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SUMMARY 

This paper concerns itself with forced convection heat transfer in long, 

smooth pipes whose flowing fluids contain uniform volume heat sources; also, 

heat is transferred uniformly to or from the fluids at the pipe walls. Di- 

mensionless differences between the pipe wall temperature and the mixed-mean 

fluid temperature are evaluated in terms of several dimensionless moduli. These 

analyses pertain to liquid metals as well as ordinary fluids.



NOMENCLATURE 

Letters 

cross sectional heat transfer area, ££2 

fluid thermal diffusivity, fte/hr 

parameter in equation (f), ft/hr 

parameter in equation (23), dimensionless 

fluid heat capacity, Btu/lb Op 

parameters in equation (26), dimensionless 

parameters in equation (31), dimensionless 

parameter in equation (h), dimensionless 

gravitational force per unit mass, ft/hr2 

parameters in equation (34), dimensionless 

heat transfer conductance, Btu/hr ft& OF 

fluid thermal conductivity, Btu/hr ft2 (°F/ft) 

fluid pressure, lbs/fte o 

heat transfer rate, Btu/hr 

radial distance from pipe centefline, 't 

radial position at which the reference temperature 
tq is stipulated, ft 

pipe radius, ft 

parameters in equation (33), dimensionless 

fluid temperature at position n, °F 

a reference temperature at radius rg, °F 

mixed-mean fluid temperature, °F



O g R R e 1w 

t fluid temperature at pipe wall, Op 

  

o 

ty fluid temperature at nj, °F 

ts fluid temperature at no, °F 

tt fluid temperature at the pipe center, Op 

u fluid velocity at n, ft/hr 

Uy mean fluid velocity, ft/hr 

W volume heat source, Btu/hr £t3 

X axial distance, ft 

radial distance from pipe wall, Tt 

7 fluid weight density, lbs/ft2 

€ . eddy diffusivity, £t2/hr 

8 friction factor defined in equation (c), dimensionless 

p sbsolute viscosity of fluid, 1b hr/ft2 | 

D £luid kinematic viscosity, ft&/hr 

0 fluid mass density, 1bs hr2/ft* 

T fluid shear stress at position n, 1bs/ft° 

To fluid shear stress at pipe wall, lbs/ft2 

Terms 

a'=1-Pr 

a''= -0.0304 Pr Reo'9 

b' = 0.0152 Pr Re®"? 

b'"'= 0.030k Pr Re®*? 

.4 
~ar



n 

np 

ny, 

Nu 

Pr 

Re 

i 
i 

i 
n 

] 
It 

Dimensionless Mgduli 

- (@) 
. © °© 

Y/ro 

Yl/ro 

y2/To 

YL/TO 

h 2r,/k, Nusselt Modulus 

97 cp/k, Prandtl Modulus 

u 2r,/? , Reynolds Modulus 

p 

\[_7_; 

?



  

INTRODUCTION 

At times it is necessary to determine the radial temperature distributions 

in flowing fluids that possess internal sources of heat generation., Consider the 

heated-tube system (electric current passing through the tube.walls) which is now 

so commonly being used to measure convective heat transfer conductances. It is 

of interest to known how much the electrical volume heat source influences the 

radial temperature distribution when a significant fraction of this source is 

generated within the flowing fluid. Such volume heat source problems also arise 

in fluid flow systems in which continuous chemical reactions are being supported 

within the fluids; a combustion heating system represents a specific example. 

Particular volume heat source systems have been considered in this paper. 

Mathematical temperature solutions were developed for a circular-pipe volfime 

heat source system for the cases‘of laminar and turbulent flow (referénce 1). 

The idealized system to be considered is defined by the following postulates: 

1) Thermal and hydrodynamic patterns have been 
established (long pipes). 

2) Uniform volume heat sources exist within the 

fluid. 

3) Physical properties are not functions of 
temperature. 

