

A. G. Dalen

DECLASSIFICATION OFFICER BAK RIDGE NATIONAL LABORATORY ANTHORITY DELEGATED BY ERDA 8-15-77 POST OFFICE BOX P OAK RIDGE. TENNESSEE

This document contains Restricted Data as defined in the Atomic Energy Act of 1946. Its transmittel or the disclosure of its contents in any manner to an inauthorized person is prohibited.

ORNL- 1592 Special

ACCESS LIMITED TO AUTHORIZED PERSONNEL This document consists of 176 pages. Copy 68 of 77 copies. Series A.

ALLOY DEVELOPMENT PROJECT

CHEMICAL METHODS FOR THE SEPARATION

OF LITHIUM ISOTOPES

V. Dean Allred and Ivan B. Cutler (of the Catalytic Construction Company assisting the Oak Ridge National Laboratory under the terms of AEC Contract AT (40-1) 1520)

MATERIALS CHEMISTRY DIVISION

G. H. Clewett, Director

July 10, 1953

Date Issued AUG 1.8 1953

OAK RIDGE NATIONAL LABORATORY Operated by CARBIDE AND CARBON CHEMICALS COMPANY A DIVISION OF UNION CARBIDE AND CARBON CORPORATION Oak Ridge, Tennessee

Contract No. W-7405-eng-26

۲

ii

SECRET.

Internal Distribution

w

Τ.	v. D. Alfred	32.	B. B. Klima
2.	T. A. Arehart	33.	W. B. Lanham
3.	M. D. Barringer	34.	L. Landau
4.	G. M. Begun	35.	C. E. Larson
5.	R. E. Blanco	36.	D. A. Lee
6.	E. G. Bohlmann	37.	W. J. Lilley
7.	W. H. Brand	38.	R. B. Lindauer
8.	F. R. Bruce	39.	A. C. Martinsen
9.	W. L. Carter	40.	H. M. McLeod
10.	C. E. Center	41.	R. P. Milford
11.	G. H. Clewett	42.	D. J. Oriolo
12.	F. L. Culler	43.	A. A. Palko
13.	W. DeLany	44.	F. S. Patton
14.	M. L. Drabkin	45.	R. H. Powell
15.	J. S. Drury	46.	G. A. Ropp
16.	G. A. Eaton	47.	A. D. Ryon
17.	W. K. Eister	48.	A. C. Rutenberg
18.	L. B. Emlet	49.	J. Shacter
19.	D. E. Ferguson	50.	G. A. Strasser
20.	H. H. Garretson	51.	J. W. Strohecker
21.	H. E. Goeller	52.	E. H. Taylor
22.	R. M. Healy	53.	L. P. Twichell
23.	W. B. Humes	54.	W. E. Unger
24.	E. D. Innes	55.	A. M. Weinberg
25.	H. K. Jackson	56.	H. O. Weeren
26.	A. C. Jealous	57.	J. J. Williams
27.	W. N. Johnson	58.	C. E. Winters
28.	K. O. Johnsson	59.	L. B. Yeatts
29.	C. P. Johnston	60-63.	Y-12 Central Files
30.	M. T. Kelley	64-67.	X-10 Central Files
31.	H. T. Kite	68.	ORNL-RC

External Distribution

69-70.	R. W. Cook, c/o A. J. Vander Weyden, AEC, Washington
71.	Brigadier General K. E. Fields, D.M.A., AEC, Washington
72.	Jane Hall, L.A.S.L., Los Alamos
73.	T. H. Johnson, AEC, Washington
74-75.	K. Kasschau, AEC, Oak Ridge
76.	J. H. Rushton, Illinois Institute of Technology, Chicago
77.	W. W. Weinrich, Catalytic and a second secon
	Philadelphia, Pa.
	COTDIATED DATA
<u></u>	EDINIULU DATA
in the	ricted data as detried
	and any manner to
a unauthor	ized porson is point ed.

iii

PREFACE

This report has been prepared by personnel of the Catalytic Construction Company (Philadelphia, Pa.) under technical supervision of the Oak Ridge National Laboratory for ADP development under the terms of AEC Contract AT-(40-1)-1520. Many members of the ORNL staff and Catalytic Construction Company personnel in Oak Ridge have made contributions and aided in making corrections to the preliminary draft. Special acknowledgement should be given to G. M. Begun, R. E. Blanco, G. H. Clewett, J. S. Drury, H. H. Garretson, K. O. Johnsson, and D. J. Oriolo for their assistance.

الإي

SECRET

STOURTTH INFORMATION

iv

11

19 **19**

.

÷

4

.

CONTENTS

PREFACE	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	iii
INTRODUCTION	•			•		0	•	•			ı					•		•	•	1

PART ONE. PROCESS CHEMISTRY

Ι.	CHEMICAL EQUILIBRIUM METHODS	
	A. Introduction.	6
	B. Exchange Equilibria	7
	C. Exchange Kinetics	14
		T T
II.	REFLUX PROCESSES	
	A. Introduction	15
	B. The Dual Temperature Process	16
	C. Chemical Reflux Processes	10
	1. Waste End Reflux	
	a. Electrolytic Reflux	17
	b Magnosium Amalgam Daflum	11
	C. Dotoggium and Sodium	21
	Amalgam Baflum	
	Amaigam Reliux	25
	2. Product End Rellux	
	a. Decomposition Reflux.	30
	D. Hydrogen Chloride Reflux.	30
	c. Sodium and Potassium	_
	Chloride Refluxes	31
111.	SOLVENT AND FEED PURIFICATION	
	A. Solvent Purification.	33
	B. Feed Purification	34
	PART TWO. CHEMICAL AND PHYSICAL DATA	
I.	INTRODUCTION 📭	
	A. Arrangement of Data	37
	B. Contents	39
		- /
II.	LITHIUM AND LITHIUM COMPOUNDS	
	A. Lithium	44
-		

This document continues retricted data as defined in the A omic Energy Act of 1994. Its transmittal or the disclosure of its contents in any manner to an unauvilguized person is prohibited. SECURITY INFORMATION

72 B. Lithium Chloride. 94 C. Lithium Hydroxide III. MAGNESIUM AND MAGNESIUM COMPOUNDS 99 • 108 B. Magnesium Chloride. IV. POTASSIUM AND POTASSIUM COMPOUNDS 112 A. Potassium B. Potassium Chloride. 117 . v. SODIUM AND SODIUM COMPOUNDS 120 . B. Sodium Chloride 123 . C. Sodium Hydroxide. 126 127 D. Sodium Phosphate.... . VI. LIQUID SOLVENTS 127 A. Ammonia 0 • ٥ 0 133 B. Benzene 0 137 C. Decane • • • • • • • -. . D. Dodecane. . . 142 . E. Ethylenediamine 142 a 148 F. Ethylene Glycol 0 150 G. 2-Ethyl Hexanol 151 H. Isopropanol • • . . I. Methanol. \ldots \ldots \ldots \ldots \ldots 153 . 155 158 K. Propylenediamine. ۰ 161 L. Tetrahydrofuran . REFERENCES 165

v

£Τ INFORMATION SECURITY

FIGURES

vi

1.	Simplified Chemical Reflux System	3
2.	Amalgam-Amine Dual Temperature System	4
3.	Energies of Lithium Isotopes	9
4.	The Effect of Temperature on the	
	Separation Factor	10
5.	Closed Reflux Systems	18
6.	Effect of Temperature on Decomposition of	10
	Lithium Amalgam in Water	22
7.	Vapor Pressure of Metals	45
8.	Viscosity of Liquid Alkali Metals	46
9.	Density of Lithium Amalgam	40
10.	Density of Lithium and Magnesium Amalgams	10
11.	Viscosity of Lithium Amalgams	
12.	Conductivity of Amalgams	50
13.	Surface Tension of Amalgams	51
14.	Lithium-Mercury Phase Diagram	52
15.	Solubility of Metals in Monouny	55
16.	Solubility of Alkali Motals and Solta in	54
	Selected Solvents	
17.	Lithium-Dotassium Dhaso Diagnom	55
18	Lithium-Sodium Phase Diagram	57
19	Lithium-Botassium Monouny Solubility Owner	57
20	Lithium Sodium Monoury Solubility Curve	58
21	Effort of Temporature on the Generation R.	59
22.	Soparation Easter as a Expetient of The	63
22.	Effort of Tomponature on the Constraint R	64
24	Effect of Temperature on the Separation Factor	66
25	Effect of Temperature on the Separation Factor.	67
26	The Kinetics of Sodium Chloride Investign	68
27	Viscosity of Anhydroug Ethylandiaming	71
28	Solubility of Lithium Chloride in	74
20.	Propulerodiamino and Ethulorodiamina	
20	Solubility Curves for Solts in Ark due	75
27.	Solubility curves for Salts in Annydrous	_ /
20	Dhogo Diognam for Littly Class	76
50.	Ethnlandiaming C	
21	Density of Lithic College and System	77
31.	Density of Lithium Chloride Propylenediamine	4
	Solutions	79
32.	Density Nomograph: Lithium Chloride-	
	Propylenediamine Solutions	80
33.	Viscosity of Lithium Chloride-	
	Propylenediamine Solutions.	81
	RESTRICTED DATA	

4

đ.

.

4

vii

34. Viscosity of Lithium Chloride-Propylenediamine Solutions 82 Integral Heat of Solution of Lithium Chloride 35. 83 in Propylenediamine at Room Temperature. . . . 36. Vapor Pressure of Propylenediamine and Lithium 84 Chloride Propylenediamine Solutions. 37. Lithium Chloride - Water Phase Diagram 85 Phase Diagram: Lithium Chloride - Magnesium 38. 87 Chloride - Propylenediamine. 39. Solubility of Magnesium Chloride in Lithium Chloride - Propylenediamine Solutions. . . 88 40. Solubility of Sodium Chloride in Lithium Chloride - Propylenediamine Solutions . . . 90 41. Lithium Chloride - Propylenediamine - Water Phase Diagram 91 42. Effect of Temperature on the Magnesium Reflux 93 Percent Conversion of Potassium to Lithium 43. $Amalgam. \ldots \ldots$ 95 Effect of Temperature on Conversion of 44. 96 Potassium Amalgam to Lithium Amalgam 45. Equilibrium Concentration of Lithium Amalgam for Close Cycle Reflux at 100°C 97 Percent Conversion of Sodium Amalgam to 46. 98 Phase Diagram for Lithium Hydroxide - Water. . . . 100 47. Solubility of Lithium Hydroxide in Water 101 48. Densities of Water Solutions of Lithium 49. . 102 50. Densities of Water Solutions of Lithium 103 Density of Magnesium Amalgams. 105 51. Viscosity of Magnesium Amalgams. 106 52. Magnesium - Mercury Phase Diagram. 107 53. 54. Vapor Pressure in Atmospheres of Magnesium 55. Solubility of Magnesium Chloride - Tri-Solubility of Magnesium Chloride Hexammonia 56. in Methanol Effect of Propylenediamine in Solution on 57. Propylenediamine in Magnesium Chloride 115 Hexammonia Precipitate 58. 59. 60. Solubility of Sodium Chloride in Ethylenediamine . 124 **61**. NCLED DATA NESTIN

This document, includes restricted data as defined in the Atomic onergy Act of 1940 bits transmitted or the disclosure of its contents in and manner to an unauthorized person is prohibited.

SECRET

IN CANADA TION

SECURITY

SECURITY INFORMATION

viii

4.5

. . **.**

62.	Solubility of Sodium Chloride in		
	Propylenediamine		125
63.	Sodium Hydroxide Phase Diagram	•	128
64.	Miscibility of the System Ethylenediamine -		
	Sodium Hydroxide – Water	•	129
65.	Miscibility of the System Propylenediamine -		
	Sodium Hydroxide - Water		130
66.	Solubility of Tri Sodium Phosphate in Water		131
67.	Solubility of Ammonia in Methanol		134
68.	Densities of Ammonia Solutions in Methanol		135
69.	Vapor Pressure of Benzene.		136
70.	Phase Diagram: Benzene - Ethylenediamine		138
71.	Vapor-Liquid Composition Diagram Ethylene-		
	diamine - Benzene		139
72.	Propylenediamine - Benzene Phase Diagram		140
73.	Vapor-Liquid Equilibrium Composition Diagram	•	
	Propylenediamine - Benzene	_	141
74。	Decane - Propylenediamine Vapor-Liquid		
	Composition Diagram	_	143
75.	Vapor Pressure of Anhydrous Ethylenediamine.		145
76.	Density Curves		146
77.	Surface Tension for Anhydrous Ethylenediamine.		147
78.	Boiling Point Composition Curve for System	•	. ,
• - •	Ethylenediamine - Water.		149
79.	2-Ethylhexanol - Propylenediamine Vapor-	•	±17
	Liquid Composition Diagram	_	152
80.	Phase Diagram: Isopropanol - Water System	•	154
81.	Phase Diagram: Methanol - Propylenediamine	•	156
82.	Methanol - Water Phase Diagram	•	156
83.	Methanol - Propylenediamine Composition Diagram.	• •	157
84.	Viscosity of Mercury		159
85.	Density of Propylenediamine.		160
86.	Propylenediamine - Water Phase Diagram	•	162
87.	Vapor-Liquid Composition Diagrams for Water -	•	200
	Propylenediamine		163

e£ ¹

4

1

SECURITY INFORMATION

INTRODUCTION

1

By the first part of 1953, the program for the separation of lithium isotopes by chemical methods had expanded and matured to such a point that it was believed an interim report condensing the chemistry under one cover would be advantageous. Consequently, under the direction of the project director, G. H. Clewett, the task of compiling this report was undertaken with the following original objectives:

- (1) Organize all chemical and physical data under one cover.
- (2) Make data readily available with logical presentation, visual representation, and cross indexing.
- (3) Evaluate data to give clear understanding and stimulate research activity.

Although these objectives were not attained in their entirety, they guided the assembly of this material.

This report is divided into two parts. The first part is an evaluation of the data pointed toward an understanding of some of the current problems. It is expected that this section will rapidly become out of date as a better understanding of underlying principles is obtained. The second part contains physical and chemical data that should be of more lasting value to those who continue development of separation processes for lithium isotopes. The data presented are largely those available from classified information available as weekly, biweekly, monthly, quarterly, etc., reports from the divisions of the Oak Ridge National Laboratory. In addition, several excellent topical reports and handbooks issued by this laboratory have been drawn upon heavily.

The ideas and methods utilized in the correlation and evaluation of the data are not original with the authors. The ideas of many of the chemists and engineers associated with the project have been used freely. Special acknowledgement should be given to the chemists in the Materials Chemistry and Chemical Technology Divisions.

To the uninitiated, it may be well to illustrate briefly the main features of a chemical system for the separation of isotopes employing chemical reflux. It may be seen in Figure 1 that the heart of the process is an isotopic exchange and enrichment section which in most instances is a column in which lithium amalgam flows countercurrent to a lithium salt dissolved in a suitable solvent. Next in importance are two reflux sections which remove the lithium from the phase flowing from the column and insert it into the phase flowing to the column. A certain number of auxiliary processes, of course, are necessary for continuous operation. The product in the separation of lithium isotopes is enriched in lithium six (Li⁶) and the waste is enriched in lithium seven (Li⁷).

Experimental data from all of the systems investigated for the chemical separation of lithium isotope have shown the separation factor to be a marked function of temperature. For this reason it is possible to consider a unique method of achieving reflux known as the dual temperature process. A simplified sketch of a dual temperature system for the separation of lithium isotopes is presented in Figure 2. This process has maximum utility when it is possible to operate an exchange system between two widely separated temperatures. The theory of the dual temperature process is not given in this report but may be found in the work of Spivack (114), Eidinoff (115), and Demarcus (116).

2

PART ONE

PROCESS CHEMISTRY

I: CHEMICAL EQUILIBRIUM METHODS

A. INTRODUCTION

Theoretically, the energy requirements for the separation of isotopes of the same element need not be any larger than that needed to overcome the entropy of mixing of the isotopes provided a thermodynamically reversible system is employed. In addition to being slow at times, thermodynamically reversible processes are difficult to obtain; however, it is desirable from an economic point of view to approach these ideal conditions within engineering limits. Processes carried out at chemical equilibrium offer this opportunity.

The separation of isotopes by chemical equilibrium methods is possible with two phase systems such as a gas and a liquid, two immiscible liquids, a liquid and a solid, or a gas and a solid. Since compounds of lithium which remain gaseous at room temperature are unknown, the separation of lithium isotopes by chemical methods has been limited to liquid-liquid and liquid-solid systems. At present, all of the systems which have plant production feasibility are liquid-liquid systems in which one of the liquids is lithium amalgam. If lithium isotopic separation could be extended to a gaseous-liquid system by discovery of a volatile lithium compound, perhaps some improvements over present systems could be realized.

Separation of lithium isotopes in a system of lithium amalgam in contact with lithium chloride dissolved in ethyl alcohol was described by Lewis and MacDonald (110) in 1936. This important contribution indicated that isotopic exchange took place with astonishing rapidity, that the separation factor (α) per stage was at least 1.025, and that the heavier isotope was found preferentially in the alcohol phase indicating that chemical bonding of lithium in the solvent was stronger than it was in the amalgam.

The separation factor, α , may be defined by the equation

$$\alpha = \frac{(\text{Li}^6/\text{Li}^7)}{(\text{Li}^6/\text{Li}^7)} - \text{amalgam}$$

6

where the ratios shown are atomic ratios.

