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SUMMARY

This paper concerns itself with forced convection heat transfer in long,
smooth pipes whose flowing fluids contain uniform volume heat sources; also,
heat is transferred uniformly to or from the fluids at the pipe walls. Di-
mensionless differences between the pipe wall temperature and the mixed-mean
fluid temperature are evaluated in terms of several dimensionless moduli. These

analyses pertain to liquid metals as well as ordinary fluids.
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NOMENCLATURE

Letters

cross sectional heat transfer area, £t2
fluid thermal diffusivity, £t°/hr
parameter in equation (f), ft/hr
parameter in equation (23), dimensionless
fluid heat capacity, Btu/lb OF

parameters in equation (26), dimensionless
parameters in equation (31), dimensionless
parameter in equation (h), dimensionless
gravitational force per unit mass, ft/hr®
parameters in equation (34), dimensionless
heat transfer conductance, Btu/hr ftZ OF
fluid thermal conductivity, Btu/hr £t2 (OF/ft)
fluid pressure, 1bs/ft2

heat transfer rate, Btu/hr

redial distance from pipe centerline, ft

radial position at which the reference temperature
tq is stipulated, ft

pipe radius, ft
parameters in equation (33), dimensionless
fluid temperature at position n, Op

a reference temperature at radius rg, °F

mixed-mean fluid temperature, °F
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fluid temperature at pipe wall, Op

fluid temperature at nj, °F

fluid temperature at no, Og

fluid temperature at the pipe center, °F
fluid velocity at n, ft/hr

mean fluid velocity, ft/hr

volume heat source, Btu/hr £t

axial distance, ft

radial distance from pipe wall, ft

fluid weight density, lbs/ft”

eddy diffusivity, ft2/hr

friction factor defined in equation (c), dimensionless
absolute viscosity of fluid, 1b hr/ft2 |
fluid kinematic viscosity, £t</hr

fluid mass density, lbs hr2/ftu

fluid shear stress at position n, 1bs/ftZ

£1uid shear stress at pipe wall, lbs/ft2

Terms

0.9

0.0152 Pr Re®*?

0.0%04 Pr Re®*?

at
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Dimensionless Moduli

1 -2 (d_q)
Wro dA o

Y/ro

Yl/ro

¥2/To

YL/TO

h 2r,/k, Nusselt Modulus
V7cp/k, Prandtl Modulus

u 2r,/? , Reynolds Modulus
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INTRODUCTION

At times it is necessary to determine the radial temperature distributions
in flowing fluids that possess internal sources of heat generation, Consider the
heated-tube system (electric current passing through the tube»walls) which is now
so commonly being used to measure convective heat transfer conductances. It is
of interest to known how much the electrical volume heat source influences the
radial temperature distribution when a significant fraction of this source is
generated within the flowing fluid. Such volume heat source problems also arise
in fluid flow systems in which continuous chemical reactions are being supported
within the fluids; a combustion heating system represents a specific example.

Particular volume heat source systems have been considered in this paper.
Mathematical temperature solutions were developed for a circular-pipe volﬁme
heat source system for the cases of laminar and turbulent flow (referénce 1).

The idealized system to be considered is defined by the following postulates:

1) Thermal and hydrodynamic patterns have been
established (long pipes).

2) Uniform volume heat sources exist within the
fluid.

3) Physical properties are not functions of
temperature.

4) Heat is transferred uniformly to or from the
fluid at the pipe wall.

5) In the case of turbulent flow the generalized
turbulent velocity profile defines the hydro-
dynamic structure.

6) 1In the case of turbulent flow there exists an
analogy between heat and momentum transfer.