1) Heat is transferred uniformly to or from the 
fluid at the pipe wall. 

5) In the case of turbulent flow the generalized 
turbulent velocity profile defines the hydro- 
dynamic structure. 

6) 1In the case of turbulent flow there exists an 
analogy between heat and momentum transfer.



  

A heat raté balance on a stationasry differential lattice reveals the heat 

transfer mechanisms which control the thermael structure within the idealized 

gystem. At steady state, the heat generated within the lattice is lost from the 

lattice by axial convection and radial conduction (in the case of laminar flow) 

or radial eddy diffusion (in the case of turbulent flow). These heat rate balances 

are expressed by differential equations in the following analyses. 

»-
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LAMINAR FLOW ANALYSIS 

The differential equation describing the heat transfer in the pipe system 

for the case of laminar flow is 

’ . 

1-.(,_1:.) 2t r= 2 |ar 28|, Hr (1) 
\To oX or or Yep 

  

where, 

U, mean fluid velocity in the pipe 

t, temperature 

X, axial distance 

r, radial distance 

a, thermal diffusivity 

W, uniform volume heat source 

7, fluid weight density 

Cp> fluid heat capacity 

One boundary condition for the problem consists of a uniform wall heat 

flux which may be positive, negative or zero, 

2'-1?.: (r = ro) = (g’-‘%)o = -~ K %—E (r =. I‘o) (2) 

where % is the radial heat flux and (%) is the wall heat flux. The second 

boundary condition is, td, a reference temerature, such as a wall or center- 

line temperature, 

t{r = r3) = ta (3) 

Note, the mixed mean fluid temperature may also be specified as the reference 

temperature.
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Downstream from the entrance region where the thermal pattern (tempera- 

ture gradients) of the system has become established the axial temperature 

gradient, _g.;c_c. , 1s uniform and equal to the mixed-mean axial fluid temperature 

gradientl, ('%';t}') . The latter gradient can be obtained by making the following 

heat balance. Tllrlle heat generated in a lattice whose volume is :tro2 dx plus 

the heat transferred into (or out of) the lattice at the wall must all be lost 

from the lattice by convection, that is 

Wflroed.x - (._g%) 2nrodx = nroe Up ¥ Cp (_g_:‘.c.) dx (&) 

0 m 

Hence, in the established flow region the axial temperature gradient is 

W- 2 Gki) 
2. 28 oo /o (5) 
2X \axm u.m'rcp 

Upon substituting equation (5) into equation (1), the following total differential 

equation results: 

2 2 SERESHIE Y-S - “ ] £
 

where F = 1 - .2 (g%) . Equation (6) can be solved by making the change 

of variable, z = 4t , or 
dr 

  

1. Note, that the mixed-mean fluid temperature at any given axial position 
is defined as, 

T 

Yo 
o 

ty = /-2—————-——-t i 2 t u rdr m T = T 2 

o Uy T o 

/ u 2grdr 
0 
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dz f r)2 -1 z _W 
a*s*riakfl‘ - (g (7) 

The solution of equation (7) 18 

2 
. dt _ 1 W T const., 

Z = == Pl ]l -] |~ e T°F /& ( l: (I‘o)] 1) rdr + = (8) 

Upon integrating there results 

it W r F 1 
d--v-r- = E[(EF‘ - l) -2- = § r02:| (9) 

The constant in equation (8) was found to be zero from the boundary condition 

given by equation (2). Note that the radial heat flow is 

dq dt _ Wro T r |’ = -k 2= = — - — — 
dA dr 2 (1 - 2F) ry +F (ro) (10) 

The desired temperature solution can be obtained by integrating equation (9), 

  

  

  

r 

To 

t -ty = W;};z (2F - 1) ;I-'()--F (%)3 d(%) (11) 

1 

. t -t _ 2 L N T 
= 

where the reference temperature is, t,, the wall temperature. The temperature 

solution in terms of the centerline temperature rather than the wall temperature 

is given by
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t -1 - 2 L 

s (R R ) 
2k 

where t¢ is the centerline temperature. Equation (13) is grephed in Figure 1 

for several values of the function F. 