Systems involving lithium amalgam in contact with lithium hydroxide in aqueous solution have been reported in the literature (111) but confusion as to whether the separation factors were due to equilibrium or to kinetic effects developed because potentials were applied to these systems to prevent lithium depletion through decomposition of the amalgams. The isotopic separation systems for lithium under current investigation may be classified according to the stability of lithium amalgam in contact with an organic or aqueous solution. Reactive solvents such as water and various alcohols decompose lithium amalgam to form lithium hydroxide or lithium alcoholate and hydrogen gas. These solvents depend on a slow rate of amalgam decomposition for their usefulness. Much more research and development has been applied to aqueous solution of lithium hydroxide in contact with lithium amalgam than any other reactive system. Stable solvent systems employ lithium chloride dissolved in amines or unreactive ethers in contact with lithium amal-In this latter class of solvents, propylenediamine gam. (1,2, diamine propane) has received the most attention.

B. EXCHANGE EQUILIBRIA

The reasons for expecting separation factors for systems at chemical equilibrium aredue to the difference in chemical properties of isotopes of the same element. These differences are accentuated with isotopes of elements of low atomic weight; consequently, chemical methods of separation have proved to be the most efficient methods available for separating isotopes of hydrogen, nitrogen, carbon, boron, etc.

One method of representing the chemical separation of lithium isotopes is illustrated in Figure 3. The heavier isotope is found preferentially in the organic or water phase indicating that the chemical stability of the lithium in this phase is higher than the stability of the lithium in the amalgam phase. Since chemical stability is associated with low free energy content, lithium in the propylenediamine phase, for example, is at a lower free energy level than lithium in the amalgam phase. For the energy changes indicated in Figure 3, we have

$$Li^7$$
 (amalgam) \rightarrow $(Li^7)^+$ (PDA) + e, $\Delta F^0 = -A$ (1)

$$Li^{\circ}$$
 (amalgam) \longrightarrow (Li°)⁺ (PDA) + e, $\Delta F^{\circ} = -B$ (2)

where |A| is larger than |B|, but -A is smaller than -B. Subtracting equation (2) from (1),

$$Li7 (amalgam) + (Li6)+ (PDA) \rightarrow Li6 (amalgam) + (Li7)+ (PDA) (3)$$
$$\Delta F0 = -A + B = -C \qquad (4)$$

Since our illustration is greatly exaggerated, -C does not represent a very large free energy change ($\Delta F^{\circ} \cong -31$ cal. at 25°C for the system in question).

The separation factor (α) and equilibrium constant for equation (3) are identical since α is defined as the Li⁶/Li⁷ ratio in the amalgam phase divided by the Li⁶/Li⁷ ratio is the amine phase. The dependence of α on temperature may be given by the equations

$$\log_{e} \alpha = \frac{-\Delta F^{O}}{RT} = \frac{\Delta H^{O}}{RT} + \frac{\Delta S^{O}}{R}$$
(5)

and

$$\alpha - 1 \cong -\frac{\Delta H^{O}}{RT} + \frac{\Delta S^{O}}{R}$$
(6)

where ΔH^{O} and ΔS^{O} are assumed to be independent of temperature over small temperature changes. The binomial approximation that $\alpha - 1$ is equal to $\log_{e} \alpha$ contains an error of less than 3% up to $\alpha = 1.06$. The assumption that ΔH^{O} and ΔS^{O} are independent of temperature over the range of temperature in which isotopic separation factors have been measured (0 - 100^OC) appears to be as accurate as the analytical methods available for the determination of isotopic abundance. Other ideas concerning the dependence of separation factors on temperature have been given by Begun, Drury and Palko (111).

The temperature dependence of the separation factor for three systems having approximately the same degree of chemical stability is shown in Figure 4. The agreement with theory is within the accuracy of the data. Furthermore, it

FIGURE 3

9

ENERGY

, ,

•

should be noted that one of the systems investigated was an aqueous solution of lithium hydroxide in contact with amalgam in which a variable holding current was necessary, yet the agreement with the other systems indicates the rate of electrolysis and decomposition has little or no effect on the separation factor.

Not all solvents for lithium salts in contact with lithium amalgams yield similar results to those shown in Figure 4. Table 1 illustrates the results obtained with solvent of markedly different properties. Evidently, both the salt and the solvent determine the separation factor obtained in contact with lithium amalgam. This is explainable on the basis that different solvents have varying affinities for lithium ions and that different salts dissociate in varying degrees to produce lithium ions.

Table 1

Separation Factors* for Solvent Systems in Contact with Lithium Amalgam**

Salt	' Solvent									
T 4 4 1 4	Dimethyl- cellosolve	Tetra- hydrofuran	Propylene diamine							
Chloride	1.023 ± 0.013	1.036 ± 0.006	1.057 ± 0.021							
Lithium benzophenone	1.056 ± 0.008	1.045 ± 0.008	1.055 ± 0.016							
Lithium benzophenone anil	1.037 ± 0.008	1.046 ± 0.012	1.047 ± 0.012							

* Precision given for 95% confidence interval.

** Data by G. M. Begun, ref. 40.

In a liquid-liquid method for chemical separation of lithium isotopes, one of the difficulties encountered in the development of economical systems is the limited number of solvents for lithium salts and lithium metal that are available. Three factors limit the selection of an organic solvent; limited solubility of lithium salts, rapid reactivity of some solvents toward lithium amalgam, and emulsifying characteristics of some organic solvents toward lithium amalgam. The emulsification of amalgams has received very little attention. Probably very few of the amalgam "emulsions" described as such are true emulsions, but appear to be insoluble reaction products containing chemically bonded or physically adsorbed mercury.

Solvents for ionic salts as a rule have large dielectric constants which are a measure of their ion separating and isolating power. Other effects, however, appear to be more important in the case of lithium chloride solubility. Ethylenediamine which has a rather low dielectric constant of 12.9 compared to 81.7 for water shows low solubility for sodium and potassium chlorides, but high solubility for lithium chloride. It is expected that propylenediamine would have an even lower dielectric constant for it shows only one-tenth the solubility for sodium and potassium chloride is four times as soluble in propylenediamine than in ethylenediamine.

The logical conclusion to these results is that a specific interaction exists between lithium and some solvents. At least part, if not all, of this specific interaction effect is the result of the coordination demanded by lithium ion. With a coordination number of four, two ethylenediamine or two propylenediamine molecules could be tightly bound to a lithium ion. Because of steric effects due to the methyl group, propylenediamine probably has a greater chance of accomplishing the desired coordination.

The cyclic ether series gives even stronger indication of this coordinating effect. Six membered rings are apparently too large and any additional groups on a five membered ring (tetrahydrofuran) also presents a molecule too large for fourcoordination. Tetrahydrofuran itself is the borderline size for four-coordination as indicated by the inverse solubility of lithium chloride with temperature. Table 2 illustrates these conclusions.

Table 2

Specific Interaction Effects of Selected Solvents I

Solvent	Dielectric Constant	Sol	ubility	in mole	es/liter	at 25°0	;
		LiC	1	NaCl	L,	KCl	
Ethylenediamine	12.9 (25°C) (17)	0.27	(48)	0.045	(11)	0.0017	(11)
Propylenediamine	e 12.9	1.0	(47)	0.0048	(60)	0.0001	(43)
Water	81.7 (18°C) (17)	14.0	(56)	5.43	(4)	4.13	(4)

Specific Interaction Effects of Selected Solvents II (105)

Solvent	Structure	Solubility of LiCl (moles/liter at 25 [°] C)
Propylene oxide	CH3 CH CH2	0.22
Trimethylene oxide	CH2 CH2 CH2	6.0
Tetrahydrofuran	$\begin{array}{c} CH_2 & - & CH_2 \\ & \\ CH_2 & CH_2 \end{array}$	0.78
2-Methyltetrahydrofuran	$\begin{array}{c} CH_2 & & CH_2 \\ & \\ CH_3 - & CH_2 \\ & & CH_2 \end{array}$	0.07
Tetrahydropyran	CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2}	0.08

Mercury as a solvent for lithium metal has many advantages and disadvantages for a liquid-liquid system. Unfortunately, there are no alternate solvents for lithium metal that remain liquid down to room temperature that have been brought to the attention of the research groups.

C. EXCHANGE KINETICS

One property of alkali metal amalgams which deserves particular attention is their high surface activity since it may account, at least in part, for the rapid exchange of isotopes. The application of Gibbs adsorption thermodynamics to data obtained by Convers (26) and by Johnston and Ubbelohde (112) indicates adsorption (surface excess) of alkali metals at amalgam surfaces. Qualitatively, amalgams have been observed to disperse much more readily in propylenediamine than mercury indicating the amalgam interface has lower interfacial tension than the mercury interface. The lowering of surface or interfacial tension upon the addition of another component to a system is the result of adsorption of the added component at the interface.

The limitations of analytical techniques for isotopes and the extremely rapid exchange reaction (even at room temperature) have made the direct observation of reaction kinetics very difficult.

It is quite possible that with a rapid continuous method of isotopic analysis, such as the neutron adsorption technique, a system could be devised which would prove satisfactory for such an investigation.

Theoretical stage heights obtained from operation of isotopic exchange columns reflect the kinetics of the exchange reaction. If the reaction is diffusion controlled, the following factors appear to be important to the amalgam phase or solvent phase which ever is rate controlling: (1) agitation, (2) concentration, (3) viscosity, and (4) temperature. Of these factors, agitation is the most important since better agitation would produce larger interfacial areas as well as thinner diffusion films. If the adsorption of lithium of the amalgam interface produces a rigid film, the rate of formation of fresh surfaces may be a rate controlling step. Temperature has only a slight effect on diffusion controlled reactions.

If diffusion is not the rate controlling step in the isotopic exchange reaction, the following factors appear to be important: (1) interfacial area and (2) temperature. An increase in interfacial area or temperature should increase the rate of the reaction and decrease the stage height; however, these two factors are difficult to vary independent of each other in the system employing propylenediamine because interfacial tension increases with increased temperatures resulting in poorer dispersions and lower interfacial areas. If the rate of the exchange reaction shows first order dependence on the lithium concentration in the amalgam (similar to the waste end reaction), then the stage height should be independent of lithium concentration in the amalgam.

II: REFLUX PROCESSES

A. INTRODUCTION

A major consideration in large scale isotopic separation by equilibrium exchange is the reflux process. Refluxes may be achieved by either physical or chemical processes and many alternate schemes are possible.

No attempt will be made in this report to differentiate between reflux methods with regard to economics and with the exception of the dual temperature system discussion will be limited to chemical reflux processes. Further, only those schemes which appeared to have engineering adaptation to existing systems have been considered.

The degree and rate at which the inversion (refluxes) are attained are prime considerations in evaluating the reflux processes since the systems involved require recycling of solvents.

The degree of inversion or removal of enriched lithium from the amalgam phase (product reflux) is important in that this material not only represents a valuable product but also either its loss or its cycling to the waste end would greatly affect the cascade equilibrium. On the waste end the last traces of lithium must be removed prior to cycling the solvent stream to the product end for even small amounts of material are capable of reducing the enrichment to a point where the desired product could not be attained.

The rate at which the reflux processes proceed is equally important. It must be very rapid not only to yield the desired degree of inversion, but also to prevent a large holdup of material which would greatly influence the length of time required to reach isotopic steady state conditions.

B. THE DUAL TEMPERATURE PROCESS

The dual temperature process is applicable to any of chemical isotopic exchange system employing nonreactive substances and in which the separation factor is a function of temperature. It may be seen from Figure 4 that the separation factor in several lithium systems is a function of temperature.

The operability of the dual temperature process has been demonstrated by the Materials Chemistry Division (See ORNL reports 1238, 1306, 1401, YB 35-12, and ORNL CF 53-4-299). The extremely rapid isotopic exchange noted in the laboratory was confirmed by pilot plant data. Both ethylenediamine and propylenediamine were utilized as solvents for lithium chloride in contact with lithium amalgam. Propylenediamine appears to have the widest useful temperature range of from room temperature to 100° C; however, the stability of propylenediamine above 100° C in the presence of an alkali amalgam has not been well established.

A schematic representation of the dual temperature process is shown in Figure 2. Since the effective separation factor for a dual temperature system is dependent upon the difference between the factors in the hot and cold columns and is generally less than either one, many more stages are required for this method than for a chemical reflux system (to effect the same overall separation).

C. CHEMICAL REFLUX PROCESSES

Although chemical reflux schemes are classified in this report according to which end of the isotopic exchange system they are applicable, this is not entirely satisfactory since many of the waste end refluxes can be tied together into desirable overall processes. Two such processes are illustrated in Figure 5 to indicate how reflux at one end may supplement reflux at the other end.

1. Waste End Reflux

a Electrolytic Reflux

Four reactions have been considered for the electrolysis of lithium salts to form lithium amalgam: aqueous electrolysis of lithium hydroxide with a mercury cathode, aqueous electrolysis of lithium chloride with a mercury cathode, electrolysis of an organic solution of lithium chloride, and electrolysis of fused salts with a liquid lithium product from the cathode. These may be illustrated in the following equations:

 $2\text{LiOH}_{aq} + (\text{potential}) \longrightarrow 2 \text{Li}(\text{Hg}) + 1/2 \text{O}_{2\text{gas}} + \text{H}_2\text{O}$ (7) $\text{LiCl}_{aq} + (\text{potential}) \longrightarrow \text{Li}(\text{Hg}) + 1/2 \text{Cl}_{2\text{gas}}$ (8)

 $LiCl_{org} + Na(Hg) + (potential) \rightarrow Li(Hg) + NaCl_{(insoluble)}(9)$

LiCl(fused salt with KCl)+(potential) \rightarrow Li(metal)+ 1/2 Cl₂ (10)

Industrial equipment and methods are available for the processes utilizing reactions (7), (8), and (10). Current efficiencies of 90% or higher have been reported for such installations. Reaction (9) which has a mercury cathode and a sodium amalgam anode would require an extensive cell de-velopment program for successful application as a plant re-flux method.

Under completely thermodynamically reversible conditions reactions (7) and (8) would be impossible as only hydrogen would be produced at the cathode. Under actual operating conditions hydrogen ion develops an over-potential which prevents the electrolysis of water. Certain impurities in the electrolysis systems catalyze the formation of hydrogen by lowering the over-voltage. Possibilities of minimizing this 18

GLOSED REFLUX SYSTEMS

important side reaction are: (1) purification of cell feed, (2) addition of inhibiting agents that complex the catalyzing impurities, and (3) removal of oxygen and other depolarizing agents.

Reactions (8) and (10) if applied to organic systems require the desolvation of the lithium chloride. This is no problem with tetrahydrofuran or isopropanol according to preliminary scanning experiments (see Part II - Lithium Chloride-Isopropanol and Lithium Chloride - Tetrahydrofuran); however, with ethylenediamine and propylenediamine the problem becomes significant. At the time of the writing of this report, a research program was well under way for the determination of vapor pressures of lithium chloride solvates with propylenediamine. Preliminary scanning experiments have demonstrated the engineering applicability of several methods of thermal decomposition to this material with success.

Reaction rates for systems involving electrolysis are not generally defined in the same sense as those of the usual chemical reaction. The kinetics are usually studied from the single electrode standpoint*. They are complicated for the usual type of rate study in that there are an increased number of variables not strictly chemical in nature which may be rate controlling or else have an effect on the rate controlling step. Further, electrolytic reactions often have complicating side or decomposition reactions which proceed spontaneously.

From a viewpoint that the applied potential only overcomes the driving force (free energy) tending to keep the reactants in their present low energy state it is possible, at least qualitatively, to look at electrolytic reactions as though they were only simple chemical reactions with an additional energy term involved. One such method of looking at the rate process for an electrolytic reaction is as follows. The equation:

(E) + 2LiOH + (Hg)
$$\xrightarrow{k'}$$
 2Li(Hg) + H₂O + 1/2 O₂

represents a process that produces liquid lithium amalgam Li(Hg). The rate of formation of amalgam may be represented by:

$$d \frac{\left[\text{Li}(\text{Hg})\right]}{dt} = k' \int \left[(E), \text{LiOH}, \text{Li}(\text{Hg}), O_2, T \right] \quad (11)$$

For a detailed and quantitative approach the reader is referred to the work of H. H. Garretson (109) and W. E. Clark (107).

where the items inside the brackets are variables which are probably involved in the rate. The effects of these variables have not been elucidated at this time. However, for a given cell operating under steady state conditions the reaction can be represented by the equation:

$$d \frac{[\text{Li}(\text{Hg})]}{dt} = k' \neq (E)$$
 (12)

where k' is not a true rate constant but is dependent upon operation at steady state condition with fixed current density, temperature, concentrations, etc.

For the case under consideration the most important side reaction is decomposition which proceeds as follows:

$$Li(Hg) + H_2O \xrightarrow{K_2} [LiOH] aq + 1/2 H_2(gas) + Hg$$

1

The rate of disappearance of amalgam is given by the equation:

$$- d \frac{[Li(Hg)]}{dt} = k_2 \oint \left\{ [Li(Hg)], LiOH, S, T \right\}$$
(13)

where 'S' is the interfacial surface area between phases, 'T' the temperature: [Li(Hg)] the amalgam concentration, and LiOH the hydroxide concentration. These variables are known to effect the rate 29,30 . In addition, this reaction rate may be greatly affected by the catalytic action of certain impurities which have low hydrogen over-voltages. For example, the presence of oxygen is considered to greatly accelerate the decomposition rate. Other variables not well defined, such as, rate of agitation are incorporated into the rate constant 'k₂' by operating under fixed condition.

