

2

路敩
\％

OUARTEREY MOOGKESS KEPORY

Date masued APR 191950

oberater \％y

TVEERNAL DISTREBUTYON

1. G. T. Felbeck (CQCC)

2-3 706~A Library
4 706~B liberary
5 Brology Libraxy
6 Health Physics Libxary
3-8. Training Scbool Library
9-18 Central Files
19 Is A.Smaxtomt
20 J. K. Gilletre
21 A. Hollagnder
22 J. K. Erye, K_{E}.
23 \&. 3. Murphy
24 C. E. Cemtex
26

25 C.E. Laxson
W. D. Lavers

27 A. M. Wennberg
28 K. Z. Morgan
29 3. S. Fellom
30 C. E. 翟inters
$3\}$ J. A. Gane
32 G. E. Boyd
R. W. Stoughtorn

3-4 35 F . K. Culler
35
D. G. Rexa 52

37 A.S. Howsekolder
53
38 . K. Steahly 54
39 M. Mamm 55
40 A. H. Snell 56
42
t1. F.C. Vonder Lage
C. B. Grabam

ORNL 629
Peactors Progress Repore
43 W. B. Humes (K 25)
$44 \mathrm{~K} \times \mathrm{E}$. Eagbers
45 R. N. Lyon
$46 \times 4 \%$ C. D. Ellis
48 W. R. Gall
49 R. M. Jones
50 F. Kerze
E. C. Miller
D. S. Billington
E. Po Blixard
W. M. Breazeale

C.E. Clifford
M. L. Nelson
M. C. Leverett

Gemtral Files (O.P.)

EXTENAR DTSTMBDTION
60-64 Aix Force Engineerxag Orifice, Oak Ridge
65-76 Argonne National Laboratory
77-78 Atomic Exergy Commission, Washington
79 Battella Memorial Trstitute
80 Bureab of Aeronawtics

85 Buxeau of Shizs
86 Chicaso Operations Office
87.90 General Electric Company, Fichland

91 Kanford Oper tions Office
92×93 Traho Operabions Office
94 Tow State College
95-98. Knolls Atomic Power Laboratory
99.101 Los Alamos

102~ Massachusetrs. Tustitute of Techuology
103m 104 National Advisory Commitee Sor Aeronautios
105-133 NEPA Project
114 Natsonal Adyisory Committee for Aeronsutics, Washington
115-116 New Yoxk Operations Ofice
117 North American Aviation, Mc.
118 Office of Naval Research
119 Patenc Branch, Washington
120-134 Techrical Toformation Brameh, OnE
135. 136 University of Califorman Kadiationk hamatory

137 w 40 Westinghouse Electric Corporation

TABLE OF CONTENTS
SUMMARY 6
SHELDNG 8
New Bulk Shield Testing Facility 8
lid Tank Buhk Shaelding Measurements 9
Water attenkation 9
Source power 1.4
Lead"water measurements 14
Navy $\mathrm{H}_{2} \mathrm{O}$ - Fe - Pb oshicld 15
Mastruments 15
Pd Film Fast Neatron Detector 15
Neutron Energy Spectrometer 16
Shelding Analysis 36
Shielding Materials 20
Uranism hydride survey 20
Plasties 21
Concretes 21
Porthand cementuron concrete 22
Expansivity experiments 22
Radiation damaze tests 22
Equilibrium moistare tests 22
Fabricarion of goral ($\mathrm{B}, \mathrm{C}+\mathrm{Al})$ 23
"Phambor". ($\mathrm{B}_{4} \mathrm{C} \& \mathrm{~Pb}$) 24
Reports issued 24
GEAT TMANSFER 25
Heat eransfer theory 25
Rxpermental heat exanafer 25
Liquid metel pamps 25
Liquid metal handbook 26
BETALDHGY AND MATERIAES 27
Statie corrosion 27
Lithiam banding 29
Lixhium parification 30
Dynamic corrosion zesting 30
Mechanical testing 31
Effects of alloying elements and structural factors 31
Protective coating of high temperature materials 31
Circulating fuel systems 31

radiation damage 32
Reactor Core Material Studies 32
Accelerator experiments 32
Reactor experiments 32
Auxiliary Material Studies 33
High intensity gamma eource 33
Radiation stability of plastics 38
Radiation stability of metal hydrides 38
NUCLEAR MEASUREMENTS 44
THE CONCENTRATION OF LITHIUM ISOTOPES BY CHEMICAL METHODS 45
Molecular distillation of lithium metal 45
Chemical exchange methods 46
Liquid-solid systems 46
Liquid-liquid systems 46
Continuous countercurrent electrolysis 47
Continuous countercurrent electromigration 47
Thermal diffusion 48

LEST OF FTGURES

Fig. $1 \quad 100 \% H_{2} O$ Nemeron Atcemuation 11
Fig. $2 \quad 100 \% \mathrm{H}_{2} \mathrm{O}$ Gamma Atcernation 12
Fig. 3 Neutron Energy Spectrum of Mock Fission Source 18
Fig. 4 Neutron Energy Spectrum of Po-Be Source 19
Fig. 5 Corrosion Capsule Assembly 28
Fig. 6 Gold Lined Cup 34
Fig. $?$ Preamacic Tube Apparatus 35
Fig. 8 Pneumatic Twbe Apparstus 36
Fig. 9 Pneumatic Tube Apparatus 3%
Fig. 10 Source Shicid 39
Fig. 11 Dissociation Pressure of LiH 43
Fig. 12 Dissociacion Pressure of $2 \times H_{4}$. 8 42

SUMMARY

Sheldikg. The formal proposal For the now buin shatd testing facility is now awaxbxg approwal by ehe ABC. Thxs will be a lo kw watermmodexated critical assembly, made up of MTR fuel elementas.

Measarements 3 n the lid tank sheld test tacility are now complete on pure water and numerous measurementa have been made on leadmwater combinations The power of the fission sowne ased in the lid eank work has been measured as 6 t wates The water data are mammarized in tbis report Secondaxy gamas are observable in lenduwater combinations containing as much as 26% lead These recent data applioable co bhe maner regions of the shaeld appear tofit a Gone colbesxon and owt cheory for the neatrons. The measarements on lead
 foot reactor mbebe weagh aboat 67 long tons.

Measarements are benng made at present on a combination leadrinonmater shicld intended initually for Nayal weactor use.

The spectra of mock fisshon and of PonBe sources have been measured incidental to the development of a proton recos nextron energy spectrometex. The incegrated wextwon flax from the Pombe source modicatea aybeld of 3.5×10^{6} neucronz per curie.

A fast reatron detector, based on resistance changes in a pd film semu. condwevory is under deqelopment. Jmprovements in gammand reatron measuxe.
 and prowon recosl fast mewtron decectors.

Fumther calcalachons on aranam hydrade shields are in progress: A arvey xndicates that won lots of monmpyophoxic uxanimm hydride of density about 9 gma/cc can probably be obcained wich some effort The dissochation pressure of hydrogen gas oyen thas materan is not expected to be more than abont k atmosphexe at $430^{\circ} \mathrm{C}$.