It is often of interest to know the difference between the wall temperature 

and the mixed-mean fluid temperature. This difference is obtained as follows: 

To 

_g'u (to = t) 2nrdr 

2 
U To 

, | | 

- /“q (t, - t) (%) a (:—0) (14) 

O 

Upon substituting the laminar velocity profile relation and equation (12) 

  to - tp = 

into equation (14) there results, 

Wr 2 11F - 8 Yo = tm= 3% | =5 (15)
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Fig. . Dimensionless Radial Temperature Distributions in a Pipe 

For Laminar Flow (Equation 13)



  e AT B m 2 

15 

TURBULENT FLOW ANALYSIS 

Fluid flow in a pipe under turbulent flow conditions has been characterized 

in terms of a laminar sublayer contiguous to the wall, a buffer layer, and a 

turbulent core by Nikuradse (reference 2), von Karman (reference 3) and others. 

Figure 2 shows the well known isothermal generalized velocity profile and some 

experimental data of Nikuradse (reference 2), Reichardt (reference 4), and 

Laufer (reference 5). Table 1 reveals some of the specific hydrodynamic relations 

for the various flow layers in a smooth pipe; a diseussion of some of the details 

of this table can be found in Appendix 1. 

The differential equation describing heat transfer in the pipe system for 

the case of turbulent flow is 

      

ot o ot Wr 
(r) dX DT [ (ru) arJ T (16) 

P 

where, u(r), the turbulent velocity profile given in Figure 2 

e , the eddy diffusivity® given in Table 1 

Upon substituting equation (5) into equation {16) for the established thermal 

region the following total differential equation results, 

  

  

) [*- £ (8) ) . 
A 0 Q - Wr _ 4 acv 
up 7 Cp Yo dr [(a te)r drjl (a7) 

  

2. The analogy between heat and momentum transfer (characterized by the 

postulate that the heat and momentum transfer eddy diffusivities are pro- 

portional to each other and in fact nearly equal) has been proposed by 

Reynolds (reference 6) and used successfully by von Karman (reference 3), 

Martinelli (reference T7), and others. Thus, in the present analysis it 

is postulated that the heat and momentum transfer eddy diffusivities are 

equal.



UNCLASSIFIED 

  

    

    

      

  

    
  

          
                      

                

                              
  

DWG. 16664 

25 T T T T T T T T T T T Y T T T 

LAMINAR BUFFER TURBULENT 
~ SUBLAYER " LAYER T CORE 

20 

/ 
15 I 

ut /! - 
A7 1 ut=3.05 +5.00Iny" 

P / ® 

10 0 
< / ) 

- / 8 
’ o 

‘ o NIKURADSE 
® REICHARDT-MOTZFELD 
A REICHARDT-SCHUH 
o LAUFER 

10 30 100 ' 1000 

  

y+ 91
 

Fig. 2. Generalized Turbulent Velocity Profile in Gircular Pipes and in Channels



  

  

  
  

  

  

  

  

  

  

  

  

GENERALIZED VELOCITY 
REGION DISTRIBUTION SHEAR STRES_S STRESS EQUATION EDDY DIFFUSIVITY 

Laminar Sublayer - 

o<y << 5 : . u_ _N\p T=T T=pp £ -0 66 S D 0 dy 7 
or oL £22 Ji 

To Re‘9 P 

Buffer Layer 

5< yi< 30 u T du € 
or = = 3:05 + 5.00 lny|-59- T="7, T=plr+e) 57 -—;5~=-01523e'9r1-1 
66 <L & 296 P | | ° Re*? To ~ Re* 