The function, $\int [Li(Hg)]$, has been shown to depend upon the one-half power of the amalgam concentration 29,30,108. For constant conditions of lithium hydroxide concentration, interfacial area, and temperature, equation 13 becomes:

$$- d \left[\frac{\text{Li}(\text{Hg})}{\text{dt}} \right] = k_2 \cdot \left[\text{Li}(\text{Hg}) \right]^{1/2}$$
(14)

$$\mathbf{k'} = \frac{\left[\mathrm{Li}(\mathrm{Hg})\right]_{0}^{1/2} - \left[\mathrm{Li}(\mathrm{Hg})\right]_{f}^{1/2}}{t}$$
(15)

 \mathbf{or}

The effect of hydroxide concentration has not been clearly established, but available data tends to show that the rate constant decreases in direct proportion to the increase in hydroxide concentration 29 . The pronounced effect of temperature is shown by Figure 6. The effect of the interfacial area per unit of amalgam volume upon the rate apparently is directly proportional (lst order), but methods of completely elucidating the actual area of the surface involved have not been devised at this time.

By combining the electrolytic rate (equation 12) and the decomposition rate (equation 14), one obtains an expression for the net rate of amalgam formation for steady state conditions as follows:

$$d \frac{[\text{Li}(\text{Hg})]}{dt} = k'_{1} f'(\text{E}) - k'_{2} [\text{Li}(\text{Hg})]^{1/2}$$
(16)

Equation 16 qualitatively defines the kinetics of the "Elex" process. For example, if $k'_1 \neq (E)$ is greater than $k'_2 [Li(Hg)]^{1/2}$, the reaction rate is positive and lithium is transferred from the aqueous to the amalgam phase. This corresponds to the waste end reflux. When the two terms are equal the rate is zero, and no net lithium transfer takes place; however, the exchange reaction between isotopes proceeds uninhibited. This corresponds to conditions maintained in the exchange section. Finally, when $k'_1 \neq (E)$ is less than $k'_2 [Li(Hg)]^{1/2}$ the rate is negative and net decomposition of the amalgam occurs to provide a product end reflux.

Similar treatment could be extended to the reactions represented by equations 8-10; however, little is to be gained by such a generalized development. It is important, however, to recognize that these electrolytic refluxes are complex and that the presence of traces of impurity can greatly alter the rates especially by influencing the decomposition reactions.

b. Magnesium Amalgam Reflux

Magnesium amalgam as a reflux agent is of importance in systems using the amine solutions of lithium chloride. The details of the reaction,

Mg amalgam + 2 LiCl(PDA sol'n) \rightarrow Li amalgam + MgCl₂·3PDA (17)

have been worked out for propylenediamine solutions, but they should apply equally as well to ethylenediamine solutions. Reaction (17) proceeds very near completion because of the high stability and insolubility of the magnesium chloride solvate with propylenediamine. However, the equilibrium ratio of lithium to magnesium in the amalgam as a function of temperature or amine concentration has not been fully investigated (57).

Laboratory batch data (90, 91, 92 and 100) indicate that the conversion of magnesium amalgam to lithium amalgam follows a first order rate with respect to magnesium in the amalgam and to be independent of lithium chloride concentration in the amine phase as long as it was in stoichiometric excess. The rate may be defined as follows:

$$- d \frac{[Mg(Hg)]}{dt} = k [Mg(Hg)]$$
(18)

 \mathbf{or}

$$\ln \frac{[Mg(Hg)]_{o}}{[Mg(Hg)]_{f}} = kt$$
(19)

where $[Mg(Hg)]_0$ and $[Mg(Hg)]_f$ are the initial and final concentration of the magnesium in the amalgam.

In addition to the effect of magnesium concentration in the amalgam, the reaction rate is greatly influenced by the degree of dispersion (interfacial contact area) of the two phases. The optimum rate of agitation has not been established but will probably vary considerably from one type of equipment to another.

Increasing the temperature also increases the reaction rate. However, the optimum rate is likely to be determined by the maximum temperature for which the organic solvent will remain stable in the presence of the amalgam phase rather than by decreasing the holdup time to a point where a further increase of rate would not be economical from an equipment standpoint.

An important side reaction of the magnesium amalgam reflux is the chemical combination of trace amounts of water with magnesium amalgam to form magnesium hydroxide and hydrogen as follows:

$$Mg amalgam + 2 H_2 O \longrightarrow Mg(OH)_2 + H_2$$
(20)

Although propylenediamine is a very hydroscopic solvent, reaction (20) is likely to contribute heavily to preventing any buildup of water in the solvent. The favorable equilibrium conditions resulting from reaction (17) making it an excellent reflux reaction for the waste end of the exchange system are largely due to the stability of the complex salt, $MgCl_2 \cdot 3PDA$. The chemical stability, however, has prevented the utilization of simple thermal methods for complete desolvation of the magnesium chloride and recovery of the propylenediamine. (See Part II, Magnesium Chloride - Propylenediamine System for Vapor Pressure Data).

Chemical methods for recovery of propylenediamine by cleavage of the $MgCl_2 \cdot 3PDA$ structure fall into two classes: (1) replacement of the propylenediamine with a cheaper chemical having the ability of forming a more stable solvate and (2) chemical reaction to form new salts that do not have stable solvates with propylenediamine. Successful methods have utilized ammonia in the first classification and sodium hydroxide in the second.

Reaction of the solvate, $MgCl_2 \circ 3PDA$ with ammonia may be illustrated as follows:

$$MgCl_2 \cdot 3PDA + 6NH_3 \longrightarrow MgCl_2 \cdot 6NH_4 + 3PDA$$
(21)

This reaction may be carried out either at room temperature under pressure or below the boiling point of liquid ammonia at atmospheric pressure. Research is currently under way to disclose the details of this reaction.

The same reaction has been studied using methanol as a solvent for the solvate, $MgCl_2 \cdot 3PDA$. (See Part II, Magnesium Chloride - Ammonia - Methanol - Propylenediamine Systems). In this instance, the amount of excess propylenediamine accompanying the solvate, $MgCl_2 \cdot 3PDA$, limits the solubility of the solvate. Apparently, lithium chloride dissolved in the accompanying propylenediamine also limits the solvate, $MgCl_2 \cdot 3PDA$, solubility (see Figure 55). The degree of completion of the precipitation of $MgCl_2 \cdot 6NH_3$ from a methanol solution, $MgCl_2 \cdot 3PDA$ is highly dependent upon the concentration of ammonia. Some propylenediamine has been found in the precipitate, $MgCl_2 \cdot 6NH_3$, as may be seen in Figure 57. From the data available, it is impossible to predict whether this propylenediamine content is the result of mechanical occlusion or chemical interaction.

The reaction with sodium hydroxide may be carried out in aqueous or nonaqueous media. The reaction is essentially the same and may be illustrated as follows:

 $2 \text{ NaOH} + \text{MgCl}_2 \cdot 3\text{PDA} \longrightarrow \text{Mg(OH)}_2 + 2 \text{ NaCl} + 3\text{PDA} \quad (22)$

The released propylenediamine must be separated from the solvent (water or alcohol) before it can be considered as completely recovered. Although the propylenediamine can be chemically released by reaction (22), because of the nature of the magnesium hydroxide precipitate, physical recovery of propylenediamine is difficult. Evaporation from the slurry has been effective where water and 2-ethyl hexanol have been used as solvents. Advantage may be taken of the two phase immiscibility with excess aqueous caustic. With methanol as solvent for sodium hydroxide, the magnesium hydroxide was found to be filterable. These propylenediamine recovery problems have been largely engineering in nature.

Regardless of the solvent used for reaction (22) the rate of reaction and equilibrium are very favorable for the release of propylenediamine. The reaction under agitation proceeds more rapidly than measurements can be taken. The propylenediamine remaining with the magnesium hydroxide is held there by physical entrainment $\mathbf{a}s$ the chemical reaction apparently goes quantitatively to the right within the limits of analytical measurements. Some decomposition of the propylenediamine has been noted at high temperatures and high caustic concentrations and constitutes a disadvantage of this desolvation method. In alcohol solutions some dehydration of the magnesium hydroxide may take place due to the great affinity propylenediamine shows towards water. If this dehydration is appreciable, wet propylenediamine will result and the advantages of using an alcohol solvent will be lessened.

c. Potassium and Sodium Amalgam Refluxes

Both potassium and sodium amalgam reactions have been shown to have application to the waste end reflux utilizing propylenediamine as solvent. The reactions do not proceed to virtual completion as they do in the case of magnesium amalgam, and a mixed amalgam is the result in both cases. The reactions are as follows:

 $K(amalgam) + LiCl(PDA sol'n) \rightleftharpoons LiK(amalgam) + KCl(ppt.)$ (23)

 $Na(amalgam) + LiCl(PDA sol'n) \rightleftharpoons LiNa(amalgam) + NaCl(ppt.)$ (24)

The conditions under which the mixed amalgam is produced is that of high temperatures and high lithium chloride concentration in the amine phase. These conditions are also ideal for the reactivity of any trace amounts of water in the amine phase with the mixed amalgam to produce insoluble lithium hydroxide and hydrogen gas.

Reaction rates for these types of inversion (similar to isotopic exchange) are extremely rapid (93, 101). For this reason the reaction mechanism has not been elucidated to this date. It may be inferred, however, that the rate determining step will be similar to that of the magnesium inversion reaction and probably shows first order dependence upon the amalgam concentration.

An indication of why potassium or sodium amalgams reflux at the waste end at high temperature, and yet at low temperature form very stable amalgams can be shown qualitatively from thermochemical considerations.

Table 3 gives a series of idealized reflux reactions involving alkali amalgams and alkali halide salts. The heats and free energies are computed from data presented in Table 4. These equations represent reactions in which no interaction (solvation) of the halide salts would be involved, however, the effect of solvation will be discussed in a following paragraph.

From Table 3 it is observed that for these reactions under ideal conditions at room temperature the formation of lithium amalgam is slightly favored over sodium or potassium amalgam. The tendency being much more pronounced with increasing atomic weight of either the anion or the cation in the salt.

Experimental data (See Part II: Lithium - Mercury -PDA - NaCl - KCl) show that at room temperature lithium amalgam in contact with amine solution of sodium or potassium chloride is unstable and an inversion to sodium or potassium amalgam proceeds rapidly and to virtual completion (this is discussed under product end refluxes). These data indicate that the behavior of the halide salts in amine solution deviate widely. This behavior can be best understood by examining the solvation energies involved since a difference in

	Table 3		
	Thermochemistry of Idealized Reflux	Reaction	S
		∆ h ⁰ ₂₉₈	ΔF ⁰
1.	$\text{LiCl}_{(s)} + \text{Na(Hg)}_{100} \rightleftharpoons \text{NaCl}_{(s)} + \text{Li(Hg)}_{100}$	-0.3	-0.05
	$LiBr_{(s)} + Na(Hg)_{100} \xrightarrow{\sim} NaBr_{(s)} + Li(Hg)_{100}$	-2.6	-1.9
	$\text{Lil}_{(s)} + \text{Na(Hg)}_{100} \text{Nal}_{(s)} + \text{Li(Hg)}_{100}$	-3.9	-3.3
2.	$\text{LiCl}_{(s)} + K(\text{Hg})_{100} KCl_{(s)} + Li(\text{Hg})_{100}$	-0.2	-1.5
	$\operatorname{LiBr}(s) + K(\operatorname{Hg})_{100} \xrightarrow{\sim} \operatorname{KBr}(s) + \operatorname{Li}(\operatorname{Hg})_{100}$	-3.8	-4.8

solvation energy between lithium and potassium or sodium halide as small as $6 \ k \ cal \ could \ account \ for \ the \ observed \ reactions$.

 $LiI_{(s)} + K(Hg)_{100} \xrightarrow{\sim} KI_{(s)} + Li(Hg)_{100} -7.3 -8.1$

It is well known that neither sodium or potassium chlorides solvate to any great extent with PDA or EDA. It is equally well established that lithium chloride solvates readily with these amines. Solvation is accompanied by the evolution of an appreciable quantity of heat as follows: (53) (47)

$$\operatorname{LiCl}_{(\mathbf{s})} + (345) \operatorname{PDA}_{(1)} \longrightarrow \operatorname{LiCl}_{(345)} \operatorname{PDA}_{(1)}$$

$$\mathcal{A}_{H} \stackrel{\sim}{=} -19.41 \text{ k cal/g mole} \qquad (25)$$

$$\operatorname{LiCl}_{(\mathbf{s})} + (10) \operatorname{PDA}_{(1)} \longrightarrow \operatorname{LiCl}_{(10)} \operatorname{PDA}_{(1)}$$

$$\mathcal{A}_{H} \stackrel{\sim}{=} -13.5 \text{ k cal/g mole} \qquad (26)$$

$$\operatorname{LiCl}_{2PDA}_{(\mathbf{s})} + (8) \operatorname{PDA}_{(1)} \longrightarrow \operatorname{LiCl}_{(10)} \operatorname{PDA}_{(1)}$$
Table 4

Selected Thermodynamic Properties

T =	288.16 °K	Kcal/g	mole
------------	------------------	--------	------

Component	State	∆H _f	$\Delta \mathbf{F}_{f}$	Reference
LiC1	с	-97.7	-92.2	6
LBr	с	-87.4	-82.3	6
LiI	с	-72.5	-67.5	6
NaCl	с	-98.3	-91.9	6
NaBr	с	-90.3	-83.9	6
NaI	с	-76.7	-70.5	6
KC1	с	-104.4	-97.8	6
KBr	с	-97. 7	-91.2	6
KI	с	-86.3	-79.7	6
ZnCl ₂	с	-99.6	-88.4	7
ZnBr ₂	с	-78.2	_	7
ZnI ₂	с	-50.0	-	7
$2nCl_2 \cdot EDA$	с	-138	·	7
$ZnCl_2 \cdot 3EDA$	с	-179.4	_	7
$ZnBr_2 \cdot EDA$	С	-112.5	-	7
$ZnBr_2 \cdot 3EDA$	С	-157.1	_	7
ZnI ₂ EDA	с	86.9	-	7
ZnI ₂ ·3EDA	с	133.7	-	7
EDA	1	-8.8	-	11
$Li(Hg)_{100}$	1	-19.6	(-20.3)*	7,13
$Na(Hg)_{100}$	1	-19.9	(-19.95)	* 7.13
$K(Hg)_{100}$	1	-26.08	(-24.4)*	7,13

* Free energy data from single electrode potentials (13).

In the absence of any free energy data it is assumed that they will be in the order of magnitude of the heats of reaction. In this event the reactions shown in Table 3 will have lower free energy in the direction which yields stable sodium or potassium amalgam.

In order to appreciate the magnitude of the energy involved in solvation more fully the system zinc halide versus ethylenediamine is presented. Thermochemical data are available and are presented in Table 4. The solvation reactions are presented in Table 5.

In addition to the magnitude of the heats of formation of these solvates another fact becomes quite evident from Table 5, i. e., apparently the anion contributes little to the heat of formation. If this observation holds true for systems involving lithium halides solvated with EDA or PDA then it is expected that solvation energy would have a less pronounced effect upon the inversion reaction in going from sodium to potassium and especially from sodium chloride to potassium iodide systems.

Table 5

Solvation of Zinc Halides with Ethylenediamine

∠H^O

		Reaction	on	
ZnCl ₂	+	EDA	ZnCl ₂ ° EDA	-29.8
ZnBr ₂	+		ZnBr ₂ ° EDA	-25.0
ZnI ₂	+		ZnI ₂ ° EDA	-28.1
$ ZnCl_2 ZnBr_2 ZnI_2 $	+	3EDA ->	$ZnC1_2 \circ 3EDA$	-53.6
	+	3EDA ->	$ZnBr_2 \circ 3EDA$	-52.0
	+	3EDA ->	$ZnI_2 \circ 3EDA$	-56.9

Lithium chloride may be desolvated from EDA or PDA by heating to a moderately high temperature (113). From this it can be concluded that the degree (energy) of solvation is greatly affected by temperature. Such being the case at high temperature the effect of solvation energy upon the reaction given by equations 23 and 24 would be largely overcome and the more idealized reactions (Table 3) proceed to yield lithium or mixed amalgams. These conclusions are borne out by examination of figures 43, 44 and 46 (Part II) where the effect of temperature and lithium chloride concentration upon the inversion of potassium and sodium amalgams to lithium amalgam is shown.

