite con re stea oy N tu hree Ha er shou	of 4 sure hour n exp ed in to the hined nclus am on ubing astell	0,300 of 350 s whic osed t test e pres tube lons w the s mater	psig 0 ps h wa o st spec ence wall: tress ial. tube	in a ig. s con eam s imens of un s and irawn s rupi	rgon This siderab till in was ndetec- , as a regard ture speci-
	whi each mich N sp 30. ultr nume may	le phot h of the rograph: pecimen	cal s omicr e spe s ill test nvest ally racks een p of th	team e ograph cimens ustrat ed in a igators inspect observ resent	nviron s taker are sh ing the argon @ s indic ted pri ved on before	nent i of t own i fail 1000 ated or to speci test	s show he fa: n Figu ure of °F are the sp testi men in ing.	wn in ilure 2 f the sho becin ing a iside	n Figu e area 29. H e Hast wh in ien wa ind th surf	re 28 hoto- elloy Figure s not at the aces
6.4.2	.3						•			
	DUPL	EX TUBI	NG T	ESTS						
	for was incr supe Nick (The adde	s were ratory steam g designe eased c rcritic el 280 Nickel d for g ated te	to ev enera d to orros al st sleev 280 rain	Valuate ator se provid sion re ceam se ve over alloy size c	the p rvice. e each sistan rvice a wron is pure ontrol	roper The side ce for was ma ught l e nick requi	ties o duple of th the de by Incolo	f du x tu e tu molt coe y 800	plex bing bing en flu xtrud: D tube	tubing which with uoride ing a e.


E NO.		5-2431			สกา	ND/ //			TAAT		1			10/1/	1
			1 1000	MENT 1	10.		+/00	_ _	ISSU		1	DATE		12/16	/74
Tł	ie si	tudy a	lso	incl	ıded	d an	0.17.0	. 1	. +		. c	. 1			
u 1		une nu	LSL	prope	erti	les –	ot t	•ho	dur	103	· + ·	11 h f m a	-		.cal
- L	iurv.	ruuar	comp	oneni	IS a	1S W	e]]	as	2 11 1	- 1 1 4	1000		- -	. .	
с ,	ατμε	чсе сп	e co	rrosi	on	behi	ลงเก	n c	∖f +	ho	NH.		20	∩ - 1	100
G 1	Lone	III SU	perc	LTLLC	al.	stea	am e	nvi	ron	mer	its	@ 10	00	°Fa	nd
55	000 E	osi pr	essu	re.											
А	twe1	ve in	ch p	iece	of	0.7	5 in	ch	dia	met	er	tubi	nø	was	
	instr	le ces	Lea	@ 25 °	C a	it a	dis	pla	cem	ent	ra	ate o	f	በ በፍ	
	.,	re 111	e ce	st re	su⊥	ts 1.	Lndi	cat	еd	tha	+ +	· h ~ 0	2	9 - 5	£
se et	roco	era s	tres	s was	- 37	. 600) הכ	i •	+ h ~		·				
Th	e ro	was	70,70 mper	ov ps	1 a	ind t	he.	elo	nga	tio	n,	50.5	% :	in 2	".
si	le t	om ter ype t	est 1	Nicke	1 2	80 s	is i and	nai Tno	cat	ed	tha	it in	tl	het	en-
со	ntri	bute	e qua:	lly t	o m	ater	ial:	st	ren	y o gth	•	comp	one	ents	
ar	gon	burs: atmosp	phere	s wit	n w ha	as a n ar	uso 	te	ste	d (†	10	00°F	iı	n an	
ru	ptur	ed in	3263	3 hou	rs.		gon	T 11	Ler	nar	pr	essu	re	and	
ТЪ	e r e	eulte	indi			1.		•							
tr	ibut	sults ed lit	IIIUI Ftle	to t	α τι Η σι	nat	the	Ni	cke	1 2	80	clad	c c	on-	
	PC L	col,		e run	r m r i	<u>о Гт</u>	to /	<u> - +</u>	マコム・	2 L					
31	ress	OL 46	5,000	psi	(đ. 1	1000	°F i	is	in :	a o r	0 0 m		- 4 -	. Ъ. Э.	- + -
P G		neu II	т тпс	o re	chn	ical	Bu1	lle:	tin	(T.	-40) for	, _ L	.n.uc .he	ila
lno	colo	y 800	allo	y).									_		
A	phote	ograph faile	n i11	ustra	atir	ng t	he d	lve	che	o k	a d	20000			
01	cne.	татте	ea au	piex	NIC	ckel	-280)/Tr	າດດ1	0.17	80	∩ +ъ	~	1	· +
Up.			SILOW	$\Pi \perp \Pi$	- T I 9	zure	3 I A	۱.	Δ τ	$h \wedge i$	- Om	10000	-	- 1.	
01	Lue	мтске	ET 20	V CIA	lddi	ing	i 11 u	19 + 1	~ o + i	n 0	+ h			.	
4110	r uel	oth of clad	cra	cking	t ir	a th	e 011	iter	• po	rti	lon	s of	th	е	
Ap	hoto	omicro	grap	h i1]	ust	rat	ing	the	e cr	ack	ing	g occ	ur	ring	
υn	Lue	Inner	τnc	oloy	800) tui	be a	nd	ovt	and	lind	1.0.0	+ h	* ~ ~	L
cne	5 NTC	LKEL Z	ov c	rad i	.s s	3 h o ឃ i	n in	- Fi	0112		121	(77	ha	÷ +	er-
sou	ind a	etween ind th	e In	colov	al nat	10v	ats Mae	was	t me	tal	Lui	rgica	11	у	
cir	cumf	erenc	e as	was	the	e Nic	ckel	28	0 c	lad).	гаго	un	a th	e
The	nat	ure o	f th	0 770	fua						-	_	_		
cra	ckin	ure o g in	the 1	e pro Nicke	1 2	e ar 80 c	ia p	rer	ere	nti	al 1-	long	it	udin	a1
con	duct	of a	ddit:	ional	me	char	ica.	ша 1 +	Ler	тат тат	±€	ed to	t!	n e	c
CIIC	PLT	OL WO	rking	g dir	ect	ion	inf	1ue	nce	d t	b u he	crac	шт) 6 т -	ne i ng	I
beh	avio	r.										crac.	<u>кт</u>	ug	
 	I	APPROV													

4

CHARGE 1	NO. 8-25-2431	DOCUMENT NO. ND/74/66	ISSUE	1 DATE 1	2/16/7
		from a Nickel 280 al.			
		ally and transversel			
		reep tested at tempe			
		of 2000 psi in argon			
		v.s. time for specir ondition is shown in			
		the longitudinal sp	-		lata
		ith a longer rupture			imum
		. However, fracture			
	both speci			Ŭ	
		the compatibility o			
		nt of a leak, sheet			
		ercritical steam @ 1	000°F and	3500 psi	for
	2000 hours	•			
	The specim	ens gained approxima	telv 75 mg	e/cm ² and	
	appeared t	o be about completel	v oxidize	d indicat	ing
		1 280 is not compati			
		cal steam environmen			
	oxidized s	pecimen is shown in	Figure 33	•	
				. 1 . 1	•
		tube burst tests we			-
		1000°F in an argon a ressure. One specim			511
		ing to a stress of 4			10010
		,720 psi for the ent			
		s with a diametral s			Che
		clad exterior was c			
		be burst specimen wa			
		oloy 800 and was dis			
		metral strain of 1.1		dye checke	
		of this clad specim			
		rograph illustrating hich occurs at relat			
		n Figure 35.	10019 100		2 0 0 0
	A graph il	lustrating several c	reep curv	es for Nid	ckel
	280 sheet	at 1000°F in argon i	s shown in	n Figure (36.
		ndicates there is no			
	-	rection or creep pro			-
	-	ecimen had longer ru			
	-	esses and the transv	-	imen had a	A
	longer rup	ture life at 15,000	psı.		

 All the sheet specimens had rupture strains greater 20% indicating much greater ductility than that show by the Nickel 280 on the duplex tubing. Generally, the data indicates that the duplex tubing can be produced with a nickel layer that possesses g ductility. 6.4.3 <u>CRITICAL REVIEW OF STEAM GENERATOR TUBING MATERIALS</u> The literature search included a critical review of alternate alloys for possible use as steam generator 			· · · · · · · · · · · · · · · · · · ·				
 20% indicating much greater ductility than that show by the Nickel 280 on the duplex tubing. Generally, the data indicates that the duplex tubing can be produced with a nickel layer that possesses g ductility. 6.4.3 CRITICAL REVIEW OF STEAM GENERATOR TUBING MATERIALS The literature search included a critical review of alternate alloys for possible use as steam generator tubing in Molten Salt Breeder Reactor service. This involved a study of fundamental selection criteria a review of all commercial and experimental alloys use in the previously cited material investigations as well as others described in the referenced literatur 1-108. This also included technical discussions with tubing manufacturers regarding the selection and usage of commercial steam generator tubing materials; the behavior of various iron and nickel base alloys subj to long term exposure to high temperature supercriti and molten salt environments; and the new duplex tub fabrication processes developed for special applications requiring increased corrosion protection for b the inside and outside surfaces of tubing. 6.4.3.1 DESIGN REQUIREMENTS AND CRITERIA The steam generator is based on a 30 year plant life and the use of tubing having a minimum I.D. of 0.375 and corrosion allowances of 0.5 mil/yr. on the salt side and 0.25 mil/yr. on the steam side. 	CHARGE N	10. 8-25-2431	DOCUMENT NO	• ND/74/66	ISSUE	1 DATE	12/16
 1-108. This also included technical discussions with tubing manufacturers regarding the selection and usage of commercial steam generator tubing materials; the behavior of various iron and nickel base alloys subj to long term exposure to high temperature supercriti and molten salt environments; and the new duplex tub fabrication processes developed for special applications requiring increased corrosion protection for b the inside and outside surfaces of tubing. 6.4.3.1 <u>DESIGN REQUIREMENTS AND CRITERIA</u> The steam generator is based on a 30 year plant life and the use of tubing having a minimum I.D. of 0.375 and corrosion allowances of 0.5 mil/yr. on the salt side and 0.25 mil/yr. on the steam side. 	б.4.3	20% indicat by the Nick Generally, can be prod ductility. CRITICAL RE The literat alternate a tubing in M involved a review of a in the prev	ting much g cel 280 on the data in duced with EVIEW OF ST ture search alloys for folten Salt study of fo all commerc yiously cit	reater duct the duplex ndicates th a nickel la EAM GENERAT included a possible us Breeder Re undamental ial and exp ed material	ility t tubing. at the yer tha OR TUBI critic e as st actor s selecti eriment inves	han that duplex to t posses <u>NG MATER</u> al review eam gene ervice. on crite al alloy tigation	show ubing ses g <u>IALS</u> w of rator This ria a s use s as
DESIGN REQUIREMENTS AND CRITERIA The steam generator is based on a 30 year plant life and the use of tubing having a minimum I.D. of 0.375 and corrosion allowances of 0.5 mil/yr. on the salt side and 0.25 mil/yr. on the steam side. The design operational conditions to which the tubin	6 4 3	1-108. This also i manufacture commercial behavior of to long ter and molten fabrication tions requi	included te ers regardi steam gene various i rm exposure salt envir n processes iring incre	chnical dis ng the sele rator tubin ron and nic to high te onments; an developed ased corros	cussion ction a g mater kel bas mperatu d the n for spe ion pro	s with t nd usage ials; th e alloys re super ew duple cial ap p tection	ubing of subj criti x tub lica-
The steam generator is based on a 30 year plant life and the use of tubing having a minimum I.D. of 0.375 and corrosion allowances of 0.5 mil/yr. on the salt side and 0.25 mil/yr. on the steam side. The design operational conditions to which the tubin	0.4.3						
		The steam g and the use and corros	generator i e of tubing ion allowan	s based on having a m ces of 0.5	a 30 ye inimum mil/yr.	I.D. of on the	0.375

LIVINGSTON, N. J.

4

CHARGE NO	• 8-25-2431	DOCUMENT NO. ND/74/	66	ISSUE		DATE 12/16/
6.4.3.	2					
	CORROSION I	RESISTANCE TO MOL	TEN F	LUORID	E SA	ALTS
	The best h	nown alloy to con	tain	molton	£1,	orido salt
		tures up to 1500°				
		h was specificall				
	-	e molten fluoride	-	-		-
	-	ogram conducted d	-			-
		erm high temperat				
		ductility, creep			and	l satisfact
	tube fabrio	cation/joining pr	opert	les.		
	In the ear	ly screening stag	es of	allov	dev	velopment
	nickel base					
		e commercial nick				
	the most at			•		ere subject
		ve chromium deple				
	Figure 37.	mation of subsurf	ace v	701dS 1	LLUS	strated in
	ingule 57.					·
	The corros:	ion mechanism con	sists	ofox	idat	ion of all
		ts to their fluor				
		t and therefore d			-	-
	protective					pe attack
		ly by the thermod reaction and is m				
		s the least noble				
	-	le corrosion reac	tions	are e	xpre	essed in the
	equations h	below:				
	2HF + Cr	\neq H ₂ + CrF ₂		•		
	$NiF_2 + Cr$	Ni + CrF ₂				
	FeF ₂ + Cr	≓ Ni + CrF ₂				
	۷	2				
	The rolativ	ve thermodynamic	etshi	11+100	of	the fluers
		are shown in Tab				
		and nickel const				
		tant to molten sa		•		
	tures.					0

EWC FORM 172 - 4

PAGE 6-23

CHARGE	NO. 8-25-	²⁴³¹ DO	CUMENT NO). ND/74,	/66	ISSUE	1	DATE	12/16/74
CHARGE	In rela reports alloy w sion, t for oxi tempera tion re Ni-Mo a Figure the cou compreh other p develop 1969 by The res continu N and c fuel, b for var At's in forced referen and fur study. Table 2 convect Summari indicat able ma having mil/yr. The cor increas mole %) particu being u water i	ated development of the add that was under the add that was under the add the	velopmen while c esirable ition of resista above 65 ce confe shown a list develop review pating 1 the Ha	tal stu hromium becaus at lea ince for 0°C (12 inred by in Figu of a nu ing the of the aborato stelloy ion tes volving subjec e fissi times, al conv ops (FC emiannu n is be atus of) as of telloy h tempe ion rat the Ha olant s ed by t nd mois ever, a ne and while	idies, n in t se of ast 6% r long 200°F) y 6-8% imber e Hast work ories y N al sts ob the ted t tempe yectio CL) ar tempe the tempe the stell pr stell e cont stell e cont stell e alt (he pr tother	Manl he ne fused chroit time chroit chroit chroit A. A of al elloy condu which loy w tained behav o var d coo ratur d coo ratur coo ratur d coo ratur co co ratur co ratur co ratur co ratur co co ratur co ratur co ratur co co ratur co ratur co ratur co ratur co ratur co ratur co ratur co co ratur co ratur co ratur co co ratur co co co co co co co co co co co co co	ey a wly flum serin mium serin loys loys (cted as p d by ious lant crib sope cope cope cope cope cope cope cope c	nd cc devel oride was vice shown invore shown invore to to to to to to to to to to to to to	oworkers oped corro- require at ed oxid n 80-20 in ed in 8). A RNL and hed 29 hed 29 i in stelloy s of en salt ities, and 30-38 resent ermal gation suit- service s of a is 8 rities in the s are and e being

NUCLEAR DEPARTMENT

FWC FORM 172 - 4

LIVINGSTON, N. J.

			<u>.</u>	
CHARGE NO) <u> </u>	DOCUMENT NO. ND/74/66	ISSUE 1	DATE 12/16/74
	borate sal	ion reactions in the t mixture have not be re reasonably express	een well es	stablished
	_	$_4 \rightleftharpoons$ NaBF ₃ OH + HF,		
	5	NaBOF ₂ + HF,		
	6HF + 2Cr reactions	+ 6 NaF 🛨 2Na ₃ CrF ₆ + with nickel and iron)	- 3H ₂ (and	similar
	$30_2 + 4Cr$	2Cr ₂ 0 ₃ ,		
	$Cr_{2}O_{3} + 3N$	$aBF_4 + 6NaF \rightleftharpoons 2Na_3CI$	$F_6 + 3NaBC$) ^F 2,
	FeF <mark>2</mark> + Cr nic kel and	CrF2 + Fe (and sim molybdenum fluorides	nilar react s).	ions with
	of various	lustrating the relate alloys in a LIF-BeF in Figure 39.	Lve corrosi 2-THF4-UF4	lon resistanc molt e n salt
6.4.3	. 3			
	CORROSION	RESISTANCE TO SUPERCI	RITICAL STE	AM
	steam serv to superhe forms a te and posses creep resi	ommercial alloy found ice is Incoloy 800. ated steam at tempera nacious uniform and p ses high temperature stance and thermal so high temperature/pres	This alloy atures of J predictable strength, tability re	y when expose 1050°-1100°F e oxide scale ductility, equired for
	generating strength a processes stresses s were estab Pressure V	has been widely used applications partice nd resistance to streat are required. The mathown for the Incoloy lished and reviewed be essel Code Committee or use on 4/29/74 und ssels.	larly when ess corrosi aximum allo 800 alloy by the ASME and the st	re increased ion cracking owable in Table 25 E Boiler and tress values
	·			
ВҮ	APP	ROVED		PAGE 6-25

FOSTER WHEELER ENERGY CORPORATION NUCLEAR DEPARTMENT

CHARGE NO). 8-25-2431	DOCUMENT NO. ND/74/66	ISSUE 1	DATE 12/16/74
		in Table 24 for comp		
	316 SS and manufactur Inconel 60	m allowable design st 2 1/4Cr-1 Mo alloys. ers data on the re lat 0, Incoloy 800 and In comparison purposes i	A graph ive streng conel 625	illustrating ths of alloys are
6.4.4	CRITICAL RI	EVIEW OF HASTELLOY N	AND DUPLEX	TUBING
6.4.4.1	HASTELLOY	N		
	MSBR applie has no pric cations and requires the steam side	a concerning the use cation is largely bas or commercial use in d that the present nu he use of tubing that service conditions s previously encounter ations.	ed on the steam gene clear appl will be s ubstantial	fact that it rating appli- ication ubjected to ly more severe
	indicates treatment l corrosion welded U-b steam envis introduced	work published by J. that the surface cond has a pronounced effe cracking proclivity end specimens subject ronments containing s during cyclic operat es @ 544°F to superhe	ition and p ot upon the of welded a ed to imput mall quant ion from sa	prior heat e stress and non re, oxygenated ities of NaCl aturated
	mounted spe specimens/e testing and	ph of the U-bend spec ecimens and two schem environmental conditi d the high pressure c tow Florida Plant are	atics illus ons during hloride SCG	strating cyclic C facility
	men surface bility to o Hastelloy M	ests Hammond observed e condition promoted cracking in a number N while none of the g astelloy N specimens onment.	the highest of alloys : round and p	t suscepti- including properly
		· ·		
BY	APPRO	DAED		PAGE 6-26

FWC FORM 172 - 4

NUCLEAR DEPARTMENT LIVINGSTON, N. J. DATE DOCUMENT NO. ND/74/66 ISSUE CHARGE NO. 8-25-2431 12/16/74 These results which are summarized in the Table 25 indicate that the stress corrosion cracking susceptibility of the Hastelloy N material may be reduced or eliminated by proper annealing treatment prior to use. (The actual data as excerpted from references 26 and 39 are shown in Tables 26 and 27 respectively). COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE The relieval of high levels of residual stress existing in as received material may provide additional insight as to the behavior of the Hastelloy N tubing material used by Comprelli 5 at GEAP and H. $\rm McCoy$ at ORNL in their constantly stressed tube burst tests. In addition, it appears that the concept of machining Hastelloy N specimen tube walls to thicknesses as low as .010" to obtain required stress values should be reevaluated to assess the effects of the magnitude and distribution of macro/micro residual stresses superimposed by the machining operations. The magnitude of these stresses can be determined by X-ray diffraction techniques. 6.4.4.2 DUPLEX TUBING The use of duplex tubing to provide increased corrosion protection to the outside and inside surfaces of the steam generator tubing appears to be a prudent compromize requiring further consideration and test evaluation. THIS In the duplex tube fabrication process developed by Huntington Alloys in Huntington, West Virginia, a Π Nickel 270 clad (pure nickel containing <.01%C) sleeve made by powdered metallurgy techniques is NOTATIONS placed over a section of wrought Incoloy 800 tubing. The composite is then sintered, coextruded and subjected to conventional cold drawing tube processing operations to obtain required cladding thicknesses ranging from .010-.050" over final size Incoloy 800 tubing. The duplex tubing section lengths vary from 85-120 feet in length depending upon the draw bench limitation of the mill. APPROVED PAGE 6-27 ΒY

4

I.

FWC FORM 172

NUCLEAR DEPARTMENT

EWC FORM 172 - 4

LIVINGSTON, N. J.

CHARG	E NO.	8-25-2431	DOCUMENT NO.	ND/74/66	ISSUE	_1	DATE	12/16/74
	The	duplex t	ubing design	strength	ie hae	od (n +h	
	Cod	e approve	d strength 1	evels for	: Is Das	w 80		e ASME
	sin	ce the Ni	ckel 270 cla	d does no	t contr	i hu t	re sid	onifi.
	can	tly to th	e strength o	f the dup	lex tub	e.	20 01	5
	The	vendor r	ecommends th	at the du	plex tu	bing	g can	be
	wei	ded by con	nventional s	tandard w	elding	prac	rtices	e ucino
	TUC	onel 82 f:	iller metal	for the T	ncolow	800	tubo	wold-
	men	ts and Ind	conel 61 for	the Nick	el 270	clad	l weld	lments.
	How	ever, on t	the basis of	the prev	iously	cite	ed stu	udies
	CON	ducted by	J. Hammond	and cowor	kersyy	at t	ho Ra	rtow
	for	rosion Tes	st Facility	it may be	pruden	t to	cons	sider
	101	test purp	oses the us	e ot dupl	ex tube	tes	t spe	ecimens
	vol.	ding rod a	ncoloy 800 t	ube weldm	ents ma	de f	rom 1	nco A
	and	Inconel 8	and/or combi	nations o	t inco .	A we	lding	g rod
	tol	he more re	32 filler me	tal since	this c	ombi	natio	on app e ar
1	ces	ses when e	esistant to exposed to in	SLIESS CO	rrosion	cra	cking	pro-
	sup	erheated s	team enviro:	npule, Oxy	genated, ntninin	, sup	ersat	urated/
	sal	ts.		iments co	ntainin	g so	aram	cnioride
	Ave	endor phot	ograph illu	trating	o cimil.			1
	dup	lex tube c	omposite con	nsisting (a simila of a cir	ar c ntor	ommer od pi	cial
	shei	11 on a Mo	nel alloy 40)0 extrus	ion bil	lot	ic ch	CKEI
	in H	Figure 42.	Also shown	n are cros	ss sect	ions	 	h e
	clad	l tube sec	tions at var	ious pro	cessing	sta	ges.	
	Phot	comacrogra	phs illustra	ating the	transve	erse	appe	arances
	OI 6	experiment	al Nickel 27	'O and Nid	ckel 280) c1	addin	05 OVAT
	wrou	ight Incol	oy 800 tube	sections	are sho	own	in Fi	gure 4 3
	TU (ine unetch	ed and macro	etched co	onditior	ns.		
	Phot	omicrogra	phs taken of	transver	rse sect	ion	s of	
	coex	truded du	plex tube se	ctions i]	llustrat	ing	the	micro-
	SULU	d motally	pearance in	the inter	facial	are	as of	the
	clad	dings on	rgical bond	between t	the Nick	cel :	270 a	nd 280
	Figu	ires 44 an	Incoloy 800 d 45.	tupe sect	lons ar	e si	nown	in
6.5	CONC	LUSIONS/R	ECOMMENDATIO	NS				
	un t the	ne pasis (of the liter	ature sur	vey des	crit	ed h	erein
	ene	TOTIOWING	conclusions	and reco	mmendat	ions	s are	made:
BY		APPRO	VED				PAGE	6-28

CHARGE	NO. 8-25-	-2431	DOCUMEN	T NO.	ND/74/6	6 I	SSUE	1 DA	re ₁	2/16/
CHARGE	 Then assess of high ten ments un encounte Then that can corrosic side and Stan provide salts th depends allo 	re is or pro- nperat der d ered f re is n simu on res l supe dard the b an al essen y com	insuff edict t ture/pr constan in Molto no know ltaneous stance ercritic and mod est con l other tially	icien he pe essur t and en Sa wn si usly e to cal s difie rosi r all on t	t publ rforma e supe cycli lt Bre ngle c provid molten team o d comp on res oys. he fol	ished nce o rcrit c loa eder ommer e the fluo n the cositio istan lowing	data f Hast ical s ding c Reacto cial t requi ride s other ons of ce to orrosi g:	to pr elloy team ondit rs. ubing red 1 alts Hast molter on res	oper Ni envi ions allo ong on or elloy n flu	ly n ron- by term ne y N
	 b) cool c) cool water co 4. Publ N tubing applicat 	ant s ant s ntent ished in c ions	alt ten alt imp s. data c ommerci is non	once: al s exis	y leve rning team go tent.	ls par the pe	erform	arly o ance o ower p	of Ha plant	iste.
	composit behavior steam en	ions in p viron oxide taini	ure deo ments @ formed ng comp	sat: xygen 1000 is a lex o	isfacto nated D°F and a thin, oxides	ry ge (<1 pp 1 3500 tena consi	eneral ob) sup) psi. 	corro percri non s prima	sion tica pall rilv	ing
	.0104 f (3-4 ppm depths of 2400 hrs	mil a) env f pen • exp elloy	ironmen etratio osure. N allo	,000 ts @ n of ys ex	hrs. 6 1022°F .16 mi	xposu 'and ls we highe	re. 3 3000 p re rep	In oxy psi, o ported	gena xide aft	ted er
		corros	sion re	sista	nce of	stan	dard H	lastel 6% Si	10y •	N

CHAF	GE NO. 8-25-	2431	DOCUMENT NO.	ND/74/66	ISSUE	1	DATE	12/16/74
	penetra iron pa f) Nod	tions rticle ule de n deo;	aces of sta ion of loc possibly i depositio epths of .4 sygenated (alized noo nitiated a n. ~.8 mils 1	iular ty and/or a	vpe i accel	nter; erate	granulan ed by
	8) Pit hours i environ	u oxyg	s of 1.5 m enated (3-	ils were r 4 ppm) sup	eported ercriti	aft cal	er 2, steam	400
	intergra 10,000 l supercra penetra	nu re anular nours itical cions	Hastelloy (.05%) con oxide pen exposure i steam env are absent omposition	tents exhi etrations n pure deo ironments. in simila	bit dee up to 1 xygenat The i rlv exp	p lo O mi ed (nter	caliz ls af <l pp<br="">granu</l>	ed ter b)
	of Haste	elloy :	investigat: tressed sta N under su uncertain	percritica				
	subjecte	to s d to j	in the as tress corro pure and in containing	sion crac	king pro	ocess al en	Ses w	hen
	in impur	n exhi e supe	lloy N allo lbits immur ersaturated and non we	ity to st: /superhea:	ress com	rrasi	on o	racking
	the stea	m gene	duplex tu on to the o rator tubi ional test	utside and ng appears	l inside s promis	Sur	faco	corro- s of
	8. Due cyclic 1 cooperat performat cial hig The prog sections	to unc Dading ive te nce of n temp ram sho of Ha	ertainties condition st program Hastelloy erature/pr puld includ stelloy N mercial bo	of materi s, it is re be consid N tubing essure ste e the inco	al perf commend ered to materia am serv	ed t eva l un ice	hat a luate der c condi	the commer- tions.

0777.1			T						
CHA	RGE NO. 8-25	-2431	DOCUMENT	NO.	ND/74/66	ISSU	JE 1	DATE 12/	16/7
	REFERENC	ES							
1.	STRESS C PURITY W Fink. S Institut	ATER, pecial	Warren report	E. B prep	erry, W. ared by	. Stie Batte	gelme lle M	yer and : emorial	HIGH F.
2.	STRESS C WATER, H Colloque Holland I	. Cori De Me	ou, R. G tallurgi	rall e su	, M. Le(r la Coy	Gall a Trosio	nd S. n (19	Vettior	26
3.	CORROSIO Boyd and	N OF S' H. A.	FAINLESS Pray.	STE: Corre	ELS IN S osion 19	SUPERC 56, 3	RITIC. 75t-3	AL WATER, 84t.	W.
4.	MATERIALS Spalaris Reynolds GEAP 3875	, F. A. AEC	. Compre Project	11i,	D. L. D	ougla	ss and	1 M. R.	
5.	MATERIALS MANCE OF Comprelli Agreement	ALLOYS	5 IN SUP 5. MacMi	ERHEA 1liar	TED STE	AM ENV	VIRONN	IENTS, F.	A.
6.	GENERAL C REACTOR E and G. P.	INVIRON	IMENT, W	. L.	Pearl.	E. G.	Brush	SUPERHE , G. G.	ATE Gau
7.	INCOLOY 8 SPALARIS,	00 FOR GEAP	NUCLEA 4633, J	R FUE uly 1	L SHEAT 964	HS (A	MONOG	RAPH), C	. N
8.	STABILITY Comprelli	OF HI , U. E	GH-NICKI . Wolff	EL AL , <u>GEA</u>	LOYS IN <u>P 4745</u> ,	SUPER Nov.	неате 1964.	D STEAM,	F.
9.	GENERAL C APPLICATI Wozadlo,	ONS, W	. L. Pea	arl.	E. G. B	NUCLE rush,	AR SU G. G.	PERHEATE Gaul, G	D . P.
10.	GENERAL C HEATED RE G. G. Gau No. 7., p	ACTOR 1, and	ENVIRONN S. Leis	IENT. stiko	W. L. W. Nucle	Pear1	E	C Bruch	
11.	EFFECTS 0 550°C (10) NICKEL BA of the Nuc Idaho Fal	SE ALL(clear :	AND 1000 DYS, H. Superhea) - 3(J. P.	000 PSI	PRESS	URE U	PON IRON	AND
Y		APPROV							

Сн	ARGE	NO.	8-25-	2431	DOCUM	ENT NO.	ND/74,	66	ISSUE	1	DATE	12/16/
											[JUGTO	12/10/
12	2. / 1 E	AN E CEMP R. E SNWL	VALUA ERATU • Wes 155.	TION (RE ALI terman	OF TH LOYS 1 1, P.	E CORR FOR NU 26(19	OSION CLEAR 65) No	RESI APPL V. C	STANC ICATI ontra	E OF ONS, ct A1	SEVER T. T. C (45-	AL HIG Claud 1)-183
13	H	• J.	Pess	N OF I ERATUR s1, p. 154.	60	AND-NI ACTOR (1965	CKEL-H APPLI() Nove	ASE ATIO mber	ALLOY: NS, T • Con	S FOR . T. ntrac	MEDII Clauds t AT(4	UM AND son, 45-1)-
	N	atio	nal L	abora	tory	1	CRNL	- TM-	-7405- 1854,	-eng June	26, Oa 1967.	ik Ridg
15	• D) O) Ro	ESIG RNL ober	N STU 3996 tson.	DIES (8/66)	OF 10), P.	00 Mu(R. Ka	(e) MO Isten,	LTEN- E. S	-SALT 5. Bet	BREE lis,	DER RE and R	ACTOR; · C.
					,	hority Knoxv	TTTE,	renn	•, 19	67.		
17.	tr <u>OR</u>	LTEN act NL 4	W-74- 449,	F REAC -5-eng 8/31/	TOR H 26 (69.	PROGRA Dak Ri	M, PEH dge Na	lOD tion	ENDIN al Lai	G 8/3 borat	1/69, ory R	Con- eport,
	Na	tion	al La	borat	ory R	ROGRA , Con eport	, <u>ORNL</u>	454	$\frac{8}{2}, \frac{8}{7}$	g 26, 70.	0ak H	Ridge
	FU RE Gen Rej	ELS PORT hera port	AND M PERI tors , <u>ORN</u>	ATERI OD EN PP 27 L 4560	ALS D DING 5-280 2, 3/	EVELOH 3/31/7), Oak 31/70.	PMENT 70 (Ad 7 Ridg	PROGI vance e Nat	RAM QU ed Mat ional	ARTE eria Labo	ls in prator	
20.	ME 6/3 toi	FALS 80/70 Ty Re	AND D, Co ≥port	CERAM] ntract <u>ORNL</u>	CS A W-74 4570	NNUAL 405-en , 10/7	PROGRI g 26, O.	ESS R Oak	EPORT Ridge	PER] Nati	IOD EN Ional	DING Labora
	Nat	iona	l Lab	orato	ry Re	ROGRAM Cont Port,	ORNL	4676	5-eng , 2/28	26, 8/71.	Oak R:	idge
22.	MO L P E R	TEN IOD	SALT ENDIN	REACT	OR PR	OGRAM Conti port (SEMIA	NNUA	L PROG	GRESS		RT dge

FWC FORM 172 - 4. . NOTATIONS IN THIS COLUMN INDICATE WHERE CHAN

FOSTER WHEELER ENERGY CORPORATION NUCLEAR DEPARTMENT

LIVINGSTON, N. т

 CHARGE NO. 8-25-2431 DOCUMENT NO. ND/74/66 ISSUE 1 DATE 12/16 24. CORROSION AND MASS TRANSFER CHARACTERISTICS OF Na BF4-N (92-8 mole %) IN HASTELLOY N, J. W. Koger, Contract W-7 ong 26, Oak Ridge National Laboratory Report ORNL-TM-38 10/72. 25. MOLTEN SALT REACTOR PROGRAM SEMIANNUAL PROGRESS REPORT, PERIOD ENDING 2/29/72, Contract W-7405-eng 26, H. E. Mc J. R. Weir, Oak Ridge National Laboratory Report ORNL 4 2/29/72. 26. FUELS AND MATERIALS DEVELOPMENT PROGRAM QUARTERLY PROGR. REPORT PERIOD ENDING 12/31/72, Contract W-7405-eng 26 OR Ridge National Laboratory ORNL-TM-4105, 12/31/72. 27. CORROSION OF SEVERAL IRON AND NICKEL BASE ALLOYS IN SUPJ CRITICAL STEAM AT 1000°F, H. E. McCoy and B. MCNabb, 8/3 ORNL-TM 4552. 28. METALLURGICAL PROBLEMS IN MOLTEN FLORIDE SYSTEMS, W. D. Manly, J. H. Cools, J. H. DEVan, D. A. Douglas, H. Inouy P. Patriarca, T. K. Roche, and J. L. Scott, Geneva Conference Paper (1958) p/1990, Reprinted from "Progress in Nuclear Haergy, Series IV, Vol 2 - Technology, Engineeri and Safety. 29. THE INOR-8 STORY, H. E. McCoy, Review, Fall 1969, ORNL pp 35 - 49. 30. METALS AND CERAMICS DIVISION ANNUAL PROGRESS REPORT FOR PERIOD ENDING 6/30/67, Contract W-7405-eng 26 Oak Ridge National Laboratory Report ORNL-TM-1854, June 1967. 31. MATERIALS DEVELOPMENT FOR MOLTEN SALT BREEDER REACTORS, H. E. McCoy, J. R. Weir, Contract W-7405-eng 26, Oak Ridge National Laboratory Report ORNL-TM-1854, June 1967. 33. AN EVALUATION OF THE MOLTEN SALT REACTOR EXPERIMENT FOR PERIOD ENDING 8/3/67, H. E. McCoy, CONTACT W-7405-eng 26, Oak Ridge National Laboratory Report ORNL-TM-1854, June 1967. 34. AN EVALUATION OF THE MOLTEN SALT REACTOR EXPERIMENT HASTELLOY IN SURVEILLANCE SPECIMENS-FIRST GROUP, H. E. McCoy, Contract W-7405-eng 26 Oak Ridge National Laboratory Report ORNL-TM-1854, June 1967. 35. AN EVALUATION OF THE MOLTEN SALT REACTOR EXPERIMENT HASTELLOY IN SURVEILLANCE SPECIMENS-FIRST GROUP, H. E. McCoy, CONTACT	0315			T			
 (32-6) mode 2) IN HASTELLOY N, J. W. Koger, Contract W-7 eng 26, Oak Ridge National Laboratory Report <u>ORNL-TM-38</u> 10/72. 25. MOLTEN SALT REACTOR PROGRAM SEMIANNUAL PROGRESS REPORT, PERIOD ENDING 2/29/72, Contract W-7405-eng 26, H. E. Mc J. R. Weir, Oak Ridge National Laboratory Report <u>ORNL 4</u> 2/29/72. 26. FUELS AND MATERIALS DEVELOPMENT PROGRAM QUARTERLY PROGR: REPORT PERIOD ENDING 12/31/72, Contract W-7405-eng 26 O. Ridge National Laboratory <u>ORNL-TM-4105</u>, 12/31/72. 27. CORROSION OF SEVERAL IRON AND NICKEL BASE ALLOYS IN SUPI CRITICAL STEAM AT 1000°F, H. E. McCoy and B. McNabb, 8/3 <u>ORNL-TM 4552</u>. 28. METALLURGICAL PROBLEMS IN MOLTEN FLORIDE SYSTEMS, W. D. Manly, J. H. Cools, J. H. DeVan, D. A. Douglas, H. Inoug P. Patriarca, T. K. Roche, and J. L. Scott, Geneva Confe ence Paper (1958) p/1990, Reprinted from "Progress in Nuclear Energy, Series IV, Vol 2 - Technology, Engineeri and Safety. 29. THE INOR-8 STORY, H. E. McCoy, Review, Fall 1969, ORNL pp 35 - 49. 30. METALS AND CERAMICS DIVISION ANNUAL PROGRESS REPORT FOR PERIOD ENDING 6/30/67, Contract W-7405-eng 26 Oak Ridge National Laboratory Report ORNL 4170, June 30, 1967. 31. MATERIALS DEVELOPMENT FOR MOLTEN SALT BREEDER REACTORS, H. E. McCoy, J. R. Weir, Contract W-7405-eng 26, Oak Ridge National Laboratory Report ORNL 4170, June 1967. 32. MOLTEN SALT REACTOR PROGRAM, SEMIANNUAL PROGRESS REPORT FOR PERIOD ENDING 8/31/67, H. E. McCoy, Contract W-7405- eng 26, Oak Ridge National Laboratory Report <u>ORNL 4191</u>, Aug. 31, 1967. 33. AN EVALUATION OF THE MOLTEN SALT REACTOR EXPERIMENT HASTELLOY IN SURVEILLANCE SPECIMENS-FIRST GROUP, H. E. McCoy, Contract W-7405-eng 26 Mational Laboratory Report <u>ORNL 4191</u>, Aug. 31, 1967. 	UHAH	GE NU. 8-25-2431	DOCUMENT NO. N	D/74/66	ISSUE	1 DATE	12/16/7
 PERIOD ENDING 2/29/72, Contract W-7405-eng 26, H. E. Mc J. R. Weir, Oak Ridge National Laboratory Report ORNL 4 2/29/72. 26. FUELS AND MATERIALS DEVELOPMENT PROGRAM QUARTERLY PROGR. REPORT PERIOD ENDING 12/31/72, Contract W-7405-eng 26 O. Ridge National Laboratory ORNL-TM-4105, 12/31/72. 27. CORROSION OF SEVERAL IRON AND NICKEL BASE ALLOYS IN SUPI CRITICAL STEAM AT 1000°F, H. E. McCoy and B. McNabb, 8/3 ORNL-TM 4552. 28. METALLURGICAL PROBLEMS IN MOLTEN FLORIDE SYSTEMS, W. D. Manly, J. H. Cools, J. H. DeVan, D. A. Douglas, H. Inouy P. Patriarca, T. K. Roche, and J. L. Scott, Geneva Confe ence Paper (1958) p/1990, Reprinted from "Progress in Nuclear Energy, Series IV, Vol 2 - Technology, Engineeri and Safety. 29. THE INOR-8 STORY, H. E. McCoy, Review, Fall 1969, ORNL pp 35 - 49. 30. METALS AND CERAMICS DIVISION ANNUAL PROGRESS REPORT FOR PERIOD ENDING 6/30/67, Contract W-7405-eng 26 Oak Ridge National Laboratory Report ORNL 4170, June 30, 1967. 31. MATERIALS DEVELOPMENT FOR MOLTEN SALT BREEDER REACTORS, H. E. McCoy, J. R. Weir, Contract W-7405-eng 26, Oak Ridge National Laboratory Report ORNL-TM-1854, June 1967 32. MOLTEN SALT REACTOR PROGRAM, SEMIANNUAL PROGRESS REPORT FOR PERIOD ENDING 8/31/67, H. E. McCoy, Contract W-7405- eng 26, Oak Ridge National Laboratory Report ORNL-TM-1854, June 1967 33. AN EVALUATION OF THE MOLTEN SALT REACTOR EXPERIMENT HASTELLOY IN SURVEILLANCE SPECIMENS-FIRST GROUP, H. E. McCoy, Contract W-7405-eng 26 Oak Ridge National Laboratory Report ORNL_4191, Aug. 31, 1967. 	24.	eng 26, Oak Ri	IN HASTELLOY	N. J. W.	Koger	Contrac	+ 11-740
 REPORT PERIOD ENDING 12/31/72, Contract W-7405-eng 26 OR Ridge National Laboratory ORNL-TM-4105, 12/31/72. 27. CORROSION OF SEVERAL IRON AND NICKEL BASE ALLOYS IN SUPP CRITICAL STEAM AT 1000°F, H. E. McCoy and B. McNabb, 8/3 ORNL-TM 4552. 28. METALLURGICAL PROBLEMS IN MOLTEN FLORIDE SYSTEMS, W. D. Manly, J. H. Cools, J. H. DeVan, D. A. Douglas, H. Inouy P. Patriarca, T. K. Roche, and J. L. Scott, Geneva Confe ence Paper (1958) p/1990, Reprinted from "Progress in Nuclear Energy, Series IV, Vol 2 - Technology, Engineeri and Safety. 29. THE INOR-8 STORY, H. E. McCoy, Review, Fall 1969, ORNL pp 35 - 49. 30. METALS AND CERAMICS DIVISION ANNUAL PROGRESS REPORT FOR PERIOD ENDING 6/30/67, Contract W-7405-eng 26 Oak Ridge National Laboratory Report ORNL 4170, June 30, 1967. 31. MATERIALS DEVELOPMENT FOR MOLTEN SALT BREEDER REACTORS, H. E. McCoy, J. R. Weir, Contract W-7405-eng 26, Oak Ridge National Laboratory Report ORNL-M-1854, June 1967 32. MOLTEN SALT REACTOR PROGRAM, SEMIANNUAL PROGRESS REPORT FOR PERIOD ENDING 8/31/67, H. E. McCoy, Contract W-7405- eng 26, Oak Ridge National Laboratory Report ORNL-M-1854, June 1967 33. AN EVALUATION OF THE MOLTEN SALT REACTOR EXPERIMENT HASTELLOY IN SURVEILLANCE SPECIMENS-FIRST GROUP, H. E. McCoy, Contract W-7405-eng 26 Oak Ridge National Laboratory Report ORNL 4191, Aug. 31, 1967. 	25.	J. R. Weir, Oa	2/29//2. Cont	ract W-74	05-eng	26 H	F Maca
 28. METALLURGICAL PROBLEMS IN MOLTEN FLORIDE SYSTEMS, W. D. Manly, J. H. Cools, J. H. DeVan, D. A. Douglas, H. Inouy P. Patriarca, T. K. Roche, and J. L. Scott, Geneva Conference Paper (1958) p/1990, Reprinted from "Progress in Nuclear Energy, Series IV, Vol 2 - Technology, Engineeri and Safety. 29. THE INOR-8 STORY, H. E. McCoy, Review, Fall 1969, ORNL pp 35 - 49. 30. METALS AND CERAMICS DIVISION ANNUAL PROGRESS REPORT FOR PERIOD ENDING 6/30/67, Contract W-7405-eng 26 Oak Ridge National Laboratory Report ORNL 4170, June 30, 1967. 31. MATERIALS DEVELOPMENT FOR MOLTEN SALT BREEDER REACTORS, H. E. McCoy, J. R. Weir, Contract W-7405-eng 26, Oak Ridge National Laboratory Report ORNL-TM-1854, June 1967 32. MOLTEN SALT REACTOR PROGRAM, SEMIANNUAL PROGRESS REPORT FOR FOR PERIOD ENDING 8/31/67, H. E. McCoy, Contract W-7405-eng 26, Oak Ridge National Laboratory Report ORNL-TM-1854, June 1967 33. AN EVALUATION OF THE MOLTEN SALT REACTOR EXPERIMENT HASTELLOY IN SURVEILLANCE SPECIMENS-FIRST GROUP, H. E. McCoy, Contract W-7405-eng 26 Oak Ridge National Laboratory Report ORNL 4191, Aug. 31, 1967. 	26.	KEPOKI PERIOD	ENDING 12/31/	72. Contr	act W-7	405-000	PROGRES 26 Oak
 Maniy, J. H. Cools, J. H. DeVan, D. A. Douglas, H. Inouy P. Patriarca, T. K. Roche, and J. L. Scott, Geneva Confe ence Paper (1958) p/1990, Reprinted from "Progress in Nuclear Energy, Series IV, Vol 2 - Technology, Engineeri and Safety. 29. THE INOR-8 STORY, H. E. McCoy, Review, Fall 1969, ORNL pp 35 - 49. 30. METALS AND CERAMICS DIVISION ANNUAL PROGRESS REPORT FOR PERIOD ENDING 6/30/67, Contract W-7405-eng 26 Oak Ridge National Laboratory Report ORNL 4170, June 30, 1967. 31. MATERIALS DEVELOPMENT FOR MOLTEN SALT BREEDER REACTORS, H. E. McCoy, J. R. Weir, Contract W-7405-eng 26, Oak Ridge National Laboratory Report <u>ORNL-TM-1854</u>, June 1967 32. MOLTEN SALT REACTOR PROGRAM, SEMIANNUAL PROGRESS REPORT FOR PERIOD ENDING 8/31/67, H. E. McCoy, Contract W-7405- eng 26, Oak Ridge National Laboratory Report <u>ORNL_4191</u>, Aug. 31, 1967. 33. AN EVALUATION OF THE MOLTEN SALT REACTOR EXPERIMENT HASTELLOY IN SURVEILLANCE SPECIMENS-FIRST GROUP, H. E. McCoy, Contract W-7405-eng 26 Oak Ridge National Laboratory Report <u>ORNL_4191</u>, 	27.	CRITICAL STEAM	EVERAL IRON A AT 1000°F, H	ND NICKEL • E• McCo	BASE A y and B	LLOYS I . McNab	N SUPER b, 8/74
 30. METALS AND CERAMICS DIVISION ANNUAL PROGRESS REPORT FOR PERIOD ENDING 6/30/67, Contract W-7405-eng 26 Oak Ridge National Laboratory Report ORNL 4170, June 30, 1967. 31. MATERIALS DEVELOPMENT FOR MOLTEN SALT BREEDER REACTORS, H. E. McCoy, J. R. Weir, Contract W-7405-eng 26, Oak Ridge National Laboratory Report ORNL-TM-1854, June 1967 32. MOLTEN SALT REACTOR PROGRAM, SEMIANNUAL PROGRESS REPORT FOR PERIOD ENDING 8/31/67, H. E. McCoy, Contract W-7405- eng 26, Oak Ridge National Laboratory Report ORNL 4191, Aug. 31, 1967. 33. AN EVALUATION OF THE MOLTEN SALT REACTOR EXPERIMENT HASTELLOY IN SURVEILLANCE SPECIMENS-FIRST GROUP, H. E. McCoy, Contract W-7405-eng 26 Oak Ridge National Laborat 	28.	P. Patriarca, ence Paper (19 Nuclear Energy	ools, J. H. D T. K. Roche, 3 58) p/1990. R	eVan, D. A and J. L. eprinted (A. Doug Scott, from "P	las, H. Geneva	Inouye Confer
 PERIOD ENDING 6/30/67, Contract W-7405-eng 26 Oak Ridge National Laboratory Report ORNL 4170, June 30, 1967. 31. MATERIALS DEVELOPMENT FOR MOLTEN SALT BREEDER REACTORS, H. E. McCoy, J. R. Weir, Contract W-7405-eng 26, Oak Ridge National Laboratory Report ORNL-TM-1854, June 1967 32. MOLTEN SALT REACTOR PROGRAM, SEMIANNUAL PROGRESS REPORT FOR PERIOD ENDING 8/31/67, H. E. McCoy, Contract W-7405- eng 26, Oak Ridge National Laboratory Report ORNL 4191, Aug. 31, 1967. 33. AN EVALUATION OF THE MOLTEN SALT REACTOR EXPERIMENT HASTELLOY IN SURVEILLANCE SPECIMENS-FIRST GROUP, H. E. McCoy, Contract W-7405-eng 26 Oak Ridge National Laboratory 	29.	THE INOR-8 STO pp 35 - 49.	RY, H. E. McCo	oy, Review	w, Fall	1969, (ORNL
 H. E. McCoy, J. R. Weir, Contract W-7405-eng 26, Oak Ridge National Laboratory Report <u>ORNL-TM-1854</u>, June 1967 32. MOLTEN SALT REACTOR PROGRAM, SEMIANNUAL PROGRESS REPORT FOR PERIOD ENDING 8/31/67, H. E. McCoy, Contract W-7405- eng 26, Oak Ridge National Laboratory Report <u>ORNL 4191</u>, Aug. 31, 1967. 33. AN EVALUATION OF THE MOLTEN SALT REACTOR EXPERIMENT HASTELLOY IN SURVEILLANCE SPECIMENS-FIRST GROUP, H. E. McCoy, Contract W-7405-eng 26 Oak Ridge National Laborat 	30.	PERIOD ENDING (6/30/67, Conti	ract W-74()5-eng	26 Oak H	lid o e
 and FERIOD ENDING 8/31/6/, H. E. McCoy, Contract W-7405- eng 26, Oak Ridge National Laboratory Report ORNL 4191, Aug. 31, 1967. 33. AN EVALUATION OF THE MOLTEN SALT REACTOR EXPERIMENT HASTELLOY IN SURVEILLANCE SPECIMENS-FIRST GROUP, H. E. McCoy, Contract W-7405-eng 26 Oak Ridge National Laborat 		H. E. McCoy, J.	. R. Weir, Con	itract W-7	7405-000	n 26 0 m	1.
HASTELLOY IN SURVEILLANCE SPECIMENS-FIRST GROUP, H. E. McCoy, Contract W-7405-eng 26 Oak Ridge National Laborat		eng 26, Oak Rid	LNG 8/31/6/, H	l. E. McCo	v. Cont	ract W-	7405-
]	HASTELLOY IN SU McCoy, Contract	RVEILLANCE SP W-7405-eng 2	ECIMENS-F 6 Oak Rid	TRST GR	и чио	F
Y APPROVED PAGE 6-33	 7			· · ·	<u></u>		

THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE NOTATIONS IN

CHA	RGE NO. 8-25-2431	DOCUMENT NO. ND/74/6	6 ISSUE	1 DATE 12/16/74
34	AS OF 1/1/68,	EN SALT BREEDER RI Contract W-7405-er Port <u>ORNL 4528</u> , 1/1	ng 26. Oak Ri	N STUDY STATUS idge National
35.	. MOLTEN SALT RE W-7405-eng 26, <u>4254</u> , Feb. 28,	ACTOR PROGRAM, PEH Oak Ridge Nationa 1968.	CIOD ENDING 2 1 Laboratory	2/29/68, Contr Report <u>ORNL</u>
36.	. MOLTEN SALT RE tract W-7405-e <u>ORNL 4344</u> , 8/3	ACTOR PROGRAM, PEE ng 26, Oak Ridge N 1/68.	CIOD ENDING 8 ational Labo	8/31/68, Con- oratory Report
37.	MOLTEN SALT RE tract W-7405-e ORNL 4396, 2/2	ACTOR PROGRAM, PER ng 26, Oak Ridge N 8/69.	IOD ENDING 2 ational Labo	/28/69, Con- ratory Report
38.	MOLTEN SALT RE tract W-74-5-e <u>ORNL 4449</u> , 8/3	ACTOR PROGRAM, PER ng 26, Oak Ridge N 1/69.	IOD ENDING 8 ational Labo	/31/69, Con- ratory Report
39.	POST-TEST ANAL P. Patriarca a	S-CORROSION OF STE YSIS OF AN INCOLOY nd G. M. Slaughter 51 presented at N	800 LOOP by of ORNL and	J. P. Hammon W. A. Maxwell
40.	CORROSION STUD Contract 089-6 10/62, <u>EURAEC</u>	IES IN WATER AND V 2-7 RDB Quarterly 474.	APOR AT HIGH Report 1, 6/	TEMPERATURES
41.	STEAM. Quarte: Societe d'Etude l'Industrie, Ja	EL CORROSION IN HI rly Report No. 2 O es, de Recherches an. 30, 1963. Wor Res. and Dev. Prog C 552.	ct. 1 to Dec et d'Applica k performed :	. 31, 1962, tions pour
42.	SUPERHEATER. (1963. John A. Rough. Battell performed under	NIOBIUM-BASE ALLO Quarterly Progress DeMastry, Arthur Le Memorial Inst. U.SEuratom Join 5-eng 92, 12 pp. 4	Report. Jan A. Bauer and April 1, 1963 At Res. & Dev	nuary-March Frank A. 3. Work 4. Program
43.	January-March 1	IN STEAM. Quarte 964. Work perform Program, 27 pp (196 162.	ned under US-	Euratom Joint

.

	FOSTER WHEELER ENERGY CORPORATION			
			/INGSTON, N	<u>N. J.</u>
	CHARGE NO. 8-25-2431 DOCUMENT NO. ND/74/66 ISSUE	1 12	A (7)77	
			ATE 12/16	5/74
	44. STUDIES ON CORROSION OF STEELS IN HIGH-TEM AND STEAM. Quarterly Report No. 9, July-S Euratom Joint Res. and Dev. Program, 48 pp Contract 089-62-7 RDB, 10/30/64, EURAEC-12	ept. (196 <u>37</u> .	1964. 4),	R
BEEN MADE	45. DEVELOPMENT OF NIOBIUM ALLOYS RESISTANT TO STEAM. Robert D. Koester, John A. DeMastry Berry, Arthur A. Bauer, Frank A. Rough, Bai Inst., Columbus, Ohio. Work performed und Euratom Joint Res. and Dev. Program, 44 pp W-7405-eng 92, 11/11/64 <u>EURAEC-1285</u> .	y, Wa: ttell(rren E. e Memoria	
HAVE	46. CORROSION STUDIES ON STEELS IN WATER AND ST TEMPERATURE. Quarterly Progress Report No. 1964. Euratom Joint Res. and Dev. Program, Contract 089-62-7 RDB, Jan. 1965, EURAEC-13	10,		•
WHERE CHANGES	47. STUDIES OF STEEL CORROSION IN HIGH TEMPERAT STEAM, Contract 089-62-7 RDB, Quarterly Rep 10/31/65; 11/26/65, EURAEC-1500.	'URE W ort 1	ATER AND .3 7/1-	
INDICATE WHE	48. DYNAMIC CORROSION TESTS ON CARBON AND STAIN PRESSURIZED WATER. M. Warzee, P. de Dorlod CFSTI, Contract 089-62-7-RDB (EUR-2688) 12/ EURAEC-1546.			N
COLUMIN	49. STUDIES OF STEEL CORROSION IN HIGH TEMPERAT STEAM, Societe d'Etudes, de Recherches et d pour l'Industrie, Contract 089-62-7 RDB; 31 EURAEC-1581.			,
SIHT NI SW	50. STUDIES OF STEEL CORROSION IN HIGH TEMPERATE STEAM, Societe d'Etudes, Contract 087-66-ITE (EUR-2838) Dep. mn CFSTI (In Belgium), Apr. EURAEC-1625.			
SNOTIFION	51. CORROSION OF STAINLESS STEELS IN HIGH TEMPER AND STEAM. M. Warzee, W. R. Ruston, P. deDo J. Hennaut, J PH Berge; (Societe d'Etudes et d'Applications pour l'Industrie, Brussels Contract 089-62-7-RDB, 14 p. (EUR-2857. e; C Feb. 1966, <u>EURAEC-1665</u> .	rlodo , de	Recherch	
	52. STUDIES OF STEEL CORROSION IN HIGH TEMPERATU STEAM, Quarterly Report No. 15, 4/16/30/66; EURAEC-1689.	RE WA 7/25	TER AND /66,	
▶				
	BY APPROVED	PAGE	6-35	\neg

							·					
E NO.	8-25	-2431	DOCUME	INT NO.	ND/74/6	6	ISS	UE	1	DATE	12/16	5/
STUD	ES O	FSTI	EEL CO	RROSIO	N IN H	IGH	TEM	PER	ATU	RE WA	TER AL	N
DOUT	1, So 1'In	dust	ed'Eti	udes,	de Rec	hero	ches	et	_d'	Appli	ation	n :
Conti	ract	087-6	66-1 TI	EEB(RD)), 89	p El	JRAE	(EU C-1	к-з 744	304). •	10/30	/ (
											C	
Chauc	lron;	Cont	ract (059-65.	-7-TEE	B (RE	3):	18	р (EUR - 3	306):	
Quart	erly	Repo	ort #5	, 7/1-9	9/30/6	6; <u>E</u>	URA	<u>EC-</u>	174	<u>9</u> .	, ,	
INFLU	JENCE	OF S	URFACE	E TREAT	ſMENT	on c	CORR	OSI	ON	OR CAH	RBON A	A١
STAIN	LESS	STEE	LS IN	HIGH 7	ſEMPER	ATUR	E W.	ATE	R A	ND STI	TAM.	
THE E	II. IYDRO	GEN F	ORMED	EVALUA	ATION F REAC	THRO	UGH	DE	TER	MINATI	ION OF	F
(5001	ete	d'Etu	des, c	ie Rech	lerche	s et	. d'#	App:	lic	ations		r
1'Ind	ustr	ie, B	russel	ls (Be]	lgium)	: Co	ntra	act	0.8	9-62-7		Б;
35 p;	(EU	R-331	9) Dep). mn (CFSTI	Dec.	196	56,	EU	RAEC 1	<u>.764</u> .	
BEHAV	IOR	OF ST	AINLES	SS STEE	LS IN	SUP	ERHE	EATI	ED :	STEAM.		
G. Ch	audr	on; C	ontrac	t 059-	65-1	ГЕЕВ	(RD)):	18 1	n (EUR	-3345	5)
Quart	erly	Керо	rt #16	0 10/1-	12/31	/66,	EUF	RAEC	<u> -1</u>	<u>804</u> .		
STUDI	ES O	F STE	EL COR	ROSION	IN H	IGH	TEME	PERA	ATUI	RE WAT	'ER AN	1D
		ociet	e d'Et	udes,	Contra	act	087-	-1-7	[EE]	B(RD);	102	р
(LOK-	2201); ма	у 1967	, EURA	EC-18	50.						
CORRO	SION	OF S	TAINLE	SS STE	EL ANI	D HI	GH N	ICK	ΈL	CONTE	NT	
C. So	S IN nnen	HIGH • .T	-TEMPE Cremer	RATURE	SUPE	RHEA	TED	STE		. М.	Warze	e e
(Belg	ium)	; Con	tract	087-1-	TEEB(I	, (S RD).	74	p.	(EI	JR-338	, 7):	
July	1967	, <u>EUR</u>	AEC-18	95.				r ·	(2)		• / >	
OXIDA	TION	OF S	UPERHE	ATED M	ATERIA	LS	TN S	TEA	M ·	ΔΠςΤ	FNTTT	۰ c
STAIN	LESS	STEE	L, J.	Board,	G.Hol	yfi	eld;	J.	Da	llev	(Atom	ı i
Power	Cons	struc	tions	Ltd.,	Houns]	ow,	Eng	.)	рр	163-1	73 of	!
Bruss	els,	Soci	ete d'	Etudes	de Re	e su eche	r 1 rche	Oxy Se	dat st d	ion d' Annl	es Me icati	:t
pour	l'Inc	lustr	ie, (l	965).						. тррт	rcarr	Ŭ
NEW S'	TUDIE	ES OF	THE I	SOTHER	MAL CO	RRO	SION	ਜਨ	י דא	C01.0V	800	Ŗ
SUPER·	-НЕАТ	ED S'	ΓΕΑΜ.	S. Le	istiko	w. H	Kern	for	sch	ungsz	entru	m
Karls	ruhe	(Wes	t Germ	any) 5	p (19	71)	Mar	ch.		U		
INVES	FIGAT	LONS	OF TH	E CORR	OSION	ВЕНА	AVIO	RO	FΔ	USTEN	τττο	
CrNi S	STEEL	S ANI	D NICK	EL ALL	OYS IN	SUE	PERH	EAT	ΕD	STEAM		
5.Lei	stiko	w, 32	2 p (1	972) (KFK-14	63)	(N7	2 – 2	553	4) EU	R ·	
- MA 9												
	STUDI STEAN pour Contr BEHAV Chaud Quart INFLU STAIN PART THE H (Soci 1'Ind 35 p; BEHAV G. Ch Quart STUDI STEAM (EUR- CORRO ALLOY C. So (Belg July OXIDA STAIN Power Journ Bruss pour NEW S' SUPER Karls CrNi S S.Leis	STUDIES O STEAM, So pour l'In Contract BEHAVIOR Chaudron; Quarterly INFLUENCE STAINLESS PART II. THE HYDRO (Societe l'Industr 35 p; (EU BEHAVIOR G. Chaudr Quarterly STUDIES O STEAM. So (EUR-3361 CORROSION ALLOYS IN C. Sonnen (Belgium) July 1967 OXIDATION STAINLESS Power Cons Journees D Brussels, pour l'Inc NEW STUDIE SUPER-HEAT Karlsruhe INVESTIGAT CrNi STEEL	STUDIES OF STI STEAM, Societe pour l'Industr Contract 087-6 BEHAVIOR OF ST Chaudron; Cont Quarterly Repo INFLUENCE OF S STAINLESS STEE PART II. CORE THE HYDROGEN F (Societe d'Etu l'Industrie, B 35 p; (EUR-331 BEHAVIOR OF ST G. Chaudron; C Quarterly Repo STUDIES OF STE STEAM. Societ (EUR-3361); Ma CORROSION OF S ALLOYS IN HIGH C. Sonnen; J. (Belgium); Con July 1967, EUR OXIDATION OF S STAINLESS STEE Power Construc Journees Inter Brussels, Soci pour l'Industri NEW STUDIES OF SUPER-HEATED ST Karlsruhe (West INVESTIGATIONS CrNi STEELS ANI S.Leistikow, 32	STUDIES OF STEEL CO STEAM, Societe d'Et- pour l'Industrie, B Contract 087-66-1 TH BEHAVIOR OF STAINLES Chaudron; Contract (Quarterly Report #5 INFLUENCE OF SURFACH STAINLESS STEELS IN PART II. CORROSION THE HYDROGEN FORMED (Societe d'Etudes, c l'Industrie, Brussed 35 p; (EUR-3319) Dep BEHAVIOR OF STAINLES G. Chaudron; Contrac Quarterly Report #16 STUDIES OF STEEL COR STEAM. Societe d'Et (EUR-3361); May 1967 CORROSION OF STAINLE ALLOYS IN HIGH-TEMPE C. Sonnen; J. Cremer (Belgium); Contract July 1967, <u>EURAEC-18</u> OXIDATION OF SUPERHE STAINLESS STEEL, J. Power Constructions Journees Internation Brussels, Societe d' pour l'Industrie, (1 NEW STUDIES OF THE I SUPER-HEATED STEAM. Karlsruhe (West Germ INVESTIGATIONS OF TH CNI STEELS AND NICK S.Leistikow, 32 p (1	STUDIES OF STEEL CORROSIO STEAM, Societe d'Etudes, pour l'Industrie, Brussel Contract 087-66-1 TEEB(RD BEHAVIOR OF STAINLESS STEE Chaudron; Contract 059-65- Quarterly Report #5, 7/1-9 INFLUENCE OF SURFACE TREAS STAINLESS STEELS IN HIGH S PART II. CORROSION EVALUA THE HYDROGEN FORMED IN THH (Societe d'Etudes, de Rect l'Industrie, Brussels (BeJ 35 p; (EUR-3319) Dep. mn G BEHAVIOR OF STAINLESS STEE G. Chaudron; Contract 059- Quarterly Report #16 10/1- STUDIES OF STEEL CORROSION STEAM. Societe d'Etudes, (EUR-3361); May 1967, <u>EURA</u> CORROSION OF STAINLESS STE ALLOYS IN HIGH-TEMPERATURE C. Sonnen; J. Cremer; Ph. (Belgium); Contract 087-1- July 1967, <u>EURAEC-1895</u> . OXIDATION OF SUPERHEATED M STAINLESS STEEL, J. Board, Power Constructions Ltd., Journees Internationales d Brussels, Societe d'Etudes pour 1'Industrie, (1965). NEW STUDIES OF THE ISOTHER SUPER-HEATED STEAM. S. Le Karlsruhe (West Germany) 5 INVESTIGATIONS OF THE CORR CNI STEELS AND NICKEL ALL S.Leistikow, 32 p (1972) (STUDIES OF STEEL CORROSION IN H STEAM, Societe d'Etudes, de Rec pour l'Industrie, Brussels (Bel Contract 087-66-1 TEEB(RD), 89 BEHAVIOR OF STAINLESS STEELS IN Chaudron; Contract 059-65-7-TEE Quarterly Report #5, 7/1-9/30/6 INFLUENCE OF SURFACE TREATMENT STAINLESS STEELS IN HIGH TEMPER PART II. CORROSION EVALUATION THE HYDROGEN FORMED IN THE REAC (Societe d'Etudes, de Recherche l'Industrie, Brussels (Belgium) 35 p; (EUR-3319) Dep. mn CFSTI BEHAVIOR OF STAINLESS STEELS IN G. Chaudron; Contract 059-65-1 Quarterly Report #16 10/1-12/31 STUDIES OF STEEL CORROSION IN H STEAM. Societe d'Etudes, Contra (EUR-3361); May 1967, EURAEC-183 CORROSION OF STAINLESS STEEL ANI ALLOYS IN HIGH-TEMPERATURE SUPEI C. Sonnen; J. Cremer; Ph. Berge (Belgium); Contract 087-1-TEEB(I July 1967, EURAEC-1895. OXIDATION OF SUPERHEATED MATERIA STAINLESS STEEL, J. Board, G.HoJ Power Constructions Ltd., HounsJ Journees Internationales d'Etude Brussels, Societe d'Etudes de Re pour 1'Industrie, (1965). NEW STUDIES OF THE ISOTHERMAL CO SUPER-HEATED STEAM. S. Leistiko Karlsruhe (West Germany) 5 p (19 INVESTIGATIONS OF THE CORROSION CNI STEELS AND NICKEL ALLOYS IN S.Leistikow, 32 p (1972) (KFK-14	STEAM, Societe d'Etudes, de Recherd pour l'Industrie, Brussels (Belgiur Contract 087-66-1 TEEB(RD), 89 p El BEHAVIOR OF STAINLESS STEELS IN SUP Chaudron; Contract 059-65-7-TEEB(RI Quarterly Report #5, 7/1-9/30/66; E INFLUENCE OF SURFACE TREATMENT ON C STAINLESS STEELS IN HIGH TEMPERATUP PART II. CORROSION EVALUATION THRO (Societe d'Etudes, de Recherches et l'Industrie, Brussels (Belgium); Co 35 p; (EUR-3319) Dep. mn CFSTI Dec. BEHAVIOR OF STAINLESS STEELS IN SUP G. Chaudron; Contract 059-65-1 TEEB Quarterly Report #16 10/1-12/31/66, STUDIES OF STEEL CORROSION IN HIGH STEAM. Societe d'Etudes, Contract (EUR-3361); May 1967, <u>EURAEC-1850</u> . CORROSION OF STAINLESS STEEL AND HI ALLOYS IN HIGH-TEMPERATURE SUPERHEA C. Sonnen; J. Cremer; Ph. Berge; (S (Belgium); Contract 087-1-TEEB(RD), July 1967, <u>EURAEC-1895</u> . OXIDATION OF SUPERHEATED MATERIALS STAINLESS STEEL, J. Board, G.Holyfi Power Constructions Ltd., Hounslow, Journees Internationales d'Etude su Brussels, Societe d'Etudes de Reche pour l'Industrie, (1965). NEW STUDIES OF THE ISOTHERMAL CORRO SUPER-HEATED STEAM. S. Leistikow, D Karlsruhe (West Germany) 5 p (1971) INVESTIGATIONS OF THE CORROSION BEHA CNI STEELS AND NICKEL ALLOYS IN SUP S.Leistikow, 32 p (1972) (KFK-1463)	STUDIES OF STEEL CORROSION IN HIGH TEM STEAM, Societe d'Etudes, de Recherches pour l'Industrie, Brussels (Belgium), Contract 087-66-1 TEEB(RD), 89 p EURAE BEHAVIOR OF STAINLESS STEELS IN SUPERH Chaudron; Contract 059-65-7-TEEB(RB); Quarterly Report #5, 7/1-9/30/66; EURA INFLUENCE OF SURFACE TREATMENT ON CORR STAINLESS STEELS IN HIGH TEMPERATURE W. PART II. CORROSION EVALUATION THROUGH THE HYDROGEN FORMED IN THE REACTION. (Societe d'Etudes, de Recherches et d'A l'Industrie, Brussels (Belgium); Contra 35 p; (EUR-3319) Dep. mn CFSTI Dec. 196 BEHAVIOR OF STAINLESS STEELS IN SUPERHI G. Chaudron; Contract 059-65-1 TEEB(RD), Quarterly Report #16 10/1-12/31/66, EUL STUDIES OF STEEL CORROSION IN HIGH TEMI STEAM. Societe d'Etudes, Contract 087- (EUR-3361); May 1967, EURAEC-1850. CORROSION OF STAINLESS STEEL AND HIGH TA ALLOYS IN HIGH-TEMPERATURE SUPERHEATED C. Sonnen; J. Cremer; Ph. Berge; (Socie (Belgium); Contract 087-1-TEEB(RD), 74 July 1967, EURAEC-1895. OXIDATION OF SUPERHEATED MATERIALS IN S STAINLESS STEEL, J. Board, G.Holyfield; Power Constructions Ltd., Hounslow, Eng Journees Internationales d'Etude sur 1' Brussels, Societe d'Etudes de Recherche pour 1'Industrie, (1965). NEW STUDIES OF THE ISOTHERMAL CORROSION SUPER-HEATED STEAM. S. Leistikow, Kern Karlsruhe (West Germany) 5 p (1971) Mar INVESTIGATIONS OF THE CORROSION BEHAVIO CrNi STEELS AND NICKEL ALLOYS IN SUPERH S.Leistikow, 32 p (1972) (KFK-1463) (N7	STUDIES OF STEEL CORROSION IN HIGH TEMPER STEAM, Societe d'Etudes, de Recherches et pour l'Industrie, Brussels (Belgium), (EU Contract 087-66-1 TEEB(RD), 89 p EURAEC-1 BEHAVIOR OF STAINLESS STEELS IN SUPERHEAT Chaudron; Contract 059-65-7-TEEB(RB); 18 Quarterly Report #5, 7/1-9/30/66; EURAEC- INFLUENCE OF SURFACE TREATMENT ON CORROSI STAINLESS STEELS IN HIGH TEMPERATURE WATE PART II. CORROSION EVALUATION THROUGH DE THE HYDROGEN FORMED IN THE REACTION. C. 1 (Societe d'Etudes, de Recherches et d'App l'Industrie, Brussels (Belgium); Contract 35 p; (EUR-3319) Dep. mn CFSTI Dec. 1966, BEHAVIOR OF STAINLESS STEELS IN SUPERHEATI G. Chaudron; Contract 059-65-1 TEEB(RD): 1 Quarterly Report #16 10/1-12/31/66, EURAEC STUDIES OF STEEL CORROSION IN HIGH TEMPERA STEAM. Societe d'Etudes, Contract 087-1-7 (EUR-3361); May 1967, EURAEC-1850. CORROSION OF STAINLESS STEEL AND HIGH NICK ALLOYS IN HIGH-TEMPERATURE SUPERHEATED STT C. Sonnen; J. Cremer; Ph. Berge; (Societe (Belgium); Contract 087-1-TEEB(RD), 74 p. July 1967, <u>EURAEC-1895</u> . OXIDATION OF SUPERHEATED MATERIALS IN STEA STAINLESS STEEL, J. BOARD, G.HOLYFIELD; J. Power Constructions Ltd., Hounslow, Eng.) Journees Internationales d'Etude sur 1'Oxy Brussels, Societe d'Etudes de Recherches e pour 1'Industrie, (1965). NEW STUDIES OF THE ISOTHERMAL CORROSION OF SUPER-HEATED STEAM. S. Leistikow, Kernfor SUPER-HEATED STEAM. S. LEISTIKON OF SUPERHEATED SUPER-HEATED STEAM. S. LEISTIKON OF SUPERHEATED SLESSIGATIONS OF THE CORROSION BEHAVIOR O	STUDIES OF STEEL CORROSION IN HIGH TEMPERATU STEAM, Societe d'Etudes, de Recherches et d' pour l'Industrie, Brussels (Belgium), (EUR-3 Contract 087-66-1 TEEB(RD), 89 p EURAEC-1744 BEHAVIOR OF STAINLESS STEELS IN SUPERHEATED Chaudron; Contract 059-65-7-TEEB(RB); 18 p (Quarterly Report #5, 7/1-9/30/66; EURAEC-174 INFLUENCE OF SURFACE TREATMENT ON CORROSION STAINLESS STEELS IN HIGH TEMPERATURE WATER A PART II. CORROSION EVALUATION THROUGH DETER THE HYDROGEN FORMED IN THE REACTION. C. Son (Societe d'Etudes, de Recherches et d'Applic l'Industrie, Brussels (Belgium); Contract 08 35 p; (EUR-3319) Dep. mn CFSTI Dec. 1966, EUR BEHAVIOR OF STAINLESS STEELS IN SUPERHEATED S G. Chaudron; Contract 059-65-1 TEEB(RD): 18 p Quarterly Report #16 10/1-12/31/66, EURAEC-13 STUDIES OF STEEL CORROSION IN HIGH TEMPERATUD STEAM. Societe d'Etudes, Contract 087-1-TEED (EUR-3361); May 1967, EURAEC-1850. CORROSION OF STAINLESS STEEL AND HIGH NICKEL ALLOYS IN HIGH-TEMPERATURE SUPERHEATED STEAM. C. Sonnen; J. Cremer; Ph. Berge; (Societe d'I (Belgium); Contract 087-1-TEEB(RD), 74 p. (EU July 1967, EURAEC-1895. OXIDATION OF SUPERHEATED MATERIALS IN STEAM: STAINLESS STEEL, J. Board, G.Holyfield; J. Da Power Constructions Ltd., Hounslow, Eng.) pp Journees Internationales d'Etude sur l'Oxydat Brussels, Societe d'Etudes de Recherches et d powr 1'Industrie, (1965). NEW STUDIES OF THE ISOTHERMAL CORROSION OF IN SUPER-HEATED STEAM. S. Leistikow, Kernforsch Karlsruhe (West Germany) 5 p (1971) March. INVESTIGATIONS OF THE CORROSION BEHAVIOR OF A CNNI STEELS AND NICKEL ALLOYS IN SUPERHEATED S.Leistikow, 32 p (1972) (KFK-1463) (N72-2553	STUDIES OF STEEL CORROSION IN HIGH TEMPERATURE WAY STEAM, Societe d'Etudes, de Recherches et d'Applie pour l'Industrie, Brussels (Belgium), (EUR-3304) Contract 087-66-1 TEEB(RD), 89 p <u>EURAEC-1744</u> . BEHAVIOR OF STAINLESS STEELS IN SUPERHEATED STEAM. Chaudron; Contract 059-65-7-TEEB(RB); 18 p (EUR-3: Quarterly Report #5, 7/1-9/30/66; <u>EURAEC-1749</u> . INFLUENCE OF SURFACE TREATMENT ON CORROSION OR CAN STAINLESS STEELS IN HIGH TEMPERATURE WATER AND STI PART II. CORROSION EVALUATION THROUGH DETERMINATI THE HYDROCEN FORMED IN THE REACTION. C. Sonnen, N (Societe d'Etudes, de Recherches et d'Applications 1'Industrie, Brussels (Belgium); Contract 089-62-7 35 p; (EUR-3319) Dep. mn CFSTI Dec. 1966, <u>EURAEC 1</u> BEHAVIOR OF STAINLESS STEELS IN SUPERHEATED STEAM. G. Chaudron; Contract 059-65-1 TEEB(RD): 18 p (EUR Quarterly Report #16 10/1-12/31/66, <u>EURAEC-1804</u> . STUDIES OF STEEL CORROSION IN HIGH TEMPERATURE WAT STEAM. Societe d'Etudes, Contract 087-1-TEEB(RD); (EUR-3361); May 1967, <u>EURAEC-1850</u> . CORROSION OF STAINLESS STEEL AND HIGH NICKEL CONTE ALLOYS IN HIGH-TEMPERATURE SUPERHEATED STEAM. M. C. Sonnen; J. Cremer; Ph. Berge; (Societe d'Etudes (Belgium); Contract 087-1-TEEB(RD), 74 p. (EUR-338 July 1967, <u>EURAEC-1895</u> . OXIDATION OF SUPERHEATED MATERIALS IN STEAM: AUST STAINLESS STEEL, J. Board, G.Holyfield; J. Dalley Power Constructions Ltd., Hounslow, Eng.) pp 163-1 Journees Internationales d'Etude sur 1'Oxydation d Brussels, Societe d'Etudes de Recherches et d'Appl pour 1'Industrie, (1965). NEW STUDIES OF THE ISOTHERMAL CORROSION OF INCOLOY SUPER-HEATED STEAM. S. Leistikow, Kernforschungsz Karlsruhe (West Germany) 5 p (1971) March. INVESTIGATIONS OF THE CORROSION BEHAVIOR OF AUSTEN CrNi STEELS AND NICKEL ALLOYS IN SUPERHEATED STEAM S.Leistikow, 32 p (1972) (KFK-1463) (N72-2534) FU	STUDIES OF STEEL CORROSION IN HIGH TEMPERATURE WATER A STEAM, Societe d'Etudes, de Recherches et d'Applicatio pour l'Industrie, Brussels (Belgium), (EUR-3304) 10/30 Contract 087-66-1 TEEB(RD), 89 p EURAEC-1744. BEHAVIOR OF STAINLESS STEELS IN SUPERHEATED STEAM. G. Chaudron; Contract 059-65-7-TEEB(RB); 18 p (EUR-3306); Quarterly Report #5, 7/1-9/30/66; EURAEC-1749. INFLUENCE OF SURFACE TREATMENT ON CORROSION OR CARBON A STAINLESS STEELS IN HIGH TEMPERATURE WATER AND STEAM, PART II. CORROSION EVALUATION THROUCH DETERMINATION OT THE HYDROGEN FORMED IN THE REACTION. C. Sonnen, M. War (Societe d'Etudes, de Recherches et d'Applications pour l'Industrie, Brussels (Belgium); Contract 089-62-7 RD-1 35 p; (EUR-3319) Dep. mn CFSTI Dec. 1966, <u>EURAEC 1764</u> . BEHAVIOR OF STAINLESS STEELS IN SUPERHEATED STEAM. G. Chaudron; Contract 059-65-1 TEEB(RD): 18 p (EUR-3342) Quarterly Report #16 10/1-12/31/66, <u>EURAEC-1804</u> . STUDIES OF STEEL CORROSION IN HIGH TEMPERATURE WATER AN STEAM. Societe d'Etudes, Contract 087-1-TEEB(RD); 102 (EUR-3361); May 1967, <u>EURAEC-1850</u> . CORROSION OF STAINLESS STEEL AND HIGH NICKEL CONTENT ALLOYS IN HIGH-TEMPERATURE SUPERHEATED STEAM. M. Warze C. Sonnen; J. Cremer; Ph. Berge; (Societe d'Etudes, (Belgium); Contract 087-1.TEEB(RD), 74 p. (EUR-3387); July 1967, <u>EURAEC-1895</u> . OXIDATION OF SUPERHEATED MATERIALS IN STEAM: AUSTENITI STAINLESS STEEL, J. Board, G.Holyfield; J. Dalley (Atom Power Constructions Ltd., Hounslow, Eng.) pp 163-173 of Journees Internationales d'Etudes ur 1'Oxydation des Me Brussels, Societe d'Etudes de Recherches et d'Applicati pour 1'Industrie, (1965). NEW STUDIES OF THE ISOTHERMAL CORROSION OF INCOLOY 800 SUPER-HEATED STEAM. S. Leistikow, Kernforschungszentru Karlsruhe (West Germany) 5 p (1971) March. INVESTIGATIONS OF THE CORROSION BEHAVIOR OF AUSTENITIC CrNi STEELS AND NICKEL ALLOYS IN SUPERHEATED STEAM. S.Leistikow, 32 p (1972) (FK-1463) (NZ-25334) EUR

- NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE -

		FOSTER	WHEELER	ENERGY	CORPORATION
NUCLEAR	DEPARTMENT				

LIVINGSTON, N. J.