Outer Turbulent - = 
Layer Y =5.54+ 2.5 1n Y \_I_EO T ’r (1 Y) T du € 9 ::o - =p€_ __=.00,-J-R. ll— 296 <L <.5 To D To dy D 304 Re™7(1 ro) o 

Re'9 To 0 ~ 

Inner Turbulent — 

u 
Sl <1 =25+ 25 1n T=Tol1 - L) |7 =pedu c . .9 £ 7o 1= 1o To ) P i - = 0076 Re 

o   

  

              

Laminar Sublayer 

Buffer Layer 

Outer Turbulent 
Layer 

      

Inner Turbulent plpe center | 

Leyer 

  

TABLE I 

HYDRODYNAMIC RETATIONS FOR THE VARIOUS FLOW LAYERS IN A SMOOTH PIPE 

LT
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ThHe boundary conditiocns are given by equations (2) and (3). The boundary 

value problem denoted by equations (17), (2) and (3) can be separated into two 

somewhat simpler boundary value problems whose solutions can be superposed to 

yield the solution of the original problem. The two boundary value problems 

to be considered are, 

  

u(r) Wr _ Wr _ E%'[ka'+e ) r gg} 
Up 7 cp 'Tcp dr 

d 
E% (r=15) =0 (18) 

  

T (v = 7o) = () (19) 

Equations (18) represent a flow system with a volume heat source but with no 

wall heat flux, and equations (19) represent a flow system without a volume heat 

‘source but with a uniform wall heat flux. Note, that the superposition of 

equations (18) and (19) yields the boundary value problem defined by equations 

(17), (2) and (3); the sum of reference temperatures tq; and tq, being equal to 

the reference temperature td? The problem defined by equations (19) has already 

been analyzed by Prandtl, von Karman, Martinelli and others (see reference 7, 

for example). The solution of equations (18) is carried out in the following 

Paragraphs. 

  

5. Note, in the superposition process, all temperatures are expressed 
as increments {(to be discussed in section D).
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A. Radial Heat Flow Distribution 

Upon integrating the differential equation of (18) once there results, 

      

T 

u  _Wr dr-w__._.__D_(rQ're)z (a +€) r 3 (20) 
um ’TCP 270 dr 

v P 
o 

T 

2 
or gg=--'7'C: (a-[-e)%:_‘i u rdr+‘ir_£9_, 

dA dr r um T 

To 

L 
To 

.. .E_(_z_) a(....l:._)-f‘.’fg r _ T 
L Un \To To 2 To T 

(I'O) | 

1 

n 

Wr Wr,, 2 
_ o Y (1en) dn + 2 z=mtn (21) 

(1-n) Yy 2 1l-n 

o 

where n = X . The evaluation of the integral in equation (21) is presented in 

To 

Appendix 2; the radial heat flow profiles for various Reymolds moduli are graphed 

in Figure 3. 

B. Radial Temperature Distribution 

The second integrafiion of the differential equation of (18), which will 

yield the temperature solution will be accomplished layer by layer fitilizing the 

the hydrodynamic relations listed in Table 1 and the radial heat flow expressions 

developed in Appendix 2.
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Laminar Sublayer; o< n<66/Re"? 

The temperature distribution is obtained by integrating the heat flow 

t n | 

fdt = ff{’- f (%%) an (22) 

to 0 | : 

where k is the fluid thermal conductivity. 

equation, 

The radial heat flow equations (i) 

and (k) can be represented by somewhat simpler forms in the various flow layers 

in order that the integrations that are to follow can be effected more simply. For 

example, in the laminar sublayer the heat flow may be expressed as, 

4 = pWren (23) 

where the parameter by is determined by fitting equation (23) to equation (i). 