2. Product End Reflux

a. Decomposition Reflux

Product end reflux with lithium amalgam in the water system appears to be comparatively simple upon first inspection. During isotopic exchange the decomposition of lithium amalgam takes place all the time that the amalgam and the aqueous solution are in contact. An applied potential in the exchange system does not prevent decomposition but replaces the amount decomposed. Thus reflux may be obtained by discontinuation of an applied potential and/or an increase in temperature of the system to increase the rate of the reaction. The kinetics of this reflux have been previously discussed as a complicating or side reaction to the Electrolytic Waste End Reflux Section, Page 17. Decomposition is illustrated as:

$$Li(amalgam) + H_2O \longrightarrow LiOH + 1/2 H_2(gas) + Hg$$
(28)

The similar type decomposition has application to systems utilizing the simple alcohols as a solvent to replace water.

$$Li(amalgam) + ROH \longrightarrow LiOR + 1/2 H_2(gas) + Hg$$
 (29)

The rate of reaction is expected to decrease with the series of solvents - water, methanol, ethanol, propanol, etc., with water having the highest rate of reaction; however, solubility of the decomposition product decreases as the series increases in molecular weight.

b. Hydrogen Chloride Reflux

Product end reflux with hydrogen chloride has promise in exchange systems containing lithium chloride dissolved in a solvent in contact with lithium amalgam. At the product end where lithium amalgam is to be decomposed and the lithium sent back to the isotopic exchange system as lithium chloride, the reaction with hydrogen chloride is perhaps the fastest and most complete of all product end refluxes. Li amalgam + HCl \longrightarrow LiCl + 1/2 H₂ + Hg (30)

One of the problems encountered in utilizing this reaction is decreasing the rate of the reaction rather than in increasing it as with other reflux reactions. The reaction appears to go entirely to completion and at a rate far too rapid for measurement under conditions applied to date.

Two methods are available for application of this reaction: (1) solution of the hydrogen chloride gas in the solvent and subsequent contact with the amalgam phase and (2) contact of the hydrogen chloride gas with the amalgam with subsequent contact with the organic solvent. Only the first method has been investigated to date. This has proved to be successful with propylenediamine and isopropanol as solvents. With tetrahydrofuran, some reaction of the solvent with hydrogen chloride was noted.

c. Sodium and Potassium Chloride Refluxes

Product end reflux with sodium and potassium chlorides has been extensively studied in amine solutions, especially propylenediamine solution. The reactions involved are the reverse of reactions (23) and (24). As previously discussed, it is evident that solvated conditions of lithium chloride contributes greatly to the reversal of these reactions at low temperature.

Several so-called equilibrium constants have been given for the reflux reactions. This method of reporting data may have many advantages but the fact that the equilibrium constants are greatly different for the forward reaction compared to the reverse reaction points to the conclusion that the given constants are not applicable beyond the range of concentrations and temperatures in which they were measured. It is quite evident that activities of the constituents are markedly different from their concentrations and have unusual temperature coefficients.

The rate determining steps in these reactions are markedly different from those of the forward reaction given by equation 23 and 24. Laboratory data (89 - 94) indicate that the rate determining step is independent of (zero order with respect to) the amalgam concentration and may be interpreted to follow a rate:

$$- d \frac{[Li(Hg)]}{dt} = k \int [S, I_A]$$
(31)

 (I_A) is the interfacial area between phases. The quantity (S) involves the surface area of the salt particles in the slurry and is not well-defined. However, when a large excess of finely divided salt is used (S) is constant and under conditions of fixed agitation (I_A) is approximately constant.

For these conditions, equation 31 becomes:

$$- d \frac{[\text{Li}(\text{Hg})]}{dt} = \mathbf{k}'$$

$$(32)$$

$$[\text{Li}(\text{Hg})]_{1} - [\text{Li}(\text{Hg})]_{2}$$

and

$$\mathbf{k'} = \frac{\left[\operatorname{Li}(\operatorname{Hg})\right]_{1} - \left[\operatorname{Li}(\operatorname{Hg})\right]_{2}}{\mathbf{t}_{1} - \mathbf{t}_{2}}$$
(33)

These data indicate that the rate determining (slow) step is the rate of solution of the salt particles. This is further substantiated by the observation that the relative magnitude of the rate constant is consistent with the relative solubility of sodium and potassium chlorides in propylenediamine. (See Pages 69, 70 for evaluation of rate constants). Furthermore, the rate constant does not increase as an exponential function of temperature which would be expected if a chemical reaction were the slow step.

Figure 26, (Part II) shows the results of laboratory investigation on the rate for sodium chloride inversion as a function of the temperature, size and amount of sodium chloride particles in the amine phase. These data indicate that size of the particles is more important than the temperature in the rate determining step. The effect of agitation on the rate constant has not been fully investigated.

As pointed out in the section on waste end refluxes for the potassium or sodium amalgam systems, temperature and lithium chloride concentration have marked effects upon the final degree of inversion. If the general behavior predicted by the equations given in Table 3 holds then from equilibrium considerations a sodium chloride system should yield a better reflux than bromide or iodide in that a lower concentration of lithium remaining the amalgam per given stage would result. However, the rate at which equilibrium is achieved will probably change in the opposite order due to increased solubility of bromide and iodide.

III: SOLVENT AND FEED PURIFICATION

A. SOLVENT PURIFICATION

As chemical technology advances, chemical specifications become more difficult to meet and engineering complications increase. Certainly isotope separation is no exception to this trend. For successful separation of lithium isotopes by present chemical methods, exceptionally low impurity levels are required that have and will continue to demand chemical research and engineering development.

Impurities in the aqueous-amalgam system for lithium isotope separation are: (1) those that cannot be tolerated because of the catalytic effect they have on the rate of decomposition of lithium amalgam and (2) those that preferentially build up in some part of the system or dilute the product. Quantitative knowledge of tolerances for impurities in the first class is unknown indicating the Having determined the catanecessity of further research. lyzing impurities and their concentration effects, at least two different avenues of approach should be investigated; i. e., solvent purification by such means as filtration and ion exchange, and the use of additives to poison or complex The second class of impurities the catalyzing impurities. may be controlled through feed purification.

Impurities in the organic-amalgam system for lithium isotope separation are little understood except for the system employing propylenediamine as the organic solvent. Even with propylenediamine, the impurity problem is only partially understood because pilot plant data for extended operation are not available as yet. The tolerance for water in propylenediamine is believed to be at least as low as methods of analysis (less than 0.01% by weight) for propylenediamine systems utilizing a waste end reflux with magnesium, potassium, or sodium amalgam. No quantitative data is available on the thermal stability of propylenediamine or of the nature and effects of the decomposition products.

Methods of drying propylenediamine consist of distillation and chemical reaction methods. Benzene azeotropic distillation (See Part II: Benzene-Propylenediamine and

Propylenediamine-Water Systems) has received engineering attention. Some data on an alternate system are available (See Part II: Ethylene Glycol-Propylenediamine-Water System). Chemical reaction of water in the propylenediamine with calcium carbide which produces calcium oxide and acetylene gas constitutes a successful chemical method of drying propylenediamine.

Mercury, like propylenediamine may be purified by distillation or chemical reaction. In this case, however, the serious impurities are contaminating metals and not water. Chemical reaction with an aqueous solution of dilute nitric acid under oxidizing conditions has long been used as a satisfactory method of removing base metals from mercury and need not be discussed here.

B. FEED PURIFICATION

Purification of lithium amalgam feed in the aqueousamalgam system has been investigated and it is understood that partial decomposition of the amalgam has been successfully used to control sodium and potassium impurities; however, published data are not available as yet to substantiate the extent of the purification.

Among the systems using propylenediamine as a solvent, lithium feed purification is most important to the closed reflux system employing potassium chloride and potassium amalgam as reflux reagents. Impurities introduced with the feed are likely to build up in one of the reflux ends if the solubilities of the impurities are exceeded. Since it is possible to feed either lithium amalgam or lithium chloride solution to the exchange columns, a feed purification section could be designed for either situation. Data on the solubilities of the major impurities as metals in the amalgam phase and as chlorides in the amine phase are needed as a function of temperature. Assuming withdrawal of product and waste and introduction of feed are made in the same phase, predictions could be made with solubility data as to the extent of impurity build-up. In the absence of experimental data it appears that amalgam feed and amine feed are equivalent provided either feed stream is equilibrated against the opposite phase in a clean-up section prior to introduction into the exchange columns.

Generally the drying of salts and metals utilized as reflux reagents and isotopic exchange feeds can be accomplished by using a dry air except for lithium chloride which forms a hydrate which is stable at room temperatures. (See Part II: Lithium Chloride - Water System). In order to obtain anhydrous lithium chloride drying at temperatures above 100° C is required. Fortunately, little if any decomposition to form hydrogen chloride takes place in the drying operation (55).

Dry, inert atmospheres are required in all organicamalgam systems. Nitrogen and helium when properly purified have shown no reactivity toward amalgams (13,28,67). PART TWO

CHEMICAL AND PHYSICAL DATA

I. INTRODUCTION

A. ARRANGEMENT OF DATA

Systemization of information often leads to complexities in presentation. The attempted arrangement of chemical and physical properties presented here is organized in a somewhat complex but ordered manner. All information falls under the general headings:

> Lithium and Lithium Compounds Magnesium and Magnesium Compounds Potassium and Potassium Compounds Sodium and Sodium Compounds Liquid Solvents

Under each of the above-mentioned headings, technical information is classified according to the initial chemical components of the reactions or equilibrium systems under consideration. While this method of presentation requires a knowledge of the initial components of the chemical reactions involved, it has an advantage of being self-indexing to those who are aware of the method of arrangement. For example, in the product end reflux with sodium chloride, lithium and mercury are reacted with a slurry of sodium chloride in propylenediamine to produce a solution of lithium chloride in propylenediamine and sodium amalgam. Lithium, mercury, sodium chloride and propylenediamine are the initial components, and the physical and chemical data for this reaction can be found with the system "Lithium - Mercury - Sodium Chloride - Propylenediamine". This system is listed with other four component systems under "Lithium" which is found under "Lithium and Lithium Compounds" since this is the first general heading that contains any of the four initial components.

In some systems the initial components are identical with the chemical species present at equilibrium. Such is the case with magnesium and mercury. The information concerning solubility, density, viscosity, etc., is to be found among the two component systems under "Magnesium" which is under the general heading "Magnesium and Magnesium Compounds".

The compilation of all chemical and physical data on the Orex process (as of April 1953) was one of the objectives that guided the writing of this report. Much of the data has been plotted or replotted in an attempt to obtain a correlation and, consequently, allow for extrapolation beyond the area of experimental results. Justification of this procedure may be questionable in several cases where limited precision or small number of data are available; however, in the majority of cases, theoretical considerations were utilized as a basis for this "best guess".

All data appearing in this report have been referenced for easy access to the original publication and to give credit to those who have derived the data. Some confusion was encountered in the ORNL literature over the use of the term "molarity". In many instances, molarity appeared to be the number of moles per liter of solution regardless of the temperature of the solution. In other reports, molarity referred to the number of moles per unit weight of solution corresponding to a liter at room temperature. When these differences were recognized, they were tabulated in this report accordingly.

The convention utilized in previous reports to indicate liquid amalgam has been followed here; for example, liquid lithium amalgam is designated as Li(Hg).

Missing from Part Two, Section VI, of this report are the chemical and physical properties of water. These data are tabulated in the usual handbooks of chemistry, and consequently, they have been omitted in this report.

B. CONTENTS

I .	IN		37
II.	LI	THIUM AND LITHIUM COMPOUNDS	
	A.	Lithium	44
		Lithium - Mercury	47
		Lithium – Potassium	56
		Lithium - Sodium	56
		Lithium - Potassium - Mercury	56
		Lithium - Sodium - Mercury	56
		Lithium - Mercury - Water	56
		Lithium - Mercury - Ammonium Chloride -	
		Tetrahydrofuran	6 0
		Lithium – Mercury – Lithium Anthracene –	_
		Dimethylcellosolve	60
		Lithium - Mercury - Lithium Benzophene -	
		Dimethylcellosolve	5 0
		Lithium - Mercury - Lithium Benzophenone	
		anil – Dimethylcellosolve.	61
		Lithium - Mercury - Lithium Chloride -	
		Dimethylcellosolve	61
		Lithium - Mercury - Lithium Benzophenone -	
		Propylenediamine	51
		Lithium - Mercury - Lithium Benzophenone	
		anil - Propylenediamine,	61
		Lithium - Mercury - Lithium Benzophenone -	
		Tetrahydrofuran.	52
		Lithium - Mercury - Lithium Benzonhenone	
		anil - Tetrahvdrofuran	62
		Lithium - Mercury - Lithium Chloride -	
		Ethylenediamine.	52
		Lithium - Mercury - Lithium Chloride -	-
		Isopropanol	65
		Lithium - Mercury - Lithium Chloride -	
		Dronylenediamine	65
		Lithium Monounu Lithium Chlorido	,,,
		Dithium - Mercury - Dithium Chioride -	6 E
		Tithium Managurus Tithium Westeride	23
		Litnium – Mercury – Litnium Hydroxide –	<u>۲</u>
			22
		Lithium - Mercury - Potassium Chloride -	(A
	2.4	Propylenediamine	27

į

	Lithium - Mercury - Propylenediamine -	
	Propylenediamine - Hydrochloride	69
	Lithium - Mercury - Sodium Chloride -	0,
	Propylenediamine	70
		70
	Lithium - Potassium - Mercury - Lithium	
	Chloride - Propylenediamine	72
	Lithium - Sodium - Mercury - Lithium	12
	Chloride - Propylenediamine	-
	encertae rropyreneuramine	12
в.	Lithium Chloride	
		72
	Lithium Chlonido Ethelenedieud	
	Lithium Chloride - Einylenediamine	73
	Lithium Chloride - 2 Ethylnexanol	73
	Lithium Chloride - Propylenediamine.	73
	Lithium Chloride - Tetrahydrofuran	78
	Lithium Chloride - Water	78
	Lithium Chloride - Ethylenediamine -	
	Propylenediamine	86
	Lithium Chloride – Ethylenediamine –	
	Sodium Chloride	86
	Lithium Chloride - Magnesium Chloride -	
	Propylenediamine .	86
	Lithium Chloride - Potassium Chloride -	00
	Propylenediamine	94
	Lithium Chloride - Sodium Chlorido	00
	Propylenediamine	
	Lithium Chloride - Propylonodiamino	89
	Tetrahydrofuran	
	Lithium Chloride Monounny Watar	89
	Lithium Chloride – Mercury – Water , ,	89
	Water	
		89
	Lithium Chlonido Dronwleys H	
	Magnesium Monounu	
	Lithium Chlorida D	89
	Determine - Propylenediamine -	
	Polassium - Mercury.	94
	Lithium Chloride - Propylenediamine -	
	Sodium - Mercury	94
~		-
с.	Lithium Hydroxide.	94
		/-
	Lithium Hydroxide - Water	90
		11
	Lithium Hydroxide - Sodium Phosphate -	
	Water	00
		77

...

.

_

II. MA	GNESIUM A	ND MA	GNES	IUM	- CO	MPO	UND	S									
Α.	Magnesium	• •	•••	•••	o	• •	۰	•	•	•	•	۰	•	•	•	•	99
	Magnesium	– Me	rcur	у.		•••		•	o	0	0	•	•	•	•	•	104
Β.	Magnesium	Chlo	ride		•	• •	•	•	υ	•	•	0	o	•	•	•	108
	Magnesium	Chlo	rido	_	4 mm	<u>oni</u>	2										108
1 7	Magnesium	Chlo	ride	_	2 E	thv	ı lhe	xa	'no	i	•		•	•	•	•	100
	Magnesium	Chlo	ride	-	Proj	py10	ene	di	am	in	e	•	•	•	•	•	109
а 1	Magnesium	Chlo	ride	-	Amm	onia	a -										
	Propyle:	nedia	mine	•	•	• •	•	ø	•	•	•	•	•	٠	•	•	111
	Magnesium	Chio	ride		Deca	ane	-										
	Propyle		mine	•	Dod	•••		•	•	•	•	•	U	٠	•	•	111
	Dropyle	orno nodia	mino	-	Dou	ecai	le.	-									111
	Magnesium		ride	_ •	Ethy	vlei	ne	Gl	ve	.1	•	٠	٩	•	•	•	
	Propyle	nedia	mine						, .	°-						•	111
	Magnesium	Chlo	ride	_	2 E	thy	lhe	xa	no	ì				-			
	Propyle	nedia	mine	a	•		•	•	•			•	•		•		111
•	Magnesium	Chlo	ride		Metl	nano	51	-									
	Propyle	nedia	mine	٥	0	0 Q	٥		•	•	•	•	•	•	•	•	112
	Magnesium	Chlo	ride	-	Proj	pyle	ene	di.	am	in	е	-					
	Water .	•••	• •	0 6	•	6 6	٠	•	•	•	•	•	•	•	•	•	112
	Magnegium	Chlo	rido		Amme	on i c		м	0 +1	ha	n 0	r					
	Dronvlei	nedia	mine		Ammy	51116	i —	81	e U	na		•	_				112
	1100910	ncura		• •	•	•	¢	•	D	•	a	•	•	•	•	•	110
IV. PO	TASSIUM A	ND PO	TASS	IUM	CO	NDOI	JND	S									
Α.	Potassium	•	• •	•••		• •	•	•	•	•	•	o	•	•	0	•	112
	Dotassium	_ Mo	rour	1 7													116
Star 1	Potassium		dium	у.	8	•	•	•	•	•	•	•		•	•	•	117
	lotassiam		arum	•	•	• •	•	•	•	•	•	0	•	•	•	•	
Β.	Potassium	Chlo	ride	¢	•	•	•	•	۰	0	o	•	٠	•	•	•	117
	Dotaggium	Chlo	rido		Fth	7101	hor	iai	m i '	no							117
	Potassium	Chlo	ride	-	Prop	yle yle	ene	di	am	in	e	•	•	•	•	•	120
V SO						-											
v. 50	DIUM AND S			W PO	UND	C											
Α.	Sodium .	• •			•	•••	•	•	•	•	•	•	•	•	•	•	120
	Sodium - 1	Mercu	ry		•	• •	•	•	•	•	•	•	•			•	121