CHARG	E NO.	8-25-	2431	DOCUMENT	r no. 1	ND/74/6	6	ISSUE	; 1	DATE	12/16/74
62	TNEI	UFNCE	' OF (COLD WOR	K ON	<u>ጥሀፍ ር</u>		STON	DECT	CTANOT	OF
	AUST AUTO S. L (Wes Fest	ENITI CLAVE EISTI t Ger	C CrM STUE KOW, many) erfoi	Ni STEEL DIES ON E. Pott D. Inst	S IN INCOL . (Ke itut	SUPERI OY 800 rnfors fuer 1	HEAT) IN schu Mate	ED ST DIFI ngsze rial	FEAM. FEREN entru und	2. S T GRAI m, Kar	TATIC N SIZES lsruhe
	AUST STAT (x 5 (Kern fuer	ENITI IC AU CrNi nfors	C CrN TOCLA 18.9 chung ríal	COLD WOR II STEEL AVE INVE). S. szentru and Fes	S IN STIGA Leist m, Ka	SUPERI TIONS ikow, rlsruł	HEAT ON E. Ne (ED ST MATEN Pott West	TEAM. RIAL and Germ	Part 1.4301 W. Vol any).	3. z. Instit
	GENE of tl	RATOR	S, R. itish	Garnse Garnse Nuclea	у, В.	Hearr	1, G	. М.	W. M	ann.	Journal
	Manly P. Pa Pres Serie	y, J. atria s rep es IV	H. C rca, rinte , Vol	PROBLEM cools, J T. K. R d from 2-Tech nce Pap	. H. oche "Prog nolog	DeVan, and J. ress i y, Eng	D. L. n N sine	A. D Scot uclea ering	oubl t. r En g and	as, H. Pergam ergy". Safet	Inouye on
	LA C(NUCL) schil Inte	ONSTR EAIRE coff, enati	UCTIO S, H. M. P onal	RROSION N DES G Coriou elras, Confere , Switz	ENERA , R. J. Sa nce o	TEURS Darras nnier, n the	DE , L R. Pea	VAPEL . Gra Tera cefu]	IR PO 111, ube. Use	UR REA O. Kon Four	CTEURS ovalt- th
	PIPI 7211	NG, I	NTERV acifi	LIQUID ALS AND c North	CLAS	SING,	S .	H. Bu	sh,	5/24/7	2. Conf
	CORRC P.W.H	SION R. PR	RELE IMARY	BE MANU ASE RAT WATER, 1974.	ES OF	A NI-	C R -	FE AL	LOY	IN SIM	ULATED
I		Fle		RYING CI , Indus							

THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE

EWC FORM 172 - 4

NOTATIONS IN

MOC.	LEAR DEPARTMENT			LIVINGSTON, N.
CHARG	E NO. 8-25-2431	DOCUMENT NO. ND/74/66	ISSUE	1 DATE 12/16/
70.		WATER-COOLED NUCLEAR Australasian Corrosi		
71.	Karnoski, Jr. W. J. Fretagu	EL REACTOR PRESSURE , (Brown and Root, I le, U. Potapovs, and II, 347-67 (1970) Ap	nc., Houst L. E. Stee	ton, Tex.),
72.	BASED ALLOYS Jansson, W. H	SISTANCE OF SOME STAI IN HIGH-TEMPERATURE Luebner, G. Oestberg, Vol. 4, 21-31 (1969)	WATER AND M. Pourba	STEAM, S.
73.	H. E. McCoy, C. R. Kennedy	NTS IN MATERIALS FOR R. L. Beatty, W. H. , J. W. Koger, A. P. r, Nucl. Appl. Techn	Cook, R. Litman, Cook, R. Litman, Cook	E. Gehlbach, C. E. Sessions
74.	WATER AND STE	AVIOR OF STAINLESS S AM. T. Maekawa, and hishi, Vol. 31, 1213-	M. Kagaw	a, Nippon
75.	BASE ALLOYS I 200-300°C; W. Paper present	SION CRACKING OF STAI IN CHLORIDE CONTAININ Hubner, M. DePourbai ed at the 4th Intern cosion, Amsterdam, Th	G WATER AN x, and G. ational C	ND STEAM AT Ostberg, ongress on
76.	AUSTENITIC IF HEATED STEAM. sented at the Corrosion, Am	ERAL HIGH TEMPERATURE RON-CHROME-NICKEL ALL H. Coriou, L. Grai 4th International nsterdam, Netherlands ACE, 2400 West Loop S	OYS IN WA 1, and M. Congress , Sept. 7	TER AND SUPER- Pelras, Pre- on Metallic -14 (1969)
77.	IN HIGH-PRESS A. B. Johnso 1830 CONF-681	FAILURE CHARACTERIS SURE STEAM IN THE TEM on, Jr., 25 p (1969) 105-2 CFSTI From App conium and Hafnium Sy	PERATURE Sept. C lication-	RANGE 400 TO 5 ontract AT(45- Related Pheno-
		PROVED		PAGE 6-38

								LIVING		
CHARG.	E NO. 8	3 - 25-2431	DOCUMENT	NO. ND/74/6	5	ISSUE	1	DATE	12/16	/74
78.	BEHAV	IOR OF N	I-CR-FE	NMENTAL CO ALLOYS IN ; Corrosic	PRES	SURIZ	ED WA	ATER.		
79.	NICKE		HROMIUM A	ZATION AND ALLOY 825,						
80.	ALLOY STEAM	S AND AN . H. Co	IRON-40 riou, L.	IOUS IRON- PERCENT A Grall, C. -85, 1966.	LUMI. Man	NUM A	LLOY	ΤΟ SI	JPERH	ΕA
81.	STEAM O. Pa	. J. P. triarca,	Hammond G. M. SI	300 AND NI (Oak Ridg Laughter, 5, pp 268s	e Na W. A	tiona. Maxv	l Lab √ell	and .	N);	
82.	TURE			DN AND MAS J. W. Kog						ER.
	OXYGE	NATED HI ite, and	СН ТЕМРЕН	KING OF SE RATURE WAT K. Boyd, C	ER,	Warrei	ıE.	Berry	n, Ea	r1
	ALLOY Broth	S IN PRE	SSURIZED	ESS CORROS WATER. J thur, Swi	. We	ber an	nd P.	Sury	/ (Su	
				EAT EXCHAN 1973) May.	GER	MATERI	TALS.	(ORN	¦L−TM·	
	AUSTE STATI (x 5 (Kern fuer)	NITIC Cr C AUTOCL CrNí 18. forschun	-Ni STEEI AVE INVES 9). S. I gszentrum	CON THE C SIN SUPE STIGATIONS Leistikow, h, Karlsru koerperfo	RHEA ON E. he (1	TED SI MATERI Pott, West (TEAM. IAL 1 and Germa	Pan .4301 W. Vc ny).	t 3. blz. Ins	
	INCOL	OY 800 P	LATE. S.	C HOT STEA Leistiko on Vol. 2	w and	4 W. S	Schei	be.		

CHAR	GE NO.	8-25-2	431]	DOCUME	NT NO.	ND/74/	66	ISS	UE	1	DATE	12/1	6/
88.	SIMI	TION OI OSION I LATED I er, Pap	PRODU PWR P	CT RE RIMAR	LEASE Y WAT	RATE ER, G	S OF	A N	iCr	Fe A	LLOY	ΤN	A
89.	CORR 1100 P. P. ings Corr pp 2	OSION (AND 12 atriarc of the osion B 77-91, Engine	DF AD 200°F 2a, G 26t Ingin Hous	VANCE (595 . M. h Con eers, ton,	D STE AND Slaug feren Phil Texas	AM GE 650 C hter, ce of adelp , Nat:) ST and the hia, iona;	EAM. W. Nat Pa. 1 As	J. A. M iona , Ma soci	P. Iaxw al A arch ati	Hamn ell, ssoci 2-6, on of	ond, Proc atio 197	ee on 70
90.	ALLOY	RAL COR YS EXPO 110 and	SED :	ISOTH	ERMAL	LY IN	SUPH	ERHE	ATEL) STI	EAM.	G.	P.
91.	San J	EAR SUP 1964 - Jose, C 5) Feb.	JAN. alif.	. 196. ., At	5. W omic 1	. L.] Power	Fiock Equi	c. G	ener	a1 1	Elect	ric	Co
92.	CORRO E. G.)SION-R Brush	ATE-I , Nuc	LAW CO 21. Ap	ONSIDI	ERATIC 1, 24)NS 1 6-51	IN SI . (19	UPER 965)	HEAT Jur	TED S ne.	TEAM	•
93.	SUPER	SION O RHEATED 110, Co	REAC	CTOR H	ENVIRO	ONMENI	s.	W. 1	. Р	ear]	G WAT and	ER A	ND P.
94.	w, Ľ.	SION O Ruthe cal So	r∙ and	IS. (Freent	berg,	Jour	nal	of	the	Elec	ED S' tro-	ΤE
95.	POWER	IALS F REACT ards,	ORS.	W. F	۲. Smi	th, S	r	Mate	ria	D ST 1s R	EAM] esea:	NUCLI rch a	EA an
96.	ZIRCO J. Nu Septe	NIUM A clear 1 mber.	LLOYS Mater	FOR ials,	USE I 4, N	IN SUP	ERHE 334	ATEI - 335) ST (1	EAM. 961)	S.G: Augu	reent 1st/)e
	REACT	NG STEA OR PLAN 2t (196	NTS,	John	'OR MA W. Mc	TERIA Grew,	LS F Cor	OR P rosi	RES: on,	SURI 18,	ZED W No.	VATEF 1,	٤

FOSTER WHEELER ENERGY CORPORATION NUCLEAR DEPARTMENT LIVINGSTON, N. J. CHARGE NO. 8-25-2431 DOCUMENT NO. ND/74/66 ISSUE 1 **DATE** 12/16/74 98. STUDIES OF STEEL CORROSION IN HIGH TEMPERATURE WATER AND STEAM. Quarterly Report No. 6, Oct.-Dec. 1963. Euratom Joint Research and Development Program, 70 pp (1964) Jan. Contract 089 62-7 RDB, Order from OTS. 99. STRESS CORROSION CRACKING OF AUSTENITIC STAINLESS STEEL IN SUPERCRITICAL STEAM. P. P. Snowden, Monthly Technical Bulletin of International Combustion Ltd., IV 17, Jan. MADE 1963 pp 39-45. 100. CORROSION BEHAVIOR OF STEELS AND NICKEL ALLOYS IN SUPER-BEEN HEATED STEAM. W. E. Ruther, R. R. Schlueter, R. H. Lee, R. K. Hart, Presented at NACE 21st Conference in St. Louis, HAVE Missouri 3/14-19/65. 101. REVIEW ARTICLE, THE AQUEOUS CORROSION OF REACTOR METALS, CHANGES J. N. Wanklyn and P. J. Jones. UKAEA Metallurgy Division, Atomic Energy Research Establishment, Harwell, Didcot, Berks, U. K. Received 12 March 1962. WHERE 102. METALLURGICAL EVALUATION OF SUPERHEATER TUBE ALLOYS AFTER SIX-MONTHS EXPOSURE AT TEMPERATURES OF 1100° to 1500°F., INDICATE C. L. Clark, J. J. B. Rutherford, A. B. Wilder, M. A. Cordovi, Journal of Engineering for Power, Jan. 1960, pp 35-67. 103. METALLURGICAL EVALUATION OF SUPERHEATER TUBE ALLOYS AFTER COLUMIN 12 AND 18 MONTHS EXPOSURE TO STEAM AT 1200, 1350, AND 1500°F. C. L. Clark, J. J. B. Rutherford, A. B. Wilder, M. A. Cordovi, Transactions of ASME, July 1962 pp 258-288. THIS 104. EFFECT OF ALLOY COMPOSITION ON STRESS CORROSION CRACKING OF FE-CR-NI BASE ALLOYS, R. W. Staehle, J. J. Royuela, A T. L. Raredon, E. Serrate, R. V. Farrae, Corrosion, NOTATIONS Nov. 1970 451-486. 105. SCALING BEHAVIOR OF SUPERHEATER TUBE ALLOYS IN ASME HIGH TEMPERATURE STEAM RESEARCH TESTS AT 1100-1500°F; F. Eberle, C. H. Anderson; Journal of Engineering for Power, July 1962 pp 223-257. 106. CORROSION PROBLEMS IN NUCLEAR REACTOR POWER STATIONS, W. Z. Friend, Reprint, Vol. XVIII Proceedings of the American Power Conference, 1956. 107. STUDY OF SEVERAL HIGH TEMPERATURE CORROSION PHENOMENA OF AUSTENITIC IRON-CHROM-NICKEL ALLOYS IN WATER AND SUPER-HEATED STEAM. H. Coriou, L. Grall and M. Pebras, Presented at 4th International Congress on Metallic Corrosion, Amsterdam, Netherlands, Sept. 7-14 (1964). BY APPROVED PAGE

6-41

t

1

172

FWC FORM

CHARCE		8-25-2431		10. ND/74/66	TOOTTO	DAME 10/16/
	. 1100	<u> </u>	T DOCOLUMIT IN	NU NU//4/00	ISSUE 1	DATE 12/16/7
	LA C NUCL Kono Pres Peac	ONSTRUCTI EAIRES. valtschik ented at	ON DES GEN H. Coriou off, M. Pe 4th U.N. of Atomic	NERATEURS DI , R. Darras	E VAPEUR P , L. Grall annier and al Confere:	R. Teraube, nce on the
	Jept	. 0-10, 1	571.			
	•					
					·	
		•				

4

CHARGE NO. 8-25-24	31 DOCUMENT N	O. ND/74/66	ISSUE 1	DATE 12/1	6/74
	Table 1	sominal Chemical Co of Hastelloy N	mposition		
	Element	Standard Alloy ¹¹ (Much as Used in MSRE) (wt %) ^a	Modified Alloy ⁹ Recommended for MSBR's (wt %)		
	Nickel Molybdenum Chromium Iron	Balance 15–18 6–8 5	Balance 12 7 0-4		
	Manganese Silicon Boron Titanlum Hafnium or Niobium	1 1 0.01	0.2-0.5 0.1 max 0.001 max 0.5-1.0 0 2		
1	Copper Cobalt Phosphorus Sulfur	$\left.\begin{array}{c} 0.35\\ 0.2\\ 0.015\\ 0.02\end{array}\right\}$	0.25		
	Carbon Tungsten Aluminum + Titanium	$ \begin{bmatrix} 0.02 \\ 0.04 - 0.08 \\ 0.5 \\ 0.5 \end{bmatrix} $	0.35		
	Carbon Tungsten <u>Aluminum + Titanium</u> ^a Single values are n specified.	$\left(\begin{array}{c} 0.04 - 0.08 \\ 0.5 \\ 0.5 \end{array} \right)$	s unless otherwise		
	Carbon Tungsten <u>Aluminum + Titanium</u> ^a Single values are n specified.	0.04-0.08 0.5 0.5 haximum percentage	s unless otherwise	1300°F	1500°
Density, lb/m, ³ Density, lb/m, ³ Density, lb/ft ³ Thermal conductivity, But hr ⁻¹ Specific heat, Btu lb ⁻¹ °F ⁻¹ Coefficient of thermal expansio Workflux of elasticity, lb ⁻¹ °F ⁻¹ Loc friction of thermal expansio Workflux of elasticity, lb ⁻¹ °F ⁻¹ Loc friction elasticity, lb ⁻¹ °F ⁻¹ Loc friction elasticity, lb ⁻¹ °F ⁻¹ Coefficient of thermal expansion Workflux of elasticity, lb ⁻¹ °F ⁻¹ Loc friction elastic stretcher of Any constraints and stretcher of the stretcher Any constraints and stretcher of the stretcher Any constraints and stretcher of the stretcher of the Any constraints and stretcher of the stretcher of the stretcher of the Any constraints and stretcher of the stretcher of the stretcher of the Any constraints and stretcher of the str	Carbon Tungsten Aluminum + Titanium a Single values are respectived. Table 2 P $80^{\circ}F$ $80^{\circ}F$ 0.320^{a} $ft^{-1} \circ F^{-1}$ 6.0 0.998 5.7×10 31×10^{10} 120.5^{a} 15.00^{a} 115.00^{a} 0.098 0.098	$\begin{array}{c} 0.04 - 0.08\\ 0.5\\ 0.5\\ 0.5 \end{array}$ haximum percentage $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	Hastelloy N 10.4 0.115 ^{<i>u</i>} 8.6 \times 10 ⁻⁶ 27 \times 10 ⁶ 125.8 95 (9(1)) 17.0(4) 6.6(7) 1420 - 2005	12.6 0.136 9.5 × 10 ⁻⁶ 25 × 10 ⁶ 126.0 ^d 75.909 4500 \$\$99	14.1 0.153 9.9 × 10 24 × 10 124.1 ^a 55 /000

ASME BOILER AND VESSEL CODE CODE CASE: 1315-2 SECTION VIII Table 3-Maximum Allowable Stress Values, psi Metal Temperatures Not Exceeding Deg. F. All Material Other Than Bolting Bolting 100 25,000 10,000 200 24,000 9,300 200 24,000 9,300 200 24,000 7,700 500 220,000 7,700 500 220,000 7,700 500 20,000 7,500 7,500 7,500 7,000 18,000 7,200 800 18,000 6,600 100 13,000 6,600 100 13,000 6,600 100 13,000 6,000 100 13,000 6,000 100 13,000 6,000 100 13,000 6,000 100 20,000 10,000 100 13,000 10,000 100 13,000 10,000 100 13,000 10,000 100 1200 25,3 3,500 25,3 300 22,3 500 20,0 500	NO.8-25-2431	DOCUMENT NO. ND/74/66	ISSUE 1 DATE	12/				
CODE CASE: 1315-2 SECTION VIII Table 3—Maximum Allowable Stress Values, psi Not Exceeding Deg. F. Metal Temperatures Not Exceeding Deg. F. Maximum Allowable Stress Values, psi All Material Other Than Bolting Bolting Bolting 100 25,000 10,000 9,300 200 24,000 9,300 300 23,000 8,600 300 21,000 8,000 500 20,000 7,500 700 19,000 7,200 800 18,000 6,600 1000 13,000 6,600 1000 13,000 6,600 1000 13,000 6,600 1000 13,000 6,600 1000 21,3 3,500 1000 21,3 24.2 3000 21.3 20.7 2001 21.3 20.7 2002 21.3 20.7 2003 21.3 20.7 2004 21.3 20.7 2005 21.3		ASME BOILER AND VES						
Table 3—Maximum Allowable Stress Values. Metal Temperatures Not Exceeding Maximum Allowable Stress Values, psi Maximum Allowable Stress Values, psi Bolting 100 25,000 10,000 200 24,000 9,300 300 23,000 8,600 400 21,000 8,600 500 20,000 7,700 600 20,000 7,500 700 19,000 7,200 8000 13,000 6,800 1000 13,000 6,600 1000 13,000 6,600 1000 13,000 6,600 1000 25,3 3,500 1000 25,3 3,500 1000 21,3 3,500 1000 21,3 3,500 1000 21,3 3,500 1000 21,3 3,500 1000 21,3 3,500 1000 21,3 3,500 1000 21,3 3,500 <td></td> <td>CODE CASE: 1315</td> <td>-2</td> <td></td>		CODE CASE: 1315	-2					
Table 3—Maximum Allowable Stress Values. Metal Temperatures Not Exceeding Maximum Allowable Stress Values, psi Maximum Allowable Stress Values, psi Bolting 100 25,000 10,000 200 24,000 9,300 300 23,000 8,600 400 21,000 8,600 500 20,000 7,700 600 20,000 7,500 700 19,000 7,200 8000 13,000 6,800 1000 13,000 6,600 1000 13,000 6,600 1000 13,000 6,600 1000 25,3 3,500 1000 25,3 3,500 1000 21,3 3,500 1000 21,3 3,500 1000 21,3 3,500 1000 21,3 3,500 1000 21,3 3,500 1000 21,3 3,500 1000 21,3 3,500 <td></td> <td>SECTION VIII</td> <td></td> <td></td>		SECTION VIII						
Metal Temperatures Not Exceeding Maximum Allowable Stress Values, psi 100 25,000 10,000 200 24,000 9,300 300 23,000 8,600 400 21,000 8,000 500 20,000 7,700 600 20,000 7,200 700 19,000 7,200 800 18,000 7,000 900 18,000 6,600 1100 13,000 6,600 1200 6,000 3,500 3300 25,3 330 3500 21,3 3,500 1200 22,6 22,6 600 21,3 23,3 900 21,3 23,3 900 22,3 300 1200 20,00 21,3 1200 20,00 21,3 1300 21,3 23,3 900 21,3 20,00 1300 21,3 21,3 1200 <td></td> <td></td> <td></td> <td></td>								
Metal Temperatures Not Exceeding Maximum Allowable Stress Values, psi 100 25,000 10,000 200 24,000 9,300 300 23,000 8,600 400 21,000 8,000 500 20,000 7,700 600 20,000 7,200 700 19,000 7,200 800 18,000 7,000 900 18,000 6,600 1100 13,000 6,600 1200 6,000 3,500 3300 25,3 330 3500 21,3 3,500 1200 22,6 22,6 600 21,3 23,3 900 21,3 23,3 900 22,3 300 1200 20,00 21,3 1200 20,00 21,3 1300 21,3 23,3 900 21,3 20,00 1300 21,3 21,3 1200 <td>L</td> <td></td> <td></td> <td></td>	L							
Not Exceeding Deg. F. All Material Other Than Bolting Bolting 100 25,000 10,000 200 24,000 9,300 300 23,000 8,600 400 21,000 8,000 500 20,000 7,700 600 20,000 7,700 900 18,000 7,200 800 13,000 6,600 1000 17,000 6,600 1000 13,000 6,600 1200 6,000 3,500 1300 3,500 3,500 1300 25.3 300 22.6 23.3 900 22.3 900 22.3 900 22.3 900 22.3 900 22.5 900 22.5 900 22.5 900 22.5 900 22.5 900 21.9 900 21.9 900	Tat	Table 3—Maximum Allowable Stress Values						
Deg. F.in. All Material Other Than Bolting Bolting 100 25,000 10,000 200 24,000 9,300 300 23,000 8,600 400 21,000 8,600 500 20,000 7,700 600 20,000 7,500 700 19,000 7,200 8000 18,000 6,800 1000 17,000 6,600 1000 13,000 6,600 1200 6,000 3,500 1300 3,500 3,500 1300 25,3 300 200 22,3 24,2 200 22,3 24,2 200 22,3 24,2 300 21,1 800 200 21,1 800 200 21,1 800 200 21,3 20,7 NOTE: Design Stress Intensity values are based m leasors 21,1 300 20,7 20,5 <tr< td=""><td>Metal Temperature</td><td>es Maximum Allowable</td><td>Stress Values nsi</td><td>_</td></tr<>	Metal Temperature	es Maximum Allowable	Stress Values nsi	_				
100 25,000 10,000 200 24,000 9,300 300 23,000 8,600 400 21,000 8,600 500 20,000 7,700 600 20,000 7,750 700 19,000 7,200 800 18,000 6,800 1000 17,000 6,600 1000 17,000 6,600 1000 17,000 6,600 1200 6,000 3,500 1300 3,500 3,500 1300 3,500 3,500 1300 22.3 3,500 1300 21.3 1,500 1300 21.3 1,500 1300 2.3 2.3 000 22.3 2.3 1300 2.3 3,500 1300 2.3 3,500 1300 2.3 2.3 1300 2.3 2.3 1300 2.3	Deg. F.			-				
200 24,000 9,300 300 23,000 8,600 400 21,000 8,000 500 20,000 7,700 600 20,000 7,500 700 19,000 7,200 800 18,000 6,600 1000 17,000 6,600 1000 17,000 6,600 1000 13,000 6,000 1000 3,500 3,500 1000 24,2 3,500 1000 21,1 3,500 1000 21,6 21,1 300 21,6 21,1 300 21,6 20,7 300 21,6 20,7 300 21,6 20,7 300 21,6 20,7 300 21,6 20,7 300 21,6 20,7 300 21,1 21,6 300 21,6 20,7 300 21,6 20,7 300 21,6 20,7 300 21,6	100			-				
300 23,000 8,600 400 21,000 8,000 500 20,000 7,700 500 20,000 7,700 700 19,000 7,200 800 18,000 7,000 900 18,000 6,600 1000 17,000 6,600 1000 13,000 6,600 1200 6,000 6,000 1300 3,500 3,500 300 23,3 500 100 21,3 750 21,0 20,0 21,3 600 21,3 750 100 21,3 750 11,1 800 20,7 NOTE: Design stress intensity values are based on leaser of: 10 '5, Snetified Mininuum Tensile Strength 20 21,1 300 20 21,2 20,7 NOTE: Design stress intensity values are based on leaser of: 11 '5, Snetified Mininuum Tensile Strength 21, '5, Snetified Mininum Yield Strength 21,3 20								
400 21,000 8,600 500 20,000 7,700 600 20,000 7,500 700 19,000 7,200 800 18,000 6,800 1000 17,000 6,600 1000 17,000 6,600 1000 17,000 6,600 1200 6,000 6,000 1300 3,500 3,500 300 26,3 3,500 300 26,3 3,500 300 26,3 3,500 300 26,3 3,500 300 26,3 3,500 300 26,3 3,500 300 21,3 500 21,1 650 21,6 650 21,6 650 21,6 21,3 750 21,1 800 20,7 20,7 20,7 20,7 NOTE: Design stress intensity values are based on leaser of: 11,5 500 20,7 NOTE: Design stress intensity values are based on leaser of: 11,5 20,7 21,3								
500 20,000 7,700 600 20,000 7,500 700 19,000 7,200 800 18,000 7,000 900 18,000 6,600 1000 17,000 6,600 1000 13,000 6,600 1200 6,000 6,000 1300 3,500 3,500 Table 4 Design Stress Intensity Values, S_{m_s} in ksi Temperature 100 25.3 300 25.3 300 25.3 3500 22.4 400 23.3 500 22.6 600 21.9 650 21.6 700 21.3 750 21.1 800 20.7 NOTE: Design stress intensity values are based on leaser of: 10 ¹⁵ Specified Minimum Tensile Strength (1) ¹⁵ Specified Minimum Yield Strength (2) ¹⁵ Specified Minimum Yield Strength (3) ¹⁵ Specified Minimum Yield Strength								
600 20,000 7,500 700 19,000 7,200 800 18,000 6,800 1000 17,000 6,600 1100 13,000 6,000 1200 6,000 6,000 1200 6,000 6,000 1300 3,500 3,500 1300 3,500 3,500 1300 26.7 200 200 25.3 200 300 24.2 24.2 400 24.3 25.3 500 22.6 500 500 21.6 21.6 700 21.3 20.7 NOTE: Design stress intensity values are based on leaser of: 100 15.5 Specified Minimum Tensile Strength 21.7 100 27.5	500							
700 19,000 7,200 800 18,000 6,800 900 13,000 6,800 1000 17,000 6,600 1100 13,000 6,000 1200 6,000 6,000 1300 3,500 3,500 1300 3,500 3,500 1300 3,500 3,500 1300 26.7 200 200 26.3 20.7 100 21.6 700 200 21.6 700 200 21.6 700 200 21.6 700 200 21.6 700 200 21.6 700 750 21.1 800 800 20.7 NOTE: Design stress intensity values are based on leaser of: (1) ½ Specified Minimum Tensile Strength (2) ½ Tensile Strength # Temperature (3) ½ Specified Minimum Tensile Strength (4) ½ Yield Strength # Temperature (4) ½ Yield Strength # Temperature (4) ½ Yield Strength # Temperature ASME BOILER AND VESSEL C								
3000 18,000 7,000 9000 18,000 6,800 1000 17,000 6,600 1100 13,000 6,000 1200 6,000 3,500 1300 3,500 3,500 1300 3,500 3,500 1300 3,500 3,500 1300 3,500 3,500 1300 26.7 200 200 25.3 300 200 24.2 400 400 23.3 500 500 21.6 700 600 21.3 750 750 21.1 800 800 20.7 NOTE: Desien stress intensit values are based on leaser of: 11 $\frac{1}{2}$ Specified Minimum Tensile Strength 20.7 NOTE: Desien stress intensit * Temperature 3'/, Specified Minimum Yield Strength (2) $\frac{1}{2}$ Yield Strength * Temperature (3) $\frac{1}{2}$ Specified Minimum Yield Strength (4) $\frac{1}{2}$ Yield Strength * Temperature ASME BOILER AND VESSEL C								
900 18,000 6,800 1000 17,000 6,600 1100 13,000 6,000 1200 6,000 6,000 1300 3,500 3,500 Toble 4 Design Stress Intensity Volues, Sm, in ksi Temperature 100 26.7 200 25.3 300 24.2 400 23.3 500 22.6 650 21.6 700 21.3 750 21.1 800 20.7 NOTE: Desien stress intensity values are based on lessor of: 10 ½ Specified Minimum Tensile Strength (1) ½ Specified Minimum Tensile Strength (2) ½ Tensile Strength & Temperature (3) ½ Specified Minimum Tensile Strength (4) ½ Yield Strength & Temperature ASME BOILER AND VESSEL CODE CODE CASE : 1345-2 SECTION III								
1000 17,000 6,600 1100 13,000 6,000 1200 6,000 3,500 1300 3,500 3,500 Toble 4 Design Stress Intensity Volues, S_m , in ksi Temperature 100 26.7 200 26.3 300 23.3 500 22.6 600 21.9 650 21.6 700 21.3 750 21.1 800 20.7 NOTE: Design stress intensity values are based on lesser of: (1) ½ Specified Minimum Tensile Strength (2) ½ Specified Minimum Tensile Strength (2) ½ Specified Minimum Tensile Strength (4) ½ Yield Strength & Temperature (3) ½ Specified Minimum Yield Strength (4) ½ Yield Strength & Temperature ASME BOILER AND VESSEL CODE CODE CASE : 1345-2 SECTION III								
1200 1300 6,000 6,000 1300 3,500 3,500 Toble 4 Design Stress Intensity Values, S _m , in ksi Temperature 100 26.7 200 25.3 300 24.2 400 23.3 500 21.6 700 21.3 750 21.1 800 20.7 NOTE: Design stress intensity values are based on lesser of: (1) ½ Specified Minimum Tensile Strength (2) ½ Specified Minimum Tensile Strength (3) ½ Specified Minimum Tensile Strength (4) ½ Yield Strength # Temperature ASME BOILER AND VESSEL CODE CODE CASE : 1345-2 SECTION III								
1300 $0,000$ 3,500 $6,000$ 3,500Toble 4Design Stress Intensity Volues, S_m , in ksiTemperature10026.7 20020025.3 30030024.2 30.3 50040023.3 50050021.6 70075021.1 80080020.7NOTE: Design stress intensity values are based on lesser of:(1) V_5 Specified Minimum Tensile Strength (2)(2) V_5 Tonsile Strength of Temperature (3)(3) V_5 Specified Minimum Tisle Strength (4)(4) V_5 Yield Strength of Temperature CODE CASE: 1345-2 SECTION III								
Toble 4 Design Stress Intensity Values, S _m , in ksi Temperature 100 26.7 200 25.3 300 24.2 400 23.3 500 22.6 600 21.9 650 21.6 700 21.3 750 21.1 800 20.7 NOTE: Design stress intensity values are based on lesser of: 0.1 ½ Specified Minimum Tensile Strength (2) ½ Tensile Strength & Temperature (3) ½ Specified Minimum Yield Strength (4) ½ Iteld Strength & Temperature (3) ½ Specified Minimum Yield Strength (4) ½ Iteld Strength & Temperature SASME BOILER AND VESSEL CODE CODE CASE: 1345-2 SECTION III								
Design Stress Intensity Values, S _m , in ksi Temperature 100 26.7 200 25.3 300 24.2 400 23.3 500 22.6 600 21.9 6550 21.6 750 21.1 800 20.7 NOTE: Design stress intensity values are based on lesser of: (1) ¹ / ₂ Specified Minimum Tensile Strength (2) ¹ / ₃ Specified Minimum Yield Strength (3) ² / ₃ Specified Minimum Yield Strength (4) ³ / ₄ Yield Strength & Temperature (3) ² / ₃ Specified Minimum Yield Strength (4) ³ / ₄ Yield Strength & Temperature SECTION III	- - *	5,000	3,500					
Design Stress Intensity Volues, S _m , in ksi Temperature 100 26.7 200 25.3 300 24.2 400 23.3 500 22.6 600 21.9 655 21.6 750 21.1 800 20.7 NOTE: Design stress intensity values are based on lesser of: (1) ½ Specified Minimum Tensile Strength (2) ½ Tensile Strength & Temperature (3) ² / ₃ Specified Minimum Yield Strength (4) ³ / ₃ Yield Strength & Temperature (3) ² / ₃ Specified Minimum Yield Strength (4) ³ / ₃ Yield Strength & Temperature (3) ² / ₃ Specified Minimum Yield Strength (4) ³ / ₃ Yield Strength & Temperature SECTION III								
Design Stress Intensity Values, S _m , in ksi Temperature 100 26.7 200 25.3 300 24.2 400 23.3 500 22.6 600 21.9 6550 21.6 750 21.1 800 20.7 NOTE: Design stress intensity values are based on lesser of: (1) ¹ / ₂ Specified Minimum Tensile Strength (2) ¹ / ₃ Specified Minimum Yield Strength (3) ² / ₃ Specified Minimum Yield Strength (4) ³ / ₄ Yield Strength & Temperature (3) ² / ₃ Specified Minimum Yield Strength (4) ³ / ₄ Yield Strength & Temperature SECTION III	:		· · · · · · · · · · · · · · · · · · ·					
In ksi Temperature 100 26.7 200 25.3 300 24.2 400 23.3 500 22.6 600 21.9 650 21.6 700 21.3 750 21.1 800 20.7 NOTE: Design stress intensity values are based on leaser of: (1) ½ Specified Minimum Tensile Strength (2) ½ Tensile Strength & Temperature (3) ⅔ Specified Minimum Yield Strength (4) ⅔ Yield Strength & Temperature CODE CASE: 1345-2 SECTION III			S					
10026.720025.330024.240023.350022.660021.965021.670021.375021.180020.7NOTE: Design stress intensity values are based on lesser of:(1) V_3 Specified Minimum Tensile Strength(2) V_5 Tensile Strength # Temperature(3) V_3 Specified Minimum Yield Strength(4) V_3 Yield Strength # Temperature(3) V_3 Specified Minimum Yield Strength(4) V_3 Yield Strength # TemperatureSECTION III		in ksi	~ m /					
200 25.3 300 24.2 400 23.3 500 22.6 600 21.9 650 21.6 700 21.3 750 21.1 800 20.7 NOTE: Design stress intensity values are based on lesser of: (1) ½ Specified Minimum Tensile Strength (2) ½ Tensile Strength * Temperature (3) ½ Specified Minimum Yield Strength (4) ⅔ Yield Strength * Temperature (3) ⅔ Specified Minimum Yield Strength (4) ⅔ Yield Strength * Temperature SECTION III								
300 24.2 400 23.3 500 22.6 600 21.9 650 21.6 700 21.3 750 21.1 800 20.7 NOTE: Design stress intensity values are based on lesser of: (1) ¹ / ₃ Specified Minimum Tensile Strength (2) ¹ / ₃ Tensile Strength @ Temperature (3) ² / ₃ specified Minimum Yield Strength (4) ² / ₃ Yield Strength @ Temperature ASME BOILER AND VESSEL CODE CODE CASE: 1345-2 SECTION III		20.7						
500 22.6 600 21.9 650 21.6 700 21.3 750 21.1 800 20.7 NOTE: Design stress intensity values are based on lesser of: (1) ½ Specified Minimum Tensile Strength (2) ½ Tensile Strength & Temperature (3) ½.9 Specified Minimum Yield Strength (4) ½ Yield Strength & Temperature ASME BOILER AND VESSEL CODE CODE CASE: 1345-2 SECTION III		300 24.2						
650 21.6 700 21.3 750 21.1 800 20.7 NOTE: Design stress intensity values are based on lesser of: (1) ½ Specified Minimum Tensile Strength (2) ¼ Tensile Strength & Temperature (3) ¼ Specified Minimum Yield Strength (4) ⅔ Yield Strength & Temperature ASME BOILER AND VESSEL CODE CODE CASE: 1345-2 SECTION III		500 22.6						
 750 21.1 800 20.7 NOTE: Design stress intensity values are based on lesser of: (1) ½ Specified Minimum Tensile Strength (2) ½ Tensile Strength & Temperature (3) 2/3 - Specified Minimum Yield Strength (4) ½ Yield Strength & Temperature ASME BOILER AND VESSEL CODE CODE CASE: 1345-2 SECTION III		650 21.6						
 NOTE: Design stress intensity values are based on lesser of: (1) ½ Specified Minimum Tensile Strength (2) ½ Tensile Strength & Temperature (3) 2/3 - Specified Minimum Yield Strength (4) ½ Yield Strength & Temperature ASME BOILER AND VESSEL CODE CODE CASE: 1345-2 SECTION III 		750 21.1						
ASME BOILER AND VESSEL CODE CODE CASE: 1345-2 SECTION III		900						
ASME BOILER AND VESSEL CODE CODE CASE: 1345-2 SECTION III		NOTE: Design stress intensity value	s are					
 (2) ¹/₃ Tensile Strength © Temperature (3) ²/₃ Specified Minimum Yield Strength (4) ³/₃ Yield Strength © Temperature ASME BOILER AND VESSEL CODE CODE CASE: 1345-2 SECTION III		based on lesser of:						
(3) ⁷ / ₃ Specified Minimum Yield Strength (4) ³ / ₃ Yield Strength © Temperature ASME BOILER AND VESSEL CODE CODE CASE: 1345-2 SECTION III		(2) ¹ / ₃ Tensile Strength @ Temperature	2					
ASME BOILER AND VESSEL CODE CODE CASE: 1345-2 SECTION III		(3) ² / ₃ Specified Minimum Vield Strop	gth					
CODE CASE: 1345-2 SECTION III		ver /3 i icia strength @ Temperature						
CODE CASE: 1345-2 SECTION III	۸.с.+							
SECTION III	AST							
APPROVED 3/9/72								
		APPROVED 3/9/72						
	 APPROVED		· ·					

NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE

							CHA			
	TABLE 5									
	MATERIALS INVESTIGATED AND TESTS USED TO DETERMINE RELATIVE PERFORMANCE									
	Material	Irradiations			DETERMINE RELATIVE PE	RFORMANCE				
			Uniform	Corrosion at 1050 F	Corrosion With Salts	Tensile Properties	Structure			
		6×10^{19} nvt 700-800 F	Unstressed	Constantly Stressed 0. 1% Creep in 1000 Hrs.	1075-1100 F 70 μ gm, Cl ⁻ /in, ²	Effect of Exposure	Microstructural			
	304	No deleterious effects	Normal scale growth	Some intergranular stress ruptures	Intergranular failures, stress-accelerated	Not tested	Changes Not tested			
	Incoloy	No deleterious effects	Normal scale growth	No failures, normal scale	Normal scale formation	Reduction in ductility to 207. Recovery after 3000 hours.	Sensitization and microstructural			
	Inconel	Not tested	Normal scale growth	Intergranular penetrations, stress ruptures	Intergranular failures, stress-accelerated	Slight changes in strength and ductility	instability Complete			
	310	Not tested	Normal scale growth	Normal scale formation	Embrittlement because of sigma phase. Normal scale.	Not tested	sensitization Not tested			
	316	No deleterious effects	Not tested	Not tested	Not tested	Not tested	Not tested			
	330	No deleterious effects	Not tested	Intergranular attack	Intergranular failure	Not tested	Not tested			
	347	No deleterious effects	Not tested	Normal scale formation	Not tested	Not tested	Not tested			
	AISI 406	Loss in uniform elongation from 11.4% to 4.4%	Large oxide layer formation	Large oxide layer formation	Large oxide formation. stress-rupture failure	No effect up to 2000 hours	No visible changes			
	Hastelloy-X	Not tested	Normal oxide layer formation	Normal scale formation	Normal scale formation	Reduction in ductility from 42 ⁷ to 10 ⁷ in 5200 hours	Continuous inter- granular precipitate			
	Hastelloy-N	Not tested	Not tested	Intergranular failure	Intergranular failure		network			
	Ni-O-Nel	Not tested	Normal scale growth	Normal scale formation	Normal scale formation	Not tested Slowly decreasing	Not tested			
	21 Croloy	Not tested	Not tested	Excessive scale formation	F	ductility after 2000 hours	precipitate net- work			
	5 Croloy Ti	Not tested	Not tested	and the second	Excessive scale formation	Not tested	Not tested			
			that tested	Excessive scale formation	Excessive scale formation	Not tested	Not tested			

NUCLEAR DEPARTMENT FOSTER WHEELER ENERGY CORPORATION

- NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE

	AV	ERAGE	WEIGHT GAINS FOR ALLOYS	EXPOSED TO 15 TO	ORR WATER VA	POR	· · ·	CHL
			AT 815, 1030, AND 1150 °C	AT 815, 1080. AND 1150 °C FOR 101, 200, AND 800 hr				CHARGE
Alloy	Test Temperature, C	Time,	Average Weight Change,	Alloy	Test Temporature, C	Time,	Average Weight Change, mg/em ²	E NO.
Inconel 600	815 930 1038	100 200 300 100 200 500 100	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Hastelloy C	815 930 1038	100 200 300 100 200 300 100	$\begin{array}{c} + \ 0.1629 \\ + \ 0.1194 \\ + \ 0.1362 \\ + \ 0.2750 \\ + \ 0.3792 \\ + \ 0.4592 \\ + \ 0.4592 \\ + \ 0.5733 \end{array}$	8-25-243
	1000	200 300	+ 1.2931 + 1.4600	6.000	1000	200	+ 0.6229 + 0.7010	-
Inconel 625	815	100 200 300	+ 0.1650 + 0.2214 + 0.2650	Hastelloy N	815	100 200 560	+ 0.9331 + 0.1023 + 0.1037	DOCUMENT
	930	163 200 300	+ 0.4022 + 0.8790 + 1.1604		930	160 206 300	+ 0.2570 + 0.2252 + 0.3153	MENT
	1038	100 200 300	+ 2.4905 + 3.3270 + 4.193		1038	100 200 300	+ 0.5276 + 0.5275 + 0.7650	NO.
Inconel 702	815	100 200 300	+ 0.2531 + 0.3838 + 0.3895	Hastelloy R-235	315	160 260 360	+ 0.7130 + 0.8013 + 0.9543	ND/
	930	100 200 300	+ 1.1436 + 1.5732 + 1.8232		930	100 200 300	+ 2.1750 + 3.0357 + 3.5573	ND/74/66
	1038	100 200 300	+ 1.7439 + 1.5241 + 1.7900		1058	100 200 300	+ 3.6658 + 4.7437 + 6.3130	L
Inconel 718	815	100 200 300	+ 0.2869 + 0.3832 + 0.4013	Hastelloy X-28	815	100 200	+ 0.0840 + 0.0993	ISSUE
	930	100 200 300	+ C.9286 + 1.3872 + 1.6162		930	300 100 200	+ 0.0905 + 0.3025 + 0.41:1	E
	1038	100 200 300	- 3.7936 - 5.0674 - 13.8400		1038	300 100 200	+ 0. 5. 25 + 0. 6731 + 0. 9012	
Incoloy 800	815	100 200 300	+ 0.3478 + 0.4887 + 0.5327	Haynes 25	815	300 100 200	+ 0,903 + 0,1793 + 0,2147	DATE
5	930	100 200 300	+ 0.3527 + 0.8788 + 1.2563 + 1.4634		930	300 100 200	+ 0.2461 + 0.5122 + 7.7393	12/
	1038	100 200 300	+ 1.5593 + 1.8669 + 2.3700		1038	300 100 200	+ 0.7506 + 0.8255 + 0.9939	16/7

FOSTER WHEELER ENERGY CORPORATION

		NOTATIC	INS IN	THIS C	OLUMN	INDICA	ATE WE	ERE CH	ANGES	HAVE	BEEN M	ADE —		1	
		WE	CHIT GAIN	OF IRON AT 550	- AND NI PC (1022	CKFL- P	ABLE 7 ASE ALL 1909 OF	OYS IN SU	PERHEAT	ED ST E	1.M., mg/ dr	<u>2</u> .			CHARGE NO. 8-25-2431
AST AISI AISI AISI FEE MISI AISI AISI FE-2 Fe-2 Hasto Hasto Incon Incol PDRI	EX**OCURE **OURS PRESSURE, psi PRESSURE, psi 304 SS 439 SS 446 SS RAL 406 SS (AL) 406 SS (AL) 406 SS (Carp.) 407 SS (Carp.) 408 SS (Carp.) 407 SS	72 1000 260.0 62.0 (141.) 3.2 (155.)	50 3000 64.9 124.0 5.3 124.0 121.0 45.0 143.0 2.2 22.0 8.0 9.0 8.5	- 3000 4.5 6.4	138 1000 305.0 78.0 (160.) 4.1 (186.)	174 3(0) 4.0 1 6.0 7.6 1 6.0 1 8.0 2.9 1.1.0 3.5 14.0 12.0 11.0 11.5	262 3000 6.0 3.4	235 1000 730.0 117.0 (200.) 6.3 (259.) 117.0 212.0	340 3000 121.0 177.0 9.4 250.0 167.0 5.0 43.0 16.0 24.0 12.4	599 3000 9.0 11.0	678 3000 915.0 160.0 193.0 10.6 342.0 185.0 143.0 247.0 10.0 52.0 51.0 18.0 31.0	720 1000 210.0 (226.) 5.7 (200.)	984 3000 13.0 14.0	1052 3000 220.0** 240.0 11.0 583.0 219.0 140.0 310.0 (56.1) 73.0 57.0 26.0 42.0	1 DOCUMENT NO. ND/74/66 ISSUE 1
															DATE 12/16/74

FOSTER WHEELER ENERGY CORPORATION

RV	NOTATIONS IN TH	IS COLUMIN INDI	CATE WHERE CHANGES	HAVE BEEN MADE -		CHARGE NO.
	Table 8. Summary	of Data on the	Corrosion of Haste	lloy N in Steam Results		 8-25-2431
		Weight G	ain (mg/cm ²)	Oxide Pene	tration (mil)	DOC
	Environment and Test Conditions	Hastellcy N	Type 304L Stainless Steel	Hastelloy N	Type 304L Stainless Steel	DOCUMENT N
	Superheated steam, 1022°F, 3000 psi, 1062 hr	0.57	2.20			NO. ND/74/66
	Deoxygenated steam, 932°F, 3000 psi, 2400 hr 932°F, 5000 psi, 2400 hr (< 50 ppb), 1022°F, 3000 psi,			0.08 0.04 C,03	3.3 0.14 0.33	
	2400 hr Oxygenated steam, - (3 to 4 ppm), 1022°F, 3000 psi, 2400 hr			0.15	0.37	ISSUE 1
	Helium plus 15 torrs water vapor, 1500°F, 300 hr, ~l atm pressure	0.109				DATE
						12/16/74

										Concent	ration, w	z						·····		
Alloy	N1	Mo	Cr	7e	Ma	с	\$1	P	S	Cu	Co	v		14	Ti	В	Nb	Ħf	Źr	Other
raco Iron [®] ow-alloy Ferritic				Bal.	0.017	0.012		0.005	0.025											
1.1 Cr 1.9 Cr	0.25	0.49	1.1	Bal. Bal.	0.42		0.64 0.17				<0.05	<0.02	<0.05	<0.05	<0.02					
2.0 Cr 4.2 Cr	0.32	0.88	2.0	Bal. Bal.	0.40		0.25													
8.7 Cr	0.35	0.97	8.7	Bal.	0.44		0.50													
2-5-3 Maraging	12.7	2.80	5.1	Bal.	0.05		0.10							~0.3						
Stainless Steels Type 502	7.10	0.5	5.0 17.0	Bal. Bal.		0.1 0.07								1.15						
17-7 PH Type 201	5.23		16.55	Bal. Bal.	7.28	0.076	0.54	0.34	0.006					1.15						0.059 N
Type 304 Type 309	8.0 13.5		18.0	Bal.		0.03														
Туре 310 Туре 316	20.5 13.01	2.8	25.0 17.0	Bal. Bal.	1.74	0.25	1.5 0.65	0.016	0.017	0.10	0.15				- /					
Type 321 Type 347	10.5 11.0		18.0 18.0	Bal. Bal.		0.08									0.4		0.4			0.4 TA
Type 406 Type 410			13.0 12.5	Bal. Bal.		0.15								4.0						
Type 446 N1-280	Bal.	0.0002	25.0 0.002	Bal. 0.003	<0.0001	0.20	0.005			<0.001	0.002	<0.0001	<0.0001	0.03	<0,0001		<0.0001		<0.0001	0.25 N
Monel [®] Copper [®]	60			3.5	3.5	0.5		0.02		23 9949				0.5						
Inconel 600 Inconel 601	78.0 60.5		14.5	7.0 14.1	0.5	0.05	0.25		0.007	0.25				1.35						
Inconel 718 Incoloy 800	53.0 31.3	3.0	18.0 20.1	46.2	0.84	0.05 0.04	0.38		0.008	0.50				0.50	1.0 0.36		5.0			
Hastelloy B Hastelloy C	Bal. Bal.	27.0	<0.2 16.0	5.2 5.8	0.96		0.3			0.01 0.01	0.48	0.2	5.0	<0.05 0.2	<0.01 <0.01				<0.05 <0.05	
Hastelloy S Hastelloy W	Bal. 60.0	14.7 25.0	14.5 5.0	0.90	0.04	0.007 0.08	<0.01				0.22	0.30		0.2						0.01 B
Hastelloy X Haynes Alloy 25	10.0	8.6 0.5	22.0	19.0 1.4	0.64	0.1	0.60 0.7	0.015	0.01	0.02	2.0 Bal.	0.05 <0.02	0.5 15.2	0.2 0.1	<0.01 0.02				<0.05 <0.05	
Haynes Alloy 188 Rene 62	22.0 Bal.	9.0	22.0 15.0	3.0 22.0	1.25	0.15 0.05	0.25				Bal.		15.0	1.25	2.5		2.25		0.01	
Hastelloy N Modifications 185	Bal.	11.0	5.9	3.8	0.46	0.05	0.10				<0.03		<0.1	<0.05	0.91			<0.1	0.98 <0.05	
186 188	Bal. Bal.	10.0 13.0	5.4	3.5	0.49	0.05	0.15				<0.03 <0.03		<0.1_ <0.1	0.84	0.88 <0.02		<0.05	<0.1	<0.05	
231 232	Bal. Bal.	12.0	7.0	4.2	0.03 <0.02 <0.02	0.05	0.12				<0.03 <0.03			<0.05 <0.05	<0.02 <0.02		<0.05 <0.05	1.3	<0.05 <0.05	1.2 Y
234 236	Bal. Bal.	16.0 11.0	7.2	4.0	0.5	0.05	0.13 0.13 0.13				<0.03 <0.03			<0.05 1.0	<0.02 <0.02		<0.05 <0.05	<0.1 <0.05	<0.05 0.5	
237 2477	Bal. Bal.	12.0 16.2	6.7 7.0	4.3	0.49	0.05	0.047	0.008	0.004	0.01	<0.03 0.05	<0.01	0.03	<0.05 0.02	0.04	0.0002	1.03 <0.0005	<0,1 <0.001	<0.05 <0.001	
5065 5067	Bal. Bal.	16.5 17.2	7.1	4.0	0.55	0.07	0.58	0.005	0.004	0.007	0.05	0.20	0.1 0.6	<0.03 0.01	<0.01 0.01	0.001 0.004	<0.05	<0.1	<0.1	
5085 21541	Bal. Bal.	17.0 11.6	7.0	3.6 0.04	0.64	0.06	0.65	0.004	0.003	0.01	0.15 <0.10	0.20 <0.10	0.07	0.05	<0.01 0.005	0.004 0.0007	<0.05		<0.002 <0.005	
21542 21543	Bal. Bal.	12.1	7.21	0.041	0.16	0.06	0.014	0.001	0.004	0.01	<0.10 <0.10	<0.10 <0.10	2.05 <0.10	<0.10 <0.02	<0.10 <0.003	0.0005	0.96 0.70		<0.005 <0.005	
21544 21545	Bal. Bal.	12.6 12.0	7.3 7.18	<0.10 0.034	0.13	0.06	<0.03 0.015	<0.01 0.001	0.003	0.01	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 0.02	<0.10 0.49	0.0005 0.00007			0.44 0.01	
21546 21554	Bal. Bal.	12.3 12.4	7.29	0.046	0.16	0.05	0.009	0.001	<0.002 <0.002	0.01	<0.10	<0.10	<0.10	0.02	0.10 0.003	0.0002 0.0002			0.005	
21555 M1566	Hal. Hal.	12.4 16.0	7.18	0.065	0.16	0.052	0.008	0.003	<0.002		0.5			0.02	0.003	0.0007			0.05	
68688 68689	Bal. Bal.	13.8	7.91	4.98 4.8	0.52	0.079	0.38	0.042	<0.002 <0.002	0.023	0.08				0.013 0.36	0.0002	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	
69344 69345	Bal. Dal.	13.0 13.0	7.4	4.0 4.0	0.56	0.109	0.5	0.001	0.004	0.03	0.06	<0.01 <0.01	<0.01 0.03	0.24 0.27	0.77 1.05	0.00001 0.00006	1.7 <0.01	<0.01 0.92	0.001 0.3	
69641 69648	Lal. Lal.	13.9 12.8	6.9 6.9	0.30 0.30	0.35 0.24	0.06	0.02	0.001	0.003	0.01	<0.03 <0.03	0.02 0.10		<0.03 <0.05	1.30 0.92	0.0001 0.00006	<0.05 1.95	0.70 0.08	0.01 0.02	
69714 70727	Bal. Bal.	12.4 11.7	8.0 7.5	0.10	0.35 0.37	0.012 0.04	<0.05 <0.05	0.001 0.004	0.004	0.05 <0.01	0.05 <0.01	<0.01 <0.01	0.01 0.01	0.17 <0.03	0.80 2.1	0.00001 0.00006	1.6 <0.1	<0.01 <0.01	<0.01 <0.01	
70785 70786	Bal. Bal.	12.2 12.2	7.0 7.2	0.16 0.41	0.27 0.48 0.43	0.057 0.044	0.09 0.08	0.002	0. 0 04 0.01	0.02	0.03	0.003	0.003	0.14 0.13	1.1 0.82	0.002 0.0005	0.097 0.62	<0.003 0.003	0.01 0.06	
70787 70788	Bal. Bal.	12.5 12.5	7.0 7.2	0.18 0.43	0.43	0.041 0.027	0.09	0.002	0.004	0.02	0.05 <0.02	0.003 0.008	0.003	0.17 0.18	0.90 1.36	0.0005	0.12 0.67	0.77	0.07	
70795 70796	Bal. Bal.	13.0 12.4	7.8 7.3	0.04	0.63	0.054 0.043	0.03 0.02	<0.005 <0.005	0.005	0.003	0.005	0.001 0.002	<0.005 <0.005	0.06 0.10	1.49 0.04	0.002 0.0005	0.005	0.42	0.017	
70797 70798	Bal. Bal.	12.5 12.8	7.0 7.5	0.29	0.38 0.53	0.055	0.02	<0.005 0.002	0.003	0.003	0.005	0.002	<0.005 <0.005	0.07	0.59 0.71	0.0002	0.98 0.94	0.75	0.035 0.011	
70835 71114	Bal. Bal.	12.1 12.5	7.8 7.14	0.68 0.062	0,58 0,02	0.053	0.05	0.001 0.002	0.004 0.005	0.005	0.10 0.07	<0.01	<0.01	0.10	0.71 1.75	0.002	2.6	<0.01	<0.005 <0.03	
71583 72115	Bal. Bal.	12.4 11.9	7.35 7.03	0.13 0.07	0.03	0.05 0.091	0.055 0.09	0.002	0.004	0.015	0.10			0.2	1.44	<0.001		0.72	<0.03 0.2	
72503 72604	Bal. Bal.	12.9 11.5	6.79 6.69	0.32	0.01 0.07	0.066 0.09	0.01 0.09	0.0008 0.003	0.002					0.1	1.94	<0.001 <0.001		0.30	0,02	
												•								<u>-</u>

Nominal composition, all others are actual analyses.

are. L

ł

.

All the alloys up to "Hastelloy N modifications" were commercial production heats. Heats 185 through 237 were 2-lb laboratory melts. Hastelloy N heats 21541 through 72604 were small 50- to 100-lb melts that were vacuum melted and fabricated by commercial vendors. Hastelloy N heats 2477, 5065, 5067, 5085 and M/566 were large commercial heats of standard Hastelloy N.

All alloys were rolled to 0.035-in.-thick sheet. The rolling was done cold with intermediate anneals for stress relief; the finish of the exposed sample surface was generally typical of cold-rolled sheet. Samples 1/2 in. wide x 2 in. long x 0.035 in. thick were sheared, cleaned, and annealed in argon for 1 hr at 1700°F (the low-alloy ferritic steels), 1 hr at 1900°F (the stainless steels), or 1 hr at 2150°F (all other alloys).

^Page 6-49

Яθ

APPROVED

PAGE

ნ

50

NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE -

Table 10 .	Weight	Change	Data	for	Specimens	of	Low-Alloy	Ferritic	and	Maraging	Steel	.s
-------------------	--------	--------	------	-----	-----------	----	-----------	----------	-----	----------	-------	----

		Area				Weigh	t Gain,	mg/cm² a	t Various	Times in	hr		
Alloy	Specimen	(cm ²)	670	1000	2000	2482	4000	4482	6000	8000	10,000	13,000	14,000
Cr 1.1ª	172	13.6924		3.14	3.78			5.12	6.00	6.47	6.80		9.12
	173	13.6444		3.21					-				
	205	13.6221	2.31			4.22	4.96		5.37	5.60	6.22	7.74	
Cr 1.9 ^a	202	13.5654	3.97			6.30	7.98						
	208	13.6392	4.28			7.95	8,53		8.89	8.89	9.78	11.71	
	163	13.6274		4.94									
	164	13.6355		4.93	5.98			7.57	8,90	9.31	9.81		12.03
Cr 2.0 ^a	166	13.6369		3.93									
	167	13.6287		3.40	4,32			5.80	6.93	7.37	7.63		9.60
	203	13.5638	2.90			4.63	5.91						
	209	13.5759	2.73			4.51	5,77		6,08	6.53	7.31	8.96	
Cr 4.2 ^a	204	13.5999	3.76			6.14	7.74		8.07	8.64	9.97	11.88	
	169	13.6329		3.98	5.13			6,83	7.97	8.48	8,96		10.41
	170	13.5955		4.49	6.89								
Cr 8.7 ^a	175	13.6411		3.77									
	176	13.6668		3.73	4.56			5,98	7.03	7,43	7.68		
_	206	13.6558	2.74			5.81	6,27		6,27	6,57	7.29	8.79	
12-5-3 ^b	207	13.5928	3.97			6.61	8,91		9.73	10.22	11.33	13.99	
	178	13.5173		6.33				5					÷
	179	13.4833		6.16	7.37			9,48	11.04	11.77	12.13		15.48

^aLow-alloy ferritic steel annealed 1 hr at 1700°F in argon.

^b12-5-3 maraging steel annealed 1 hr at 1500°F in argon.

LIVINGSTON,

N. J

CHARGE NO.

8-25-2431

DOCUMENT NO.

ND/74/66

ISSUE

DATE

12/16/74

- NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE ----

	Table	11. Weight Change Da	ata for Spec		··· ·			
Stainless Steel	Specimen	Condition ^a	Area	Weight Ga	in, mg/cm	² at Vari	ous Times	in hr
Туре			(cm ²)	1000	2000	3000	4000	5000
502	372	Annealed	13.7092	3.71	4.77	5.43	6.05	·····
502	373	Annealed	13.0605	3.29	4.23	4.95	5.49	
17-7PH	374	Annealed	13.9202	0.50	0.66	0.83	0.98	
17-7PH	375	Annealed	13.8598	0.33	0.51	0.67	0.98	
201	352	Annealed	13.5782	0.71	1.16	1.81	2.20	
201	353	Annealed	13.5727	0.81	1.35	2.08	2.20	
201	354	Cold worked 50%	13.6137	0.04	0.04	0.07	0.04	
201	355	Cold worked 50%	13.7611	0.03	0.03	0.05	0.04	
304	349	As received	13.6554	0.79	1.11	1.25	1.47	1.64
309	359	Annealed	13.7911	1.60	2.05	2.53	2.72	1.64
309	360	Annealed	13.4095	1.69	2.06	2.48	2.67	
310	361	Annealed	13.5377	0.57	0.91	1.10	1.20	
310	362	Annealed	13.5377	0.83	1.10	1.29	1.40	ł.
316	363	Annealed	13.5893	1.34	1.71	2.07	2.39	
316	364	Annealed	13.1245	1.44	1.87	2.27	2.39	
316	365	Cold worked 50%	13.5512	0.52	0.66	0.85	1.00	
321	366	Annealed	13.4699	0.75	1.05	1.39	1.69	
321	367	Annealed	13.4320	0.67	0.93	1.22	1.47	
347	334	Annealed	13.2688	0.67	1.05	1.17	1.33	1.42
347	335	Annealed	13.3337	0.55	0.78	0.92	1.09	1.19
406	368	Annealed	13.7580	1.56	1.92	2.28	2.51	1.19
406	369	Annealed	13.6301	1.25	1.54	1.86	2.09	
410	336	Annealed 1700°F	13.7768	2.39	2.80	3.03	3.48	3.80
410	337	Annealed 1700°F	13.5450	2.53	3.03	3.22	3.68	3.80 4.02
446	370	Annealed	12.8269	1.03	1.30	1.58	1.77	4,02
446	371	Annealed	14.0554	1.52	1.82	2.03	2.16	

FOSTER WHEELER ENERGY CORPORATION

CHARG	E NO. 8-25-2431	DOCUMENT NO.	ND/7//66 +	SSUE 1 D	A (1)T3 1
		1.20001111(1.110.		SSUE 1 D	ATE 12/16
	Table 12. W	eight Change Dat			
		eight Change Dat. Annealed 1 hr in	a for Specimen Argon at 1470	ns of Nickel)°F	280
	Specimen	Area	Weight Ga	ain, mg/cm ²	at
		(cm ²)	400 hr	1518	hr
	266	13.8262	4.44	54.4	 3
	267	13.8262	3.33	77.1	1
	268	13.9680	4.30	72.9	5
	269	13.7880	5.25	75.2	9
				-	
	· · · ·				

NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE -

Я CHARGE NUCLEAR DEPARTMENT NO. 8-25-2431 Table 13. Weight Change Data for Specimens of Various Metals and Alloys APPROVED Weight Gain, mg/cm² at Various Times in hr Material Area Specimen Condition^a (cm^2) DOCUMENT 1000 2000 3000 4000 5000 6000 9000 Armco Iron 356 Annealed 1700°F 13.6683 4.44 5.52 7.06 8.06 357 Annealed 1700°F 13.6241 4.33 5.37 6.88 7.87 358 Cold worked 50% NO 13.7063 4.66 5.68 7.22 8.24 Monel 332 Annealed 1470°F 13.6301 0.62 2.81 7.89 12.96 17.28 333 Annealed 1470°F 13.6301 1.19 4.59 9.50 14.42 18.54 ND/74 Copper 466 Annealed 1470°F 13.5783 0.34 -0.13 467 Annealed 1470°F 13.5554 0.22 -0.18 Inconel 600 388 Annealed 2150°F 13.5130 0.26 0.30 0.41 0.46 66 389 Annealed 2150°F 13.5265 0.24 0.27 0.37 0.43 Inconel 601 316 Annealed 2150°F 13.7337 0.06 0.11 0.17 0.17 0.19 0.25 0.36 317 Annealed 2150°F 13.7611 0.07 0.12 0.20 0.22 ISSUE 0.24 0.31 0.40 468 Cold worked 50% 13.7546 0.21 Inconel 718 390 Annealed 2150°F 13.5644 0.05 0.01 0.01 391 Annealed 2150°F 13.7195 0.05 0.01 -0.01 412 Cold worked 50% 13.3954 0.12 0.13 0.15 0.18 PAGE LIVINGSTON ^aAnnealed 1 hr in argon at the indicated temperature. DATE თ 12/16/74 ĩ сī ω z

FOSTER WHEELER ENERGY CORPORATION

									1.		CHARGE NO.
	Table 14.	Weight Change Data	for Specin	mens of	Incoloy	800 and	Hastell	oys B a	nd C		8-25-2431
Alloy	Specimen	Condition ^a	Area (cm ²	T	Weight G	ain, mg/	cm ² at V	arious /	limes in	hr	
			(Cm-	1000	2000	4482	6000	8000	10,000	13,000	DOCUMENT
Incoloy 800	198	Annealed 1900°F	13.6339	0.50	0.80	0.95					ENI
	199	Annealed 1900°F	13.6200	0.41	0.71	0.81	0.81	0.84	0.90	0.92	
	200	Annealed 1900°F	13.6350	0.42	0.68	0.81	0.71	0.75	0.83	0.80	NO.ND/74/66
	2.01	Annealed 1900°F	13.5310	0.51	0.81						N
	469	Cold worked 50%	13.8543	0.17				•			1
Hastelloy B	376	Annealed 2150°F	12.6206	0.10	0.11	0.16	0.19				4
	377	Annealed 2150°F	13.6480	0.12	0.16	0.21	0.25				66
	407	Cold worked 50%	13.3631	0.16	0.29	0.49	0.62				
Hastelloy C	378	Annealed 2150°F	13.5241	0.06	0.08	0.10	0.13				
	379	Annealed 2150°F	13.5621	0.04	0.06	0.07	0.08				Н
	408	Cold worked 50%	13.6220	0.15	0.17	0.21	0.21				ISSUE
a	1 ad 1 b •	argon at the indic.	ntod torre								E
Annea	.ieu i nr 1ñ	argon at the indic.	aleu lempe	rature,							
											E E
											DATE
											1
											12
											E
											2/16/74
1											12

NORAETONO TH ____ TDT CA M

FOSTER WHEELER ENERGY CORPORATION

ON, N. J.

- NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE ------

385 Annealed 13.4269 0.03 0.01 0.10 0.16 Haynes 188 386 Annealed 13.2926 0.03 0.01 0.10 0.16		Table 15	. Weight Change Dat	· · ·		·····		
Hastelloy S 417 Annealed 13.7229 0.09 0.14 0.15 Hastelloy W380Annealed 13.7229 0.09 0.12 0.15 Hastelloy W380Annealed 12.8533 0.04 0.05 0.09 0.10 381 Annealed 13.2794 0.04 0.06 0.09 0.07 409 Cold worked 50% 13.3134 0.11 0.16 0.20 0.23 Hastelloy X382Annealed 13.7953 0.04 0.06 0.09 0.11 Havnes 25384Annealed 13.7953 0.04 0.04 0.05 0.05 Haynes 188386Annealed 13.2926 0.03 0.01 0.10 0.16 Haynes 188386Annealed 13.2926 0.03 0.01 0.05 0.08 Rene 62392Annealed 13.6678 0.18 0.16 0.19 0.22 393Annealed 13.8791 0.15 0.14 0.17 0.18	Alloy	Specimen	Condition ²					·····
Hastelloy W 418 Annealed 13.7229 0.09 0.14 0.15 Hastelloy W 380 Annealed 12.8533 0.04 0.05 0.09 0.10 381 Annealed 12.8533 0.04 0.06 0.09 0.07 409 Cold worked 50% 13.3134 0.11 0.16 0.20 0.23 409 Cold worked 50% 13.3134 0.11 0.16 0.20 0.23 409 Cold worked 50% 13.7953 0.04 0.04 0.05 0.09 410 Cold worked 50% 13.7063 0.12 0.14 0.17 0.21 410 Cold worked 50% 13.7063 0.12 0.14 0.17 0.21 Haynes 25 384 Annealed 13.2926 0.03 0.01 0.16 0.23 Haynes 188 386 Annealed 13.2926 0.03 0.01 0.05 0.08 Haynes 188 386 Annealed 13.2926 0.03 0.01 0.05 0.08 Rene 62 392 Annealed 13.6678 0.18 0.16 0.19 0.22 411 Cold worked 13.7920 0.15 0.14 0.17 0.18	Hastelloy S	417	Annealed	13.7220	0.09			
Hastelloy X 409 Cold worked 50% 13.3134 0.14 0.06 0.09 0.07 Hastelloy X 382 Annealed 13.3134 0.11 0.16 0.20 0.23 383 Annealed 13.8476 0.06 0.06 0.09 0.11 410 Cold worked 50% 13.7953 0.04 0.04 0.05 0.05 Havnes 25 384 Annealed 13.4209 0.03 0.01 0.10 0.16 Haynes 188 386 Annealed 13.2926 0.03 0.01 0.05 0.08 Haynes 188 386 Annealed 13.2926 0.03 0.01 0.05 0.08 Rene 62 392 Annealed 14.0295 0.04 0.04 0.07 0.11 Rene 62 392 Annealed 13.6678 0.18 0.16 0.19 0.22 411 Cold worked 13.7890 0.15 0.14 0.17 0.18	Hastelloy W	380	Annealed Annealed	13.7229 12.8533	0.09 0.04	0.12	0.15	
385 Annealed 13.4209 0.03 0.01 0.10 0.16 Haynes 188 386 Annealed 13.5889 0.07 0.08 0.18 0.23 387 Annealed 13.2926 0.03 0.01 0.05 0.08 413 Cold worked 50% 13.7684 0.23 0.27 0.30 0.33 Rene 62 392 Annealed 13.6678 0.18 0.16 0.19 0.22 411 Cold worked 13.7580 0.15 0.14 0.17 0.18	Hastelloy X	382	Cold worked 50% Annealed	13.3134 13.8476	0.11 0.06	0.16 0.06	0.20 0.09	
Haynes 188 386 Annealed 13.5889 0.07 0.08 0.18 0.23 387 Annealed 13.2926 0.03 0.01 0.05 0.08 413 Cold worked 50% 13.7684 0.23 0.07 0.11 Rene 62 392 Annealed 13.6678 0.18 0.16 0.19 0.22 393 Annealed 13.8791 0.15 0.14 0.17 0.18	Haynes 25	410 384	Cold worked 50% Annealed	13.7063 13.4209	0.12 0.03	0.14 0.01	0.17	0.21
393 Annealed 13.8791 0.18 0.16 0.19 0.22 411 Cold worked 13.7580 0.15 0.14 0.17 0.18	Haynes 188	386 387	Annealed Annealed	13.2926 14.0295	0.03	0.01	0.05	0.23
	Rene 62	392 393	Annealed Annealed	13.6678 13.8791	0.18 0.15	0.27 0.16 0.14	0.30 0.19 0.17	0.33 0.22 0.18
	a Anneals	aró for 1 ha d					0.20	0.24

NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE

д CHARGE NUCLEAR DEPARTMENT No Table 16. Weight Change Data for Specimens of Modified Hastelloy N Laboratory Heats^a 8-25-Weight Gain, mg/cm² at Various Times in hr Area Heat Specimen APPROVED (cm^2) 2431 1000 2000 4482 6000 8000 10,000 15,000 FOSTER WHEELER ENERGY CORPORATION 185 87 13.6149 0.14 185 DOCUMENT 88 13.6431 0.21 0.29 0.49 0.59 0.54 0.65 . 0.74 185 89 13.6603 0.20 0.32 185 90 13.6048 0.12 0.24 0.41 0.55 0.53 0.58 186 91 13.5903 0.21 0.24 186 92 13.6285 NO. 0.12 0.21 0.36 0.49 0.48 0.59 188 37 13.6213 0.29 0.40 0.62 0.57 0.68 0.71 0.78 188 38 13.5819 0.09 0.19 0.32 0.32 0.40 0.46 ND/74/66 231 35 13.6267 0.12 0.21 0.28 0.29 231 36 13.6386 0.26 0.43 231 105 12.5198 0.27 0.38 0.58 0.62 0.65 0.69 0.72 232 103 13.5416 0.18 0.22 0.39 0.43 0.44 0.47 0.55 232 104 13.5230 0.21 0.24 0.39 0.46 0.47 0.50 236 101 13.6424 0.11 0.17 ISSUE 0.35 0.41 0.45 0.52 0.60 236 102 13.6070 0.18 0.26 0.43 0.46 0.49 0.54 237 99 13.6422 0.10 0.15 0.24 0.28 0.29 0.33 0.38 237 100 13.6359 0.10 0.14 0.23 0.32 0.26 0.32 ^aAnnealed 1 hr in argon at 2150°F. PAGE 1 LIVINGSTON, DATE <u>б</u> сh σ z 4

멾

APPROVED

PAGE

റ

1

S

 \sim

Table 17.

NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE --

CHARGE

NO.

Ŷ

25-

2431

DOCUMENT

NO

ND/74

99

ISSUE

DATE

12/16/74

NUCLEAR

DEPARTMENT

FOSTER

WHEELER

ENERGY

CORPORATION

LIVINGSTON,

z

C-4

Weight Change Data for Specimens of Standard Hastelloy N Large Commercial Heats Weight Gain, mg/cm² at Various Times in hr Thickness Area Heat Condition^a Specimen (in.) $(c\pi^2)$ 1000 2000 4482 6000 8000 10,000 15,000 2477 23 0.035 13,6662 0.15 0.21 0.34 0.33 2477 24 0.38 0.410.48 0.035 13.5224 0.13 0.25 2477 55 0.010 12.9177 0.07 0,12 0.22 2477 0.26 0.23 56 0.27 0.29 0.010 12.7622 0,09 0.14 0.24 0.29 2477 57 0.010 12.6151 0.10 0.17 2477 58 0.010 12.4519 0.07 0.13 0.18 2477 0.26 0.22 59 0.26 0.010 12,7940 0.07 0.09 0.25 0.26 2477 60 0.010 12.6220 0.11 0.13 2477 61 Cold worked 50% 0.010 12.6409 0.13 0.15 0.27 0.31 2477 0.36 0.42 62 Cold worked 50% 0.50 0.010 12.9948 0,15 0.18 2477 63 Cold worked 50% 0.010 12.9303 0.13 0.20 0.33 0.39 2477 64 Cold worked 50% 0.010 12.5853 0.10 0.17 0.28 5065 0,36 0.36 1 0.45 0.52 0.010 12.5543 0,14 0.20 0.29 0.32 5065 0.29 0.33 2 0.010 12.5932 0.10 0,14 0.33 0.28 5065 : 0.30 0.33 3 0.36 0.020 12.9448 0.15 0.20 0.30 0.32 5065 0.35 4 0.37 0.41 0.020 12.9558 0.14 0.22 0.33 0.35 5065 5 0.33 0.36 0.41 0.035 13.4914 0.16 0,22 0.33 5065 0.33 0.33 6 0.36 0.035 0.39 13.5692 0.15 0,22 0.34 0.35 5065 7 0.37 0.41 0.45 0.060 14.5614 0.14 0.24 0.36 0.40 5065 8 0.41 0.45 0.060 0.55 14,5693 0.14 0.21 0.33 0.36 5065 9 0.38 0.42 0.47 0.035 13.5302 0.18 0.22 0.33 0.33 5065 0.33 10 0.34 0.38 0.035 13.6351 0.15 0,22 0.31 5065 0.32 0.37 11 0.40 0.43 Abraded 0.035 13.5960 0.29 0.40 0.56 5065 0.60 0.63 12 0.70 Abraded 0.81 0.035 13.5079 0.25 0.39 0.55 0,60 5065 0.64 13 0.69 Electropolished 0.035 0.78 13.3979 0.04 0.08 0.13 5065 0.16 0.14 14 Electropolished 0.18 0.22 0.035 13.2262 0.03 0.09 0.15 5065 0.15 15 0.18 0.22 0.29 0.010 12.5496 0.08 0.37 0.29 5065 0.29 16 0.010 12.5359 0.07 0.18 5065 17 0.010 12.5742 0,14 0,22 0.34 0.32 506.7 18 0.035 13,3301 0.14 0.22 0.30 5065 0,31 19 0.010 12.4907 0.10 0.22 0.26 5067 20 0.34 0.035 13.3419 0.12 0.21 0.30 5067 67 0.30 0.31 0.35 0.40 0.035 13.2601 0.12 0.20 5067 68 0.035 13.1974 0.06 0.11 0.23 5085 0.28 21 0.26 0.32 0.035 13.6078 0.12 0.23 0.32 5085 0.32 22 0.32 0.37 0.44 0.035 13,5278 0.13 0.15 0.34 5085 0.34 65 0.035 13.7014 0.11 5085 0.17 0.34 66 0.36 0.37 0.43 0.035 13.5821 0.13 M1566 0.18 394 0.035 13.6297 0.09 41566 0.09 0.15^b 0.18^c 395 0.035 13.6678 0.11 0.12 0.17^b 0.22^c

^aUnless otherwise specified, annealed 1 hr at 2150°F in argon, tested with the surface in the as-rolled condition.

^b3000 hr.

^c4000 hr.

Heat	Specimen	Area		Weig	ht Gain, m	g/cm ² at V	arious Tim	es in hr		
······		(cm ²)	1000	2000	4482	6000	8000	10,000	14,000	
21545	27	13.4661	0.19						14,000	
21545	28	13.4492	0.25	0.34						
21545	97	13.3940	0.13		0.42	0.43	0.43	0.48		
21545	98	13.4485	0.13	0.22						
21546	25	13.5637		0.19	• 0.34	0.42				
21546	26	13.5364	0.23	0.31	0.40	0.37	0.41	0.44		
21546	95	13.6380	0.18							
21546	96	13.5981	0.23	0.29	0.40	0.45				
21554	83		0.25	0.31						
21554	84	13.5252	0.21	0.31	0.49	0.59	2			
21554	85	13.5208	0.22	0.33						
21554	86	13.5629	0.19	0.28	0.43	0.56	0.52	0.60		
21555	79	13.5674	0.27					0.00		
21555	80	13.4514	0.25							
21555		13.5829	0.13	0.22	0.35	0.46				
21555	81	13.5219	0.11	0.18	0.29	0.35	0.36	0.41		
68688	82	13.4692	0.29	0.39	-		0.00	0.41		
68688	75	13.6022	0.12	0.18						
68688	76	13.5285	0.10	0.14	0.24	0.33				
68688	77	13.5245	0.04	0.13	0.24	0.30	0.27	A a a		
68688	78	13.5056	0.10			0.50	0.27	0.33		
68689	194	13.1127	-0.01	0.13	0.25	0.19	0.19	.	ĥ	
68689	71	13.2735	0.12	0.18	0.31	0.41	0.19	0.24	0.26 ^b	
68689	72	13.5373	0.10	0.18	0.30	0.41	0 (0	• • •		
68689	73	13.4412	0.13	0.19	0.50	0.41	0.40	0.44		
	74	13.4479	0.14							
68689	195	12.9800	0.03	0.13	0.25	0.17				
69641	160	13.4860	0.10	0.125	0.20	0.1/	0.18	0.26	0.29 ^b	
69641	161	13.5752	0.09	0.12	0.24	0.00				
69641	196	13.5937	0.04	0.12		0.22	0.25	0.39	0.40	
69648	157	13.5881	0.12	0.14	0.18	0.21	0.27	0.32	0.38	
69648	158	13.5307	0.10	0.14	0.26	0.34	0.32	0.36	0.52	
69648	197	13.6013	0.03	0.18	0.07					
			0.05	0.10	0.26	0.24	0.29	0.36	0.45	

ВΆ

APPROVED

PAGE 6 - 58

^b13,000 hr.

LIVINGSTON, N. C.,4

FOSTER WHEELER ENERGY CORPORATION

NUCLEAR DEPARTMENT

FWC FORM 172 - 4

NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE ----

BУ CHARGE Table 19. Weight Change Data for Specimens of Modified Hastelloy N Commercial Heats^a NO Weight Gain, mg/cm² at Various Times in hr Area Heat Specimen (cm^2) 1000 2000 3000 4000 5000 6000 9000 21541 314 13.6926 0.12 0.14 0.19 0.22 0.20 APPROVED 0.18 0.26 21541 315 13.7063 0.11 0.18 0.20 0.23 0.20 0.20 0.30 21542 312 13.6926 0.02 0.06 . 0.09 0.13 0.12 0.12 0.18 21542 313 13.8022 0.10 0.12 0.16 0.17 0.16 0.21 0.19 DOCUMENT 21543 310 13.7611 0.09 0.12 0.15 0.15 0.14 0.15 0.22 21543 13.7748 311 0.12 0.14 0.16 0.17 0.19 0.17 0.24 308 21544 0.24 13.7200 0.35 0.36 0.31 0.19 0.23 0.36 309 21544 13.7959 0.17 0.26 0.36 0.31 0.28 0.27 0.41 NO 21545 343 13.4363 0.19 0.25 0.27 0.31 0.31 21546 344 13.6956 0.27 0.34 0.39 0.34 0.41 ND/74 21554 345 13.6301 0.13 0.17 0.20 0.27 0.31 21555 346 13.3827 0.07 - 0.12 0.13 0.19 0.25 70727 342 14.1173 -0.05 -0.04 -0.05 -0.03 -0.0370785 306 13.7337 0.11 0.05 0.17 0.23 0.18 0.19 0.30 70785 307 13.7063 0.12 0.12 0.18 0.26 0.20 0.21 0.23 70786 304 13.7063 0.07 0.20 0.110.16 0.20 0.20 0.33 ISSUE 70786 305 13.7474 0.09 0.09 0.14 0.15 0.21 0.33 0.17 70787 302 13.7337 0.10 0.25 0.15 0.24 0.27 0.28 0.44 70787 303 13.6926 0.07 0.15 0.23 0.23 0.26 0.25 0.38 70788 300 13.7337 0.09 0.10 0.15 0.15 0.17 0.30 0.18 70788 301 13.7885 0.01 0.01 0.06 0.05 0,07 0.08 0.18 70795 298 13.6515 0.03 0.08 0.14 0.20 0.18 PAGE 0.18 0.27 70795 299 13.6789 0.01 0.06 0.08 0.16 0.16 0.16 0.28 目 70796 296 13.8323 0.06 0.20 0,10 0.17 0.25 0.15 0.13 σ 70796 297 13.8296 0.09 0.12 0.17 0.23 0.13 0.12 0.28 70797 сī 294 13.7666 0.03 0.04 0.09 0.14 0.12 12 0.12 0.19 Q 70797 295 13.7611 0.04 0.07 0.10 0.13 0.13 0.12 0.20 5 70798 292 13.7081 0.03 0.03 0.09 0.12 0.09 0.16 0.09 174

NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE ----

NUCLEAR DEPARTMENT

LIVINGSTON, N.

4

			Ta	ble 19 . (C	ontinued)					CHARGE NO. 8-25-
Heat	Specimen	Area (cm ²)		Weigł	nt Gain, mg	g/cm ² at V	arious Time	s in hr		2431
		(Chi)	1000	2000	3000	4000	5000	6000	9000	Ш
70798 70835 70835 71114 71114 71583 71583 72115 72115 72115 72503 72503 72503 72503 72503 72503 72504 72604 72604	293 290 291 338 339 340 341 396 397 414 ^b 398 399 415 ^b 400 401 416	13.6877 13.9187 13.7819 13.7502 13.4699 13.6410 13.5512 13.7987 13.7606 13.7200 13.8469 13.9060 13.7870 14.0059 13.9300 12.4655	0.04 0.05 0.04 0.10 0.10 0.08 0.18 0.17 0.18 0.12 0.11 0.04 0.39 0.34 0.15	0.08 0.02 0.04 0.17 0.15 0.11 0.13 0.23 0.20 0.29 0.14 0.12 0.02 0.40 0.34 0.23	0.12 0.06 0.09 0.17 0.15 0.13 0.15 0.34 0.31 0.42 0.22 0.20 0.02 0.02 0.47 0.39 0.36	$\begin{array}{c} 0.16\\ 0.08\\ 0.09\\ 0.23\\ 0.20\\ 0.21\\ 0.44\\ 0.41\\ 0.51\\ 0.27\\ 0.27\\ 0.27\\ 0.27\\ 0.24\\ 0.44\\ 0.44\\ 0.54\\ 0.46\\ 0.44\\ \end{array}$	0.15 0.07 0.09 0.28 0.23 0.25 0.26	0.15 0.07 0.08	0.25 0.09 0.14	DOCUMENT NO. ND/74/66 ISSUE 1
^a Un ^b Co	less otherwise ld worked 50%.	specified, a	nnealed 1	hr at 2150	°F in argo	n.				DATE 12/16/74

FOSTER WHEELER ENERGY CORPORATION

1922	NO	YTATIONS IN TH	IS COLUMN	INDICATE W	HERE CHANG	ES HAVE BE	EN MADE		
			••••••••••••••••••••••••••••••••••••••						
	Table 20. W	leight Change	Data for S	Decimone o	x E 31-32 E2 - 3			2	1
	Table 20 . W	Veight Change	Data for S	pecimens o	f Modified	Hastellov	N Commerc	ial Heats ^a	1
			Data for S						3
leat	fable 20. W	Area				Hastellov /cm ² at Va]
leat			Data for S						1.2,3
59344	Specimen 258	Area		Neigh	t Gain, mg 4330	/cm ² at Va 5330	rious Time 6330	s in hr 8330	12,3
59344 59344	Specimen 258 259	Area (cm ²) 13.6713 13.6708	1812	Weigh 3330	t Gain, mg 4330 0.19	/cm ² at Va 5330 0.21	6330 0.23	es in hr 8330 0.22	12,3
59344 59344 59345	Specimen 258 259 260	Area (cm ²) 13.6713	1812 0.21	Meigh 3330 0.17 0.20	t Gain, mg 4330 0.19 0.24	/cm ² at Va 5330 0.21 0.21	6330 0.23 0.25	es in hr 8330 0.22 0.25	12,2 0.2 0.2
59344 59344 59345 59345	Specimen 258 259 260 261	Area (cm ²) 13.6713 13.6708	1812 0.21 0.12 0.18	Weigh 3330 0.17 0.20 0.13	t Gain, mg 4330 0.19 0.24 0.16	/cm ² at Va 5330 0.21 0.21 0.20	6330 0.23 0.25 0.26	es in hr 8330 0.22 0.25 0.21	12,2 0.2 0.2 0.2
59344 59344 59345 59345 59345	Specimen 258 259 260	Area (cm ²) 13.6713 13.6708 13.6722 13.6106	1812 0.21 0.12 0.18 0.15	Weigh 3330 0.17 0.20 0.13 0.20	t Gain, mg 4330 0.19 0.24 0.16 0.19	/cm ² at Va 5330 0.21 0.21 0.20 0.19	0.23 0.25 0.23 0.26 0.23	es in hr 8330 0.22 0.25 0.21 0.21	12,1 0.2 0.2 0.2 0.2
59344 59344 59345 59345 59714 59714	Specimen 258 259 260 261	Area (cm ²) 13.6713 13.6708 13.6722 13.6106 13.6283	1812 0.21 0.12 0.18 0.15 0.16	Weigh 3330 0.17 0.20 0.13 0.20 0.22	t Gain, mg 4330 0.19 0.24 0.16 0.19 0.20	/cm ² at Va 5330 0.21 0.21 0.20 0.19 0.21	0.23 0.25 0.26 0.23 0.25 0.26 0.23 0.23	es in hr 8330 0.22 0.25 0.21 0.21 0.24	12,3 0.2 0.2 0.2 0.2 0.2
Heat 59344 59344 59345 59345 59345 59714 59714 20727	Specimen 258 259 260 261 262 263	Area (cm ²) 13.6713 13.6708 13.6708 13.6722 13.6106 13.6283 13.6248	1812 0.21 0.12 0.18 0.15 0.16 0.16	Weigh 3330 0.17 0.20 0.13 0.20 0.22 0.20	t Gain, mg 4330 0.19 0.24 0.16 0.19 0.20 0.18	/cm ² at Va 5330 0.21 0.21 0.20 0.19 0.21 0.21	0.23 0.25 0.26 0.23 0.26 0.23 0.23 0.30	es in hr 8330 0.22 0.25 0.21 0.21 0.24 0.28	
59344 59344 59345 59345 59714 59714	Specimen 258 259 260 261 262	Area (cm ²) 13.6713 13.6708 13.6722 13.6106 13.6283	1812 0.21 0.12 0.18 0.15 0.16	Weigh 3330 0.17 0.20 0.13 0.20 0.22	t Gain, mg 4330 0.19 0.24 0.16 0.19 0.20	/cm ² at Va 5330 0.21 0.21 0.20 0.19 0.21	0.23 0.25 0.26 0.23 0.25 0.26 0.23 0.23	es in hr 8330 0.22 0.25 0.21 0.21 0.24	12, 0. 0. 0. 0. 0. 0.

^aAnnealed 1 hr at 2150°F in argon.

FWC FORM 172 - 4

PAGE 6-6

면

APPROVED

FOSTER WHEELER ENERGY CORPORATION

NUCLEAR DEPARTMENT

CHARGE

NO.

8-25-2431

DOCUMENT

NO.

ND/74/66

ISSUE

DATE

12/16/74

LIVINGSTON, ч.

£...;

CHARGE NO. 8-2	25-2431	DOCUMENT	NO. ND/74/66	5 ISSUE	1 DATE	12/16/74
			TABLE 21			
	SUMI	MARY OF	TUBE BURST	TEST DATA	A	
Det	ł					Machine
Date of Placement ⁽¹⁾	Heat No.	Stress (PSI)	Diametral Strain %	Exposure Time (Hrs)	Failure (Hrs)	Tube Wa Thickne (Inche
2/28/71	N 2 5 0 9 5	*77,000	_	1,000	1	0.010
2/28/71	N25095	* 52,500	-	1,000	3.7	0.015
2/28/71	N15095	40,250	0.71	5,000	None	-
2/28/71	N15095	28,000	0.19	5,000	None	0.0302
8/31/71	N25101	56,000	0.57	4,000	None	0.014
8/31/71		50,000	0.33	4,000	None	0.016
2/29/72	N15095	,	-	1,000	792*	-
2/29/72	N15095	1 1	0.25	1,000	None	
2/29/72	N15095		0.24	1,000	None	-
2/29/72	N15095	42,400	0.14	1,000	None	-
(2)	—	72,000*	-		-	0.0108*
(2)	-	66,000	-	1,000	4.0	-
(2)	_	56,000	-	1,000	27.4	-
(2)		55,300	-	1,000	99.7	-
ORNL 4 Progre ORNL 4 Progre ORNL 4 Progre	676 Mol ss Repo 728 Mol ss Repo 782 Mol ss Repo 832 Mol ss Repo	ten Salt rt Peric ten Salt rt Peric ten Salt	Reactor Reactor Reactor Reactor Reactor Reactor d Ending, Reactor H d Ending, /31/72.	2/28/71. Program, S 8/31/71. Program, S 2/29/72.	emiannua emiannual	L

	CLEAR DEPARTMENT			<u>ــــــــــــــــــــــــــــــــــــ</u>	VINGSTON, N
CHAI	GE NO. 8-25-2431	DOCUMENT NO.	ND/74/66	ISSUE 1 1	DATE 12/16/7
			ND7 7 47 00		12/10/7
			Most Stat	ole	
			Fluoride		
		Element	Compour	nd Stability	, *
		chromium	CrF ₂	72	
	Structural Metals	iron	FeF	66	
		nickel	NiF	59	
· ·		molybdenum	MoF_2	57	
				A	
		lithium	LiF	120	
	c • c i.	sodium	NaF	110	
	Carrier Salts	potassium	KF	108	
		beryllium	BeF <u>.</u>	103	
		zirconium boron	ZrF4	à 92	• ·
		norod	BF3	86	
		uranium	UF,	92	
	Active Salts		UF ₃	93	
		thorium	ThF ₄	99	
	*Negative standard free en	eray of formation @ 90		* • #**	·
-		e thermodynamic st	abilities of fluori	ide compounds.	
				2 ¹	

4

FOSTER WHEELER ENERGY CORPORATION

NUCLEAR DEPARTMENT

LIVINGSTON, N. J.

		Table 2	3 Status of	f MSR program	thermal-convec	tion loops through Augu	ıst 31, 1972		
תוואון איטינס	Loop No.	Loop material		imens	Salt type	Salt composition (mole %)	Max. temp. , (°C)	∆ <i>T</i> (°C)	Operatir time (hr)
11 11 11	1258	Type 304L	Type 3041. steel ^{a, b}	stainless	Fuel	LiF-BeF ₂ -ZrF ₄ -UF ₄ -T (70-23-5-1-1)	hF ₄ 688	100	79,367
	NCL-13A	stainless steel Hastelloy N	Hastelloy N modified	Hastelloy	Coolant	NaBF ₄ -NaF (92-8) plu tritium additions		125	33,579
	NCL-14	Hastelloy N	N contro Ti-modified N ^{h, c}	ls ^{r,u} j Hastelloy	Cooland	NaBIF4-NaF (92-8)	607	150	42,154
	NCL-15A	Hastelloy N	Ti-modified N; Hastel controls ¹	l Hastelloy llov N	Blanket	LiF-BeF2-ThF4(73-2-7	25) 677	55	35,416
	NCL-16	Hastelloy N	Ti-modifie N: Haste	d Hastelloy llov N	Fuel	LiF-BeF ₂ -UF ₄ (65.5-34.0-0.5)	704	170	37,942
	NCL-16A	Hastelloy N	controls Hastelloy I control I		Fuel	LiF-BeF2-0F4 (65.5-34.0-0.5)	7()4	170	1,729
	NCL-17	Hastelloy N	Hastelloy modified	N: Ti- I Hastelloy	Coolant	NaBF ₄ -NaF (92-8) plus steam addition	607 s	100	27,81
	NCL-18A	Hastelloy N	N contro Hastelloy	$N^{b,c}$.	Fertile-fissle	LiF-BeV ₂ -ThF ₄ -11F ₄ (68-20-11.7-0.3)	704	170	67
	NCL-19A	Hastelloy N	Hastelloy modifier N contr	d Hastelloy	Fertile-fissile	LiF-BeF ₂ -ThF ₄ -UF ₄ (68-20-14-7-0, 3) ph bismith in metybd hot finger	7()4 us enum	170	22,20
	NCL-20	Hastelloy N	Hastelloy modifie N contr	d Hastelloy	Coolant	NaBF4-NaF (92.8)	. 687	250	19,92
	NCL-20A	Hastelloy N	Hastelloy	N; Ti- d Hastelloy	Coolant	NaBF ₄ -NaF (92-8)	687	250	1,68
	NCL-21	Hastelloy N	N contr Hastelloy	$N^{b,c}$	MSRE fuel	LiF-BeF ₂ -ZiFa_UFa (65.4-29.1-5.0-0.5)	110	
	NCL-22	Type 316 stainless steel		stainless	Fertile-fissil	LiF-BeF ₂ -ThE ₃ /UF ₄ (68-20/11.7-0.3)	1 650	110	3.
								•	

1	NUCL	EAR D	EPARTME	.N1					L	IVINGSTO	DN, N. J
	CHARGE	NO.	8-25-2	431	DOCUMENT	NO. N	ID/74/66	ISSU	c 1	DATE 12	/16/74
								12000			
					T	able 24A	۱.				
					S _u – Maxin In	num Allowa itensity (ks					
					(For Design (
				_			Ni-Fe-C Alloy 80 (Solutic	0H on			
E			Temp. 700	F 	304 SS	316 SS	Anneale		- 1 Mo		
BEEN MADE			750 750 800		15.1	15.8	15.3	15	5.0 5.0		
LEEN			850		14.9	15.7	15,1	14	E. J.		
1			900 950		14.6 14.3	$\frac{15.5}{15.4}$	14.8 14.6		3.1 1.0		
HAVE			1000 1050		13.7 12.1	$15.3 \\ 14.5$	14.4 F3.7		7.8 5.8		
H			1100 1150		9.7 7.7	12.4 9.8 -	13.5	-	1.2 3.0		
CHANGES			1200		6.0	7.4	. 8.4		.6		
NAL			$1250 \\ 1300$		$\frac{4.7}{3.7}$	5.4	6.9 5.4				
1			1350		$\frac{2.9}{2.3}$	$\frac{3.0}{2.2}$	4.5 3.6	×			
WHERE			$\frac{1450}{1500}$	·	$\frac{1.8}{1.4}$	$\frac{1.7}{1.2}$					
	1		Ni, Fau			24B.	Stress Intensity	. Malua - I. 1			
mp. [°] F		10 hr	30 hr	100 hr	300 hr	1000 hr	3000 hr	10,000 hr	30, 0 00 hr	100,000 hr	300,000 hr
850	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1
900 950	$\frac{14.8}{14.6}$	14.8 14.6	$\frac{15.8}{14.6}$	14.8 14.6	$\begin{array}{c} 14.8 \\ 14.6 \end{array}$	$\frac{14.8}{14.6}$	$\begin{array}{c} 14.8 \\ 14.6 \end{array}$	$\begin{array}{c} 1.4.8\\ 1.4.6\end{array}$	14.8 14.6	14.8 14.6	$\begin{array}{c} 14.8 \\ 14.6 \end{array}$
1000 1050	1 1.1 1 4.3	14.4	11.1	11.1	11.1	11.4	14.4	14.4	14.4	14.4	14.4
1100	11.1	$\frac{14.3}{14.1}$	14.3	$\begin{array}{c} 14.3 \\ 14.1 \end{array}$	$\frac{14.3}{14.1}$	$\frac{14.3}{14.1}$	$\begin{array}{c} 14.3 \\ 14.1 \end{array}$	$14.3 \\ 14.1$	$\begin{array}{c} 14.3 \\ 13.6 \end{array}$	$\begin{array}{c} 14.3\\11.7\end{array}$	$\begin{array}{c} 13.4 \\ 10.3 \end{array}$
$1150 \\ 1200$	13.9 13.8	13.9 13.8	$13.9 \\ 13.8$	$\begin{array}{c} 13.9 \\ 13.8 \end{array}$	$\frac{13.9}{13.8}$	$\frac{13.9}{12.5}$	$\begin{array}{c}13.9\\10.9\end{array}$	$\frac{12.0}{9.4}$	$\begin{array}{c} 10.5\\ 8.2 \end{array}$	$9.1 \\ \overline{7.2}$	8.0 6.4
1250	13.5	19.5	13,5	13.3	11.5	9.8	8.6	7.5	6.6	5.8	5.1
1300 \pm 1350 \pm	$\frac{13.2}{12.0}$	$\frac{13.2}{11.4}$	$\frac{12.4}{9.9}$	10.5 8.4	$\begin{array}{c} 9.4 \\ 7.4 \end{array}$	$\frac{7.9}{6.4}$	$\frac{6.9}{5.6}$	6,0 4.9	5.3 4.3	$\frac{4.6}{3.7}$	$\begin{array}{c} 4.1\\ 3.3\end{array}$
1400	11.0	9.2	3.0	6.8	6.0 ;	5.2	4.6	4.0	3.5	3.0 .	2.6
			Ni-Fe-Cr	Allov 8		e 24 C. Iowable Str	ess Intensity	Vatues ksi			
mp. [°] F	1 hr	10 hr	30 hr	100 hr	300 hr	1000 hr	3,000 hr	10,000 hr	30,000 hr	100,000 hr	300,000 h
850	20.0	20.0	20.0	= 20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
900 950	19.8 19.6	$19.3 \\ 19.5$	$\begin{array}{c} 19.8 \\ 19.6 \end{array}$	19.8 19.6	19.8 19.6	$\frac{19.8}{19.6}$	19.8 19.6	$\frac{19.8}{19.5}$	$\begin{array}{c} 19.8 \\ 19.3 \end{array}$	$\begin{array}{c} 19.7 \\ 19.2 \end{array}$	19.6 19.1
000	19.4	19.4	19.4	19.4	19.4	19.3	19.1	18.9	18.6	18.5	$\frac{17.0}{13.4}$
		19.3	19.3	i 19.3	19.3	18.9	18.7	18.4	17.4	15.3	1974
1050 100	$\begin{array}{c} 19.3 \\ 19.1 \end{array}$	19.1	19.0	18.6	18.4	18.0	17.8	15.7	13.6	11.7	10.3

18.5 17.6 16.6 14.5 18.2 17.7 16.614.9 12.6 $\frac{11.4}{9.2}$ $18.4 \\ 17.3 \\ 15.8$

12.4

9.9

8.0

13.3

 $\begin{array}{c}
 10.5 \\
 8.4
 \end{array}$

6.8

APPROVED

4

11.5

 $9.1 \\ 7.4 \\ 6.0$

9.8 7.9 6.4 5.2

8.6

6.9

5.6

4.6

BY

 $1200 \\ 1250$

 $\frac{1300}{1350}\\ \frac{1400}{1400}$

PAGE 6-65

 $9.1 \\ 7.2 \\ 5.8$

 $\frac{4.6}{3.7}$

6.6

 $5.3 \\ 4.3 \\ 3.5$

7.5

6.0

4.94.0 5.1

4.1

3.3 2.6

FOSTER WHEELER ENERGY CORPORATION NUCLEAR DEPARTMENT

LIVINGSTON, N. J.

HARGE NO. 8-25-	2431	DOCUMENT NO.	ND/74/66 ISSU	JE 1 DATE	12/16/74
		ጥል	BLE 25		
		14			
PE	RFORMA	NCE OF HAS	TELLOY N SPECI	MENS IN	
<u>]</u>	HIGH P	RESSURE CH	LORIDE SCC FAC	ILITY*	
	Spor				
Alloy	Veld	imen Type Non Weld	Specimen Condition	No. of Specimens	No. of Failures
				opecimens	raitule
Hastelloy N	\mathcal{V}°	_	$AR^{(1)}$	3	3
	./		Ground(2)		5
Hastelloy N	V	-	Annealed	3	0
Hastelloy N	_	~	Ground	3	3
77		V			J
Hastelloy N		r	AR ⁽¹⁾	3	3
Hastelloy N		V	Anneal 1 ⁽³⁾	3	0
					v
Hastelloy N		V	Anneal 2 ⁽³⁾	3	3
Hastelloy N		V	Anneal 3 ⁽³⁾	3	0
		V			Ū
Hastelloy N			Anneal 4 ⁽³⁾	3	0
		4			
*Compile	d fro	m data repo	orted in Ref. 3	29	
(1) _{AR} -	As Re	ceived, Solu	tion An ne aled	2150°F.	
			e with supplie		
(3) Annea	11-	Ground and	heated 1 hou	r at 2150°	F; aír
coole	d.				
coole		Ground and	heated 10 min	. at 1600°	F; air
		Ground and	heated 1 hou	r at 1600°	F; air
coole					
Annea coole		Ground and	heated 6 hour	s at 1600°	F; air
00010	u •				
	I				6 - 66

NOTATIONS IN THIS COLUMN INDICATE WHERE CHANGES HAVE BEEN MADE -

FWC FORM 172 - 4

Preliminary Results for Run 9 in the Chloride Injection Loop

Exposure consisted of 10 weeks of thermal cycling between the superheated (700°F) and saturated (540°C) states, holding 24 hr at the latter 3 times per week; 7 ppm 0 was injected continuously and 7 ppm NaCl during the 540°C sojourns.

Group	Materials ^a	Material Conditionsb	Results ^C
l	Inconel 625 and Inconel 625 welded with itself.	As-furnished As-furnished and welded. Ground and welded. Ground, welded, and annealed. As-furnished, welded, and pickled.	No cracking either at top or bottom location.
2	Hastelloy X and Hastelloy X welded with itself.	As-furnished. As-furnished and welded. Ground and welded. Ground, welded, and annealed. As-furnished, welded, and pickled.	No cracking either at top or bottom location.
3	Hastelloy N and Hastelloy N welded with itself.	As-furnished. As-furnished and welded. Ground and welded. Ground, welded, and annealed. As-furnished, welded, and pickled.	All cracked to varying degrees except for those of ground, welded, and annealed condition.
4	Inconel 600 and Inconel 600 Welded with Inconel 627.	As-furnished. As-furnished and welded. Ground and welded. Ground, welded, and annealed. As-furnished, welded, and pickled.	No cracking except for one suspect specimen of the welded and pickled group located at the upper position.
5	Incoloy 800 and Incoloy 800 welded with Inconel 82.	As-furnished. As-furnished and welded. Ground and welded. Ground, welded, and annealed. As-furnished, welded, and pickled.	No cracking either at top or bottom location.
ŕ,	Type 316 stainless steel and type 316 stainless steel welded with itself.	As-furnished. As-furnished and welded. Ground and welded. Ground, welded, and annealed. As-furnished, welded, and pickled.	No cracking except for one suspect specimen of the welded and pickled group located at the bottom location.
7	Type 304 stainless steel and type 304 stainless steel welded with type 303.	As-furnished. As-furnished and welded. Ground and welded. Ground, welded, and annealed. As-furnished, welded, and pickled.	No cracking except for one suspect specimen of the welded and pickled group at the bottom position.
8	26 Cr-1 Mo-Ti (electron-beam melted) welded with itself.	Ground and welded. Ground, welded, and pickled.	All cracked severely within 4 weeks.
9	18 Cr-2 Mo-Ti steel and 18 Cr-2 Mo steel welded with itself.	As-furnished. As-furnished and welded. Ground and welded. Ground, welded, and annealed optimumly.	No cracking either at top or bottom location.

 $\frac{\text{TABLE 26}}{(\text{Cont'd})}$

Group	p Materials ^a	Material Conditions ^b	Results ^c
10	Super L2 Cr steel (HT-9) and super L' Cr steel welded with itself.	As-furnished. Ground, welded, and annealed optimumly. Ground, welded, and annealed in temper brittleness range.	All cracked severely within 4 weeks of those annealed in the temper brittleness range.
11	9 Cr-1 Mo steel and 9 Cr-1 Mo steel welded with itself	As-furnished.	All cracked severely within 4 weeks of those as-furnished and welded and those ground and welded.
1.7	¹⁰ Cr-1 Mo-Ti steel and ¹⁰ Cr-1 Mo-Ti steel welded with itself.	Ground, welded, and annealed in temper brittleness range.	No cracking either at top or bottom location.
ß	5 Cr-1/2 Mo steel and 5 Cr-1/2 Mo steel welded with itself.	As-furnished. As-furnished and welded. Ground and welded. Ground, welded, and annealed optimumly.	No cracking either at top or bottom location.
4	5 Cr-1/2 Mo Ti steel and 5 Cr-1/2 Mo-Ti welded with itself.	As-furnished. As-furnished and welded. Ground and welded, and annealed optimumly. Ground, welded, and annealed in temper brittleness range.	No cracking except one in the ground and welded conditions each at top and bottom location; one in ground and welded conditions at bottom location.
5	and 2 1/4 Cr-1 Mo steel welded with itself.	As-furnished. As-furnished and welded. Ground and welded. Ground, welded, and annealed optimumly.	No cracking either at top or bottom location.
	2 1/4 Cr-1 Mo-Nb A steel (HT8X6) and 2 1/4 Cr-1 Mo-Nb welded with itself. (6	s-furnished and welded. As-furnished and welded. Ground and welded, and annealed optimumly. Ground, welded, and annealed in temper prittleness range.	No cracking either at top or bottom location except for ground and welded condition for which two cracked severely in 2 weeks at top position and one at bottom position.

^aSpecimens were of the C-configuration type prepared from 3/4-in.-OD $\times 1/16$ -in.-wall tubing. They were strained 0.88% on the bore side incident to mounting.

^bThe Inconels, Hastelloys, Incoloy 800, and 300 series stainless steels were annealed by heating 10 min at 1900°F and rapid cooling; 26 Cr-1 Mo, 18 Cr-2 Mo-Ti, and super 12 Cr were annealed optimumly by heating 45 min at 1400°F and 5 Cr-1 Mo, 5 Cr-1/2 Mo-Ti, 2 1/4 Cr-1 Mo, and 2 1/4 Cr-1 Mo-Nb were annealed optimumly by heating 45 min at 1350°F (all cooled 80°F/hr); super 12 Cr, 9 Cr-1 Mo-Ti, and 1000°F and 5 Cr-1/2 Mo-Ti and 2 1/4 Cr-1 Mo-Nb were exposed to the upper temper brittleness range by heating 45 min at 900°F (all cooled 80°F/hr). The Inconels, Hastelloys, Incoloy 800, and 300 series stainless steels that were welded and pickled were heated in air 10 min at 2200°F just prior to pickling to simulate a loss of purge gas (welding) incident.

^CSpecimens were tested in triplicate for each surface condition and location in the autoclaves.

.

 i_1

Cracking Results on Stress Correction Cracking Specimens Tested in Runs 6 Through 8

ipertime Group	n Base Metal	Filler Metal	b Surface	Number of	Crack Initiation	Crack S	ize, in.	Crack ,
No.ª			Condition	Fatlures	Time ^d (weeks)	Initial ^e	Final	Location ¹
1	Type 304 SSR	Type 308 55	Ground Ground Ground and annealed Ground, annealed, and pickled	3 of 3 3 of 3 6 of 6 3 of 3	1-2 6 11 3-10	1/2 1/2 1/2	1/2 1/2 1/2	HAZ into WD HAZ into WD HAZ into WD
2	Type 410 SS ^{R+h}	Type 410 SS	Ground Ground and annealed Ground, annealed, and pickled	0 of 6 0 of 3 0 of 6	<i>J</i> =10	1/2	1/2	BM, HAZ into WD
3	Incoloy 800 ⁸	Inconel 82	Ground Ground Ground and annealed Ground and annealed Ground, annealed, and pickled	3 of 3 3 of 3 1 of 3 3 of 3 1 of 3	17 6 7 612 6	1/16-3/16 1/16 3/16 1/16-1/8 1/16	5 7/16 1/8-1/4 1/4 1/4 1/8	HAZ Into FL HAZ, NAZ Into FL HAZ Into FL HAZ NAZ
4	inconel 600 ⁴	Inconel 82	Ground Ground Ground and annealed Ground, annealed, and pickled	2 of 3 2 of 3 0 of 6 0 of 3	1-4 5-12	1/8-3/16 1/16-1/8	3/8-7/16 1/8-5/16	HAZ HAZ
5	Inconel 525 ⁸	Inconel 625	Ground Ground and annealed Ground, annealed, and pickled	0 of 6 0 of 6 0 of 3				
6	IN-102 ⁸ Hastelloy X ⁸	IN-102	Ground Ground and Annealed	3 of 3 3 of 3 3 of 6	25 816 512	1/2 1/16-1/8 1/8-1/4	1/2 1/16-1/8 1/4	HAZ into WD HAZ into WD HAZ and WD
7	Hastelloy X.	Hastelloy X	Ground Ground Ground and annealed Ground, annealed, and pickled	3 of 3 3 of 3 0 of 6 0 of 3	1 16	1/4-5/16 1/8-1/4	1/2 1/4-1/2	HAZ into WD, WD HAZ into WD, WD
8	Hastelloy N ⁸	Hastelloy N	Ground Ground and annealed	3 of 3 0 of 3	4-11	1/2	1/2	HAZ into WD, WD
9 10	Type 304 ss^1	No weld	Ground Ground and solution annealed	3 of 6 6 of 6	39 318	1/64-1/8	1/16-1/4 1/64-1/8	E, (many) E, I (many, superficial)
10	Type 304N SS ¹	No weld	Ground and solution annealed	6 of 6 3 of 6	5-9 18	1/64-3/16 1/16-3/16	1/32-1/4 1/16-3/16	E,1 (many, superficial)

(Continued)

Specimer Group	i Base Metal	- Filler Metal	Surface	Number of	Crack Initiation	Crack S	ize, in.	Crack .
No.ª			Condition ^C	Failures	Tímed (weeks)	Initial ^e	Final	Location ^f
11	18-18-2 55 ¹	No weld	Ground Ground and solution annealed	3 of 3 3 of 3	8 68	1/4-1/2	1/2 7/16-1/2	E
12	18-3 Mn ⁴	No weld	Ground As received	3 of 3 3 of 3	5-16 5-18	1/10-1/2 1/8-3/8 1/16-5/16	3/8-1/2	E ' E, I
13	X20-6 ¹	No weld	Ground As received	3 of 3 3 of 3	18 18	1/64-1/16	1/64-5/16	E, I E (many) E (many)
14	26 Cr=1 Mo ¹ (EB melted)	No weld	Ground As received	3 of 3 3 of 3	12 24	1/2 1/2	1/04/1/10 1/2 1/2	t (many)
15	Type 410 SS ¹	No weld	Ground Ground and annealed Ground, annealed, and pickled	0 of 3 0 of 3 0 of 3			1,1	
16	Super 12 Cr ¹ (HT-9)	No weld	Ground Ground and annealed	0 of 3 0 of 3				
17	9 C r- 1 Mo ^k (SA-21319)	No weld	Ground Ground and annealed	0 of 3 0 of 3				
18	5 Cr-1/2 Mo ^k (SA-213T5)	No weld	Ground Ground and annealed	0 of 3 0 of 3				
19	2 1/4 Cr+1 Mo8 (SA-213T22)	No weld	Ground Ground and annealed	0 of 3 0 of 3				
20	Incoloy 800 ¹	No weld	Ground Ground Ground and annealed	3 of 3 3 of 3 1 of 6	1618 16 16	1/16-5/32 1/8-3/16 1/16	5/32-3/8 1/8-3/16 1/16	E, I I, E E
21	20 Cr-45 Ni-5 Mn ¹		Ground Ground and annealed	3 of 3 3 of 3	115	3/16-1/4 1/32-1/8	1/4-1/2 1/32-7/32	E
22	Inconel 600 ¹		Ground Ground and annealed	1 of 3 0 of 3	16	3/32	3/32	E, I E
23	Inconel 601 ¹	No weld	As received Ground	1 of 3 0 of 6	5	1/8	5/16	E
24	Inconel 625 ¹	No weld	Ground and annealed Ground Ground and annealed	პიf6 0 of6 0 of6				

pecimen Group	Base Metal	Filler Metal ^b	Surface	Number	Crack Initiation	Crack S	ize, in.	Crack ,
No.J		CALLER INCLAS	Condition ^c	of Failures	Time ^d (weeks)	lnítíal ^e	Final	Location
25	Inconel 690 ¹ (10 Fe-60 NI-30 Cr)	No weld	Ground As received	0 of 3 0 of 3				1.1
26	36 Fe-32 Ni-32 Cr ¹	No weld	Microduplexed and ground (100 mesh)	0 of 3				
			Microduplexed Macroduplexed and ground (100 mesh)	0 of 3 0 of 3				
27	Incoloy 809E	No veld	Macroduplexed Microduplexed and ground	0 of 3 0 of 3				
	(19 Fe-44 N1-17 Cr)		(100 meah) Microduplexed Macroduplexed and ground (100 meah)	0 of 3 0 of 3				
28	Hastelloy X ¹	No weld	Macroduplexed Ground As received	0 of 3 0 of 3 2 of 3	12			
29	Hastelloy C-276 ¹		Ground As received	2 of 3 0 of 3 0 of 3	12	1/16-3/32	1/163/32	E (several)
30	Hastelloy G ⁱ	No weld	Ground As rec eive d	Q of 3 O of 3				
31	Hastelloy N ¹		Ground As received Anneal 1	3 of 3 3 of 3 0 of 3	1 12	1/2 1/2	1/2 1/2	(Many smaller ones)
			Anneal 2 Anneal 3 Anneal 4	3 of 3 0 of 3 0 of 3	7-14	1/16-1/8	1/4-1/2	E

^aSpecimens measured 3 $1/4 \times 1/2 \times 1/16$ in, and were bent to a 1/2-in, radius (6.2% maximum strain) incident to mounting.

^bWeldments were prepared by an automated gas tungsten-arc process.

^CCround - surfaces ground on a 100-mesh-grit belt.

 \pm

Ground and annealed = ground on a 100 mean-give original for and heated 10 min at 1800°F and cooled 100°F/min except for ferritic steels, which were ground and heated just below their lower critical temperature (1400°F for type 410 SS, super 12 Cr, and 9 Cr-1 Mo steel, and 1350°F for 5 Cr-1/2 Ho and 2 1/4 Cr-1 Ho) for 1 hr and gas cooled.

(Continued)

Ground, annealed, and pickled = given the preceeding treatment and then pickled by the procedure recommended by supplier of alloy. Ground and solution annealed = ground and heated 1/2 hr at 1950°F and cooled rapidly.

As received - solution annealed (2150°F for Hastelloy S, G, and N; 2050°F for Hastelloy C-276; 1950°F for 18-3 Mn, 1900°F for X20-6; 1850°F for Inconel 600, and 1725°F for Inconel 690) or normalized and tempered for ferritic alloys (except annealed at 1450°F and water quenched for 26 Cr-1 Mo).

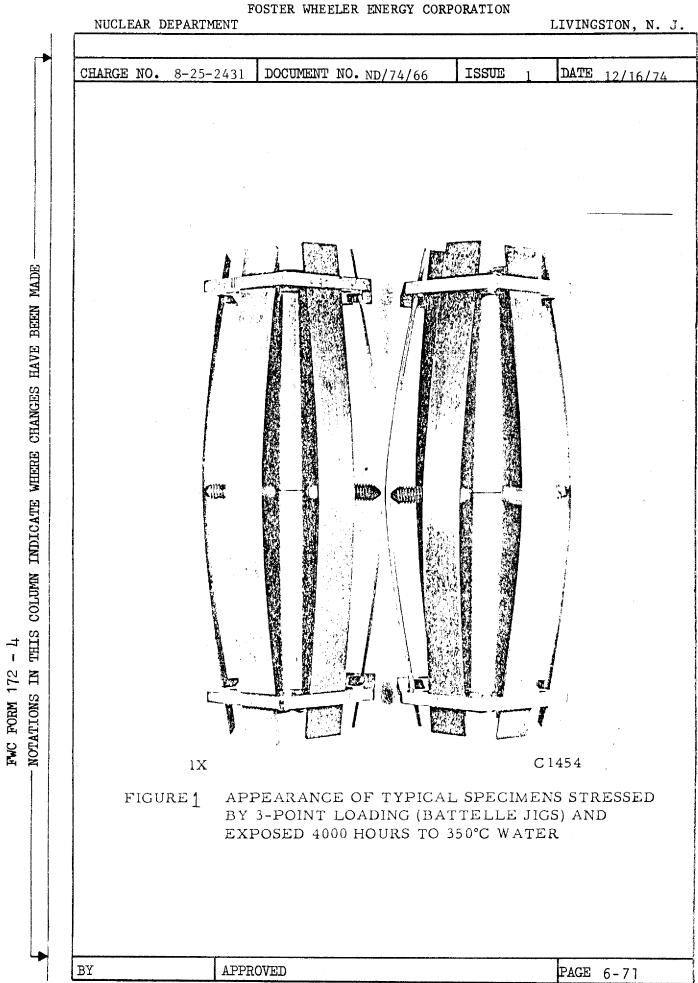
Anneal 1 = ground and heated 1 hr at 2150°F, air cooled; and Anneal 2 = ground and heated 10 min at 1600°F, air cooled; Anneal 3 = ground and heated 1 hr at 1600°F, mir cooled; Anneal 4 = ground and heated 6 hr at 1600°F, air cooled. Microduplexed = annealed at 1750°F and air cooled for 32 Cr-32 Ni-36 Fe alloy and at 1800°F and air cooled for 37 Cr-44 Ni-19 Fe alloy

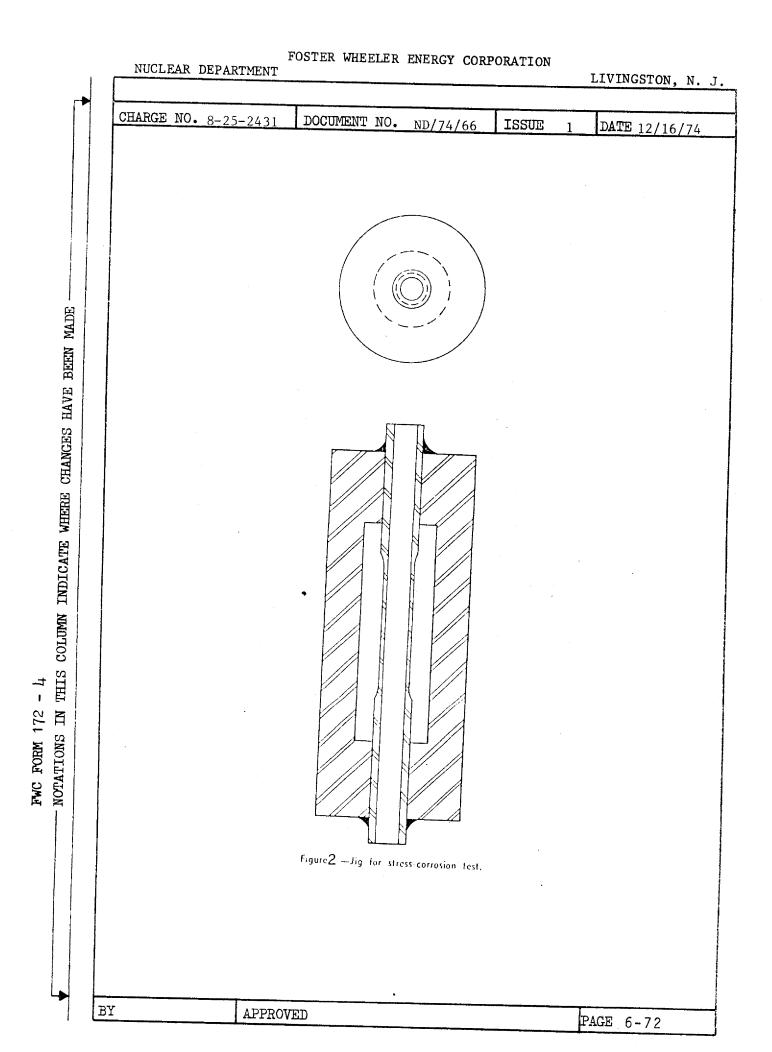
(5-um and 3-um grain sizes, respectively).

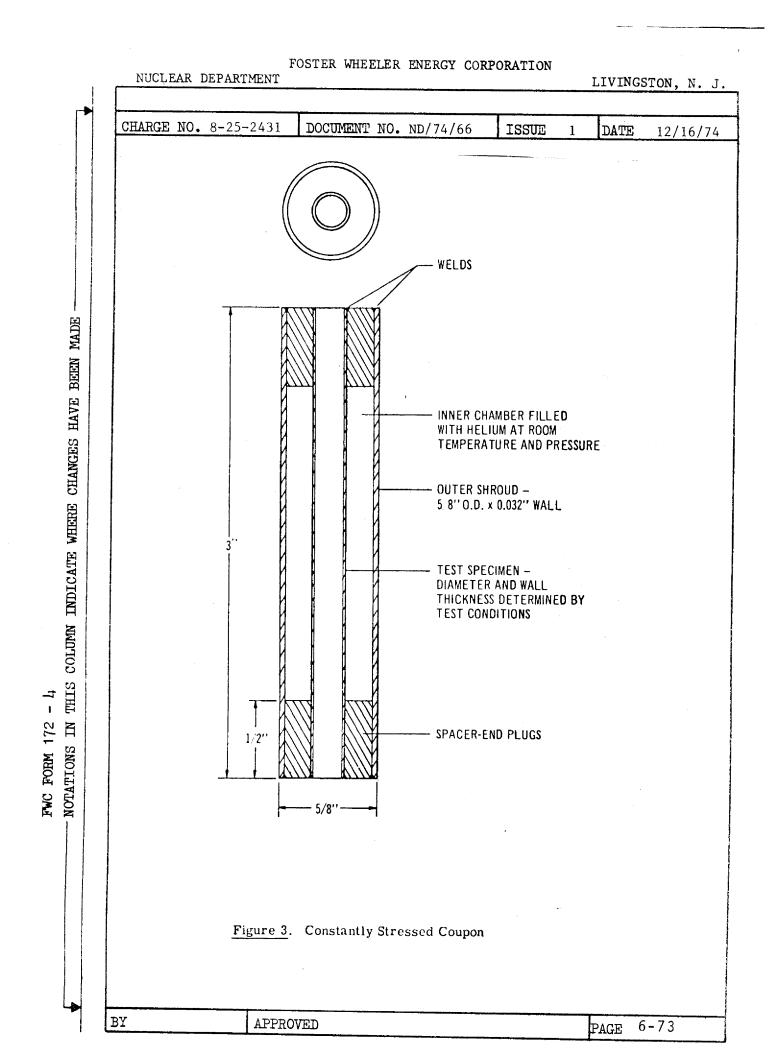
Harroduplexed = heated at 200°F and water quenched plus annealed at 1750°F and air cooled for 32 Cr-32 Ni-36 Fe alloy and heated at 2300°F and water quenched plus annealed at 1800°F and air cooled for 37 Cr-44 Ni-19 Fe alloy (300-11m and 100-11m grain wizes, respectively).

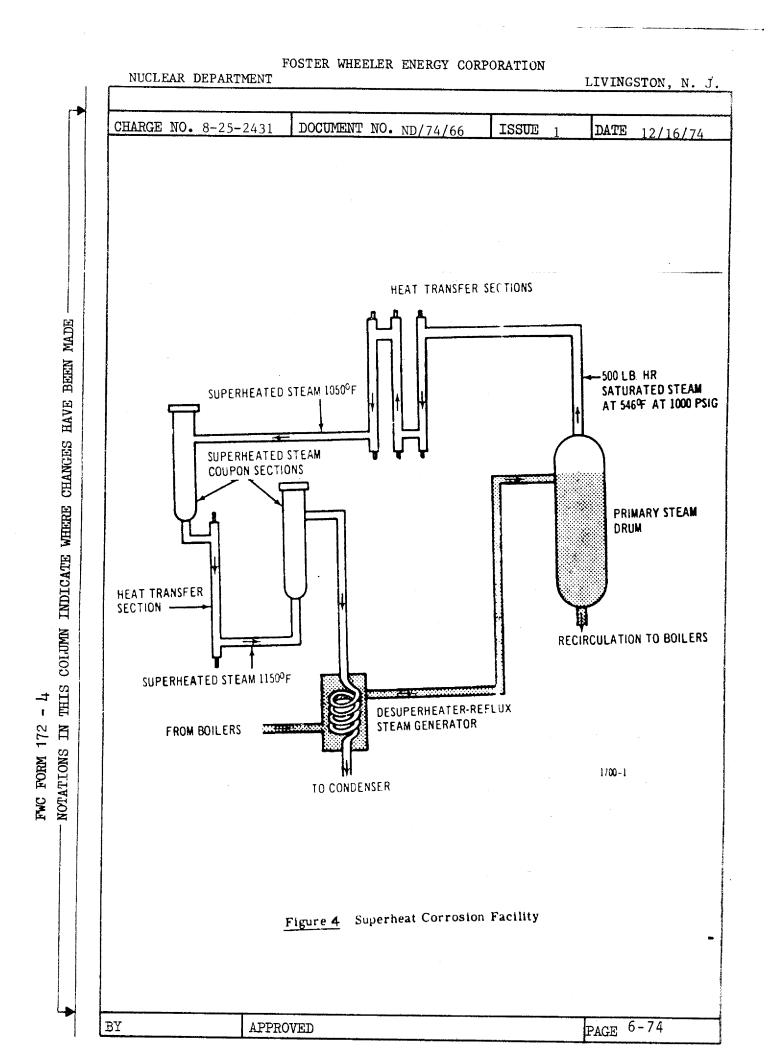
^dCrack distance in a lateral direction at the time first observed (specimens were inspected at one-week intervals). e Crack distance in a lateral direction at the termination of test (after 16 or 18 weeks).

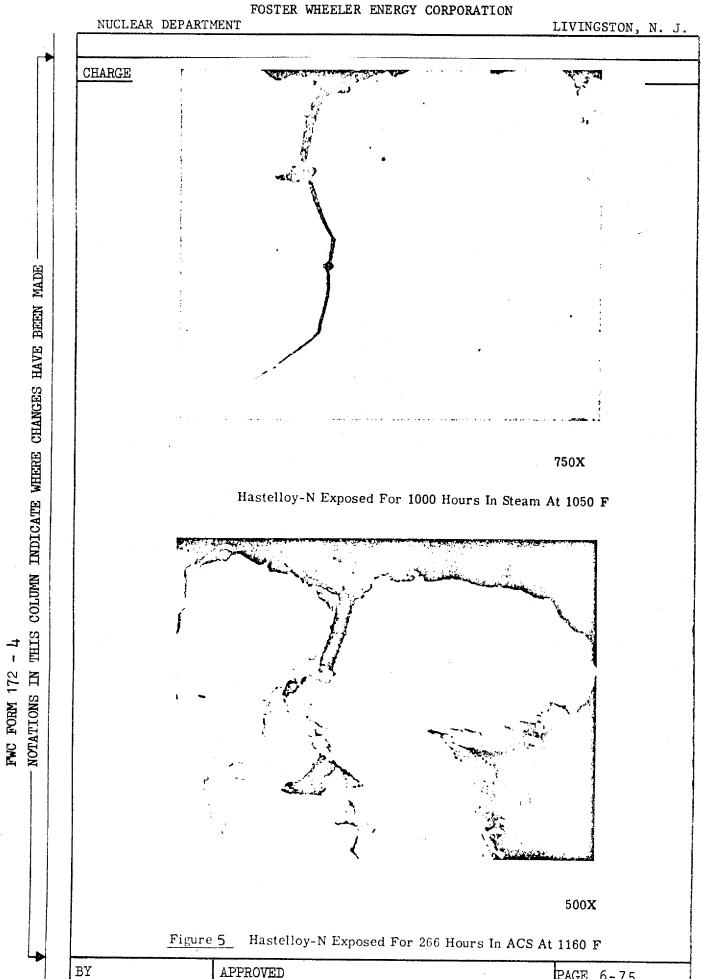
f HAZ = heat affected zone, WD = weld deposit, BM = base metal, FL = fusion line, E = edge of specimen, and I = inside.

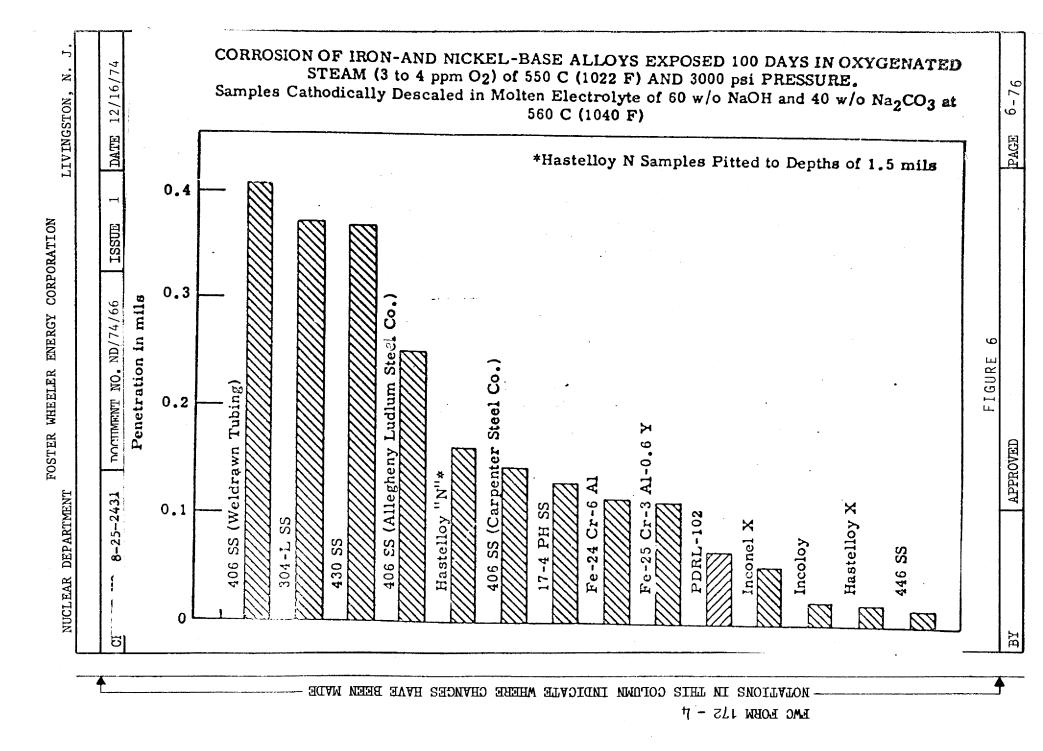

 g Hot-rolled and descaled plate stock of 1/2-in. thickness.

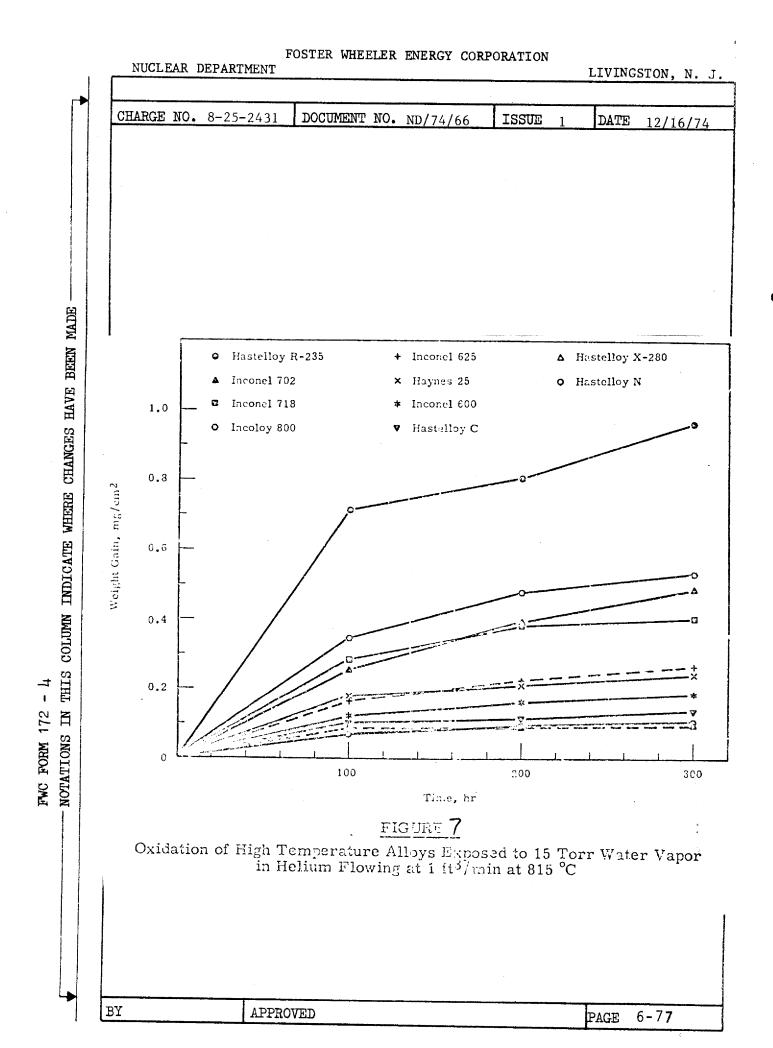

^hIn preparing weldment, 400°F preheating (continued through multipass welding) and a 1250°F postweld treatment was employed. ¹Annealed sheet or strip stock of 1/16-in, thickness.

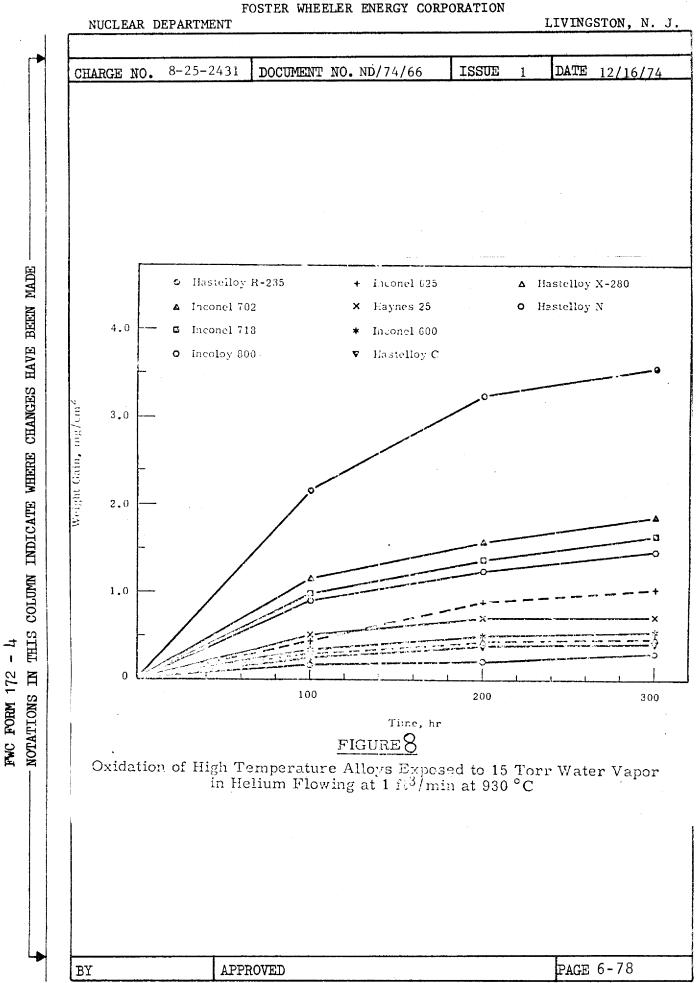

^jprepared as 1/16-in. strip by hot flattening a tube, austenitizing at 1925*F (air cooled), tempering at 1435*F (air cooled), and machining.

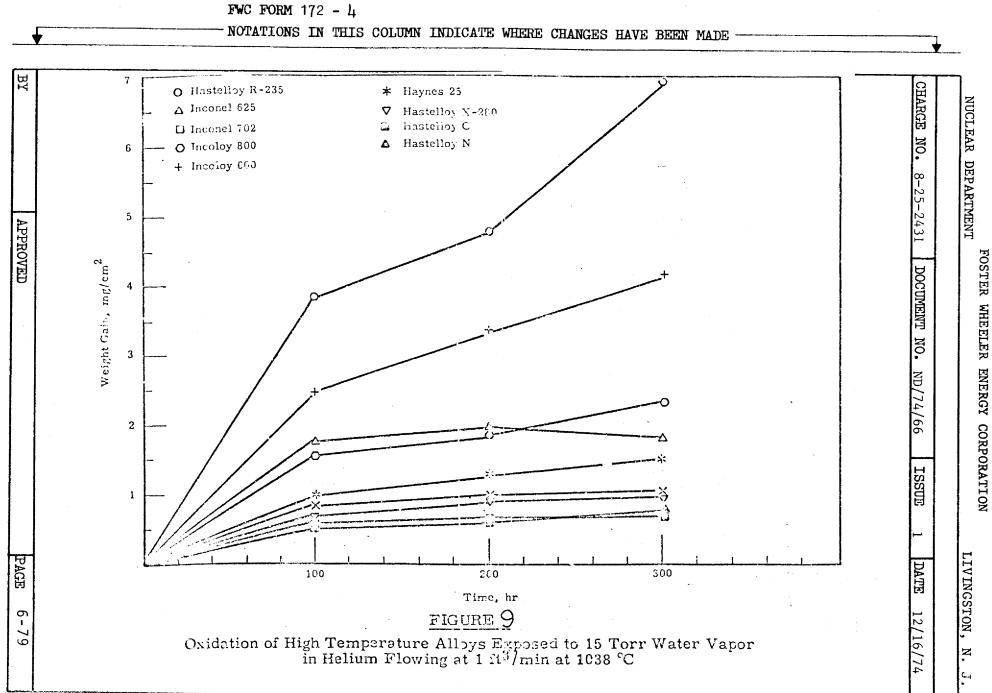

 $^{\mathsf{k}}_{\mathcal{F}}$ urnished by supplier of tubes as special strip sample (snncaled).

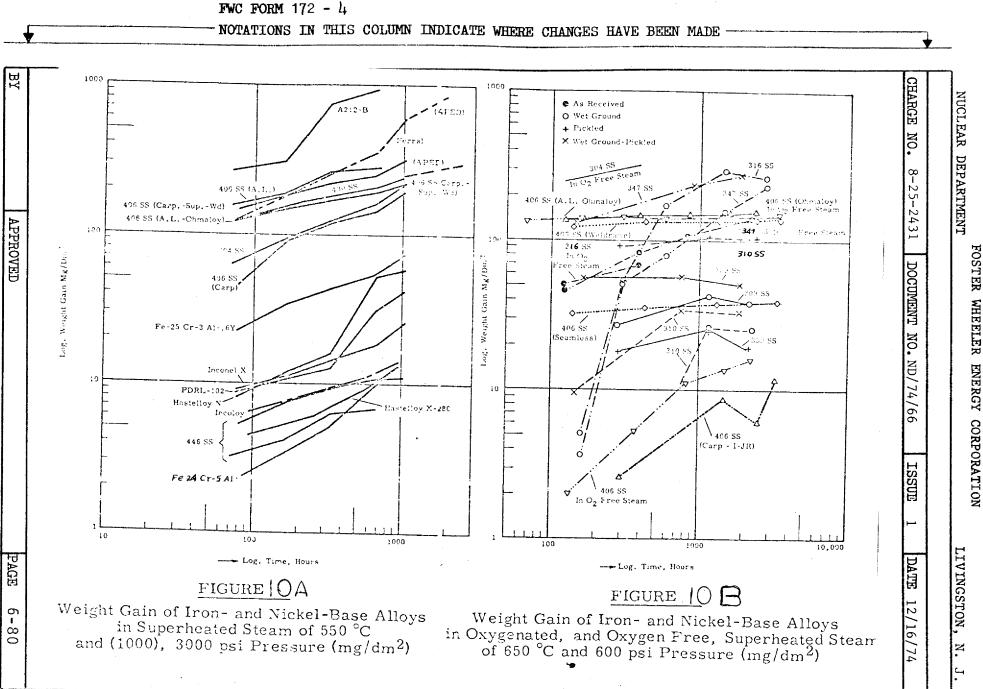

¹ Prepared as 1/16-in. strip by hot flattening a tube, and solution annealing at 1750°F (water quench).