Thus, equation (22) reduces to 

t -t b 
................._Q__ = .._l. n2 (2)4,) 

Wr02 2 

X 

Buffer Layer; 66/Re'97<n<=396[Re°9 

The temperature distribution within the buffer layer 1is 

t n 

(é&) dn 
dt = rq QA (25) 

k+ Te,.€
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In this layer the radial heat flow can be represented by 

%%.= Wry(cin + 02n2 + c5n3) (26) 

The ratio _%_ in this layer is equal to 

_g_ = 0.0152 Re*'? n - 1 (27) 

Thus, equation (25) becomes 

  

I 

_ Wro2 (cqn + c2n2 + c5n3) dn 
  

  

  

  

t -1t = (28) 
k 1 - Pr + 0.0152 Pr Re*? 

o 

where, Re, Reynolds modulus 

Pr, Prandtl modulus 

¢, cp, c3, are parameters obtained by fitting equation (26) 

to equations (i) and (k) in the buffer layer. 

Equation (28) becomes, 

t -t clb‘2-2a'b'c2 + %a'c ble, - Pa'e o 
21 - — 2 (a' + b'n) + __?__r_é_ (a'+b'n) 

Wrg, b! o' 
K 

n 
2 124 1 o atl) cx N3 bfa!' cy - b'%s ¢, - a 05 ' ' 

+ % (a* + b'n)” + In(a® + b'n (29) 
3p ! prh 

n 

where, a''=1 - Pr 

b' = 0.0152 PrRe’*”?
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Outer Turbulent layer; 596[Re'2< n< 0.5 

For convenience in the analysis, the turbulent core is divided into inner 

and outer layers. The outer layer extends from no<n<0.5 and the inner layer 

from 0.5<n<1.0. The temperature distribution within the outer layer is 

t n 

dg —= dn 

\////\dt = %?— da (30) 
€ 

In this layer the heat flow can be represented by 

= Wr, (eg + e,n + e2n2 + e5n5) (31) Bl
e 

where ey, €1, €p, and ez are parameters obtained by fitting equation (31) to 

equation (k). The.é;_.ratio is equal to 

_f}.= O.OBOhHReO'g (1-n)n (32) 

Equation (30) then reduces to, 

t -ty (eo + e1n + eon® + e5n3) dn 

Wro® 1 + 0.0304 PrRe®+9n - 0.0%04 PrRe®:9 n° 

a" - ezb" e o 
5 n+ —2n 

23" 

k 

+ a" el - a"p" eo + b"2e5 - a"e3 

  

  

i 

  In(a"n® + b"n + 1) 

  

og"? 
n 

2 2 a'"p" e2-2a" eg-a"zb"e +3a"b"e -b"5e n - 9581 

2a"5 b"e-ha"



2l 

il where, a" = - 0.030L PrRe”-7 

+ 0.0304 PrRe®+9 o, 1 

  
_-bfl +\ b"2 - ha!l 

  

  

Sl = Eatl 

"'-b" _‘l -b"2 - hafl 

82-— 23" 

Inner Turbulent Layer; 0.5<n< 1.0 

For the inner layer, the radial heat flow relation, equation (k) can 

be represented by 

%.g-_ = wro(go + gln + g2n2) (3)4') 

The ratio _€__ in the inner turbulent layer is postulated to be uniform with — 

radius along the lines proposed by Berggren and Brooks (reference 8), 

—— = 0.0076 Re0+3 (35) 

Upon substituting equations (34) and (35) into the heat flow equation and 

integrating, there results
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n 

t - tn:0.5 _ (go + gin + 82n2)dn 

Wr02 1 + 0.0076 PrRe©:9 
k 

n:Ocs 

_ 1 

1 + 0.0076 PrRe®:9 
  

g gon + L n® + %? n3 (36) 

=005 

where 8y &1 and g, are parameters which are obtained by fitting equation (34) 

to equation (k) in the inner turbulent layer.. 

Thus, the radial temperature distribution for the case of turbulent flow in 

a long, smooth pipe containing a fluid with a uniform volume heat source with no 

wall heat flux is given by equations (24}, (29), (33), and (36); some typical 

radial temperature profiles in dimensionless form are given in Figures 4 and 5. 