I

Β. Sodium Chloride 123 Sodium Chloride - Ethylenediamine 123 Sodium Chloride - Propylenediamine . . 123 Sodium Chloride - Tetrahydrofuran 123 • . Sodium Chloride - Propylenediamine -126 С. 126 Sodium Hydroxide - 2 Ethylhexanol 126 Sodium Hydroxide - Propylenediamine 126 127 Sodium Hydroxide - Ethylenediamine -127 Sodium Hydroxide - Propylenediamine -127 **D** . 127 127 VI. LIQUID SOLVENTS Α. Ammonia 127 • • • • o Ammonia - Methanol 133 Β. Benzene 133 Benzene - Ethylenediamine. 137 Benzene - Propylenediamine 137 С. 137 Decane - Propylenediamine. 142 D. Dodecane · · · · · · · · · · · 142 Dodecane - Propylenediamine. 142 Ε. Ethylenediamine 142 148

F.	Ethylene Glycol	148
	Ethylene Glycol - Propylenediamine -	
		150
G.	2 Ethylhexanol	150
	2 Ethylhexanol - Propylenediamine	151
	$= 2 \operatorname{chylhoganol} = \operatorname{hatel} \cdot \circ \circ \circ \cdot \circ $	121
H,	Isopropanol	151
	Isopropanol – Water 🧠	153
Ι.	Methanol	153
	Methanol - Propylenediamine.	155
_		133
J.		155
K .	Propylenediamine	158
	Propylenediamine - Water	161
L.	Tetrahydrofuran	161

II. LITHIUM AND LITHIUM COMPOUNDS

A. LITHIUM

Atomic Weight	6.94	
Normal Isotopic Abundance	7.5% Li ⁶ , 92.5% Li ⁷	(2)
Melting Point	179 [°] C, 354 [°] F	(1)
Boiling Point	1317 ⁰ C, 2403 ⁰ F (1640 ⁰ C from vapor pressure data)	(1)
Latent Heat of Fusion	158 cal/g, 284 Btu/lb, 1100 cal/g mole, 1970 Btu/lb mole	(1)
Latent Heat of Vaporization	4680 cal/g, 8430 Btu/lb, 32500 cal/g mole, 58500 Btu/lb mole	(1)
Vapor Pressure	$\log_{10} P (mm) = \frac{-8143}{T(OK)} + 8.00$	(20)
	Accuracy - 10% (1100-1400 ^O K) 30% (700-1100 ^O K)	
	See Figure 7	
Density	0.534 g/ml at 20° C, 0.507 g/ml at 200° C, 0.441 g/ml at 1000° C	
	34.4 lbs/ft ³ at 68° F	(2)
Heat Capacity	1.0 cal/g C (200 [°] C to 1000 [°] C) 1.0 Btu/lb [°] F	(])
	0.00 ccl/scc. cm. 00	(1)
Thermal Conductivity	$(218 - 233^{\circ}C) 23 \frac{Btu}{hr ft^{\circ}F}$	(1)
Viscosity	See Figure 8	(1)
Electrical Resistivity	45.25 μ ohms at 230°C	(1)

Volume Change on Fusion (% of solid volume)	1 . 5%	(1)
Lithium - Mercury		
Density	See Figures 9, 10	(21)
Heat Capacity	0.0340 cal/g at 25 C and 0.0336 cal/g at 75 C	(106)
Viscosity	See Figure 11	(21)
Electrical Conductivity	See Figure 12	(13,29)
Surface Tension	See Figure 13	(13,26)
Phase Diagram	See Figure 14	(22)
Solubility of Lithium in Mercury	See Figures 15, 16	(13,23 24,25)
Chemical Reactions		
With O ₂	Rate of reaction is appreciable at room temperature	(28)
With N ₂	Apparently stable against dry N_2 at temperatures from $\overline{20^{\circ}C}$ beyond 165 C and at-mospheric pressures	(28)
With H ₂ O	See Lithium – Mercury – Water System	
Heat of Solution	(Li) _s + 99 (Hg) ₁ → Li(Hg) ₉₉	(5)
	$^{A}H^{O}_{298}O_{K} = -19.6 \text{ k cal/g mo}$	le
Activity Coefficient	$\log_{10} \gamma = 0.1428M(15^{\circ}C \text{ to } 55)$	^o C)(54)
	Where $\gamma =$ activity coeffici and M = g-atoms Li per 13,5 g Hg at 25°C	ent 34

TEMPERATURE ° F

13.10

.

Ł.

ł

,

4

ŧ

DWG. 20303

FIGURE 10

Lithium - Potassium	
See share hi	
see phase diagram	Figure 17
Lithium - Sodium	
See phase diagram	Figure 18
Lithium - Potassium - Mercu	ir y
Solubility Curve	See Figure 19 (38)
Lithium - Sodium - Mercury	
Solubility Curve	See Figure 20 (38)
Lithium – Mercury – Water	
Reversible Electrode	Li(Hg) Li ⁺ (aq)
	$E_{298}^{o} R = 2.079 \text{ volts}$ (107)
Chemical Reaction	Li(Hg) + xs $H_2O \longrightarrow$ (LiOH)aq + Hg + 1/2 H_2
	$\Delta H_{298} \circ_{K} = -33.5 \text{ k cal/g mole}$
	$\Delta \mathbf{F}_{298} \mathbf{o}_{\mathbf{K}} = -28.75 \ \mathbf{k} \ \mathbf{cal/g}$
	mole (107)
Rate of Reaction	$k = \frac{2(C_0^{1/2} - C_f^{1/2})}{st} \text{ for weak}$
	acids and water solution (29,30, 108)
	Appears to have following dependence in LiOH solution:
	$k^{1} = \frac{ks}{2} = \frac{(C_{0}^{1/2} - C_{f}^{1/2})}{t}(C_{OH})$

а ^ст.

r

*

,

.

1

1

ï

	Where k is the specific rate constant, s the interfacial area, C_0 and C_f the initial and final concentration of Lithium in the amalgam, t is the time corresponding to C_f , and (C_{OH}) is the LiOH con- centration
Activation Energy	$\mathbf{E}^{\dagger} \cong 7.75 \ \mathbf{k} \ \mathbf{cal/g-mole}$ (See Figure 6).
Lithium - Mercury - Ammoni	um Chloride – Tetrahydrofuran
Chemical Reaction	$Li(Hg) + NH_4Cl_{(solid)} + THF \rightarrow$
	$LiCl_{(dissolved)} + THF + Hg + 1/2H_2 + NH_3$
Rate of Reaction	Apparently limited by solu- bility of NH_4Cl in THF (31)
Lithium - Mercury - Lithium	m Anthracene - Dimethylcellosolve
Isotopic Exchange System	Li(Hg) vs Li Anthracene dis- solved in Dimethylcellosolve (33)
Separation Factor	$\alpha = 1.042 \pm 0.012(95\% \text{ CI}) \text{ at}$ 27°C (32)
Lithium - Mercury - Lithium	n Benzophenone - Dimethylcellosolve
Isotopic Exchange System	Li(Hg) vs Li-Benzophenone dis- solved in Dimethylcellosolve (33)
Separation Factor	First Run – $\alpha = 1.057 \pm 0.012(95\% \text{ CI})$ at 27°C (32)
	Second Run - $\alpha = 1.056 \pm 0.008(95\% \text{ CI}) \text{ at}$ 27°C (40)

Lithium - Mercury - Lithium Benzophenone anil -Dimethylcellosolve Li(Hg) vs Li-Benzophenone Isotopic Exchange System anil dissolved in Dimethylcellosolve (33)First Run -Separation Factor $\alpha = 1.038 \pm 0.011(95\% \text{ CI})$ (32,at 27°C 34) Second Run - $\alpha = 1.037 - 0.008(95\% \text{ CI})$ at 26.5 C Lithium - Mercury - Lithium Chloride - Dimethylcellosolve Li(Hg) vs LiCl dissolved in Isotopic Exchange System Dimethylcellosolve $\alpha = 1.023 \pm 0.013(95\% \text{ CI})$ at 26°C Separation Factor (34) Low solubility of LiCl in Dimethylcellosolve made this run difficult. Lithium - Mercury - Lithium Benzophenone - Propylenediamine Li(Hg) vs Li-Benzophenone dis-Isotopic Exchange solved in Propylenediamine $\alpha = 1.055 \pm 0.016(95\% \text{ CI})$ Separation Factor at $27^{\circ}C$ Lithium - Mercury - Lithium Benzophenone anil -Propylenediamine Li(Hg) vs Li-Benzophenone anil Isotopic Exchange System dissolved in Propylenediamine $\alpha = 1.047 \pm 0.012(95\% \text{ CI})$ Separation Factor at 26.5°C (40)

<u> Lithium - Mercury - Lithi</u>	um Benzophenone - Tetrahydrofuran
Isotopic Exchange System	Li(Hg) vs Li-Benzophenone dissolved in THF
Separation Factor	$\alpha = 1.045 \pm 0.008(95\% \text{ CI})$ at 27°C (40)
Lithium – Mercury – Lithi Tetrahydrofuran	um Benzophenone anil -
Isotopic Exchange System	Li(Hg) vs Li-Benzophenone anil dissolved in TFH
Separation Factor	$\alpha = 1.046 \pm 0.012(95\% \text{ CI})$ at 27°C (40)
Lithium - Mercury - Lithiu	ım Chloride - Ethylenediamine
Isotopic Exchange System	Li(Hg) vs LiCl dissolved in EDA
Separation Factor	See Figures 21, 22 (36)
Isotopic Exchange Rate	
Mass Transfer	. ,
	Before Equilibration
	Amalgam phase 3.7g Li/l 3.4g Li/l
	Amine phase 1.8 g Li/l 1.9g Li/l (35)
Stability of System	Temperature and metallic contact increase decomposition of EDA as indicated by color change. (36)
Interfacial (Surface) Tension	Dispersion in pulse column in- versely proportional to tempera- ture. This indicates interfacial tension increases with temperature. (37)

<u>د</u> د

Lithium - Mercury - Lithium Chloride - Isopropanol

Isotopic Exchange System	Lithium amalgam vs LiCl dissolved in Isopropanol	
Separation Factor	$\alpha = 1.055 \pm 0.009(95\% \text{ CI})$ at 26.5°C	(40)

Lithium - Merc	ury -	Lithium	Chloride	- 1	Propylenediamine
----------------	-------	---------	----------	-----	------------------

Isotopic Exchange System Li(Hg) vs LiCl dissolved in PDA

Separation Factor See Figures 22, 23 (34,40)

Lithium - Mercury - Lithium Chloride - Tetrahydrofuran

Isotopic Exchange System	Li(Hg) vs LiCl dissolved in THF	
Separation Factor	See Figures 22, 24	(
Rate of Reaction	Isotopic exchange was re-	

Isotopic exchange was reported complete in less than 5 minutes in laboratory shakeout tests. (41)

34)

Lithium - Mercury - Lithium Hydroxide - Water

(Reaction Rate)

Isotopic Exchange System		System	Li(Hg) vs LiOH dissolved in H_2O (Chemical reaction Li(Hg) + H_2O LiOH + $1/2H_2\uparrow$ + Hg minimized by applied potential and/or low temperature.)		
Separatio	on Factor		See Figures 22, 25	(42)	
Stabilit	y of Syste	em	See Li-Hg-H ₂ O system		

. .

ŧ

Chemical Reaction

Reaction Kinetics

LiCl_(PDA) + K(Hg) Laboratory data indicate that the rate determining step is independent of the amalgam concentration, but is a function of available surface area of KC1 when both phases are well dis-

pensed by rapid agitation. (93,94)

Li(Hg) + KCl_(solid) + PDA

 $-d \frac{[Li(Hg)]}{dt} = k f(KC1)$

$$k \cong 0.06 \frac{\text{moles/l-Hg}}{\text{min}}$$
, at

temperature of 25 °C and 3 molar (325 mesh) KCl slurry in a laboratory sized mixing unit.

Equilibrium Data

 $K_{eq} \cong \frac{[KC1][Li(Hg)]}{[LiC1][K(Hg)]}$ (39) $K_{eq} \cong 1.6 \times 10^{-5} \text{ at room}$ temperature (~25°C)

(These data are valid when starting with 0.4M K-amalgam and 0.7M LiCl - PDA solution).

Lithium - Mercury - Propylenediamine - Propylenediamine-Hydrochloride

Chemical Reaction	2 Li(Hg) + PDA · 2HCl (solution in PDA) → 2LiCl + Hg + PDA +	H ₂
Rate of Reaction	Rapid: decomposition of a lithium amalgam was complete within 10 minutes with in- efficient laboratory agitation.	(39)

Chemical Reaction

Reaction Kinetics

Li(Hg) + NaCl (solid) + PDA LiCl (solution in PDA) + Na(Hg)

Laboratory tests show rate determining step is a function of the particle size of solid NaCl when both phases are well dispersed by rapid mixing. (89-92)

$$\frac{-d \left[\text{Li}(\text{Hg}) \right]}{dt} = k \quad f(\text{NaCl})$$

where f_(NaCl) is some function of the total surface area of salt particles.

Data shown in Figure 26 indicate that

 $k_{(max)} \approx 1.2 \frac{moles}{1-Hg}/min.$ where the NaCl (PDA-slurry) is 3 molar (-325 mesh) and rate of mixing is 578 rpm in a laboratory sized mixing unit.

Temperature $(25 - 100^{\circ}C)$ appears to have a negligible effect upon the rate of reaction.

 $K_{eq} = \frac{[Na(Hg)][LiC1]}{[Li(Hg)][NaC1]}$ (97)

 $K \approx 2.8 \times 10^4 \text{ at } 25^{\circ}\text{C}$

 $K \approx 1.6 \times 10^4 \text{ at } 58^{\circ}\text{C}$

(These data are valid when starting with 0.7M. Liamalgam and excess NaCl in PDA).

Equilibrium Data

Lithium - Potassium - Merc	ury - Lithium Chloride -	
Propylenediamine		
Isotopic Exchange System	Li(Hg) + K(Hg) vs LiCl dissolved in PDA	
Separation Factor	$\alpha = 1.045 \pm 0.008(95\% \text{ CI})$ at 23°C	(38)
	(K/Li in amalgam varied from 2 to 1)	
Lithium - Sodium - Mercury Propylenediamine	- Lithium Chloride -	
Isotopic Exchange System	Li(Hg) + Na(Hg) vs LiCl dissolved in PDA	
Separation Factor	$\alpha = 1.051 \pm 0.05 (95\% \text{ CI})$ at 23°C	(38)
	(Na/Li in amalgam = 1)	
В.	LITHIUM CHLORIDE	
Formula Weight	42.40	(3)
Melting Point	614 [°] C, 1137 [°] F	(6)
Boiling Point	1382°C, 2520°F	(6)

Melting Point	614°C, 1137°F	(6)
Boiling Point	1382°C, 2520°F	(6)
	1360 [°] C, 2480 [°] F	(3)
Latent Heat of Fusion	3200 cal/g mole, 75.5 cal/g, 5760 Btu/lb mole, 136 Btu/lb	(6)
Latent Heat of Vapor	36,000 cal/g mole, 850 cal/g, 65,000 Btu/lb mole, 153 Btu/lb	(6)
Vapor Pressure	10^{-4} atm at 663°C, 10^{-3} atm at 769°C, 10^{-2} atm at 911°C	(6)
Density	2.068 g/ml at $25^{\circ}C$	(3)

73

Heat Capacity	0.288 cal/ ^O C g(Btu/ ^O F lb) at 25 ^O C, 12.2 cal/ ^O C g mole (Btu/ ^O F lb mole)at 25 ^O C	
Refractive Index	1.662	(3)
Structure	Cubic – NaCl type	(3)
Purity of Reagent Grade	<pre><0.01% Basic constituents in Baker and Adamson reagent grade LiCl</pre>	(43)
Solubility in Anhydrous Solvents	See "Experimental Solubilitie of Salts in Anhydrous Solven by G. M. Begun	es ts" (44)
Lithium Chloride - Ethyle	enediamine	
Thermal Conductivity	5.78 x 10 ⁻⁴ cal/sec ^O C cm, 0.140 Btu/hr ft ^O F for 0.2M LiCl solution	(45)
Viscosity	See Figure 27	(11)
Conductivity	1.73 x 10 ⁻⁴ mho for 0.227M LiCl at 25.2 ⁰ C	(46)
Solubility	See Figures 16, 28, 29	(47)

Lithium Chloride - 2 Ethylhexanol

Phase Diagram

Solubility (approx.)	Temp. ^O C	LiCl mole/liter ⁽⁵⁰⁾
	Rm	1.1
	165	0.23
	184	0.09

See Figure 30

(48,49)

Lithium Chloride - Propylenediamine

Boiling Point Rise Constant	3.5 [°] C/mole LiCl in PDA solution	(51)
Latent Heat of Vaporization	129.5 cal/gm (79-119 ⁰ C)	(51)

•	
Density	See Figures 31, 32 (47,52)
Thermal Conductivity	5.5 x 10^{-4} cal/sec ^O C cm, 0.133 Btu/hr ^O F ft for 0.8M LiCl/liter (45)
Viscosity	See Figures 33, 34 (47)
Heat of Solution	See Figure 35 (53)
Solubility	See Figures 16, 28
Chemical Reactions	LiCl + 2 PDA
	LiCl + PDA - LiCl · PDA at 120°C
Vapor Pressure of PDA solution containing LiCl	See Figure 36 (51)
Lithium Chloride - Tetrahy	drofuran
Solubility	1.67 moles/liter at 1°C 0.8 moles/liter at 27°C (31,32) 0.2 moles/liter at 60°C
Solvation	No stable solvate at 100 ^O C (31)
Lithium Chloride - Water	
Phase Diagrams	See Figure 37 (56)
Chemical Reactions	2 LiCl + $H_2O \rightarrow 2$ HCl + Li ₂ O (55)
	This reaction does not pro-

This reaction does not proceed to any marked degree at temperature up to 150°C.