A heat rate balance on a stationary differential lattice reveals the heat
transfer mechanisms which control the thermel structure within the idealized
system. At steady state, the heat generated within the lattice is lost from the
lattice by axial convection and radial conduction (in the case of laminar flow)
or radial eddy diffusion (in the case of turbulent flow). These heat rate balances

are expressed by differential equations in the following analyses.

e
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LAMINAR FLOW ANALYSIS

The differential equation describing the heat transfer in the pipe system

for the case of laminar flow is
. _
1-(_1;) Ot r- 2 |ar 28|, Fr (1)
\Tro oX or or Yep

Uy, mean fluid velocity in the pipe

vhere,

t, temperature
X, axial distance
T, radial distance
a, thermsl diffusivity
W, uniform volume heat source
7, fluid weight density
Cps fluid heat capacity
One boundary condition for the problem consists of a uniform wall heat

flux which may be positive, negative or zero,

where %}% is the radial heat flux and (%1,) is the wall heat flux. The second
boundary condition is, tq, & reference temerature, such as a wall or center-
line temperature,

t{r = rg) = tg (3)

Note, the mixed mean fluid temperature may also be specified as the reference

temperature.
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Downstream from the entrance region where the thermal pattern (tempera-
ture gradients) of the system has become established the axial temperature
gradient, % , 1s uniform and equal to the mixed-mean axial fluid temperature

X

gradientl, (.%E) . The latter gradient can be obtained by making the following

X

m
heat balance. The heat generated in a lattice whose volume is 1‘!1‘02 dx plus
the heat transferred into (or out of) the lattice at the wall must all be lost

from the lattice by convection, that is

Wﬂrozdx - (...g.%) 2nrodx = 1‘tr02 Um ¥ Cp (_g_:’.c.) dx (&)
o] m

Hence, in the established flow region the axial temperature gradient is

W- 2 (Q&)
2o 28 . % Alo (5)
2X (axm um”’cp

Upon substituting equation (5) into equation (1), the following total differential

equation results:

2 2
=39-S g 2

W=

where F = 1 - .2 (g_%) . Equation (6) can be solved by msking the change

of variable, z = 4t , or
dr

1. Note, that the mixed-mean fluid temperature at any given axial position

is defined as,
r

o)
/ t u 2nrdr To
ty = = 2 t urd
m = > u rar
Yo Um To"
/ u 2ardr

0
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/
2
dz z W r
d_r+;=l?(2F 1'(?)]'1 ()

The solution of equation (7) 16 -

N

]
gl&

1
=

(w[l--(%ﬂ- 1) rdr + 9_%1}_53 (8)

w=

Upon integrating there results

)=
=

3
[(?F-l)g-% ;i-g] o)

The constant in equation (8) was found to be zero from the boundary condition
given by equation (2). Note that the radial heat flow is

== 5 (1-%‘)%+F(%) (10)

Bl&

The desired temperature solution can be obtained by integrating equation (9),

r
o
Wro? 3
t - tg ;‘Z (Z“-l)lo-F(.E'o_) d(i) (11)
1
. ) ] , .
or - twro‘;o= 51221‘2[(_1};5) -1j|+§[(;_o) -1} (12)
=

where the reference temperature is, t,, the wall temperature. The temperature

solution in terms of the centerline temperature rather than the wall temperature

is given by
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t -t - 2 L
o (B EE) )
2k

where t¢ is the centerline temperature. Equation (13) is graphed in Figure 1
for several values of the function F.
It is often of interest to know the difference between the wall temperature

and the mixed-mean fluid temperature. This difference is obtained as follows:

To

fo u (to - t) 2nrdr
2
UnftTo

1
- ‘/uq (t, - t) (;r;) a (:—o) (14)
(o]

to - tp =

Upon substituting the laminar velocity profile relation and equation (12)

into equation (14) there results,

Wr2 8
to -t = -EQ- llgﬂé—— (15)
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TURBULENT FLOW ANALYSIS

Fluid flow in a pipe under turbulent flow conditions has been characterized
in terms of a laminar sublayer contiguous to the wall, a buffer layer, and a
turbulent core by Nikuradse (reference 2), von Karman (reference 3) and others.
Figure 2 shows the well known isothermal generalized velocity profile and some
experimental data of Nikuradse (reference 2), Reichardt (reference L4), and
Laufer (reference 5). Table 1 reveals some of the specific hydrodynanic relations’
for the various flow layers in a smooth pipe; a diseussion of some of the details
of this table can be found in Appendix 1.