These profiles reveal the following charscteristics: 1) the dimensionless 

temperature (above the centerline temperature) decreases as Reynolds modulus 

increases, 2) the dimensionless temperature (above the centerline temperature) 

decreases as the Prandtl modulus increases, and 3) dimensionless temperatures 

(above centerline temperatures) are high in the flow layers near the wall where 

the fluid velocities and eddy diffusivities are low. These characteristics could 

also have been derived from physical reasoning. 

C. Difference Between Pipe Wall and Mixed-Mean Fluid Temperatures 

The difference between the pipe wall temperature and the mixed-mean fluid 

temperature is obtained by evaluating the integral
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The velocity profile is given in Table 1 and the temperature distribution by 

equations (24), (29), (33), and (36). The dimensionless temperature difference, 

to - 

Wro2 

D. Superposition of Boundary Value Problems (18) and (19). 

, is graphed as a function of Reynolds and Prandtl moduli in Figure 6. 

The superposition of solutions of the boundary value problems (18) and (19) 

yields the more general boundary value problem defined by equations (17), (2), and 

(3). In the superposition process, all temperatures are expressed as temperature 

increments above datum temperatures. The radial temperature distribution above the 

wall temperature, centerline temperature, or mixed-mean fluid tem@erature for the 

composite boundary value problem defined by (17), (2), and (3) is obtained by 

adding the radial temperature distributions above the wall temperatures, centerline 

temperatures, or mixed-mean fluid temperatures, respectively of boundary value 

problems (18) and (19). Note also that the rise in mixed-mean fluid temperature 

at some point in the established flow region of a pipe ahove its value at the pipe
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entrance for the problem defined by (17), (2), and (3) is obtained by adding the 

corresponding temperature rises for problems (18) andl(l9). The solution of 

boundary value problem (19) expressed in terms of Nusselt, Reynolds, and Prandtl 

moduli as developed by Martinelli is presented in Appendix e
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DISCUSSION 

Currently, several new forced-flow volume-heat-source analyses are being 

completed. One analysis pertains to a parallel plates system which is infinite 

in extent. Another analysis concerns itself with heat transfer in the thermal 

entrance region of a pipe (short tube); it should be noted that laminar flow 

systems in particular have long entry lengths. A third mathematical solution 

pertains to laminarly flowing fluids whose viscosities are dependent on tempera- 

ture; only the established flow region is being considered. 

Although the experimental turbulent velocity data presented in Figure 2 seem 

to be represented satisfactorily by the gefieralized velocity expressions in the 

various layers, the exact location of y1+ (whether it is 3, 4, 5, 6, or 7, for 

example) becomes important in boundary value problem (19) at high Prandtl moduli 

(about 10 and above) and low Reymolds moduli. This region appears to need further 

consideration. 

It is planned to include the effects of pipe roughmness and differences between 

heat and momentum transfer eddy diffusivities in future forced-flow volume-heat- 

source system which corresponds to the one investigated mathematically in the 

present paper.
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APPENDIX 1 

HYDRODYNAMIC RELATTONS FOR TURBULENT FLOW IN A SMOQTH PIPE 

The hydrodynamic relations for turbulent flow in a smooth pipe noted in 

Table 1 are briefly considered. The velocity equations for the several flow 

layers as well as the expressions for the layer thicknesses define the gener- 

alized velocity profile under turbulent flow conditions. The fluid shear stress, 

'r, varies linearly from 'r6 at the wall to zero at the pipe center. The shear 

stress has been postulated to be equal to ’ro in the laminar sublayer and the 

buffer layer because these layers lie so near the wall; the exact linear variation 

is used in thelturbulent core. Laminar shear stress can be expressed as the 

product of the fluid mass density, kinematic viscosity, and velocity gradient, 

and turbulent shear stress can be expressed as the product of the fluid mass 

density, eddy diffusivity, and veloeity gradient. In the buffer layer both laminar 