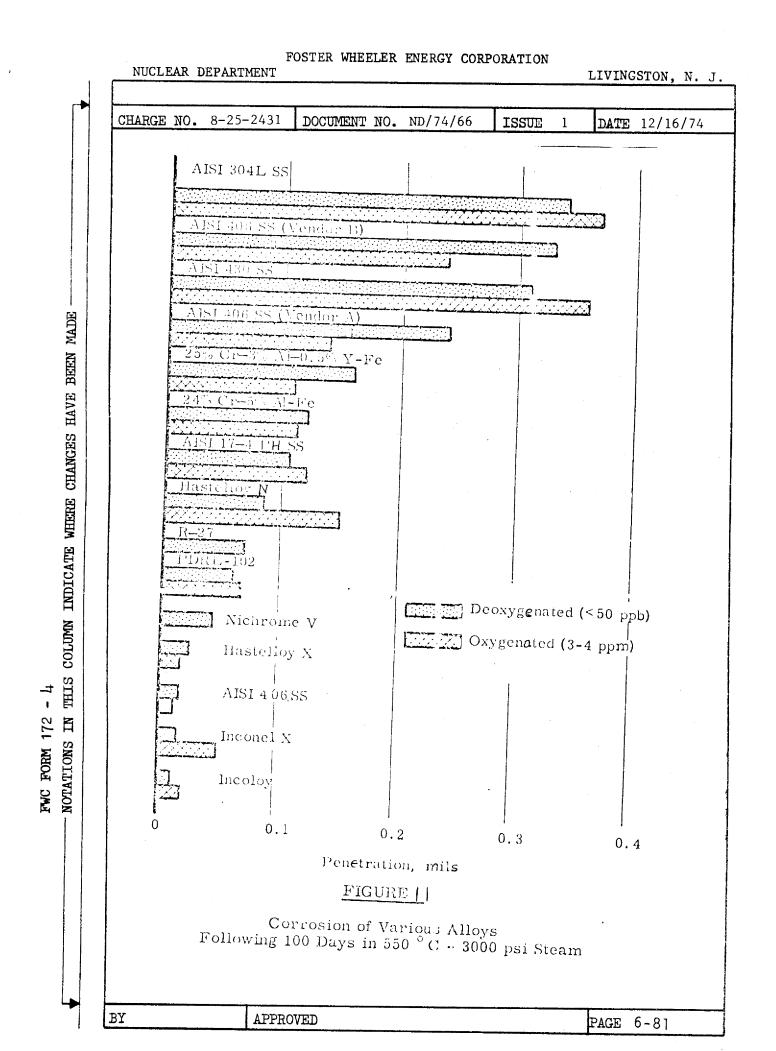


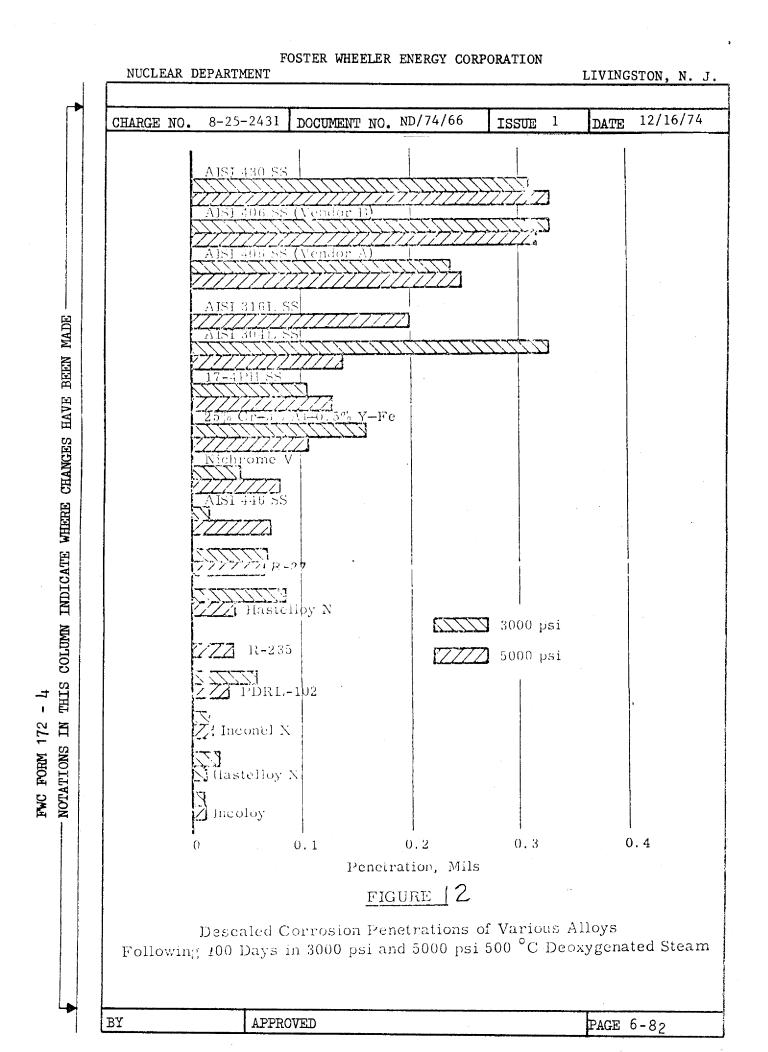


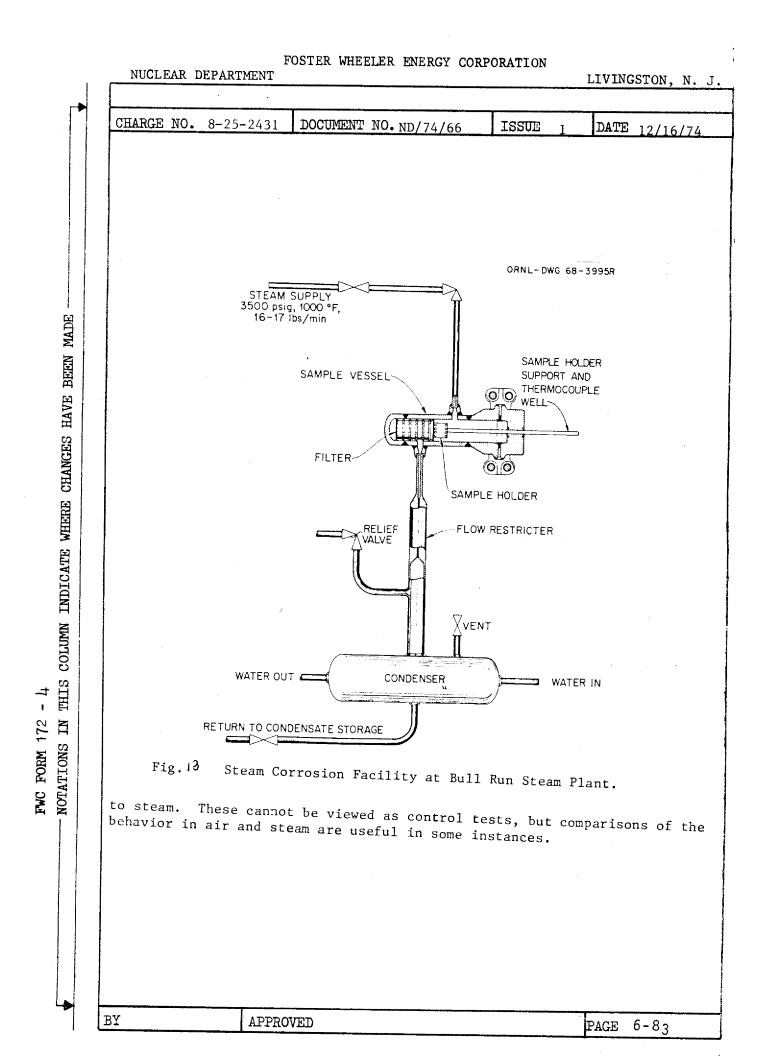


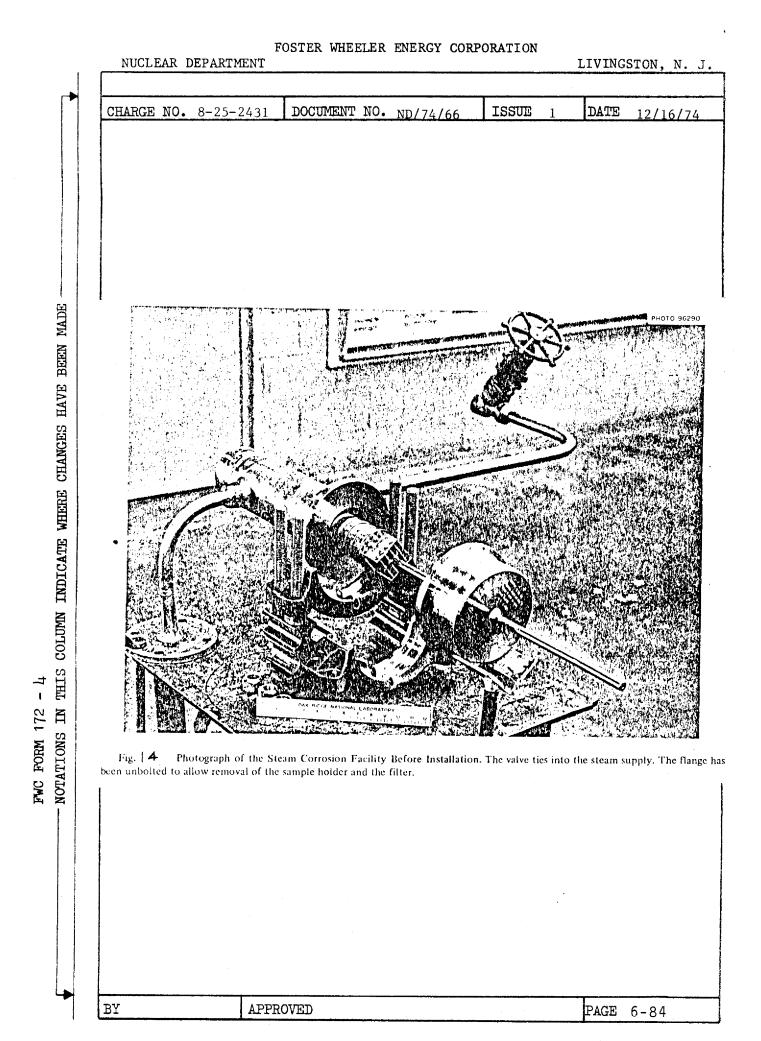


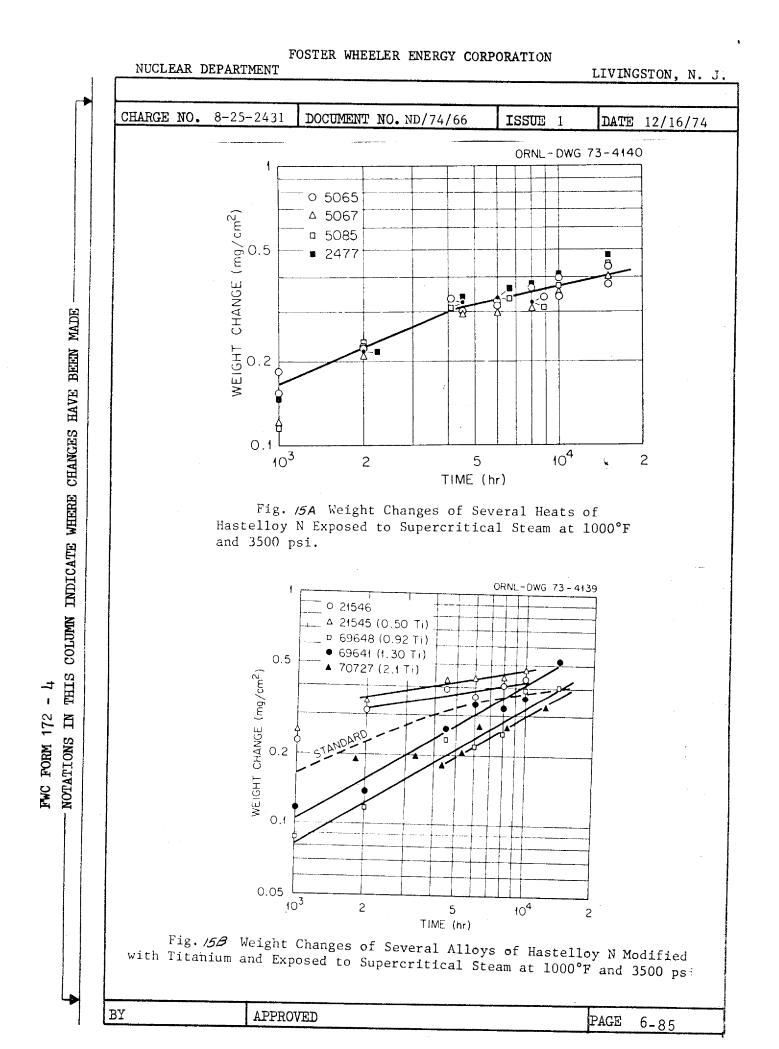

PAGE 6-75

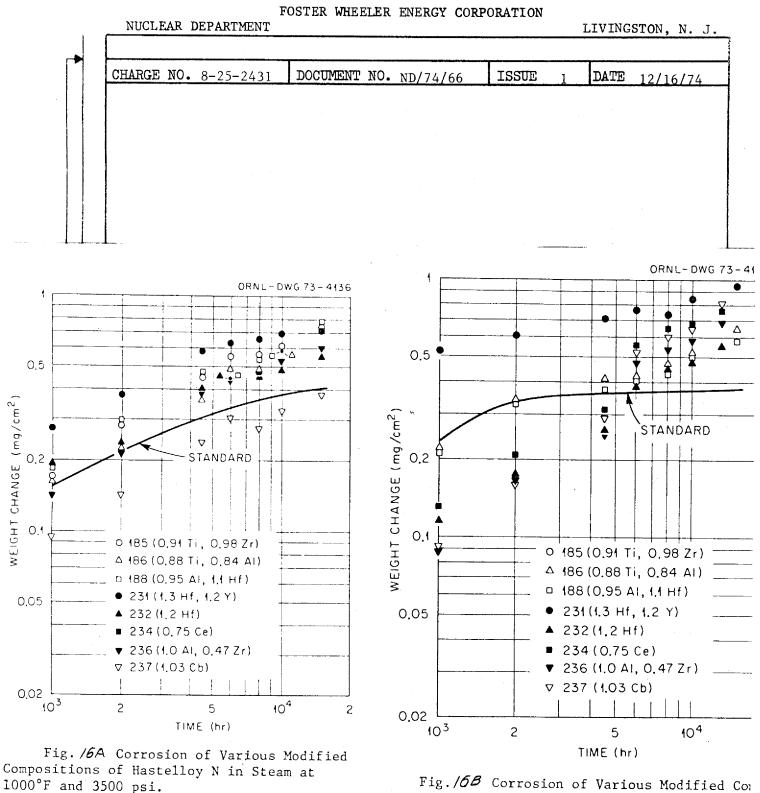
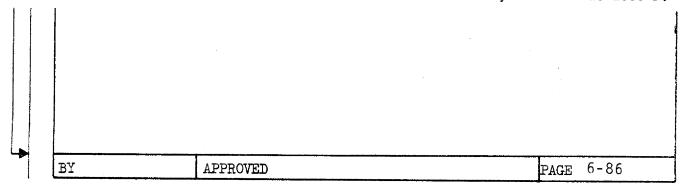
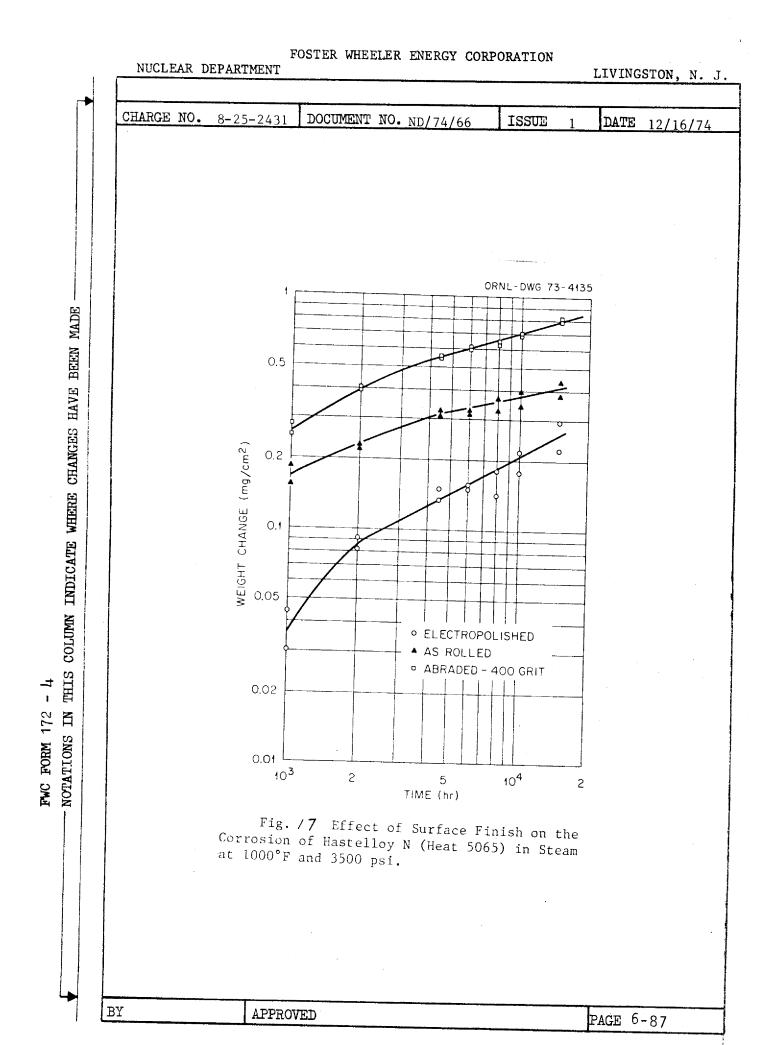
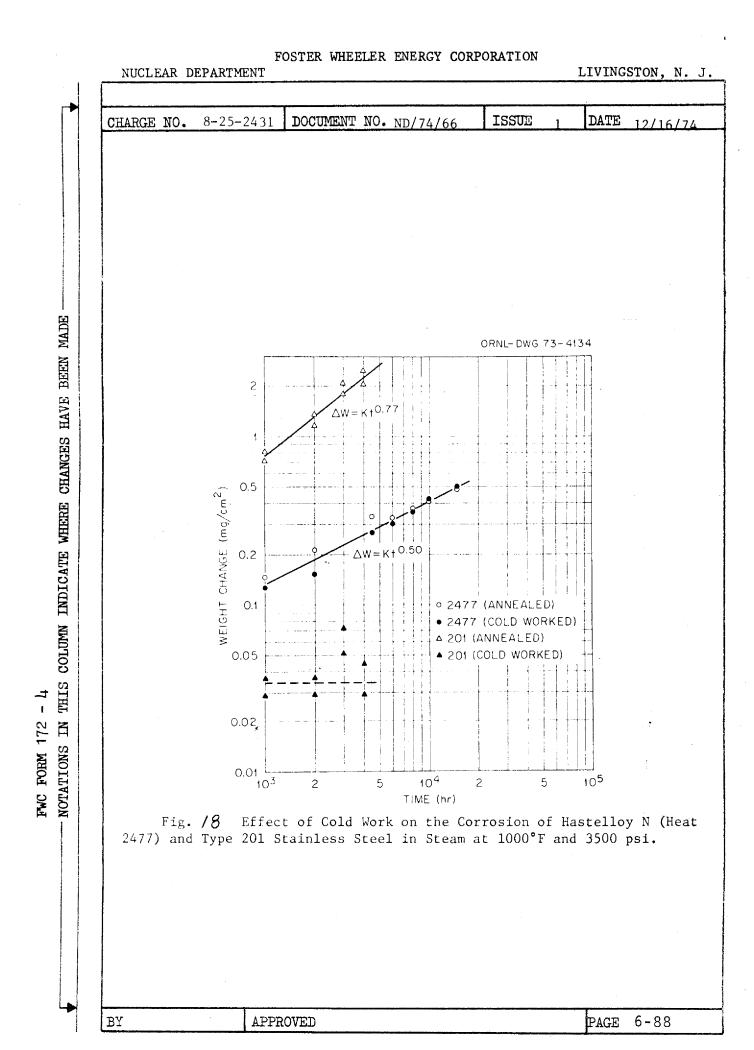


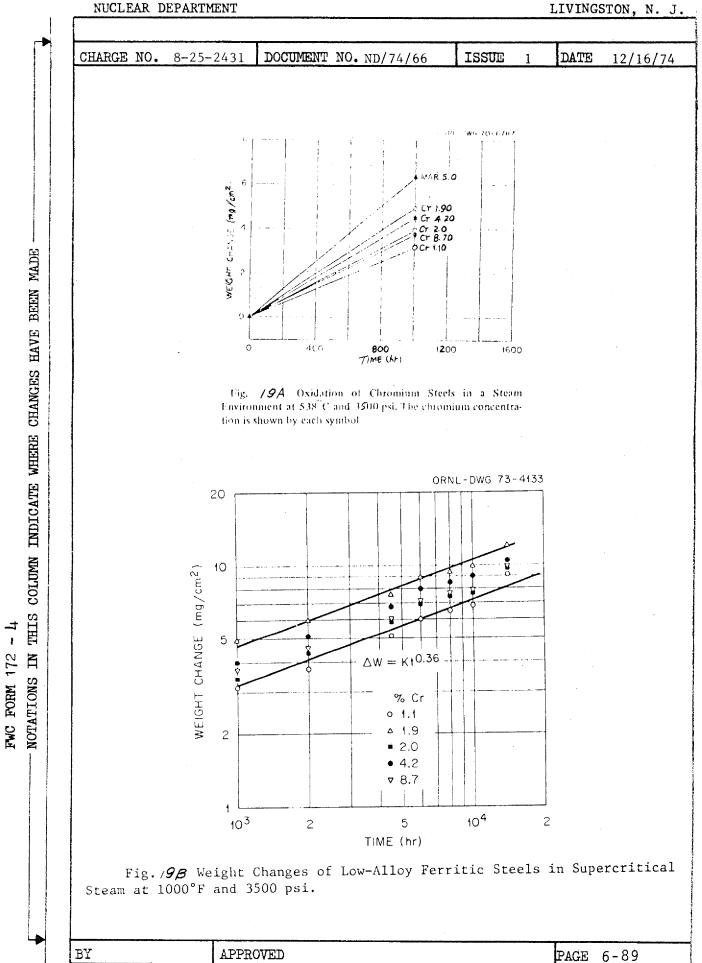


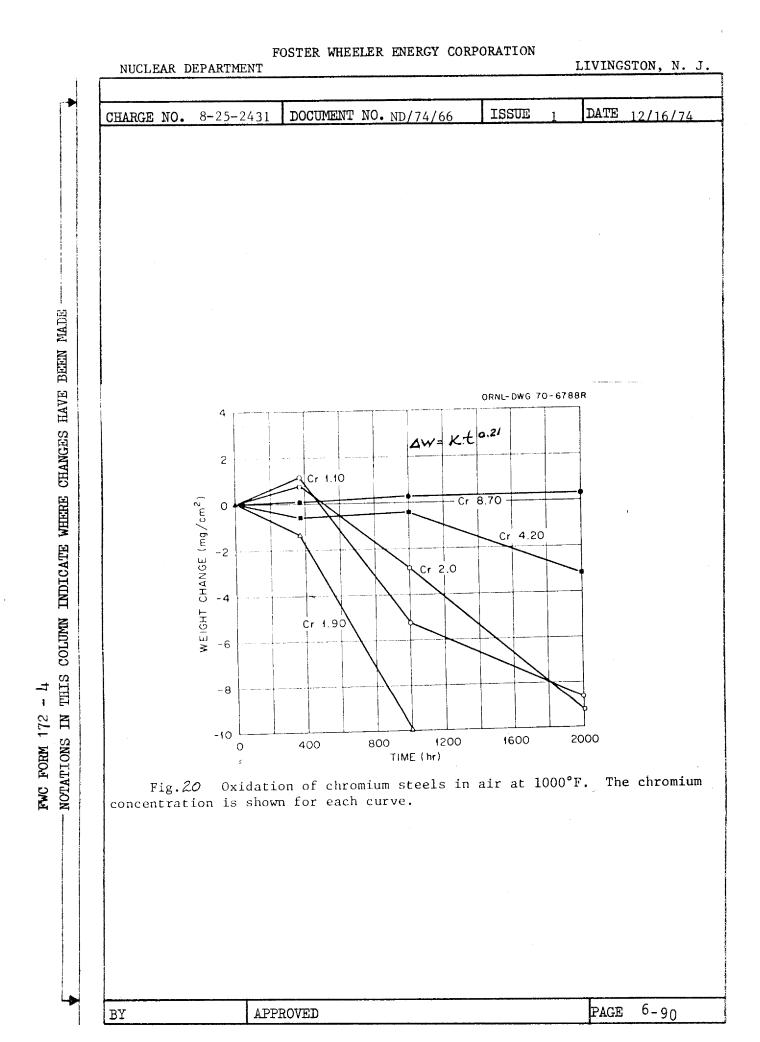


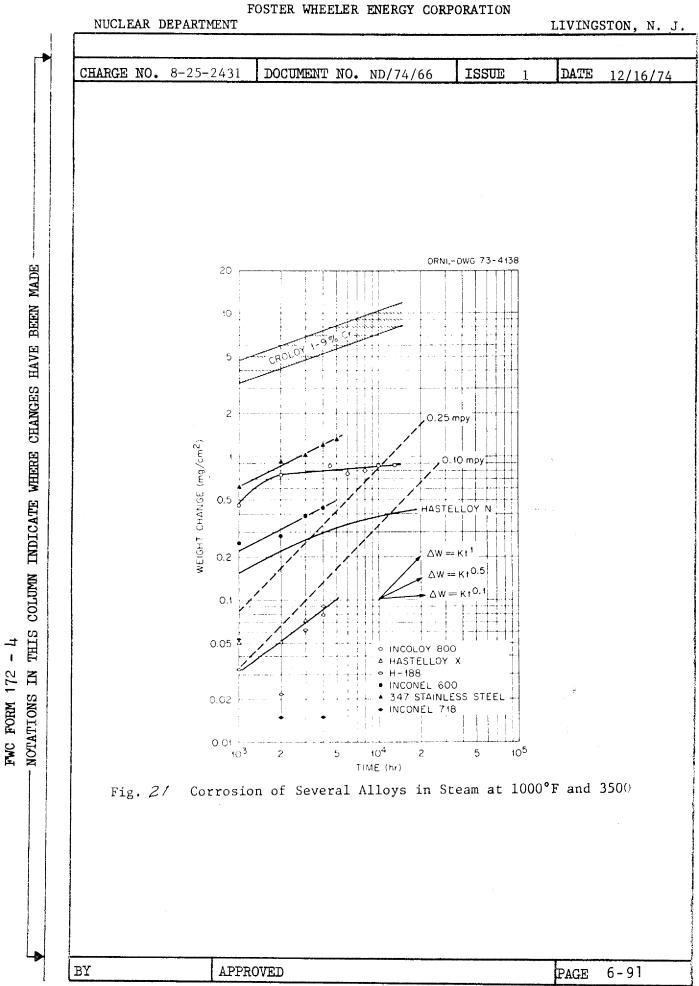


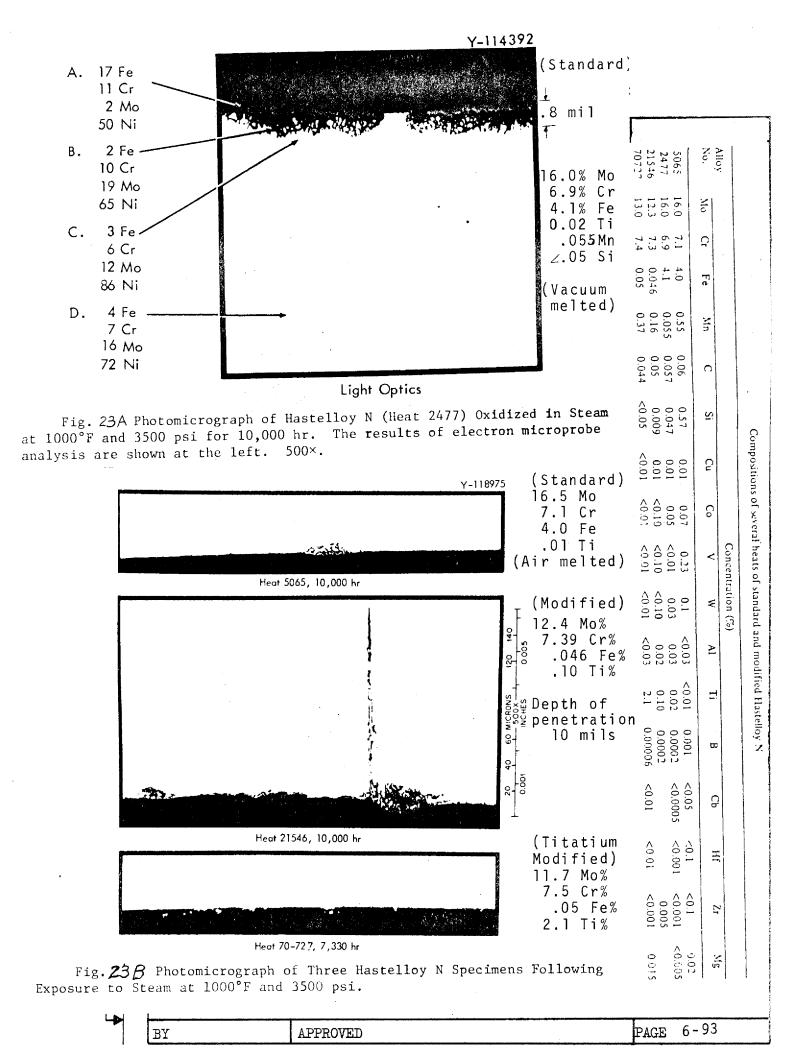


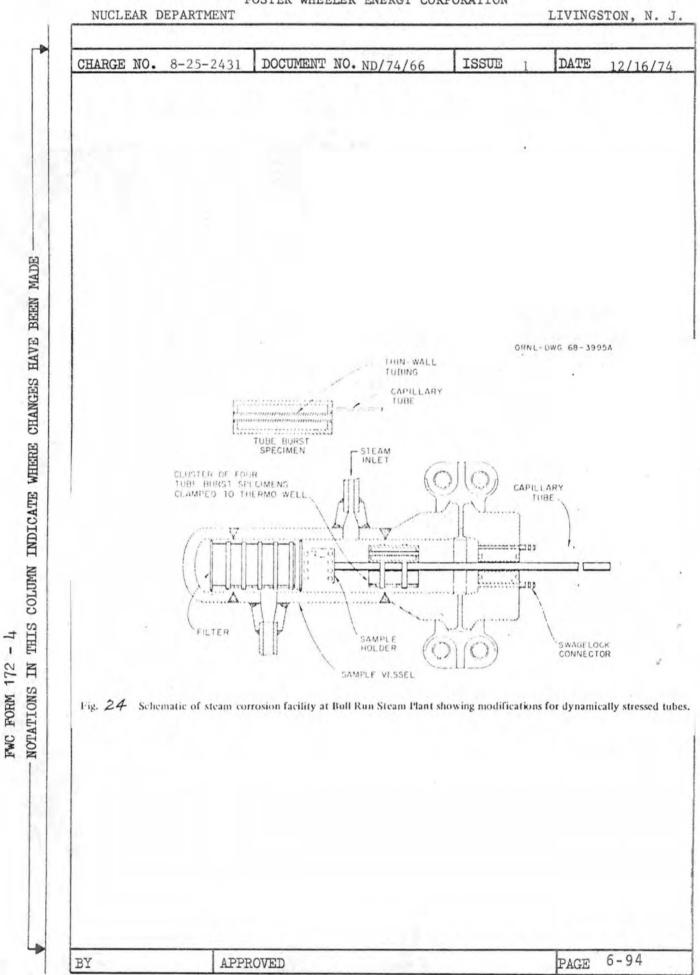

Fig. /68 Corrosion of Various Modified Con positions of Hastelloy N in Air at 1000°F.

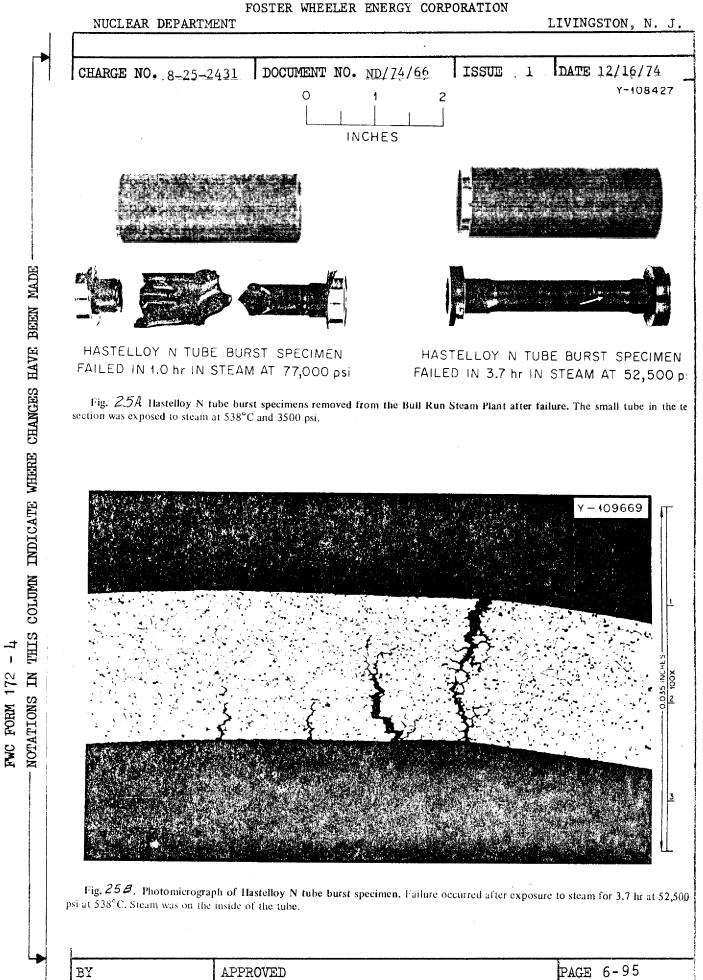


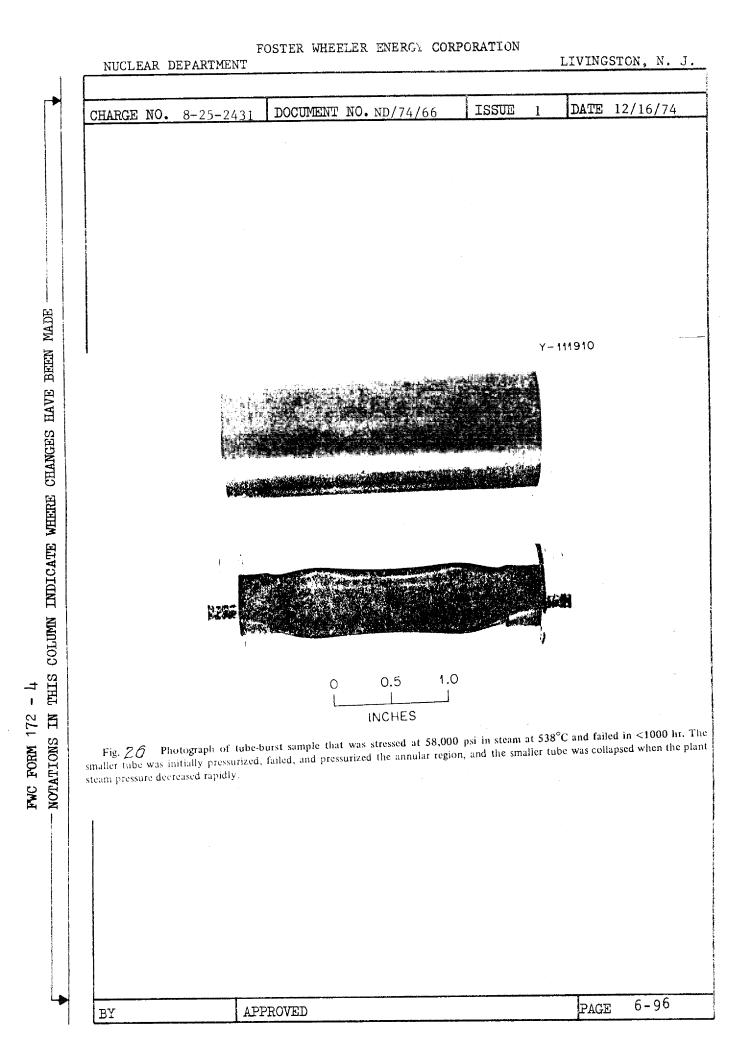


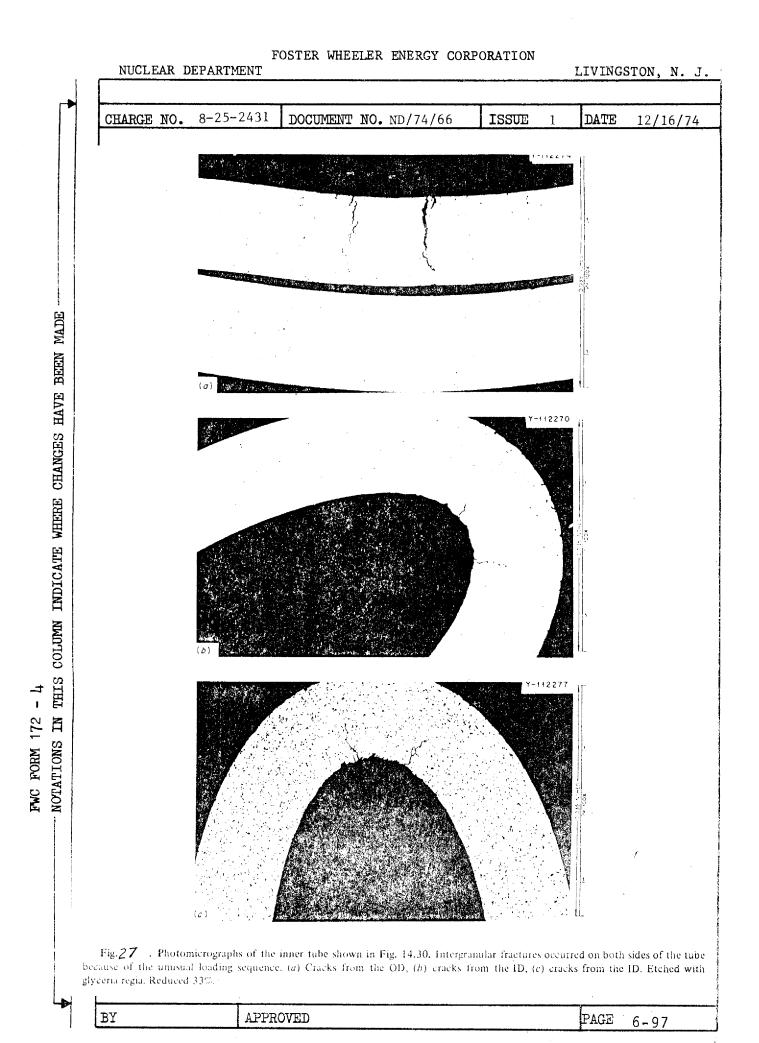


LIVINGSTON, N. J.

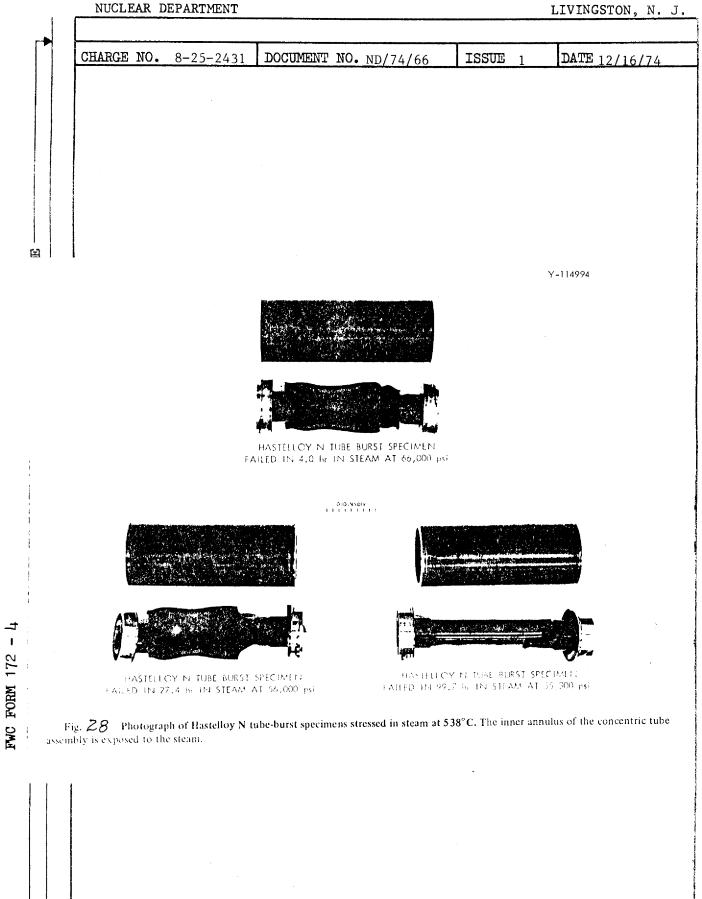




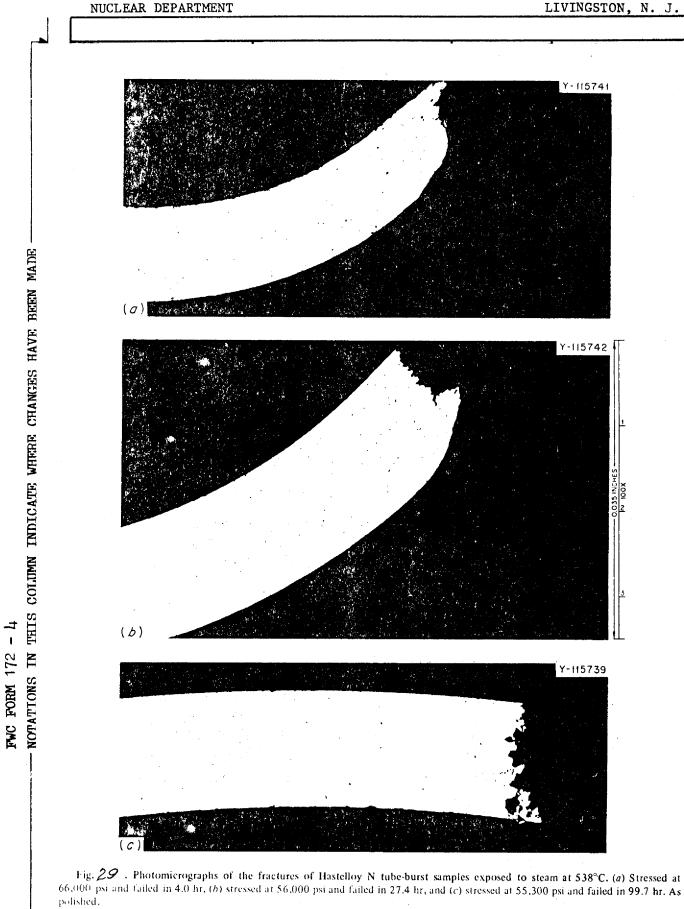




FOSTER WHEELER ENERGY CORPORATION

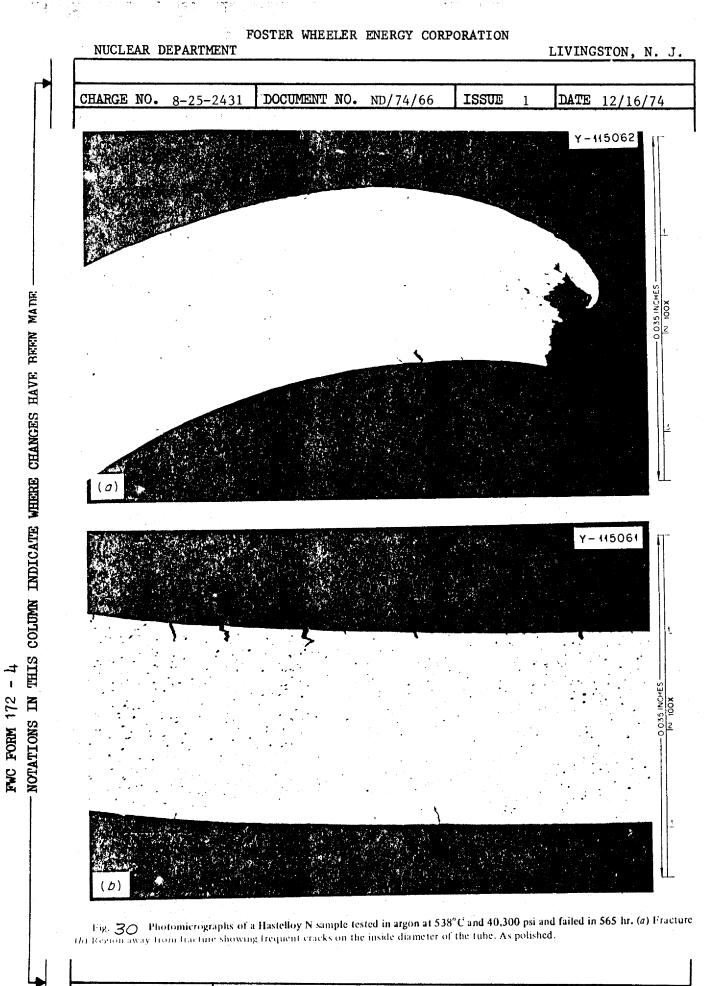


FOSTER WHEELER ENERGY CORPORATION


LIVINGSTON, N. J.

APPROVED

ΒY


LIVINGSTON, N. J.

ΒY

PAGE 6-99

APPROVED

BY

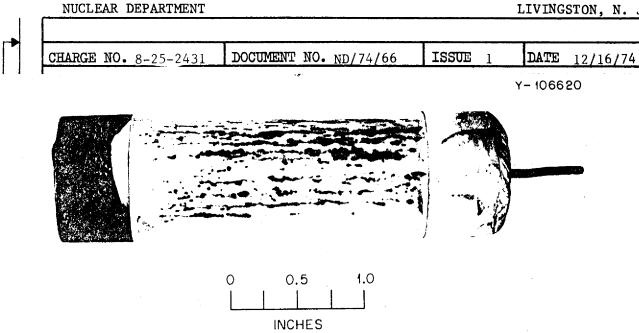
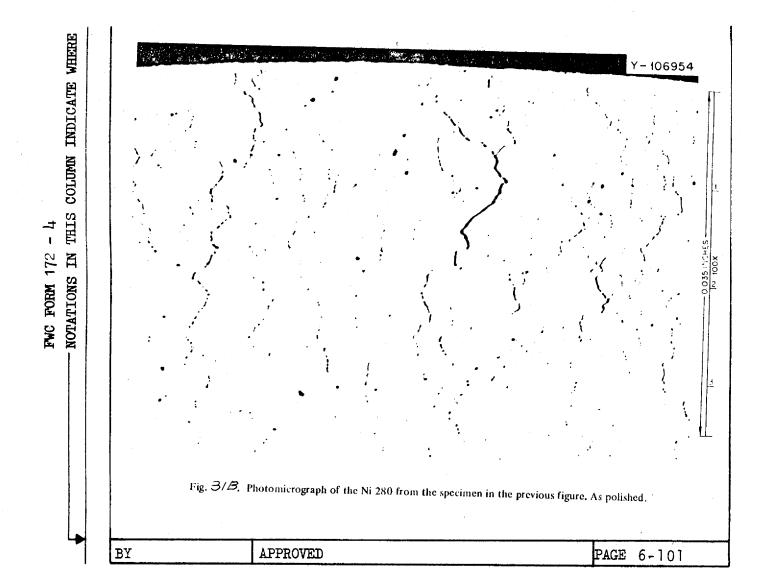
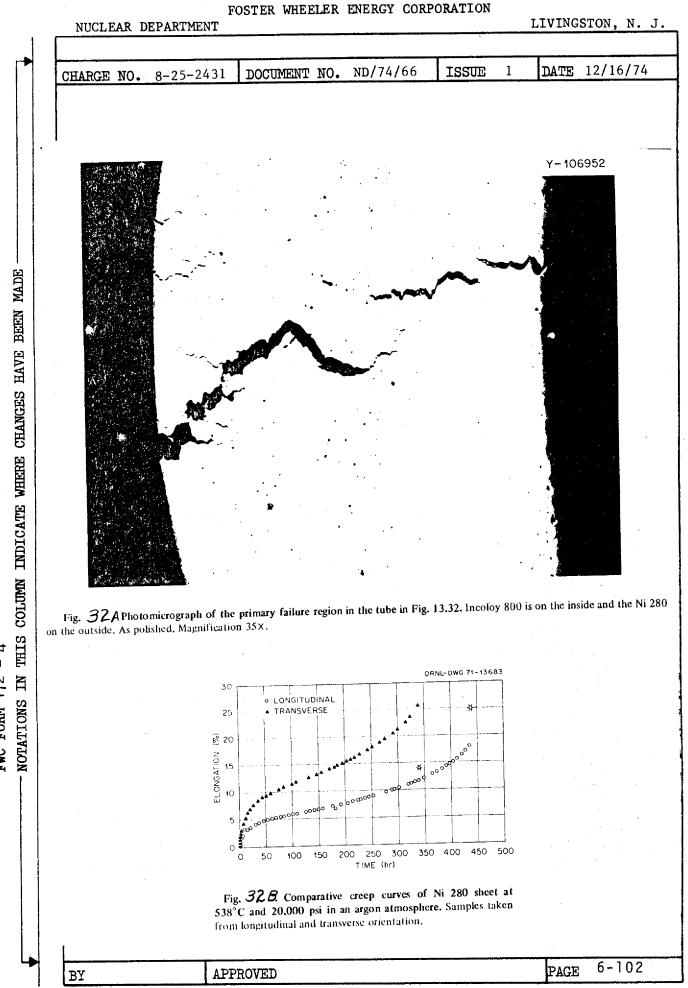
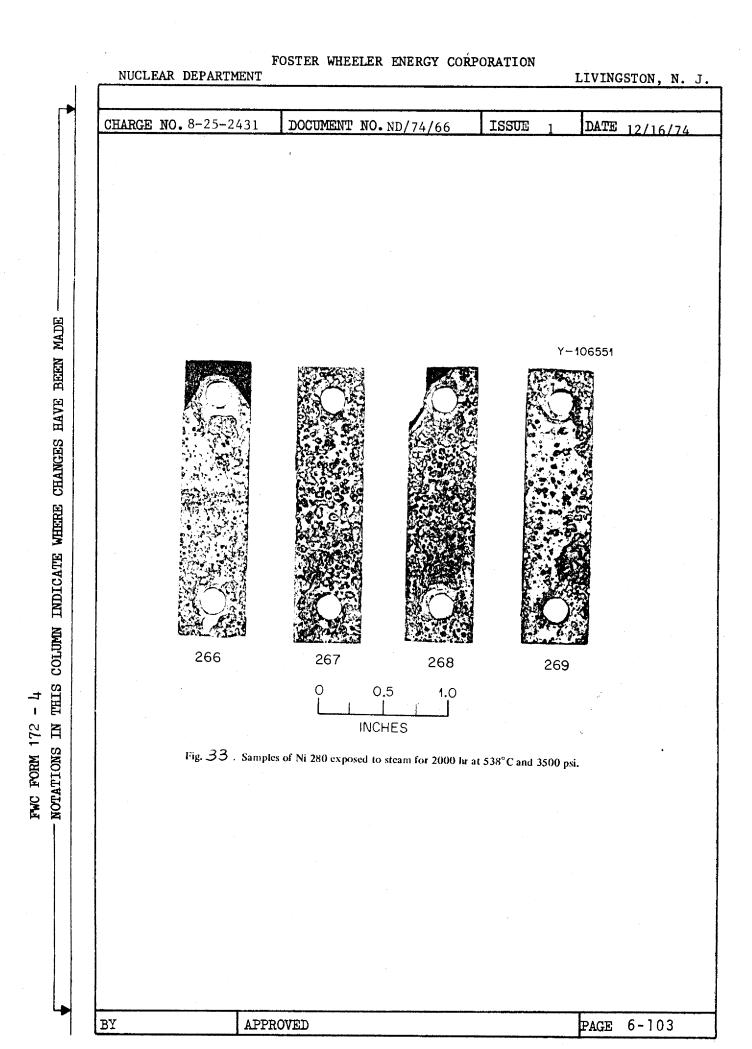
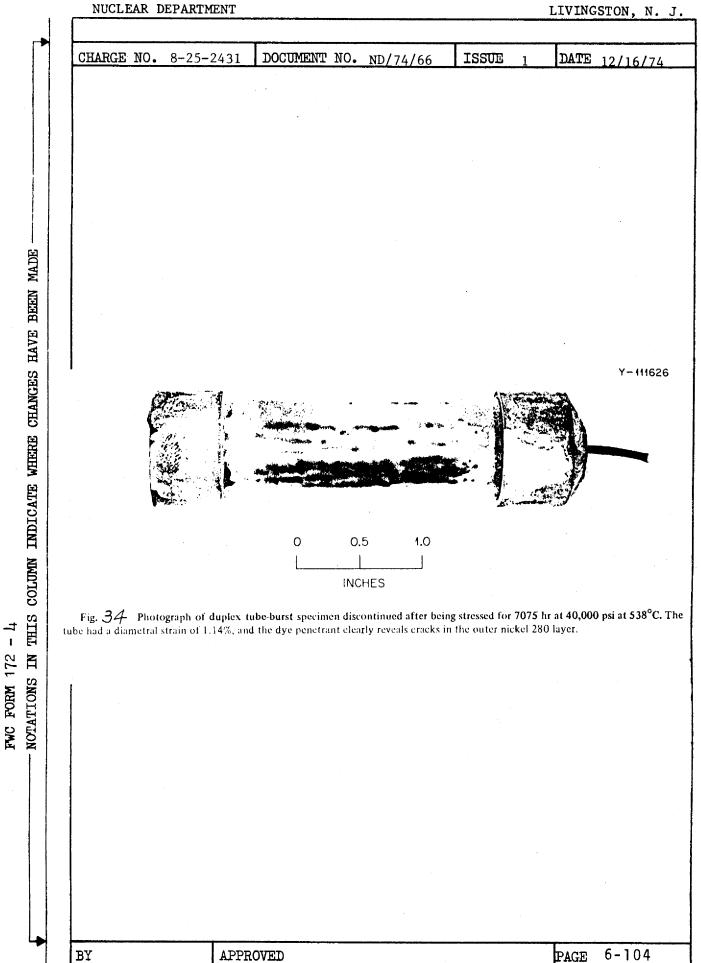





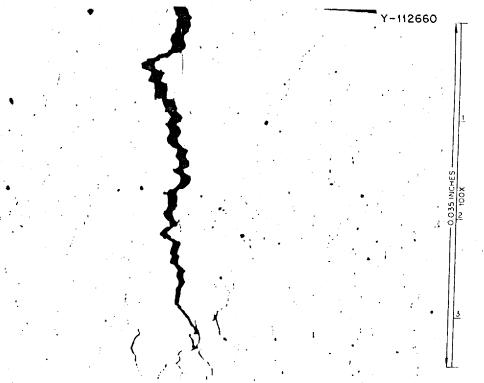
Fig. 3/A. Specimen of duplex Incoloy 800-Ni 280 tubing tested at 538°C and 46,000 psi hoop stress in the Incoloy 800. The specimen failed in 3263 hr with 2.3% diametral strain. The longitudinal markings are due to dye penetrant that was absorbed by the cracks.





FWC FORM 172 - 4

FOSTER WHEELER ENERGY CORPORATION


BY

NUCLEAR DEPARTMENT CHARGE NO. 8-25-2431

DOCUMENT NO. ND/74/66

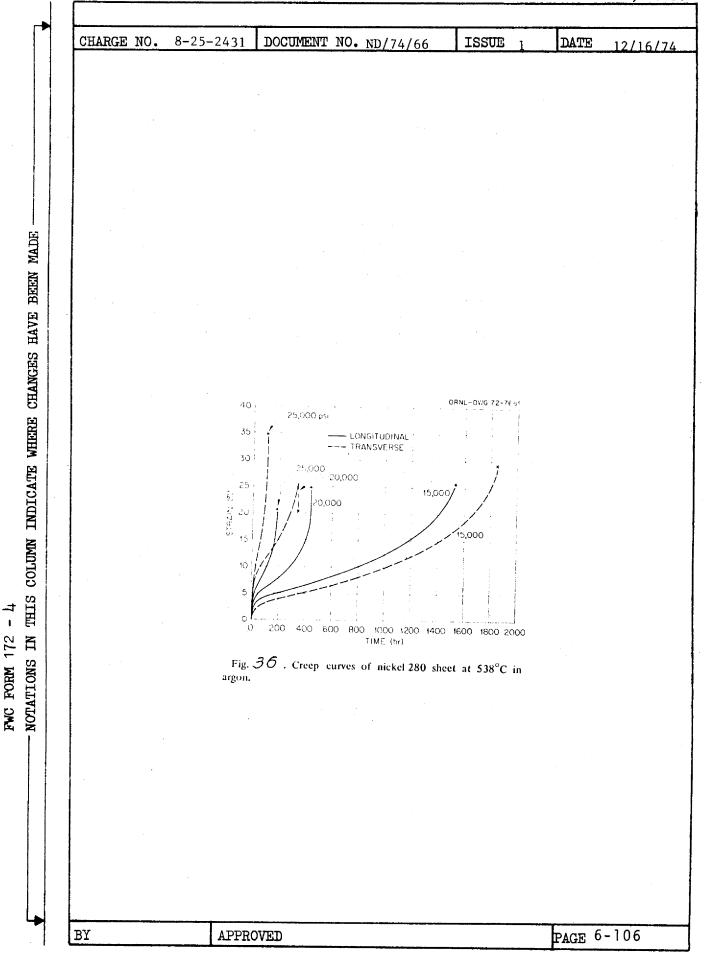
1 DATE 12/16/74

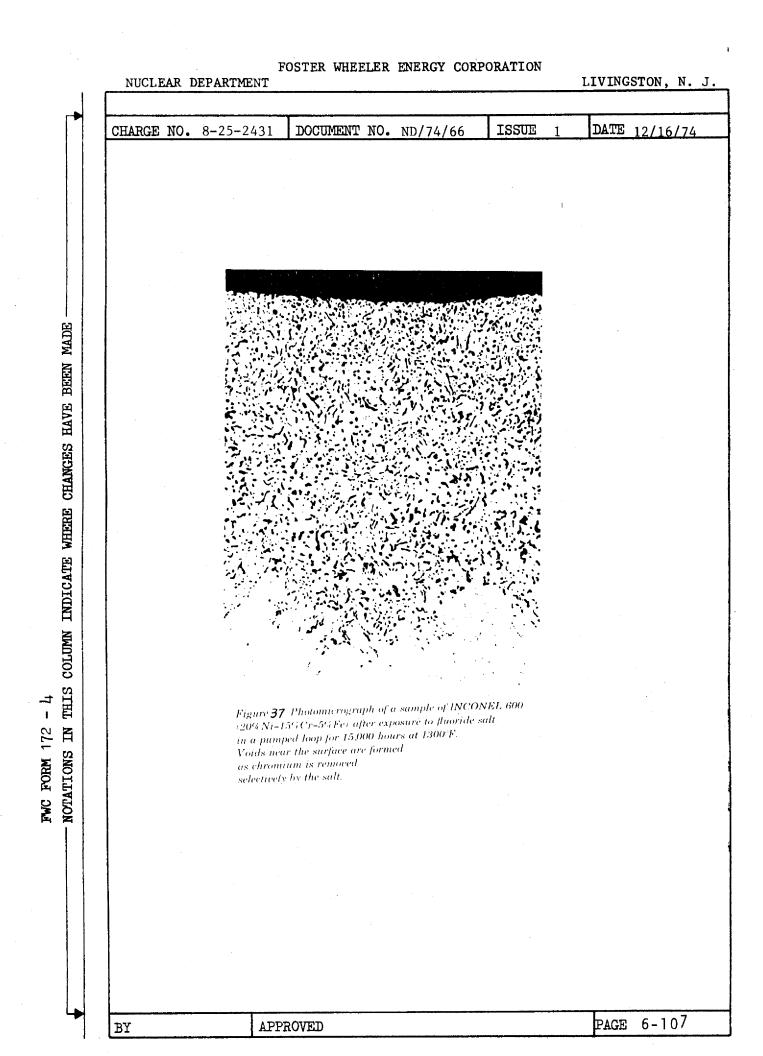
ISSUE

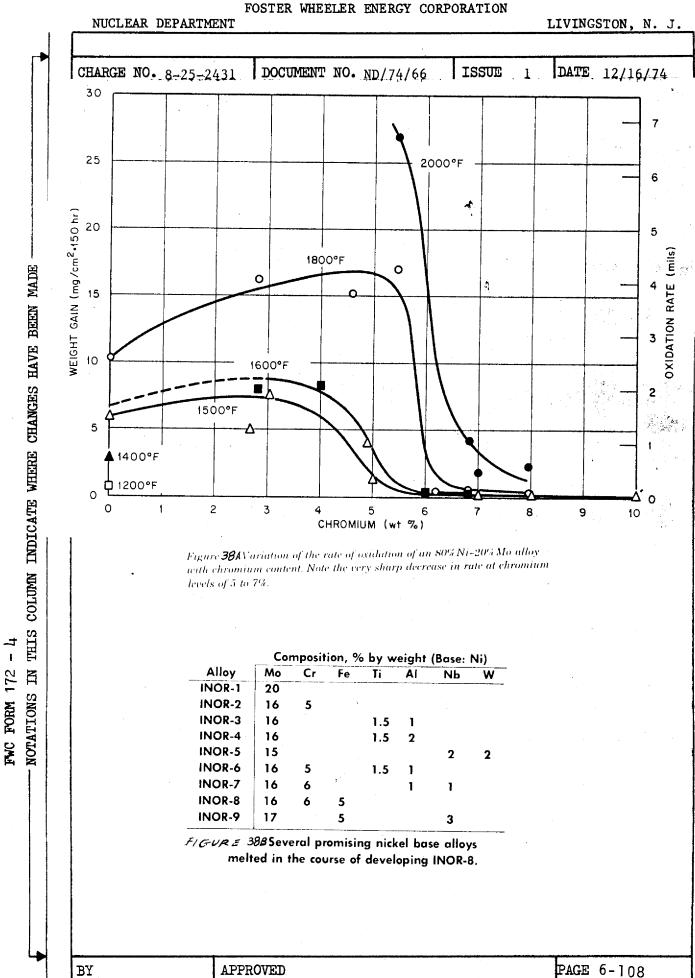
EWC FORM 172 - 4

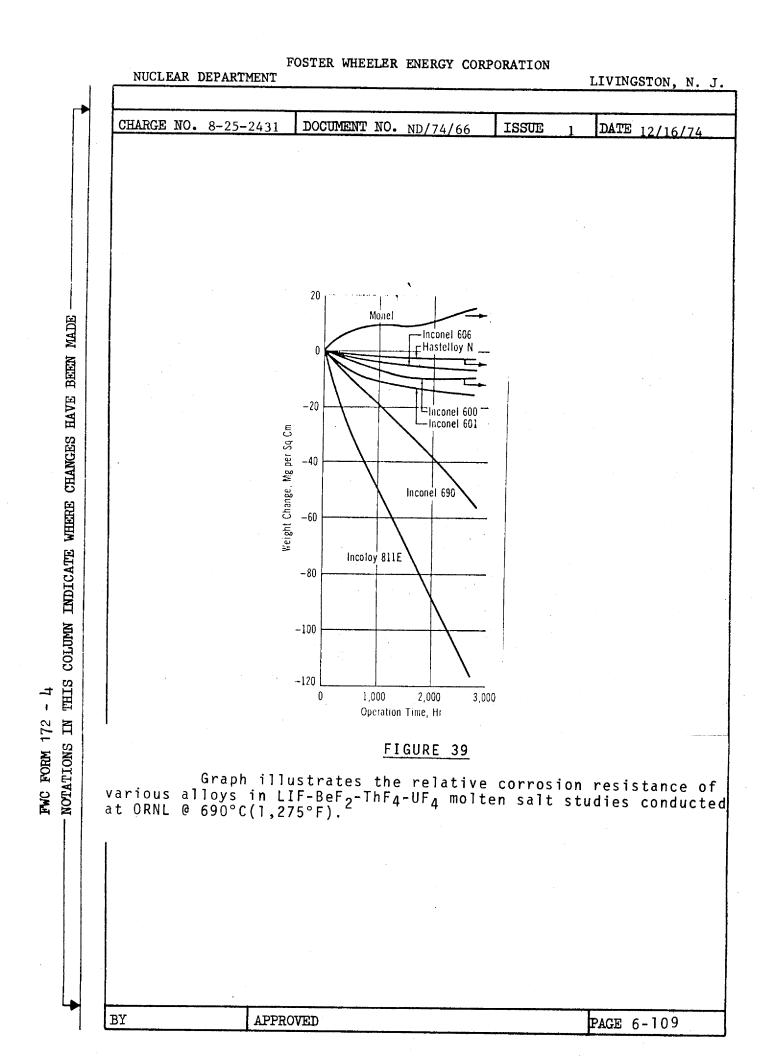
Fig. 35 Photomicrograph of the cross section of the specimen shown in Fig. 34. The nickel 280 is on the outside, and numerous cracks are present. The Incoloy 800 is on the inside and is not cracked. As polished.

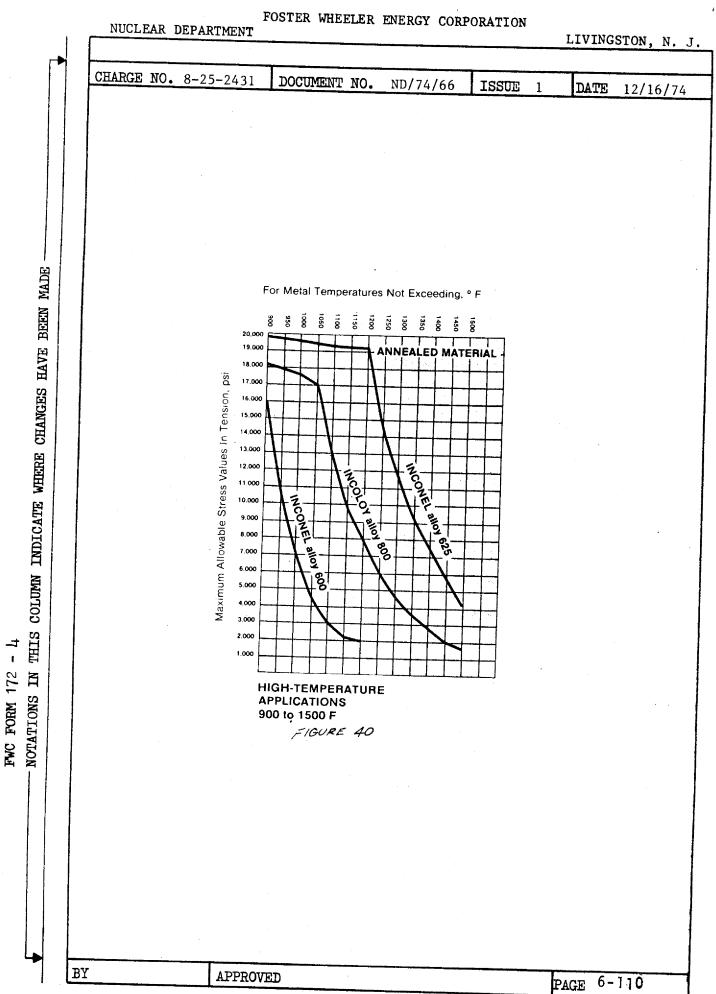
BY	

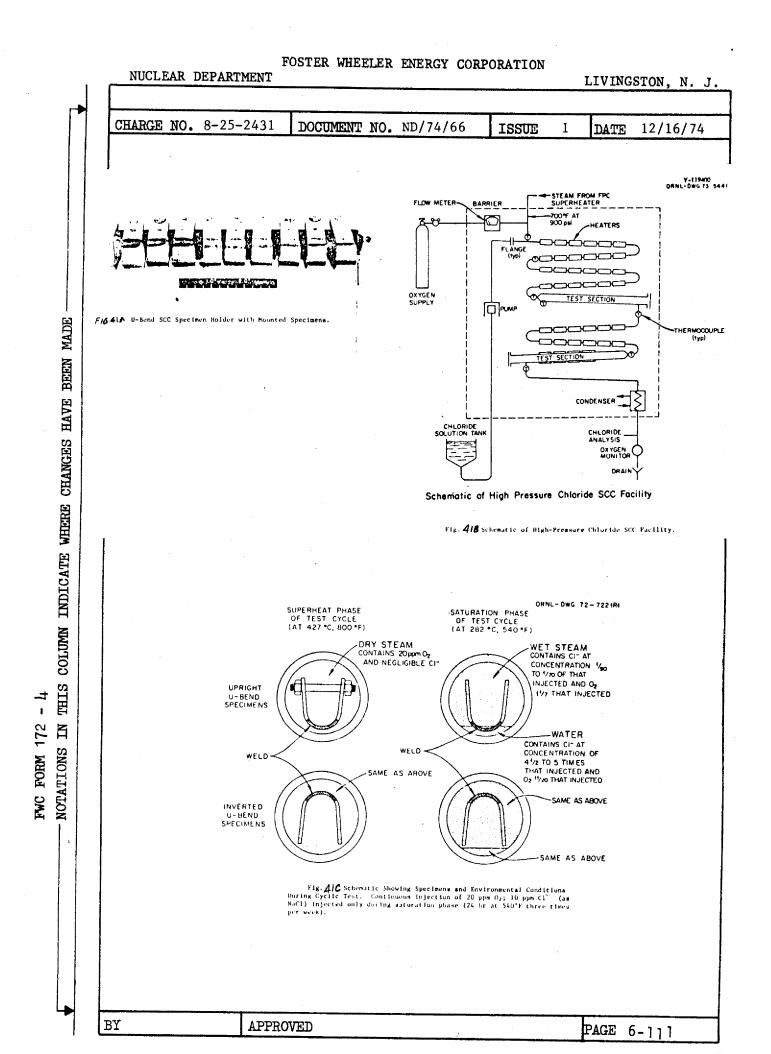

(*b*)

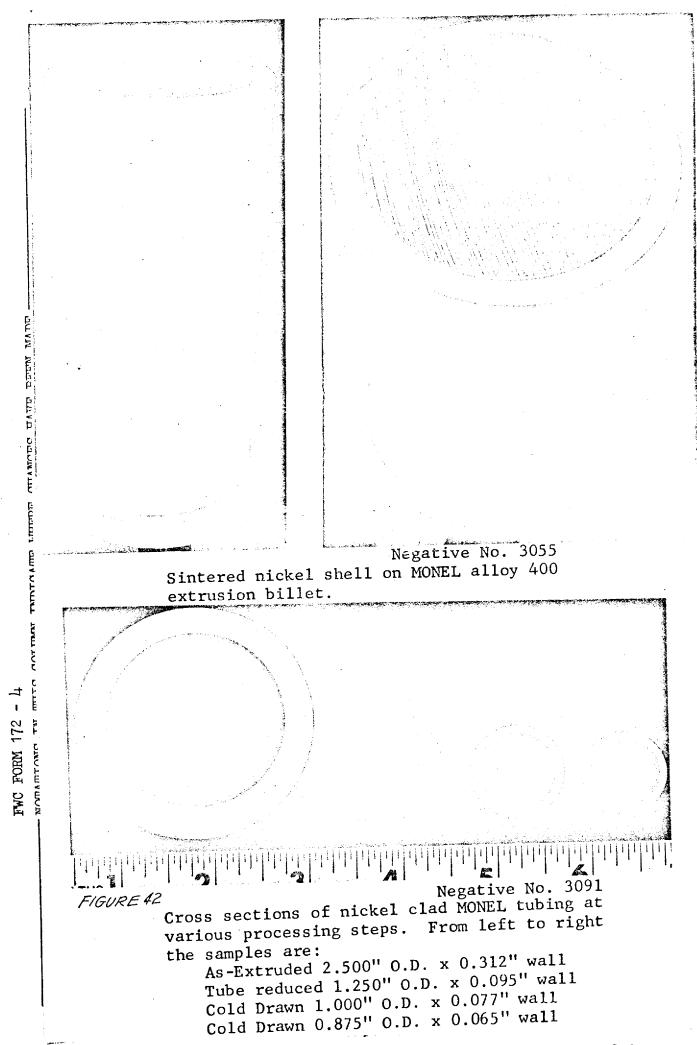

 (σ)

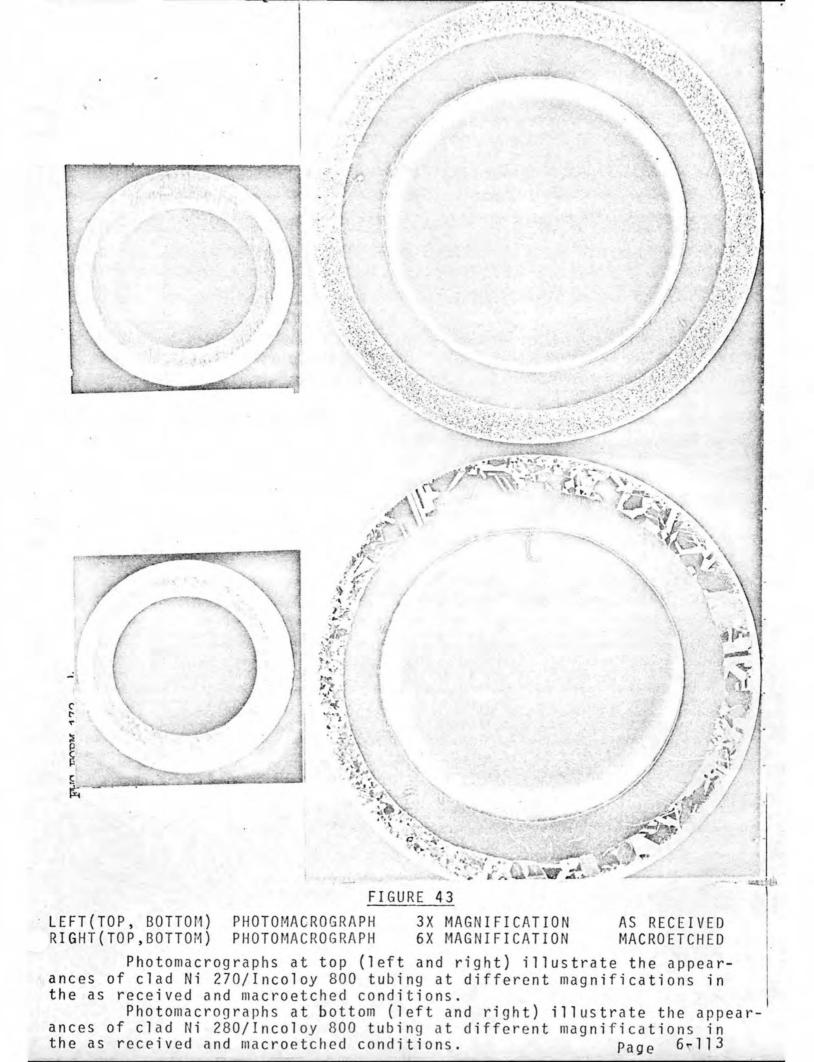

Y-112659

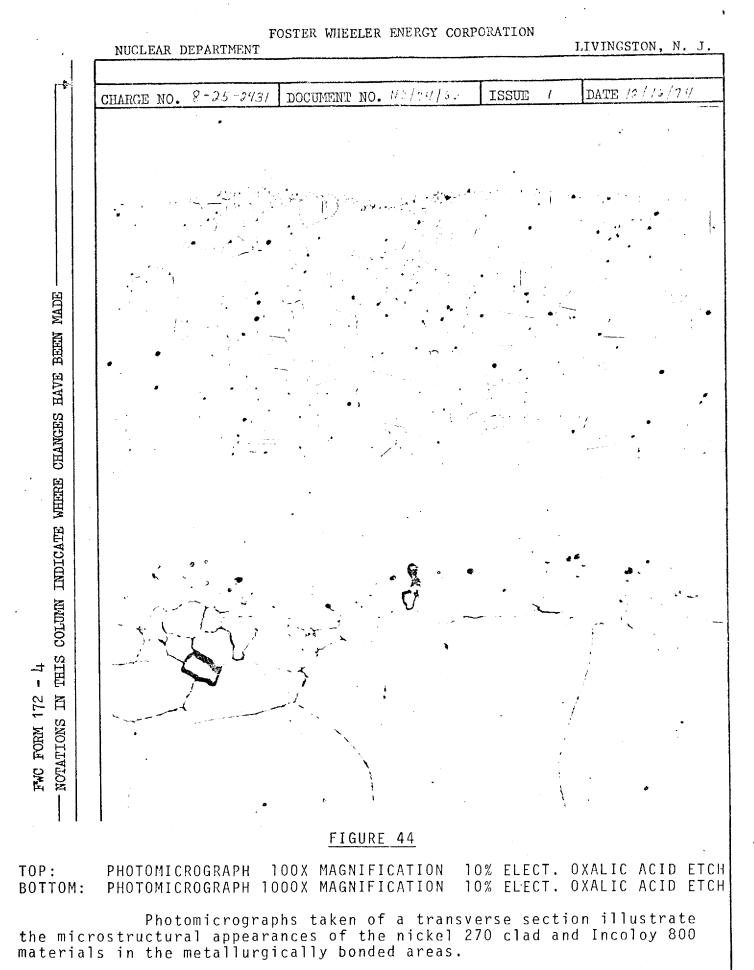

FOSTER WHEELER ENERGY CORPORATION NUCLEAR DEPARTMENT

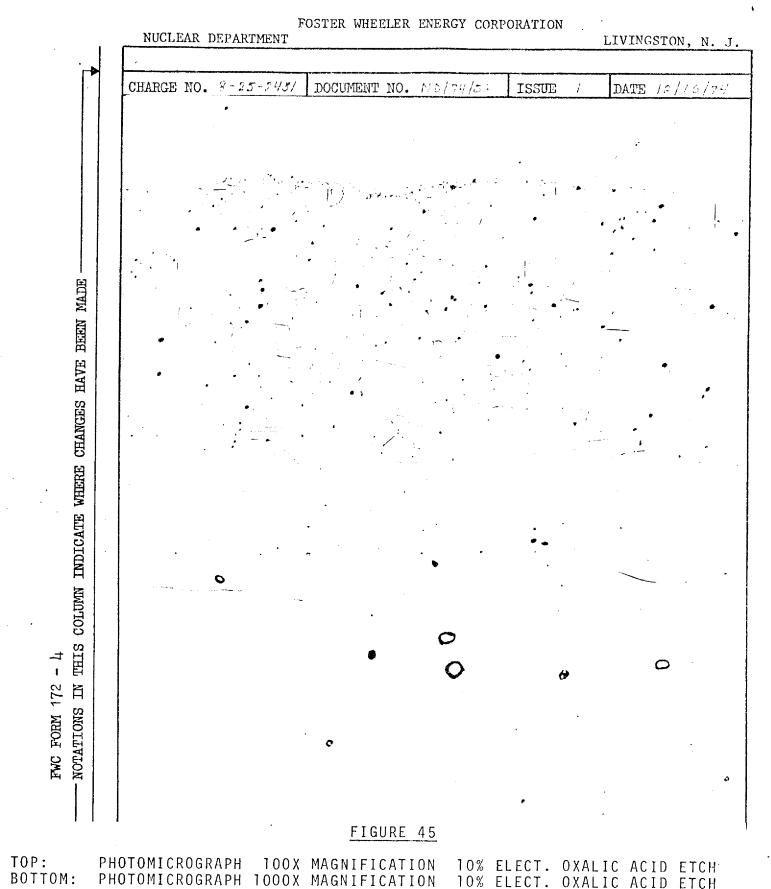

LIVINGSTON, N. J.











Page 6-112

1	- 1			T	
				PAGE	6-114
		BY	APPROVED	<u> </u>	<u> </u>

Photomicrographs taken of a transverse section illustrate the

crostructural appearances of the nickel 280 clad and Incoloy 800 materials in the metallurgically bonded areas.