The differential equation describing heat transfer in the pipe system for

the case of turbulent flow is

ot o ot Wr
u(r) <= r = — la+ e({ru)] r ==
( ) 3% 3T |: ( b ) arJ + ’ch (16)
Where, u(r), the turbulent velocity profile given in Figure 2

€ , the eddy diffusivity2 given in Table 1
Upon substituting equation (5) into equation {16) for the established thermal

region the following total differential equation results,

u(r) W - .g... agq r
G P PO R

2. The analogy between heat and momentum transfer (characterized by the
postulate that the heat and momentum transfer eddy diffusivitiles are pro-
portional to each other and in fact nearly equal) has been proposed by
Reynolds (reference 6) and used successfully by von Karman (reference 3),
Martinelli (reference 7), and others. Thus, in the present analysis it
is postulated that the heat and momentum transfer eddy diffusivities are
equal.
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GENERALIZED VELOCITY
REGION DISTRIBUTION SHEAR S'IRES‘S STRESS EQUATION EDDY DIFFUSIVITY
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2% <d <.5 To ) To ay D 3 (1 ro) o
Re'9 rO o) L -
Inner Turbulent — —
8 o5.542.50m| Y (2 T=T y
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Layer u r
7 \ G A
Inner Turbulent - - pipe center
TLezyer
TABLE T

LT

HYDRODYNAMIC REIATIONS FOR THE VARIOUS FLOW LAYERS IN A SMOOTH PIPE
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THe boundary conditions are given by equations (2) and (3). The boundary
value problem denoted by equations (17), (2) and (3) can be separated into two
somewvhat simpler boundary value problems whose solutions can be superposed to
yield the solution of the original problem. The two boundary value problems

to be considered are,

u(r) Wr _ Wr _ é% [ka ve) r QE}

Uy 7 cp Tep dr
d
% (r=10) =0 (18)

2 (r = 1) = (2—%) (19)
t(r = rg) = td2

Equations (18) represent a flow system with a volume heat source but with no
wall heat flux, and equations (19) represent a flow system without a volume heat
source but with a uniform wall heat flux. Note, that the superposition of
equations (18) and (19) yields the boundary value problem defined by equations
(17), (2) and (3); the sum of reference temperatures tq; and %3, being equal to
the reference temperature td? The problem defined by equations (19) has already
been analyzed by Prandtl, von Karman, Martinelli and others (see reference 7,
for example). The solution of equations (18) is carried out in the following

paragraphs.

3. Note, in the superposition process; all temperatures are expressed
as increments {to be discussed in section D).
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A. Radial Heat Flow Distribution

Upon integrating the differential equation of (18) once there results,

r
u _Wr dr-w_...._.._Q_(rz'r2)= (a +€) & (20)
Uy ’7CP 27 ¢ dr
P
To
T
dg dt _ W u W[, _To?
or = -7c {a+€) == - = L rdr+ LX(r -2
dA dr r um T
To
.
To
.. Lr) a(2)s Bof £ %
(;E) Un \To To e ro T
I'o |
1
n
Wr Wr 2
Sp— 2 (1.n) an+ —2(ERLD (21)
(1-n) Yy 2 l-n
o)
where n = L . The evaluation of the integral in equation (21) is presented in

To
Appendix 2; the radial heat flow profiles for various Reynolds moduli are graphed

in Figure 3.
B. Radial Temperature Distribution

The second integrafion of the differential equation of (18), which will
yield the temperature solution will be accomplished layer by layer ﬁtilizing the
the hydrodynamic relations listed in Table 1 and the radial heat flow expressions

developed in Appendix 2.
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Laminar Sublayer; o< n<66/Re'9

The temperature distribution is obtained by integrating the heat flow

t n
fu: o f (42) an (22)
tO (o]

where k is the fluid thermal conductivity.

equation,

The radial heat flow equations (i)

and (k) can be represented by somewhat simpler forms in the various flow layers

in order that the integrations that are to follow can be effected more simply.