and turbulent shear stresses must be considered, whereas in the turbulent core the 

laminar shear stresses are small compared to turbulent shear stresses and are thus 

neglected. Upon the substitution of the generalized velocity profile and the 

shear stress variations into the shear stress equation one can solve for the 

dimensionless eddy diffusivity ratio, € /2 , for the buffer layer and the turbulent 

core. These ratios can be reduced to the forms that appear in Table 1 with the 

aid of 1) the well known hydrodynamic expression which relates the wall shear stress, 

friction factor, and the mean fluid velocity in a pipe, and 2) the relation between 

the friction factor and Reynolds modulus for a smooth pipe. These two expressions
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1; = ;%—-D um2 

and S _ 0.023 
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where the friction factor is defined by the Weisbach equation, 
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Dimensionless distances from the pipe wall, y/ro, can be expressed. in terms 

of the parameter y* and Reynolds modulus with the aid of equations (a) and (Db). 
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(b) 
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APERNDIY 2 

RADIAL HEAT FLOW RELATICHS 

The turbulent velocity profile in the radial heat flow cxpression, eguation (21), 

may he represented satisiactorily by Ltwo laysrs {(a laminar layer and a turbulent 

oore) rather than the four layers which are used in the temperature analysic. The 

laminar layer, which is postulated to extend to v¥ = 12, iz represented by the 

ML e - e o s D ey - gy g st Jiveear velocity cipregzion, ©F
 

o 1 ©
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N
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nr, 1 

= :i//fi.0115 um_Re'8 n(l-n)dn + 2 Bonl/7 (1-n)dn 

O nL 

2 p) 8/ * 7 
= .023% Reaum‘\..._l_' -P-I;-—) + 2B, g.n - _]__'Ls_nls/T (2) 

o7, 

2 
[1 - 023 2P (_n}_ ] D'LB)] u 

or By = 2 3. = f uy () 

49 8/1 15/7 

where ny is the dimensionless distance from the wall equivalent to y+ = 12, and 

the function, T, is defined in equation (h). 

The radial heat flow in the laminar layer is obtained by substituting 

equation (e) into equation (21) and integrating, 

  

n 

Ty 8 2 
dh = .2 .0115 Re*” n (1-n)dn + n(n-2) 
Wrg 1-n 1-n 

e o 

_ .025 Re"" n® _n’ | . n(n-2) ; 
— 1-m |: } l-n (1) 

The radial heat flow in the turbulent layer is obtained by substituting 

equations (f) and (h) into a modified form of equation (20) (limits are nj to n),
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dq 
l-n 8 =( _L) (M)L + 2f Z.n/T.. lnlB/T . (-2n+n2+2nL-nL2) 

1-n Wro -n |8 i5 o (k) 

2 np 

Equations (1) and (k) are graphed in Figure 3 as a function of Reynolds 

modulus.
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APPENDIX 3 

TURBULENT FORCED CORNVECTION IN A LONG 
PIPE WITH A UNIFORM WALL HEAT FLUX BUT 

NO VOLUME HEAT SOURCES WITHIN THE FLUID 

Heat-momentum transfer analogies for the case of turbulent flow in pipes 

have been developed by Reynolds (reference 6), von Karman (reference 3), 

Mertinelli (reference 7), Lyon (reference 9) and others. These analyses 

represent solutions to boundary value problem (19), the latter analyses being 

more exact. Martinelli's solution expressed in terms of Nusselt, Reynolds and 

Prandtl moduli is graphed in Figure 7. Note that Nusselt modulus can be ex- 

pressed in terms of the wall-fluid temperature difference and the wall heat 

flux (pertaining to boundary value problem (19) ), 

_ herg (%%) 2To () 

ST R 
where h is the heat transfer conductance. 
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