Sheets of $B_{s} C$ in tygon plastic matrix have been fabricated for testing the effectiveness of secondary gama suppression through nevtron absorption in boron. Addxtional tests on expanstyity moxstare concent and madation damage haye been made on : and Mr (boron-contaming) concretes. Frocedaresfor largem scale rolling of Boral sheets are behng developed. The thermal conductivity of Borat has becn fond to lae between low carbon steel and almanam, in the temperatare range aromed $1200^{\circ} \mathrm{F}_{\mathrm{H}}$

Heat tramsfer. An experimental rigfor heat transfer studies with lithium at $1800^{\circ} \mathrm{F}$ is being fabricated from stainless steel, type 347. A canned rotor liquid metal pump is also being constructed, using a liquid filmbearing.

Metallurgy and materials. A number of static corrosion tests have been made in which nickel, zirconium, iron, tungsten, tantalum, molybdenum and columbium have been exposed to liquid lithium and bismuth for four hours at $1800^{\circ} \mathrm{F}$. The next series of tests will be conducted at $1800^{\circ} \mathrm{F}$ for 40 hours. The first results with liquid lithium indicate best resistance in iron, molybdenum and zirconium; however, the data are still very preliminary。 The question of purity of the liquid lithium is now under study. With liquid bismuth, zirconium was severely attacked.

Dynamic corrosion test equipment is now being constructed for measurements under convective circulation conditions in liquid bismuth and lithium。Corm rosion harps are being made of various stainless steels as well as V-36 and L-605 alloys. Equipment is being designed for stress-rupture and creep tests. Preliminary tests are underway to find container materials for liquid uraniumbismuth and uranium-lithium alloys.

Radiation Damage. Accelerator experiments to determine radiation damage in various high temperature materials will shortly get underway at Berkeley and at Purdue. Various high temperature materials will also be placed in the Hanford reactor soon. An experiment is being designed for simultaneous radiation damage and heat transfer tests of circulating lithium system in the ORNL reactor.

A high-intensity gamma source has been developed for use with the ORNL reactor. This is a hollow gold cylinder, which after irradiation for one week, produces $10^{5} t / h r$ upon materials at its center.

Data on change in electrical properties of various irradiated plastics are presented in this report. Preliminary measurements have been made on the radi. ation-induced dissociation of lithium, titanium, and zirconium hydrides.

Naclear Measurements. Preparations are underway for the neutron cross = section measurements needed in ANP work. These will involve use of a 5 Mev Van de Graaff accelerator and a high-speed mechanical velocity selector.

Li'separation. The work at the Y-12 Research Laboratory on the practicality of obtaining commge lots of highly purified Li^{7} by chemical methods is discussed in this report because of the possible application of this metal as an aircraft reactor coolant and moderator. Separation methods under study in m फcrude molecular distillation of Li metal, ion exchange methods, countercurrent electrolysis and electromigration. The most promising system so far is a liquid-liquid exchange column using dual-temperature for continuous operation.

SHMELBXNG

A proposal(a, 2) requesting permission to bux id a new bulk shach testing facility has been transmited to the ABCo The initial request was sent on December 21, 1949, and a supplement on February 10, 1950, Forman approval has not yet been received.

The proposal described a critical assembly made up of MTh fuel units operating in a pool of water which also contaxna the bolk shielding samples, This low powex, water cooled and moderated (partially), bexyblisan oxide rew flected reactor serves as a fission source for nextron and gamma ray attenaation measurements throxgh bulk shéclding samplesmad through mockozpsof practical shields. A maximum operaring power level of 10 km is suggested.

Calculations by E. Grealirg and M. Edumd indicate that chis reactor is inherently safe. They have jnyestigated theoretically the result of instan. tgneously addung 2% (k (etiective) when the reactor is just oritical abd operating $\quad 10$ kw. The conchusions are that it will oscillate at mean pomer level of not greater than 130 kw .

Reactor control circuits will be similar to those nom under best in the Mry Mockoly Experience ganed in operation of this mock-up will be applied to design of the reactor for the shield testing facility.

Yfearly approval for construction is received, itisexpected to have the squipment in operation by fall (1950).

Th is planned to investigate firstamockmpof serpice shiehd complete, as $\left\{\begin{array}{c}\text { ar as practicable, with ducts, control parts, etco, to determine whether }\end{array}\right.$ or not it provides the desired atesumtion. NEPA has agreed. upon our xam vitation, to swpply this fixst mockozp, mheb presumbly will resemble khe carcent comespt of an arcatt shield, Followixg this, a series of measure. mexts will be made on bulk samples co obrain data pertinemt to the analytical problems commected with mbieldixg Farthor werk will be planaed to meet prow

[^0]

8. F. 8ykerck
9. E. © © ixcord
10. F. Fiyms

*。 watkus

Reactor Testablogy Mivakoz

Addutonal pexsonnel assigned to this program are:

> H. E Mungerford, Physicist
> T. Vo Blosser, Rmgimeer
> h. Mo Burnete, Technacian
> T: N. Bubbard, Technician

The tank is now operated on an eleven shitt per week basis an expedient considered essencial becasse of the harge nomber of readings necessary for ach attenuaton measwrement. Full advantage is taken of ayadable fintensify by long periods of connting.
 gamma ray fonination in watex haye been xeported in an ohNl memoxandum whose

The lid tank is designed to give wplane to planem atenambion; i.e. the probability of radiation indtiated in one plane beng detected in another
 the tank, or by analytic transformatoms of centerkime measmaments. The latter method has been reduced rather simply by Hurwita to the following expressions:

$$
F(x)=f(x)+F\left(\sqrt{z^{2}+a^{2}}\right)+f\left(\sqrt{x^{2}+2 a^{2}}\right)+f\left(\sqrt{x^{2}+3 a}\right)+0,
$$

where $F(2)$ is the centerbine intensisy which wonld be obsenved with an inn Fingte plane jsotropic sontre ix an infinite homogencous isotroptomedxam. $f(z)$ is the centerline measurement at z in the case of a finite chrcular sonce centered on the x naxis and of radxus a. The comrected intensity for z is thas obtained by addicion of measured centerline values at $z, \sqrt{z^{2}+a^{2}}, \sqrt{z^{2}+2 a^{2}}$: etc. The assumption on which this method is based is that the point to point kernel defining the probability for radation born at one point to be detected

[^1]at gnother is solely a function of ble distance between the two ponnts Thus:
$$
F(x)=2 \pi \int_{z}^{\infty} \mathrm{G}(R) \quad R d B
$$

where $G\left(\begin{array}{l}\text { (}) \\ \text { is the point to point kernel. }\end{array}\right.$
Application of this corcocton method is of course deperdent on data at dxataces greater than that for which coxtections are tobe made Jm most caseste appears feasonable to extrapolate the data beyond asing an apponential form for $f(x)$, thus

$$
\begin{aligned}
& f(x) \cdots A e^{x x / h} \\
& F(x)=A \sum_{n=0}^{\infty} e^{-\sqrt{x^{2}}+\sin } / \lambda,
\end{aligned}
$$

and this sum can be bounded by integrals which are equanded as follows.

$$
L=\left(2 \lambda^{2} / \alpha^{2}\right)(z / \lambda+1) f(z)<F(2)<\left(1+\left(2 \lambda^{2} / a^{2}\right)(z / \lambda+1)\right] f(z)=0
$$

Furthermore sfane estimate of $f(x)$ (as well as a smallex npper limat is had by the axithmetic mean of the two limits.
 the medram extends only on one side of the somece, and the souxce itself is in any case not perfectiy thin. Another limetation which whll apply to the case of laminated shields is that the medium will exhibit different attenaation propertios moxmal and paxallel to the laminations. The later is mot serious, however, fif the mean free path for scatering is at least comparable to the thickness of the laminations. We are at present working on approximate cox rections when this condition is not satisfied.