Formula Weight 60.41 LiCl·H₂O

Stability $\text{LiCl} \cdot \text{H}_2 \text{O} \rightarrow \text{LiCl} + \text{H}_2 \text{O} \sim 96^{\circ}\text{C}$ (56) Formula Weight 78.43

LiCl·2H₂O

•

DWG. 20321

Stability	$LiCl \cdot 2H_2 O \rightarrow LiCl \cdot H_2 O + H_2 O$	
	~ 20 [°] C	(56)

Lithium Chloride - Ethylenediamine - Propylenediamine

ŝ

Solubility of LiCl in mixed solvents	% EDA*	Solubility of LiCl mole/liter at room temp ers ture	(40)

0

10

20 30

40 50

60

70 80

100

*	% EDA was	s reported	as % of
	original	EDA – PDA	mixture
	prior to	addition	of excess
	LiCl.		

1.2

1.63 1.55

1.37

0.72

0.3

0.3

0.3

-

×.

8

.

Lithium Chloride - Sodium Chloride - Ethylenediamine

Solubilitie s in Solution	Solubili	ty moles.	/liter	(45)
Saturated with NaCl and LiCl	Temp. ^O C	NaC1	LiC1	
	26 60 80 101	0.078 0.074 0.049 0.026	0.31 0.69 2.85 4.6	

Lithium Chloride - 1	Magnesium Chloride	- Propylenediamine	
Phase Diagram	See Figure	38 (57	7,58)
Solubilities	See Figure	39 (57	7,58)

Lithium Chloride - Potassium Chloride - Propylenediamine

Solubility of KCl in LiCl-PDA solutions	~0.005 moles KCl/liter of LiCl solution between 24 ^o and 115 [°] C and between 1	(59)
	and 3.4 molar LiCl	

ł

Lithium Chloride - Sodium	Chloride - Prop	ylenediamine
Solubilities in Solution saturated with NaCl and Li	So Cl <u>Temp.^OC</u>	lubility moles/liter <u>NaCl LiCl</u> (45)
	30 72 92 100 130	0.008 0.943 0.0047 3.31 0.006 3.73 0.018(?) 3.97 0.013(?) 4.28
Solubilities in Solution saturated with NaCl	See Figure 40	(60)
Lithium Chloride - Propyle	nediamine – Tet	rahydrofuran
Solubility of LiCl in mixed solvents of PDA and THF	% PDA Room Solu 1.4 40.9 87.4	Temperature (34) bility (moles/liter) 0.31 0.054 0.77
Lithium Chloride - Mercury	- Water	
Chemical Reaction (electrolysis of LiCl)	LiCl (in H ₂ O s Li(Hg) + 1/2 C	olution) + Hg + e \rightarrow l_2 + H ₂ O
Effect of PDA impurity	PDA/LiCl ≥ 0.00 efficiency ≥ 10 due to two ind side reactions $H_3O + e \rightarrow 1/2H$ Li(Hg) + $H_2O \rightarrow$	1 lowers cell (62) %. This may be istinguishable $_2$ + H ₂ O and - LiOH + 1/2H ₂
Lithium Chloride – Propylenediamine – Water		
Phase Diagram	See Figure 41	(61)
Lithium Chloride – Propylenediamine – Magnesium – Mercury		
Chemical Reaction	Mg(Hg) + LiCl Li(Hg) + MgCl ₂ + PDA	(in PDA solution) •3PDA (insoluble)

€‱ گ

,

(1) Reaction Rate appears to (100, be first order with respect 90, to concentration of Mg in 91, the amalgam and independent 92) of the LiCl in the amine phase when LiCl is in stoichiometric excess.

$$-d\left(\frac{Mg}{dt}\right) = k(Mg)$$

or: $\ln \frac{(Mg)_{O}}{(Mg)_{f}} = kt$

where k is specific rate constant, Mg₀ and Mg_f are the initial and final Mg amalgam concentrations, and 't' is the time required to reach a concentration of Mg_{f} .

(2) Effect of temperature: See Figure 42.

$$\ln k \approx -\frac{2000}{T} + 5.92$$

where T is the absolute temperature (Kelvin)

 $k \stackrel{\sim}{\simeq} 1.8 \text{ (min.}^{-1}\text{)}$ when the phases are vigorously contacted at 100°C in a laboratory (Rushton type) contactor.

 $K_{eq} = \frac{\left[\text{Li}(\text{Hg})\right]^{2} \left[\text{MgCl}_{2}\right]}{\left[\text{LiCl}\right]^{2} \left[\text{Mg}(\text{Hg})\right]}$ (57) $K \stackrel{\sim}{=} 78 \text{ at } 25^{\circ}\text{C}$ $K \stackrel{\sim}{=} 10.6 \text{ at } 60^{\circ}\text{C}$

(These data are valid when starting with about 0.4 molar Magnesium -Amalgam and excess LiCl - PDA solution).

Equilibrium data

Lithium Chloride - Prop	ylenediamine - Potassium - Me	ercury
Chemical Reaction	K(Hg) + LiCl (in PDA solu Li(Hg) + PDA + KCl (insol	ution) 🛹
Reaction Kinetics	Reaction rate is very rap phases are well dispersed librium was reached in le 2 minutes in a laboratory column contactor at 100°C effect of temperature on action rate has not been gated.	oid when d. Equi- ess than y mixer C. The the re- investi- (101)
Equilibrium Data	See Figures 43, 44, 45	(93,102)
Lithium Chloride - Propy (See also Li-Hg-NaCl-PD	(<u>)</u> A)	<u>ir y</u>
Chemical Reaction	Na(Hg) + LiCl (in PDA sol Li(Hg) + PDA + NaCl (inso	ution) <
Reaction Kinetics	See page 70 for kinetics verse reaction. Rate of reaction has not been inv gated.	of re- forward vesti-
Equilibrium Data	See Figure 46.	(93)
C.	LITHIUM HYDROXIDE	
Formula Weight	23.95	
Melting Point	462 [°] C	(5)
	450 [°] C	(2)
	445 °C	(3)
Boiling Point	Decomposes 900 ⁰ C	(63)
Density	l.43 g/ml at 20 ⁰ C	(3)
	2.54 g/ml at 20° C	(2)

۰

-

....

.

٣

٠

4 - Carlos -

.

1

1.

Lithium Hydroxide - Water

Precipitate

1

Formula Weight (LiOH·H ₂ O)	41.96	
Phase Diagram	See Figure 47	(64)
Solubility of LiOH in H ₂ O	See Figures 16, 48	(64)
Density of LiOH Solutions	See Figures 49, 50	(9)
Lithium Hydroxide - Sodium	Phosphate - Water	
Chemical Reaction	LiOH aq. + Na ₃ PO ₄ aq $- \rightarrow$	
	Li_3PO_4 (insoluble) + NaOH aq.	
Conditions for Filterable		

III. MAGNESIUM AND MAGNESIUM COMPOUNDS

Determined by A. A. Palko

(53)

A. MAGNESIUM

Atomic Weight	24.36	
Melting Point	651°C, 1204°F	(1)
Boiling Point	1103°C, 2017°F	(1)
Latent Heat of Fusion	82.2 cal/g, 148 Btu/lb, 1990 cal/g mole, 3590 Btu/lb mole	(1)
Latent Heat of Vaporization	l337 cal/g, 2405 Btu/lb, 3250 cal/g mole,`5850 Btu/lb mole	(1)
Vapor Pressure	$\log_{10} P_{mm} = \frac{-7167}{T(^{O}K)} + 8.088$	(1)
	Accuracy 10% 1000 - 1400 [°] K 20% 600 - 1450 [°] K	(1)
	See Figure 7	

ł .

Density	l.74 g/ml at 20 ⁰ C, 1.536 g/ml at 700 ⁰ C, 108.5 lbs/ft ³ at 68	o _F (3)
Heat Capacity	0.317 cal/g ^o C at 651° C, 0.342 cal/g ^o C at 1120 ^o C	(1)
Surface Tension	563 dynes/cm at 681 ⁰ C, 502 dynes/cm at 894 ⁰ C	(1)
Volume Change on Fusion (% of sol. volume)	4.2%	(1)
<u> Magnesium - Mercury</u>		
Density	D = 13.55744 - 0.0022656t (^O C for 0.8N amalgam D = 13.4388 - 0.002125t (^O C) for 3.0N amalgam) (13, 65, 66, 67)
	See Figures 10, 51	
Viscosity	$log_{10}^{h} = -0.2489 + 132.3/T_{(0)}^{h}$ for 0.8N amalgam $log_{10}^{h} = -0.2799 + 148.4/T_{(0)}^{h}$ for 3.0N amalgam	K) (13, 65, 66, K) 67)
	See Figure 52	
Surface Tension	See Figure 13	13,26)
Phase Diagram	See Figure 53	14,15)
Solubility	See Figures 15, 16	13,25)
Chemical Reactions with Impurities	No reaction with O_2 , H_2O free N_2 has been observed at room temperature. Both O_2 and H_2O impurities in N_2 or He blanketing gases form scums on magnesium amalgams. (1 13,67)
Thermodynamics	ΔH mixing → - 17.3 K cal/mole Mg + 40.5 Hg → Mg(Hg), in Hg	e for (13)

~

B. MAGNESIUM CHLORIDE

Formula Weight	95.23	
Melting Point	714 [°] C, 1317 [°] F	(5,6)
Boiling Point	1418 ⁰ C, 2584 ⁰ F	
Heat of Fusion	10,300 cal/g mole, 108 cal/g, 18,500 Btu/lb mole, 194 Btu/lb	(5;6)
Heat of Vaporization	32,700 cal/g mole, 344 cal/g, 58,800 Btu/lb mole, 618 Btu/lb	(5,6)
Vapor Pressure	10^{-3} atm at 763 [°] C, 10^{-2} atm at 907 [°] C	(6)
Density	2.32 g/ml, 145 lbs/ft ³	(2)
Refractive Indicies	1.675, 1.59	(2)
Preparation of Anhydrous Magnesium Chloride	Best method of preparation was found to be that of therm decomposition of $NH_4Cl \cdot MgCl_2 \cdot$ discussed by Richards, <u>Proc</u> . Acad. 32 53, (1896).	al 6H ₂ O Amer.

Magnesium Chloride - Ammonia

Formula Weights of Compounds:

MgCl ₂ 、6NH	197.41
$MgCl_2 \cdot 4NH_3$	16 3 , 3 5
MgCl ₂ ·2NH ₃	129.29
MgCl ₂ °NH ₃	112.26

Decomposition Temperatures and Heats:

Temp^oC Reaction $MgCl_2 \circ 6NH_3 \longrightarrow MgCl_2 \circ 4NH_3 + 2NH_3$? $\Delta H = ?$ $MgCl_2 \cdot 4NH_3 \longrightarrow MgCl_2 \cdot 2NH_3 + 2NH_3$? $\Delta H = ?$ $MgCl_2 \cdot 2NH_3 \longrightarrow MgCl_2 \cdot NH_3 + NH_3$ 272°C $\Delta H = 17,900 \text{ cal/mole}$ $MgCl_2 \cdot NH_3 \longrightarrow MgCl_2 + NH_3$ 365[°]C $\Delta H = 20,800 \text{ cal/mole}$ Vapor Pressure See Figure 54 (9)

Magnesium Chloride - 2 Ethylhexanol

Solubility of Magnesium $(0.07 \text{ moles } MgCl_2/liter)$ Chloride in 2 Ethylhexanol (solution at room temp.) (69)

Magnesium Chloride - Propylenediamine

Chemical Reaction $MgCl_2 + 3PDA \rightarrow MgCl_2 \cdot 3PDA$ (crystalline) Solubility of MgCl₂ · 3PDA Temp. Solubility mole/liter (43, in PDA 55) 27°C 8.5×10^{-4} 60°C 2.1×10^{-3} Vapor Pressure of PDA Species Vapor Pressure Temp. (70, over MgCl₂ in PDA 71) $MgC1_2 \cdot 3PDA$ 30 mm 160^oC $MgCl_2 \cdot 2PDA \sim 0.04 mm$ 162°C 200°C MgC1, °2PDA 2.1 mm $MgCl_2 \cdot 1PDA < 2 mm$ 400⁰C

(9)

Magnesium Chloride - Ammonia - Propylenediamine

Chemical Reaction	$MgCl_2 \cdot MgCl_2 \cdot$	3 PDA + 6 NH₃ +	6NH ₃	
Mole ratio PDA/MgCl ₂ in washed MgCl ₂ · 6NH ₃	Pressure	Temp。	Starting Mat. PDA/MgCl ₂	Product (104) PDA/MgC1 ₂
precipitate	l atm	-33 ⁰ C	∼ 3	0.031
	l atm	-33 [°] C	~ 9	.050
	l atm	-33°C	N 9	.053

Magnesium Chloride - Decane - Propylenediamine

Apparent equilibrium PDA/MgCl, ratio after	0.46, 0.75 PDA/MgCl ₂	(68)
refluxing and dis- tilling at decane boil- ing point	(decane returning to the system upon refluxing carried room temperature saturation of PDA)	

Magnesium Chloride - Dodecane - Propylenediamine

Apparent equilibrium PDA/MgCl ₂ ratio after	1.1, 1.2 $PDA/MgCl_2$	(72)
refluxing and dis- tilling at dodecane boiling point	(dodecane returning to the system upon refluxing carried room temperature saturation of PDA)	

Magnesium Chloride - Ethylene glycol - Propylenediamine

Apparent equilibrium at Ethylene glycol boiling point

.

PDA/MgCl₂ ratio after refluxing and distilling (Ethylene glycol replaces PDA to some extent in the solvated salt structure)

Magnesium Chloride - 2 Ethyhexanol - Propylenediamine

Apparent equilibrium 1.3 PDA/MgCl₂ (73)PDA/MgCl₂ ratio after refluxing and distilling

0.2 PDA/MgCl₂

at 2 ethylhexanol boiling point

.