	I			
	ВХ	APPROVED	PAGE	6-115
•				

CHARGE NO. 8-25	-2431	DOCUMENT NO. ND/	(7) /66				
		DOCOMENT NO. ND/	14/00	ISSUE	1 DA	TE 12/	/16/7
				. •			
			. •				
		SECTIO	ON 7				
		MANUFACTURING	ENGINEERI	.NG			
		BY		· ò			
			I.A.	N -			
		1. fr	4 Whe	lé,			
		∕⁄∂• G• W	HELLEY	J			
	•						
Approved by							
	. :						
AI.J.K	12.0Les						
M. J. K raj e Manager, Manuf	acturing	Engineering					
		0			•		

FOSTER WHEELER CORPORATION

CHARGE	NO 8-25-2431	DOCUMENT NO. NI	D/74/66	ISSUE	1	DATE 12/16/7
		TABLE	OF CONTEN	TS		
7 0					Page	28
7.0		g Engineering			7-1	-
7.1	Main te nance				7-2	2
7.2	Sequences of Molten Salt	Operations For Steam Generator	Manufactu	re Of	7-1	F .
			•			
				·		
		·				
				ʻ.		
			·			
			• .			

FOSTER WHEELER CORPORATION

CHAF	IGE N	0 8-25-2431	DOCUMENT	NO.ND/74/66	ISSUE	1	DATE 12/16/74
7.0	MA	NUFACTURING	ENG IN EER IN	G			<u>+-/ +-/ 14</u>
	Α.	The manufac drawings of of the desi enable the	turing en the proj gn as it : product to	gineering resp ect and determ is presented.	ine the mar and make s	ufacturi suggestic	ng feasibility ns that will
	В.	The followi review of t	ng assumpt he propose	tions have been ed steam genera	n made in c ator.	order to	make a continu
		l. The siz be shipped Florida pla	wy barge.	unit preclude: This can be a	s the shipm accomplishe	ent by r d at our	ail, so it mus Panama City,
		CONDECTION OF U	mpleted un	it and void th		+0	lent intrepre- spectrometer nelium leak
				ster Wheeler t ion is only a n our Mountain	$mattop \wedge t$	the inter time as d	nal bore weld- lemonstrated by
		4. That the ing two shor are defect f	o sorargi	y-N tubes will t sections tog	be able to ether and 1	b be prod to bend t	luced by weld- he tubes so th
		5. There wi	ll be no d	cladding of th	e tube shee	et.	
		6. That the cated except	radius sł for girtł	nell section can n seam welding	an be purch by Foster	ased com Wheeler.	pletely fabri-
		7. The part	s of the s	shell will be r	nanufacture	d of pla	tes and forgin
		8. Supports pieces.	at the cu	rved portion o	of the shel	l will b	e made up in
		9. Stress re	elieving w	ill not be req	uired.		
	C. ;	The summary o assembly proc	of the res cedure is	ults are detai presented.	led in sec	tion 7.2	where the

FWC FORM 172 - 4

FOSTER WHEELER CORPORATION

CHAI	RGE NO 8-25-2431	DOCUMENT NO. ND/74/66	ISSUE 7	TO A (TITE)			
				DATE 12/16/74			
7.1	cedure for prug	s an outline for detecting ging it.					
	The unit may be the salt inlet a ting through the By pressurizing tubes at the fac can be found. When the leaking	removed by cutting the in and outlet piping. The pip field welds that were mad the salt side of the unit e of the tube sheet (stear tube has been identified	let and outlet s ping should be ro de to seal the p with helium and n/water side) the and marked the f	team pipes and emoved by cut- lping to the unit "sniffing" the e leaking tube			
When the leaking tube has been identified and marked the following pro- cedure will be used to plug the tube. This procedure starts when access to both tube sheets has been obtained. The procedure is based on the following: 1. The tube sheets are accessable to allow the insertion and weld-							
	ing of the pl	ugs.	LLOW the inserti	on and weld-			
	2. The unit tenance possi	has been decontaminated an ble.	d cleaned making	hands on main-			
	7.1.1 Operation the Leaky	al Procedure for Plugging Tubes Have Been Identifie	the Tubesheet Tu d	be Holes after			
	serted far en	pandable plugs into both e matter from entering the u bugh to allow the various ceed. These temporary plu al.	nit. These plug preparatory tube	s must be in-			
	plugs and reco	ends of the tubes of two ith expandable plugs to avo ord data. See sketch on p e plugged with expandable p	oid contamination age 7-17, for t	n Inventem			
3. Cover the balance of the tubesheet holes on both tubesheets with clean polyethylene and seal with tape.							
	4. Clean both faces with a c faces clean.	n ends of the failed tube h lean stainless brush and a	nole, inside and acetone, then vac	adjacent sur- cuum all sur-			
	5. P.T. area	to be welded					
	6. Clean .						
	7. Remove exp	andable plug prior to inse	r t ing permanent	plug.			
BY							
· L		PROVED	PAGE 7	-2 OF			

•

FWC FORM 172 - 4

ATTRACT N	0 8-25-2	2131 00	CUMENT NO.	ND/74/66	ISSUE	1	DAME	10/16/
							DATE	12/16/
8	• Inser	t perman	ent plug ;	as shown on	sketch			
9	• Weld	plug com	plete usi	ng filler ri	ngs.			
10			en each pa		-			
11.	. Clean	after we	elding.			•		
12		liness ir						
13.	Repeat	t operati	ions 7.1.1	-5 to 12 fo	r other e	end of fai	led tub	^
14.	Remove	e plugs i	installed para 7.1.1	in nara. 7	L.1-2 and	polyethy	lene sea	e. al
15.	When t	the tube est of th	sheets ha	ve been expo an be chec k e	esed to p d for er	lug a lea rosion by	king tul the us	be, e
	the wa	all thick	mess natt	thickness partice are	e reexami	ned by U.	T. and	
	the ti	me of un		ly and the				
н н н н	the ti	me of un	it assemb	ly and the				
	the ti	me of un	it assemb	ly and the				
н н н н	the ti	me of un	it assemb	ly and the				
	the ti	me of un	it assemb	ly and the				
	the ti	me of un	it assemb	ly and the				
	the ti	me of un	it assemb	ly and the				
	the ti	me of un	it assemb	ly and the				
	the ti	me of un	it assemb	ly and the				
	the ti	me of un	it assemb	ly and the				
	the ti	me of un	it assemb	ly and the				
	the ti	me of un	it assemb	ly and the				
	the ti	me of un	it assemb	ly and the				
	the ti	me of un	it assemb	ly and the				
	the ti	me of un	it assemb	ly and the				

•...

	RGE NO 8-	-25-243	1 DOCUMENT	NO. ND/74/66	ISSUE	1	DATE 12/16,
7.2	SEQUEN	CES OF	OPERATIONS F	OR MANUFACTURE	OF MOLTEN	SALT ST	CAM GENERATOR
	7.2.1	Purpo	5 0				
		To es Molte	tablish a pre n Salt Steam	eliminary proce Generator.	dure for	fabricati	ing the
	7.2.2	Genera	al			·	
		Certai Hastal	n Assumption loy "N" Stea	ls were made in am Generators á	order to nd these	fabricat are:	te these
		2.1 7	ube Sheets w	vill not be cla	d.		
		2.2 J	ube to Tube g and 5g pos	sheet weld wil sition respecti	l be perf vely.	ormed in	the
		2•.3 h	le can purcha except for gi	se the radius rth seam weldi	shell sec ng by Fos	tion comp ter Wheel	letely fabri er.
		2.4 1	he parts of	the shell will	be made :	from plat	es and forgi
		2.5 s P	upports at t ieces.	he curved port	ion of she	ell will	be made up i
	1	2.6 5	tress reliev	ing will not be	e required	ł.	
	7.2.3	Plan		. •			
		assemb fabric	lies and fin ate the Molt on Pages 7-14	index of proce al assembly ide en Salt Steam (. and 7-15 to a	entifying Generator	the over Refer	all plán to to sketches
		3.1 S	traight Shel	l Course Subas	sembly "A	11	
		3.2 S	hell Section	"B"			
		3.3 I	nner Shroud	Section "C"			
		3.4 Т	hermal Sleev	e Forging "D"			
		3.5 s	traight Sh el	l Section "A"	through '	'D" Subas:	sembly.
		3.6 S	traight Shro	ud Section "E"			

CHARGE NO	8-25-2431	DOCUMENT	NO.ND/71	1/66	ISSUE	l	DATE	12/16/
	,			-			· · · · · · · · · · · · · · · · · · ·	
7.2		continued)						
		adius Shell		nGn				
 5	3.9 SI	hell Section	n "H"	,		•		
	3.10 Tu	ube Sheets	"K"					
	3.11 T	ıbes "L"				.•		
	3.12 Ac	lapter Ring	"M"	4.				
	3.13 St	team Nozzle	"N"					
	3.14 Bu	undle Assem	nbly					
	•		•					
						,		
					ante da compositore Alternativo			
						· .		۰.
					-			
	•	•		•	•			
					• * •	· •.		
				•				
					,			
				N 1				
				·				
BY		PPROVED						

٦.

.

 7.2.3.1 Straight Shell Course Subassembly "A" The shell sections will be made in a number of courses, each with one longitudinal seam and joined by girth seams. 1. Layout and machine the weld preparations on each of four edges in the flat. 2. Penetrant Inspect Weld Preparations. 3. Roll to required inside diameter. 4. Set up and weld longitudinal seam. 5. Dress longitudinal weld inside and outside. 6. Check circularity and reround. 7. Radiograph longitudinal seam. 8. Repeat sequences #1 through #7 as required for each course. 9. Set up for circle seam welding. 10. Weld circle seam. 11. Dress inside and outside girth seam. 12. Rediograph girth seam. 13. Repeat sequences #9 through #12 as required. 7.2.3.2 Shell Section "B" 7. He shell section will be made in one course with one longitudinal seam. 1. Layout and machine three edges.) Don't machine edge that butts to adapter ring. 2. Penetrant inspect weld preparations. 3. Roll to required inside diameter. 4. Set up and weld longitudinal seam. 6. Check circularity and reround. 	CH	ARGE NO 8-25-2431	DOCUMENT NO.ND/74/66	ISSUE 1	DATE 12/16/7
 The shell sections will be made in a number of courses. each with one longitudinal seam and joired by girth seams. 1. Layout and machine the weld preparations on each of four edges in the flat. 2. Penetrant Inspect Weld Preparations. 3. Foll to required inside diameter. 4. Set up and weld longitudinal seam. 5. Dress longitudinal weld inside and outside. 6. Check circularity and reround. 7. Radiograph longitudinal seam. 8. Repeat sequences #1 through #7 as required for each course. 9. Set up for circle seam welding. 10. Weld circle seam. 11. Dress inside and outside girth seam. 12. Radiograph girth seam. 13. Repeat sequences #9 through #12 as required. 7.2.3.2 Shell Section "B" The shell section will be made in one course with one longitudinal seam. 1. Layout and machine three edges.) Don't machine edge that butts to adapter ring. 2. Penetrant inspect weld preparations. 3. Roll to required inside diameter. 4. Set up and weld longitudinal seam. 		7.2.3.1 Straig	ht Shell Course Subassem	bly "A"	
 Penetrant Inspect Weld Preparations. Roll to required inside diameter. Set up and weld longitudinal seam. Dress longitudinal weld inside and outside. Check circularity and reround. Radiograph longitudinal seam. Repeat sequences #1 through #7 as required for each course. Set up for circle seam welding. Weld circle seam. Dress inside and outside girth seam. Repeat sequences #9 through #12 as required. Radiograph girth seam. Repeat sequences #9 through #12 as required. 2.3.2 Shell Section "B" The shell section will be made in one course with one longitudinal seam. Layout and machine weld preparations on each of three edges in the flat. (Finish machine three edges.) Don't machine edge that butts to adapter ring. Penetrant inspect weld preparations. Roll to required inside diameter. Set up and weld longitudinal seam. 		The shell see	tione		s, each with
 Roll to required inside diameter. Set up and weld longitudinal seam. Dress longitudinal weld inside and outside. Check circularity and reround. Radiograph longitudinal seam. Repeat sequences #1 through #7 as required for each course. Set up for circle seam welding. Weld circle seam. Dress inside and outside girth seam. Repeat sequences #9 through #12 as required. Repeat sequences #9 through #12 as required. Set listences weld preparations on each of three edges in the flat. (Finish machine three edges.) Don't machine edge that butts to adapter ring. Penetrant inspect weld preparations. Roll to required inside diameter. Set up and weld longitudinal seam. 	1 ; 	l. Layout and in the flat.	d machine the weld prepar	rations on each o	of four edges
 Set up and weld longitudinal seam. Dress longitudinal weld inside and outside. Check circularity and reround. Radiograph longitudinal seam. Repeat sequences #1 through #7 as required for each course. Set up for circle seam welding. Weld circle seam. Dress inside and outside girth seam. Radiograph girth seam. Repeat sequences #9 through #12 as required. 7.2.3.2 Shell Section "B" The shell section will be made in one course with one longitudinal seam. Layout and machine weld preparations on each of three edges in the flat. (Finish machine three edges.) Don't machine edge that butts to adapter ring. Penetrant inspect weld preparations. Roll to required inside diameter. Set up and weld longitudinal seam. Set up and weld longitudinal seam. Set up and weld longitudinal seam. Set seam. Dress longitudinal seam inside and outside. Set seam. Set up and weld longitudinal seam inside and out		2. Penetrant	Inspect Weld Preparation	ls.	
 Set up and weld longitudinal seam. Dress longitudinal weld inside and outside. Check circularity and reround. Radiograph longitudinal seam. Repeat sequences #1 through #7 as required for each course. Set up for circle seam welding. Weld circle seam. Dress inside and outside girth seam. Repeat sequences #9 through #12 as required. Repeat sequences #9 through #12 as required. Set list section "B" The shell section "B" Layout and machine weld preparations on each of three edges in the flat. (Finish machine three edges.) Don't machine edge that butts to adapter ring. Penetrant inspect weld preparations. Roll to required inside diameter. Set up and weld longitudinal seam. Dress longitudinal seam inside and outside. 		3. Roll to re	equired inside diameter.	•	
 5. Dress longitudinal weld inside and outside. 6. Check circularity and reround. 7. Radiograph longitudinal seam. 8. Repeat sequences #1 through #7 as required for each course. 9. Set up for circle seam welding. 10. Weld circle seam. 11. Dress inside and outside girth seam. 12. Radiograph girth seam. 13. Repeat sequences #9 through #12 as required. 7.2.3.2 Shell Section "B" The shell section will be made in one course with one longitudinal seam. 1. Layout and machine weld preparations on each of three edges in the flat. (Finish machine three edges.) Don't machine edge that butts to adapter ring. 2. Penetrant inspect weld preparations. 3. Roll to required inside diameter. 4. Set up and weld longitudinal seam. 5. Dress longitudinal seam inside and outside. 		4. Set up and	weld longitudinal seam.		
 Check circularity and reround. Radiograph longitudinal seam. Repeat sequences #1 through #7 as required for each course. Set up for circle seam welding. Weld circle seam. Dress inside and outside girth seam. Radiograph girth seam. Repeat sequences #9 through #12 as required. 7.2.3.2 Shell Section "B" The shell section will be made in one course with one longitudinal seam. I. Layout and machine weld preparations on each of three edges in the flat. (Finish machine three edges.) Don't machine edge that butts to adapter ring. Penetrant inspect weld preparations. Roll to required inside diameter. Set up and weld longitudinal seam. Dress longitudinal seam inside and outside. Dress longitudinal seam inside and outside. Enclose the seam inside and outside. Dress longitudinal seam inside and outside. Enclose the seam inside and outside. Enclose the seam inside and outside.		5. Dress long	itudinal weld inside and	outside.	
 Radiograph longitudinal seam. Repeat sequences #1 through #7 as required for each course. Set up for circle seam welding. Weld circle seam. Dress inside and outside girth seam. Radiograph girth seam. Repeat sequences #9 through #12 as required. 7.2.3.2 Shell Section "B" The shell section will be made in one course with one longitudinal seam. Layout and machine weld preparations on each of three edges in the flat. (Finish machine three edges.) Don't machine edge that butts to adapter ring. Penetrant inspect weld preparations. Roll to required inside diameter. Set up and weld longitudinal seam. Dress longitudinal seam inside and outside. 					
 Repeat sequences #1 through #7 as required for each course. Set up for circle seam welding. Weld circle seam. Dress inside and outside girth seam. Radiograph girth seam. Repeat sequences #9 through #12 as required. 7.2.3.2 Shell Section "B" The shell section will be made in one course with one longitudinal seam. Layout and machine weld preparations on each of three edges in the flat. (Finish machine three edges.) Don't machine edge that butts to adapter ring. Penetrant inspect weld preparations. Roll to required inside diameter. Set up and weld longitudinal seam. Dress longitudinal seam inside and outside. 					
 9. Set up for circle seam welding. 10. Weld circle seam. 11. Dress inside and outside girth seam. 12. Radiograph girth seam. 13. Repeat sequences #9 through #12 as required. 7.2.3.2 Shell Section "B" The shell section will be made in one course with one longitudinal seam. 1. Layout and machine weld preparations on each of three edges in the flat. (Finish machine three edges.) Don't machine edge that butts to adapter ring. 2. Penetrant inspect weld preparations. 3. Roll to required inside diameter. 4. Set up and weld longitudinal seam. 5. Dress longitudinal seam inside and outside. 		•		required for ana	
 Weld circle seam. Dress inside and outside girth seam. Radiograph girth seam. Repeat sequences #9 through #12 as required. 7.2.3.2 Shell Section "B" The shell section will be made in one course with one longitudinal seam. Layout and machine weld preparations on each of three edges in the flat. (Finish machine three edges.) Don't machine edge that butts to adapter ring. Penetrant inspect weld preparations. Roll to required inside diameter. Set up and weld longitudinal seam. Dress longitudinal seam inside and outside. 				eact	i course.
 Radiograph girth seam. Repeat sequences #9 through #12 as required. Repeat sequences #9 through #12 as required. 2.3.2 Shell Section "B" The shell section will be made in one course with one longitudinal seam. I. Layout and machine weld preparations on each of three edges in the flat. (Finish machine three edges.) Don't machine edge that butts to adapter ring. Penetrant inspect weld preparations. Roll to required inside diameter. Set up and weld longitudinal seam. Dress longitudinal seam inside and outside. 					
 Radiograph girth seam. Repeat sequences #9 through #12 as required. 2.3.2 Shell Section "B" The shell section will be made in one course with one longitudinal seam. I. Layout and machine weld preparations on each of three edges in the flat. (Finish machine three edges.) Don't machine edge that butts to adapter ring. Penetrant inspect weld preparations. Roll to required inside diameter. Set up and weld longitudinal seam. Dress longitudinal seam inside and outside. 		ll. Dress insid	le and outside girth sear		
 Repeat sequences #9 through #12 as required. 7.2.3.2 Shell Section "B" The shell section will be made in one course with one longitudinal seam. I. Layout and machine weld preparations on each of three edges in the flat. (Finish machine three edges.) Don't machine edge that butts to adapter ring. Penetrant inspect weld preparations. Roll to required inside diameter. Set up and weld longitudinal seam. Dress longitudinal seam inside and outside. 		1		•	
 7.2.3.2 Shell Section "B" The shell section will be made in one course with one longitudinal seam. 1. Layout and machine weld preparations on each of three edges in the flat. (Finish machine three edges.) Don't machine edge that butts to adapter ring. 2. Penetrant inspect weld preparations. 3. Roll to required inside diameter. 4. Set up and weld longitudinal seam. 5. Dress longitudinal seam inside and outside. 				required	
 The shell section will be made in one course with one longitudinal seam. 1. Layout and machine weld preparations on each of three edges in the flat. (Finish machine three edges.) Don't machine edge that butts to adapter ring. 2. Penetrant inspect weld preparations. 3. Roll to required inside diameter. 4. Set up and weld longitudinal seam. 5. Dress longitudinal seam inside and outside. 					
 adapter ring. 2. Penetrant inspect weld preparations. 3. Roll to required inside diameter. 4. Set up and weld longitudinal seam. 5. Dress longitudinal seam inside and outside. 	•	•		ourse with one lo	ongitudinal
 Roll to required inside diameter. Set up and weld longitudinal seam. Dress longitudinal seam inside and outside. 		l. Layout and m flat. (Finish m adapter ring.	machine weld preparations machine three edges.) Do	s on each of three on't machine edge	e edges in the that butts to
 Roll to required inside diameter. Set up and weld longitudinal seam. Dress longitudinal seam inside and outside. 		2. Penetrant in	spect weld preparations.		
 Set up and weld longitudinal seam. Dress longitudinal seam inside and outside. 					
5. Dress longitudinal seam inside and outside.					
				nteide	•
				COLUC.	
	BY	APPRO			

2

LOUTER HIMSELER OURFURALLUN

CHARGE NO 8	-25-2431	DOCUMENT N	0.ND/74/66	ISSUE	l	DATE	12/16/74	-
7.	Tnetell		· · · ·					
8.			taining rings.					
9.			eld groove for		ozzle.			
			d preparation.				•	
10.			ld preparation	IS.				
11.		le to shell						
12.			side weld seam					
13.			nal shell seam					
14.	TUPELO ME	ra e adapte	chine girth sea r ring. It may re machining.	am weld p y be nece	preparati ssary to	on for weld	"EB" build	
15.	Penetrant	inspect gi	rth edge prepa	ration.				
7.2.3.3	Inner S	hroud Section	on "C"					
The s seam	hroud sec [.] from perfo	tion will be prated plate	e made in one c e.	course wi	th one l	ongitu	dinal	
l. L f	ayout and lat.	machine we	d preparations	s on each	of three	e edge:	s in the	
2. P	enetrant i	nspect weld	l preparations.	•				
3. R	oll to req	uired insid	le diameter.					
4. s	et up and	weld longit	udinal seam.		·			
5. G	rind longi	tudinal sea	m inside and o	utside.	- 			
6. CI	neck circu	larity and	reround.					
7. Pe	enetrant i	nspect long	itudinal seam.	-				
7.2.3.4	Thermal	Sleeve Forg	ing "D"					
The th	ermal sle	eve will be	purchased as a	a rough f	orging.			
		identify ce		~	- 0-			
			ine to configur	ration.				
			preparations.					
BY		ROVED			_		,	

•...

EWC FORM 172 - L

TOPTHE MIDLINE CORDICATION

. •

FWC FORM 172 - I

•

4 - 2

	RGE NO 8-25-2431	DOCUMENT NO.ND/74/66	ISSUE 1	DATE 12/16/7
	7.2.3.5 Straigh	nt Shell Section "A" thro	ough "D" Subassen	
		r welding of shell course	· · · · · · · · · · · · · · · · · · ·	
	2. Weld girth		•	
	3. Radiograph	n inspect shell to forgin	ng girth seams.	
		welding Shell "B" to su		equence #3.
		seam and grind inside a		
	6. Radiograph	inspect girth seam.		
	7. Set up for sequence #6.	welding inner Shroud "C	" to subassembly	from
	8. Weld girth	seam and grind inside.	• • •	
	9. Penetrant	inspect shroud to forgin	g girth seam.	
	7.2.3.6 Straigh	t Shroud Section "E"		
	The shroud sec	tion will be fabricated	as two half shell	ls from plate.
	, l. Layout and in the flat.	machine weld preparation	n on each of fou	r edges
	2. Penetrant	inspect weld preparation:	5.	
	3. Roll half s	shells to required inside	e diameter.	
	4. Trial fit t	the two half shells.	. *	
1 ¹¹ - May	7.2.3.7 Radius S	Shroud Section "F"		
	The radius shro half elbows wit	oud section will be fabri th all machined weld prep	icated from purch parations.	ased formed
	1. Penetrant i	nspect weld preparations	5.	
	2. Set up for	welding smaller radius h	alf elbow sectio	ns together.
	3. Weld girth	seam.		
	4. Grind insid	e and outside girth seam	Le .	
	5. Penetránt i	nspect girth seam.		

•...

 6. Repeat sequences #1 through #5 as required to make compl small radius section. 7. Set up for welding subassembly from sequence #6 to half "E" from #3.6. 8. Weld girth seam. 9. Grind inside and outside girth seam. 10. Penetrant inspect girth seam. 11. Repeat sequence through #10 to make up complete separate radius shroud section. 7.2.3.8 Radius Shell Sections "G" The radius shell sections will be fabricated from two purchas elbows with the girth edges machined for "EB" insert welding. 1. Penetrant inspect weld preparations. 7.2.3.9 Shell Section "H" The shell section will be made in one course with one longitudinal seam endine two edges - Don't machine girth seam edges. 2. Penetrant inspect weld preparations. 3. Roll to required inside diameter. 4. Set up and weld longitudinal seam. 5. Grind longitudinal seam inside and outside. 	12/16
 7. Set up for welding subassembly from sequence #6 to half "E" from #3.6. 8. Weld girth seam. 9. Grind inside and outside girth seam. 10. Penetrant inspect girth seam. 11. Repeat sequence through #10 to make up complete separate radius shroud section. 7.2.3.8 Radius Shell Sections "G" The radius shell sections will be fabricated from two purchas elbows with the girth edges machined for "EB" insert welding. 1. Penetrant inspect weld preparations. 7.2.3.9 Shell Section "H" The shell section will be made in one course with one longitus 1. Layout and machine weld preparations on each of two edges flat. (Finish machine two edges - Don't machine girth seam edge 2. Penetrant inspect weld preparations. 3. Roll to required inside diameter. 4. Set up and weld longitudinal seam. 	ato
 8. Weld girth seam. 9. Grind inside and outside girth seam. 10. Penetrant inspect girth seam. 11. Repeat sequence through #10 to make up complete separate radius shroud section. 7.2.3.8 Radius Shell Sections "G" The radius shell sections will be fabricated from two purchas elbows with the girth edges machined for "EB" insert welding. 1. Penetrant inspect weld preparations. 7.2.3.9 Shell Section "H" The shell section will be made in one course with one longitude. 1. Layout and machine weld preparations on each of two edges flat. (Finish machine two edges - Don't machine girth seam edge. 2. Penetrant inspect weld preparations. 3. Roll to required inside diameter. 4. Set up and weld longitudinal seam. 	508
 9. Grind inside and outside girth seam. 10. Penetrant inspect girth seam. 11. Repeat sequence through #10 to make up complete separate radius shroud section. 7.2.3.8 Radius Shell Sections "G" The radius shell sections will be fabricated from two purchas elbows with the girth edges machined for "EB" insert welding. 1. Penetrant inspect weld preparations. 7.2.3.9 Shell Section "H" The shell section will be made in one course with one longitue 1. Layout and machine weld preparations on each of two edges flat. (Finish machine two edges - Don't machine girth seam edge 2. Penetrant inspect weld preparations. 3. Roll to required inside diameter. 4. Set up and weld longitudinal seam. 	shroud
 10. Penetrant inspect girth seam. 11. Repeat sequence through #10 to make up complete separate radius shroud section. 7.2.3.8 Radius Shell Sections "G" The radius shell sections will be fabricated from two purchaselbows with the girth edges machined for "EB" insert welding. 1. Penetrant inspect weld preparations. 7.2.3.9 Shell Section "H" The shell section will be made in one course with one longitude. 1. Layout and machine weld preparations on each of two edges flat. (Finish machine two edges - Don't machine girth seam edge. 2. Penetrant inspect weld preparations. 3. Roll to required inside diameter. 4. Set up and weld longitudinal seam. 	
 11. Repeat sequence through #10 to make up complete separate radius shroud section. 7.2.3.8 Radius Shell Sections "G" The radius shell sections will be fabricated from two purchase elbows with the girth edges machined for "EB" insert welding. 1. Penetrant inspect weld preparations. 7.2.3.9 Shell Section "H" The shell section will be made in one course with one longitude. 1. Layout and machine weld preparations on each of two edges flat. (Finish machine two edges - Don't machine girth seam edge. 2. Penetrant inspect weld preparations. 3. Roll to required inside diameter. 4. Set up and weld longitudinal seam.	
 7.2.3.8 Radius Shell Sections "G" The radius shell sections will be fabricated from two purchas elbows with the girth edges machined for "EB" insert welding. 1. Penetrant inspect weld preparations. 7.2.3.9 Shell Section "H" The shell section will be made in one course with one longitude 1. Layout and machine weld preparations on each of two edges flat. (Finish machine two edges - Don't machine girth seam edge 2. Penetrant inspect weld preparations. 3. Roll to required inside diameter. 4. Set up and weld longitudinal seam. 	
The radius shell sections will be fabricated from two purchaselbows with the girth edges machined for "EB" insert welding. Penetrant inspect weld preparations. 7.2.3.9 Shell Section "H" The shell section will be made in one course with one longitudes. Layout and machine weld preparations on each of two edges flat. (Finish machine two edges - Don't machine girth seam edge. Penetrant inspect weld preparations. Roll to required inside diameter. Set up and weld longitudinal seam. 	larger
 Penetrant inspect weld preparations. Penetrant inspect weld preparations. Penetrant inspect weld preparations. Section will be made in one course with one longitude. Layout and machine weld preparations on each of two edges flat. (Finish machine two edges - Don't machine girth seam edge. Penetrant inspect weld preparations. Roll to required inside diameter. Set up and weld longitudinal seam. 	
 Penetrant inspect weld preparations. 7.2.3.9 Shell Section "H" The shell section will be made in one course with one longitude I. Layout and machine weld preparations on each of two edges flat. (Finish machine two edges - Don't machine girth seam edge 2. Penetrant inspect weld preparations. 3. Roll to required inside diameter. 4. Set up and weld longitudinal seam. 	ed
 The shell section will be made in one course with one longitud 1. Layout and machine weld preparations on each of two edges flat. (Finish machine two edges - Don't machine girth seam edge 2. Penetrant inspect weld preparations. 3. Roll to required inside diameter. 4. Set up and weld longitudinal seam. 	
 Layout and machine weld preparations on each of two edges flat. (Finish machine two edges - Don't machine girth seam edge 2. Penetrant inspect weld preparations. Roll to required inside diameter. 4. Set up and weld longitudinal seam. 	
 Layout and machine weld preparations on each of two edges flat. (Finish machine two edges - Don't machine girth seam edg Penetrant inspect weld preparations. Roll to required inside diameter. Set up and weld longitudinal seam. 	linal s
 Penetrant inspect weld preparations. Roll to required inside diameter. Set up and weld longitudinal seam. 	
4. Set up and weld longitudinal seam.	
r and note tong touthat seam.	
5. Grind longitudinal seam inside and outside	
and outbilde.	*
6. Check circularity and reround.	
7. Install roundness retaining rings.	2
8. Machine cutout and weld groove for outlet nozzle.	
9. Grind balance of weld preparations.	
10. Penetrant inspect weld preparations.	
11. Weld nozzle to shell seam.	

٩.

6

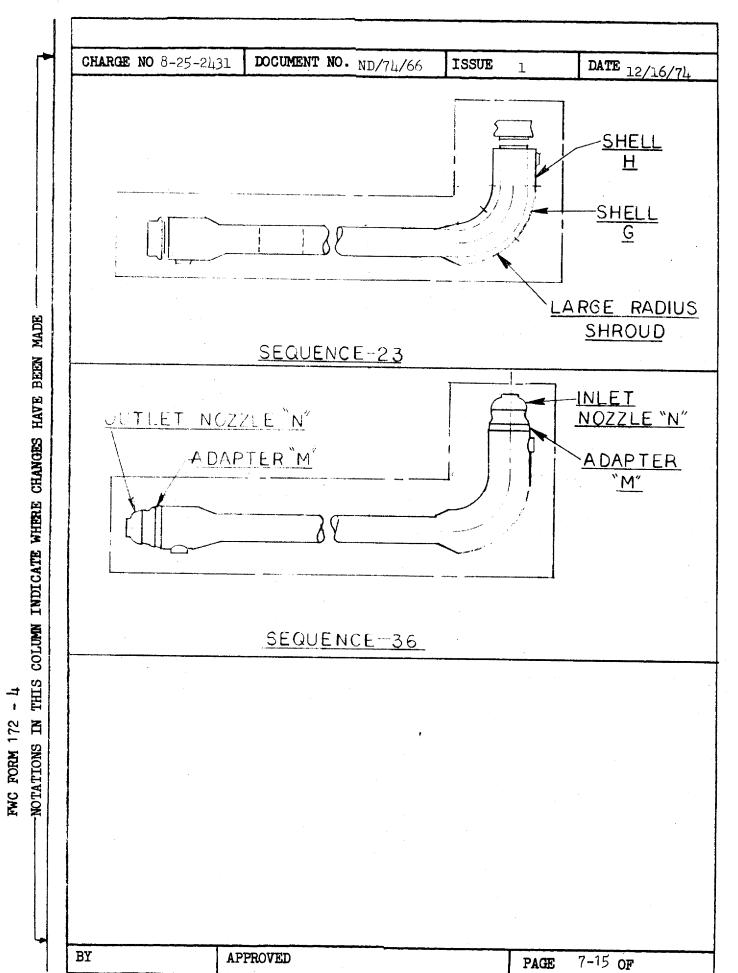
EWC FORM 172 - 14

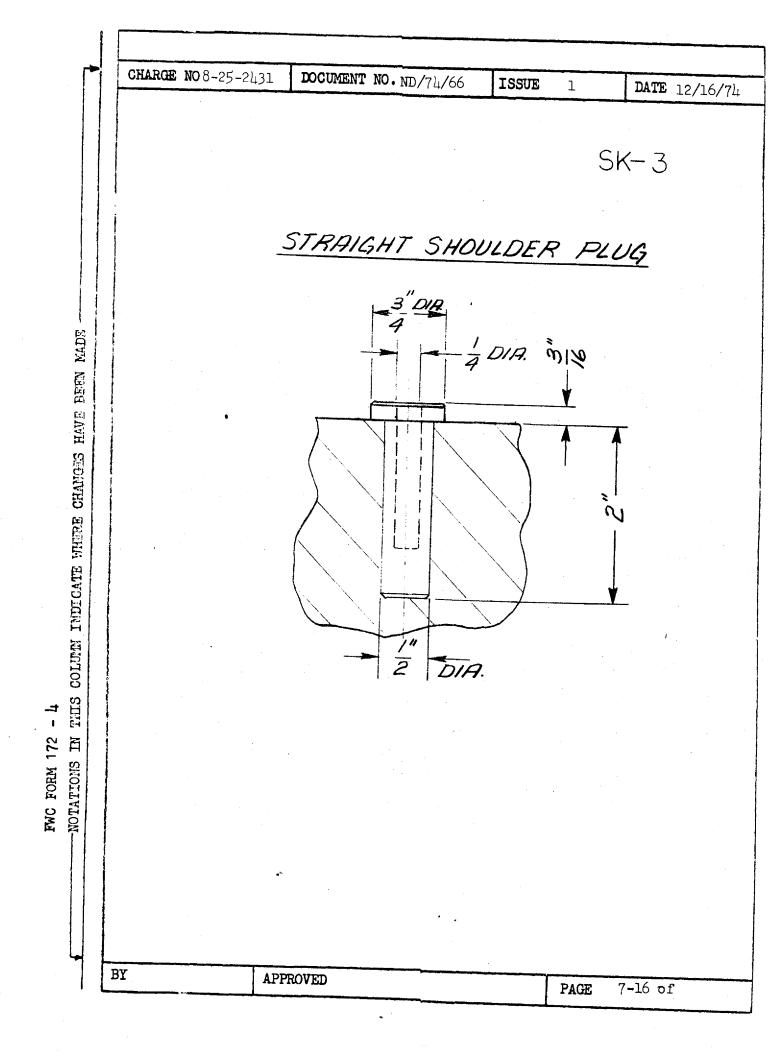
CRARCE	NO 8-25-2431	DOCUMENT N	0.ND/74/66	ISSUE	1	DATE 12/16/7
	L2. Grind i	nside and out:	side weld sea	ms.		
· •	.3. Set up a 'EB" insert u		chine both gi	nth an area	veld probuild a	eparations for 1p these
	4. Radiogra	aph longitudin netrant inspec	al shell sear t girth edge:	n and nozz 5.	le to s	shell seam
7.2.	3.10 Tube	Sheets "K"				
Т	he tube shee	ts will be pu	rchased as fo	orgings.		
1	. Set up on	VBM and mach	ine both flat	side sur	faces a	nd weld grooves
2		c and penetra				
3		d drill tube]			•	
4.	Machine s	pigots and com	unterbores.		•	
5.	Set up and	d machine for	island remov	a l between	n spigo	ts.
6.		deburr tube ł			1 0	
7.	Penetrant	inspect spige	ots and island	l removal	areas.	
' 8 .					•	
9.	Clean.					
7.2.3	.ll Tubes "	Г"				
Th to;	e tubes will gether.	be purchased	in various s	hort leng	ths and	welded
1.	Set up and	machine ends	of tubes.			
2.	Weld tube	to tube.		-		•
3.	Grind tube	welds on outs	side diameter	•		•
4.	Penetrant	inspect tube w	velds.			
5.	Radiograph	tube welds.			•	
6.	Helium tes <u>t</u>	straight tub	es.			
			•.•.			

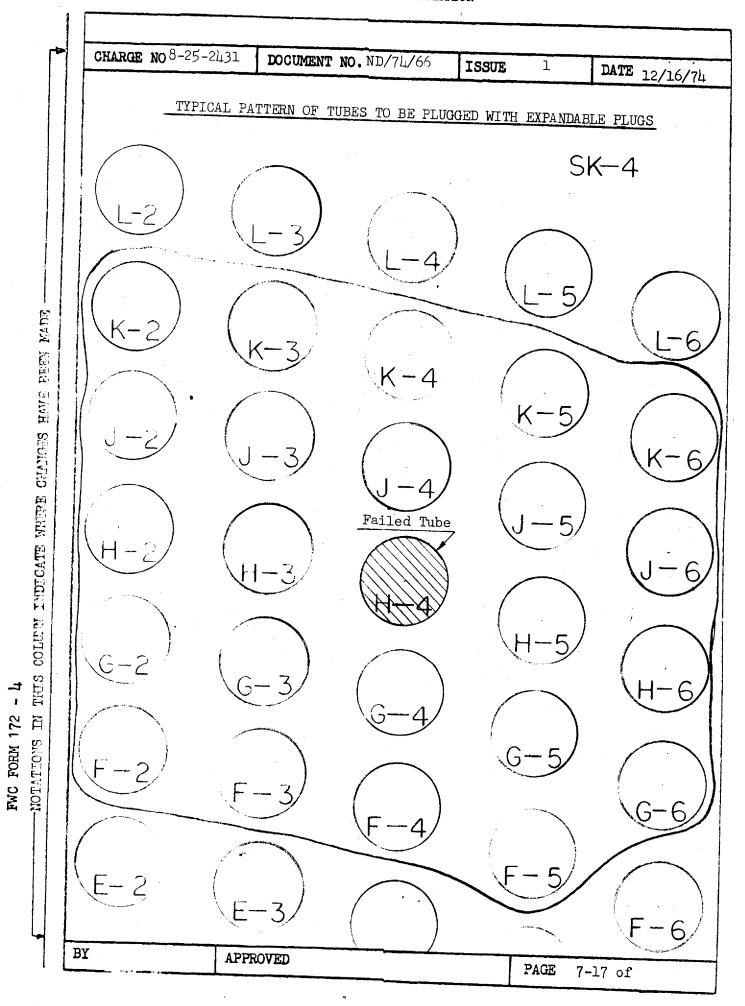
CHARO	e no	8-25-2431	DOCUMENT NO.ND/74/66	ISSUE	l	DATE 12/16/7
	7.	Set un her	nding machine for bendi	ng tubo-		
	8.		Lest radius row of tube		. ·	
	9.					
r { 1			s to length and machine	weld prep	•	
_	10.		and inspect.			
7.	2.3.	- .	Rings "M".			
	Th e fin	adapter ri al assembly	ngs will be purchased after welding Handhol	as forging: e nozzles.	s and mad	chined at
• 7.	2.3.	13 Steam N	lozzles "N"			
	The	nozzles wi	ll be purchased as for	gings.		
	l.	Set up on	VBM and machine comple	te.		
	2.	Penetrant	inspect weld preparati	ons.		
7.	2.3.	14 Bundle	Final Assembly			
	l. shr	Set up for oud half "F	welding straight shel	l subassemb	oly "D" t	o small radius
•	2.	Weld girth	seam.			
	3.	Grind girt	h seam.	•		
	4.	Penetrant	inspect girth seam.			• •
	5. tube	Set up bun sheets "K	dle assembly fixture an	nd attach i	nlet and	outlet
par an	and	Insert guid install fui poses.	de rods through steam o ll supportplates using	utlet tube the guide	sheet i rods for	nto shell alignment
	7. shro	Set up and oud for the	install segmented supposed supposed in the segmented supposed in the segmented segmented in the segmented segmented in the segmented segment	ort parts : tubes.	in the s	mall radius
	arav	m as the th	rods will be attached t ube is inserted into th rough the proper hole i	e bundle.	This wi	ll insure that
	9. agai	Thread the. nst tube sh	tube using the rod, if leets.	required,	and sprin	ng the tube
			•. •			


•

FMC FORM 172 - 4


	E NO8-25-2431	DOCUMENT NO.ND/74/66	ISSUE 1	DATE 12/16/
	10. IBW wel tubes.	d tube to tube sheets for	• the smallest r	
	ll. Clean t	ube to tube sheet welds.		
	12. Radiogr	aph inspect.	•	· ·
	13. Install larger radius	segmented support parts s row of tubes.	for assembly of	the next
	l4. Repeat : installed.	sequences #8 through #14	until all tubes	have been
	15. Inspect	and check bundle for clea	anliness.	
(.	16. Set up a	and weld larger radius shi	roud assembly to	bundle.
	17. Grind we	elds outside.		
	18. Penetran	it inspect longitudinal ar	nd girth welds.	
	19. Slide sh	ell sections "G" and "H"	over shroud.	
	20. Weld g course to she	irth weld of the shell to ll course.	, thermal sleeve	and shell
۴,	21. Grind ou	tside girth welds.		
	22. Radiogra	ph girth welds.		
	23. Determin and shell for	e finished measurement of adapter ring.	distance betwee	en tube sheet
	24. Set up a	dapter ring "M" on VBM an	d machine to sui	Lt.
	25. Penetran	t inspect weld preparation	ns on adapter ri	.ng.
	26. Slide ada to tube sheets	apter rings over tube shees and shells.	et and weld adap	ter
	27. Grind gir	th seams.	· .	
	28. Radiograp	oh girth welds.		
	29. Install t	est caps and test shell s	side.	
	30. Set up an	d weld steam nozzles to t	tube sheets.	
	31. Grind gir	th welds.		
BY	1 ^-	PPROVED		


•


FWC FORM 172 - 1,

NUCLEAR DEPARTMENT	FOSTER WHEELER ENERGY COR		LIVINGSTON, N.
CHARGE NO. 8-25-2431	DOCUMENT NO. ND/74/66	ISSUE 1	DATE 12/16/7
	APPENDIX A		
	Mechanical Design Calcu	lations	
Contents:			
(A-1)	Shell and Head		
(A-2)	Approximate Weight		
(A-3)	Tube Expansion		
(A-24)	Tube Vibration		
,			
ву арри	ROVED		PAGE

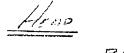
EWC FORM 172 - 4

BY C. HAN FITH DATE 129 77 SUBJECT. 11/2000 STRAT JOB NO. 8-25-2431 STEMMI GEVERATOR CHKD. BY DATE CODE : A.S.M.E. SECT. 14 1971 DESIGN CONSITIONS PRIME ; SIDE (SHELL) SECONDARY SIDE (TUME) DESIGN TEMPS 1120°F DESIGN TENIR 1150°F. 2 19 19 19 W. W. M. DESIGN PRESS. DESIGN PRESS. 220 P.S.13. 100% FFE & 100% EFF. 6 ALLOW, STREES ALLOW STRESS 11,600 P.S.I. 9,500 P.S.I. 1032 1014 391⁄2" No, OF TUBES I.D. SHELL 11/3" Host N TURE PITCH SHELL PATIL 3/4"0, Dx. 125 WALL TUBE SIZE EFFECTIVE LENGTH 114 FT. 140 FT. HASTIN TURE MATERIAL PRESSURE BOUNDRIES (H)" SHELL SMALL I.D. A) 16." NOZZLE (TYPICAL) J) TUBE B) HEAD (TYPICAL) C) TUBE SHEET (TYPICAL) E) SHELL LARGE O.D. (TYP.) F) 20 NozzLE (TYPICAL) G SHELL TRANSITION 1 VERT, PLANE.

Pano A-1-1

CHKD. BY_____DATE____

BY C. HARPERINA DATE 120/14 SUBJECT . MOTON SHOT STEPPIN CHKD. BY _____DATE _____ STEPPENTOR (SHELL SMALL AR)

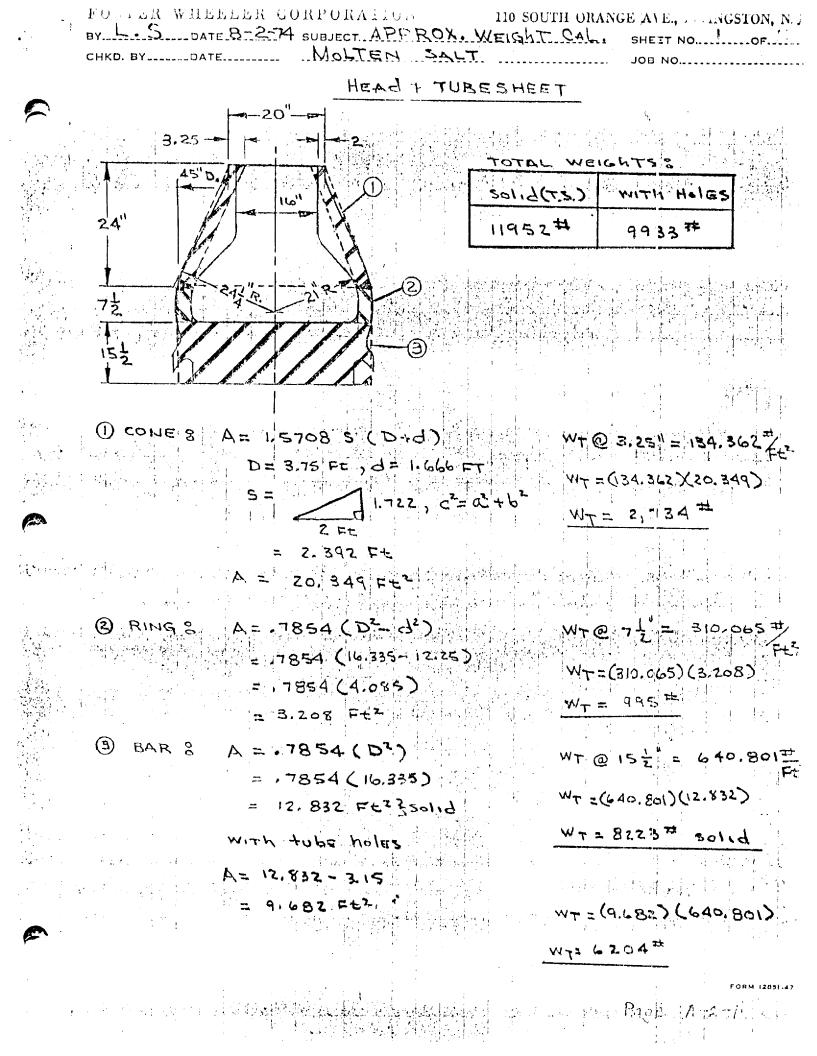

SHEET NO. 4 OF Z

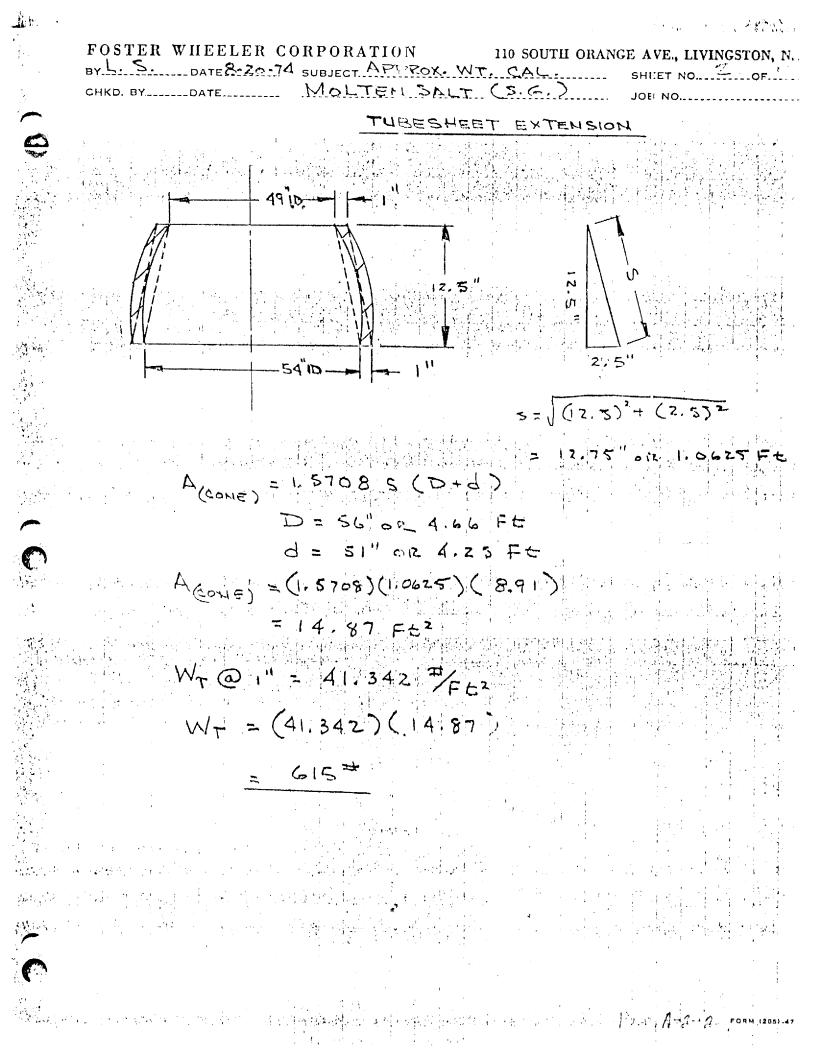
SHELL (SMARLE I.D.)

SEE SHEET / FOR DESIGN CONDITIONS

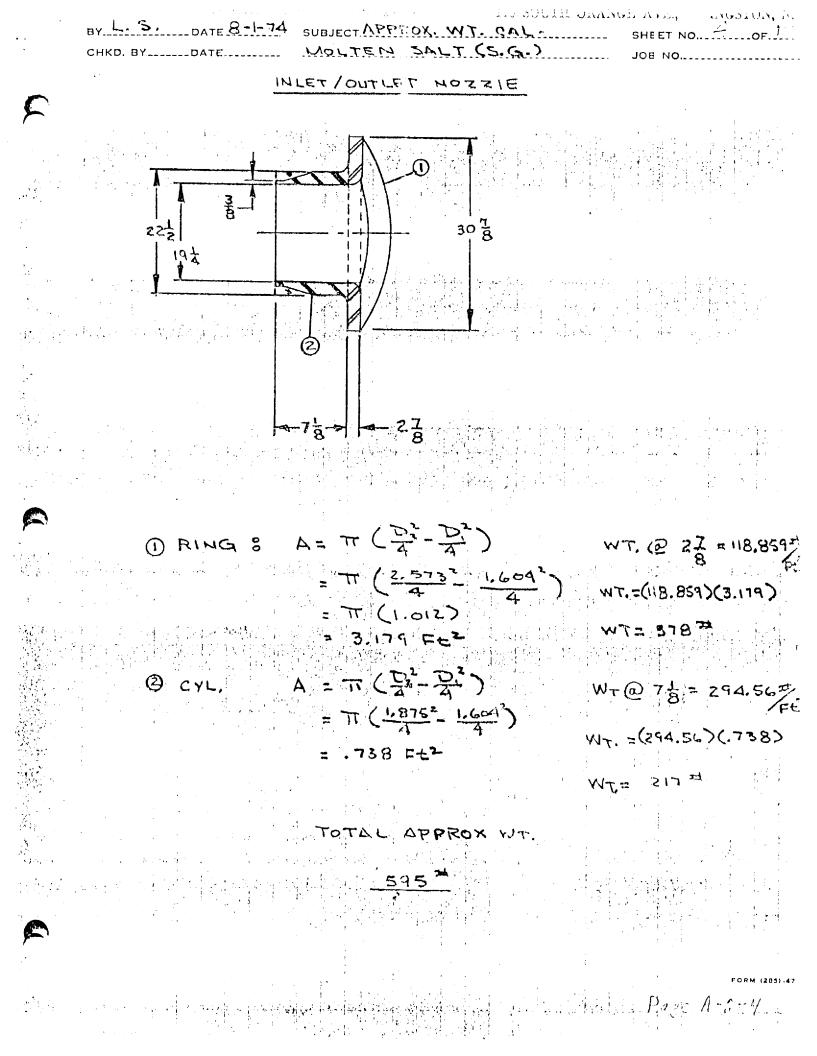
$$t = \frac{PR}{SE - 0.6P}$$

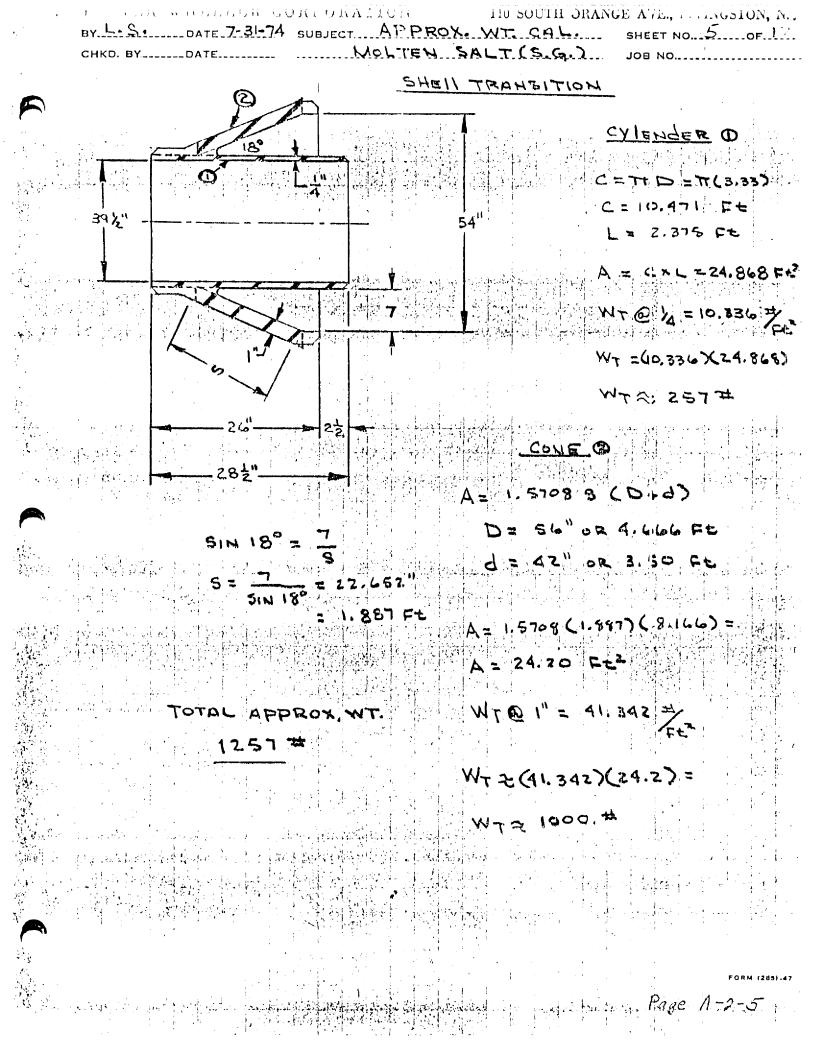
$$t = \frac{(220)(19.75)}{(9,500)(10) \cdot (0.6)(220)}$$


$$t = \frac{FL}{ZSE - .ZP}$$

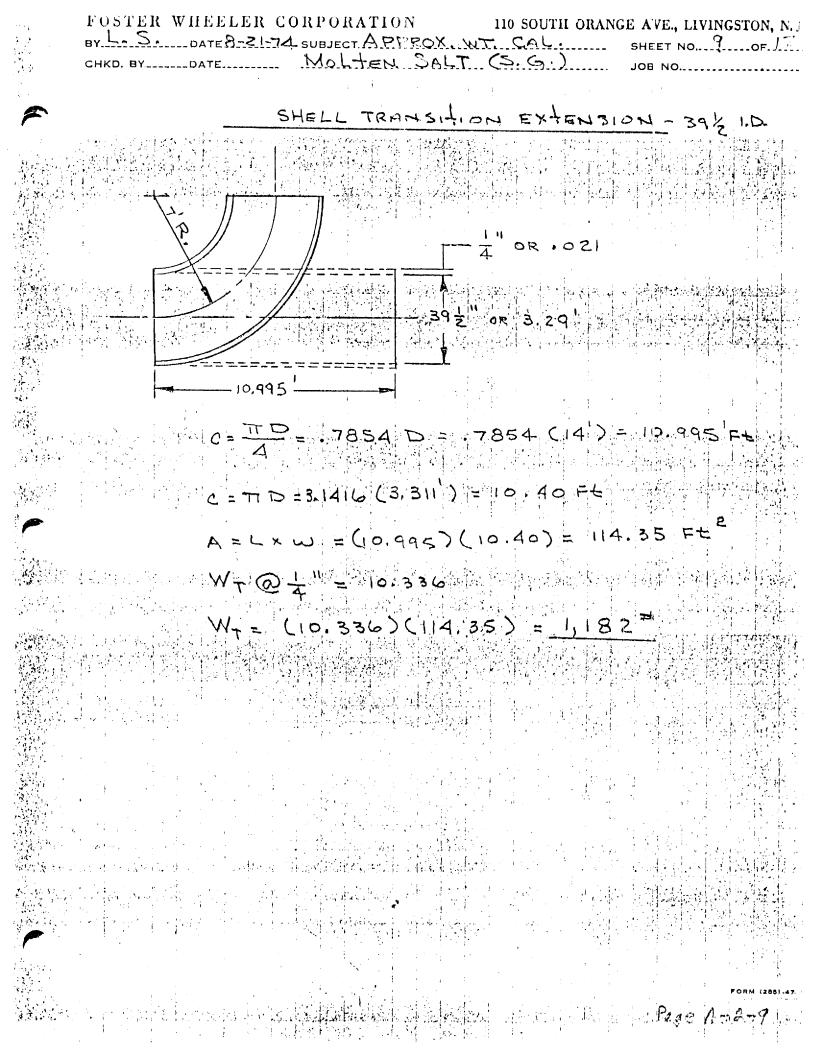

$$\mathcal{L} = \frac{(3800)(21)}{(2)(11,600)(10) - (12)(3800)}$$

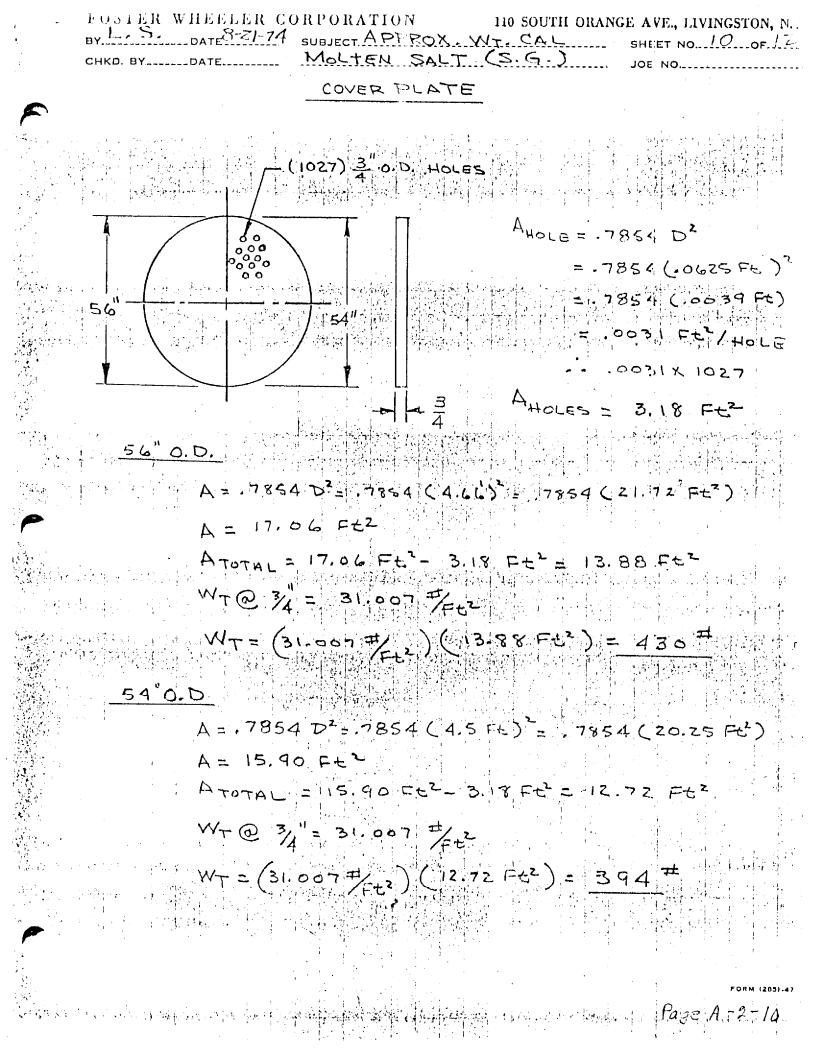
$$\mathcal{L} = \frac{74800}{22440}$$

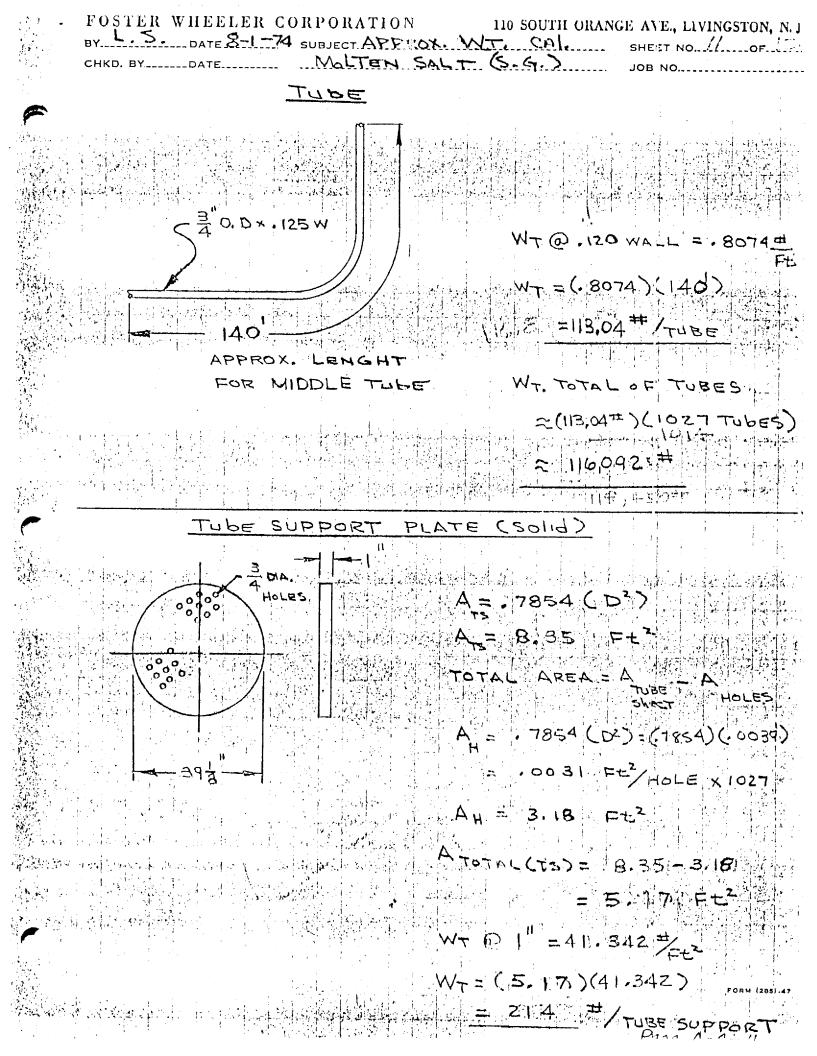

OAM (203)-47

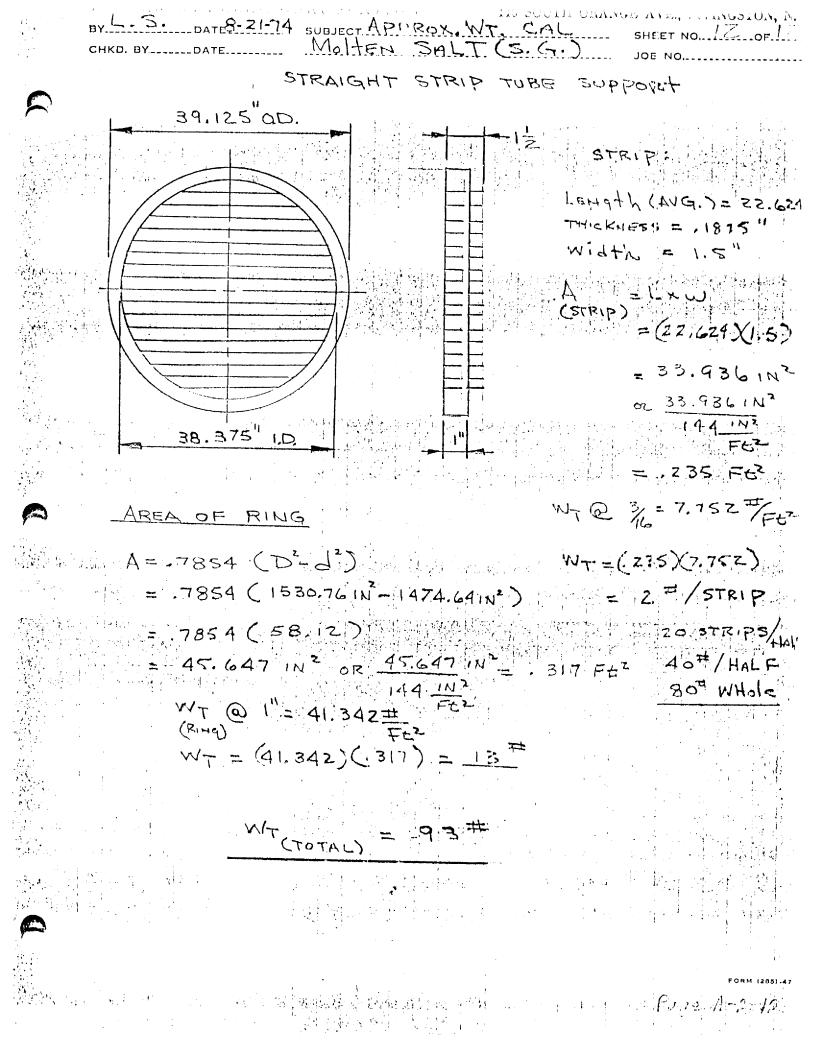

Pooe A-1-2

SUBJEC MOLTEN $T \subset S \subseteq G$ NOZZLE CYLINDER 54 I.D. DIA 0117 48 174.7515 = 14.5626 Ft. C = TTD = (3.1416) (55.625") = A= Lxw= (2.573')(14.563') = 37.47 Ft2 $(C_{1}T_{0}U_{T}) = 7T \frac{D^{2}}{4} = ...7854 D^{2} =$ (.7854) (2.573) $= 5.20 \pm t^2$ $A(TOTAL) = 37.47 Fz^2 - 5.20 FC^2 = 32.$ WT@13 = 67.181 7/FE2 WT = (67.181) (32.27) = 2168 H 2 C=TTD=(3.14167(55") = 172.788"= 14. A = Lxw = (14.399 Ft) (.7135 Ft) = 10.27 WT @ 1" = 41. 342 # / E+2 $W_{T=}(41.342)(10.27) = 425^{H}$ 2× 425 = WT(TOTAL) = 2168#+ 850#= 3018 # 10 Pan: A-2

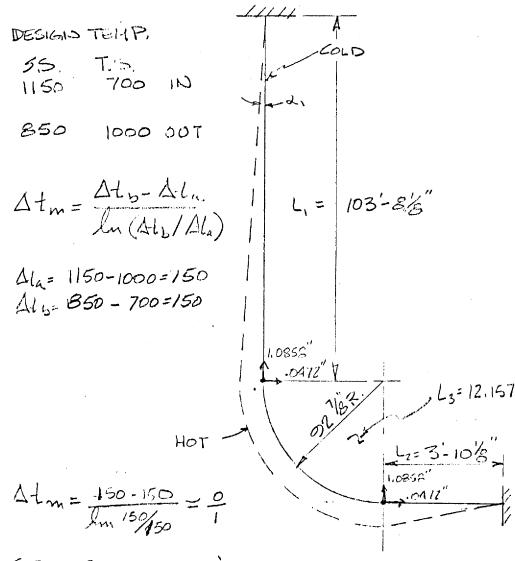





E., LAVINGSTON, N. A SA DATE 8-20-74 SUBJECT APPROX WT SHEET NO GO OF MOLTEN SALT (S.G. SHELL TRANSITION EXTENSION. - 3. 792 March Mar March Mar C= TD= (3-1416) (3.312 F=>= 10.406 Ft= A=LXW = (10.406 Ft) (3.792 Ft) = 39.459 $W_T @ \frac{1}{4}" = 10.336^{\pm}$ $W_{\tau} = (0.336) (39.459) = 408$ TIE ROD ET. $W_T @ \frac{3}{4}$ $D_1 A = 1.51$ APPROX AVG. LENGTHO $W_T = (1.51)(140)$ 2.11 #/TIE Rod WT= 1,688 / 8 TIE Rods Page A-2-6 in the second


FUSIER WHEELER CORPORATION 110 SOUTH ORANGE AVE., LEVINGSTON, N. J. BY L. S. DATE 8-19-74 SUBJECT AP ROX, WT. CAL. SHEET NO. 7 OF. 17 CHKD. BY DATE MOLTEN SALT (5.G.) JOE NO. SHELL 392" I.D. 40.25" 7>1A and the second 1386,5528 C = TTD = 3.1416(3.354') = 10.537A = LXW = 115, 546 Ft X 10. 537 Ft $A = 12.17.51 F \pm 2$ WT @ 3" = 31.007 # WT (shell) = (1217.51 Ft2) (31.007 F/Ft2) = <u>37,751</u>[#] **北京的市场和总督在长期中国际**的长 Prive A-2-7

DATE 8-2074 SUBJECT APPROX WT. CA MOLTEN SALT (S.G.) CHKD. BY DATE SHELL TRANSITION EXTENSION - 56" 1.D. $C = \frac{770}{4} = .7854 D$ = (.7854)(14 Ft)10.995 10.995- $Q = TT D = 31416 \left(\frac{57}{12} \right)$ = 3.1416 (4.75') = 14.923 Ft A = L × W = (14.923) (10.995) 164FE2 W- @ 1" = 41.342 #/F=2 $W_{T} = (41.342)(164)$ = 6,780 -Pape A-2-8.



FOSTER WHEELER CORPORATION110 SOUTH ORANGE AVE., LIVINGSTON, N. J.BY ELEW GATE 1/27/72SUBJECT. TUBE EXPANSIONSHEET NO. 1 OF 4CHKD. BY.DATEMOLICIN SALTJOB NO. 2-7.5-14.05

OUTER TUBE

1

SEE J. COX TAB: - GRAPH

HASTELLOY NO TUBES & SHELL

@ (900 - 1150) = 7.43 × 10-6 11/10/0F

Page A-3-1

TUBE EXPANSION

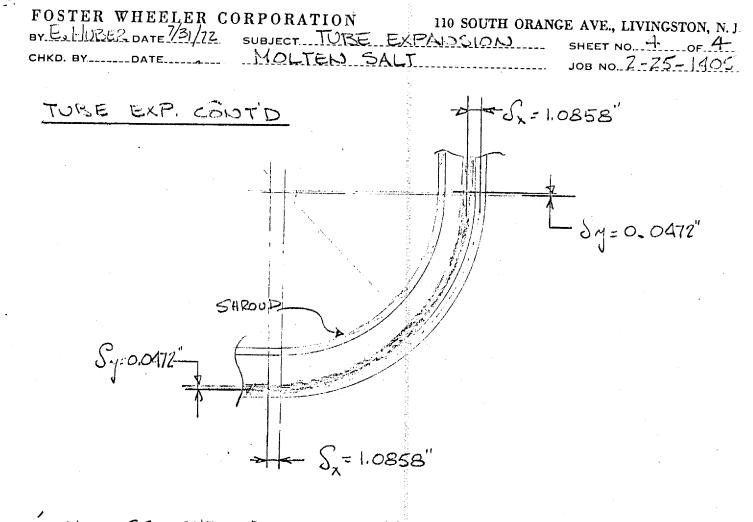
EACH BANK 5.7 FT LONG

SEE TAB. SHT FOR AVG AT FOR EACH BANK

			•	ŧ	
BANK	AUG	EXP (FTX)	5)	TOTAL EXP	(IN.)
1	78.5	332.447	······································	1	
2	83,35	352.987			
2 3	93.35	375,337			
4	103.7	439.169			
4 5	113,65	481,307			
6	123,0	520,905			
7	131.35	556,267			
8	137.65	582,947			
9	141.55	519,464			
10	143.0	605.605			
10		-			
	142,0	601,370			
12	138.75	587.604			
13	- 133,75	566,431			
14	127.65	540,597			
15	121.05	512,646			
16	114.45	484,615		,	
17	108,0	457.320			
18	101.95	BEIDD 13/115%	9.0189x10-2	1,0858	
19	96.9	BEGINDS 410,311			8.0966
20	93,05	BEND 394,066	9,8533×10-2	1,0858 1,1824)
** 21	93.05	ELDUS, 394,066	10.2473×10-2	1,2294	
* NOTE	O BANK C	P T.S.			
米米 1007	IN ORIG. CAL	-65			

7.43×10-6 (5.7) = 4,235×10-5

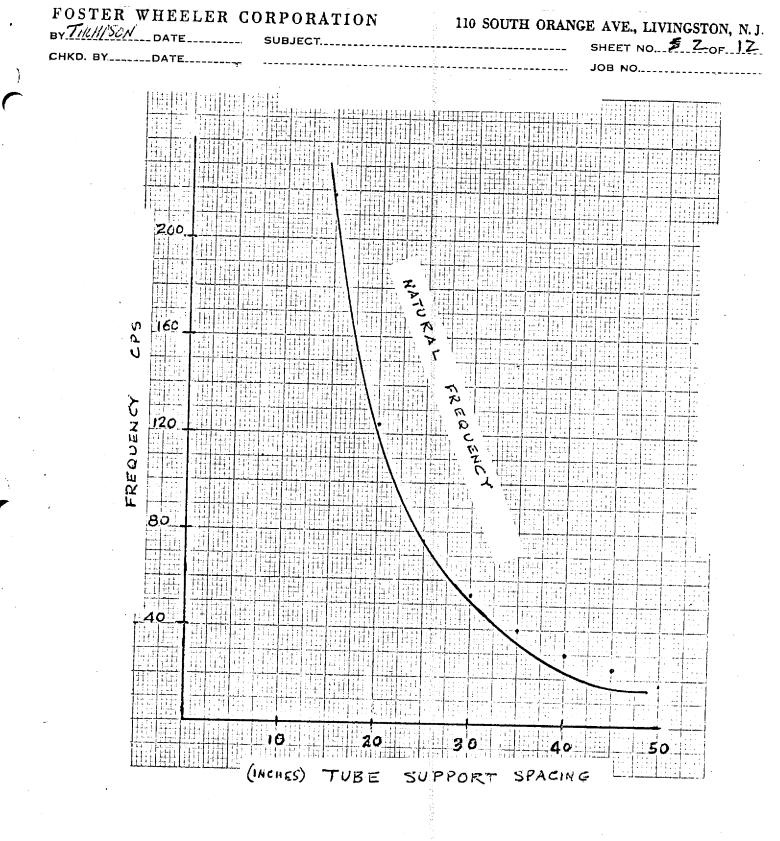
Page A-3-2


FORM (285).