The water data just collecoed (figsaland 2) have afforded ms an excellent opportuntty to compare the phane integral measarements with corrected centerlane messuremexts. For neutrons one defines the phane kernel as the probability of s fission mewtron starting at $z,-\cdots$ and being obserged as thermal neatron

4.

between integrals and centerline corrected data was excellent for nemerons:
For gama rays one must combine two kernels since thexe are two somrces: Gamms accomparying fission are analogous to the neutron treatment. We must add meperobabilisy for a fisshon neatron to leaye the source (z $\quad=0$, be captured anywhere, and for the captare gammay to be detected by its ioniw zatron st the other x whanes. The gamm data did not show very good agreement between integral and corrected centerlime measuremenss. Thanty cormection terms for $z=160$ cms and $z=36$ oms were used for centexline daba correctron; employing exponcmital extrapolation for the larger yalae of y, Tn addxcion, with the whole curye titted by an exponentigl of $2 \boldsymbol{f}$ empelaxation lexgth(a)the bntegral bounds were calcalated as well ws their memp kesubts are compaxed with megsured integrals in the following table:

Plane-tonPlane Relaxation Lexgehs (*)

CENTEKLME SMASERD TMTEORARS $25.4 \mathrm{cms} \quad 27.0 \mathrm{cms}$

Point-tompoint Relaxation heneths Derived Irom the Aboye

32.3 cms $\quad 35.0 \mathrm{cms}$

$$
\left[G(R) \approx\left(1 / R^{2}\right) \exp (-R / \lambda)\right]
$$

[^2]Ta cha manared jategral case the measuremencs sample radration at all magles from the source plame, whereas for centerine measurements we sample only those within the angle subtended by the source and presume knowhedge from these data sboke radiation emanating at greater obliguity The latcer leads to wh over estimate of the contributions at large source radis. so that one wonld expect hager corrected centerbine determinations relabive to ineegrals. This eftect would be more evident at large Z fhan small and more evident for gammas tham neutrons dueto their longer relaxation lenztho Both these effects are observed $\dot{\text { an }}$ the data. It should be noted in addition that nhis longer rem laxation lengeh means that more terms mast be used to correct the centexline messurements.

The fission gamas wonld be partially selfobsorbed in whe manam somrce in such a way as to concextrate the escaping xadiation about the normal. Since
 slugs, a quantitative calculation of this collimation effect has not beex made.

Sumatizing, the centerlime corrected nextron water data agrecerery well with messured integrals. The gammas show higher corrected centerline measurements than integrals, which can be explaximed by exther selfomborption collin mation in the sonxce, ox by the fact that the medinm is seminimfinice and mot infinite as is requixed for the correction, or by both of chese kinhin these limatations, the difterent determinations of gaman and nemtron atcemuation are in good agreement. The gammas appes. to be somewhat kaxder than would be ex. pected from previous measerements.

Smace powe The place of aranium slugs which is used as a soumce of meatrons and gamms for the lid famh operates at a power determixed by the in.
 Falues of the slug specificheat have indicated that the phate opexates at
 within the acxt wonth or two.
 by volume, buye been suryeyed making only centerline messurements, gnd indio cations are (1) that secondary gamas are apparent in the 2G. 7 \% pbratio, but not the lower ones and (2) that an oven higher lead concentration will prove to be the optimum for shield using only these components. These prelimingry
 shim LA: (\$)

**sy siderable interest in a compartment typep shicld in which the power plant compartment is essentially flooded with watex and shielded for gamma by bulko heads of lead. The submarime shell x's also throkened by lead coating to keep gamma escape to the sea at a tolerable level. The reactor presaure shell
 were simulated by x xon plates. The water reflector was shmukated by ant ano layer of water between the somxce and the fixst fron slabo Nextron measure" ments indicate that iron layexs, when followed by large tbicknesses of water, remove hard nemtrons by essentially the total cross section The work will be extended to include measurements on more mafformby diacributed iron, and inn dications are that this shield will be of interest for aircraft Furthermore, we gre intendrng that the ironowater data will be of value xh predicting the bekavior of w wifxammater shield.
hack of gama intenstcy has prevented measurement of gamas chrough the oxter layer of lead, but preyious measarements of the performance of lead will be applicable.
 sacion chambers: We will soon add to the measurable attenameton by xncluding a gammanensitive anthracene schatillation comses.
 Fecod instrumext. Completion of development of this apparatus is expected daring Mareh. Xn the meantime, we are xnvestigating contang tast mextrons by mexns of a portable type proton reconl chamber in conjanction with an An amplifier. This apparatus will then be sensitive mostiy to meatrons trayeling parallel toits sxis, and series of data will be becessary ro determane neatron

8. \%. 8ossics*

[^3]In brief, the decection is accomplished by measuring the resistance change of a "reduction" (ox antype) semiconductor, the reducing agent bejng mascent hydrogen from proton recobls. The resistor is a thin film of an oxide of palladinm, which is not complesely anhydrous. Condmethyty of the film is dise
 the experiments made whith these resistors is in preparation and will be issued within the next monch.

NkUTRON EAEMGY spmernomerme

Reackor wecksonegy prybskos

The neatron energy spectometer employs procon reconl pulses from a prow portional coumter, and has been described in okNL 528 . (s) During the past quarter, fhis device has been ased so measure che wargy spectram of a ponbe somes and mock fission source. Both soarces were made at Dayton, Ohio.

The spectram of the mock fission sonwce is shown in Fig. 3, The corve indicated by a doted line is the fission spectram due to Bloch and Stabb. (s) Assaming that the spectrum follows the doted line the totak maber of neatronsper second per carie is given by the area nader the carve as $1 . \% \times 10^{3}$.

The spectrum of Powbe is shown in Fig. S. The integral of phis curve gives a fieare of $3.5 \times 10^{*}$ for the total number of nesurons per seoond per carie, which may be compared whemperm's figare of 2.8×10^{8}.

Resules listed in a memorndum (10) recencly jssued by the fid Tank Group are now being compared with other water daca. Close contactismantained

 (4swask 38. 1880).
mith Dra Richard Abbert and Dr. Theodore weleon of the Westinghowse Submarine project, axd these investigators bave been able fofit more fecent lid tank data with "one collision and out" heory. These recent lid tank datarefer
 not belieqed wobe applicable to shields contaming ahich percentage af natural boron, becamse the natural boron as, for high meatron energies, essenciakiy a scatterer, and the above theory recuixes that the mosorptionp (including dew Gradation by hydrogen collision or inelastic seatterixg constitate major part of the cotal cross acction.

The mathematical method outlined in the ast ORNL Quarterly report has been fuxthex refined sud applixed to practical cases. This method likewise gives a satisfactoxy fit to the prelimimary experimental data.