(73)

Magnesium Chloride - Methanol - Propylenediamine

Solubility of MgCl₂°3PDA See Figure 55 (103) in Methanol-PDA mixtures

Magnesium Chloride - Propylenediamine - Water

 $MgCl_2 + xs H_2O + xs PDA \longrightarrow$ Chemical Reaction $Mg(OH)_2 + 2PDA \cdot HC1 + H_2O + PDA$ Solubility Mg⁺⁺ Solubility of Mg⁺⁺ in (60) Temp °C % PDA $H_2O - PDA$ mixtures in moles/liter 0.007 90 25 25 0.033 60 0.012 30 25 60 60 0.010 60 0.003 30

Magnesium Chloride - Ammonia - Methanol - Propylenediamine

Chemical Reaction $MgCl_2 \cdot 3PDA$ (in MeOH sol'n) + NH3
MgCl2 $\cdot 6NH$ + 3PDA (in MeOH sol'n)Solubility of MgCl2 $\cdot 6NH3$
in MeOH in presence of
NH3 and PDASee Figure 56(103)PDA content of MgCl2 $\cdot 6NH3$
precipitateSee Figure 57(103)

IV. POTASSIUM AND POTASSIUM COMPOUNDS

A. POTASSIUM

Atomic Weight	39.096	
Melting Point	63.7°C, 147°F	(1)
Boiling Point	760 [°] C, 1400 [°] F	(1)
Latent Heat of Fusion	14.6 cal/g, 571 cal/g mole, 26.3 Btu/1b, 1027 Btu/1b mole	(1)

FIGURE 50

114

UNCLASSIFIED DWG. 20341

FIGURE 57

Latent Heat of Vaporization	496 cal/g, 1940 cal/g mole, 892 Btu/lb, 3490 Btu/lb mole	(1)
Vapor Pressure	$\log_{10} \mathbf{P}_{mm} = -\frac{4552}{\mathbf{T}(\mathbf{OK})} -$	(1)
	$0.5 \log T(-K) + 8.793$	
	Accuracy 5% from 600-1100 K; 20% 350-1200 K	
	See Figure 7	
Density	0.86 g/ml at 20 [°] C, 53.6 lbs/f at $68^{\circ}F$, 0.82 g/ml at $100^{\circ}C$	t ³ (1)
Heat Capacity	0.1956 cal/g ^O C (Btu/lb ^O F) at 75 ^O C (as a liquid)	(1)
Viscosity	0.515 centipoise at 70 [°] C, 0.331 cp at 167 [°] C	(1)
	See Figure 8	
Thermal Conductivity	0.1073 cal/sec $cm^{\circ}C$ at $200^{\circ}C$	(1)
Electrical Resistivity	13.16 μ ohms at 64°C	(1)
Surface Tension	86 dynes/cm (100 to 150° C)	(1)
Volume Change on Fusion (% of Sol. Vol.)	2.41%	(1)
Potassium - Mercury		
Surface Tension	See Figure 13	13,26)

	200	(= = ; = ;
Electrical Conductivity	See Figure 12	(13,27)
Density	13.371 g/ml for 0.629 moles K/liter sol'n (0.184 wt %)	(13, 74)
	12.908* g/ml for 3.14 moles K/liter sol'n (0.950 wt %)	
	both at room temperature	
	* must contain KHgo crystal	line solid

Solubility of K in Hg See Figures 15, 16 (13, 25)(13, 22)Phase Diagram See Figure 58 $K + 199 Hg \longrightarrow K(Hg)_{199}$ Heat of Solution A H = 26,350 cal $K + 49 Hg \longrightarrow K(Hg)_{49}$ AH = 26,120 cal $\log_{10} \gamma = 0.4396 \text{ M} (25^{\circ}\text{C})$ (54) Activity Coefficient where $\gamma =$ activity coefficient and M = g atom K per 13,534 g Hg at 25°C Potassium - Sodium

Phase Diagram See Figure 59

B. POTASSIUM CHLORIDE

Formula Weight	74.55	
Melting P oint	770 ⁰ C	(6)
Boiling Point	1407 [°] C	(6)
Heat of Fusion	6410 cal/g mole	(6)
Heat of Vaporization	38,840 cal/g mole	(6)
Vapor Pressure	10^{-4} atm at 607°C, 10^{-3} atm at 806°C, 10^{-2} atm at 948°C	(6)
Density	1.984 g/ml	(2)
Refractive Index	1.490	(2)

Potassium Chloride - Ethylenediamine

Solubility	0.0017	moles	KC1/liter	sol'n	
•	at room	i temp€	erature		(11)

Potassium Chloride - Propylenediamine

Solubility	0.0001 moles KCl/liter sol'n at 20 ⁰ C	(43,55)
	0.0002 moles KC1/liter	
	sol'n at 60 ⁰ C	
	0.0004 moles KCl/liter	
	sol'n ave, from 24 ⁰ to 115 ⁰ C	

V. SODIUM AND SODIUM COMPOUNDS

	A. SODIUM	
Atomic Weight	22.997	
Melting Point	97.8 [°] C, 208 [°] F	(1)
Boiling Point	883°C, 1621°F	(1)
Latent Heat of Fusion	27.05 cal/g, 622 cal/mole, 48.7 Btu/lb, ll20 Btu/lb mole	(1)
Latent Heat of Vaporization	1005 cal/g, 2315 cal/mole, 1810 Btu/lb, 4160 Btu/lb mole	(1)
Vapor Pressure	$\log_{10} P_{mm} - \frac{5567}{T} - $	(1)
	$0.5 \log_{10} T - 9.235$	
	$\mathbf{T} = \mathbf{O}\mathbf{K}$	
	Accuracy 1200 - 450 [°] K, 5%; 1250 - 370 [°] K, 10%	
	See Figure 7	
Density	0.97 g/ml at 20 ⁰ C, 0.928 g/ml at 100 C (Liquid) 60.5 lb/ft ³ at 68 F	(1)
Heat Capacity	0.3305 cal/g ^O C at 100 ^O C (Btu/lb ^O F) (as a liquid)	(1)

*

0.686 centipoise at 103.7°C (1)Viscosity See Figure 8 0.2055 cal/sec $\text{cm}^{\circ}\text{C}$ at 100 $^{\circ}\text{C}$ 49.7 Btu/hr ft F at 212 F Thermal Conductivity (1)9.65 μ ohms at 100°C Electrical Resistivity (1)206.4 dynes/cm at 100°C Surface Tension (1)Volume Change on Fusion 2.5% (1)(% of sol. vol.) Sodium - Mercury 13.448 g/ml for 0.601 g atoms Density Na/liter sol'n (0.103 wt %) (13,74) 12.965 g/ml for 3.37 g atoms Na/liter sol'n (0.597 wt %)both at room temperature. 1.74 centipoise for 1.95 g atoms Viscosity Na/liter sol'n at 25°C (13)2.2 centipoise for saturated sol'n at $25^{\circ}C$ (13, 26)Surface Tension See Figure 13 Electrical Conductivity See Figure 12 (13, 27)See Figure 15, 16 Solubility of Na in Hg (13, 25)Phase Diagram See Figure 60 (13, 22, 14)Heat of Mixing $Na + 199 Hg \rightarrow Na(Hg)_{199}$ (13) $\Delta H = -19,930$ cal $Na + 49 Hg \rightarrow Na(Hg)_{40}$ $\Delta H = -19,860$ cal $\log \gamma = 0.2148 \text{ M at } 25^{\circ}\text{C}$ (54) where $\gamma = \text{activity coefficient and}$ M = g atom Na per 13,534g Hg at 25°C Activity Coefficient

B. SODIUM CHLORIDE

Formula Weight	58.45	
Melting Point	800 ⁰ C	(6)
Boiling Point	1465 [°] C	(6)
Latent Heat of Fusion	7220 cal/g mole	(6)
Latent Heat of Vaporization	40,808 cal/g mole	(6)
Vapor Pressure	0.01 atm. at $996^{\circ}C$, 0.0001 at at $741^{\circ}C$	tm. (6)
Density	2.165 g/ml	(2)
Heat Capacity	11.88 cal/ ^O C mole at 25 ^O C	(5)
Refractive Index	1.5442	(2)
Sodium Chloride - Ethyler	nediamine	

Solubility of NaCl in	See	Figures 2	9,	61 (11)
EDA					

Sodium Chloride - Propylenediamine

Solubility in NaCl	See Figure 62	(45,60)
in PDA		

Sodium Chloride - Tetrahydrofuran

Solubility of NaCl	$\sim 2 \times 10^{-4}$ moles NaCl/liter	
in THF	sol'n at 27 ⁰ C	(31)

. ,

£

Solubility of NaCl in wet PDA	Temp. ^O C 25	$\frac{\text{Molarity NaCl}}{1\% \text{ H}_2 \text{ O}-99\% \text{ PDA}}{9.4 \text{ x} 10^{-3}}$	/liter sol'n (60) 2% H ₂ O-98% PDA 15.2 x 10 ⁻³
	40.5	6.8 x 10 ⁻³	11.2×10^{-3}
	56	5.1 x 10^{-3}	8.6 x 10 ⁻³
	63	$5 \cdot 0 \times 10^{-3}$	8.0×10^{-3}
	80	4.3 x 10 ⁻³	6.9×10^{-3}
C.	SODIUM	HYDROXIDE	
Formula Weight	40.01		
Melting Point	320 ⁰ C		(5)
Boiling Point	1390 °(2	(2)
Latent Heat of Fusion	1700 c	al/g mole	(5)
Density	2.130	g/ml	(2)
Heat Capacity	19.2 c	al/ ^O C mole,(Btu/	/1b ^o F) (5)
Refractive Index	1.3576		(2)
Sodium Hydroxide - 2 Eth	ylhexanol		
Solubility	0.51 m room t 0.47 m 184 [°] C	oles NaOH/liter emperature oles NaOH/liter	sol'n at (79) sol'n at
Sodium Hydroxide - Propy	lenediami	ne	

Sodium Chloride - Propylenediamine - Water

Solubility of NaOH in PDA ~ 0.0008 moles NaOH/liter sol'n at room temperature < 0.013 mole/liter sol'n at 75°C

(31)

Sodium Hydroxide - Water		
Phase Diagram	See Figure 63	(4)
Sodium Hydroxide - Ethylen	ediamine – Water	
Phase Diagram	See Figure 64	(11)
Sodium Hydroxide - Propyle	nediamine - Water	
Phase Diagram	See Figure 65	(75)
D.	SODIUM PHOSPHATE	
Formula Weight	163.97	
Melting Point	1340 [°] C	(3)
Density	2.537 g/ml at 17.5 [°] C	(3)
<u>Sodium Phosphate - Water</u>		
Solubility of Na ₃ PO ₄ in water	See Figure 66	(76)
<u>VI.</u>	LIQUID SOLVENTS	
	A. AMMONIA	
Formula Weight	17.03	
Melting Point	- 77.7°C	(16)
Boiling Point	- 33.35 [°] C	(16)
Latent Heat of Fusion	1352 cal/g mole, 79.4 cal/g 83.9 cal/g	(16) (17)

e

₹.

ŧ.

Latent Heat of Vaporization	5581 cal/g mole	e, 327 cal/g	(16)		
Vapor Pressure	log ₁₀ P _{mm} ≕ 12.465400 -				
	$\frac{1648.6068}{T}$ - 0.0)1638646 T	(16)		
	$+ 2.403276 \times 10^{-1}$	$(-5 T^2 -$			
	1.168708×10^{-8}	T ³			
	(183.1°< T <343.1°K)				
Critical Pressure	112.3 atm		(16)		
Critical Temperature	133 [°] C		(16)		
Density	Temperature^OC	Density g/ml	(16)		
	- 30 - 10 0 20	0.6777 0.6520 0.6386 0.6103			
Heat Capacity	l.l cal/g ⁰ C at	0 [°] C	(17)		
Viscosity	0.135 centipois	e at 25 ⁰ C	(16)		
Dielectric Constant	16.26 at 25 ⁰ C		(16)		
Dipole Moment	$1.46 \times 10^{-18} e.$	s.u.	(16)		
Conductivity	5×10^{-11} mho a	$t - 33^{\circ}C$	(17)		
Ignition Temperature	651 [°] C, 1204 [°] F		(3)		
Limits of Inflammability	>15% and $<28%$ in dry air at 2	5 (vol.)NH₃ 5 C	(3)		
Solubility of Metals	<u>Metal</u> Solubilit	<u>y g/100 g NH</u> 3	Temp. ^O C		
	Li	10.7	-33.2		
	Li Na	11.3 24.6	0 -33		
	K	49.0	-33		

(17)

Solubility of Some		Solubility $g/100 g NH_3 at 0^{\circ}C$			
S a lts in Ammonia	Cation		Anion		
		C1	Br	I	
	Li Na K NH₄ Mg	1.43 11.37 0.132 39.91	39.00 21.18 57.96 0.004	56.88 64.81 76.99 0.156	
Ammonia - Methanol					
Solubility of NH ₃ in Methanol	see	Figure 67		(77,4)	
Densities of sol'ns NH ₃ in Methanol	of See	Figure 68		(77)	
	В.	BENZENE			
Formula Weight	78.	11			
Melting Point	5.5	⁰ C, 42 ⁰ F		(3)	
Boiling Point	80.	1°C, 176.2°	² F	(3)	
Latent Heat of Fusic	on 235	l cal/g mo	le	(2)	
Latent Heat of Vaporization	7,3 16	53 cal/g mo 59.34 Btu/11	ole, 94.14 cal, o	′g, (2)	
Vapor Pressure	See	e Figure 69		(2)	
Density	0.8 54.	874 g/ml, 7 5 lb/ft ³ a	.29 lb/gal, t 25 C	(3)	
Heat Capacity (as ga	us) 19. 26.	52 cal/ ^O C (74 cal/ ^O C (g mole at 25 C g mole at 127 C	C (7)	
(as liqui	l d) 0.4	10 cal/ ⁰ g a	at 20 ⁰ C	(8)	
Viscosity	0.7	centipois	e at 20 ⁰ C	(8)	
Flash Point	-]	1 ⁰ C, 12 ⁰ F		(3)	

Ignition Temperature	580 [°] C, 1076 [°] F	(3)
Limits of Inflammability	>1.35% and <6.75% (vol.) of C_6H_6 in air	(3)
Refractive Index	1.05011 at 20 [°] C	(8)
Benzene – Ethylenediamine		
Phase Diagram	See Figure 70	(78,11)
Vapor Liquid Composition Diagram	See Figure 71	(78)
Benzene - Propylenediamine	-	
Phase Diagram	See Figure 72	(79)
Vapor Liquid Composition Diagram	See Figure 73	(79,80)
	C. DECANE	
Formula Weight	142.28	
Melting Point	- 29.7 [°] C	(3)
Boiling Point	172.5 ⁰ C at 762 mm	(81)
Density	0.730 at 20°C	(81)
Heat Capacity	58.10 cal/ ^O C g mole for gas at 25 ^O C	(7)
Viscosity	0.9204 centipoise at 20 ⁰ C	(7)
Surface Tension	23.7 dynes/cm at 20 [°] C	(81)
Flash Point	46 [°] C	(3)
Ignition Temperature	250 [°] C	(3)
Explosive Limits	0.67 to 2.60% by vol. in air	. (3)

ł

Refractive Index	1.41206 at 20 [°] C	(81)
Decane - Propylenediamine		•
Vapor Liquid Composition Diagram	See Figure 74	(82)
Limits of Solubility Room temperature	0.01 moles PDA soluble per liter decane phase	(68)
	0.15 mole decane soluble per liter PDA phase	
	D. DODECANE	
Formula Weight	170.33	
Melting Point	-9.6 [°] C	(3)
Boiling Point	214.5 [°] C	(3)
Density	0.750 g/ml at 20°C	(81)
Heat Capacity	69.62 cal/ ^O C g mole for gas at 25 ^O C	(7)
Viscosity	1.49 centipoise at 20 ⁰ C	(7)
Surface Tension	25.5 dynes/cm at 20 ⁰ C	(81)
Flash Point	74 ⁰ C	(3)
Ignition Temperature	534 [°] C	(3)
Explosive Limits	0.60 to % by vol. in air	(3)
Refractive Index	l.42186 at 20 [°] C	(81)
Dodecane – Propylenediamir	<u>1e</u>	
Limits of Solubility at room temperature	0.04 moles PDA per liter of dodecane phase 0.01 moles dodecane per liter of PDA phase	(72)
E.	ETHYLENEDIAMINE	
Formula Weight	60.08	

Melting Point	10.8 ⁰ C		(8)
Boiling Point	116.2 [°] C		(11)
Latent Heat of Fusion	77 cal/g (m	onohydrate)	(11)
Latent Heat of Vaporization	167 cal/g (monohydrate)	(11)
Vapor Pressure	See Figure	75	(11)
Density	See Figure	76	(11)
Heat Capacity	0.66 cal/g	$^{\circ}C$ (12 $^{\circ}$ - 26 $^{\circ}C$)	(11)
Thermal Conductivity	0.00060 cal 0.145 Btu/h	/sec ^O C cm, r [°] F ft	(11)
Viscosity	See Figure	27	(11)
Conductance	9.0 x 10 ⁻⁸	mho	(11)
Surface Tension	See Figure	77	(11)
Flash Point	110 ⁰ F		(8)
Refractive Index	1.4565 at 2	0 [°] c	(8)
Solubilities of Salts in EDA	See Figures	16,28,29	(11)
Solubilities of Salts in EDA at room temp.	Salt	Solubility moles/liter sol'n	(11)
	LiF LiC1 LiBr LiI KC1 KBr KI NaC1 NaBr NaI	0.001 0.29 0.25 0.37 0.0017 0.059 3.44 0.05 4.09 1.9	
	$EDA \cdot 2HC1$ $EDA \cdot H_2 SO_4$ $EDA \cdot H_2 CO_2$	1.70 0.001 1.0	

Phase Diagram		See Figure 78	(11)
	F.	ETHYLENE GLYCOL	
Formula Weight		62.07	
Melting Point		- 13.0°C	(8)
Boiling Point		197.2°C	(8)
Latent Heat of Fusion		44.7 cal/g	(18)
Latent Heat of Vaporization		191 cal/g, 344 Btu/lb	(8)
Vapor Pressure		0.06 mm at 20° C, 10 mm at 89° C, 50 mm at 123°C	(8)
		$\log_{10} P_{mm} = 7.8808 - 1957/(193.8 + t^{O}C)$	(18)
Density		1.11336 g/ml at 20⁰C	(18)
Specific Gravity		1.1154 20/20 [°] C, 9.28 lb/gal at 20 [°] C	(8)
Heat Capacity		0.561 cal/g $^{\rm O}$ C (Btu/lb $^{\rm O}$ F) at 20 $^{\rm O}$ C	(8)
		0.538 + 0.00113t °C	(18)
Thermal Conductivity		0.000690 cal/sec cm $^{\rm O}C$ at 20 $^{\rm O}C$	(18)
Viscosity		57.4 cp at 0° C, 20.9 cp at 20°C, 9.5 cp at 40°C	(8)
Conductivity		1.07×10^{-6} mhos	(18)
Surface Tension		48.4 dynes/cm at 20° C, 50.21 - 0.089t °C	(18)

Flash Point	111 ⁰ C, 232 ⁰ F	(3)
-------------	--	-----

Ignition Temperature $413^{\circ}C$, $775^{\circ}F$ (3)

Refractive Inde	ex 1.4316	at 20°C '	(8)

Solubility of Salts		Solubi:	lity	
in Ethylene Glycol	Salt	g salt 100 g solvent	moles salt liter solvent	Temp. ^O C
	LiCl LiBr KCl NaCl	14.3 39.4 5.18 7.15	3.76 5.05 0.77 1.36	25 25 25 25

Ethylene Glycol - Propylenediamine - Water

Vapor - Liquid Composition

For mole ratio PDA/Ethylene (83) Glycol = 0.5 .