5P 18382A

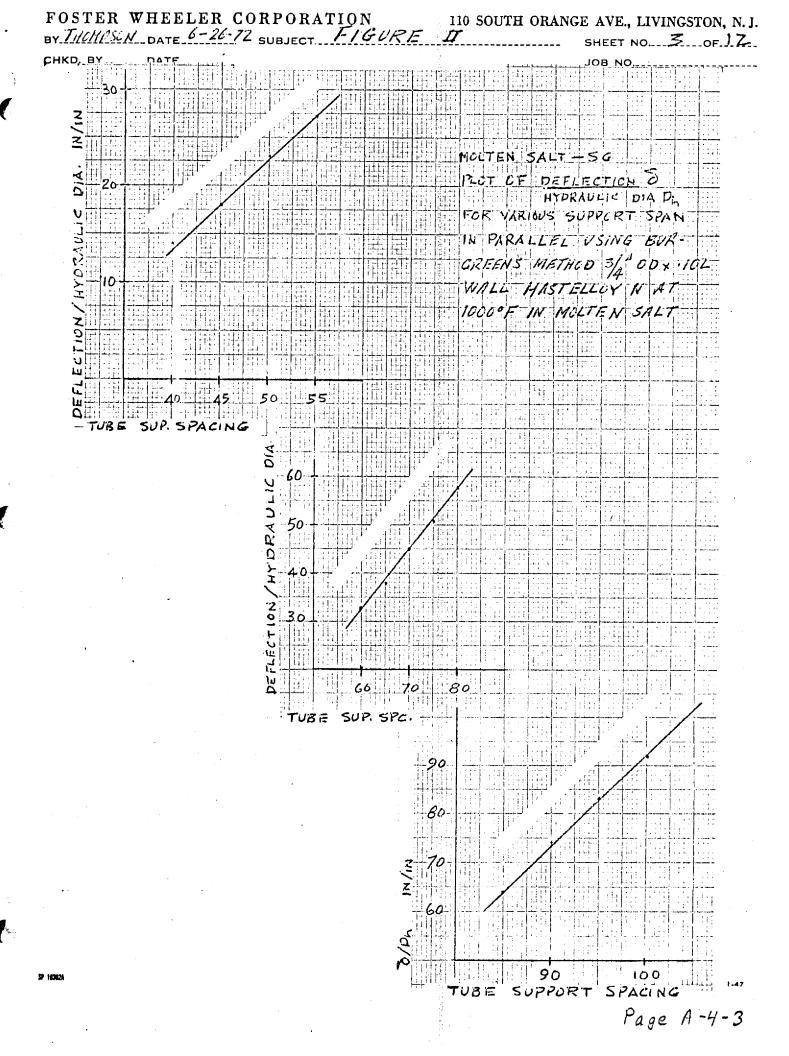
FOSTER WHEELER CORPORATION 110 SOUTH ORANGE AVE., LIVINGSTON, N. J. BYE. HUBERDATE 727/72 SUBJECT TUBE EXPANSION SHEET NO. 3 OF 4 CHKD. BY DATE NO. 2-75-1405 DISPLACEMENT
$\frac{DISPLACEMENT}{COD} \chi_{1} = \frac{103.677}{103.7675} = .999912$
$\chi_{1} = 2^{2} - 2A'$ $\chi_{1} = 103.677 \text{ sin } 2.4^{\circ}$ $\chi_{1} = 3.799'$
SINCE DISPLACEMENT X, HIGH ASSUME FLEXING IN LZ SUFFICIENT FOR EXP, OF LI & FLEXING IN L, SUFFICIENT FOR EXP. OF LZ
TOTAL GROWTH BEND REGION
$\Delta = .0966''$
$C_{\text{COLD}} = 2\pi R = 6.28(92,875) = 583,255''$
$C_{HOT} = 583.255 + 4(.0966) = 583.6414$
$R_{107} - \frac{583,6414}{2(3,14)} = 92.9365"$
$\Delta_{R} = 92.9365 - 92.875 = .0615''$
OF INNER & OUTER TUBES
INNER R. = 57% ASSUME AT = 95°F
OUTER $P_2 = 92\frac{7}{8}$
$C_1 = 363.455$ $\Delta L_1 = 7.43 \times 10^{-6} (95) (363.455) /_1 = .044134$ $C_2 = 585.255$ $\Delta L_1 = 7.43 \times 10^{-6} (95) (583.755) /_4 = .102922$
$R_{1\mu} = \frac{C_{1\mu}}{2\pi} = \frac{363.711}{6.26} = 57.9158^{"} \Delta_{R_1} = .04087.0247^{"}$ $R_{2\mu} = \frac{C_{2\mu}}{2\pi} = \frac{583.666}{6.26} = 92.9405^{"} \Delta_{R_2} = .0655 \int_{\text{FORM (285).47}}^{\text{FORM (285).47}}$

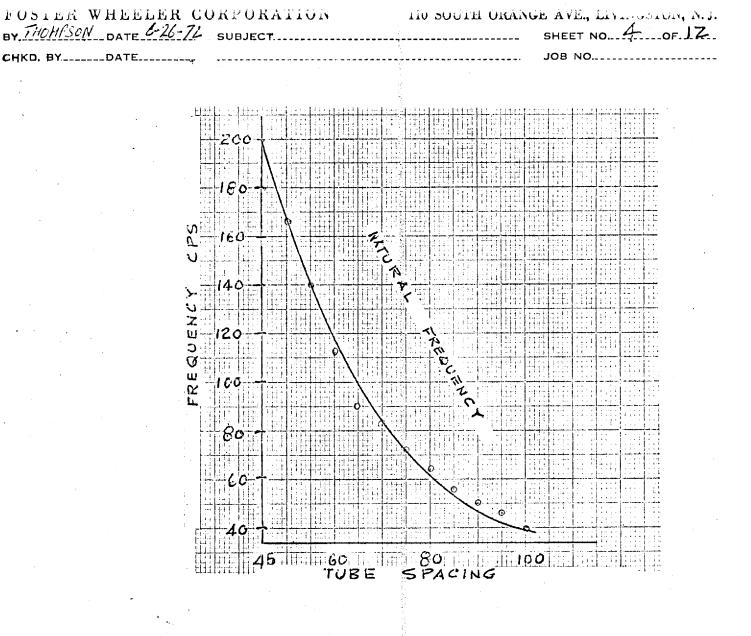
(


¢

". UNLESS SHEDUD IS MANUF. ECCENTRIC, THE MINIMUM CLEARANCE REQ'D = 146 FOR THE DIFF. EXP. OF TUBES VS SHELL.

Pace 1-3-4

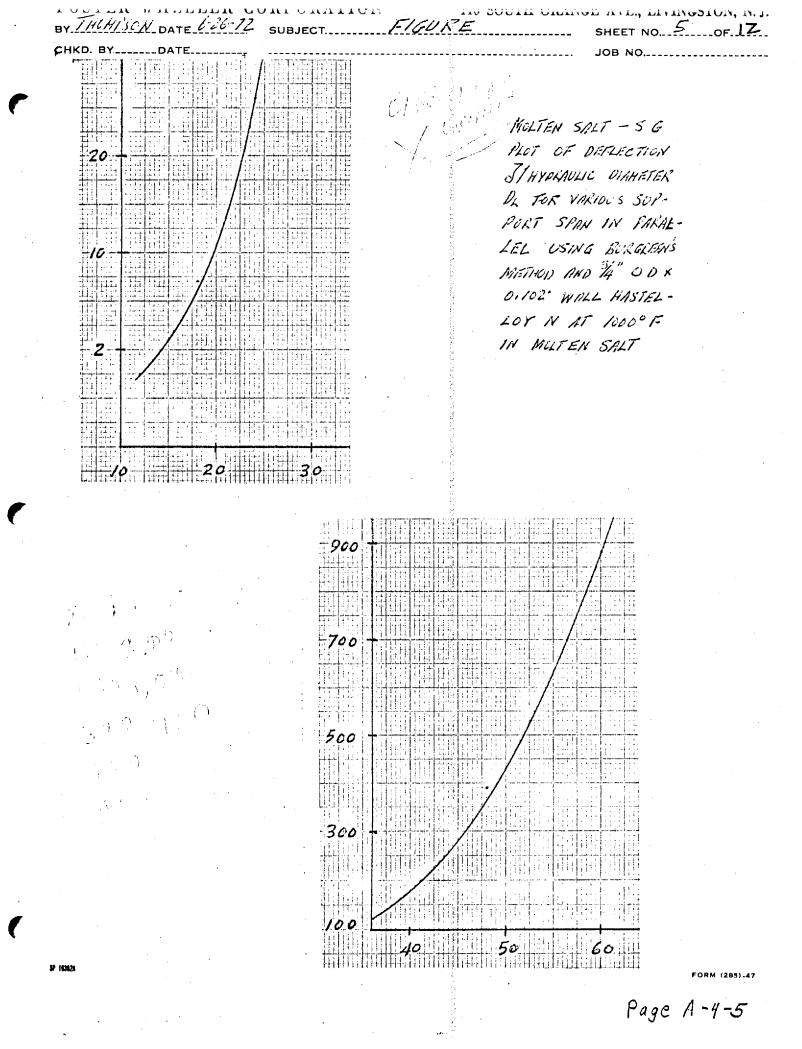

20' IO X 3/3 WILL NGE AVE., LIVINGSTON, MOLTEN SALT 100 -INLET NOZZLE Page 20" ID X4 WALL -36" ID 16"IDX 2" WILL -3600 PSI , MELTEN SALT OUT-SHELL STEAM OUTLET 1000-1200 F LET NOZZLE NOZZLE SOL 16"ID+13/4" V.1.L 3800 PSI STEAM INLET 700°F NOZZLE $V = \frac{V^7}{CA(1-V)}$ STEAM GENERATOR Wms = 15.28 × 106 #/ GENERAL ARSANGEMENT HOCKEY STICK DESIGN CORPOR Ws = 2.517 +106 #/HR NOLTEN SALT Ps 34#/13 - 5#/13 HEELER CHKD.



FORM (285)-47

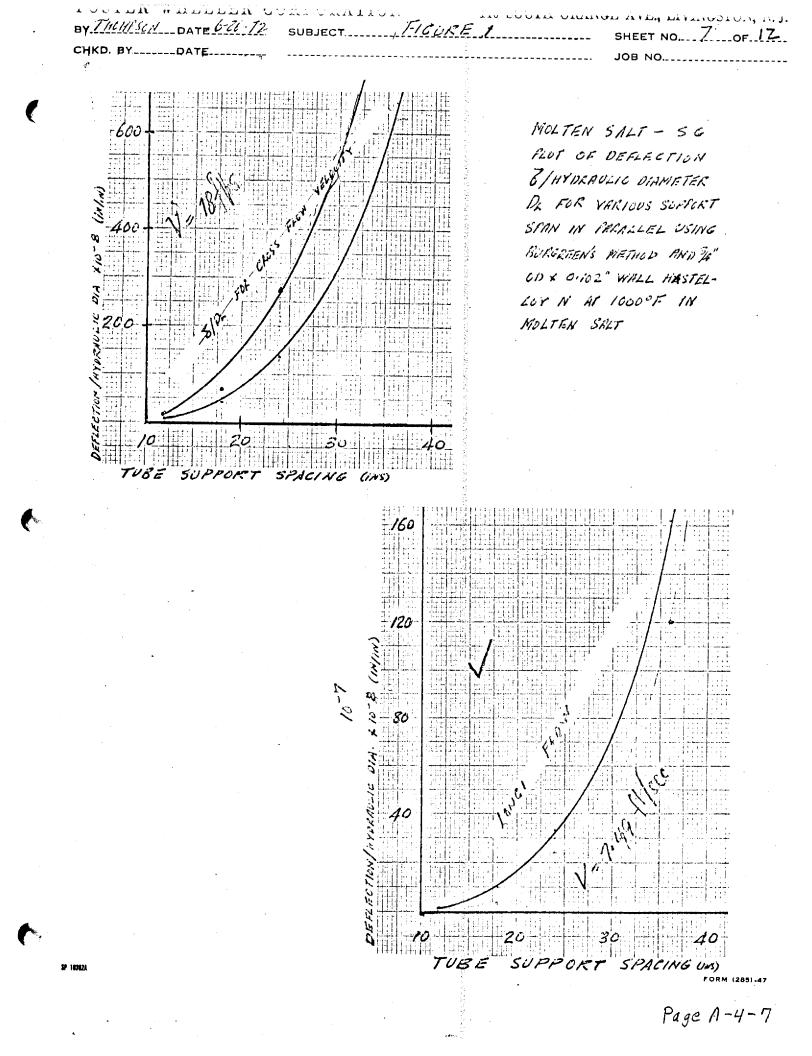
Page A-4-2

11 11312A



FORM (285)-47

Page A - 4 - 4


\$P 18792A

BY THEM DATE 6:26-72 SUBJECT. FIGURE	140 000 011 01011011 1111, 11 01000, 110,
CHKD. BYDATE	JOB NO
$f_{s} = \frac{0.4}{(.75/12)} U$ $f_{s} = \frac{0.4}{(.75/12)} U$ $f_{s} = \frac{0.4}{(.75/12)} U$ $f_{s} = \frac{0.4}{100} U$	NHENSIONAL STROUTAL NUMBER SHEDDING FREQUENCY (CPS) E CUTSIDE DIAMETER (FT) MSVERSE FLONG VELOCITY FILSEC
TRANSYERSE SPACING RATIO	$\begin{array}{c} 7 c = 7 / p_{0} = \frac{1}{25} = 1.50 \\ 7 c = \frac{1}{20} = 1.84 / c_{15} = 2.45 \\ \hline 7 c = \frac{1}{20} = 1.84 / c_{15} = 2.45 \\ \hline 7 c = \frac{1}{20} = 1.84 / c_{15} = 2.45 \\ \hline 7 c = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} \\ \hline 7 c = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} \\ \hline 7 c = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} \\ \hline 7 c = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} \\ \hline 7 c = \frac{1}{20} \\ \hline 7 c = \frac{1}{10} \\ \hline 7 $

SP 16362A

FORM (285).47

TUSIER WHEELER CURFURATION IN SOUTH URANGE AVE., LIVINGSION, N.J. BY THEATSON DATE 6-26-72 SUBJECT SHEET NO B OF 12 CHKD. BY DATE JOB NO. $\left(\frac{5}{D_{h}}\right)^{1.3} = \cdot 83 \times 10^{-10} K, \ \gamma^{t_{h}} \Omega$ FOR UNIFORTH BERM SINCLY SUPPORTED Ki = 5 T= CV24 $S_{2} = \frac{\ell V^{2}}{\mu \omega}$ = ·83×10-10×K1 ((V24) 2 (V2) 61 $\left[\frac{4.15\times10^{-10}\binom{2^{3}}{L^{2}}\binom{1}{FI}^{2}}{\frac{1}{FI}}\left(\frac{1}{FI}\right)^{\frac{1}{2}}V^{3}\overline{f}\frac{L^{2}}{L^{2}}\right)$ 4.15+10-10 (120 V 120) V 1/29.1+10+ X1725 L2 3/12 87 (7) Ð (a)(6)<u>(</u>4) (3) (l_i) L^2 CROSS FLOIN V L^2/ω $\omega = 2\pi f_n$ L fin 5/02 = C. 40 C 12.0 12 144 0.066 2180-8.22+10-8 1.245+10-6 347.0 18 324 0.334 154.0 41.58+100 970 X 587 1.097 24 85.0 535 136.60+10-5 36. 1296 5.355 38.5 666 14 +10 3 242 LONGITU. V 0.066 8-3027410-6 12 2180 1-99+10-8 7.49 144 347.0 18 324 0.334 154.0 10-11+10-8 910 24 1 587 1.097 85.0 33-21 40-8 535 36 1246 5355 38.5 242 162.10 4108 11 10. //x - 1 1. (~ D $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 4.151 5.00 84 4.858 4 1. 2019 410-1 171.28 115 1.6251 875-54 163/1/2-7) FORM (285)-47 Page A-4-8

FOSTER WHEELER CORPORATION 110 SOUTH ORANGE AVE., LIVINGDTON, N.J. BY THCHISON DATE 6-26-72 SUBJECT TUBE VIBRATION SHEET NO. 7 OF 12 BURGREEN'S METHOD CHKD. BY_____DATE____ JOB NO TUBE WBRATION FREQUENCY 1 DETERMINE 6. 1 fn = 4.944 ×10-6 C-V EI9 C = TABULATED VALUE X 104 E@ 1000°F = 26+166 PSI I = INFRITIA IN4 We = Wet Wet Wa J = 586 LAS L = SIAN LENGTH BETWEEN fn = 1/2 · A SUPPORTS A = 4.944 × 31.73 × 1.96 × 1.63 × 102 WY & TUBING WGT #/IN = 5.0×104 We = INTERNAL FLUID WET THIN 1 1 V Wa - EXTERNAL FLUID WGT HIN 2 DETERHINE AVERAGE SHELL VROCITY 2 V= W/PA(3.6×103) W= HASS FLOW RATE THRU. HEAT EXCHANGER SHELL #/iR = (15,28 #/AR + 10' 1.2#/ = 3 × 3FT2 × 3.65EC/AR C = SHELL SIDE FLUID DENSITY #/FF3 A = MEAN CROSS FLOW = 12. 0 FT/SEC AREA WITHIN TUBE BUNDLE BETWEEN BAFFLE WINDOWS FT2 3 DETERMINE VORTEX SHEDDING FREQUENCY 3.fs = NSV/00 D.3 NS = NIN- DIHENSIGN AL STROUMAL NUMBER Js = VORTEX SHEDDING $= \left(\frac{0.4 \times 12.0}{0.75/12}\right) = 77 c/s \\ 57.6 c/s$ FREQUENCY CAS V= TAMNSVERSE FLEW VELOCITY FT/SEC f. vs 3f. V

FORM (285)-47

Page 1-4-9

BYTHONICION DATE 6-26-72 SUBJE

CHKD. BY DATE

57.6

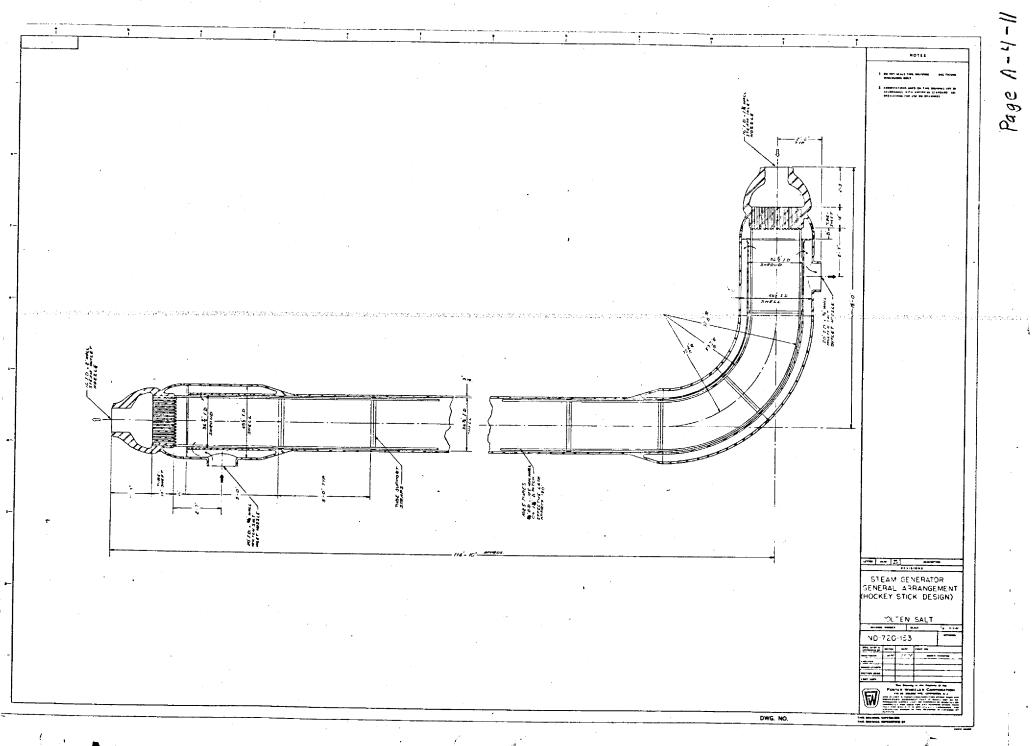
•

SHEET NC. 10 JOF 12

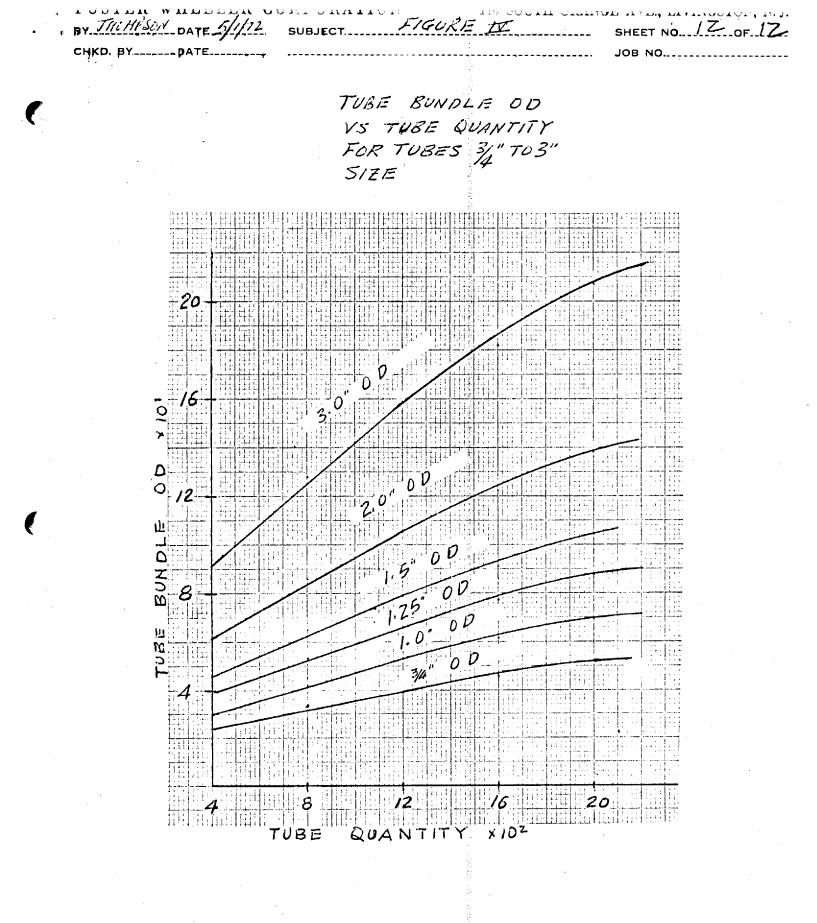
NO.....

(5) 12) = 183 HO-10 K, T = S2

FOR UNIFURH BEAM SIMPLY SUPPORTED K, = 5


 $\overline{T} = \frac{\ell V^2 L^4}{\overline{EI}}$ $\Omega = \frac{\rho_{V^2}}{\rho_{V^2}}$ $= \cdot 83 + 10^{-10} \frac{k}{k} \left(\frac{\ell \nu^2 L^4}{FT} \right)^{\frac{1}{2}} \left(\frac{\ell \nu^2}{H \omega} \right)$ $\left[\frac{4}{15}, \frac{10}{10}, \frac{10}{120}, \frac{10}{120}, \frac{1}{29}, \frac{10}{29}, \frac{1}{2}, \frac{1}{10}, \frac{1}{2}, \frac{1}{10}, \frac{1}{2}, \frac{1}{10}, \frac{1}{2}, \frac{1}{10}, \frac{1}{2}, \frac{1}{10}, \frac{1}{2}, \frac{1}{10}, \frac{$

= (4.15 x 5.0519 x 1.86 x 5.835) 10-8


	V (Sps)	L (INS)	$L^2(N^2)$	$\frac{L^2}{\omega}$	-Fin	$lu = 2\pi f_m$	5/0x= C. 1/2 C
6 .	18	12	144	0.066	347-0	2180.0	1.5+10-1 2.268 NO-6
Υ.	1.2		324	6.334	154.0	970.0	7.50×10-7
		24	587-	1-097	85.0	535.0	24.75 +10-7
		3.6	1296	5.355	38.5	242.0	121.0410-7
		48	2304	17-200	21.7	136.0	3400×10-7
-		60	3600	38.600	14.9	93.0	880-0410-7

FORM (285).47

Page A-4-10

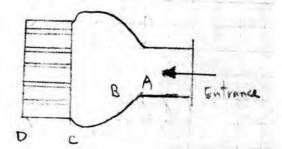
ву Пісні 50 рате 5//12 сңкр. вурате	SUBJECT. TUBF BUT BUANTITY FOR	VALE OD VS TONE TUBES 14" TO3" SIZE	SHEET NO. 11 OF 12
		$A = P(P_{X}, \delta c b) \qquad D^2$	· · · · · · · · · · · · · · · · · · ·
	$NA = (NP^2 + 866)$	$P = (D \neq 1.25)^2 \neq .86$	(4 = 1) (4 = 1) $(4 = 4)^{2}$
1324 .0	TUBE BUNNLE DIA	= 1.05 [N+.866 (1.250	$)^{2} \psi_{f_{T}}^{2} / \frac{1}{2}$
	4 · · ·		-
		= 1.25 N = + 1.45D	
	·····	N = 1.	45 D TUBE BUINDLE OD
5/4 14	" 400	20.00 1.	09 23.40
74	800	28.25	32.60
	1200	34.60	39.00
	1600	40.00	46.00
	2000	45.25	52.00
	400	20.00 1.	45 30,60
	800	28.25	42.75
	. 1200	34.60	53.00
	1600	40.00	61.00
	2000	45.25	69.00
- 1.2	5″ 400	20.00 1.	82 38.50
	800	28.25	53.00
	1200	34.60	66.00
	1600	40.00	76.50
	2000	45.25	86,50
1.50	400	20.00 2.	
	800	28.25	64.50
	1200	34.60	79.50
i	1620	40.00	91.20
	2000	45.25	104.00
2,"		20.00 2.	90 61.00
	800	28.25	86.00
	1200	34.60	106.00
	1600	40.00	122.00
	2000	45.25	138.00
3"	400	20.00 4.	35 91.00
	800	28.25	128.00
	1200	34.60	159.00
▼ >	1600	40.00	182.00
39 183824	2000	45.25	207. 0 F & FM 12851.47
			Page A-4-12

FORM (285)-47

\$P 18382A

APPENDIX B Thermal/Hydraulic Calculations Contents: (B-1) Steam side pressure drops at inlet nozzle and tubesheet (B-2) Steam side pressure drops at exit nozzle and tubesheet (B-3) Molten salt pressure drops at tube support plates and vibration suppressors (B-4) Molten salt pressure drops at inlet nozzle and shrouds (B-5) Molten salt pressure drops at outlet nozzle and shrouds (B-6) Analysis of dynamic flow stability in steam generators for the molten-salt breeder reactor B.E. Boyack, Gulf-GA-A12416 Gulf General Atomic November 20, 1972		CHARGE NO. 8	-25-2431 DOCUMENT NO. ND/74/66	ISSUE 1 DATE 12/16/7
 Thermal/Hydraulic Calculations Contents: (B-1) Steam side pressure drops at inlet nozzle and tubesheet (B-2) Steam side pressure drops at exit nozzle and tubesheet (B-3) Molten salt pressure drops at tube support plates and vibration suppressors (B-4) Molten salt pressure drops at inlet nozzle and shrouds (B-5) Molten salt pressure drops at outlet nozzle and shrouds (B-6) Analysis of dynamic flow stability in steam generators for the molten-salt breeder reactor B. E. Boyack, Gulf-GA-A12416 Gulf General Atomic November 20, 1972 	111			DATE 12/10/1
 Thermal/Hydraulic Calculations Contents: (B-1) Steam side pressure drops at inlet nozzle and tubesheet (B-2) Steam side pressure drops at exit nozzle and tubesheet (B-3) Molten salt pressure drops at tube support plates and vibration suppressors (B-4) Molten salt pressure drops at inlet nozzle and shrouds (B-5) Molten salt pressure drops at outlet nozzle and shrouds (B-6) Analysis of dynamic flow stability in steam generators for the molten-salt breeder reactor B. E. Boyack, Gulf-GA-A12416 Gulf General Atomic November 20, 1972 				
 Thermal/Hydraulic Calculations Contents: (B-1) Steam side pressure drops at inlet nozzle and tubesheet (B-2) Steam side pressure drops at exit nozzle and tubesheet (B-3) Molten salt pressure drops at tube support plates and vibration suppressors (B-4) Molten salt pressure drops at inlet nozzle and shrouds (B-5) Molten salt pressure drops at outlet nozzle and shrouds (B-6) Analysis of dynamic flow stability in steam generators for the molten-salt breeder reactor B. E. Boyack, Gulf-GA-A12416 Gulf General Atomic November 20, 1972 				
 Contents: (B-1) Steam side pressure drops at inlet nozzle and tubesheet (B-2) Steam side pressure drops at exit nozzle and tubesheet (B-3) Molten salt pressure drops at tube support plates and vibration suppressors (B-4) Molten salt pressure drops at inlet nozzle and shrouds (B-5) Molten salt pressure drops at outlet nozzle and shrouds (B-6) Analysis of dynamic flow stability in steam generators for the molten-salt breeder reactor B. E. Boyack, Gulf-GA-A12416 Gulf General Atomic November 20, 1972 				
 (B-1) Steam side pressure drops at inlet nozzle and tubesheet (B-2) Steam side pressure drops at exit nozzle and tubesheet (B-3) Molten salt pressure drops at tube support plates and vibration suppressors (B-4) Molten salt pressure drops at inlet nozzle and shrouds (B-5) Molten salt pressure drops at outlet nozzle and shrouds (B-6) Analysis of dynamic flow stability in steam generators for the molten-salt breeder reactor B. E. Boyack, Gulf-GA-A12416 Gulf General Atomic November 20, 1972 			Thermal/Hydraulic Calc	ulations
 (B-6) Analysis of dynamic flow stability in steam generators for the molten-salt breeder reactor B. E. Boyack, Gulf-GA-A12416 Gulf General Atomic November 20, 1972 		Conte	nts:	
 (B-6) Analysis of dynamic flow stability in steam generators for the molten-salt breeder reactor B. E. Boyack, Gulf-GA-A12416 Gulf General Atomic November 20, 1972 	MADE	(B-1)	Steam side pressure drops at inl	of meanly and the second
 (B-6) Analysis of dynamic flow stability in steam generators for the molten-salt breeder reactor B. E. Boyack, Gulf-GA-A12416 Gulf General Atomic November 20, 1972 	NET	(B-2)	Steam side pressure drops at mi	et nozzle and tubesheet
 (B-6) Analysis of dynamic flow stability in steam generators for the molten-salt breeder reactor B. E. Boyack, Gulf-GA-A12416 Gulf General Atomic November 20, 1972 	E BI	(B-3)	Molten salt processes lines	t nozzle and tubesheet
 (B-6) Analysis of dynamic flow stability in steam generators for the molten-salt breeder reactor B. E. Boyack, Gulf-GA-A12416 Gulf General Atomic November 20, 1972 	HAN)	vibration suppressors	pe support plates and
 (B-6) Analysis of dynamic flow stability in steam generators for the molten-salt breeder reactor B. E. Boyack, Gulf-GA-A12416 Gulf General Atomic November 20, 1972 	SEE	(B-4)	Molten salt pressure drops at inl	et nozzle and shrouds
(B-6) Analysis of dynamic flow stability in steam generators for the molten-salt breeder reactor B. E. Boyack, Gulf-GA-A12416 Gulf General Atomic November 20, 1972		(B-5)	Molten salt pressure drops at out	let nozzle and shrouds
		(B-6)	Analysis of dynamic flow stabilit	
			B. E. Boyack. Gulf-GA-A12116	or
			Gull General Atomic	

BY_HLC DATE VILLER CURPORATION 110 SOUTH ORANGE AVE., LIVINGSTON, CHKD. BY_____DATE SUBJECT Steam Side Pressure drop of SHEET NO. 1 OF.


B-1

and the sheet at 100, 80, 60, 40 and 20% load conditions

Référence : 111 Engineering Department Manual, Volume I. FWC 121 Thermal Engineering Department Manual, Volume I. FWC 121 Thermal Engineering performance computer code output 131 Steam Generator General Brrangement, Drawing No. ND-720-153 B. FWC 1967 ASME Steam Tables

(I) 100% load

Flow inte m = 2.538 x10 1/kr From computer code output, the temperature and pressure out point D are To = 700 F

Page B-1-1

Jp = 3968.8671 psia

The kingth of tabe that $L = 15.5^{\circ} = 1.2917$ ft Flow criss section area $A = 1000 \times \frac{1}{4}\pi \left(\frac{0.48}{12}\right)^{2} = 1.2698$ ft² mass velocity $G = \frac{10}{A} = \frac{3.538 \times 10^{10}}{1.2698} = 1988739.36$ $\frac{10}{4t^{2}}e_{r}$ = 555.2055 $\frac{10}{4t^{2}}e_{r}$ BY._____DATE_____SUBJECT.

CHKD. BY_____DATE____

SHEET NO DF ...

$$M = 0.1261 \quad \text{Westar}$$

$$R_{e} = \frac{147D}{M} = \frac{1998733.96 \times \frac{0.430x}{12}}{0.1261} = 637319.6)$$

$$R_{e} = \frac{147D}{M} = \frac{1998733.96 \times \frac{0.430x}{12}}{0.1261} = 637319.6)$$

$$R_{e} = \frac{147D}{M} = \frac{1998733.96 \times \frac{0.430x}{12}}{0.480x} = 0.00011444$$
From Moody's degree $f = 0.0143$

$$A_{elluma} \quad P_{e} = 37163.3140 \quad p_{elle}$$

$$T_{e} = 700^{\circ}F$$

$$\therefore \sqrt{e} = 0.0293x \quad \frac{1}{3}\frac{1}{12}$$

$$= 0.0143x \times \frac{325.005x^{2}}{2\times32x} \times 0.0215x - \frac{1.2917}{\frac{0.4805}{12}} \times 1044$$

$$= 0.4569$$

$$R_{e} = 3768.86714 \cdot 0.4563 = 3269.3240 \quad p_{elle}$$

$$T_{e} = 700^{\circ}F$$

$$T_{e} = 0.0295$$

(b) Sudden Contraction

$$A_2 = 1.2618$$
 it
 $A_3 = \frac{1}{4}\pi \left(\frac{\pi 2}{\pi 2}\right)^2 = 5.6211$ it
 $\frac{A_2}{A_1} = 0.1320$

FORM (285).47

Page B-1-2

FOSTER WHEELER CORPORATION

110 SOUTH ORANGE AVE., LIVINGSTON, P

BY.....DATE...... SUBJECT. SHEET NO. 3 OF 1 CHKD. BY_____DATE al a barren de la compañía de -----JOB NO.....

$$k_{1} = 1.5 - 0.648 \left(\frac{A_{1}}{A_{1}}\right) - 0.852 \left(\frac{A_{1}}{A_{1}}\right)^{2} \qquad (\text{Ref. 1})$$

$$= 1.5 - 0.648 \times 0.1320 - 0.852 \times 0.1320^{2}$$

$$= 1.3136$$

$$= 1.3136 \times \frac{1}{29} \sqrt{2} \cdot \frac{4^{2}}{4}$$

$$= 1.3136 \times \frac{1}{29} \sqrt{2} \cdot \frac{4^{2}}{4}$$

$$= 1.3136 \times \frac{1}{294} \times 0.0295 \times 555.205^{2} \times \frac{1}{144}$$

$$= 1.3724$$

$$T_{B} = 3769.3240 + 1.3744 = 3770.6864 \text{ psia}$$

$$T_{B} = 700^{\circ}\text{F}$$

(c) Sudden Expansion

$$A_1 = \frac{\pi}{4} \left(\frac{1b}{12}\right)^2 = 1.39b3 + t^2$$

 $A_2 = 3.5211 + t^2$
 $N_2 = 2\left(1 - \frac{A_2}{A_1}\right) = 2\left(1 - \frac{4.5211}{1.3953}\right) = -11.78v8$
 $G_{18} = \frac{M_1}{A_8} = \frac{1.538 \times 10^6}{1.5211 \times 3500} = -73.2764$
 $\xrightarrow{16}{15t^2}$

FORM (285).47

SHEET NO 4 OF BY.....DATE SUBJECT..... CHKD. BY DATE

JOB NO.....

$$\frac{(p)}{G} = \frac{2.553 \times 10^{6}}{1.5963} = 1817660.96 \frac{16}{8r.54^{2}}$$
$$= 1817660.96 \frac{16}{8r.54^{2}}$$
$$= 104.9058 \frac{16}{54^{2}} \text{ sec}$$

$$k_{r} = \frac{GV}{M} = \frac{181760.96 \times \frac{16}{12}}{0.1261} = 1.922 \times 10^{7}$$

×

FORM (285) ..

LODIER	WHELLER	CORPORATION
BY		

110 SOUTH ORANGE AVE., LIVINGSTON,

CHKD. BY DATE

SHEET NO. 5 OF

(I) 80% Load 101 = 2030400 the To= JovF Po = 3714.4229 psia Up = 0.0297 tt3/

 $\frac{(a)}{b} = \frac{1}{a^{2}} \frac{at}{b} \frac{t}{b} \frac{$

 $\leq p_{4} = 0.0147 \times \frac{444.16^{2}}{64.4} \times 0.0297 \times \frac{1.2917}{0.4815} \times 144 = 0.2984$

FORM (285) .47

Page 8-1-5

FOSTER WHEELER CORPORATION

110 SOUTH ORANGE AVE., LIVINGSTON,

(b) Extraction

K== 1.3956

 $\Delta |_{b}^{2} = 1.3756 \times \frac{1}{644} \times 20197 \times 444.16^{2} \times \frac{1}{144} = 0.8843$

PB= 321+,7213+ 0.8843= 3715,6056

(c) Expansion

N2 = -11.7808

 $G_{B} = \frac{2030400}{9.6211 \times 360} = 58.6212$

SPb = -11.78.8 × 1/144 × 0.0297 × (58.6412)² × 1/144 = -0.1297

Pa= 3715 bosto - 0.1297 = 3715.4759

$$D = \frac{1030400}{1.5963} = 1454128.77 \qquad = 403.92 \qquad = 403.92 \qquad = 403.92 \qquad = 1454128.77 \qquad = 403.92 \qquad = 1454128.77 \times \frac{16}{12} = 15498308.23 \qquad = 15498308 \qquad = 15498808 \qquad = 154980808 \qquad = 154980808 \qquad = 1569808 80808 \qquad = 1569808 \qquad = 1569808080808080808 \qquad = 1569808080808080$$

FORM (285)-4

Page B-1-6

"HLJUDA UC		110 SOUTH ORAN	TE AVE INTRODUCE
BYDATE	SUBJECT.		SHEET NO] OF
CHKD. BYDATE			
			JOB NO

$$\angle l' = 0.0033 \times \frac{403.92^{2}}{64.4} \times 0.0297 \times \frac{1}{1.3333 \times 144} = 0.0033$$

= 1.0563

$$\frac{11}{11} \frac{60\%}{10\%} \frac{1}{10\%}$$

$$\frac{11}{10} = 1522800 \frac{11}{10\%}$$

$$T_{D} = 700\%$$

$$P_{D} = 3673.1113$$

$$T_{D} = 0.0299 \frac{11\%}{10\%}$$

$$M = 10.6 \times 10^{-7} \times 115826.515 = 0.1228 \frac{11}{10\%}$$

(a) oP at tube shut

$$G = \frac{1522800}{12580} = 1199243.98 \xrightarrow{10}{120}$$

$$= 353.12 \xrightarrow{10}{100}$$

$$= 353.12 \xrightarrow{100}{100}$$

$$K_{P} = \frac{1139243.78 \times \frac{0.4805}{12}}{0.1228} = 392667.77$$

- = 0,0001244

FORM (2851-47

Page B-1-7

FUSIER WHELLER C	ORPORATION 110 SOUTH O	RANGE AVE., LIVINGSTON,
BY DATE	SUBJECT	MANGE AVE., LIVINGSION,
CHKD. BYDATE		SHEET NO

$$a_{4}^{2} = 0.015 \times \frac{332.12^{2}}{64.4} \times 0.0199 \times \frac{1.2917}{0.4815} = 0.171.$$

(b) Contraction

$$c_{1}^{2} = 1.3996 \times \frac{1}{64.4} \times 0.0299 \times 333, 12^{2} \times \frac{1}{144} = 0.5008$$

$$c_{1}^{2} = 3673, 7845 \quad psin$$

(c) Expansion

$$T_B = \frac{152800}{7.6211 \times 3600} = 43.9659$$

$$\frac{b}{47} = \frac{1522800}{1.3963} = 1090596.58$$

$$= 302.9435$$

$$Re = \frac{1090596.58 \times \frac{16}{12}}{0.1228} = 11841439.52$$

FORM (2851-47

Page B-1-8

FUSIER WILLER C	URPORATION 110 SOUTH OPAN	
BYDATE	SUBJECT	GE AVE., LIVINGSTON,
CHKD. BY DATE		SHEET NO 9 OF
		1000 110

$$\Gamma_{entraru} = 3673.7130$$
 psia

11

$$\frac{11}{11} \frac{4}{4} \frac{7}{2} \frac{1}{2} \frac{$$

I at take shut (a)

$$G = \frac{101 \times 200}{1 - 2678} = 799495.9856 \qquad \frac{16}{42} hr$$

$$= 2222.0822 \qquad \frac{16}{44} - sec.$$

$$R_{2} = \frac{1199495.3856 \times \frac{0.485}{12}}{2.64361.85} = 2.64361.85$$

12

0.1216

FORM (285) .47

Page B-1-9

FUSIER WHEELER C	ORPORATION	110 SOUTH ORANG	
BYDATE	SUBJECT	III DOUTH ORAIN	E AVE., LI
CHKD. BY DATE			SHEET NO

SHEET NO. 10 OF

$$\frac{\varepsilon}{P} = 0.0001244$$

$$b_{f} = 0.01b_{2} \times \frac{212.0812^{2}}{64.4} \times 0.05 \times \frac{1.2917}{0.0830} = 0.0830$$

(b) (mtraction

$$\leq P_{b} = 1.319b \times \frac{1}{644} \times 0.03 \times 222,0822 \times \frac{1}{144} = 0.2233$$

 $P_{B} = 3659.7474$ prime

$$(c) = \frac{1015100}{3.6211 \times 3600} = 29.3106$$

= $P_{b} = -11.7808 \times \frac{1}{6444} \times 0.05 \times 29.3106^{2} \times \frac{1}{1004} = -0.0327$
:: $P_{A} = 3659.7147$ psia

(D) Nogels inlet

$$G = \frac{1015200}{1-3963} = 727064.38 \qquad H = 201.9623 \qquad H = 201$$

FORM (285) .47

Page B-1-10

FOSTER WHEELER CORPORATION BY.____DATE

110 SOUTH ORANGE AVE., LIVINGSTON, 1 SHEET NO. 11 OF.

SUBJECT CHKD. BY_____DATE____

JOB NO

$$R_{e} = \frac{72706438 \times \frac{15}{12}}{0.1216} = 7972197.15$$

$$cf_4 = 0.0079 \times \frac{201.9623}{64.4} \times 0.03 \times \frac{1}{1-3333 \times 144} = 0.0009$$

$$\frac{\mathbf{I}}{\mathbf{n}} = \frac{30\%}{100\%} \frac{100\%}{100\%}$$

$$\frac{10}{10} = \frac{30\%}{100\%}$$

$$\frac{10}{10} = \frac{100\%}{10\%}$$

$$\frac{10}{10} = \frac{100\%}{10\%}$$

$$\frac{10}{10\%} = \frac{100\%}{10\%}$$

$$\frac{101}{67} = \frac{507600}{1.2618} = 378747.9918 \qquad \frac{11}{42} + 1}{15} = 111.0411 \qquad \frac{15}{56} + 2000$$

FORM (285)-47

Page B-1-11

FUSTER WHEELER CORPORATION

110 SOUTH ORANGE AVE., LIVINGSTON,

JOB NO.....

$$Re = \frac{349749.9318 \times \frac{9.48.5}{12}}{9.1216} = 1.32180.9252$$

$$2 + \frac{111.0411^{2}}{64.4} \times 0.0301 \times \frac{1.2917}{0.4815} \times 144 = 0.023)$$

$$\frac{(b)}{24} \frac{1}{1644} = 1.555b \times \frac{1}{644} \times 0.0501 \times 111.0411^{2} \times \frac{1}{144} = 0.05b0$$

$$F_{B} = 3615.5054 \quad \text{psin}$$

$$\frac{(c)}{66} = \frac{507600}{7.6411 \times 360} = 14.6553$$

$$\Rightarrow P_{b} = -11.78 \times \frac{1}{644} \times 0.0501 \times 14.6553^{2} \times \frac{1}{144} = -0.0082$$

$$\frac{101 \text{ Night inlet}}{17 = \frac{100,9812}{1.3963} = 363532.1922 \quad \frac{16}{44} + 6_{1} = 100.9812 \quad \frac{16}{34^{2}} + 22 \text{ PORM (200).47}}{Page B-1-12}$$

THICKNON	EAVE TIME	110 SOUTH ORANG	Cat ORALIVIN		-
			SUBJECT	DATE	BY
OF	SHEET NO			DATE	CHKD. BY
	SHEET NO.		SUBJECT.	DATE	

$$R_{e} = \frac{363552,1922 \times \frac{16}{12}}{0.1216} = 3986.98.599$$

$$\frac{2}{D} = 0.0001.575$$

$$f = 0.0015$$

$$-P_{j} = 0.0015 \times \frac{1001312}{64.4} \times 0.0501 \times \frac{1}{1.3333 \times 144} = 0.0002$$

Total Prassure Drop = 0.0711 psi

Page B-1-13

BY HLC DATE SUBJECT Steam Side Pressure Prop at SHEET NO. OF. CHKD. BY DATE Exit Nozyle and take sheet JOB NO.

B-2

Objective Calculate the outlet steam side pressure drop through Noz and tube sheet at 100, 80, 60, 40 and 20% load conditions

Reference III Engineering Department Manual, Volume I. FWC

- (2) Thermal hydrauble performance computer code output
- (31 Steam Generator General Arrangement

Drawing No: ND - 720-153 B FWC

HI 1967 ASME Stram Tables

(I) 100 % Loca

$$a) = p \text{ at Exit regile } \leq P_{AS}$$

$$P_{A} = Sb_{2} \cdot p \text{ fin} \cdot TA = 1000 \text{ F}$$

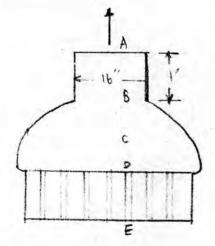
$$V_{A} = 0.1946 \quad H_{16}^{3}$$

$$M_{B} = 0.08108 \quad H_{10}^{3} \cdot 51$$

$$P_{A} = 0.08108 \quad H_{10}^{3} \cdot 51$$

$$P_{A} = 0.00006 \text{ in}$$

$$P_{A} = 0.000006 \text{ in}$$


$$P_{A} = 0.0000006 \text{ in}$$

$$P_{A} = 0.0000006 \text{ in}$$

$$A_{A} = 1.3333 \quad \text{st}$$

$$A_{A} = 1.3963 \quad \text{st}$$

$$L_{A} = 1.53$$

FORM (285

WILLELER CURFURALIUN 110 SOUTH URANGE AVE., LIVINGSTON SUBJEC' CHKD. BY DATE ... JOB NO. M= 2.538×10 1/2 (710 = - 2.538x10 = 1817660.96 Kr-st = 504. 9018 1/1-sec Rx = GD = 2.1896x107 + = 0.00 7 alt= +1 -1 v 4 = 0.001 × 1 × 1 × 0.1996 × 504.9058 × 144 = 0.0288 Due to change of elevation alg = 1 = 0.0348 - - - = 00283 + 00248 = 0,0636 : R= 3600.=626 TR = 1000 F Vic = 0.1996 (b) Extruction 2PB.c A. = 9.6211 +t 2 P = N2 (Vh)2 $N_{3} = 1.5 - 0.64 \times \left[\frac{A_{1}}{A_{1}}\right] - 0.852 \left[\frac{A_{2}}{A_{1}}\right]^{2}$

 $\frac{A_{\rm L}}{A_{\rm I}} = \frac{A_{\rm B}}{A_{\rm L}} = \frac{1.3163}{9.1.11}$

FORM (285)

FUSIER WHEELER C		110 SOUTH ORAN	GE AVE., LIVINGSTON
BYDATE	SUBJECT		SHEET NO 3 OF
CHKD. BY DATE			JOB NO

$$P_{c} = 3600.0656 + 7.3416 = 3607.4052$$

 $1c = 1000 F$
 $1c = 0.1141$

$$\frac{1}{42} + \frac{1}{44} $

+ DE - 1.2717 34

FORM (285) -

UN 110 SOUTH ORANGE AVE., LIVINGSTO

$$\begin{aligned} \int_{0}^{1} p = (1 + 2^{-1}) \frac{3}{2} \frac{1}{2} \frac{1}{4} $

Page B-2-4

FUSTER WHEELER CO	DRPORATION 110 SOUTH ORAN	GE AVE., LIVINGSTON,
BYDATE	SUBJECT.	
CHKD. BYDATE	······	JOB NO

$$\frac{1}{2} \frac{1}{1} \frac{1}$$

· PB = 3600.0508 psia, VB = 0.2169 743

Page B-2-5

FORM

BY	DATE	SUBJECT.		SHEET NO. 6
СНКО. ВУ	DATE	······		JOB NO
11.1	rt +			
(0)	Extention APB-	2		
	12=1-386			
- Ps.	$= 1 + 3 \times \frac{1}{64.2}$	- xezl67 x 335.	$1442^{2} \times \frac{1}{144} = 4.400$	2
	$f_{i} = s_{i}$.0508 + 4.4042 =	= 3604.4550	
	Vic = 0 211	s b		
	$G_{TC} = \frac{18}{1.62}$	11 × 3600 = 50	+. ++++3 1b/ 5t= sec	
(L)_[Expansion 2Priv			
	N2 = - 13, US	37	0	
~Po	n= - 13 1537 × -	1 64.4 × 0.2166 × (3	$(4,4443)^2 \times \frac{1}{144} = -0$	۲۱۰۶
	i Po= 3600	+ 4550 - 0,9101)	= 3603, 5443	
	$\mathcal{N}_{\mathbf{p}} = \mathcal{O}(\mathbf{r})$	67		
(A)	-Pore at tube	sibect		
	$0 = \frac{(885730)}{12638}$		16/	

DEOLANCE Kite

FORM (285).

FUSTER WHEELER CORPORATION

110 SOUTH ORANGE AVE., LIVINGSTON,

$$k_{z} = \frac{1 + 3 5060,631 \times 0.0402}{0.084 \times 1} = 706084.42$$

$$\frac{2}{D} = 0.0001244$$

Assume
$$Pe = 36.5.4.87$$

 $VE = 0.2165$
 $V = 5(VE + V0) = 0.21$

$$\Delta P_{4} = 0.0143 \times \frac{1.2117}{0.0402} \times \frac{1}{644} \times 0.2166 \times 412.5168^{2} \times \frac{1}{144} = 1.8262$$

$$= P_{q} = \frac{(0.2166 \times 144)}{(0.2167 - 0.2165) \times \frac{442.5108}{64.4} \times 3} > 0.0110$$

· = 18262 + 0.414 + 00110 = 1.8786

$$T_{E} = 3603.5443 + 1.8986 = 3605.4229$$

$$T_{E} = 1066^{\circ}F$$

$$T_{E} = 0.2165 \quad 346$$

Total pressure Drap 5Ptotal = 3605.4229 - 3600 = 5.4229 psi x

FORM (285)

FUSIER WHEELER C		110 SOUTH ORANGE AVE., LIVINGSTON,	
BYDATE	SUBJECT		SHEET NO. 8 OF.
CHKD. BYDATE			JOB NO

$$1/2 = 3600 \text{ psia}$$

 $T_A = 1033.7 \text{ F}$
 $V_A = 0.2251$
 $U_A = 0.03571 \text{ F}$

$$G_{TD} = \frac{1367220}{13363} = 979173.53$$

= 271.9926 $\frac{16}{14}$ = 271.9926 $\frac{16}{14}$ = 271.9926

$$R_e = \frac{971173.53 \times 1.3333}{0 \times 3571} = 1.5232 \times 10^7$$

1 = 0.30 8

$$SP_{4} = \frac{0.008 \times 1}{1.3333} \times \frac{1}{14.4} \times 0.2251 \times 271.8826^{2} \times \frac{1}{144} = 0.0108$$

$$SP_{4} = \frac{1}{0.2251 \times 144} = 0.0309$$

$$SP_{4} = 0$$

$$SP_{4} = 0.0181 \times 0.0207 = 0.0417$$

$$SP_{4} = 0.0251$$

FORM (28

-

FORM (285) ..

BY.....DATE.....

SHEET NO. 10 OF 14

4- 1-213

Assume
$$fe = 3605.7227$$

 $T_{e} = 0.2243$
 $T_{e} = 0.2243$
 $T_{e} = 0.015 \times \frac{1.2517}{5.0402} \times \frac{1}{644} \times 0.2049 \times 295.0391^{2} \times \frac{1}{144} = 1.0456$
 $P_{e}^{2} = \frac{12717}{5.2249 \times 104} = 0.0319$
 $S_{e}^{2} = \frac{(0.2260 - 0.2248) \times \frac{149.0351^{2}}{644} \times 3}{144} = 0.0058$

$$T_{E} = 36.2 \text{ cm} + 1.0913 = 3603.1140$$

 $V_{E} = 0.2249$

$$= \frac{1}{2} \frac{1}{2} = 0.0599$$

 $\sim ?$

VE = 0.2241

FORM (285)-47

FUSIER WHLELER U		110 SOUTH ORANGE AVE., LIVINGSTON,	
BYDATE	SUBJECT	SHEET NO	
CHKD. BYDATE		JOB NO	

$$\frac{111}{P_{A}} = \frac{40\%}{100} \frac{1}{100}$$

$$\frac{1}{P_{A}} = \frac{100}{100} \frac{1}{100}$$

$$\frac{1}{P_{A}} = \frac{100}{100} \frac{1}{100} \frac{1}{100}$$

$$\frac{1}{P_{A}} = \frac{100}{100} \frac{1}{100} \frac{1}{100}$$

$$\frac{1}{P_{A}} = \frac{100}{100} \frac{100}{100} \frac{1}{100} \frac{1}{100}$$

$$= 180.1507 \frac{100}{100} \frac{1}{100}$$

2

$$\leq \beta_{4} = \frac{0.008 \leq \times 1}{1.3333} \times \frac{1}{644} \times 0.2268 \times 180.1507^{2} \times \frac{1}{144} = 0.005)$$

$$\leq \beta_{3} = \frac{1}{0.2268 \times 144} = 0.0306$$

$$\leq \beta_{4} = 0$$

$$\leq \beta_{4} = 0$$

$$\leq \beta_{4} = 0$$

$$\leq \beta_{4} = 0.0306 = 0.0357$$

$$\beta_{6} = \beta_{602.0357} \quad \beta_{572}$$

$$\beta_{6} = \beta_{602.0357} \quad \beta_{572}$$

$$\beta_{6} = 0.2268 \quad \frac{143}{16}$$

FORM 128

FUSIER WHEELER CO	JRPORATION	110 SOUTH	ORANGE	AVE.,	LIV
BYDATE	SUBJECT		S	HEET	NO

CHKD. BY DATE

Ľ

INGSTON, N. JOB NO.

$$\frac{(h)}{(m)m(k)} = -\frac{1}{150} \frac{1}{100} = -\frac{1}{150} \frac{1}{100} = -\frac{1}{150} \frac{1}{100} + \frac{1}{100} \frac{1}{100} + \frac{1}{100} \frac{1}{100} \frac{1}{100} + \frac{1}{100} \frac{1}{100} \frac{1}{100} + \frac{1}{100} \frac{1}{100} \frac{1}{100} + \frac{1}{100} \frac{1}{10$$

0.0357)

FORM (285)-47

PADA 8-2-12

BYDATESUBJECT CHKD. BYDATE			110 SOUTH ORANGE AVE., LIVINGSTO SHEET NO.	
$\frac{\dot{\epsilon}}{D} = 0 \ \sigma c$	3 1244			
+ = 0.215"	1			

Attand
$$|\theta = 2602.9196$$

 $\gamma_{\overline{e}} = 0.2166$
 $\gamma_{\overline{e}} = 0.2166$
 $\gamma_{\overline{e}} = 0.0157 \times \frac{1 \times 917}{0.9402} \times \frac{1}{644} \times 0.22665 \times 198.0977^2 \times \frac{1}{144} = 0.4839$
 $\alpha P_{\overline{e}} = \frac{12117}{0.2665 \times 144} = 0.0376$
 $\alpha P_{\overline{e}} = \frac{12117}{0.2665 \times 144} = 0.0376$
 $\alpha P_{\overline{e}} = \frac{10267 - 0.2266}{144} \times \frac{118.0977^2}{144} \times 3$
 $\gamma_{\overline{e}} = 0.0013$

$$P_{f} = 0.4839$$

$$P_{g} = 0.0316$$

$$P_{h} = 0$$

$$P_{f} = 0.5235$$

$$P_{e} = 3600.1176 + 0.5155 = 3601.4411$$

$$V_{e} = 0.2267$$

$$Total pressure thep Prote = 1.4411 prime$$

FORM (205) .47

110 SOUTH ORANGE AVE., LIVINGSTON,

BY..... DATE SUBJECT.

SHEET NO. 14 OF.

 $\frac{1}{10} \frac{10\%}{20\%} \frac{100\%}{1000}$ $\frac{1}{100} = 3600 \text{ psia}$ $Th = 1000 \text{ s}^{\circ}F$ Vh = 0.0224 U = 0.005571

(a) a Pas at autist will

 $G_{1/2} = \frac{41.090}{1.3963} = 330086.66 \frac{11}{46-14}$ = 91.6907 $\frac{10}{54-14}$

7= 00093

FORM (285)

Page B-2-,

FOSTER WHEELER C	110 SOUTH ORAN	GE AVE., LIVINGSTON,
BYDATE		SHEET NO. 15 OF.
CHKD. BYDATE	 	JOB NO

$$\frac{15^{12}}{10^{12}} = 1.588^{12}$$

$$\frac{15^{12}}{10^{12}} = 1.588^{12}$$

$$\frac{15^{12}}{10^{12}} = 1.588^{12} \times \frac{1}{10^{14}} \times 0.2114 \times 91.6807^{12} \times \frac{1}{10^{14}} = 0.2799$$

$$\frac{15^{12}}{10^{12}} = \frac{1}{5} \frac{10^{12}}{10^{12}} + 0.2799 = 3000.3125$$

$$\frac{15^{12}}{10^{12}} = 0.2214$$

$$\frac{15^{12}}{10^{12}} = 0.1557$$

$$\frac{15^{12}}{10^{12}} = -13.1537 \times \frac{1}{10^{14}} \times 0.214 \times 13.307^{12} \times \frac{1}{10^{14}} = -0.0559$$

$$\frac{15^{12}}{10^{12}} = 0.1149$$

FORM (285) ..

110 SOUTH ORANGE AVE., LIVINGSTON,

SHEET NO ... JOF ... OF ...

$$= \int_{1}^{1} = 0.017 \times \frac{1.2917}{0.0402} \times \frac{1}{64.4} \times 0.2274 \times 100.8252^{2} \times \frac{1}{144} = 0.1332$$

$$= \int_{0}^{1} \frac{1.2917}{0.2224 \times 144} = 0.0403$$

 $T_{E} = 2600 + 666 + 0.1735 = 3600.4301 PSia$ $T_{E} = 0.2774 + \frac{34^{2}}{14}$

Total pressure Drop & Protal = 0.4301 per "

FORM (285).

Page B-2-11

BY FUC DATE 10/9/14 SUBJECT Moltin Salt of through table SHEET NO. OF 19 FOSTER WHEELER CORPORATION CHKD. BY_____DATE_____ Support plates and Vibration suppressers. JOB NO..... B-3 chiertile: Calculate the pressure drops of notten salt passing - trough - take support plates and vibration suppressors Reference = (1) Engineering Lignation Manual, Volume I, FWC 1) - termal hydraulic performance computer code output Tibe support plate, Drawing is. ND-720-195 (3) HI Tube vibration suppressor, Drawing NO. ND-140-197 (3) 1967 ASNIE Steam Tables

(2) 100% Lord

(a) sp tube infort plates

Based on basic design 1000 takes, 120 Ht long. 13 the rods 7.5 of shell = 39.5" éléctrones = 32

Aline of charance Az = 0.080214 th Free flow area at table import A1 = 0.003118 × 1000 + A2 = 3, 189214 55

Fire flow area at table bundle $A = \frac{1}{2\pi} \left(\frac{35}{12} \right)^{2} - 1000 \times \frac{1}{2\pi} \left(\frac{002}{12} \right)^{2} - 13 \times \frac{1}{2\pi} \left(\frac{136}{12} \right)^{2}$ = (. Konsuy - 3,01.7962 - 0.099986 5.341.856 42* Page 8-3-1

RM (265)-

110 SOUTH ORANGE AVE., LIVINGSTO

$$\frac{A_1}{A} = \frac{3189214}{5341894} = 0.538391 - \left(\frac{D_1}{P}\right)^2$$

$$\frac{D_1}{D} = 0.944$$

$$h = 0.323$$

$$\Delta P = k \frac{1}{29} \times \frac{1}{5} - \frac{1}{5} - \frac{2}{5}$$

$$(\frac{1}{5} = \frac{15.08\times10^6}{5.301871} = 2865407.62 \quad \frac{14}{5} + -54^2$$

$$= -394.5577 \quad \frac{16}{5} + \frac{$$

From the computer cutput, the temperature at each tube support plate is tabulated below. Location of tube support plate is measured from a deg. (u.bration suppressors are included)

FORM (285

Page 8-3-2

FUSIER WREELER CURFURATION

110 SOUTH ORANGE AVE., LIVINGSTON, N. SHEET NO.

BY_____DATE_____SUBJECT.____ CHKD. BY_____DATE_____

JOB NO....

suppressors

Location, At	Temp. 07	specific uslume -it/16
267	826	(1, 938 }
4.46	853	0.0083
0.11	864	0.0083
9.96	810	6 0083
12.7:	804	0.0083
17.35	28*	2 33 84
12,81	874	0.0034
\$13>	104	0 2084
12.33	3.2	0.0084
\$2.53	728	00084
42.35	940	0.008X
a7.33	150	0.0125
52.33	68	0.0085
\$ 1.39	18:	5. 28 g z
62.32	539	0.0086
·), \$}	1012	0.0086
D233	(*50	0 0886
9733	(~4.5	0.2087
84.53	1062	0.2037
8 2-33	1070	0.0087
7.2.53	(= 8 ")	5,0387
47.33	1173	0 2288
• 2.33	14 2.	0.0088
127.53	1145	v. 408 8
(2 , 3]	1139	u un 88
533	144	5,0088

FORM (285).47

Page 8-3-3

28!

FOSTER WHEELER CORPORATION 110 SOUTH ORANGE AVE., LIVINGSTON,

CHKD. BY_____DATE_____ JOB NO._____

$$2-\gamma_{1} = 0.135 \times \frac{1}{64.4} \times 0.083 \times 784.5577^{2} \times \frac{1}{64.4} = 0.183b$$

$$2-\gamma_{1} = 0.055 \times \frac{1}{64.4} \times 0.0084 \times 784.5577^{2} \times \frac{1}{64.4} = 0.1859$$

$$2+\gamma_{2} = 0.575 \times \frac{1}{64.4} \times 0.0084 \times 784.5577^{2} \times \frac{1}{64.4} = 0.1881$$

$$= \sqrt{4} = 0.575 \times \frac{1}{64.4} \times 0.0086 \times 794.5577^{2} \times \frac{1}{64.4} = 0.1881$$

$$= \sqrt{4} = 0.575 \times \frac{1}{64.4} \times 0.0086 \times 794.5577^{2} \times \frac{1}{64.4} = 0.1925$$

$$= \sqrt{4} = 0.575 \times \frac{1}{64.4} \times 0.0087 \times 784.5577^{2} \times \frac{1}{64.4} = 0.1925$$

$$= \sqrt{6} = 0.575 \times \frac{1}{64.4} \times 0.0087 \times 784.5577^{2} \times \frac{1}{64.4} = 0.1925$$

$$= \sqrt{6} = 0.575 \times \frac{1}{64.4} \times 0.0087 \times 784.5577^{2} \times \frac{1}{64.4} = 0.1925$$

: Pressure obsep: accured at the support plates

$$SF = 20P_1 + 50P_2 + 40P_3 + 30P_4 + 40P_5 + 50P_6$$

$$= 4.3635 p_55$$

$$\frac{(b) = 9}{2} \cdot \sqrt{bnt} = \frac{3}{2}$$

$$\frac{(b) = 9}{2} \cdot \sqrt{bnt} = \frac{3}{2} \cdot \sqrt{bnt}$$

BY.....DATE SUBJECT. SHEET NO S....OF ... CHKD. BY DATE

JOB NO.....

Fix flow one at table build
$$A = 5.341896$$
 ft²

$$\frac{A_{1}}{A} = \frac{1.575734}{5.341596} = 0.635726 = \left(\frac{B_{1}}{P}\right)^{2}$$

$$\frac{B_{1}}{D} = 0.787$$

$$A = 0.78$$

$$\Delta P = Ar \frac{1}{24} \times \frac{1}{5} G^{2}$$

$$= 0.18 \times \frac{1}{644} \times 0.0083 \times 134 \times 577^{2} \times \frac{1}{104} = 0.1582$$

$$T = 3 \times builter impressors = ar = 0.4746$$

$$= 4.3632 + a.4746$$

$$= 4.3632 + a.4746$$

$$= 4.3531 \quad P^{51} = 7$$
(II) 80% Load

As in 100% Lovel case, the temperature at which take support plates and vibration officerson is tabulated below:

FORM (285)

110 SOUTH ORANGE AVE., LIVINGSTON, N. J

BY_____DATE_____ SUBJECT

CHKD. BY_____DATE_____ JOB NO._____

SHEET NO. 6 OF 13

Low Tron , At	Temp. "F	specific intra	
2.1-7	826	1.0083	
4.07	62X	-	
(2)	86 Z		
	363		{ vibration suppressor
۱ ₂ (۲)	5-16		7
1733	836	0.0084	
n = 33	400		
21.33	(:)	6	
34.33	521		
37-53	541	28000	
42 3 3	526	<i>1</i> 2	
41.33 · · · ·	. 371		
52.33	126		
57.32	103)	0.0:26	
5:33	6101	-	
\$7.33	1 > 2	<i>4</i> ,	
7: 53	(، د م	0.00%7	
52.33	1061	a e	
82.33	1075		
\$ 2.33	28° i		
32.33	્યત્ર	÷	
11-33	1102	88000	
1223	11.5		
(† 1).33 	(N°⊬N)		
112-33	1132		
2233	116)		

FORM (285)-47

PODE B-7-0

110 SOUTH ORANGE AVE., LIVINGSTON,

BY......DATE.......SUBJECT.....SHEET NO.......OF. CHKD. BY......DATE..........JOB NO......

$$= 0.125 \times \frac{1}{644} \times 0.0085 \times 655.5101^2 \times \frac{1}{144} = 0.1250$$

$$= p_2 - 0315 \times \frac{1}{644} \times 0.1384 \times 655.5101^2 \times \frac{1}{144} = 0.1265$$

$$= 1'_{5} = -375 \times \frac{1}{644} \times 0.0085 \times 655501^{2} \times \frac{1}{144} = 0.1280$$

= 1'_{4} = 0.305 \times \frac{1}{644} \times 0.086 \times 655.501^{2} \times \frac{1}{144} = 0.1285

$$x_{1}^{2} = 0.373 \times \frac{1}{644} \times 0.0087 \times 655.5101^{2} \times \frac{1}{104} = 0.1310$$

$$= \frac{1}{6} = 0.375 \times \frac{1}{644} \times 0.0088 \times 655.5101^{2} \times \frac{1}{104} = 0.1375$$

$$AP = u + k \times \frac{1}{64 \times 0.00} \times \frac{1}{100} \times \frac{1}{100} = 0.1079$$

$$B = 0.1079 \times 3 = 0.3250$$

$$Total = 0.3250 + 2.9740 = 3.2970 pti 21$$

FORM (285).

110 SOUTH ORANGE AVE., LIVINGSTON, N. BY.____ DATE_____ SUBJECT.____ SHEET NO... 8 OF

CHKD. BY_____DATE

JOB NO.....

NO 7 51-

location, H	Temp. of	specific uslowne	
2.67	8/1	ر ۳۵۰. <u>ن</u>	
4.67	566	4	
e i Santa	* *1)	4	
4.36	8/19	0.0×3 4	> vibration suppression
· · · · · · · · · · · · · · · · · · ·	887	4	
(0.33	300	:	
2.2.33	414.	ι	
° 7.33	930	÷.,	
\$2 \$3	Yab	0.0033	
· 153	964	<i>2.</i>	
1. 1. S	181	t	
49.33	Yix	0.0086	
S4 33	Na (2. 11	4	
5433	1931	<i>6</i> .	
₩	1945	0 63)	
67.33	1257	Ċ.	
17. 2	164	(.	
1993) 1993	1982	ţ.	
32.55	1090		
\$2.53	1=79	e,	
8-33	11=7	0 3560	
4033	1112	<u>у</u>	
(*) 33	1115	e e	2
(*13) (*13)	1123	4	
1-2-53	1126	· · · · · · · · · · · · · · · · · · ·	
- 735	1134	· · · ·	

FORM (285) .47

JOB NO.

SHEET NO. OF. 2

BY.....DATE.....

 $(T = \frac{17752000}{5341816 \times 3600} = 516.4675 \qquad \frac{14}{44.44}$ $= \frac{17752000}{5341816 \times 3600} = 516.4675 \qquad \frac{14}{44.44} = 0.0776$ $= \frac{1}{16} = 0.375 \times \frac{1}{64.4} \times 0.0083 \times 516.4675 \times \frac{1}{144} = 0.0785$ $= \frac{1}{12} = 0.375 \times \frac{1}{64.4} \times 0.0084 \times 516.4675 \times \frac{1}{144} = 0.0785$ $= \frac{1}{12} = 0.375 \times \frac{1}{144} \times 0.0086 \times 516.4675 \times \frac{1}{144} = 0.0785$ $= \frac{1}{12} = 0.375 \times \frac{1}{64.4} \times 0.0086 \times 516.4675^{2} \times \frac{1}{144} = 0.0813$ $= \frac{1}{12} = 0.375 \times \frac{1}{64.4} \times 0.0083 \times 516.4675^{2} \times \frac{1}{144} = 0.0813$ $= \frac{1}{12} = 0.375 \times \frac{1}{64.4} \times 0.0083 \times 516.4675^{2} \times \frac{1}{144} = 0.0813$ $= \frac{1}{12} = 0.375 \times \frac{1}{64.4} \times 0.0083 \times 516.4675^{2} \times \frac{1}{144} = 0.0813$ $= \frac{1}{12} = 0.375 \times \frac{1}{64.4} \times 0.0083 \times 516.4675^{2} \times \frac{1}{144} = 0.0813$ $= \frac{1}{12} = 0.375 \times \frac{1}{64.4} \times 0.0083 \times 516.4675^{2} \times \frac{1}{144} = 0.0813$ $= \frac{1}{12} = 0.375 \times \frac{1}{64.4} \times 0.0083 \times 516.4675^{2} \times \frac{1}{144} = 0.0813$ $= \frac{1}{12} = 0.375 \times \frac{1}{64.4} \times 0.0083 \times 516.4675^{2} \times \frac{1}{144} = 0.0813$ $= \frac{1}{12} = 0.375 \times \frac{1}{64.4} \times 0.0083 \times 516.4675^{2} \times \frac{1}{144} = 0.0813$ $= \frac{1}{12} = 0.375 \times \frac{1}{64.4} \times 0.0083 \times 516.4675 \times \frac{1}{144} = 0.0813$ $= \frac{1}{12} = 0.375 \times \frac{1}{12} \times 0.0083 \times 516.4675 \times \frac{1}{144} = 0.0813$ $= \frac{1}{12} = 0.375 \times \frac{1}{12} \times 0.0083 \times 516.4675 \times \frac{1}{144} = 0.0813$ $= \frac{1}{12} = 0.375 \times \frac{1}{12} \times 0.0083 \times 516.4675 \times \frac{1}{144} = 0.0813$ $= \frac{1}{12} = 0.375 \times \frac{1}{12} \times 0.0083 \times 516.4675 \times \frac{1}{144} = 0.0813$ $= \frac{1}{12} = 0.375 \times \frac{1}{12} \times 0.0083 \times \frac{1}{12} \times 0.0083 \times \frac{1}{14} \times 0.0$

V brittion Copplessors

 $= 1 = 0.18 \times \frac{1}{044} \times 0.0084 \times 516.4675^2 \times \frac{1}{144} = 0.0668$ = $P_{1} = 0.28 \times \frac{1}{644} \times 0.0084 \times 516.4675^2 \times \frac{1}{144} = 0.0656$

$$|-||^2 = |||_1 + 1 + 2 = |||_2 = |||_2 = |||_2 + 2 ||_2 + ||_$$

FORM (285)-47

- obilin	WILLELEA	LURPORATION
BY	DATE	SUBJECT

BY..... DATE..... SUBJECT. CHKD. BY......DATE.....

JOB NO.....

to? Load IV)

		Specific volume	Truch f	Location, St
	•	0 0083	871	2.67
		0.00 84	871	4.67
	1	.,	288	7.21
tion Suppressos	Vibration	1	893	996
. 1.		-	817	12-71
			321	17.33
		2800,0	54-2	22.33
		5	958	27.31
			118	32-33
		0.0086	891	37-33
			1014	42.33
			1033	97.33
		00084	148	5233 .
		,	1257	57-33
			1063	62.33
		4	10/17	67.33
		*	1.23	-72.33
		4.	1-33	27.33
			1078	\$2.33
		0.0088	1103	87.33
			11.0 2	\$2.33
		1. P. P. L.	1109	8 1 3 3
		4	10.1	(02.33
			0.2	1.0 7.13.
			1113	112.2, 2
			2111	11.2.3 5

FORM (285) .4:

110 SOUTH ORANGE AVE., LIVINGSTON, N. J SHEET NO. (1) OF 13

BY.....DATE..... SUBJECT.