Calculakions of aixplane shield weigkts kaye been carpied out on the
 ambest for gamms, bus otherwise using Betke's asaumptions. The attenumbions used by Bethe were higher by a factor of 10 which was due to his assumption of 30 ft resctoracyem-separation, whereas separacion of 100 ty mom appears
 xadiss xeactor wis computed in \&his way, in sacisfacraxy agreemert wich the weights computed frompreliminaxy lid tank datan

A limited momat of sime was spent on calculations regaxding the possible
 and wolframmoron whields. (st)

The following ORNL repores were issued:
Captare Gowsa Rays, F. F. Blizard, ORNL-419 (December 23, 1949).
Ganadian feasurements of an lyanmater Shield, E, P. BLixard, ORNku42. (3an, 3, 1950).
 22. 1950 .

[^4]

A。 \$。 Kithes

 depends upors m muber of lacroxs:
(1) Production of non~pyrophoric materim in tonmage quantitios.
(2) Feasibility of compressing UK 3 to demasty of $9 \mathrm{~g} / \mathrm{cocor} \mathrm{UK}_{2}$ to a density of $1 \mathrm{l} \mathrm{E} / \mathrm{co}$.
(3) Production of material x \quad such state, in case nomapyrophoric UN_{3} camot be prodaced, that will allow any handixng daxing cladding of the material.
A survey, thexefore, was indtiated to detarmine the feasibility of produco
 cations This survey has been compleced and an OFWh report will soon be isswed on the aubject. Conclusions which may be drawn from this suxyey are:
(I) Most lots of uranium kydride (Ums , are pyrophoxic. Some have beerk made which are not. with additional research and development, nonmpyrophoric aramium hydride can probably be made. Titanium hydride was once considered pyrophoric, but now non wyrophoric materink is made in tonnage quantities.
(2) The densiry requinements can probably be met. Additional development 3. mecessary however.
(3) The material can easily be clad once the pyrophoric disadvantage is orercome. The material is probably nonwcorrosive.
(4) No cost dara axe available since no large quancityes bave beent made whth che desixed propercies.
 brixum with hydrogen gas at one atmosphere pressure.
(6) The radiation stubility of Uut is wmbown. By analogy. it is probably as stable as titanium hydride to pile radiacians,
 cadminm, the uramium and metal alloy releasing bydrogenn
 (Tybor) has been fabricated for the Lid Tamk Experiments. F C and Tygon paixt are mixed in the ratio of 3 parts β_{f} C to part panc by hand. This gives 60% $B_{\text {s }} C$ by yolame the mix is cast on a specially designed roliting table and rolled to manform thickness. Thiokness cam be varied from $1 / 16$ inn to $3 / 8$ dra. Cast sheets are wrapped with cheese cloth for additional support and are coated with addjtional Tygon paint for watexproofing. Tenaile strength of Mybory is 215 psi and age has no apparent effect on the strengtho Elongation is abown ll\% Sheets are quite flexible gad can be bent aroumd robnd objects without cracking, provided the bends are rot sharp. Sheets are remperature sensitive, bexng more flexible at or sligholy aboye room tomperature than at lower cemperacures. The material is rot brittle at temperatures of 40-50\%

Experimental 4 ins $\times 4$ inn $\times 48$ inn squares of fungsten carbide and Tygon
 size range is not commercially qualmble to pemit making sheets 563 in. $\times 66 / 2$
 sheet can bemade if the $W_{2} C$ is screened. Tensile strength of W_{2} Cugon shects will be determbed to see whether or not sheet $56 / 2$ in. $\times 66$ in in. $\times 1 / 8$ in. can support its own weight. The sheet wilk weigh approximately 350 bbs as
 plastics, such as polyethylene, polystrexe and bahelite will be bsed as the binding materials instead of Tygons These materials me more stable vo radi. ation than Tygon.

Two $B_{2} O_{3}$ Tygon sheets, 55 ine $\times 55$ in. $\times 3 / 8$ ine, have been fabricated for the MTh mochufp critical experiments. These sheets were very difficult to make dux to the hygroscopicity of the $\mathrm{B}_{2} \mathrm{O}_{3}$. Ratio of $\mathrm{B}_{2} \mathrm{O}_{3}$ to T ygon was 2 to k . Tests indicate that $B_{2} O_{3}$ is not as stable to radiation as \mathcal{B}_{3} C which apparentiy will preclude jts use for high level ixradigtion aplications, even though it costs about 15 cents/lb compared to $\$ 4.50 / 1 b$ for $B 4$ C

Concoctex. The concrete work was kept to minamum daring the last quartex. Except for sexvice woxk no projects wexe initigeed.

A spectal M cobcrete was made for H. P. Sheeper, KApL. The composition is as follows:

Lead Shot
64.8% \$も.
Staxnless Steel Scrap
me 0
Colemanite
Mg C) (28. BewSolu)
Calgon Solution
7.7
8.2
8.2
11.1.
.08
-

A density of 4 g gm/cc was obtaned with a compressive strength of 3200 paix. Further investigation of the mechanical, physical and radation properties of this concrete has been requested by KApt, and as soon as personnel becomes available work will continae on bhis problem.
portand cement fron conorete. Experimental pours are being made asing the proposed heary aggregate concrete for the MR. Density measurements, pouring techniques, compreasive strengths, ageing characteristics and compressine strengtha under thermal stresses are some of the properties of the concretes whoh will be investigated. The information obtaned from these tests will also materially aid the hanford project in the design of the new hanford Shields. The same tests were requested by hanford who anticipate asing the same type concrete-m portand cementasted ageregate concrete.

Tests are being set up to correlate compessive strength of 1 in $\times 2 \mathrm{in}$ cylinders with 3 xn $\times 6$ in eyfinders of cement, and possibly concrete $I f$
 henford piles for stadies of stablity of concretes and cements to pile radiations.
 s problem still under investigation. The reports which have been issued on the subject indicate poor reproducibility of data. The same bas been found to be trae in the present work. The expansirity apparatus has been redesigned and should be in operation in the very near fatare. The new dexign, if suceessfan, will eliminate tbe posshbility that the yariations in expansivity from one sample to another are due to the inatrament. Any wariations which are then obtained can be directly correlated to the concretes.

Radiatisa baway yests. Two samples of wo wa MY (Boron containing) cements were irradiated in fole 19 in the X 10 pile for approximately 1000 hours. The RO cements shomed pery litcle gas formation at the end of this tame The Ml cement on the other hand showed considerable gas formation, probobly dae to the damaging effects on the alpha parbicless wheh are produced when Boron captares a nearmon The gas was not identified; howevex, Hanford has motichally reperted that Cl_{2} was identified as the gas when wos placed in the hanford pile. Further tests are being plamed. Adritional samples are bebng scheduled for irradiacion and an atempt will be made to idencify bhe gas.

Equilbrism mastaro sests. The equilurinm moksure content of woment was determined at 200 F and 300 . As. with a relative humidity of 17% was passed over the cement which mas in an oil bach at 200°. Equilibriam was
assamed to be reached when no loss in wexght of the cement mas detectable. The cement was heated up to $300^{\circ} \%$, and again equilibrimm was assmed when mo loss in weight was noticed. The temperature was then dropped to 200\% and the sample was allomed to come to equilibrimm, raxised to $300^{\circ} \mathrm{F}$, etc. The test was contimbed for 37 days. The tests will soon be xun innamely designedapparatus which will allow for the accumalation of more accurate datan

 daction of hard gammas in a form which allows easy heat removal. Large soale experimental rolling was attemptad at Lukens Steel Co. Coatesyilla, Pan Two large ingots 27 in. $\times 36$ in. $\times 6$ ine were scheduled for rolling into sheets, $56 / 3$ inn $\times 66 \%$ in. $\times 3 / 16 \mathrm{in}$. One ingot was rolled in December but the rolling was a faklure. A second rolling is being acheduled for the later part of February Frecautionary measures are bejng takento insure a successfuroll. ing the next times The picture frame which confinesthe xngothas been incrensed

 xn the center of the ingot in order to be able to ascertain the true temperature of the core prior to rolitig. A temperatare of llo0\% be the center of the coremacerial js desired before rolling. Closer time schedules have been worked out so that the ingots will be exposed to the weqther conditions for a minimum length of time. Tt is believed that the second rolling of these ingots will be successful.