For
example, in the laminar sublayer the heat flow may be expressed as,
dq _
ﬁ = leron (23)
where the parameter by is determined by fitting equation (23) to equation (i).
Thus, equation (22) reduces to
t -t b
kL @)
Wrq

-
Buffer Layer; 66/Re*? <n<396/Re*?

The temperature distribution within the buffer layer is

t n
(99...) dn
dt = rg A (25)
k+ 7Tec,€



In this layer the radial heat flow can be represented by

%% = Wry(en + con? + c5n5)
The ratio _g_ in this layer is equal to

‘%‘ = 0.0152 Re'9 n - 1
Thus, equation (25) becomes
n
Wr02 (cin + c2n2 + c3n5) dn

k 1 - Pr + 0.0152 Pr Re*9
ny

t-‘tl=

where, Re, Reynolds modulus
Pr, Prandtl modulus
1, ¢p, ¢3, are parameters obtained by fitting equation (26)
to equations (i) and (k) in the buffer layer.

Equation (28) becomes,

t -t clb'2-2a'b'02 + 3a'c ble,y - 3a'e o
21 - 5 (a' + b'n) + 2 5 (al+‘bln)
Wr, ¥ op I
k 0
C3 ‘b'a'ec2 - b'aa'cl - a'3c5
+ L (a' + b'n)5 + L In(a® + b'n
3b! b!
n3
where, a'=1 - Pr
b' = 0.0152 PrRe’*?

22

(26)

(27)

(28)

(29)
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Outer Turbulent layer; 396/Be'9< n< 0.5

Faor convenience in the analysis, the turbulent core is divided into inner
and outer layers. The outer layer extends from np<n<O0.5 and the inner layer

from 0.5<n<1.0. The temperature distribution within the outer layer is

t n
dq
—= dn
fdt -2 a e (30)
€
to no l+ Pr _:5_

In this layer the heat flow can be represented by

= Wry (eq + e,n + e2n2 + e5n3) (31)

Bl&

where ey, €1, €p, and ez are parameters obtalned by fitting equation (31) to

equation (k). The.ég_ ratio is equal to

"%' = 0.0%04% Re?*9 (1-n)n (32)

Equation (30) then reduces to,

t - 'tg (eo + eqn + eon® + e3n5) dn
Wro?2 1 + 0.030% PrRe®+9n - 0.0304 PrRe®-9 n°

a" - ezb" e
[ 5 ) n + -2 n2
23."

k
+ [(a" el - a"b"eo + b“2e5 - a'es

i

1n(a"™n® + b"n + 1)

oa"?
n
ma n - 14 - 1" n Hq - 1" n - l
+ eo + ab’ es-2a ep-a, 2b e1+3a b e3 b e5 In =55

ga"3 -bue_)_l_an
np

(33)
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where, a" = - 0.030L PrRe®?
b" = + 0.0304 PrRe®+9
-b" +\ -b"2 - )+a"
Sl = 23"
_-b" -‘l 'b"2 - ha"
52~ 2a"

Inner Turbulent Layer; 0.5<<n< 1.0

For the inner layer, the radial heat flow relation, equation (k) can

be represented by

%% = Wrolg, + 10 + g2n2) (34)

The ratio € _ in the inner turbulent layer is postulated to be uniform with

radius along the lines proposed by Berggren and Brooks (reference 8),

—— = 0.0076 Re0+9 (35)

Upon substituting equations (34) and (35) into the heat flow equation and

integrating, there results
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n
t - 'tn=0.5 _ (go + gyn+ 82112)611
Wr02 1 + 0.0076 PrRe0-9
k
n=O¢5

- . gon + 2k n®+ 2w (36)

1 + 0.0076 PrRe®:9

=0.5

where g, g; and g, are parameters which are obtained by fitting equation (34)
to equation (k) in the inmer turbulent layer..