CHKD. BY_____DATE

JOB NO......

$$G_{1} = \frac{1}{5.34 \times 10^{36} \times 10^{36}} = 577.4149 \quad \frac{16}{44.524}$$

$$= 51_{1} = 6.175 \times \frac{1}{644} \times 0.0073 \times 379.4149^{2} \times \frac{1}{144} = 0.0414$$

$$= 9_{2} = 0.575 \times \frac{1}{644} \times 0.0074 \times 377.4149^{2} \times \frac{1}{144} = 0.0419$$

$$= 9_{1}^{2} = 0.575 \times \frac{1}{644} \times 0.00745 \times 377.4149^{2} \times \frac{1}{144} = 0.0424$$

$$= 9_{1}^{2} = 0.575 \times \frac{1}{644} \times 0.00745 \times 377.4149^{2} \times \frac{1}{144} = 0.0424$$

$$= 9_{1}^{2} = 0.575 \times \frac{1}{644} \times 0.00745 \times 377.4149^{2} \times \frac{1}{144} = 0.0424$$

$$= 9_{1}^{2} = 0.575 \times \frac{1}{644} \times 0.00745 \times 377.4149^{2} \times \frac{1}{144} = 0.0424$$

$$= 9_{1}^{2} = 0.575 \times \frac{1}{644} \times 0.00745 \times 377.4149^{2} \times \frac{1}{144} = 0.0424$$

$$= 9_{1}^{2} = 0.575 \times \frac{1}{644} \times 0.00745 \times 377.4149^{2} \times \frac{1}{144} = 0.0434$$

$$= 9_{1}^{2} = 0.575 \times \frac{1}{644} \times 0.00745 \times 377.4149^{2} \times \frac{1}{144} = 0.0434$$

$$= 9_{1}^{2} = 0.575 \times \frac{1}{644} \times 0.00745 \times 377.4149^{2} \times \frac{1}{144} = 0.0434$$

$$= 9_{1}^{2} = 0.575 \times \frac{1}{644} \times 0.00745 \times 377.4149^{2} \times \frac{1}{144} = 0.0434$$

$$= 9_{1}^{2} = 0.575 \times \frac{1}{644} \times 0.00745 \times 377.4149^{2} \times \frac{1}{144} = 0.0434$$

$$= 1_{1}^{2} = 0.714 \times \frac{1}{644} \times 0.00745 \times 377.4149^{2} \times \frac{1}{144} = 0.0434$$

$$= 1_{1}^{2} = 0.715 \times \frac{1}{644} \times 0.00745 \times 377.4149^{2} \times \frac{1}{144} = 0.0434$$

$$= 1_{1}^{2} = 0.715 \times \frac{1}{644} \times 0.00745 \times 377.4149^{2} \times \frac{1}{144} = 0.0434$$

$$= 0.715 \times \frac{1}{644} \times 0.00745 \times 377.4149^{2} \times \frac{1}{144} = 0.0561$$

$$= 0.715 \times \frac{1}{644} \times 0.00745 \times 377.4149^{2} \times \frac{1}{144} = 0.0561$$

$$= 0.715 \times \frac{1}{644} \times 0.0074 \times 377.4149^{2} \times \frac{1}{144} = 0.0561$$

$$= 0.715 \times \frac{1}{644} \times 0.0074 \times 377.4149^{2} \times \frac{1}{144} = 0.0561$$

- Protect = 0.10×4 + 0.4422 = 1.1006 psi ,

FORM (285)-47

Page B-3-11

110 SOUTH ORANGE AVE., LIVINGSTON,

BY.....DATE..... SUBJECT.....

SHEET NO. 1.2 OF.

I) Los Lood

	specific utume -st3/b	Temp: °F	Location, Ft
	0.0084	juo	2.67
		509	4.67
A. C. MARK	0	922	721
Vibration suppresso	4	933	9.96
h.	5. 9: 85	946	(2.7)
		969	17:33
	0 1086	190	22.33
		(~()	1 7-33
		1029	32 33
	0 5.87	1=44	37-33
		1056	4. 53
		1.063	4433
		1061	2:33
	4	10/15	57:33
		1=78	62.33
	6	1082	17-33
		1-84	72.53
		(= 85	57.35
	5	1087	82 55
		(387)	89.33
	;	1.85	92 33
		1-29	7233
		1=88	1.02.33
	3	18821	1.7.33
		~×1	112 33
		1089	117.33

FORM (285) ..

110 SOUTH ORANGE AVE., LIVINGSTON

BY.....DATE..... SUBJECT CHKD. BY.....DATE....

SHEET NO OF.

$$= \int_{1}^{1} = 0.325 \times \frac{1}{64.4} \times 0.0084 \times 238.3673^{2} \times \frac{1}{64.4} = 0.0167$$

= $\int_{2}^{1} = 0.015 \times \frac{1}{64.4} \times 0.0085 \times 128.3673^{2} \times \frac{1}{144} = 0.0169$
= $\int_{3}^{1} = 0.375 \times \frac{1}{64.4} \times 0.0086 \times 238.3673^{2} \times \frac{1}{144} = 0.0171$
= $\int_{4}^{1} = 0.375 \times \frac{1}{64.4} \times 0.0087 \times 238.3673^{2} \times \frac{1}{144} = 0.0171$

$$\frac{Vibration \; suppressions \; dP}{dP_{1} = 0.78 \times \frac{1}{644} \times 0.0084 \times 238.3673^{2} \times \frac{1}{144} = 0.0144}$$

$$dP_{2} = ...\times \times \frac{1}{644} \times 0.0085 \times 238.5673^{2} \times \frac{1}{144} = 0.0146$$

$$dP_{2} = ...\times \times \frac{1}{644} \times 0.0085 \times 238.5673^{2} \times \frac{1}{144} = 0.0146$$

$$dP_{3} = 2.0P_{1} + 0P_{2}$$

$$= 0.02434$$

FORM (285).

Ubjective : Calculate the molter salt pressure drops through intet

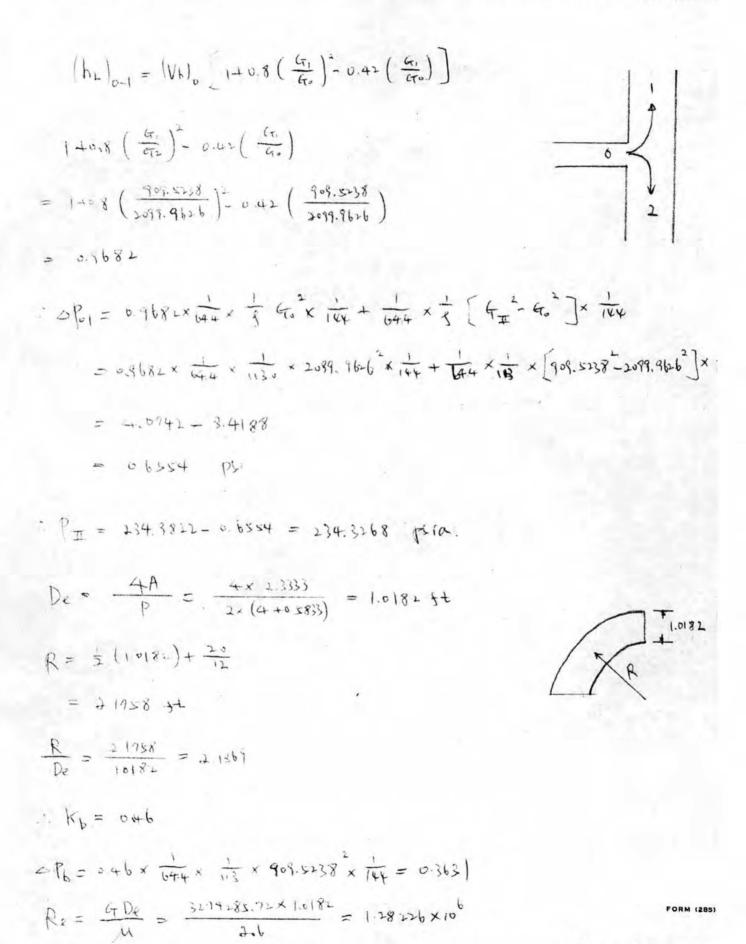
Reference (1) Engineering Department manual, Johnne I. FWC (2) Thormal Rydraulin performance computer code output (3) Sult inht/outlet woggle. ND-722-165 (4) Internal shroud . ND-742-171 (5) 1967 ASME Steam Tables

- (I) 100% Load

101 Inlit wogile

$$V_{N} = \frac{1}{2} \sqrt{10} = \frac{11}{2} \sqrt{10} = \frac{1004x}{10} + \frac{1004x}{10} + \frac{1004x}{10} = \frac{1}{2} \sqrt{10} = $

FORM (285)


110 SOUTH ORANGE AVE., LIVINGSTON,

.....

BY.....DATE.....SUBJECT....

FORM (285)

110 SOUTH ORANGE AVE., LIVINGSTON,

BY----- DATE----- SUBJECT.--CHKD. BY------ DATE-----

Page B-4-3

110 SOUTH ORANGE AVE., LIVINGSTON,

$$\frac{c}{0} = \frac{0.00005}{1.0182} = 0.00004911$$

$$f = c = 0.11$$

Lingth of are $= \frac{1}{4}\pi R = \frac{1}{2}\pi \times 2.058 = 1.0085 \text{ ft}$
 $= P_{\text{f}} = 0.011 \times \frac{1.0089}{1.0182} \times \frac{1}{644} \times \frac{1}{113} \times 909.5238^2 \times \frac{1}{144} = 0.0146$
 $\leq P = 0.3000 \text{ psi}$

$$\frac{(b) \ \text{shread}}{164 \circ \ \text{tolss of } 0.75^{\circ} D}$$

$$Total \ \text{area of } \ \text{tolss } = 164 \circ \times \frac{1}{4\pi} \left(\frac{0.75}{12}\right)^{\frac{1}{2}} = 5.031 \times \pm 2^{\frac{1}{2}} = A_{0}$$

$$Total \ \text{area of } \ \text{shroad} = \pi \times \left(\frac{4}{12}\right) \times 4 = 41.8879 \ \text{st}^{\frac{1}{2}} = A_{1}$$

$$\frac{A_{0}}{A_{1}} = \frac{5.0315}{41.8879} = 0.1201 = \left(\frac{D_{0}}{D_{1}}\right)^{\frac{1}{2}}$$

$$\frac{D_{0}}{D_{1}} = 0.5466$$

$$K = 1.16$$

$$F_{0} = 0.5466$$

$$K = 1.16 \times \frac{1}{41.8879} \times \frac{1}{12} \times (01.3187)^{\frac{1}{2}} \times \frac{1}{194} = 0.0113$$

$$Pressure \ \text{arbitrag toks bundle} = 233.9491 - 0.0113 = 133.9378 \ \text{psia}^{-1}$$

$$Page \ B-4-4$$

BY_____DATE_____SUBJECT.____SHEET NO. 5 OF CHKD. BY DATE

JOB NO.

The personal Drop
$$= 2P_{total} = 235 - 233.9415 = 1.0622 psi =
 $\frac{1}{T} = 1142.6F = 1602.6^{\circ}R$$$

$$f = \frac{235}{4} \text{ psid}$$

$$f = \frac{136400}{4} \text{ psid}$$

$$K = \frac{136400}{4} \text{ psid}$$

$$F_{7,5} = \frac{136400}{40212} = 6236888.98 \text{ psid}$$

$$F_{7,5} = \frac{136400}{40212} = 6236888.98 \text{ psid}$$

$$R_{L} = \frac{6236388.38 \times 1.6112}{2.65} = 3814265.13$$

$$G_{\pm} = \frac{b_{3}^{2} b_{3}^{2} c_{3} c_{3}}{4 - s_{3}^{2} b_{3}^{2}} = \pm 7 \circ (324.30 \text{ M} + 6)$$

= $5 \times 0.367 \text{ M}^{2} + sc$

N= 011682

FORM (285).47

Page B-4-5

)

BYDATESUBJECT CHKD. BYDATE		SHEET NO	DGOF.
······································		JOB NO	
$\Delta \int_{01}^{1} = 0.5682 \times \frac{1}{644} \times \frac{1}{11518} \times 1732.47^{2}$	× 144 + 144	x 1 13.18 [750.36	ig - 1732.47
= 2.7687-2 1232	•		
= 0.4451			
I' = 234, 1875 - 04455 = 234, 5418			•
K= + 6			
$0 _{b} = 0.46 \times \frac{1}{044} \times \frac{1}{03.18} \times 0.500.3659^{2} >$	$\frac{1}{144} = 0.24$	68	
R: = 2701514,305 ×10182 = 1.0458 ×10 263			
$\frac{\varepsilon}{D} = w \cos(4q)$	·		
$\frac{1}{2} = 2, 0, 1, 2$			
$-P_{ij} = 0.012 \times \frac{1.008^{3}}{1.0182} \times \frac{1}{64.4} \times \frac{1}{113.18} \times$	750.36092>	$\frac{1}{(44)} = 0.0108$	
2 p= 0.2576			
Prassure antaning shroud = 224.5418-	02576=2	34. 2842	
Ge = 12.60 bors = 83.5761 H.	ци.		
= 1.16 x 1 x 1 x 1 x 83. 5761 x 144	= 0,0017		
Prosserve entering tube fundle = 134: :	2842-0.001	1 = 234.276×	
total pressure during Stratage un			

Page B-4-6

FUSTER WHELLER CORPORATION 110 SOUTH ORANGE AVE., LIVINGSTON, N. J BY DATE SUBJECT

CHKD. BY_____DATE____

JOB NO.....

$$T = 1132.2^{\circ}F = 1512.2^{\circ}R$$

 $P = 255 psin$

$$f = (15.45)$$
 $\frac{15}{12}$

$$G_{0} = \frac{1/32000}{0.0312} = + 913912.03 \qquad H^{2} K_{Y}$$

= 1464.98 $H^{2} K_{Y}$

$$P_{4} = cont x + \frac{c_{1} + 82}{c_{1} + c_{2} + 1} \times \frac{1}{644} \times \frac{1}{11343} (1364.98)^{2} \times \frac{1}{144} = 0.0(17)$$

$$P_{2} = 235 - 0.0117 = 234.9883 + p5a$$

$$P_{3} = \frac{1}{2} (112000) = 4866000$$

$$P_{4} = \frac{496600}{496600} = 2128316.12 + \frac{16}{114}$$

$$N = 0.1682$$

$$= -1682 \times \frac{1}{0+4} \times \frac{1}{15.41} \times 1864.38^{2} \times \frac{1}{144} + \frac{1}{6444} \times \frac{1}{113.43} \left[591.1989^{2} - 1364.98^{2} \right] \frac{1}{144}$$

$$= 1.7147 - 1.4310 = 0.2759 \text{ ps}$$
FORM (2005).47

BY		R CORPORATION SUBJECT.	110 SOUTH ORAN	IGE AVE., LIVINGSTON, SHEET NO
	· PI =	224,9883 - 0.2759	1 = 234.7174 psia	
	K1 = 0.46			
	$a_{b} p = 0.46 \times p$	$\frac{1}{1+4} \times \frac{1}{1(3,4)} \times 591.093$	$1^{2} \times \frac{1}{144} = 0.15 \times 8$	
	$Re = \frac{2128316}{3}$. 12× 1.018L - 67 = 811 625	1. 77	
	2 = 0.000 + 4	931		
	+= 6.0122			

K= 1.16

$$= 116 \times \frac{1}{144} \times \frac{1}{113.43} \times 65.8636^2 \times \frac{1}{184} = 0.0048$$

Pressure entering tube bundle = 234. 528-0.0048 = 234. 5480

FORM (285) -

Page B-4-8

FOSTER WHEELER C		110 SOUTH ORANG	GE AVE., LIVINGSTON,
BYDATE	SUBJECT.		SHEET NO 9 OF
CHKD. BYDATE			JOB NO

$$T = (0.57)^{2} + (0.35)^{2} + (0.350)^{2} + P = (0.350)^{2} + 10$$

$$= \left(\frac{1}{21} = 0.568 \pm 8 \frac{1}{100} \times \frac{1}{100} \times \frac{1}{100} \times (-187.4822)^2 \times \frac{1}{100} + \frac{1}{6400} \times \frac{1}{1000} \left(\frac{1}{452.62} - 987.4822\right)^2 \times \frac{1}{1000} \times \frac$$

A for an a strate a sold be

FORM (285) .4

Page 8-4-9

FOSTER WHEELER CORPORATION 110 S		SOUTH ORANGE AVE., LIVINGSTON,
BYDATE	SUBJECT	SHEET NO. 10 OF
CHKD. BY DATE		JOB NO.

$$z \int_{10}^{10} z = -4b + \frac{1}{644} + \frac{1}{115.34} + 444 + 64^{2} \times \frac{1}{144} = 0.-813$$

$$f_{x} = \frac{1555 - 75^{2} + 10154}{3.74} = 577461.5038$$

$$= \int_{\frac{1}{2}} = 0 + 1 \times \frac{1}{1 + 1 \times 1} \times \frac{1}{1 + 1 \times 1} \times \frac{1}{1 + 1 \times 1} \times \frac{1}{1 + 2 \times 1} \times \frac{1}{1 + 2 \times 1} \times \frac{1}{1 + 2} = 0 + 0 \times 1$$

$$G_{1} = \frac{1233}{41.86} = 48.1511 \frac{11}{41.86}$$

$$= \int_{-\infty}^{\infty} \frac{1}{1 + 1 + 1} + \frac{1}{1 + 1} = 0.0015$$

i service entring take built = 234. nort = 234. nort

FORM (285)

Page B-4-11

BY.....DATE...... SUBJECT..... CHKD. BY_____DATE

SHEET NO. 11 OF 12

JOB NO.

$$S_{4} = \frac{-b735.15 \times 1642}{236} = 127241.73$$

$$= l_{+}^{2} = 0.011 \times \frac{1112}{16+5} \times \frac{1}{14+5} \times \frac{1}{14+5} \times (6-7.5888)^{2} \times \frac{1}{144} = 0.0019$$

$$l_{+}^{2} = -65 - ... + 17 = -254.5881 \text{ psin}$$

$$H_{\pm} = \frac{1}{1200} + \frac{1}{120$$

$$|x = 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

$$= 0.118.$$

FORM (285)-

Page B-4-11

BY_____DATE_____SUBJECT_____SHEET NO. 12 OF 12

CHKD. BY DATE

$$= \frac{1}{16} + \frac{1}{164} + \frac{1}{164} + \frac{1}{164} + \frac{1}{164} = 0.4323$$

$$h_{1} = \frac{122.13.3991 \times 1.0182}{2.06} = 343712.45$$

$$\xrightarrow{c_0} \mathbf{B} = \mathbf{E}_{1,0} \mathbf{O}_{1,0} + \mathbf{O}_{1,0} \mathbf{O}$$

$$a_{1}^{2} = a_{2}^{2} + x + \frac{a_{1}^{2}}{a_{1}^{2} + x} + \frac{a_{1$$

 $\mathbf{k} \in \mathbb{N}$

$$\frac{453400}{41.8877} = 30.3786 \qquad \frac{16}{41.886} = 0.0010$$

$$= 1.8877 \qquad \frac{1}{144} \times 30.3786^{2} \times \frac{1}{144} = 0.0010$$

$$= 1.34.9050$$

$$= 1.34.9050$$

$$= 1.34.9050$$

$$= 1.34.9050$$

FORM (285)-47

Page B-4-12

5-5

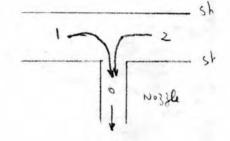
the entry contracts the motter salt precieve drops through outlet

He former III Englishing Corportment Manual, volume I, FWC III Thermal Egotacilie profermance computer code output he call inter / white weggle ND-122-165 he lateral chiend MD-242-121 her lateral chiend MD-242-121

For some consultion values, consult, only I shroud.

 $\sum_{i=1}^{n} (i + i) = \sum_{i=1}^{n} (i + i)$

$$(1 + \frac{1}{4! \times 3!} + \frac{1}{2!} + \frac{1}{2! \times 3!} + \frac{1}{2!} + \frac{1}{2! \times 3!} + \frac{1}{2!} + \frac{1}{2!} + \frac{1}{2!} +$$


 $\frac{1}{1000} \times \frac{1}{1000} \times \frac{1}{1000} \times \frac{1}{1000} \times \frac{1}{1000} = 0.0000$

ORM (285)-47

FOSTER WHEELER CORPORATION 110		10 SOUTH ORANGE AVE., LIVINGSTON,	
BYDATE	SUBJECT	 SHEET NO 2 OF.	
CHKD. BYDATE		 JOB NO.	

$$A = \frac{1}{4\pi} \left(\left(\frac{1}{12} \right)^2 + \left(\frac{1}{12} \right)^2 \right) = 8.3006 + 4t^2$$

G.=G.= = (15.12.0) 8.776 = THISS.61 44.44 = 253.3210 44.44

(70 = 15.200 x1.6) = 7559865.43 /12-hr A.0212 = 2089.9626 /12-hr

$$\frac{1}{2} = 0.000-5$$

$$\frac{1}{10} = 0.0102 \times \frac{0.0032}{1.6.41} \times \frac{1}{644} \times \frac{1}{100.5850} \times 1099.9556^{2} \times \frac{1}{144} = 0.0183$$

$$\frac{1}{100} = 256.1001 - 0.0183 = 296.1088$$

FORM (285

110 SOUTH ORANGE AVE., LIVINGSTON,

.....

BY.....DATE SUBJECT..... CHKD. BY DATE

SHEET NO. 3. OF ... JOB NO.....

$$\frac{|\mathbf{r}_{1}|_{2}^{2} |\mathbf{x}_{0}|_{2}^{2} |\mathbf{L}_{0}|_{1}^{2}}{|\mathbf{r}_{1}|_{2}^{2} + 2\sqrt{2}|\mathbf{r}_{1}|_{2}^{2}} = \frac{2\sqrt{2}|\mathbf{r}_{1}|_{2}^{2}}{|\mathbf{r}_{1}|_{2}^{2} + 2\sqrt{2}|\mathbf{x}_{1}|_{2}^{2}} = \frac{2\sqrt{2}|\mathbf{r}_{1}|_{2}^{2}}{|\mathbf{r}_{1}|_{2}^{2} + 2\sqrt{2}|\mathbf{x}_{1}|_{2}^{2}} = \frac{2\sqrt{2}|\mathbf{r}_{1}|_{2}^{2}}{|\mathbf{r}_{1}|_{2}^{2} + 2\sqrt{2}|\mathbf{r}_{1}|_{2}^{2}} $$

$$= \frac{|\mathbf{r}_{1}|_{2}|_{2}|_{2}|_{2}^{2} + \frac{|\mathbf{r}_{1}|_{2}|_{2}^{2}}}{|\mathbf{r}_{1}|_{2}^{2} + 2\sqrt{2}|\mathbf{r}_{1}|_{2}^{2}} = \frac{2\sqrt{2}|\mathbf{r}_{1}|_{2}^{2}}}{|\mathbf{r}_{1}|_{2}^{2} + 2\sqrt{2}|\mathbf{r}_{1}|_{2}^{2}} = \frac{2\sqrt{2}|\mathbf{r}_{1}|_{2}^{2}} = \frac{2\sqrt{2}|\mathbf{r}_{1}|_{2}^{2}} = \frac{2\sqrt{2}|\mathbf{r}_{1}|_{2}^{2}}{|\mathbf{r}_{1$$

FORM (285).

Page B-5-3

110 SOUTH ORANGE AVE., LIVINGSTON, SHEET NO. 4 OF.

....

BYDATE	SUBJECT.
CHKD. BY DATE	

JOB NO

$$\frac{1}{12} \frac{1}{12} \frac$$

FORM (21

110 SOUTH ORANGE AVE., LIVINGSTON, N. J.

BY_____DATE_____SUBJECT_____SHEET NO. 5 CHKD. BY_____DATE_____

JOB NO.

$$T = M_{S} F$$

$$f = 120.058S$$

$$f = 120.058S$$

$$f = 120.058S$$

$$f = 120.058S$$

$$f = 100.017$$

$$f = 100.0178$$

$$f = 100.0017$$

$$f = 0.0037$$

$$f = 0.0037$$

$$f = 100.001$$

$$f = 100.001$$

$$f = 0.0037$$

$$f = 100.001$$

$$f = 100.000$$

$$f = 100.0$$

FORM (285)-47

Page 8-5-5

110 SOUTH ORANGE AVE., LIVINGSTON, N.

BY..... DATE SUBJECT..

CHKD. BY _____DATE ___

(I) sol Lord T= XYI F K= 119.3923 \$ 1)= 321,405 1 prin M= 4,1844 12++ $\frac{11}{100} = \frac{11}{100} = \frac{1$ STENIX 1 × 1 × 10.261 × 144 = 0.0004 PS= (1.4683 - 1951A = 4137925 12 · 1 = 0.15 , 4 × 14 + 14 + 14 + 14 = 0.1517 lo= 321, 3133 psia $= \frac{1}{14} = \frac{1}{14} \times \frac{1}{14} \times \frac{1}{14} \times \frac{1}{14} \times \frac{1}{14} \times \frac{1}{14} \times \frac{1}{14} = 0.000$ Part = Solition pure 2 p = elsio psi

FORM (285).47

Page B-5-6

APPENDIX B-6 GULF GENERAL ATOMIC REPORT GULF-GA-A12416

Gulf-GA-A12416

FINAL REPORT

ANALYSIS OF DYNAMIC FLOW STABILITY IN STEAM GENERATORS FOR THE MOLTEN-SALT BREEDER REACTOR

by

B. E. Boyack

Prepared under P.O. N24013 Project No. 0540.0000 for Foster Wheeler Corporation

under Union Carbide Corporation, Nuclear Division Subcontract No. 91X-88070C

> under Prime Contract No. W-7405-eng-26 with the U.S. Atomic Energy Commission

Gulf General Atomic Project 0540

November 20, 1972

GULF GENERAL ATOMIC COMPANY P.O. BOX 81608, SAN DIEGO, CALIFORNIA 92138

LIST OF SYMBOLS

	Cross sectional flow area of a steam generator tube, ft ²
A	Cross sectional flow area of a steam generator tabe, re
D	Tube inside diameter, ft
f	Darcy friction factor
g	Local gravitational acceleration, ft/hr ²
^g c	Newton constant relating force and mass, lbm-ft/lbf-hr ²
н	Steam enthalphy, Btu/1bm
∆H	Change in steam enthalphy, Btu/1bm
N	Number of tube segments
P	Static pressure, lbf/ft ²
P	Normalized heat flow distribution
S	Complex variable replacing time
t	Time, sec
W	Mass flow rate per tube, 1bm/hr
z	Spatial coordinate along axis of tube, ft

Greek Symbols

θ	Tube inclination from vertical, degree
ρ	Steam density, 1bm/ft ³
ф	Time-dependent heat input, Btu/ft-hr
ω	Circular frequency, rad/sec

Subscripts

exit	exit from steam generator tube
inlet	inlet to steam generator tube
j	j th tube segment

TABLES

∠ - ⊥.	steam generator reference design	5
2-2.	Design properties for nickel-molybdenum-chromium-iron alloy (Hastelloy N)	6
3-1.	Open loop frequency response of reference design steam generators for an MSBR operating at 99.68% of rated loads.	20
3-2.	Open loop frequency response of reference design steam generators for an MSBR operating at 79.95% of rated loads.	21
3-3.	Open loop frequency response of reference design steam generators for an MSBR operating at 59.97% of rated loads.	22
3-4.	Open loop frequency response of reference design steam generators for an MSBR operating at 39.89% of rated loads.	23
3-5.	Open loop frequency response of reference design steam generators for an MSBR operating at 19.94% of rated loads.	24
3-6.	Open loop frequency response of reference design steam generators for an MSBR operating at 99.68% of rated load. Tube length divided into 23 segments	27
3-7.	Open loop frequency response of reference design at full load, inlet orifice K=120	29
3-8.	Open loop frequency response of reference design at full load, exit orifice K=20	30

1. INTRODUCTION

Design procedures for steam generators must include the analysis of instability phenomena in heated tubes. The physical damage and performance degradation associated with flow instabilities such as system control problems, mechanical vibration or thermal cycling of steam generator tubes can be serious and must be avoided or reduced to minimize their effects. Experimental prototype testing of each steam generator design is prohibitive, and the complexity of the physical phenomena precludes simulation through model testing. Consequently, analytical techniques are useful in evaluating or predicting the onset of instability phenomena for conceptual and design studies. A liquid flowing through a heated channel is susceptible to a variety of destabilizing phenomena. It is useful to categorize these phenomena at the outset in order to define the scope of this study. Following Bouré, et al. (Ref. 1), two major classifications may be defined: static instabilities and dynamic instabilities. Static instabilities include the flow excursion or Ledinegg instability, boiling crisis due to ineffective removal of heat from the heated surface, flow pattern transition instability and the compound relaxation instabilities described as bumping, geysering and chugging. The fundamental dynamic instabilities are acoustic oscillations and density wave oscillations.

The static instability of primary design importance in steam generators is the excursive instability. The criterion for onset of the flow excursion instability is well known (Ref. 1), and prediction techniques have been developed which are based on the solution of the steady-state conservation equations for mass, momentum and energy.

Dynamic instabilities are associated with the physics of wave phenomena, density waves for density wave oscillations and pressure (acoustic) waves for acoustic phenomena. In any real system, both kinds of waves are present and interact, but their velocities differ in general by one or two orders of magnitude, thus allowing one to distinguish between the two types of instabilities. The acoustic or pressure wave oscillations are characterized by a high frequency, the period being of the same order of magnitude as the time required for a pressure wave to travel through the system. Acoustic waves are not the subject of the present investigation and will not be discussed further.

Density wave oscillations are common in a variety of equipment and have been extensively studied during the past fifteen years. These are low frequency oscillations in which the period is approximately the order of magnitude of the time required for a density wave to travel through the tube. The instability can be initiated by a temporary reduction or perturbation of inlet flow to the heated channel, producing thereby an increase in the rate of enthalpy rise and a reduction in the average density. The disturbance affects the pressure drop as well as the heat transfer behavior. For certain geometrical arrangements, operating conditions, and boundary conditions, the perturbations can require appropriate phases and become self-sustaining.

Several computer codes exist which can be used to predict the onset of density wave oscillations in heated channels. Codes developed prior to 1965 were reviewed in a comprehensive testing program by Neal and Zivi (Ref. 2). The STABLE-3 code of Jones (Ref. 3) was found to be the most reliable, predicting the threshold of instability for loop experiments within 20 percent for about 70 percent of the tests. It should be noted

that the study of Neal and Zivi was restricted to low quality steam systems, the highest exit quality being approximately 0.2. The STABLE-4 program, modified to permit analysis of boiling tubes with superheat and renamed DYNAM (Ref. 4), is in use at Gulf General Atomic Company (GGA). To the author's knowledge, no computer codes have previously been developed to permit analysis of forced circulation loops containing supercritical steam.

A conceptual design has been developed for a single-fluid 1000-MW(e) Molten-Salt Breeder Reactor (MSBR) power station by Oak Ridge National Laboratory (ORNL). In a single-fluid MSBR the nuclear fuel is carried in a fuel salt, a molten-salt mixture at temperatures above $\sim 930^{\circ}$ F. Four primary shell-and-tube heat exchangers transfer heat from the fuel salt to a primary coolant salt. Also contained in the primary coolant loop are steam generators, receiving controlled flow rates of the primary coolant salt to provide 1000°F outlet steam temperatures. The steam generators operate on a supercritical pressure steam cycle which was selected because it affords a high thermal efficiency and also permits steam to be directly mixed with high pressure feedwater to raise its temperature to $\sim700^{\circ}$ F and thereby guard against freezing of the primary coolant salt in the steam generators. Foster Wheeler Corporation has been awarded a contract for the conceptual design of the steam generators for the MSBR.

For this study, the reference design proposed by the Foster Wheeler Corporation for the steam generators of a MSBR was analyzed to determine stability with respect to density wave oscillations. This report describes the method of analysis and summarizes the predicted dynamic stability characteristics of the MSBR steam generator at 100, 80, 60, 40 and 20 percent of full-rated load. Several parameters including inlet orificing, exit orificing, and pressure level have been varied to determine their overall relationship to the steam generator stability.

2. ANALYSIS

2.1 PROBLEM DESCRIPTION

The conceptual design of a steam generator for the ORNL 1000-MW(e) reference steam cycle has been developed by the Foster Wheeler Corporation. The unit, roughly the shape of an "L," is vertically oriented with molten salt flowing on the tube side and steam in the supercritical state on the tube side. Steady-state operating conditions for a single representative tube have been prepared by Foster Wheeler (Ref. 5). The steam inlet and exit conditions at the full and partial loads for which stability calculations have been made are presented in Table 2-1. The tube material is Hastelloy N having the properties outlined in Ref. 6 and reproduced here in Table 2-2. Neither the properties of the molten salt nor details of the tube layout are presented herein. The analytical technique used to predict the onset of density wave oscillations considers a representative tube only and does not explicitly require data describing overall steam generator geometry or shell-side interactions.

2.2 LITERATURE SURVEY

The prediction of the onset of density wave oscillations in heated channels or tubes containing two-phase flow has been reviewed in Ref. 1. Previous studies have included both analytical and experimental investigations to enable the prediction of the onset of the instability. As part of this investigation a literature survey was conducted for the purpose of determining if previous investigations have been conducted to investigate the onset of density wave oscillations in systems containing a fluid in the supercritical thermodynamic state. It is emphasized that the literature survey conducted was limited and should not be considered to be complete.

			Percei	nt of Rate	d Load	
		99.68	79.95	59.97	39.89	19.94
Flow Rate/Tube	(lbm/hr)	2538.	1900.4	1378.1	910.6	463.1
Inlet Pressure	(psi)	3730.	3690.	3658.	3632.	3613.
Exit Pressure	(psi)	3599.1	3599.9	3600.	3599.7	3599.8
Inlet Enthalphy	(Btu/lbm)	770.5	771.8	772.9	773.9	774.6
Exit Enthalphy	(Btu/1bm)	1418.5	1466.	1490.9	1496.7	1485.

TABLE 2-1 STEADY-STATE OPERATING CONDITIONS FOR THE MSBR STEAM GENERATOR REFERENCE DESIGN

Temperature (°F)	Allowable Stress (psi)	Modulus of Elasticity (psi)	Mean Coefficient of Expansion (in./in°F)	Thermal Conductivity (Btu/ft-hr-°F)
		X 10 ⁻⁶	X 10 ⁶	
100	25,000	31.3		6.6
200	24,000	30.6		
300	23,000	30.0		
400	21,000	29.5	6.45	7.4
500	20,000	29.0		
600	20,000	28.5	6.76	8.3
700	19,000	28.1		
800	18,000	27.7	7.09	9.2
900	18,000	27.2		9.3
1000	17,000	26.7	7.43	10.4
1050		26.4		
1100	13,000	26.3	· · ·	11.1
1150		26.1		12.1
1200	6,000	25.7	7.81	11.7

		TABLE 2-2	
DESIGN PROPERTIES	FOR	NICKEL-MOLYBDENUM-CHROMIUM-IRON	ALLOY
		(HASTELLOY N)	

Density, 0.317 lb/in.³ at room temperature

Specific heat, 0.095 Btu/lb °F at room temperature; 0.139 Btu/lb °F at 1200°F A considerable body of literature has been developed which describes the extreme property variations which occur near the critical point. A recent review has been presented by Hall (Ref. 7). As the critical point is approached large changes in density, specific heat, viscosity and thermal conductivity are observed. It is precisely these variations which have been postulated as forming the initiating agency for thermohydraulic flow oscillations observed during several experimental investigations.

Mechanized (computer) literature searches were obtained from two sources. The searches were conducted by the Nuclear Safety Information Center (NSIC) located at Oak Ridge National Laboratory and the Heat Transfer and Fluid Flow Service (HTFS) of the British Atomic Energy Research Establishment, Harwell. Citations of publications dealing with density wave oscillations in channels or tubes containing steam in the supercritical state were requested. Both mechanized surveys indicated that the available data are very limited.

A series of studies have been conducted at Oklahoma State University to investigate instabilities encountered during heat transfer to a supercritical fluid. Although experimental programs at Oklahoma State University have concentrated on natural circulation loops, associated literature surveys have been more broadly directed to include both forced and natural circulation test programs. Many fluids, including steam, helium, hydrogen, etc., have been considered. Cornelius (Ref. 8) has conducted an extensive review of the literature available prior to 1965 and reports that the literature contains reference to two modes of oscillations. The first is an acoustic oscillation while the second, having a frequency several orders of magnitude less than the acoustic oscillations, is attributed to a "boiling like" phenomenon. The nature of this second oscillation is clarified by Walker and Hardon (Ref. 9), who focused on the prediction of the threshold of these oscillations assuming that the "density effect" is the sole driving mechanism for the oscillations. They assumed the

density effect is the consequence of the non-linear physical relationship between the enthalphy and density of the fluid. The density effect model formulated by Bouré (Ref. 10) was used to predict the flow instability threshold, and excellent agreement with experiment was obtained on a natural circulation loop with Freon-114 as the working fluid.

A similar investigation was reported by Zuber (Ref. 11) in 1966. Zuber's report contains an extensive literature survey and describes an analysis to predict the onset of oscillations in flow systems containing fluid in the supercritical state. The method also follows Bouré (Ref. 10) in that similar assumptions and formulations are used. The problem is analyzed by perturbing the inlet flow, linearizing the set of governing equations (conservation of mass, momentum and energy plus an equation of state) and integrating them along the channel to obtain the characteristic equation. Zuber describes three mechanisms which can induce thermohydraulic oscillations at supercritical pressures. One is caused by the variation of the heat transfer coefficient at the pseudo-critical point. The second is caused by the effects of large compressibility and the resultant low velocity of sound in the critical region. The third mechanism is caused by the large variation of flow characteristics brought about by density variations of the fluid during the heating process.

2.3 METHOD

2.3.1 General

The analysis of density wave oscillations in heated tubes can proceed along one of several paths, depending upon the type and detail of information required. A requirement for extensive information concerning the timedependent physical processes associated with the instability would require the simultaneous solution of a coupled set of non-linear, time-dependent partial differential equations. Generally, such detail is not necessary and only an answer as to whether an instability can occur under specified operating conditions is required. If an instability is predicted, the design is adjusted to eliminate such an occurrence.

For this analysis only a yes or no answer to the question of the possible occurrence of density wave oscillations in the steam generators of the MSBR is sought. The classical method of stability analysis is employed whereby the governing equations are linearized and the behavior of the resulting equations to small perturbations is determined (Ref. 12). The mathematical model used to define steam generator instabilities is based on a single steam tube located in an array of tubes connected in parallel between headers. It is assumed that a flow perturbation might occur in this single tube while the remaining tubes operate normally. Therefore, the pressure drop across the tube under investigation will be constant since it is established by the steady flow through the remaining tubes and all are connected to common headers. In an actual steam generator it may be expected that once a reasonable magnitude flow oscillation starts in one tube, others will be affected and the mode of oscillation may be very complex owing to the many degrees of freedom in the complete system.

The question of accuracy naturally arises when linearization is performed on a set of equations to obtain a solution. In this case the linearization leads to a conservative answer from the standpoint of safe performance. The linearized analysis will predict the threshold of an instability due to a small system perturbation. In the physical case, small perturbations tend to be damped or lead to small limit cycle oscillations which are often difficult to detect without precision instrumentation.

There are several methods for determining the stability of a system described by a set of linear differential equations. A particularly useful method is based on feedback control theory, and only a small part of this highly developed field need be used for solving the problem of density wave oscillations in steam generators. The primary reasons for choosing feedback control theory are the completely systematized nature of the procedure and because the method reduces the set of partial differential equations to ordinary differential equations, a significant reduction in complexity for numerical analysis.

The steps in the solution of the density wave oscillation problem are:

- 1. The equations expressing the conservation of mass, momentum, and energy and the equation of state are written in terms of suitable variables.
- 2. The governing equations are linearized by assuming each variable to be composed of a part which is at most a function of position plus a perturbation term which is a function of position and time.
- 3. The Laplace transform of the equations is taken, which has the effect of transforming the original partial differential equations into ordinary differential equations by replacing the time derivative with a complex frequency variable.
- 4. The resulting ordinary differential equations are integrated over small increments of length by assuming the system parameters are constant over these small increments of length. It is presumed that the steady state solution for the steam generator is known since parameters from the state of equilibrium are required to determine the transient behavior. Accuracy increases as the length of the segment decreases.
- 5. The feedback control system representation of the steam generator is set up. For the density wave oscillation problem, the selection of input and output variables is arbitrary but certain choices of these quantities turn out to be more convenient than others. Specifically, pressure perturbations are used in this study. The feedforward and feedback transfer functions are defined, as is the open loop transfer function.

- 6. The magnitude and phase angle of the open loop transfer function is calculated as a function of the input variable which is assigned a magnitude of unity and frequencies ranging from zero to a value considerably above the expected frequency of density wave oscillations.
- 7. The values for the open loop transfer function are plotting in polar form (Nyquist diagram) and the Nyquist criterion is used as the basis for assessing stability.

2.3.2 Method Development for Molten-Salt Steam Generators

Gulf General Atomic has developed a computer code which is used for prediction of the onset of density wave oscillations in once-through steam generators containing liquid, two-phase and superheated steam. The GGA code is a modified and extended version of the series of STABLE codes developed at Fnolls Atomic Power Laboratory (Ref. 3). The STABLE codes are applicable only to the analysis of boiling channels containing singlephase liquid and two-phase steam. The STABLE-IV code was extended at GGA to permit analysis of steam generators with superheated steam and the modified code designated as DYNAM (Ref. 4).

In order to use DYNAM to predict the dynamic stability characteristics of the reference design steam generators of the MSBR, a modified version of the code, hereafter referred to as the DYMSBR code, was developed. The significant elements in the modification program are described in the following sections.

2.3.3 DYMSBR Code Structure

For the purpose of this analysis, the significant features of the tubeside supercritical steam are that the fluid is compressible and can be described as consisting of a single phase. The analytical formulation of the DYNAM code permits analysis of steam generators having a single-phase

liquid at the tube inlet, two-phase flow through an intermediate region of the heated tube and superheated steam at the exit. Thus, of the three flow regimes only the superheat regime is a single-phase compressible fluid.

In order to develop an orderly code structure, that portion of the DYNAM code associated with the superheat regime was extracted from DYNAM and modified to include new input and output routines. As previously indicated, the revised code was named DYMSBR and can be used to predict the dynamic stability characteristics of a steam generator using supercritical steam on the tube side.

2.3.4 Governing Equations

The equations governing the thermodynamic and hydrodynamic processes occurring in a steam generator can be derived from the principles of conservation of mass, momentum and energy. An additional equation, the equation of state, is required if a compressible fluid is being analyzed. If the time-varying flow processes are considered to be one-dimensional in space, considerable simplification of the governing equation is possible. The resultant conservation equations are presented below:

$$\frac{\partial \mathbf{p}}{\partial \mathbf{t}} + \frac{1}{\mathbf{A}} \frac{\partial \mathbf{W}}{\partial \mathbf{z}} = 0 \tag{2-1}$$

$$-\frac{\partial p}{\partial z} = \frac{1}{g_c^A} \frac{\partial W}{\partial t} + \frac{1}{g_c^{A^2}} \frac{\partial}{\partial z} \left(\frac{W^2}{\rho}\right) + \frac{f}{2g_c^D A^2} \left(\frac{W^2}{\rho}\right) + \frac{g}{g_c} \rho \cos \theta \qquad (2-2)$$

$$A \rho \frac{\partial H}{\partial t} + W \frac{\partial H}{\partial z} = \phi$$
 (2-3)

Equations 2-1, 2-2, and 2-3 are derived from the principles of conservation of mass, momentum and energy, respectively. The variables W, ρ , p, and H are mass flow rate per tube, density, pressure and enthalpy of the steam flow. The variables z and t are the distance along the heated tube and time, A is the tube cross-sectional area and D the tube inside diameter. The angle θ is the tube inclination from the vertical, f is the Darcy friction factor and ϕ is the heat input per unit length of tube. For this analysis the equation of state considers the density to be a function of enthalpy only, thus eliminating consideration of acoustic effects.

The procedure for deriving the final equation forms has been outlined in Section 2.2.1. The equations are first linearized, the Laplace transform is taken, and the resultant equations are integrated over small spatial increments. The final equations obtained are identical to those reported in Ref. 4. The final equation forms are algebraically complex and thus are not repeated here. The final dependent variables are the perturbation quantities for pressure, mass flow rate and density. The coefficients in the perturbation equation consist of combinations of variables which include geometry factors, tube material properties, and steady-state flow distributions. To this point analyses of channels containing superheated steam and supercritical steam are identical. However, the evaluation of the steady-state flow distributions and coefficients in the perturbation equations marks the separation of the two analyses.

2.3.5 <u>Steady-State Flow Distributions</u>

A steady-state solution is required for evaluation of coefficients appearing in linear perturbation forms of the governing equations. Several features of the steady-state solution require comment. Since the tube-side fluid in the steam generator is steam in the supercritical thermodynamic state, special care must be taken to insure that the evaluations of thermodynamic and transport properties are accurate. For this investigation a set of computer routines published by the ASME (Ref. 13) were used. These

subroutines are based on the 1967 IFC Formulations which are described in the 1967 ASME Steam Tables (Ref. 14). The effective film coefficient for supercritical steam has been evaluated following the formulation of Ref. 15. The friction factor for supercritical steam has been evaluated using Deissler's formulation (Ref. 16).

For a given steady-state calculation the tube is divided into a number of segments. For each segment the following parameters are determined:

- 1. Thermodynamic properties: enthalpy, temperature, pressure, and specific volume.
- 2. Transport properties: viscosity, thermal conductivity, and specific heat at constant pressure.
- 3. Pressure drop components: elevation, friction, momentum and orifice losses.

4. Convective film coefficient, wall temperature.

The procedure for obtaining the steady-state solution is direct when mass flow rate, inlet pressure, heat flow distribution, and enthalpy at inlet and exit are specified. The enthalpy rise across the jth tube segment can be calculated from

$$\Delta H_{j} = \frac{\overline{P}_{j}}{N} \frac{(H_{exit} - H_{inlet})}{N}$$
(2-4)

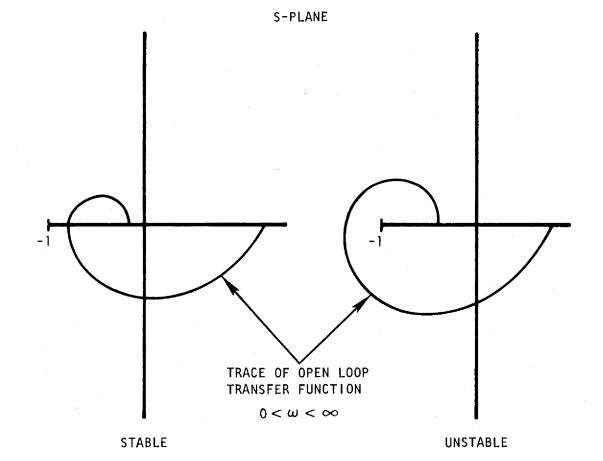
where \overline{P}_{j} is the normalized heat flow distribution and N is the number of tube segments. To eliminate the need for an extensive iterative solution, thermodynamic and transport properties are calculated using the enthalpy at the midpoint of the jth segment and the pressure at the exit of the j-l segment. The wall temperature at the segment midpoint is calculated by an iterative procedure which begins with the evaluation of the convective film coefficient using values of wall temperature from the previous iteration. The heat transfer is calculated and compared to the known heat transfer, and, if necessary, the wall temperature is used to calculate the friction factor, permitting evaluation of the friction pressure drop across the jth segment. The procedure is repeated for each segment, and the required steady-state distributions are stored for later use in calculating coefficients for the perturbation equations.

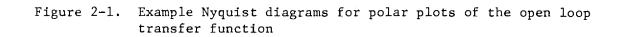
Specific parameters from the steady-state solution required for coefficient evaluation are the convective film coefficient, the derivative of the specific volume with respect to enthalpy, specific volume, pressure drop due to friction, specific heat, viscosity, thermal conductivity and enthalpy.

2.3.6 Frequency Response Analysis

As previously indicated, once the governing linear perturbation equations have been derived, a feedback control representation of the steam generator is set up. An open loop transfer function is determined which depends only on the parameters of the system (e.g., steady-state distributions, tube geometry and physical properties, etc.) and is not related to either the initial conditions or the forcing function. Since the transfer function is a complex variable quantity, the output generally differs from the input in both magnitude and phase.

A steam generator is stable if the system will return to equilibrium conditions after being perturbed by some external excitation. The stability of a system can be completely determined from the transfer function by the following rule: for a system to be stable, the transfer function cannot have infinities (poles) in the right half of the complex S-plane. It is noted that when Laplace transforms are taken of the original time-dependent partial differential equations governing the flow of supercritical steam through the steam generator, the independent variable time is replaced by the complex variable S. The utility of the transfer function methodology is based on the above rule since it is only necessary to determine the poles of the transfer function to decide if a system is stable, rather than completely finding the solution of the governing equations.


Several methods are available for determining system stability using the rule described above. The method of Nyquist is the simplest and most direct method for determining system stability. However, a description of the criterion and its relation to the transfer function representation of the system of governing perturbation equation for a steam generator is beyond the scope of this report. A simplified description of the method and its application to steam generators is given in Ref. 12. The specific application of the method to the system of equations solved in this analysis is presented in Ref. 4.


In brief, the procedure for determining system stability is as follows:

- 1. Let S = i ω with ω the circular frequency and make a polar plot of the open loop response as ω takes on values from $-\infty$ to $+\infty$.
- Determine if a vector from the -l point on the real axis to the trace of the open loop transfer function makes one or more complete revolutions as the trace of the open loop transfer function is developed.
- 3. The system is unstable if the vector makes one or more clockwise revolutions as ω proceeds from $-\infty$ to $+\infty$.
- 4. In many cases system stability can be evaluated simply by determining where the trace of the open loop transfer function crosses the real axis. If the trace crosses the real axis to the left of the -l point the system is unstable, and if to the right of -l the system is stable.

Example Nyquist diagrams are presented in Fig. 2-1 for the trace of the open loop transfer function and $0 < \omega < + \infty$.

It is emphasized that if there is any question about stability when determined by the above rules, the complete Nyquist criterion must be used. For each of the cases examined in this investigation, it was possible to determine system stability using the simplified procedures listed above.

3. RESULTS

The stability of the reference design steam generators for the Molten Salt Breeder Reactor has been analyzed at 99.68, 79.95, 59.97, 39.89 and 19.94% of full rated load. Operating conditions and design parameters have been provided by Foster Wheeler Corporation in Refs. 5 and 6. Individual steam generator tubes are made of Hastelloy N having design properties listed in Table 2-2. Tube length is 114 ft, tube inner diameter is 0.5 in., and tube wall thickness is 0.125 in. Inlet and exit orifice pressure losses are taken equal to one velocity head or 0.85 psia at the inlet and 5.8 psia at the exit. Steady-state operating conditions for the reference design at each load rating are listed in Table 2-1. The heating distribution along the tube for each load rating is given in Ref. 5.

3.1 TUBE-SIDE DYNAMIC STABILITY AT FULL AND PART LOAD

The open loop frequency response of the reference design is presented in Tables 3-1 through 3-5 for 99.68, 79.95, 59.97, 39.89 and 19.94% of rated load, respectively. In each case the reference design is stable with respect to density wave oscillations as measured by the Nyquist stability criterion. Nyquist plots are presented in Fig. 3-1 for the reference design at 99.68 and 19.94% of rated load. It is clear that the system is highly stable as the trace of the open loop transfer function does not approach the region of the imaginary axis. Further, at reduced flow and heating rates the trace of the open loop transfer function is shifted along the real axis away from the -1 point, indicating an increase in stability at the lower flow and heat rates. However, it is emphasized that the system is very stable and that the above effects are not significant for the reference design.

TABLE 3-1 OPEN LOOP FREQUENCY RESPONSE OF REFERENCE DESIGN STEAM GENERATORS FOR AN MSBR OPERATING AT 99.68% OF RATED LOAD

Real Part	
	Imaginary Part
.4105+04	.0000
.2650+04	.1680+00
. 2650+04	.3360+00
. 2650+04	.6719+00
. 2650+04	.3360+01
,2650+04	.6718+01
.2650+04	.1678+02
. 2652+04	.3345+02
.2656+04	.4989+02
. 2660+04	.6600+02
.2674+04	.9681+02
.2691+04	.1251+03
.2860+04	.2143+03
.3109+04	.7495+02
	.2650+04 .2650+04 .2650+04 .2650+04 .2650+04 .2650+04 .2652+04 .2656+04 .2660+04 .2674+04 .2691+04 .2860+04

(a) Tube length divided into 60 segments

TABLE	3-2

OPEN LOOP FREQUENCY RESPONSE OF REFERENCE DESIGN STEAM GENERATORS FOR AN MSBR OPERATING AT 79.95% OF RATED LOAD

	Open Loop Response ^(a)		
Frequency (radians/sec)	Real Part	Imaginary Part	
.0000	. 4876+04	.0000	
•2500+00	.3119+04	.4114+00	
.5000+00	.3119+04	.8228+00	
.7500+00	.3119+04	.1234+01	
.1000+01	.3119+04	.1646+01	
.1500+01	.3119+04	.2468+01	
.2000+01	.3119+04	.3291+01	
.5000+01	.3119+04	.8227+01	
.7500+01	.3119+04	.1234+02	
.1000+02	.3119+04	.1645+02	
.1500+02	.3120+04	.2466+02	
.2000+02	.3120+04	.3287+02	
.5000+02	.3128+04	.3156+02	
.1000+03	.3155+04	.1589+03	

(a) Tube length divided into 66 segments

TABLE 3-3

OPEN LOOP FREQUENCY RESPONSE OF REFERENCE DESIGN STEAM GENERATORS FOR AN MSBR OPERATING AT 59.97% OF RATED LOAD

·	Open Loop Response ^(a)		
Frequency (radians/sec)	Real Part	Imaginary Part	
.0000	. 5698+04	.0000	
.2500+00	.3533+04	.1030+01	
.5000+00	.3533+04	.2059+01	
.7500+00	.3533+04	.3089+01	
.1000+01	.3533+04	.4119+01	
.1500+01	.3533+04	.6178+01	
.2000+01	. 3533+04	.8237+01	
.5000+01	.3533+04	.2059+02	
.7500+01	.3534+04	.3088+02	
.1000+02	.3534+04	.4116+02	
.1500+02	.3536+04	.6169+02	
.2000+02	.3538+04	.8216+02	
.5000+02	.3563+04	.2026+03	
.1000+03	.3647+04	.3860+03	

(a) Tube length divided into 69 segments

TABLE 3-4 OPEN LOOP FREQUENCY RESPONSE OF REFERENCE DESIGN STEAM GENERATORS FOR AN MSBR OPERATING AT 39.89% OF RATED LOAD

Real Part .6653+04 .4438+04	Imaginary Part .0000 .2058+01
.4438+04	2058+01
.4438+04	.4116+01
.4438+04	.6174+01
.4438+04	.8232+01
.4438+04	.1235+02
.4438+04	.1646+02
.4439+04	.4115+02
.4440+04	.6169+02
.4441+04	.8219+02
. 4446+04	.1230+03
.4453+04	.1636+03
.4530+04	.3951+03
.4777+04	. 6997+03
	.4438+04 .4438+04 .4438+04 .4438+04 .4439+04 .4440+04 .4440+04 .4441+04 .4446+04 .4453+04 .4530+04

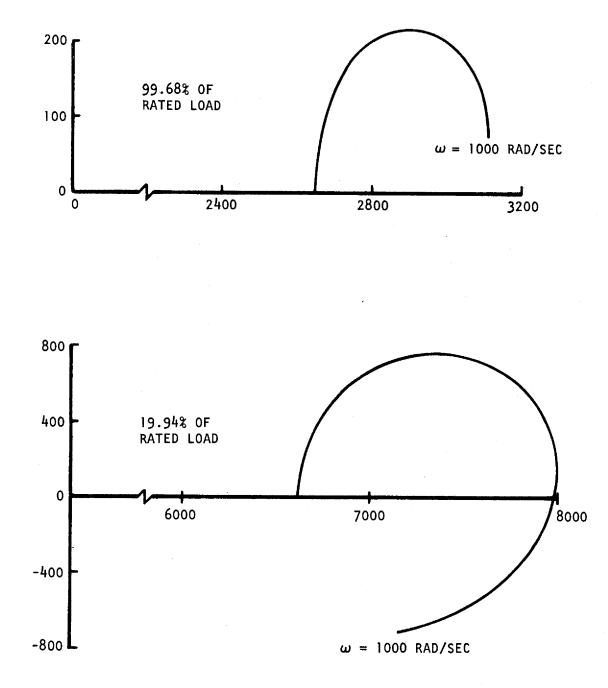

(a) Tube length divided into 74 segments

TABLE 3-5

OPEN LOOP FREQUENCY RESPONSE OF REFERENCE DESIGN STEAM GENERATORS FOR AN MSBR OPERATING AT 19.94% OF RATED LOAD

Frequency (radians/sec)	Open Loop Response ^(a)	
	Real Part	Imaginary Part
.0000 .2500-01 .5000+00 .1000+01 .5000+01 .1000+02 .2500+02 .5000+02 .7500+02 .1000+03 .1500+03 .2000+03	.8092+04 .6610+04 .6610+04 .6610+04 .6614+04 .6627+04 .6716+04 .6990+04 .7331+04 .7637+04 .7964+04 .7992+04	$\begin{array}{r} .0000\\ .4106+00\\ .8212+01\\ .1642+02\\ .8194+02\\ .1628+03\\ .3887+03\\ .6602+03\\ .7561+03\\ .6931+03\\ .3466+03\\ .3425+02\end{array}$
.5000+03 .1000+04	.7626+04 .7156+04	5160+03 7167+03

(a) Tube length divided into 86 segments

S-PLANE

Figure 3-1. Nyquist diagrams of the open loop transfer function for MSBR steam generators, reference design

In density wave oscillations, disturbances travel with the same velocity as the fluid in contrast to acoustic type oscillations where disturbances travel with the local speed of sound in the medium. The period of a density wave oscillation in a steam tube can be roughly estimated by dividing the tube length by the mean velocity of the steam in the tube. For the full and partial loads listed above, density wave oscillations, if they exist, are estimated to have a frequency varying from approximately 0.5 radians/sec at full load to 2.0 radians/sec at 20% of full load. Thus, the frequency ranges as presented in Tables 3-1 through 3-5 clearly encompass the possible frequencies of density wave oscillations.

3.2 SUPPORTING CALCULATIONS

The accuracy of the analysis is dependent upon the number of segments into which the total tube length is divided. As the number of segments becomes large, or conversely as the length of each segment becomes very small, the accuracy of the method is expected to improve. The results reported in Section 3.1 were obtained by specifying non-uniform segment lengths identical to those reported by Foster Wheeler in Ref. 5. The total number of segments used for the 99.68, 79.95, 59.97, 39.89 and 19.94% of rated load cases were 60, 66, 69, 74, and 86, respectively. These tube divisions were determined by Foster Wheeler Corporation to yield highly accurate steady-state solutions. The effect of segment length on accuracy was investigated by examining the 99.68% of rated load case with tube length divided into 23 segments. The resultant frequency response is presented in Table 3-6. It can be seen that the effect of the larger segment length was to shift the trace of the frequency response curve along the real axis away from the -1 point. Clearly accuracy is a second-order effect when compared to the increased stability predicted as flow and heating rates decrease. Further investigation of the effect of segment

TABLE 3-6

OPEN LOOP FREQUENCY RESPONSE OF REFERENCE DESIGN STEAM GENERATORS FOR AN MSBR OPERATING AT 99.68% OF RATED LOAD. TUBE LENGTH DIVIDED INTO 23 SEGMENTS

	Open Loop Response	
Frequency (radians/sec)	Real Part	Imaginary Part
.0000	.4129+04	.0000
,2500+00	.2789+04	.1003+00
. 5000 + 00	.2789+04	.2006+00
,7500+00	.2789+04	.3010+00
,1000+01	.2789+04	.4013+00
.1500+01	.2789+04	.6019+00
.2000+01	.2789+04	.8025+00
.5000+01	.2789+04	.2006+01
.7500+01	.2789+04	.3009+01
.1000+02	.2789+04	.4012+01
.1500+02	.2789+04	.6016+01
. 2000+02	.2789+04	.8017+01
.5000+02	.2791+04	.1994+02
.1000+03	.2797+04	.3913+02

Г

length on accuracy was not deemed necessary since the effect of increased segment length was to indicate a more stable system. Also, the segment lengths reported by Foster Wheeler (Ref. 5), and used in this study, have been found by Foster Wheeler to be adequate.

Although tube-side dynamic instabilities are not predicted for the reference design, several brief parameter studies were run to determine the effect of inlet and exit orificing and the effect of system pressure level on system stability. The results for an inlet orifice resistance coefficient K = 120 are presented in Table 3-7 and has an exit orifice resistance coefficient of K = 20 are presented in Table 3-8. The corresponding pressure decreases across the inlet and exit orifices are 102 psia and 116 psia, respectively. It can be seen that the effect of inlet orificing is to make the system less stable while the effect of the exit orificing is to make the system more stable. This trend is just opposite the observed stability trends for two-phase flows where inlet orificing tends to stabilize and exit orificing makes the system less stable. An additional calculation was made with an inlet orifice value K = 180 (a pressure decrease of approximately 153 psia), and the minimum real value of the open loop transfer function was 15.64. Although the margin of stability has been decreased by the inlet orificing, the reference design remains very stable with respect to density wave oscillations.

Zuber (Ref. 11) in his analytical investigation of thermally induced flow oscillations in the supercritical thermodynamic region predicts similar trends for two-phase and supercritical regimes. Thus, inlet orificing is reported as stabilizing the flow and frictional pressure losses and exit orificing leads to a less stable flow. Zuber further notes that his conclusions and results are new and have not yet been verified against experimental data.

TABLE 3-7OPEN LOOP FREQUENCY RESPONSE OF REFERENCE DESIGNAT FULL LOAD, INLET ORIFICE K=120

	Open Loop Response ^(a)	
Frequency (radians/sec)	Real Part	Imaginary Part
.0000 .2500+00 .5000+00 .7500+00 .1000+01 .1500+01 .2000+01	.3480+02 .2339+02 .2339+02 .2339+02 .2339+02 .2339+02 .2339+02 .2339+02	.0000 .8505-03 .1701-02 .2552-02 .3402-02 .5103-02 .6804-02
.5000+01 .7500+01 .1000+02 .1500+02 .2000+02 .5000+02 .1000+03	.2339+02 .2339+02 .2339+02 .2339+02 .2340+02 .2341+02 .2347+02	.1701-01 .2551-01 .3401-01 .5100-01 .6797-01 .1690-00 .3317-00

(a) Tube length divided into 23 segments

TABLE 3-8OPEN LOOP FREQUENCY RESPONSE OF REFERENCE DESIGNAT FULL LOAD, EXIT ORIFICE K=20

Frequency (radians/sec)	Open Loop Response ^(a)	
	Real Part	Imaginary Part
.0000	.8294+04	.0000
.2500+00	.5303+04	.3678+00
.5000+00	.5303+04	.7356+00
.7500+00	.5303+04	.1103+01
.1000+01	.5303+04	.1471+01
.1500+01	.5303+04	.2207+01
.2000+01	.5303+04	.2942+01
.5000+01	.5303+04	.7356+01
.7500+0 1	.5303+04	.1103+02
.1000+02	. 5303+04	.1471+02
.1500+02	. 5303+04	.2206+02
.2000+02	.5304+04	.2939+02
.5000+02	.5310+04	.7309+02
.1000+03	•2333 1 04	.1434+03

(a) Tube length divided into 23 segments

Finally the effect of system pressure level on the stability of the reference design was examined. It was found that the reference design was less stable at lower pressures (3530 psia) than at higher pressures (3930 psia), but that the effect was of second-order importance when compared to the effect of either orificing or reducing flow and heating rates.

4. SUMMARY AND CONCLUSION

The DYNAM computer code has been modified to permit the analysis of dynamic instabilities, specifically density wave oscillations, in the reference design steam generator for the Molten-Salt Breeder Reactor. Since the analysis is based on the solution of linear perturbation forms of the conservation equations for mass, momentum, and energy, the primary result of the analysis is to indicate by a 'yes' or 'no' result whether the reference design is stable or unstable with respect to density wave oscillations.

It is emphasized that the available experimental data and analytical studies are very limited. Thus, it has not been possible to verify the solution against either test data or other analyses.

The reference design appears to be highly stable. Analyses of the effect of inlet orificing, exit orificing, and pressure level indicate trends opposite to those observed in two-phase systems. For the reference design, increased inlet orificing and increased pressure level have been found to decrease the stability margin. Exit orificing, reduced pressure level or reduced flow and heating rates appear to increase system stability.

REFERENCES

- 1. Bouré, J. A., Bergles, A. E., and Tong, L. S., "A Review of Two-Phase Flow Instability," ASME paper 71-HT-42, ASME-AICHE Heat Transfer Conference, Tulsa, Oklahoma, Aug. 1971.
- Neal, L. G., and Zivi, S. M., "The Stability of Boiling-Water Reactors," <u>Nuc. Sci. Eng.</u>, <u>30</u>, 25 (1967).
- 3. Jones, A. B., "Hydrodynamic Stability of a Boiling Channel," Knolls Atomic Power Laboratory reports Part I, KAPL-2170, Oct. 2, 1961; Part II, KAPL-2280, Apr. 20, 1962; Part III, KAPL-2290, June 28, 1963; Part IV, KAPL-3070, Aug. 18, 1964.
- 4. Efferding, L. E., "DYNAM A Digital Computer Program for Study of Dynamic Stability of Once-Through Boiling Flow and Steam Superheat," USAEC Report GAMD-8656, Gulf General Atomic, 1968.
- 5. Cox, J. F., Foster Wheeler Corporation, "Full and Part-Load Operating Conditions for the Reference Design Molten-Salt Steam Generator," unpublished data.
- 6. Cox, J. F., Foster Wheeler Corporation, "Properties of Materials Used in Reference Design Molten-Salt Steam Generator," unpublished data.
- 7. Hall, W. B., "Heat Transfer Near the Critical Point," in Advances in Heat Transfer, Irvine, T. F., Jr. and Hartnett, J. P. (ed.), Academic Press, New York, 1971, p. 1.
- 8. Cornelius, A. J., "An Investigation of Instabilities Encountered During Heat Transfer to a Supercritical Fluid," Argonne National Laboratory Report ANL-7032, April 1965.
- 9. Walker, B. J., and Harden, D. G., "The Density Effect Model: Prediction and Verification of the Flow Oscillation Threshold in a Natural-Circulation Loop Operating Near the Critical Point," ASME paper 67-WA/HT-23, ASME Winter Annual Meeting, Pittsburgh, Pennsylvania, November 1967.
- Bouré, J. A., "The Oscillatory Behavior of Heated Channels," Part I and II, French Report CEA-R 3049, Grenoble, France, 1966.
- 11. Zuber, N., "An Analysis of Thermally Induced Flow Oscillations in the Near-Critical and Supercritical Thermodynamic Region," National Aeronautics and Space Administration, Marshall Space Flight Center Report No. NAS 8-11422, May 25, 1966.
- 12. Katz, R., "The Analysis of Density Wave Oscillations in Steam Generators by Means of Feedback Control Theory," Gulf General Atomic Report Gulf-GA-Al2228, Aug. 1, 1972.

- 13. McClintock, R. B., and Silvestri, G. J., "Formulations and Iterative Procedures for the Calculation of Properties of Steam," ASME Publication H-17, American Society of Mechanical Engineers, New York, New York, 1968.
- 14. Mayer, C. A., et al., "1967 ASME Steam Tables Thermodynamic and Transport Properties of Steam Comprising Tables and Charts for Steam and Water," American Society of Mechanical Engineers, New York, New York, 1967.
- Swenson, H. S., Carver, J. S., and Kakarala, C. R., "Heat Transfer to Supercritical Water in Smooth-Core Tubes," ASME paper 64-WA/HT-25, Winter Annual Meeting, New York, Sept. 1964.
- 16. Deissler, R. G., "Heat Transfer and Fluid Friction for Fully Developed Turbulent Flow of Air and Supercritical Water with Variable Fluid Properties," <u>Transactions of the ASME</u>, Jan. 1954, pp. 73-85.

APPENDIX C-1

TUBESHEET HEADER ASSEMBLY

STRESSES AT SECTIONS 1-1 THROUGH 7-7

TUBESHEET	STRESS	AT	TUBESHEET	CENTER ((SECTION	1 - 1)
Statement and and a statement of the local division of the local d					(· · · ·	

5700 PSI. 5900PS1. Element 0r Q--4780 391 -5111 72 -3822 -3826 σ_{τ} T 68 -2432 -2440 - 418 440 - 439 64 435 424 60 1410 1397 56 2408 2396 52 3490 3480 6700 PSI. 48 4731 4733 69001 344 5616 5946

(FOR DESIGN PRESSURE, p=4000 PSI)

PLOT OF STRESS THROUGH TUBESHEET (Pm+Pb)

 $O_{T}(TOP) = -5900 \text{ psi}$ $O_{T}(BOTTOM) = 6900 \text{ psi}$ $O_{T}(AVG.) = 1/2(6900-5900) = 500 \text{ psi}$ $O_{b} = \pm(5900 + 500) = \pm 6400 \text{ psi}$ (A) <u>PRIMARY GENERAL MEMBRANE STRESS INTENSITY (SECTION 1-1)</u> (AT T.S. CENTER FOR DESIGN p=4000 PSI)

$$\begin{split} \mathbf{S}_{1} &= \mathbf{P}/\mathbf{h} \sqrt{\left(\Delta \mathbf{P} \times \mathbf{R}/\mathbf{t}\right)^{2} + \left(\overline{\sigma}_{\mathbf{r}}\right)^{2}} \\ \mathbf{S}_{2} &= \mathbf{P}/2\mathbf{h} \left[\sqrt{\left(\Delta \mathbf{p} \times \mathbf{R}/\mathbf{t}\right)^{2} + \left(\overline{\sigma}_{\mathbf{r}}\right)^{2}} + \overline{\sigma}_{\mathbf{r}} + 2\mathbf{p}_{\mathbf{i}}\mathbf{h}/\mathbf{p}} \\ \text{Use the larger of } \mathbf{S}_{1} \text{ or } \mathbf{S}_{2}. \\ \text{where: } \mathbf{p}/\mathbf{h} &= \text{reciprocal of ligament eff.} = 1.0/0.476 = 2.10 \\ \Delta \mathbf{p} &= \text{differential press. across plate} = 4000 \text{ psi} \\ \mathbf{p}_{\mathbf{i}} &= \text{pressure inside tube hole} = 4000 \text{ psi} \\ \mathbf{R} &= \text{radial distance from centerline plate to section of interest} = 2.063'' \\ \mathbf{t} &= \text{plate thickness} = 14'' \\ \overline{\mathbf{O}}_{\mathbf{r}} &= \text{radial stress averaged through the depth of the equivalent solid plate} \\ &= \mathcal{O}_{\mathbf{r}}(\mathbf{AVG.}) + \mathbf{h}/\mathbf{p} ((\mathbf{p}-\mathbf{h})/\mathbf{h}) \mathbf{p}_{\mathbf{i}} \\ &= 500 + 2096 \\ &= 2596 \text{ psi} \end{split}$$

 $S_1 = 2.1\sqrt{34.74 \times 10^4 + 673.92 \times 10^4} = 5590 \text{ psi}$ $S_2 = 1.05 [2662 + 2596 + 3808] = 9520 \text{ psi}$ Maximum Average Plate Temperature < $1075^{\circ}F$

(B) <u>PRIMARY MEMBRANE PLUS BENDING STRESS INTENSITY (SECTION 1-1)</u> (AT T.S. CENTER FOR DESIGN p=4000 PSI)

$$S = k p/h c_1$$

where: K = stress intensity factor

for top of t.s., $\beta = \sigma_r / \sigma_T = 5700/5900 = .97$, K = 1.0 for bottom of t.s., $\beta = 6700/6900 = .97$, K = 1.0 $\sigma_1 = \sigma_r$ or σ_T , whichever is larger.

S = 1.0 x 2.1 x 5900 = 12,390 psi (TOP) S = 1.0 x 2.1 x 6900 = 14,490 psi (BOTTOM)

(C) <u>PRIMARY PLUS SECONDARY STRESS INTENSITY (SECTION 1-1)</u> (AT CENTER OF T.S.)

For Reactor Scram Transient Plus Operating Pressure:

S = K p/h ි 1

where K = stress intensity factor

for top of t.s., $\beta = -520/-780 = 0.67$, K = 1.015 (E1. #390) for bottom of t.s., $\beta = 4220/4370 = 0.97$, K = 1.0 (E1. #343)

 $\mathcal{O}_1 = \mathcal{O}_r$ or \mathcal{O}_T , whichever is larger.

S = 1.015 x 2.1 x 780 = 1660 psi (TOP) S = 1.0 x 2.1 x 4370 = 9180 psi (BOTTOM)

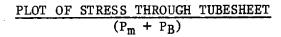
For Load Reduction Transient plus operating pressure:

Top of T.S. (E1. #390), $\beta = (-6380)/(-6360) \approx 1.0$, K = 1.0 Bottom of T.S., (E1. #343), $\beta = (-6710)/(-6747) \approx 1.0$, K = 1.0 S = 1.0 x 2.1 x 6420 = 13,480 psi (TOP) S = 1.0 x 2.1 x 6750 = 14,180 psi (BOTTOM) Srange = 9.18 + 14.18 = 23.36 ksi

(D) PEAK STRESS INTENSITY

(AT CENTER OF T.S.)

FOR TRANSIENTS DUE TO REACTOR SCRAM AND LOAD CHANGE PLUS OPERATING PRESSURE.


- $S = Y_{max} \quad \frac{P}{h} \quad \boldsymbol{\sigma}_{1} \quad + \quad P_{s}$ WHERE: $Y_{max} = STRESS MULTIPLIER$ $P_{s} = PRESSURE ON THE SURFACE WHERE THE STRESS IS BEING COMPUTED$ $\boldsymbol{\sigma}_{1} = PRINCIPAL STRESS HAVING THE LARGER ABSOLUTE VALUE IN THE PLANE OF THE EQUIVALENT SOLID PLATE
 FOR TOP OF T.S., <math>\beta = \frac{-520 6380}{-780 6360} = \frac{6900}{7140} = 0.97, Y_{max} = 1.43$ FOR BOTTOM OF T.S., $= \frac{1220 + 6710}{4370 + 6747} = \frac{10,930}{11,120} = 0.98, Y_{max} = 1.43$ $S = 1.43 \times 2.1 \times 7140 + 3600 = \frac{25,040}{33,620} PSI (TOP)$ $S = 1.43 \times 2.1 \times 11,120 + 230 = \frac{33,620}{33,620} PSI (BOTTOM)$ FOR REACTOR SCRAM TRANSIENT ALONE PLUS OPERATING PRESSURE WE HAVE
- FOLLOWING RESULT:

NOTE:

TOP OF T.S., $\beta = \frac{-520}{-780} = 0.67$, $Y_{max.} = 1.68$ BOTTOM OF T.S., $\beta = \frac{4220}{4370} = 0.97$, $Y_{max.} = 1.43$ S = 1.68 x 2.1 x 780 + 3600 = <u>6350 PSI</u> (TOP) S = 1.43 x 2.1 x 4370 + 230 = <u>13,350 PSI</u> (BOTTOM)

			<u> or</u> or
Element	5-	σ_{τ}	-1400 PSI3700 PSI.
400	-858	-2661	
75	- 91	-1119	
71	145	- 217	
443	1211	1476	
67	991	1368	
63	1349	1799	
59	1295	2128	
55	1091	2319	
51	946	2559	1 720PSI. 2950 PSI.
353	861	2823	4. 720 PSI. 2950 PSI.

TUBESHEET STRESS AT OUTER RADIUS OF PERFORATED ZONE (SECTION 2-2) (FOR DESIGN PRESSURE, p=4000 PSI ONLY)

 $G_r(TOP) = -1400 \text{ psi}$ $G_r(BOTTOM) = 720 \text{ psi}$ $G_r(AVG.) = 694 \text{ psi}$ $P_b = \frac{1}{2}(1400 + 720) = \pm 1060 \text{ psi}$

 $O_{\rm T}({\rm TOP}) = -3700 \text{ psi}$ $O_{\rm T}({\rm BOTTOM}) = 2950 \text{ psi}$ $O_{\rm T}({\rm AVG.}) = 1048 \text{ psi}$ $P_{\rm b} = \frac{1}{2}(3700 + 2950) = \pm 3325 \text{ psi}$ Maximum Average Plate Temperature < 1075°F (A) PRIMARY GENERAL MEMBRANE STRESS INTENSITY (EDGE OF T.S.)

$$\sigma_r = 694 + 2096 = 2790 \text{ psi}$$

 $S_1 = 2.1\sqrt{1.7017 \times 10^7 + 778.41 \times 10^4} = 10,460 \text{ psi}$
 $S_2 = 1.05 [4980 + 2790 + 3808] = 12,160 \text{ psi}$

(B) PRIMARY MEMBRANE PLUS BENDING STRESS INTENSITY (EDGE OF T.S.)

Top of T.S., $(5 = 6_r/6_T = -1400/-3700 = 0.378, K = 1.04)$ Bottom of T.S., $\beta = 720/2950 = 0.244, K = 1.06$ S = 1.04 x 2.1 x 3700 = 8080 psi S = 1.06 x 2.1 x 2950 = 6570 psi

(C) PRIMARY PLUS SECONDARY STRESS INTENSITY

	<u>Top(E1. 401)</u>	Bott(E1. 354)	<u>Top(E1. 401)</u>	<u>Bott(E1. 354)</u>
Op.P. + R. Scram	6105	-581	3984	1524
Op.P. + Load Change	- 275	268	-2398	2 592
Steady-State	506	-2272	710	-2890

LOADING CONDITION (a)

(P + R.S.) - (P+L.C.)

TOP	BOTT	TOP	BOTT
6380	-849	6382	-1068

TOP OF T.S.: $\beta = 6380/6382 \approx 1.0, \text{ K=1.0}$ S = 1.0 x 2.1 x 6382 = 13,400 psi (TOP)

<u>BOTTOM OF T.S.</u>: f = -849/-1068 = 0.79 K = 1.01 S = 1.01 x 2.1 x 1068 = 2270 psi (BOTT.)

LOADING CONDITION (b)

P + R.S. + SS

TOP	BOTT	TOP	BOTT
6611	-2853	4694	- 136 6

TOP OF T.S.:

$$\rho = 4694/6611 = 0.704$$
, K = 1.02
S = 1.02 x 2.1 x 6671 = 14,220 psi (TOP)

BOTTOM OF T.S.:

 $\beta = -1368/-2853 = 0.40$ K = 1.03 S = 1.03 x 2.1 x 2853 = 6170 psi (BOTT)

LOADING CONDITION (c) P + R.S.

$$\frac{\text{TOP OF T.S.:}}{\beta} = 3984/6105 = 0.65, \text{ K} = 1.015$$

S = 1.015 x 2.1 x 6105 = 13,010 psi (TOP)

BOTTOM OF T.S.:

$$\beta = -581/1524 = -0.38, K = 1.45$$

S = 1.45 x 2.1 x 1524 = 4640 psi (BOTT)

PEAK STRESS INTENSITY (at edge of tube sheet)

For transients due to reactor scram and load change plus operating pressure.

For top of T.S., $\beta = 1.0$: Ymax = 1.43 For bottom of T.S., $\beta = 0.79$: Ymax = 1.50 S = Ymax $\left(\frac{P}{h}\right) \delta$, + Ps S = 1.43 x 2.1 x 6380 + 3600 = 22760 (Top) S = 1.50 x 2.1 x 6382 + 230 = 20333 (Bottom)

SECTION 3-3	PRIMARY ME	MBRANE			
Element	0,	<u>5</u> 7	ि _र	0rz	
364 365 366 367 368	71 846 1269 1626 2664	-1578 -3897 -3658 -5858 -7190	2085 891 779 –236 –1144	419 1537 2490 3100 <u>4141</u>	
Avg.	-1267	-4436	475	2337	
్ ₁ = -28 ర ₂ =-5676 ర ₃ = 475	S = 6150 =	P _L (Assu	me Also P _m)	•	
PRIMARY PLUS	SECONDARY S	TRESSES			
ELEMENT 364		0r	67	J _T	Orz
1) OP. P. +	R.S.	8645	3879	-6760	-5997
2) OP. P. +	L.S.	-1 546	-2398	3543	1572
3) S.S.		1171 0	6986	-11540	-9174
CONDITION ((a) 1 - (2			
		10191	6277	-10303	-7569
) 1 = 16052		0 ₂ = 416	[€] ₃ = −10303		
S = 26360				• • •	
CONDITION (E) + (. <u>.</u>
		20355	10865	-18300	-15171
0 ₁ = 31506	. () ₂ = -286	Ø ₃ = −18300		
S = 49,810					

Maximum Temperature < 1150°F

SECTION 4-4	PRIMARY	STRESS	ES					
Element	<u>Sr</u>		δ_{\pm}		<u> </u>		Ort	
384 385 386 387 388 389	-406 -1098 -1847 -1185 -1107 +106	• •	2027 4791 4450 3698 1144 <u>-508</u>		-404 198 -205 84 -795 -684		5013 4467 2831 2929 792 534	
Avg.	-922		2600		-301		2761	
ර ₁ = 4114		0 ₂ = -	-2436		б ₃	= -301		
S = 6550								
SECTION 4-4	PRIMARY	PLUS SH	CONDAR	Y STRE	SSES		. .	
		<u>Jr</u>	-	5.		6-		Orz.
1 OP. P + R.S. 2 OP. P + L.S. 3 S.S.		-678 -609 1363		1254 4377 1302		-11140 1948 -1071		5264 3974 1141
Condition (\widehat{a})	1) - 2)							
		-69		-3123		-13088		129 0
്₁ = -3595			. 0	2 = 40	3	σ ₃ =	-1 3088	
s = 13490								
Condition (b) (<u>1</u>) + (3)							
		685		2556		-12211		6405
0 ₁ = 8094			σ ₂	= 4852		σ_3	= 12211	
S = 20,310								

Maximum Temperature < 1000[°]F

PRIMARY LOCAL MEMBRANE STRESS SECTION 5-5

E1.	Ŏ _R	σ_z	$\mathcal{O}_{\mathbf{T}}$	σ _{Rz}
420	5492	24660	7066	10250
421	3636	14480	3449	5126
422	2891	9002	1611	3000
423	1821	6679	689	1186
424	2126	4590	102	2404
425	1397	3811	- 240	460
426	1116	1778	- 931	850
427	379	- 684	-1821	253
428	81	- 2693	-2446	- 264
AVG.	+2104	+6847	+ 831	+ 2585

 $5_1, 5_2 = \frac{1}{2}(2104 + 6847) \pm [((6847 - 2104)/2)^2 + 2585^2]^{\frac{1}{2}}$

 $= 4476 \pm 3508$

= 7984, 968

Stress intensity, S = 7984 - 831 = 7150 psi Maximum Temperature < 1000° F

SECTION 5-5 PRIMARY PLUS SECONDARY STRESSES

		<u>(r</u>	62	07	0rz
1 2 3	OP. P. + R.S. OP. P. + L.S. S.S.	41110 9040 5603	21020 4640 3397	20320 -240 1374	24,430 8420 3874
	Condition (a)	1) - (2)			
		32070	16380	20560	16010
	(j₁ = 41,054	Ő ₂	= 6396	$\sigma_3 = 1$	20560
	S = 34,658				
	Condition (b)	1 + 3			
		46713	24417	21694	28304
	් ₁ = 65985	0 ₂	= 5145	Ø ₃ = 2	21694

S = 60,840

PRIMARY GENERAL MEMBRANE STRESS SECTION 6-6

E1.	€ _R	Jz -	б _т	$\sigma_{\mathbf{r}z}$
108	-2550	4667	3805	-3214
109	-2236	5248	3990	-2946
110	-1773	5621	4166	-2696
111	-1271	5840	4320	-2485
112	- 748	5974	4469	-2344
113	- 214	6070	4623	-2291
114	317	6165	4788	-2336
115	833	6300	4971	-2477
AVG.	- 955	5736	4392	-2599

$$\left[\left(\frac{1}{2}, \frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^2 \right]^{\frac{1}{2}}$$

= 2391 ± 4236

= 6627, **-**1845

 $d_3 = d_T = 4392$

Stress Intensity, S = 6627 + 1845 = 8470 psi (Section A-A) Maximum Temperature < 1000° F

Stresses due to R.S. and L.S. alone are given below:

	<u><u>S</u>r</u>	σ _z	б _т	Jrz	SI
R.S.	3670	11130	23330	-5020	22184
L.S.	-1370	- 4150	- 8800	1860	8362

SECTION 6-6 PRIMARY	SECTION 6-6 PRIMARY PLUS SECONDARY STRESSES						
	J.	<u> </u>	бт	Orz.			
1 OP. P. + R.S. 2 OP. P. + L.S. 3 S.S.	-1311 -3568 98	24810 1139 1968	19120 -5242 -262	-6673 -561 -354			
Condition (a) (1) .	- 2			•			
	2257	23671	24362	-6112			
6 ₁ = 25293		6 ₂ = 635	0 ₃ = 24362	2			
SI = 24658							
Condition $\widehat{\mathbf{b}}$ $\widehat{1}$ -	+ (3)						
	-1213	26778	18858	-7027			
1 = 28444		∫ ₂ = -2878	$\int_{3} = 18858$				

े₁ = 28444

SI = 31322

SECTION 7-7	PRIMARY STRES	SES				
Element	<u>Sr</u>	0z	07	Orz.		
180 181 182 183 184 185 186 <u>187</u>	-3144 -2059 -1129 -369 221 639 887 <u>964</u>	-3264 -2809 -2265 -1656 -991 -281 468 1267	13090 12320 11710 11200 10760 10360 9962 9571	-333 -475 -687 -917 -1125 -1279 -1353 -1328	•	
Avg.	-499	-1191	11122	-937		
ර = 154 1						
б ₂ = 1844	S = 12970					
⊙ ₃ = 11,122	Maxim	um Operating	Temperature	e < 1000 ⁰ F		
SECTION 7-7	PRIMARY PLUS	SECONDARY ST	RESSES			
	Or	6	<u>t</u>	στ	0rz	SI
1 0.P. + R.S 2 0.P. + L.S 3 S.S.		81 -71 -	65 2	35140 2680 -189	-5325 1576 24	37090
Condition (a)	(1) - (2)					
	5071	153	46	32460	-6901	
		B12 $O_2^{\cdot} = 1$	606	0 ₃ = 32460		
Condition (b)						
Condition (c)		•				

Condition (c) S = 37,090 (max.)

SECTION 8-8

Primary stresses (due to design pressure of 4000 psi)

Element	<u>G</u> r	0 ₇	6 _T	<u>G</u> rz
332	-3629	4515	12300	-3.6
333	-2941	4501	11620	11.1
334	-2331	4495	11020	20.2
335	-1788	4490	10500	24.4
336	-1305	4485	10040	24.0
337	-874	448-	9627	19.5
338	-492	4476	9259	11.2
Average	-1908	4491	10623	Negligible

5₁ = -1908 5₂ = 4491 S = 12531 psi δ₃ = 10623

APPENDIX C-2

HASTELLOY N MATERIAL PROPERTIES

A) ALLOWABLE STRESSES (REFERENCE))

Temp.	0 hr	10 hr	S _t _10 ² hr	: 10 ³ hr	10 ⁴ hr	10 [#] hr	10 hr	Smt _10 ² hr	10 ³ hr	<u>10⁴ hr</u>	10 ⁵ hr	s _o .	s _m
70 400 600 800 1000 1100 1200 1300 1400	26,600 26,600 25,200 23,850 22,950 22,950 22,050 19,300 16,600	48,000 34,670 24,000 12,000	34,000 24,000 16,000 7,670	24,000 16,000 10,000 5,070	17,160 12,000 6,250 3,330	12,000 7,260 3,500 2,000	22,950 22,050 19,300 12,000	16,000 7,670	16,000 10,000 5,070	17,160 12,000 6,250 3,330		25,000 21,000 20,000 18,000 17,000 13,000 6,000 3,500	26,600 26,600 25,200 23,850 22,950 22,950 19,300 16,600

B) OTHER PROPERTIES (REFERENCE 7)

Cemperature (°F)	Modulus of Elasticity (psi)	Mean Coefficient of Expansion in./in°F (70° - T)	Thermal Conductivity (Btu/ft-hr-°F)	
	X 10 ⁻⁶	X 10e		
100	31.3		6.6	
200	30.6			
300	30.0			
400	29.5	6.45	7.4	
500	29.0			
600	28.5	6.76	8,3	
700	· 28.1			
800	27.7	7.09	9.2	
900	27.2		9.3	
1000	26.7	7.43	10.4	
1050	26.4			
1100	26.3		11.1	
1150	26.1		12.1	
1200 、	25.7	7.81	11.7	

Density, 0.317 lb/in.³ at room temperature.

Specific heat, 0.095 Btu/1b °F at room temperature;

GULF GENERAL ATOMIC REPORT GULF-GA-A 12414

.

APPENDIX C-3

GULF GENERAL ATOMIC

Gulf-GA-A12414

FINAL REPORT

TUBE RUPTURE ANALYSIS OF A COUNTERFLOW HEAT EXCHANGER

Ьy

J. J. Johnson and D. A. Wesley

Prepared under P.O. N24013 Project No. 0540.0000 for Foster Wheeler Corporation

under Union Carbide Corporation, Nuclear Division Subcontract No. 91X-88070C

> under Prime Contract No. W-7405-eng-26 with the U.S. Atomic Energy Commission

Gulf General Atomic Project 0540

November 20, 1972

GULF GENERAL ATOMIC COMPANY P.O. BOX 81608, SAN DIEGO, CALIFORNIA 92138

ABSTRACT

The structural integrity of a counterflow heat exchanger subjected to a steam tube failure was examined. The scope of the investigation was limited to two areas of concern. The effect of the burst on the containment vessel was treated as a plane strain problem, and the results indicated that the shell could withstand the accident without failure. Stresses well above the yield strength of the shell result, however, and an increase in the diameter of the shell of the order of 4.0 inches may be anticipated for the worst case of failure of a tube immediately adjacent to the shell.

The integrity of a tube adjacent to the ruptured tube was considered using a discrete method of analysis modeling the tube as a continuous beam. The results obtained for the response of the adjacent tube indicate that although very large beam deformations are predicted, rupture will not occur, even for the very conservative assumption of no support from surrounding tubes. While this is physically an unrealistic case, it may be considered an upper bound on maximum tube response.

CONTENTS

Page

	ABSTRACT
	LIST OF FIGURES
۱.	INTRODUCTION
2.	ANALYSIS
	2.1 Effect of a Tube Rupture on the Shell
	2.1.1 General Remarks
	2.1.2 Models of the Problem
	2.1.2.1 Model I
	2.1.2.2 Model II
	2.2 Effect of a Tube Rupture on an Adjacent Tube
3.	RESULTS AND DISCUSSION
	3.1 Effect of a Tube Rupture on the Shell
	3.2 Effect of a Tube Rupture on an Adjacent Tube 16
4.	CONCLUSIONS
	REFERENCES

LIST OF FIGURES

Page

۱.	ldealized stress-strain curve for Hastelloy N at 850°F	4
2.	Grid plot for Model I of the shell analysis	6
3.	Enlarged grid plot of tube rupture area of Model I	7
4.	Pressure-time history of the steam after tube rupture	9
5.	Grid plot for Model II of the shell analysis	10
6.	Pressure profiles applied to the shell	12
7.	Points of application of the pressure profile-Model II of the shell analysis	13
8.	Idealized moment-curvature relationship of a tube	15
9.	Effective stress-time history in Zone 1	17
10.	Effective stress-time history in Zone 2	18
п.	Effective stress-time history in Zone 3	19
12.	Effective stress-time history in Zone 4	20
13.	Grid plot of the shell, time = 0 sec	21
14.	Grid plot of the shell, time = $50 \ \mu sec$	22
15.	Grid plot of the shell, time = $254 \ \mu sec$	23
16.	Grid plot of the shell, time = 551 μ sec	24
17.	Grid plot of the shell, time = 754 μ sec	25
18.	Grid plot of the shell, time = 1 millisec	26
19.	Grid plot of the shell, time = 1.25 millisec	27
20.	Grid plot of the shell, time = 1.5 millisec	28
21.	Circumferential stress-time history in Zone 1	29
22.	Model and loading of a tube adjacent to the rupture	30
23.	Maximum moment-time history in the tube	34

iv

1. INTRODUCTION

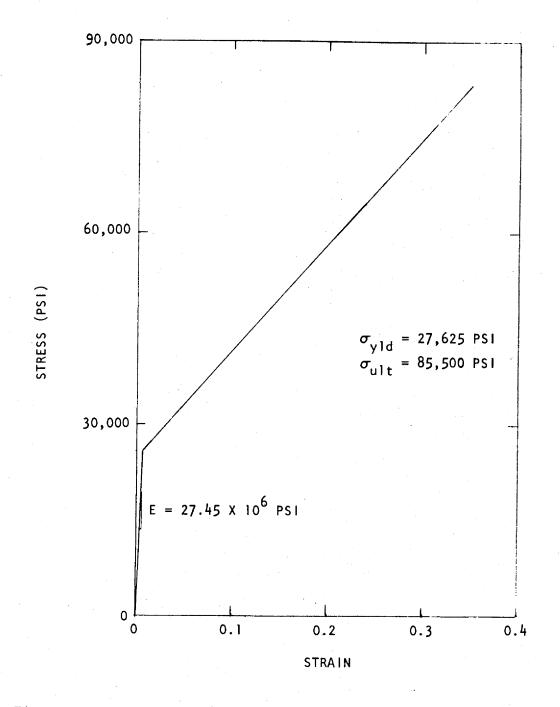
A history and general description of the molten-salt breeder reactor are contained in Refs. 1 and 2 along with numerous references to more detailed information on the individual components and the development of new materials for their construction. The purpose of this study was to evaluate the structural integrity of one such component under a specified accident condition. This involved investigation of the effects of a tube rupture on a counterflow heat exchanger. The vessel is a cylindrical shell 114.83 feet in height, 41 inches in outside diameter, and .75 inch wall thickness. It contains 1032 tubes of .75 inch outside diameter and .125 inch wall thickness which are supported by tube sheets at 5 foot intervals (Ref. 6). The shell-side fluid is molten-salt and the tube-side fluid is supercritical steam. The inlet and outlet conditions of the steam and molten-salt are specified in Ref. 3. Both the shell and tubes are constructed of a nickelbase alloy, Hastelloy N, with temperature dependent material properties specified in Refs. 3-6.

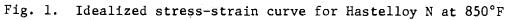
The rigorous treatment of a steam tube burst on the structural integrity of its containment vessel and the adjacent tubes is a complex hydrodynamic problem. A mechanized literature survey obtained from the Nuclear Safety Information Center at Oak Ridge, Tennessee, and one performed by the authors verified the lack of completely general solution techniques available for the indicated problem. Since inadequate time was available to develop methods of analysis, it was concluded that the problem must be simplified considerably and its solution sought by an appropriate available technique. The basic philosophy of all such idealizations is to model the phenomena as accurately as possible, using a conservative representation of the problem where necessary. This allows one to qualitatively discuss the results with a reasonable degree of confidence.

I

The scope of this investigation was limited to two areas of concern. These were the effects of a tube rupture on the structural integrity of the shell and the integrity of an adjacent tube. The shell was treated as a plane strain problem using the PISCES 2DL computer code. This is a finitedifference program which is capable of treating hydrodynamic/structural shock problems. The response of a tube adjacent to the rupture was obtained from a lumped-mass model of a continuous beam. Due to reduction of effort allowed, the treatment of effects of adjoining tubes was not included, either in the overall beam response of the tube or the localized response due to impact, nor was any consideration of scattering of the wave possible. The analysis and models are discussed in detail in subsequent sections.

2. ANALYSIS


2.1 EFFECT OF A TUBE RUPTURE ON THE SHELL


2.1.1 General Remarks

The rupture of a tube adjacent to the wall of the shell was studied by considering a typical transverse section through the shell and analyzing it as a plane strain problem. Average values of temperature, 850°F, pressure in the steam, 3700 psi, and pressure in the molten-salt, 206 psi, were assumed. This assumption removes the longitudinal flow of the molten-salt from consideration, which is reasonable in the time span being considered. The problem was subsequently analyzed using a hydrodynamic computer code named PISCES 2DL.

A series of computer programs identified by the name PISCES have been developed by the Physics International Company (Ref. 7) and are marketed through the Control Data Corporation. The program PISCES 2DL is a twodimensional hydrodynamic code which utilizes the Lagrangian formulation (Refs. 8 and 9) with a finite-difference approach. The programs contain specific provisions for treating shocks and they allow fluid-solid interaction, a wide variety of equations of state, and non-linear stress-strain models. The standard elastic-plastic model in PISCES is bi-linear and uses the von Mises yield criterion with a Prandtl-Reuss flow rule. This model was used in the present study for the idealized stress-strain curve of Hastelloy N at 850°F shown in Fig. 1.

The actual computer runs were made at Lawrence Berkeley Laboratory at a considerable reduction in cost over the Control Data Corporation's version. The computer models were established after consultation with the staff of Physics International Company since they were most familiar with the capabilities and restrictions of the code.

2.1.2 Models of the Problem

2.1.2.1 Model I. The first attempt at modeling the shell included the molten-salt, four steam zones (modeling the steam as an ideal gas), and four artificially dense zones (representing the tube) to direct the flow of steam. An overall view of the grid is shown in Fig. 2 and an enlargement of the area containing the steam and artifically dense zones is shown in Fig. 3. Several runs were made with this model for varying boundary conditions in the steam. An accurate representation of the problem was not possible using this configuration and an increase in the number of zones near the rupture was indicated. Although this refinement would not significantly increase the total number of zones, the corresponding reduction in the time step necessary to assure convergence made it economically infeasible. Also, an initial increase in resolution of the mesh at the rupture did not guarantee the solution and a further reduction may have been necessary.

2.1.2.2 <u>Model II</u>. The alternative to this situation was to model the shell excluding the molten-salt and the directed flow of steam from the tube. The disturbance then had to be applied to the shell as a pressure distribution with a specified time and spatial variation.

Quantitative results on tube ruptures are infrequent in the literature. A comprehensive study was recently completed by Eiber <u>et al.</u> of Battelle Columbus Laboratories, Columbus, Ohio (Ref. 10) in which a series of experiments were performed on cylindrical pressure vessels with through-wall and surface flaws to investigate the many facets of a rupture. The failure reported by Eiber propagated along the length of the vessel in contrast to the mode of failure specified by Foster Wheeler Corporation (Ref. 12), i.e., a "fish mouth" type opening in the tube. This difference may be attributed to several factors such as the initiation of failure in the tube and the fact that the tube is a thick-walled cylinder compared to the thin-walled cylinders tested by Eiber.

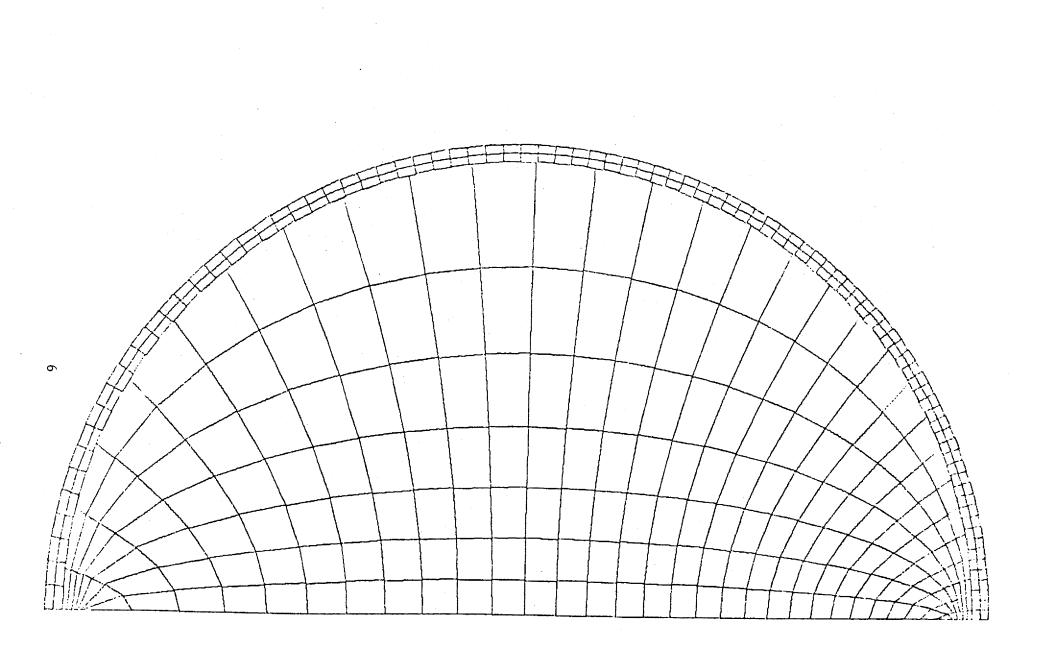


Fig. 2. Grid plot of Model I for the shell analysis

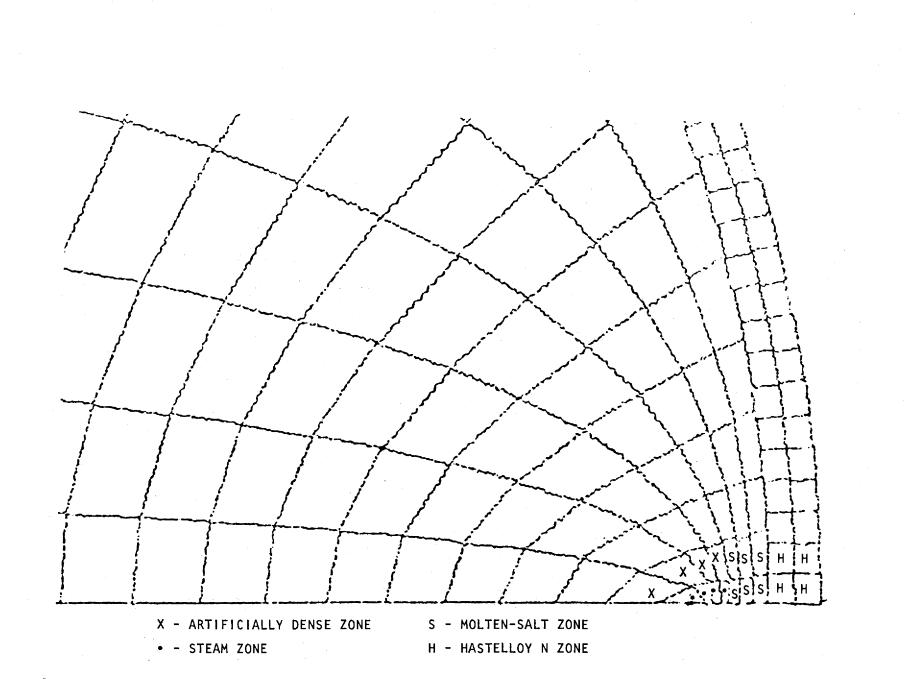
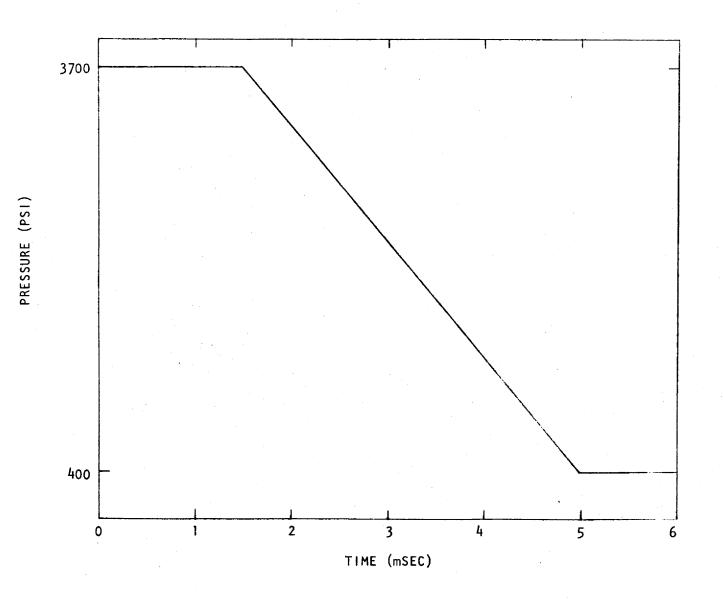



Fig. 3. Enlarged grid plot of tube rupture area of Model I

The pressure-time history shown in Fig. 4 was selected for the present study. The initial tube pressure was allowed to act for 1.5 milliseconds to reflect the aforementioned discrepancy in the mode of failure. The final pressure was estimated from the results of a shock tube analysis assuming interaction of two fluids with the pressure and other properties of the molten-salt and steam, respectively (Ref. 16). The basic pulse shape and duration are consistent with the measurements made by Eiber as well as those utilized by Gulf General Atomic (Ref. 11) for the analysis of a double-ended steam tube failure. In both cases, the pressure profile of Fig. 4 is an upper bound.

The source of the disturbance is assumed to act at a point 19.175 inches from the center of the shell, Fig. 5, which corresponds to the inside edge of the tube nearest the wall (Ref. 6). The disturbance is naturally modified as it travels through the molten-salt and interacts with the shell. Two phenomena define the character of the pulse experienced by the shell: divergence of the wave as it travels through the salt, and reflection of the disturbance at the interface of the shell and molten-salt. In close proximity to the source, the impedence difference of the moltensalt and shell governs the definition of the disturbance. As the distance from the source increases, spherical divergence plays an increasingly important role.

It is not difficult to verify that the shell is a relatively fixed surface compared to the molten-salt; i.e., a reflected wave of amplitude approaching the amplitude of the incident wave would be generated upon normal incidence (Ref. 13). The maximum amplitude of the reflected disturbance is thus equal to the amplitude of the incident disturbance and occurs at a fixed boundary. This value was conservatively assumed in the present case. This magnification of the pulse due to reflection decreases rapidly as one proceeds along the shell due to the rapidly decreasing angle of incidence.

Fig. 4. Pressure-time history of the steam after tube rupture

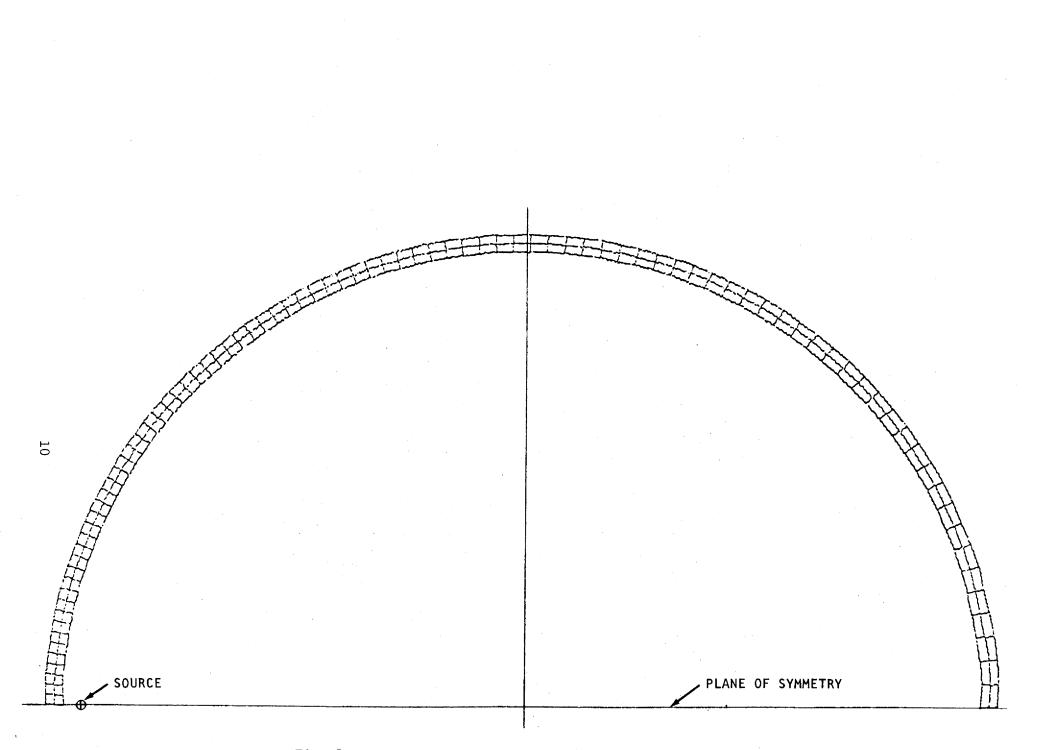


Fig. 5. Grid plot for Model II of the shell analysis

The effect of spherical divergence is two-fold: the disturbance is "spread out" in time, i.e., an increasing rise time with increasing distance from the source, and a decrease in the magnitude of the disturbance occurs (Ref. 13).

Several one-dimensional runs were made with PISCES 1DL (Refs. 14 and 15) in both spherical and plane symmetry to verify and quantify the preceding observations. The results obtained led to the pressure profiles shown in Fig. 6 with the corresponding zones of application depicted in Fig. 7. The duration of the maximum pressure corresponds to the travel time of a signal through the thickness of the shell. At points more remote from the source, the rise time of the disturbance was assumed to increase as the square of its distance from the source and subsequently follow the pressure profile of Fig. 5. The loadings were time lagged by the travel time through the molten-salt.

The results of this analysis are discussed in Section 3.1.

2.2 EFFECT OF A TUBE RUPTURE ON AN ADJACENT TUBE

In addition to the treatment of the shell, the effect of a tube rupture on an adjacent tube was considered. Those properties deemed important to the phenomena were studied and modeled appropriately. In the present case, the elastic-plastic properties of the tube together with the presence of the molten-salt are necessary to accurately represent the physical problem. Thus, as in the previous case, a discrete method of analysis was required.

The tube was modeled as a beam, continuous over four supports, and divided into a discrete number of elements with concentrated mass and stiffness properties. The solution technique used is described by Biggs (Ref. 17). In general, at each time step, an element is acted on by the applied load, shearing forces (derived from the moments at the ends of the segment), an inertial force, and a drag force which approximately represents the resistive force of the molten-salt. The acceleration of the mass is then determined from the equation of motion and integrated to obtain the velocity and displacement of the mass. The moments are determined from a moment-curvature

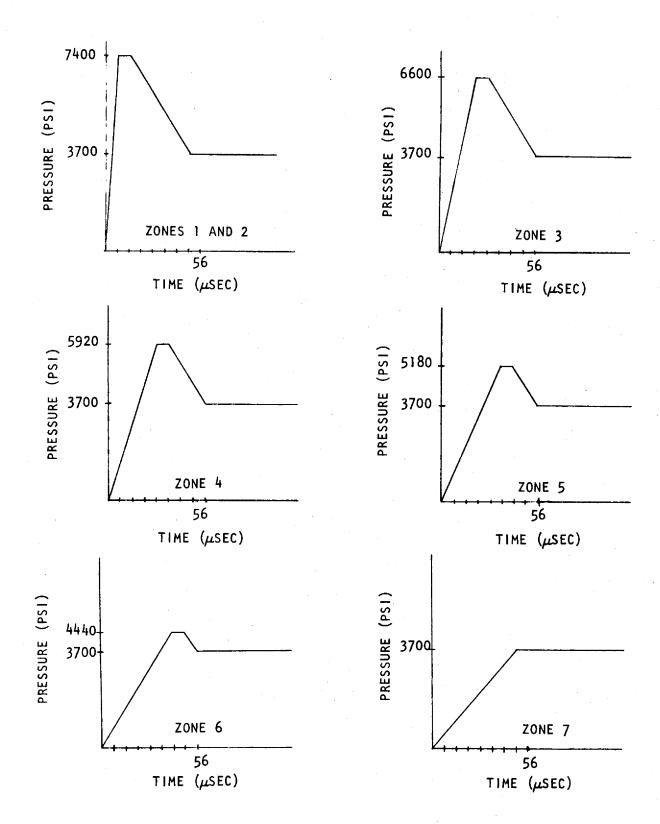


Fig. 6. Pressure profiles applied to the shell. Zone numbers refer to Fig. 7. The pressure profiles follow Fig. 4 for times exceeding 56 sec.

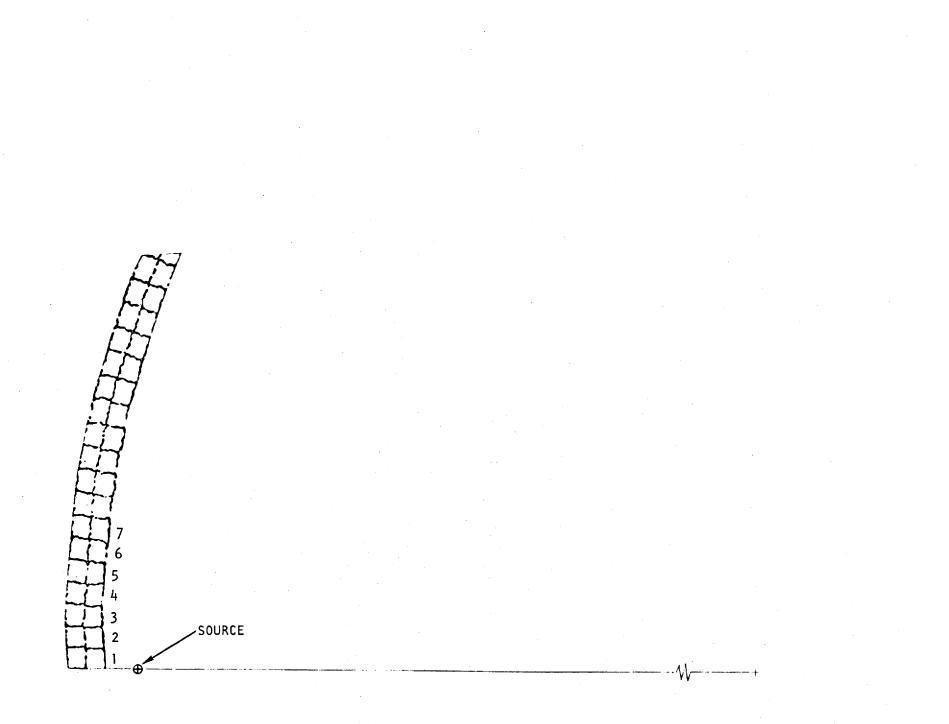
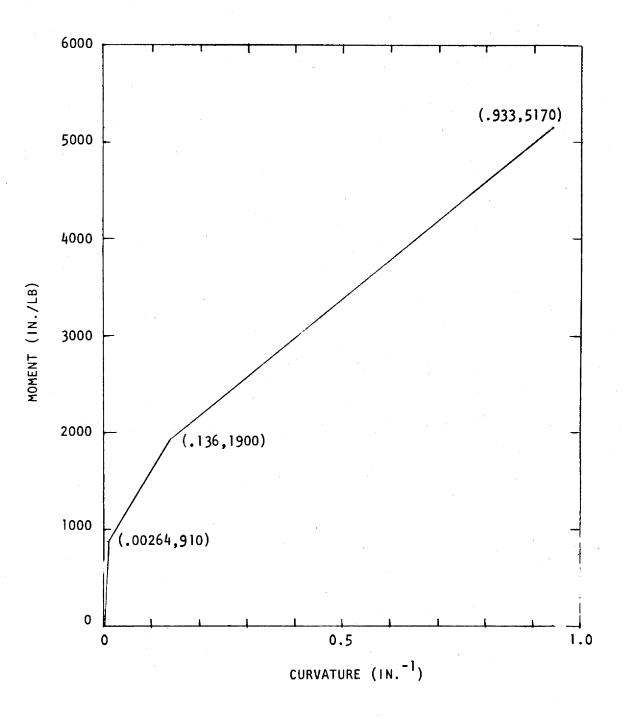
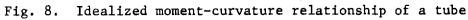




Fig. 7. Zones of application of the pressure profiles - Model II of the shell analysis

relation where the curvature is defined as the second central difference of the displacements. An elastic-plastic moment-curvature diagram was derived for the tube from the stress-strain diagram of Fig. 1 assuming a linear distribution of strain through the cross section of the tube. The result is shown in Fig. 8. The drag force was defined as in Ref. 18 with a minimum value of the drag coefficient assumed ($C_D = 1.0$). Several loading cases were considered.

3. RESULTS AND DISCUSSION

3.1 EFFECT OF A TUBE RUPTURE ON THE SHELL

The pressure profile discussed in the previous section was applied to the shell and the solution obtained for 1.5 milliseconds. Effective stresstime histories are plotted in Figs. 9-12 for the first four zones along the circumference of the shell. The maximum stress (42,900 psi) occurs at 1.5 milliseconds and is one-half the ultimate strength of Hastelloy N at 850°F. The computer solution was terminated at this point for several reasons. The initial disturbance has made over two complete circumferential transits of the shell and the remaining pressurization of the shell is slow in comparison. At 1.5 milliseconds, the pressure profile of Fig. 5 begins to decrease, approaching a quasi-static pressurization of the shell at a considerably smaller pressure.

Grid plots of the shell at various times in the solution are depicted in Figs. 13-20. Figure 21 is a computer plotted time history of the circumferential stress in the first zone of the shell. An increase in the diameter of the shell of 3.6 inches has occurred at 1.5 milliseconds.

3.2 EFFECT OF A TUBE RUPTURE ON AN ADJACENT TUBE

Several loading cases were considered for both a single span, simply supported beam and a three span continuous beam. The model and loading case reported here are shown in Fig. 22. A plot of the maximum moment-time history for the beam is shown in Fig. 23. The simple tube model considered would not rupture. However, the results of the analysis exceed the applicability of beam theory because very large deformations occur; e.g., a maximum mid-span deflection of 24.5 inches was calculated. Furthermore, the geometry of the heat exchanger also limits the applicability of the model,

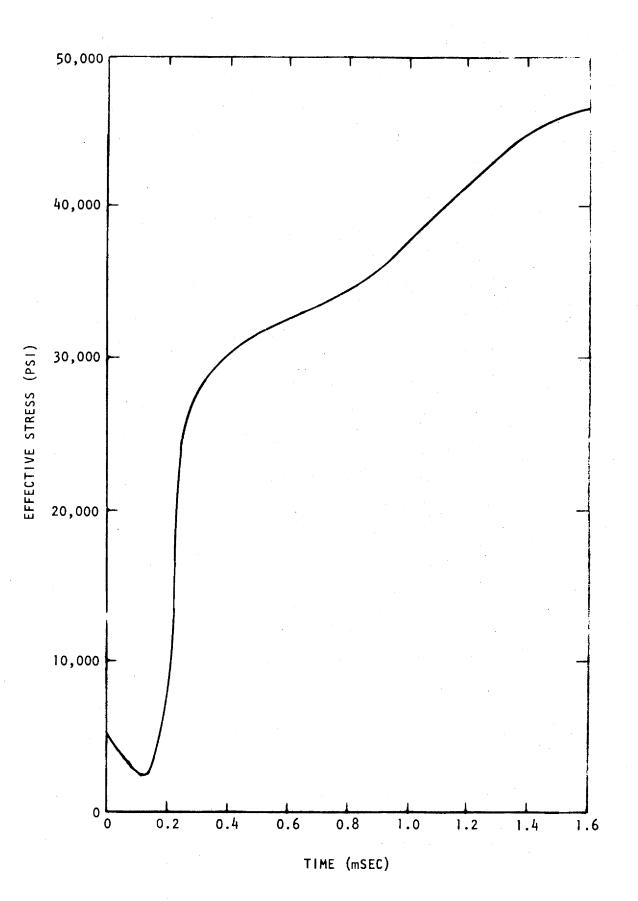


Fig. 9. Effective stress-time history in Zone 1

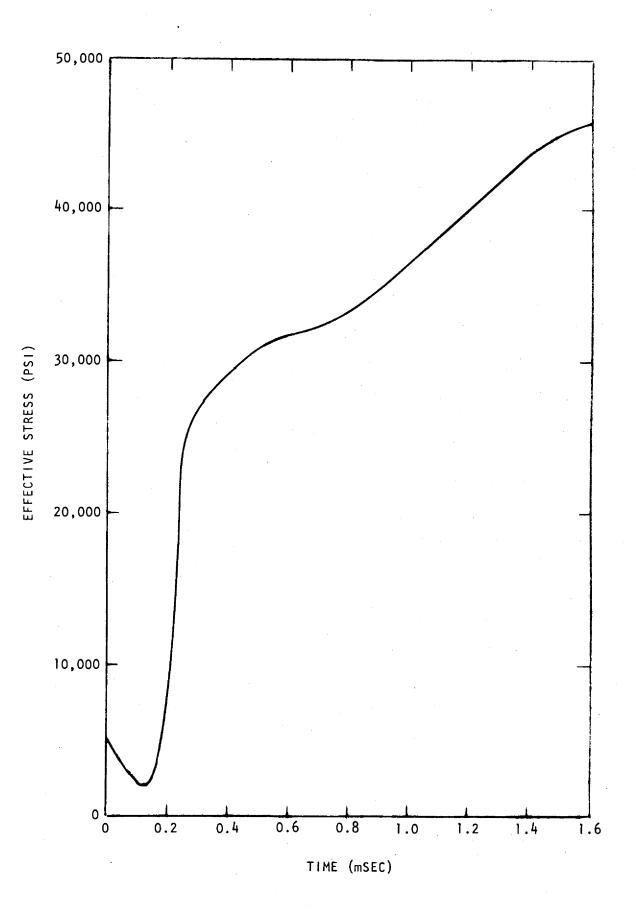


Fig. 10. Effective stress-time history in Zone 2

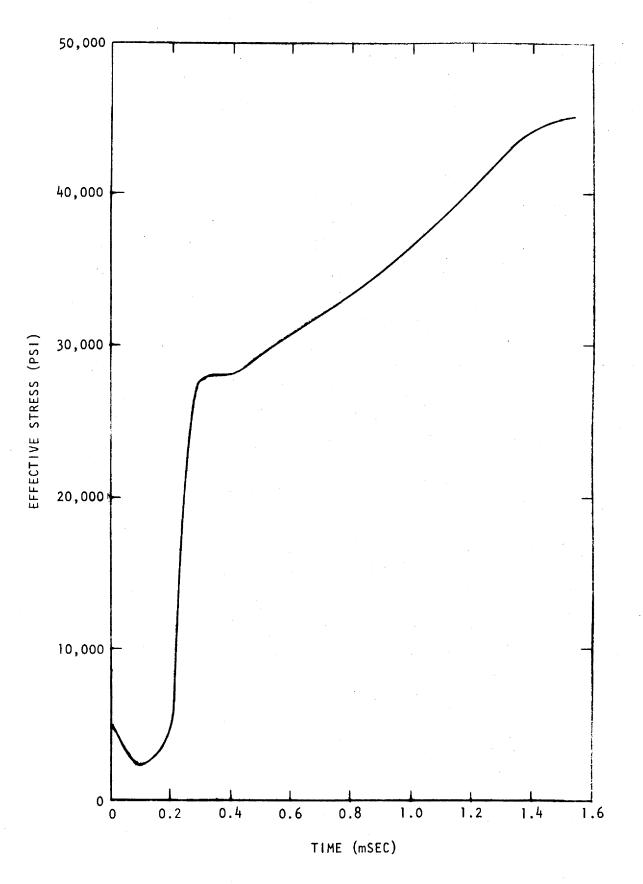


Fig. 11. Effective stress-time history in Zone 3

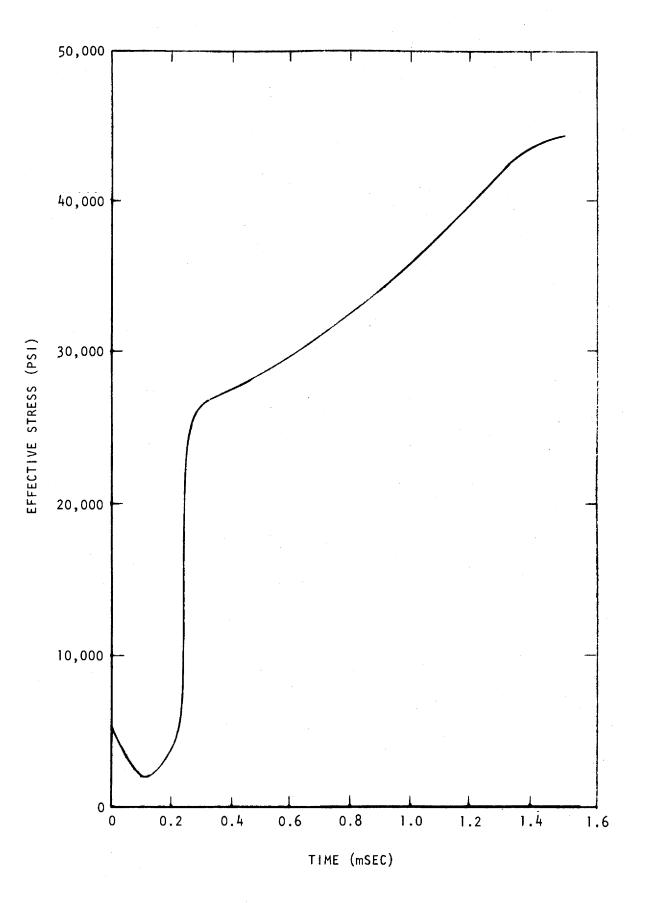
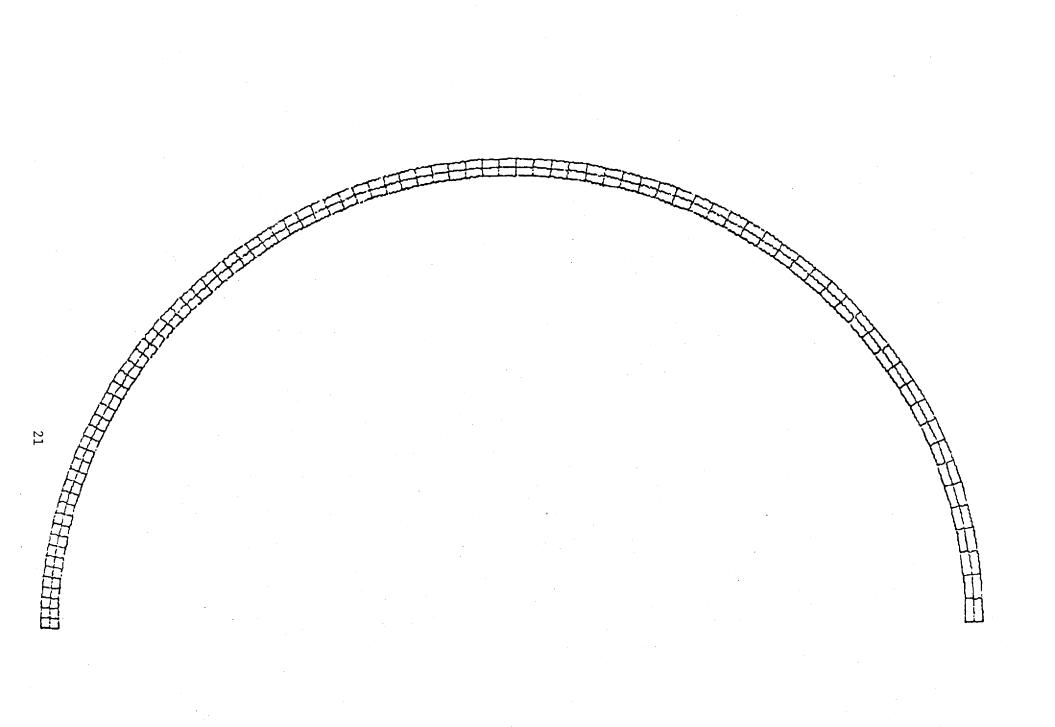
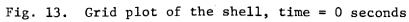
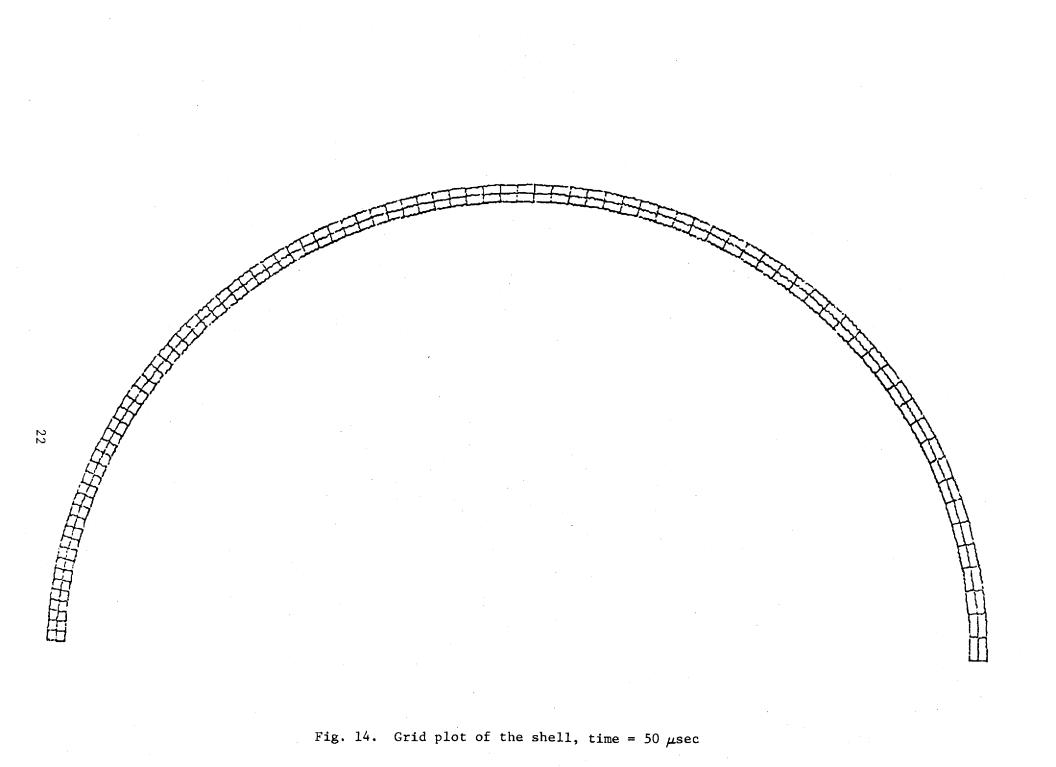





Fig. 12. Effective stress-time history in Zone 4

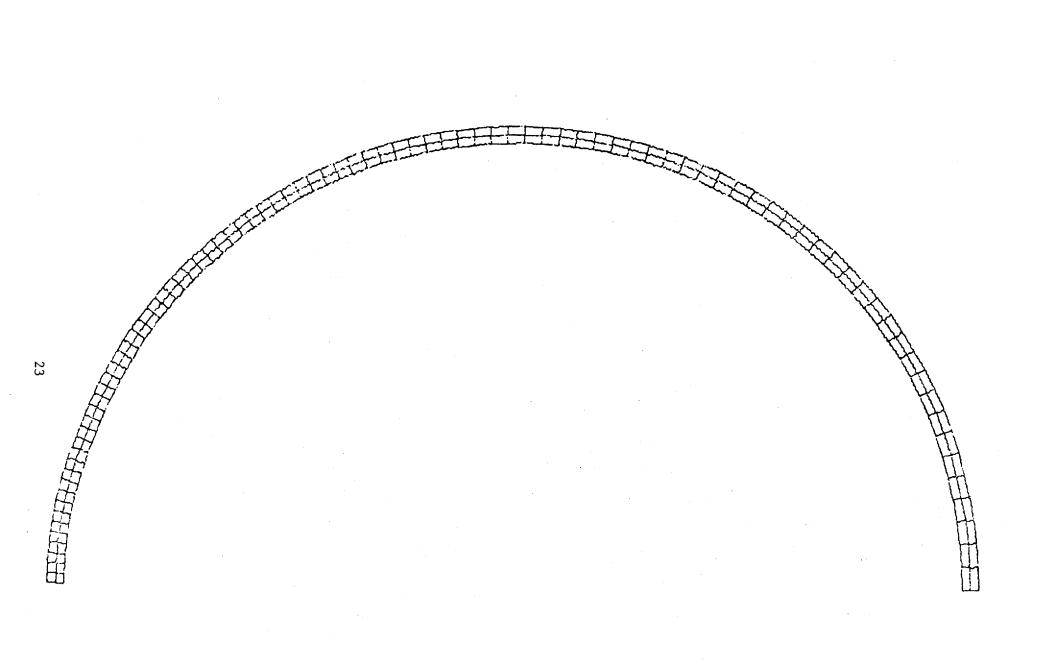


Fig. 15. Grid plot of the shell, time = 254 μ sec

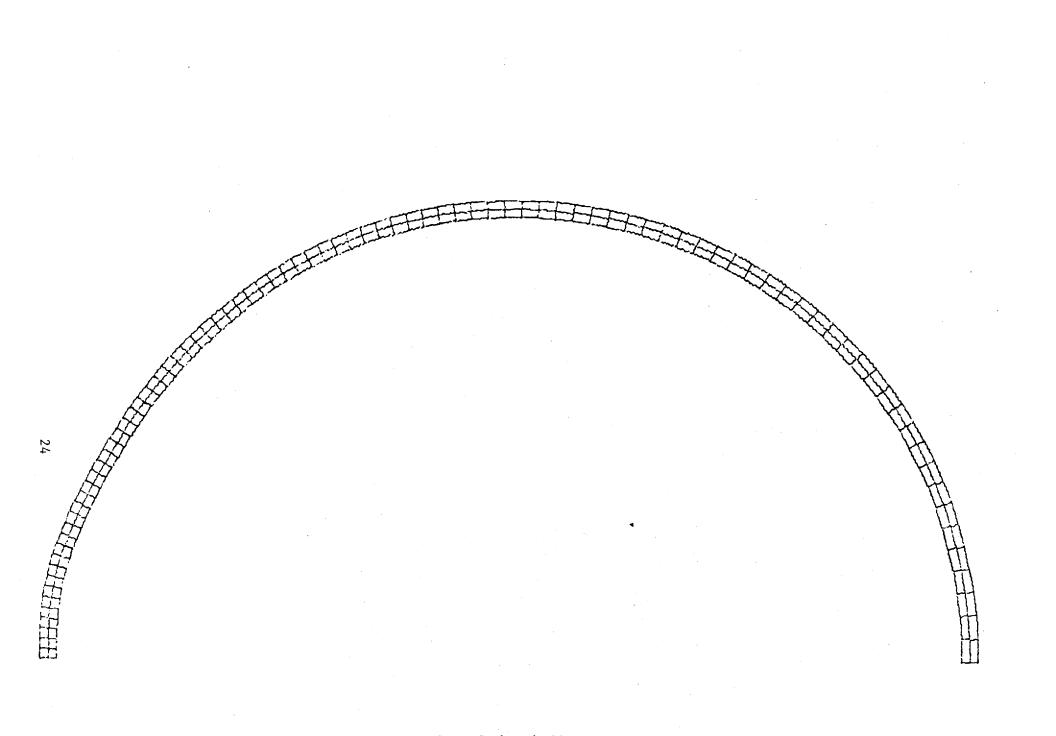


Fig. 16. Grid plot of the shell, time = $551 \,\mu \text{sec}$

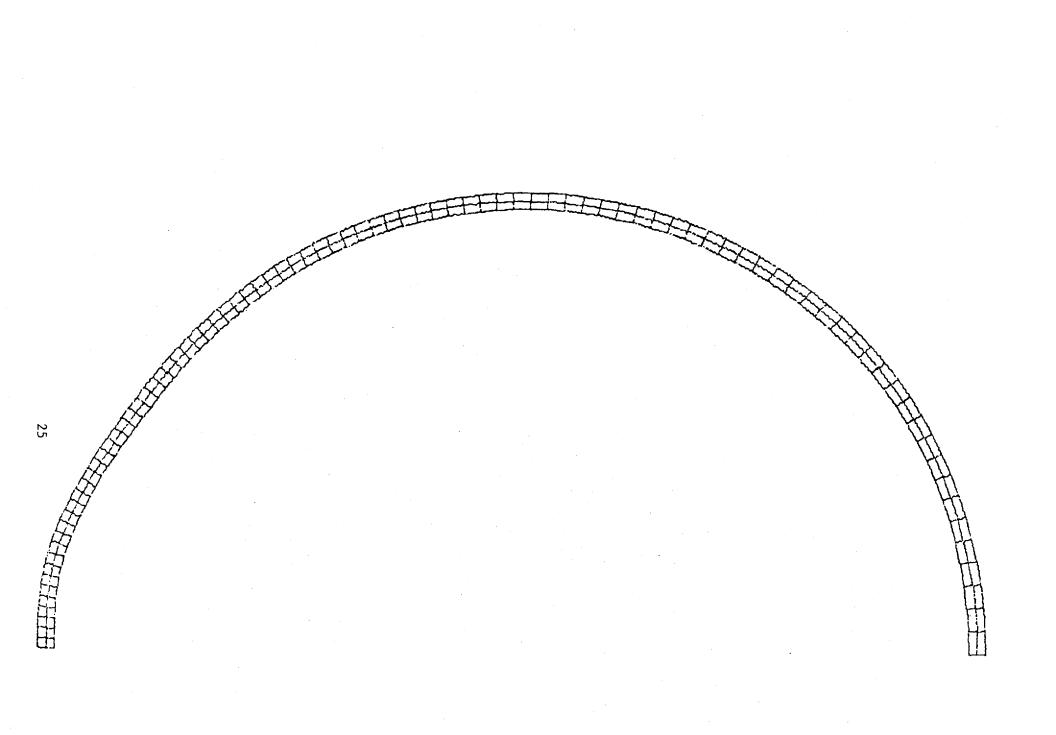


Fig. 17. Grid plot of the shell, time = 754 μ sec

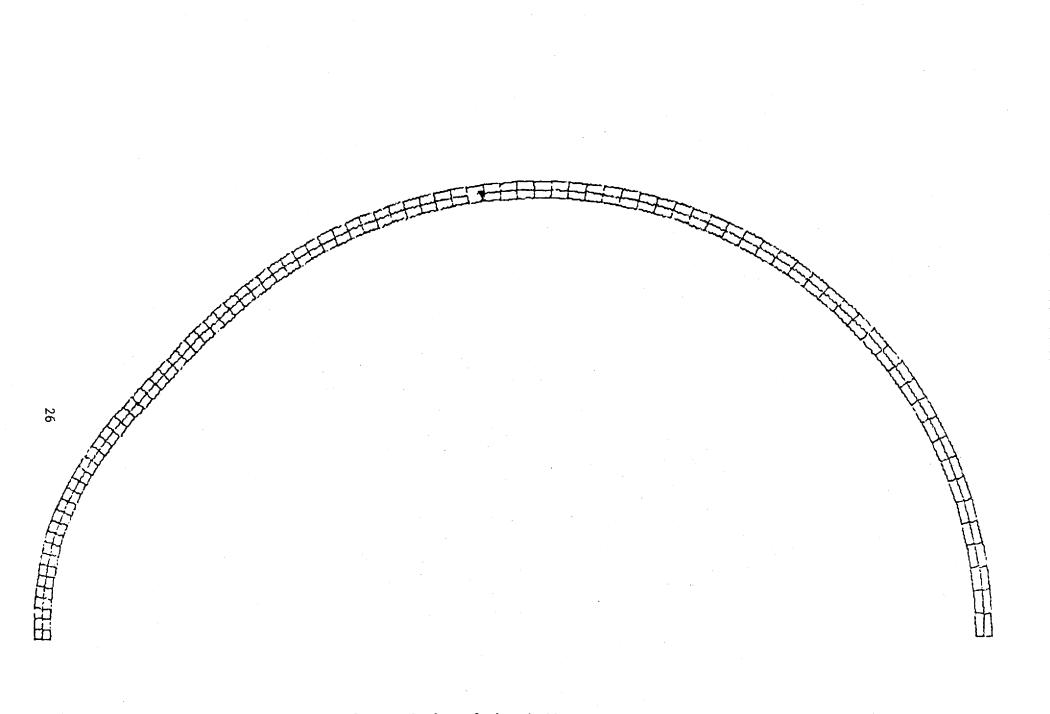


Fig. 18. Grid plot of the shell, time = 1 millisec

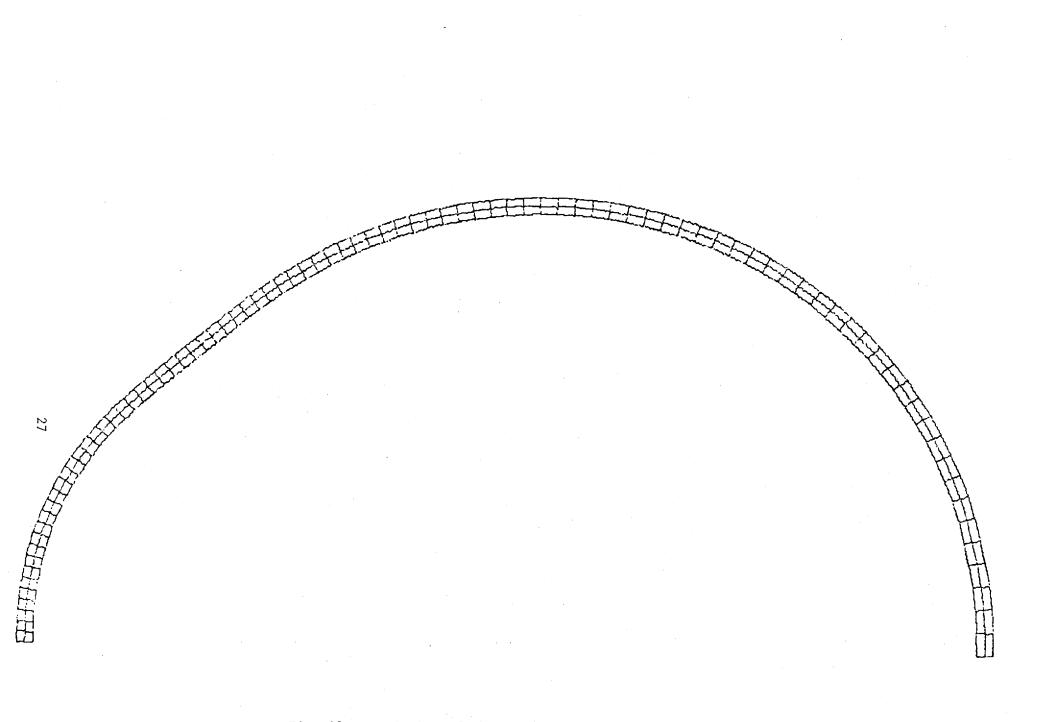
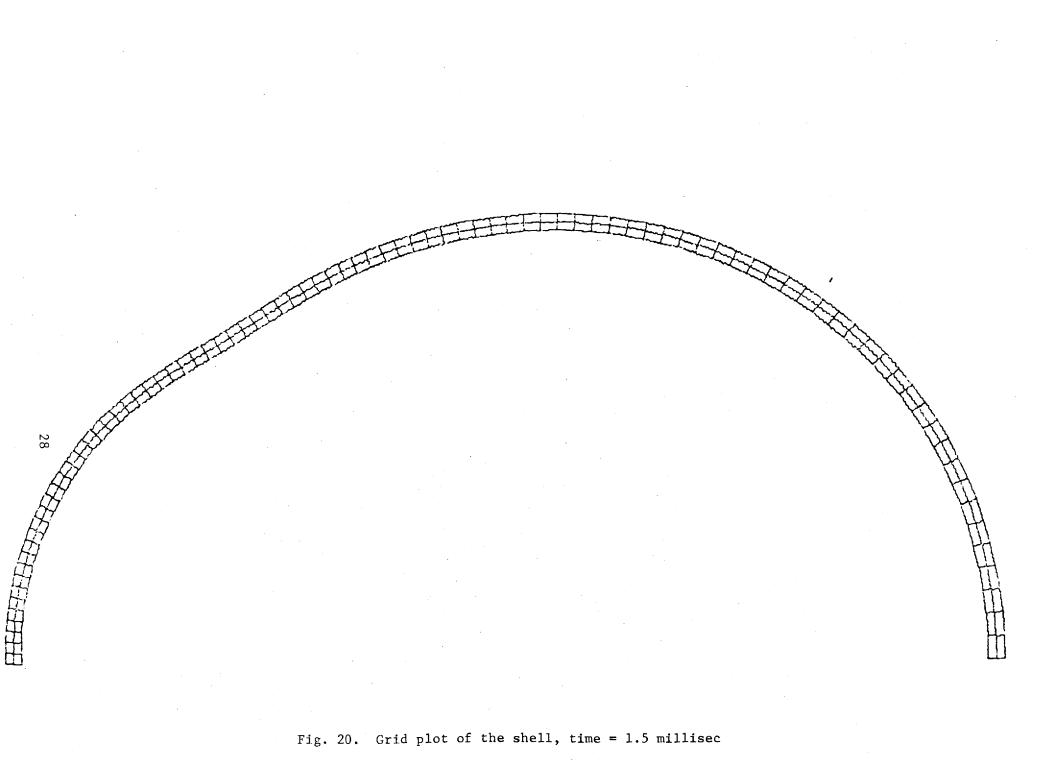



Fig. 19. Grid plot of the shell, time = 1.25 millisec

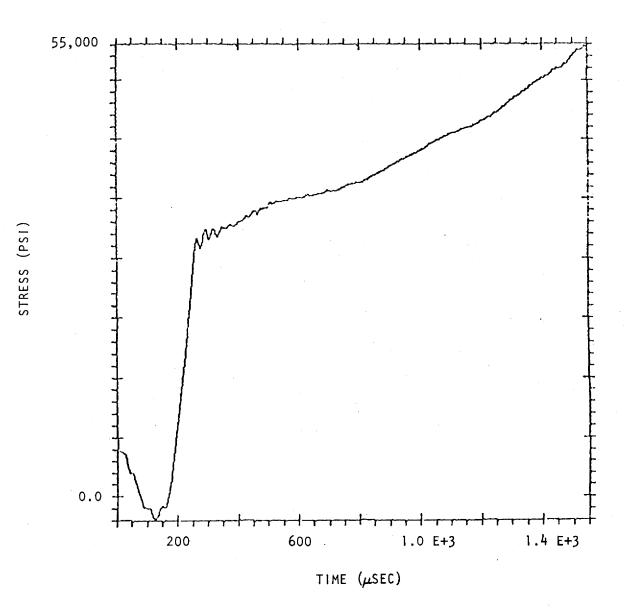
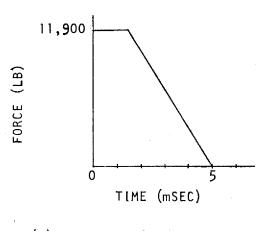
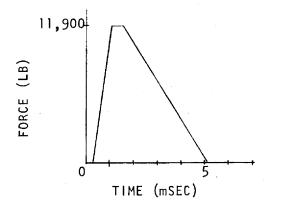




Fig. 21. Circumferential stress-time history in Zone 1

(a) Force applied to Node 22

(b) Force applied to Nodes 21 and 23. Time lagged with a rise time of 0.2 milliseconds.

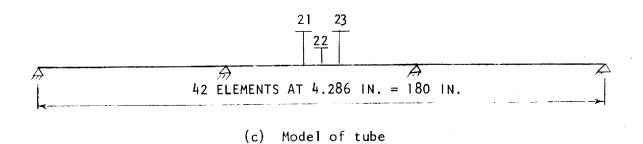


Fig. 22. Model and loading of a tube adjacent to the rupture

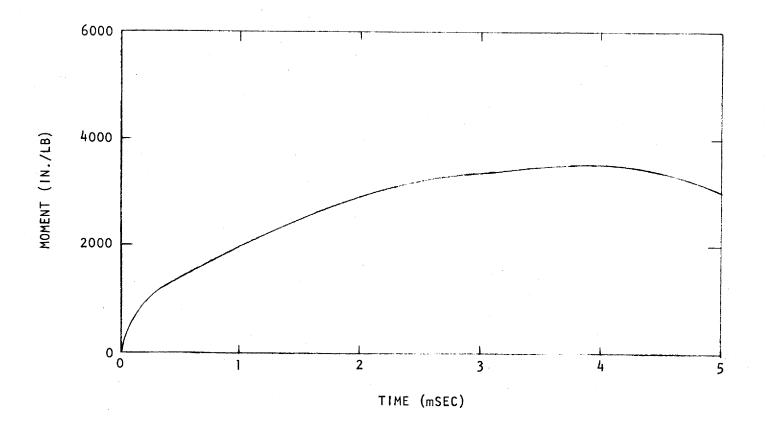


Fig. 23. Maximum moment-time history in the tube

since after a very small amount of deformation, the tube would hit another tube. This would increase its resistance to deformation (at least until the combination of the pressure disturbance and impact loading of the adjacent tubes results in essentially equal velocities). Also, localized stress concentration at the points of impact would occur. Inadequate time was available to consider these facets of the problem.

4. CONCLUSIONS

The analysis of a counterflow heat exchanger under a specified accident condition, i.e., a steam tube rupture, was performed in this investigation. The results of the analysis indicate that the containment vessel will not fail due to a tube failure. The analysis was a conservative one in several regards. The applied load was chosen as an upper bound of the data available on ruptures and, due to the idealization of the shell in two dimensions, was assumed to act along the entire axis of the shell. This latter assumption neglects the increase in strength due to axial stresses in the region of the rupture.

The results of the analysis of a tube adjacent to the rupture are less conclusive. A more sophisticated analysis is required including the interaction of several tubes and perhaps large deformation considerations. However, several observations can be made from the results of the present analysis. The most significant one concerns the amount of deformation sustained by the tube without failure. This is due to the stress-strain relation of Hastelloy N and is an essential factor in this and any subsequent analysis. Similarly, the effect of the molten-salt must be included in the analysis.

Scattering of the disturbance, while not investigated, is believed to be a beneficial effect reducing the intensity of the disturbance. Inadequate time did not permit a detailed consideration of the phenomenon.

This investigation identified the need for greater research and understanding of the mechanisms of failure and related phenomena, e.g., a measure of rupture area and pressure as a function of time. Only after such research is completed will more sophisticated and accurate methods of analysis be available.

REFERENCES

- 1. Nuclear Applications & Technology 8, 2, 105-219 (February 1970).
- Robertson, R. C., ed., <u>Conceptual Design Study of a Single-Fluid</u> Molten-Salt Breeder Reactor, ORNL-4541 (June 1971).
- 3. Cox, J. F., Foster Wheeler Corporation, "Basic Information Reference Design Molten-Salt Steam Generator," unpublished data.
- 4. Cox, J. F., Foster Wheeler Corporation, "Properties of Materials Used in the Reference Design Molten-Salt Steam Generator," unpublished data.
- 5. Cox, J. F., Foster Wheeler Corporation, "Bulk Modulus of Molten-Salt and High Temperature Properties of Hastelloy N," unpublished data.
- 6. Cox, J. F., Foster Wheeler Corporation, "Final Drawings Steam Generator," unpublished data.
- 7. Physics International Company, <u>An Introduction to the PISCES System of</u> <u>Continuum Mechanics Codes</u> (October 1971).
- 8. Physics International Company, <u>PISCES 2DL-General Description and</u> <u>Finite-Difference Equations (1972).</u>
- 9. Physics International Company, PISCES 2DL Input Manual (1972).
- 10. Eiber, R. J., <u>et al.</u>, "Investigation of the Initiation and Extent of Ductile Pipe Rupture," Battelle Columbus Laboratories Report BMI-1908 (June 1971).
- 11. Jones, D. J., (Gulf General Atomic), private communication.
- 12. Cox, J. F., Foster Wheeler Corporation, "Specification of Rupture Area in a Tube," unpublished data.

REFERENCES (Continued)

- 13. Ewing, W. M., W. S. Jardetzky and F. Press, <u>Elastic Waves in Layered</u> <u>Media</u>, McGraw-Hill Book Company, New York, 1957.
- 14. Physics International Company, <u>PISCES IDL</u> General Description and <u>Finite-Difference Equations (1971)</u>.
- 15. Physics International Company, PISCES 1DL Input Manual (1971).
- 16. Liepmann, H. W. and A. Roshko, <u>Elements of Gasdynamics</u>, John Wiley and Sons, New York, 1962.
- Biggs, J. M., <u>Introduction to Structural Dynamics</u>, McGraw-Hill Book Co., New York, 1964, pp. 192-195.
- 18. Daily, J. W., and D. R. F. Harleman, <u>Fluid Dynamics</u>, Addison-Wesley Publishing Co., Reading, Mass., 1966, pp. 376-385.