The rolled sheets, $56 / 2$ in. $\times 66 \%$ in. $\times 3 / 16$ ino will be used ixn the lid Tank Experiments, Trguixies have been received from other sites; Brockhaven, Argonne, Hanford and KAph baye expressed an interest macguining large quantities of Boral sheets.

Ar estimate of the cost of fabricatimg a Boral sheet (50-50) is bbout

 of 10^{2} or 10^{3} is all thatismecessary. A program is being initiated therefore wo develop rboralsp whth lower B C concent. These Borals should have betcer rolling charactexistics, structural properties, thermal properties and lower cose becamse of the lower B C contents.

Thermal condactivity specimens have been made by hot pressing $B_{\text {g }} C$ and Al powder inagraphite die at $1200^{\circ} \mathrm{F}$. Prehiminary daba indicate ehat the thermal conductivity of Boral is 86 BTT/hr-ft ${ }^{2}$ og/te These testaminl be duplicated
 (Aws. 3s, 19AD)
for other specimens. Yn the same temperatare range, low carbon steel is 35 and Al is 118. Specitio heat of Bord is 0.175 BTU/PF~lb. The thermal conductivity of $\mathrm{B}_{4} \mathrm{C}$ with $\mathrm{B}_{2} \mathrm{O}_{3}$ as a binder, Al, and mixtures of $\mathrm{B}_{4} \mathrm{C}$ and Al (amonnt of B_{s} C varying from $30 \%-50 \%$ will also be determined. This work will also be duplicated for plambor ($\mathrm{B}_{3} \mathrm{C}$ and lead).

Tensile specimens of Boral bave been removed from the pile after 6 and 8 weeks exposure in the isotope stringer. The tensile strengeh of the specimens were determined after cooling for 2 days ($3 \mathrm{mr} / \mathrm{hr}$ in $\gamma^{2} \mathrm{~s}$ and $6 \mathrm{mr} / \mathrm{hr}$ in β 's on contact. .

Results are shown in the following table:

bexmen	Temsing fixangra
Original	Avg. 5000
6 meeks	Arg. 6335
8 weeks	Arg. 7500

Additional smples have been placed in the X 10 pile and will be removed after 12 months, 10 months, and 24 monehs exposure, Samples are also being sent to flanford for exposures of 3 months, 10 months and 20 months.

Samples of the "poor man's" Boral, "Boroxal" ($\mathrm{B}_{2} \mathrm{O}_{3}$ and Al), have also been irradiated. These samples however, were less stable to pile radiations, the tensile strength decreased from 2900 psi to 2050 psi atcer 8 weeks ex. posare in the pile.
 Methods for incorporating $80 \% \mathrm{~B}_{4} \mathrm{C}$ into Pb are being studied. Thermal and physical properties of the plambors will be measured.
meports xasued. The following report was issued during the past gaster: Constraction of Cheap Shields; A Survey by theodore Fockwell, YM, ORNL 243, (Jamuary 16, 1950),

The material on shielding for Nacleonics is assembled and three copies are being sent to Chicago for pre-dechassification of shielding work.

HEAT TRANSEMER

 has congisted of a stady of thaid flow and yelocity distriburion in conduisa. It is on knowledge of the velocity distribution in tubes and betwesk pardlel plates that jequid metal heat transfex theory is based, and a knowledge of velocity dixtribution in chamels of other shapeg will ajd in scudying hast
 empirical expsessions for velociry distribution in cixcular tubes when might grovide insxgkt into the velocity diatribution in other channela.
 stadies with lithimm at temperatures ap to $1800^{\circ} \mathrm{p}$ has been designed, and work bas starbed on the fabrication of various components. The rig mill be a Sigure-ofueight system, with by-passes around the test exchanger for control of hef flow rates and for rapid alteracion of memperatures betweentestan In addition, femperature control exchanger will be located between the test set up and the pump. Yts purpose will be to permit operation of the pumpata a lower temperature and to provide aceurate control of kke temperature inko the test exchanger.

The pamp and test exchanger will beconnected into the system with flamges so that they can be changed to alter the test condxtions.

Stainless steel, type 3 A?, will be used throushowt, in the absence of mach corwosion information with lithimm. The system will be operated bt homer cemperatures and wached closely for signs of excessive corrosion before being operated ar $1800^{\circ} \mathrm{F}$.
 bexng studied in the development of a a tisfactory liguxd metal pump for heat. transfer experiments. Such pxmpmight also be satisfactory for the final reactor as mell, alyough requirementefor the two installations are not similam. Rfforta baye been dinected boward deyeloping a completely enclozed pump, thus eliminating the shaft seal problem. Whike eleecromagnetic pumps show less promise Sor the ANP program than for other applications, a sudy was made of the possibility of pamp utilixing the pressure gradient acreas a

[^5]results indicated that only low pressures could be realixed and work on this type was shelyed.

Construction of a caned rotor for a pump is about bulf completed The question of which of woymes of bearing to use in the pumb cannot be answered sntin the completion of tests which gre now in progresso Both bexaxigs force the ghatt to turn on hayez of liquid, prewenting solidmsolid contacto Ome requixes liquid co be forcod into the bearimg and is quite simikare bearings
 of the liquid to create sufficient pressures to weep the shaft from contact with the bearixug. This type of bearing is also bejug studied at Gemexal. Electric.

An induction pump wising moving mageses is buder considerationn This wondd be a belical pump similar to m induction electrommente pump being dereloped at General Electric.

 has reached point where potextial punhishers are being somght with hhe aid of che AEC and ONR ix Washington All chapters are expecked to be complere and in the editors' hands by March 1.

METALLURGY AND MATERTALS

setaninrey myindok

The initiol experimental effort of the Metalurgy Diyision in the investim gation of materials for ase in an aircyaft reactor is bexng concentrated on a preliminary survey of the behafior, in a high cempergture liguid metal environment, of wide warety of selected metallic elements and representative alloys under statio conditions. Based on these sorting bests, the more promis. ing combinations of high cemperature macerials and liquid metal coolanes will be staded more extensively to determine their dynamic corrosion behayiox and mechanicia properties at high cemperatures.