Thus, the radial temperature distribution for the case of turbulent flow in
a long, smooth pipe containing a fluid with a uniform volume heat source with no
wall heat flux is given by equations (24), (29), (33), and (36); some typical
radial temperature profiles in dimensionless form are given in Figures 4 and 5.
These profiles reveal the following characteristics: 1) the dimensionless
temperature (sbove the centerline temperature) decreases as Reynolds modulus
increases, 2) the dimensionless temperature (above the centerline temperature)
decreases as the Prandtl modulus increases, and 3) dimensionless temperatures
(above centerline temperatures) are high in the flow layers near the wall where
the fluid velocities and eddy diffusivities are low. These characteristics could

also have been derived from physical reasoning.

C. Difference Between Pipe Wall and Mixed-Mean Fluid Temperatures
The difference between the pipe wall temperature and the mixed-mean fluid

temperature is obtained by evaluating the integral
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0
[ 4ot
Ui} 2x rdr
Wro
to - tm .~ 0 k
Wr
o) Umpt T
K o
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The velocity profile is given in Table 1 and the temperature distribution by

equations (24), (29), (33), and (36). The dimensionless temperature difference,

to - tm
Wroé
D. Superposition of Boundary Value Problems (18) and (19).

, is graphed as a function of Reynolds and Prandtl moduli in Figure 6.

The superposition of solutions of the boundary value problems (18) and (19)
yields the more general boundary value problem defined by equations (17), (2), and
(3). 1In the superposition process, all temperatures are expressed as temperature
increments above datum temperatures. The radial temperature distribution above the
wall temperature, centerline temperature, or mixed-mean fluid tem@erature for the
composite boundary value problem defined by (17), (2), and (3) is obtained by
adding the radial temperature distributions sbove the wall temperatures, centerline
temperatures, or mixed-mean fluid temperatures, respectively of boundary value
problems (18) and (19). Note also that the rise in mixed-mean fluid temperature

at some point in the established flow region of a pipe ahbove its value at the pipe
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entrance for the problem defined by (17), (2), and (3) is obtained by adding the
corresponding temperature rises for problems (18) and (19). The solution of
boundary value problem (19) expressed in terms of Nusselt, Reynolds, and Prandtl

moduli as developed by Martinelli is presented in Appendix 3.
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DISCUSSION

Currently, several new forced-flow volume-heat-source analyses are being
completed. One analysis pertains to a parallel plates system which is infinite
in extent. Another analysis concerns itself with heat transfer in the thermal
entrance region of a pipe (short tube); it should be noted that laminar flow
systems in particular have long entry lengths. A third mathematical solution
pertains to laminarly flowing fluids whose viscosities are dependent on tempera-
ture; only the established flow region is being considered.

Although the experimental turbulent velocity data presented in Figure 2 seenm
to be represented satisfactorily by the generalized velocity expressions in the
various layers, the exact location of Yl+ (whether it is 3, 4, 5, 6, or 7, for
example) becomes important in boundary value problem (19) at high Prandtl moduli
(about 10 and above) and low Reynolds moduli. This region appears to need further
consideration.

Tt is planned to include the effects of pipe roughness and differences between
heat and momentum transfer eddy diffusivities in future forced-flow volume-heat-
source system which corresponds to the one investigated mathematically in the

present paper.
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APPENDIX 1

HYDRODYNAMIC RELATIONS FOR TURBULENT FLOW IN A SMOOTH PIPE

The hydrodynamic relations for turbulent flow in a smooth pipe noted in
Table 1 are briefly considered. The velocity equations for the several flow
layers as well as the expressions for the layer thicknesses define the gener-
alized velocity profile under turbulent flow conditions. The fluid shear stress,

'r, varies linearly from ’ro at the wall to zero at the pipe center. The shear

stress has been postulated to be equal to T. in the laminar sublayer and the

o]
buffer layer because these layers lie so near the wall; the exact linear variation
is used in the‘turbulent core. Laminar shear stress can be expressed as the

product of the fluid mass density, kinematic viscosity, and velocity gradient,

and turbulent shear stress can be expressed as the product of the fluid mass

density, eddy diffusivity, and veloecity gradient. In the buffer layer both laminar
and turbulent shear stresses must be considered, whereas in the turbulent core the
laminar shear stresses are small compared to turbulent shear stresses and are thus
neglected. Upon the substitution of the generalized velocity profile and the

shear stress variations into the shear stress equation one can solve for the
dimensionless eddy diffusivity ratio, € /ﬁ , Tor the buffer layer and the turbulent
core. These ratios can be reduced to the forms that appear in Table 1 with the

aid of 1) the well known hydrodynamic expression which relates the wall shear stress,

frietion factor, and the mean fluid velocity in a pipe, and 2) the relation between

the friction factor and Reynolds modulus for a smooth pipe. These twc expressions



follow:

T; = ;%— P um2
and S 0.023

8 Re.2

where the friction factor is defined by the Weisbach equation,

Ap _ S v
X 2r, 2g

Dimensionless distances from the pipe wall, y/ro, can be expressed. in terms

of the parameter y' and Reynolds modulus with the aid of equations (a) and (b).
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RADIAL HEAT FLOW RAILATIONS

The turbulent velocity profile in the radial heat flow expression, equation (21).

may he represented satisiactorily by two laysrs (a lominar layer and a turbulent

A P

core) pether than the four layers which are used in the temperature analysis. The

laminar layer, which is postulated to extend to y = 12, 1s represented by the
tinear cxpreszlion,

)

M

.8 1Z
or u = .0115 vy Re " n, O<n<-——-—q {

Equation (d) was reduced to equation {e) with the aid of equaticns (a) and

o
~~
o'
p—

.

The turbulent layer, which is postulated to extend from +V = 12 to the pips
center, is represented by the one geventh pover law exprasslon,
- /—{
nr £
u = By n VD
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ny, 1
= ‘j;//-.0115 up Re*d n(1l-n)dn +j//ﬂBonl/7 (1-n)dn
(o] nL
2 3 8/ .
1 1
=.O233e'8um'\__li -E%#—)+2BO g.n - %nsﬁ (&)
1,
2
{1 - .023 re®"® (_n_}_ ) ”15>] u
or By = 2 3 = T uy (n)
49 8/1 15/7
2 [1'56 - % Lo '173 ny,

where ny is the dimensionless distance from the wall equivalent to y* = 12, and
the function, f, is defined in equation (k).
The radial heat flow in the laminar layer is obtained by substituting

equation (e) into equation (21) and integrating,

%% o . 8 (n-2)
. . n\n-
T, = 5= .0115 Re‘” n (1-n)dn + T
=z A
. .02% Re® n® _ 9_5_} , n(n-2) (1)
- 1-n 2 5 1-n

The radial heat flow in the turbulent layer is obtained by substituting

equations (f) and (h) into a modified form of equation (20) (1limits are nj, to n),
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r
d W( rL2)
dg _ . . 1Ea+e‘§_§]=f}_(§g)_w u (r - 2 .
aaA P )dl' - dAL ; grdr+____2___r_. (J)
TL
a ) p
ag 5
l -n dA
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L
n
dq
1l-n (GI) 8/7 15/
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(1-11 ) Wty Im|g® 5 PlEmrn 1J:n2nL ) ()
) ng

Equations (i) and (k) are graphed in Figure 3 as a function of Reynolds

modulus.
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APPENDIX 3
TURBULENT FORCED CONVECTION IN A LONG

PIPE WITH A UNIFORM WALL HEAT FLUX BUT
NO VOLUME HEAT SOURCES WITHIN THE FLUID

Heat-momentum transfer analogies for the case of turbulent flow in pipes
have been developed by Reynolds (reference 6), von Karman (reference 3),
Mertinelli (reference 7), Lyon (reference 9) and others. These analyses
represent solutions to boundary value problem (19), the latter analyses being
more exact. Martinelli's solution expressed in terms of Nusselt, Reynolds and
Prandtl moduli is graphed in Figure 7. Note that Nusselt modulus can be ex-
pressed in terms of the wall-fluid temperature difference and the wall heat

flux (pertaining to boundary value problem (19) ),

dg) op
q = BT <dA>o ° (L
IR oy

where h is the heat transfer conductance.
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