,

Mole Fraction H_2O

Vapor	Liquid
₀69 4	.341
.731	.424
。 799	.524

G. 2 ETHYLHEXANOL

Formula Weight	130.22	
Melting Point	-76 [°] C	(84)
Boiling Point	184.4 [°] C	(8)
Latent Heat of Vaporization	92.8 cal/g, 167 Btu/lb	(8)
Vapor Pressure	.2 mm at 20° C, 10 mm at 78° C, 50 mm at 109° C	(8)
Specific Gravity	0.8345 20/20 [°] C, 6.94 lbs/gal at 20 [°] C	(8)

Heat Capacity	0.564 cal/g ^O C (Btu/lb ^O F) at 25 ^O C	(8)
Viscosity	10.0 centipoise at 20 [°] C, 4.0 centipoise at 40 [°] C	(8)
Flash Point	185 ⁰ F	(8)
Refractive Index	1.4313 at 20 ⁰ C	(8)
Solubility in Water	0.10 wt % at 20 [°] C	(8)
Solubility of Water in 2-EH	2.6 wt % at 20 ⁰ C	(8)
2 Ethylhexanol - Propylened	liamine	
Vapor Liquid Composition Diagram	See Figure 79	(79)
2 Ethylhexanol - Water		
Limits of Solubility at Room Temperature	Solubility of H_2O in 2 Ethylhexanol = 2.6% by wt. Solubility of 2 Ethylhexanol in H_2O = 0.1% by wt.	(8)
H	I SOPROPANOL	
Formula Weight	60.09	
Melting Point	– 87.8 [°] C	(8)
Boiling Point	82.3 [°] C	(8)
Latent Heat of Vaporization	159 cal/g, 287 Btu/lb	(8)
Vapor Pressure	10 mm at 2° C, 33.0 mm at 20° C, 50 mm at 27° C	(8)
Specific Gravity	0.7868 20/20 [°] C, 6.55 lb/gal. at 20 [°] C	(8)

Heat Capacity	0.596 cal/g ^O C (Btu/lb ^O F) at 20 ^O C	(8)
Viscosity	2.4 cp at 20 [°] C	(8)
Flash Point	70 [°] F	(8)
Limit of Inflammability	2.02% by vol. lower limit	(3)
Refractive Index	1.3772 at 20 ⁰ C	(8)

Isopropanol - Water

Phase	Diagram	See Figure	80	(19)
				• •

I. METHANOL

Formula Weight	32.04	
Melting Point	– 97.6 [°] C	(8)
Boiling Point	64.5°C	(8)
Latent Heat of Vaporization	263 cal/g, 473 Btu/lb	(8)
Vapor Pressure	10 mm at $-17^{\circ}C$, 50 mm at $9^{\circ}C$, 92 mm at 20 $^{\circ}C$	(8)
Specific Gravity	0.7939 20/20 ⁰ C, 6.61 lb/gal at 20 ⁰ C	(8)
Heat Capacity	0.599 cal/g ^O C (Btu/lb ^O F) at 20 ^O C	(8)
Viscosity	0.59 cp at 20 ⁰ C	(8)
Flash Point	11 [°] C, 52 [°] F	(3)
Ignition Temperature	470 [°] C, 878 [°] F	(3)
Limits of Inflammability	6.72 to 36.50% by volume in air	(3)
Refractive Index	1.3285 at 20 [°] C	(8)

Methanol - Propylenediamine

Phase Diagram	See Figure 81	(79)
Vapor Liquid Composition Diagram	See Figure 83	(85)
<u>Methanol - Water</u>		
Phase Diagram	See Figure 82	(19)
	J. MERCURY	
Atomic Weight	200.61	
Melting Point	- 38.9°C, - 38.0°F	(1)
Boiling Point	357°C, 675°F	(1)
Latent Heat of Fusion	2.8 cal/g, 562 cal/g atom, 5.04 Btu/lb, 1010 Btu/lb atom	(1)
Latent Heat of Vaporization	69.7 cal/g, 1390 cal/g atom, 125.4 Btu/lb, 2500 Btu/lb atom	(1)
Vapor Pressure	$log_{10}P_{mm} = -\frac{3308}{T} - 0.8 log T + 10.3735$	(1)
	Accuracy 2%, 400-800 ⁰ K; 5%, 234-850 ⁰ K	
	See Figure 7	
Density	13.546 g/ml at 20 ⁰ C, 13.352 g/m at 100 ⁰ C	ml (1)
	845.68 lbs/ft ³ , ll3.04 lbs/gal at 68°F	
	See Figures 9, 10, 51	
Heat Capacity	0.0332 cal/g $^{\rm O}$ C (Btu/lb $^{\rm O}$ F) at 20 $^{\rm O}$ C, 0.03279 cal/g $^{\rm O}$ C at 1	(1) 00°C

Viscosity	1.55 centipoise at 20 [°] C	(1)
	See Figures 11, 52, 84	
Thermal Conductivity	0.021 cal/sec cm ^O C at 20 ^O C,	(1)
	5.08 Btu/hr ft ^o F at 68 ⁰ F	
	0.026 cal/sec cm ^O C at 120 ^O C, 6.3 Btu/ft ^O F at 248 ^O C	
Electrical Resistivity	98.4 μ ohms at 50°C	(1)
Surface Tension	465 dynes/cm at 20 ⁰ C, 454 dynes/cm at 112 ⁰ C	(1)

K. PROPYLENEDIAMINE

ć

Formula Weight	74.13	
Melting Point	-38.6°C	(47)
Boiling Point	120.5 [°] C	(86)
Latent Heat of Vaporization	130 cal/gm, 234 Btu/lb	(8)
Vapor Pressure	$\log_{10} P_{mm} = 7.6487 - \frac{1671.2}{t^{\circ}C + 230}$	(86)
Density	See Figures 36, 85	(12)
Heat Capacity	0.65 cal/g $^{\rm O}$ C (Btu/lb $^{\rm O}$ F) at 27 $^{\rm O}$ C	(87)
Thermal Conductivity	0.125 Btu/hr ^O F ft from 95-200 ^O F	(45)
Viscosity	See Figure 33	(47)
Flash Point	160 ⁰ F	(8)
Refractive Index	1.4492 at 20°C	(8)

Solubility of Salts in PDA	Salt	Solubility moles/liter sol'n	Temperature C
	LiCl LiBr	1.05 1.9	25 (47) 27 (43)
	NaCl NaBr	0.005 2.4	25 (60) 27 (43)
4	KCl KBr KI	0.0001 0.007 1.64	27 (43) 25 (59) 25 (59)
	LiOH	0.001	27 (43)
Propylenediamine - Wa	ter	· ·	
Phase Diagrams		See Figure 86	(79)
Vapor-Liquid Composit: Diagram	ion	See Figure 87	(78,79)
	L .	TETRAHYDROFURAN	
Formula Weight		72.10	
Melting Point		-108.52°C (-163.3°F)	(88)
Boiling Point		65-67 [°] C (149-152.6 [°] F	') (88)
Vapor Pressure		mm Hg Temp. ^O C	(88)
		114151762526335385455505576065	
Density		0.888 g/ml at 20 [°] C,	7.4 lbs/gal.(88)

Viscosity	cp	Temp. ^O C	(88)
	0.66	0	
	0.55	20	
	0.47	30	
	0.42	40	
Surface Tension	26.4 dyne	s/cm at 25 [°] C	(88)
Flash P oint	- 17 ⁰ C, 1	° _F	(88)
Index of Refraction	1.4073 at	20 ⁰ C	(88)

REFERENCES

- Lyon, R. N., et. al. "Liquid-Metals Handbook", U. S. Govt. Printing Office, Washington, D. C., 2nd ed., (1952).
- 2. Hodgman, C. D., et. al. "Handbook of Chemistry and Physics", Chemical Rubber Publishing Company, Cleveland, Ohio, 30th ed., (1947).
- Perry, John H., et. al. "Chemical Engineer's Handbook", McGraw-Hill Book Co., Inc., New York, 3rd ed., (1950).
- 4. Seidell, A. "Solubilities of Inorganic and Metal Organic Compounds", D. Van Nostrand Co., Inc., New York, 3rd ed., (1940).
- 5. Rossini, F. D., et. al. "Selected Values of Chemical Tehrmodynamic Properties:, Nat'l. Bur. Standards Circ. 500, U. S. Govt. Printing Office, Washington, D. C., (1950).
- 6. Quill, L. L., et. al. "The Chemistry and Metallurgy of Miscellaneous Materials", McGraw-Hill Book Co., Inc., New York, (1950).
- Rossini, F. D., et. al. "Selected Values of Properties of Hydrocarbons", Nat'l. Bur. Standards Circ. 461, U. S. Govt. Printing Office, Washington, D. C., (1947).
- 8. Works Laboratory Manual, "Physical Property Tables", Carbide and Carbon Chemical Corp., South Charleston, West Va., Vol. 40, (July 1, 1950).
- 9. International Critical Tables, McGraw-Hill Book Co., Inc., New York, (1933).
- 10. Lange, N. A. "Handbook of Chemistry", Handbook Publishers, Sandusky, Ohio, 8th ed., (1952).
- 11. Palko, A. A. "Handbook on Ethylenediamine", ORNL-1329.
- 12. Palko, A. A. "Handbook on Propylenediamine", ORNL-1391.
- 13. Rutenberg, A. C. "Notes on Some Selected Liquid Amalgams", ORNL-1457.
- 14. Smithells, C. T. "Metal Reference Book", Inter-Science Pub., Inc., New York, (1949).
- 15. Janecke, E. "Handbook aller Legierungen", Heidelburg, (1949).
- 16. Yost, D. M. and Russel, H., Jr. "Systematic Inorganic Chemistry", Prentice-Hall, Inc., N. Y., (1944).

Audrieth, L. F. and Kleinberg, J. "Non-Aqueous 17. Solvents", John Wiley and Sons, N. Y., (1953). Curme, G. O., et. al. "Glycols", Reinhold Pub. 18. Corp., New York, (1952). Chu, Ju Chin, et. al. "Distillation Equilibrium Data", 19. Reinhold Pub. Corp., New York, (1950). Ditchburn, R. W. and Gilmour, J. C. Rev. Modern 20. Boyd, C. M. ORNL CF 53-1-298. 21. Grube, G. and Woff, W. Z. Electrochemic, 41, 675, 22. (1935). Eaton, G. A. ORNL-1299. 23. Garretson, H. H. ORNL-1457. 24. MacMullin, R. B. Chem. Eng. Prog. 46, 440, (1950). Convers, L. J. J. Chim. Physique 36, 175, (1939). 25. 26. Boohaviwalla, et. al. Ind. J. Physics 4, 147, (1929). 27. Begun, G. M. and Rutenberg, A. C. ORNL-1401. 28. Sklyarenko, S. I. and Sakharov, B. A. Zhur. Fiz. 29. Khim. 21, 97, (1947). Ibid. Zhur. Obshch. Khim. 17, 1385, (1947). 30. Rutenberg, A. C. ORNL CF 53-2-174. 31. Begun, G. M. ORNL CF 53-2-174. 32。 Dowling, E. J. and Hess, D. N. ORNL CF 53-1-328. 33. 34. Begun, G. M. ORNL CF 53-4-161. Drury, J. S. and Garretson, H. H. ORNL-1238. 35。 Drury, J. S. ORNL-1306. 36. Ryon, A. D., Ramsey, J. W. and Weithaup, R. R. ORNL-37. 1306. 38. Eaton, G. A. **ORNL-1511**. 39. Begun, G. M. **ORNL Y-B**30-116. **ORNL CF 53-5-164**. 40. Begun, G. M. 41. Warren, K. S. ORNL CF 53-1-328. ORNL CF 53-5-164. 42. Palko, A. A. Rutenberg, A. C. ORNL Y-B30-116. 43. Begun, G. M. ORNL-1552. 44。 Lynch, L. D. ORNL CF 52-11-199. 45. Rutenberg, A. C. ORNL-1306. 46. **ORNL-1388**. 47. LeRoy, R. H. Begun, G. M., Rutenberg, A. C. and Palko, A. A. ORNL-48. 1238. Johnston, C. P. ORNL Y-B30-116. 49. Harley, P. H. ORNL Y-B35-9. 50。 51. Krohn, N. A. ORNL CF 52-11-199. Hill, W. E. ORNL Y-B30-124. 52. Palko, A. A. ORNL Y-B30-124. 53. Garretson, H. H. "Notes on Activities and Standard 54. Electrode Potentials", ORNL-1457.

167

55。 Rutenberg, A. C. ORNL Y-B30-118. 56. Friend, Hale, Ryder, J. Chem. Soc. (Lond.)1937, 907. 57. Begun, G. M. and Rutenberg, A. C. ORNL CF 53-4-81. 58. Yeatts, L. B. ORNL CF 53-2-174. 59. Morrison, B. H. ORNL CF 53-2-61. 60. McNees, R. A. ORNL CF 53-1-106. Morrison, B. H. 61. **ORNL CF** 53-3-85. 62. Friels, J. V. ORNL CF 52-11-199. Huckel, W. "Structural Chemistry of Inorganic Com-63. pounds", (Trans. L. H. Long) Elserier Pub. Co., Inc., New York, (1950). J. Chem. Soc. (Lond.) 63, 909, (1893). Pickering. 64. Compere, E. L. ORNL Y-B30-124. 65. 66. Compere, E. L. ORNL CF 53-1-298. Compere, E. L. ORNL CF 53-2-174. 67. Healy, R. M. 68. ORNL Y-B30-124. 69. Healy, R. M. ORNL Y-B30-118. Hill, W. E. ORNL CF 53-4-81. 70. Hill, W. E. ORNL CF 53-4-161. 71. Healy, R. M. ORNL CF 53-1-298. 72. 73. Healy, R. M. ORNL CF 53-4-81. Mellor, J. W. "Comprehensive Treatise on Inorganic 74. and Theoretical Chemistry", Longmans, Green and Co., New York, (1922-1937). Barringer, M. D. ORNL CF 53-2-61. Kobe and Leipper. Ind. and Eng. Chem. 32, 198, (1940). 75. 76. Bull. Soc. Chim. France, 1949, 337, (1949). 77. Hafem, S. Lee, D. A. ORNL-1401. 78. 79. Lee, D. A. ORNL CF 53-5-164. Lee, D. A. ORNL Y-B30-124. 80. Vogel, A. I. "Physical Properties and Chemical Con-81. stitution, Part IX, Aliphatic Hydrocarbons", J. Chem. Soc. 1946, 133, (1946). Lee, \overline{D} . \overline{A} . ORNL Y-B30-124. 82. 83。 Lee, D. A. ORNL CF 53-4-161. "Handbook of Dangerous Chemicals", Reinhold 84. Sax, N. I. Pub. Corp., New York, (1951). Lee, D. A. ORNL CF 53-2-174. 85. Hill, W. E. ORNL Y-B30-116. 86. Weeren, H. O. and Carter, W. L. ORNL CF 52-10-161. 87. Sales Bulletin, E. I. Dupont deNemours and Co. 88. Joseph, E. F. ORNL Y-B35-6. 89. 90. Joseph, E. F. ORNL Y-B35-7. Joseph, E_F, and Buchanan, J. R. ORNL Y-B35-9. 91. Sachs, J. W., Decarlo, V. A. and Buchanan, 92. Water and <u>рин Ү</u>-В35-10.

- 93. Lynch, L. D. ORNL-1511.
- 94. Lynch, L. D. ORNL CF 53-5-123.
- 95. Morrison, B. H. ORNL CF 53-5-123.
- 96. Morrison, B. H. ORNL-1511.
- 97. Yeatts, L. B. ORNL CF 53-4-81.
- 98. Hill, W. E. ORNL CF 53-5-164.
- 99. Hill, W. E. ORNL CF 53-6-208.
- 100. Daley, F. L. and Sacks, J. W. ORNL Y-B35-6.
- 101. Lynch, L. D. ORNL CF 53-4-210.
- 102. Morrison, B. H. ORNL CF 53-4-210.
- 103. Yeatts, L. B. ORNL CF 53-5-164.
- 104. Johnston, C. P. ORNL CF 53-4-81.
- 105. Dowling, E. J. and Warren, K. S. ORNL CF 53-4-285.
- 106. Boyd, C. M. Anal. Div. ORNL CF 53-4-161.
- 107. Clark, W. E. ORNL-1524.
- 108. Fletcher, F. and Kilpatrick, M. J. Phys. Chem. 42, 113, (1938).
- 109. Garretson, H. H. ORNL-1299.
- 110. Lewis, G. N. and McDonald, R. T. "The Separation of Lithium Isotopes", J. <u>Am. Chem. Soc. 58</u>, 2519-24, (1936).
- 111. Begun, G. M. and Drury, J. S. A Review of Isotopic Separation to be Issued.
- 112. Johnston, R. J. and Ubbelohde, A. R. "Wedge Effect at Amalgam Electrolyte Surfaces", Proc. Roy. Soc. (London) A206, 275-86, (1951).
- 113. Bradley, N. C. ORNL Y-B35-6.
- 114. Spevack, J. S. Columbia Univ. Report A-393.
- 115. Eidenoff, M. L. "Laboratory Studies for Separation Processes", National Nuclear Energy Series III-4D (1951).
- 116. Demarcus, W. C. Y-12 Y-887.