The destign of the reactor and the enginecring and naclear spocifications of its components mill depend in large measure on the results of this and similar studies. Consequenty, w wie variery of materials, coolanes, and reactor conditions mast be consadered, although some arbitrary selections have been made to expedite the work.
statiecorgssiow. In the sorting tests to date, samples of the more readily ayajuble materials bexng considered haye been exposed to liquid
 $1830^{\circ} \mathrm{F}$, and a simikar series has been run using bismuth instead of lithimm. Figure 5 shoms the deajgn of the modified capsule bexpg whed in these tests and its relation to sample and liquid coolant. The sample is placed in the copsule, and solid bismathorlithium is sdded, the lithium suitably protected. The plug is cold pressed into the caponie, the capsule evacuated, and the peripheral joine between the plag and capsule welded. The weld is helium leaknecsted. Occasional leaks have been observed in the ixon capswhe materal xtself. While the leaks gre ragdily melded in this application, it is probm" ble that Ammeo irong despite its lom solubxixty, is not well saited to the construction of kithirm or gaswtight cookant system. After leakatesting, the capsule and contents are heated under facumm fo just aboye the melting potst of the coolant metal. The tabubar extension of the plus is then triplew erimped and spotwelded, the racuam line removed, and the end of the tube beadw walded. The capsules, two to a fuxnace, are placed in one of foar Bur rell

FIG. 5
CORROSION CAPSULE ASSEMBLY

Globar tabe farmaces. An inert gas surround the capsules to prevent scaling mad to minimaze danger from possible leaks. Following the required exposure, the furnace is tilted to drain the liquid metal away from the samples and up sato the hollow core of the plug, where the liquid solidifies. After remoyal of the capsules from the furnace and solidification of the contents, the plag end of the capsule is sawed off and the capsule concents removed for examination. The lithinm and bismuth are analyxed spectrographically for the component elements. of the samples. The lithium or bismuth is removed from the surface of the sample, the sample is wetghed and its surface is examined microscopin cally mid by $X \cdot r a y$ or electron diffraction.

Preliminary four-hour results from lithum tests st $1800^{\circ} \mathrm{F}$, which must be rigidly checked before they can be accepted as conclusive, indicace (1) iron, molydbenum, and zirconium s ufered less weight change than the other materishs tested, (2) tungsten, tantalum, and columbium were not severely attacked, and (3) cobak and akckel underment substantial weight loss. The zirconimm de veloped a brassy tarmish which X ray diffraction showed to be zirconixm aitride film, indreating probable nitrogen contamisation of the lithim. merpresation of these preliminary tess results should take into accoum the facts that procedures insuring uniformly low concamination of lithiam by oxygen and nitrogen are not yet in operation, and that third component, the iron of the capsules, was present in each of the systems. §igmificant results, where required, will be subject to confirmation in capaule liners made of the materials undergoing cest.

The fourmhour, $1800^{\circ} \mathrm{F}$ tescs in bismuth, subject to the same or similar qualifications as the lithinm tests, showed nickel andzipconium to be severely atyacked, wereas yisumb observation did not indicate atrack of the ixom, tungsten, tantalum, molybdenum, and columbinm,

The aext sexies of teats is being conducted at $1800^{\circ} \mathrm{F}$ for forty hours, and will be followed by tests for still longer periods of time and tests at other semperatures.

In addicion to lithium and bismuch, potential cookants which ase being considered for use in later similar sorting tests include lead, tin, magnesium, and possibly sodinam, potassium, and combinations of some of these.

Lithism Mamblum. hithiumpresents aserious fire baxardincase it leaks or is spilled at high temperatures. A study co select materials for ase ss insulation around vessels contaning lichium indicated that the fohlowing
showed some resistance barning hehtam: Castollitefirebrick casting powder,
 dnclude: magresia lagging, asbestos cloth and paper, Ko30 refractory.

 systems of oxygenmsensitive materials. Jn the case of lithinm there exists the further problem of severely accelerated corrosion attackby fithimm nitride; wheh can form by exposure of lichiom to moxst arim room temperacures. In the case of sodxum, remosal of oxygen has been accomplished by cslciumegeter. ing at about $500^{\circ} \mathrm{G}$ f followed by filywatom just aboye the meleing poine of sodinm to remove excess oxides and calcium. Calcium forma entectic with lichium at 2% calcium and consequenty canoot be completely removed from Lichium by filtration. Since calciam is generally considered to be gaite corrosize, one or wore other gettexing agents should be found. Et appears probable that airconimm can remove nicrogen from lithinm, but ayaxhable themom dynamic data will have to be supplemented by actual experiment to developa method of removing oxygen.
 complete certanaty bhe corroston behayior of a materal in a het eramafer system. Complicating factors inclade erosion, femperature cofficients of solubility, amd ancertaincy regarding the disposition of materxal precipitated out of solucion jn the cold part of the system. Experience at other xnstallations indicates that thermal conyectuon loogs (happs) give a better picture of the effects of these factors

As noxt step in the corrosion testing program, materialmandmooblant combinations which show promise in the starie resta will be operaced tnthermal conyection syasems. This should also give mindication of the feakibjixty of fabricating some of the high temperature materials into heat transer equip. ment. Several such harps in process of constwaction are being made of 347 SS , 310 SS, Y 36 alloy, L 605 alloy, a low cambon ixon, and a composite of 310 S and low caxbon ixon. Tn addicion, qhe posaibility of making harps of mom lybdenm, tantabm, and ocher elements is being studied.

As the number of potential materials is furcher limiced by the above ceses positive circulation corrosion test loops will be mede.
 testing units. Electronio control equpment and furnacesfogtesting in a liguxd metal environment are bexng destoned.
 inyestagations wre bejng badertaken to obtajn more fundamentel information concexning the nature of liquid metal cormosion in the syatems ander study. These include studses of (ly effects of imparikies min liquid metal systems, (2) eflects of different surface tinishes, (3) the tendency soward selective leaching of cestan elements from complex alloys, (4) eftect of the carbon content of metallic iron and of high temperature alloys on corrosion, (5) rew lation of latcice structure to corrosion of ixommbase alloys, and (6) a com. parison of the behspion of different basewtypes of high emperacare alloys.
prosective coatimg of sum temperatare wateriara. One possibility considexed x.s that materials may be fownd which baye suxtable restatance to corrosion by liquid metals. but do not haye adequate mechankeapropereises. An inuestigation is being made of the feasibility of usheg such corrosiom resistant materiahsasa coather for supable highotemperacure metals or alloys, mad of the feasibility of fabricating complex reactor or heat exchage anits out of such composite materials.
 ard construched for conducting sorting tests on potential metalite container materials in a medrum of arantum"bismath alloy. Since no sutable capsule material is as yet known the prediminary bests will be conducted in open rew
 an inert atmosphere at temperatures in the neighborhood of 1800°.

RADBATMON DAMAGE

*.

Asedgrator Expertmeats. Aramgements have been made to have the North American Ayiacion group at Los Aygeles and Berkeley grady the effect of alpha partiche bowbardment on the corcosion reshstance and strentehproperties of high tempexature resistant metals in contact with liguid Lithinm, The evalum athon of the bombardment is to bemade at ORNL. t , is expected rhat deta will be obtained within two to three months.

Paxticipation of the Purdue cyclotron group, headed by Dr. K. Karkuhorowita, is being arranged through a sub-contract. It is hoped that this group will be able to staxt work by Aprix $15,1950$.

Use of the small y- 12 cyclotron (2 Mey protons) has bean discussed with Y-32 personnel and it appears feashble to begin experimencs there as soon ss ORNL personael are availbble Experiments involving the bigg yol cychotron must await the completion of this instrument sometime this summer or fall.

Van de Grabff experxments at ORNL have proceeded showly due to the arm aqailability of fullutime persomel.
geactor gxperimemts. A series of spot tests of high temperature materials
 3950.
 in the X X H reactor preaenta an excelkent facility formaking radiation damage measurements under proposed operacing conditions. Preliminary discussions with the ORNL heat tramsfex wromp have drdicaced the feasibility of g cooperw wife undertaking, and all posabbe effort will be expended so accelexate work on this inepile experiment. Shonld the experiment prove useful, subsequent experiments of a similar nature ak hanford and in the Mra shonde then be underm taken。

Namerons discuastonswith whe NEPA cxeepgroup and the Argonme Nayal Reactor group indicate the possibility of making sase of the reactor facilities de" Feloped by these groups. The ORNL group will, however, place major emphasis
on development of an experiment for che MTR. Extersive use of the Mra Mock- Up ar OHNL is plamed.

Migh Xacemsty saman Sowree. In order to study the effect of gammaradin ation on materials, pneumatic tabe apparatus has been installed in the pile for producing high butensity gama sources by irradiating cylinders of gold (Fig. 6). This equipment has been in operation since Decemer 19, 1949. The gamma intensity inside the gold oylinder (3 in long, 1 in. 10,2 mathek) after irradiation for one wedk was measured to be $10^{5} \mathrm{r} / \mathrm{hr}$, ($)$

The pneumatic tube apparatus is shown in Figs. 7 and 8, and the receiving sheld is shown partially disassembled in Fig. S. The gold cylinders are blown in and out of the pileby ah pressure, operating through solenoid valves. When the gold cylinders are discharged from the pile they fall into one of eight chambers in the receiving sheld. These eight chambers are aranged in * circle and geared to an indexing handle so that a source may be recejved in any of the eight chambers and then rocabed 180° to a position from which it way be dropped into the source shield. When the gold is to be remasexted in the pile the source shield is brought up ander the receiving shield by mens of a lift truck, the gold cylinder is then blown from the source shield into the receiving shield, and rotated 180° to a position from which it is blown into the pile. The large cylindrical lead plug, shown in the lower left hand corner of Fig. 9, normally keeps the gold oylinders from faling out of the receiving chamber and also shiclds the opening through which the cylinders pass into the source shicld. When this plug is tumed 90°, the source falls through an opening in the plug and into the source shield. The several parts of this apparatus are sealed with double O rings, and air pressure is mantained between the 0 rings to keep active air confined inside the apparatus, from which it is dischmeged into the pile exit air line.

[^6]FIGURE 6 GOLD LINED CUP

The somrce shield (Fig. lo) was designed to vest fow gassing of mastable chemes componds ander gama radiation. The material is placed in a teat tube which is connected to manometer and placed in the lower half of the sheld, and the sheldis closed. The gold cylinder is dropped into the shield chrough small opening and falls knto a cup. The cup is chen rotated 60° and lifed ap so that the gold cylinder is brought up around the test tube containo ing the material to be tested.

The gold source is shielded ab all times by six inches of lead The tabe shield is composed of six inches of borm paratifn in addrion to six mehes of lead.
 physical properties of plascics dae to pile radacion were presensed in the last quarterly report. It xs expected that saficient daba will haye been accumalated by the next quarterly to present quantitacive information on many of these materials.

Changes in electrical properties with pile radiation are absobeing stadied. Results are ghen in Table for folume resiativiy and dielectric strench. These data are given for the longest ixradiation period now avill. able on each materish. AL materials were ircadiaced in the pile at aboat $40^{\circ} \mathrm{C}$.
 wents are being done so decerman the effect of radation on four metal
 and $Z_{\text {rhe }}$ ge. Radiation effects are to be debermined by comparison of the dixsociacion pressure curves obtaned under irradiation wh the normal dissociation presaure curyes. For this parpose, dupixcabe apparatus, in which factors arecting disaociation preszares are carefully controlled, were ssembled, and one growp paced in the pile whle che other was ran in the laboratory.

The data assembled to dace are preanced in the caryes of Figs. 11 and 12 ,
 tisminm hydrides hase not exhbited equilibrium pressures at the temperacures of the experimente (wp to wort $500^{\circ} \mathrm{C}$). The soden drop in pressure as the temperature is increased is so far mexplanable. Final interpretation of the resulta most awhit analysis of the samples after pressure messurements are complesed, and the radionctive material and containers haye decayed. ft may be indicated, howeyer, chat pery ixtle chage is observed in the irmanated

FIGURE 10 SOURCE SHIELD

*asmeras					
		$\frac{\text { gex }}{x}$	$\begin{gathered} \text { AFPKR } \\ \text { ZRRSBEARSOK } \end{gathered}$		
Sechyl Methacrylate (Lucite)	0.43×10^{18}	$>100^{34}$	$>10^{14}$	960	430
Celumlose Migrate	0.24×10^{28}	2×10^{83}	4×10^{3}	860	240
Cellulose Acestce	0.24×10^{23}	5×10^{22}	2×10^{12}	750	480
Cellulose Acetase Butyrate	$0.26 \times 10^{1 *}$	$>10^{* 4}$	2×10^{83}	780	160
Fluorothene	0.24×10^{18}	>. 10^{19}	$>10^{14}$	860	780
Urea Formaldekyde	0.26×10^{88}	2×10^{33}	5×10^{58}	740	500
Alkyd Resins	0.29×10^{88}	2×10^{23}	2×10^{9}	500	264
Polywinyl Csmbaole	0.29×10^{18}	> 10^{3}	$>10^{24}$	1280	660
	0.41×10^{18}	$>10^{24}$	2×10^{7}	660	70
Vinyl Chloride Acetabe	1.37×10^{18}	$>10^{28}$	3×10^{6}	1080	80
Mee lamisue Formaldehyde	0.65×10^{38}	8×10^{21}	2×10^{9}	950	430
Polystyrene (chear)	9.00×10^{88}	$>100^{84}$	$>10^{\frac{18}{4}}$	1686	1300
Polystyrexe (Suyrom Sts)	$9.00 \times 10^{* *}$	> $10^{\text {\% }}$	$>10^{84}$	1180	1020
Polystyrene (Styron 4lke)	$9.00 \times 10^{1 \%}$	$>10^{19}$	>. 10^{84}	1460	980
Polysthylame	9.00×10^{18}	$>100^{84}$	> 10^{84}	1220	490
Phernal Formaldebyde (paper base)	9.00×10^{18}	3×10^{22}	2×10^{18}	1230	190
Phemol Formaldehyde (asbestos base)	9.00×10^{18}	2×10^{9}	2×10^{8}	80	80
Aliyl Digiycol Cambomate	1.37×10^{18}	$>30{ }^{2} 4$	2×10^{10}	830	810
Polyester Resin	0.65×10^{28}	3×10^{85}	$1 \times 10^{3 / 3}$	680	860
Folyamide (Nylon)	5.50×10^{18}	3×10^{83}	$3 \times 10^{3 / 3}$	860	860

FIGURE 11 DISSOCIATION PRESSURE OF LiH

- IRRADIATED
- NON-IRRADIATED

FIGURE 12 DISSOCIATION PRESSURE OF $\mathrm{ZrH}_{1.86}$

- IRRADIATED	
0	NON-IRRADIATED

4

 cxoss sec\&boxs which can be expected to be neaded in qhe caurse of the ANP work. The preparations are directed along two lines:

 Recruttirg eftores are under way with the objectof wsemblime growpof
 perform sufficiently well.
 zeams btractive in yiew of the recent succeas of the Argonne machimen whe

THE CONCENTRATION OF LITHIUM ISOTOPES BY CHEMICAL METHODS

A. Clarf, Y-12 Research Laboratory

The concentration of lithium isotopes by a number of different methods has beea under investigation for the past nine months. It seems likely that high purity ${ }^{7}$ Li would be very valuable as either a coolant or a fuel-element constituent for an aircraft reactor. At the beginning of the project a survey of the scientific literature revealed that the concentration of lithium isotopes had been accomplished on a laboratory scalebyseveral widely different methods. These included the wass spectroweter, chemical exchange between a resin ion and aqueous lithium solutions and between lithium amalgam and alcoholic lithium solutions, electrolysis of lithium solutions in which the reduced lithium is removed as amalgam, and electromigration in which the faster isotope migrates more rapidly toward the cathode in a fused salt.

During the months of December, January and February, the effort has been concentrated on molecular distillation of the metal, chemical exchange in solid-liquid and liquid-liquid systems, continuous countercurrent electromigration, continuous countercurrent electrolysis, and thermal diffusion of aqueous lithium solutions. The end of the quarter also saw the beginning of a new method-a dual temperature liquid-liquid chemical exchange system which requires no reflux and a minimum of attention. This method appears highly suitable for quantity production of ${ }^{7}$ Li if it develops satisfactorily.

Molecular Distillation of hithium Metal. The molecular distillation (non-equilibrium) of lithium metal should result in a concentration of ${ }^{6} \mathrm{Li}$ in the vapor and of ${ }^{7} \mathrm{Li}$ in the residue. The ratio of the rates of diffusion of ${ }^{6} \mathrm{Li}$ and ${ }^{7} \mathrm{Li}$ from the liquid metal is proportional to the inverse square root of the masses, and a theoretical separation factor (a) is calculated to be 1.08 for this process. Preliminary experiments with a single stage molecular still have shown a separation factor $=1.018$. In a typical experiment, 10.1 grams of lithium were distilled over a period of about two hours at $450^{\circ} \mathrm{C}$ and 15 microns pressure until only 1 gram remained in the still pot. The residual material in the still pot assayed $92.935 \pm 0.015 \%{ }^{7} \mathrm{Li}$ as compared with a starting material assay of $92.500 \pm 0.020 \%$. Further expariments will be carried out using a larger still under various conditions of temperature and pressure.

Chenical Exchange methods. Chemical exchange methods for concentrating lithium isotopes are divided into two groups, liquid-solid systems and liquidliquid syatems. Although the latter are more asily adapted to continuous courtercurrent operation, very few satisfactory aystems are available, and much of the effort has been with liquid-solid systems.

Liquid-Solid systems. An attempt is being made to utilize selective adsorption on cellulose-a method used successfully for the separation of different elements. A lithium salt in an organic solvent is slowly eluted through a column packed with activated cellulose. It is hoped that the cellulose will exhibit a preference for one isotope so that the lithium coming out the bottom of the column is concentrated with respect to the isotope held less tightly. To date the cellulose columns have been filled with activated cellulose in butyl or isoamyl alcohols, and a slug of activated cellulose and lithimm salt in water added at the top of the column. Elutriation of the salt at the bottom of the column is performed by addition of alcohol at the top. In the latest experiment the column was charged with LiOH , and over 170 hours were required for the lithium to wash through a 24 inch column。 No assay has been received for the lithium in the leading edge.

Another liquid-solid system is a continuous countercurrent ion exchange resin column in which a lithium solution passes up through an ion exchange resin which moves slowly down through the column at an almost imperceptible flow rate. The experiment has recently been terminated and no assay on the product material has been received. In an experiment at X-10 with a "fixed" bed of resin, the concentrations of ${ }^{7} \mathrm{Li}$ in the leading and trailing edges were reported to be 93.4% and 90.0%, respectively.

In another liquid-solid system, column of solid $\mathrm{Li}_{2} \mathrm{CO}_{3}$ in finely divided state is slowly being eluted with distilled water. If there is any difference in the solubility of the lithium isotopes, the more soluble should dissolve, and the less soluble should be concentrated so that when all except a small portion of the original column is dissolved, the remaining solid should be enriched in the less soluble isotope. This is dependent on complete equilibrium between solid and saturated solution, and requires a long time (several months) to complete the experiment.

Liquid-Liquid systems. Isotopic exchange and enhancement is being studied in a number of aqueous-organic liquid systems. The limited number of organic liquids which have proved to be suitable for this method has forestalled the development of a satisfactory system. Water-isoamyl alcohol solutions of LiCl
have shown an inconclusive, but small concentration, and this system is still being investigated. A number of less likely systems remain to be studied.

In the literature chemical exchange and isotopic enhancement is reported between lithium amalgam and alcoholic lithium chloride solutions. In order to avoid the onerous task of refluxing at each end of the column, it has been proposed that the dual-temperature process for hydrogen-deuterium be adapted for lithium. In the proposed method, lithium amalgam is pumped countercurrent to a rising column of alcoholic LiCl. By maintaining a cold colurn at the top and a hot column at the bottom, the ${ }^{7} \mathrm{Li}$ isotope is concentrated in the bottom of the hot column and at the top of the cold while ${ }^{6}$ Li is concentrated at the top of the hot column and in the bottom of the cold column. In this manner a continuous process can be operated without reflux and a minimum of difficulty. The main obstacles remaining are large stage heights and posaible low separation factors. If these can be overcome successfully, the production of ${ }^{7} \mathrm{Li}$ will become a reality.

Coutinuous Coantercurrent Electrolysis. Since the largest factors for the concentration of lithium isotopes have been reported for the electrolysis of lithium solutions, some consideration and effort has been expended in the development of a continuous method. Single stage separation factors as high as $1.05,1.06$, and 1.07 have been reported for experiments in which lithium is reduced at a chenging mercury cathode in an aqueous lithium solution. As the lithium amalgam is continuously removed, the concentration of ${ }^{7} \mathrm{Li}$ remaining in solution is increased. By combining several cells and causing the lithium to flow countercurrently to a stream of LiCl solution, it is hoped to concentrate the lithium isotopes.

Continuous Countercarrent Electromigration. The work of Brewer, Madorsky et al at the National Bureau of Standards during the War showed that two isotopes of the same element wight be separated by washing one back with a countercurrent stream of electrolyte while allowing the other to migrate forward to the cathode in an electromigration cell having anode and cathode connected by an anti-diffusion packing. This principle has been applied to a solution of $L i O H$ in which an attempt has been made to separate the different lithium species which are postulated to exist. By separating the species, it is hoped that an exchange and subsequent shift will occur so that an isotopic concentration is effected. The work is being continued.

Theral Diffusion. No satisfactory component for the thermal diffusion of a lithium liquid has been found. In lieu of this, thermal diffasion of concentrated lithinm salt solutions has been tried with no apparent success to date.
tanmes

[^0]: "सw

[^1]: - papr Feraoman A .
 (3s3. 3k, 1980)

[^2]:

[^3]: - NEPA Pessomasi.

 1950).

[^4]: (Juns 10, 88\&) .

[^5]: : Hos. kly Fsee persmonsh.

[^6]:

