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SUMMARY 

This paper concerns itself with forced convection heat transfer 

between parallel plates which are infinite in extent and ducting fluids 

containing uniform volume heat sources; also heat is transferred uni- 

formly to or from the fluids through the parallel plates. Dimensionless 

differences betweén the plate wall temperature and the mixed-mean fluid 

temperature are evaluated in terms of several dimensionless moduli. These 

analyses pertain to the laminar and turbulent flow regimes and liquid 

metals as well as ordinasry fluids. The solutions may also be used to 

estimate heat transfer in annulus systems whose inmer to outer radius 

ratios do not differ significantly from umity.



  

NOMENCLATURE 

letters 

cross sectional heat transfer area, ft2 

£luid thermel diffusivity, £t2/hr 

parameter in equation (o), ft/hr 

fluid heat capacity, Btu/lb °F 

parameter in equa%ion (r), dimensionless 

gravitational force per unit mass, :E‘t/hr2 

heat transfer conductance, Btu/hr £ OF 

£luid thermsl conductivity, Btu/hr £t (°F/ft) 

fluid pressure, 1bs/ft2 

heat transfer rate, Btu/hr 

radisl distance from centerline of parallel plate system, ft 

radial position at which the reference tempersture 

tq is stipulated, ft 

half the distance between the two parallel plates, ft 

fluid temperature st position n, °F 

a reference temperature at radius ry, OF 

mixed-mean fluid temperature, Op 

fluid temperature at plate walls, Op 

fluid temperature at the parallel plate system center, Op 

fluid velocity at n, ft/hr 

mean fluid velocity, ft /hr



ny, 

Nu 

Re 
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volume hegt source, Btu/hr ft2 

axial distance, ft 

radial distance from parallel plate walls, ft 

fluid weight density, lbs/ft” 

eddy diffusivity, £t2/hr 

friction factor defined in equation (i) dimensionless 

absolute viscosity of fluid, 1b hr/ft2 

fluid kinematic viscosity, fte/hr 

fluid mass density, lbs h:a:'e/.f"l:}+ 

£luid shear stress at position n, lbs/ft? 

f£1luid shear stress at parallel plate wells, los/ft® 

Dimensionless Moduli 
  

Y/ To 

Y1./To 

h bro/k, Nusselt Modulus 

¥ v¢p/k, Prandtl Modulus 

up bro/ P 
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INTRODUCTION 

The mathematical heat transfer analyses to be presented here for a 

parallel plates system are accomplished much in the same manner as were those 

for a pipe system presented previously in reference 1. The present analyses 

as well as those given in reference 1 can be used to determine the tempera- 

ture structure in flowing flulds that possess internal sources of heat gener- 

ation. Such volume heat sources may result from nuclear or chemical reactions 

or may be generated electrically. 

The ideslized volume-heat-source system considered in this paper is 

defined by the following postulates: 

1. Thermal and hydrodynemic patterns have been 

established (parallel plates of infinite 

extent). 

Uniform volume heat sources exist within the 

fluids. 

Physical properties are not functions of 

temperature. : 

Heat is transferred uniformly to or from the 

fluid at the plate walls. 

In the case of turbulent flow the generalized 

turbulent velocity profile defimnes the hydro- 

dynamic structure. 

In the case of turbulent flow there exists an 

analogy between heat and momentum transfer.
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LAMINAR FLOW ANALYSIS 

The differential equation deseribing heat transfer in the parallel 

plates system for the case of laminaer flow is 

  

o | 

3 ey ot L. 0% W .é.um[l __.)]_a_x_a_é.;é.+ (1) To Yep 

Where, 

Uy, mean fluid velocity 

t, temperature 

X, axial distance 

T, radial distance 

a, thermal diffusivity 

W, wniform volume heat source 

Y, fluid weight density 

Cps fluid heat capacity 

One boundary condition is represented by the uniform wall-heat -flux 

which may be positive, negative or zero, 

d _ _/aq\ _ 4 Ot (. _ . 
a%(r—rq)—(fi)o- k-—a-—l-;-(r“"’ro) (2) 

where %&.is the radial heat. flux and (%%) is the wall heat flux. The second 

boundary condition is, td,‘h reference te;perature, such as a wall or center- 

line temperature, 

t(r = rq) = t4 (3) 

Note, the mixed-mean fluid temperature may also be specified as the reference 

temperature.
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Downstream from the entrance region where the thermal pattern (tempera- 

ture gradients) of the system has become established, the axial temperature 

gradient, .ig...;% » 1s uniform and equal to the mixed-mean axial fluid temperg - 

ture gra.dientl, ...g.;.fi - The latter gradient can be obtained by making the 

following heat rate balance. The heat generated in a lattice whose volume 

is 2r, dx (the width of the lattice being unity) plus the heat transferred 

into or out of the lattice at the plate walls must all be lost from the 

Ei d.x adlc - 2 Y  — 

Hence, in the established flow region the axial temperature gradient is 

  

w-31 (dq 
dt _ btm _ To (dA>o (5) 
0x 0JXx Un ¥ cp 

Upon substituting equation (5) into equation (1), the following total differ- 

ential equation results: 

(- @) © 
  

1. DNote, that the mixed-mean fluid temperature at any given axial position 
is defined as, 

-ro 

-r 
/ t u dr ° 

ty = 2 = X tu dr Tq Upre g 

[ o 
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vhere F' = 1 - _l_.(gg) - Equation (6) can be solved upon making two Wro 

integrations. The first integration plus boundary equation (2) yields, 

dt=E '—52!_ F! 3 at k{(e 1)1--.2.;;21-} (7) 

A second integration gives the desired temperature solution, 

=2 [ ) 5@ ) ® 
where the reference temperature is, to, the wall temperature. The tenpera- 

ture solution in terms of the centerline temperature rather than the wall 

temperature is given by 

t -t = 2 o, b 
E,_?E*[GE - 'el‘)(%) -5 (&) ] (9) 

where t4 1s the centerline temperature. Equation (9) is graphed in 

Figure 1 for several values of the function F'. 

The difference between the plate wall temperature and mixed-mean ~luid 

temperature is defined by 

To 
\/ér u(ty - t)ar 

. (10) to -ty =   

nes 
b 

Upon substituting the laminar velocity profile relationfiand equation (8] 

into equation (10) there results, 

Yo - tm _ 1TF - 14 (11) 
Wr,© 35 
k
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Fig. 4. Dimensioniess Radial Temperature Distributions in a Parallel Plotes System for 

Laminar Flow (Equation 9)
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TURBULENT FLOW ANALYSIS 

Fluid flow in pipes and channels (parallel plates systems) under 

turbulent flow conditions has been characterized in terms of a laminar 

sublayer contiguous to the wall, a buffer layer, and a turbulent core by 

Nikursdse, von Karman, and others. This structure has been presented in a 

general fashion by the well known generalized velocity profile which was 

shown together with the experimental data of Nikuradse, Reichardt, and Laufer 

in reference 1. Table 1 gives some of the specific hydrodynamic relations 

for the various flow layers in a parallel plates system; a discussion of some 

of the details of this table can be found in Appendix 1. 

The differential equation describing heat transfer in a parallel plates 

‘system.for the case of turbulent flow is 

u(r) $% = 5= [(a re ) g;] ' 3% (12) 

  

where, 

u(r), the turbulent velocity profile (given by 

the generalized velocity profile) 

€ > the eddy diffusivity? given in Table 1 

Upon substituting equation (5) into equation (12) for the established theraml 

region, the following total differential equation resulis, 

_ 1 (4q 
u(r)[ To (dA)o] _ W _.@_[(“e)éfi-] (13) 

ar dr 

  

2, It is postulated that the heat and momentum transfer eddy diffusivities 

are equal as proposed by Reynolds and successfully used by von Karman, 

Martinelli and othens.



TABLE I 

HYDRODYNAMIC RELATIONS FOR THE VARIOUS FLOW LAIERS 
BETWEEN PARALLEL PLATES 

  

REGION 
GENERALIZED VELOCITY 

  

  

  

  

  

  

  
    

DISTRIBUTION SHEAR STRESS STRESS EQUATION EDDY DIFFUSIVITY 
Laminar Sublayer 

T 
< + _'o . 

o y<5 u _ p y T:To T=p‘D%E ""%“—"—“O 

or o< i i2led To v Y 
To Re” - P 

Buffer ILayer , . 

5 <y+ <30 . 
or Y 2 = - 3.05 + 5.00 1n|y i T="T, T=pP+e) B | £ - 0076 Re"7 L _ 
131.5 89 | [T 2 ° v Fo 222 L o 2] 1 To KN 
Re°9 I'O Re'9 p = 

Outer Turbulent - - 

Layer To ' u |y ( © T=T (1-.l)’T= du € 789 _ ¥ 2.2 + 2.5 In ,Ip o pe — —— = ,0152 Re"? (1- _Y) Re9< <.5 To . ro dy 3 52 Re (lrfzo_ 
p - - 

Inner Turbulent - 
Layer To g 

Sl 1 U _5.542.51n|" - T=To(1 - L) |T= pef— £ - .00%38 Re? To To s To Y P 

P   
  

  

  

          

Laminar Sublayer 

Buffer layer 

Outer Turbulen 

Layer 

Inner Turbulent-— 

Layer 

\—0- 

  

s e S 

e 

                

  

channel wall 
y1 
Yo 

channel center 

- 
6T

 
-
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The boundary conditions are given by equations (2) and (3). As was done 

in the case of the pipe system (reference 1) the boundary value problem 

denoted by equations (13), (2) and (3) was separated into two somewhat 

simpler boundary value problems whose solutions can be superposed to yield 

the solution of the original problem. The two boundary value problems 

to be considered are, 

Jl_(_rfl’__.,_‘:’_.=(.i§_ [(a+€)9_2} 
r Y e RA p dr 

dd (. . rg) = 0 (14) 

  - o \W/ _ il.[(a + €) QE} 
Up ch dr 

(15) 
% (r = r5) = (g_%)o _ 

t(r = rq) = td» 

Equetions (14) represent a flow system with a volume heat source but with no 

plate-wall heat flux, and equations (15) represent a flow system without a 

volume heat source but with a uniform plate-wall heat flux. The superposition 

of the solutions of (14) and (15) yields the solution of the problem defined
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by equations (13), (2) and (3), the sum of reference temperatures tgqy and 

tdp being equal to the reference temperature td3. The problem defined by 

equations (15) has already been analyzed by others (see Martinelli, 

reference 2). The solution of equations (14) is outlined and evaluated in 

the following paragraphs. 

The first }?gégration of eguations (14) expressed in terms of the 

radial heat flow yields, 

n 

% = Wro ..}...l.... d_n. - Wron (16) 

Um 

o 

where n = Y . The evaluation of the integral in equation (16) is presented 

To 

in Appendix 2; the radial heat flow profiles for various Beynolds moduli are 

graphed in Figure 2. 

The second integration of the differential equation of (14), yielding 

the desired temperature solution; was accomplished layer by layer utilizing 

the hydrodynamic relations listed in Teble 1 and the radial heat flow 

expressions developed in Appendix 2. The details of the procedure were 

presented in the previous analysis for the pipe system (reference 1). The 

resulting radial temperature profiles expressed in dimensionless form were 

determined as functions of Reynolds and Prandtl moduli; some typical radial 

temperature profiles are given in Figures 3 and 4. 

  

3, Note, in the superposition process, all temperatures are 

expressed as differences.
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_a_ 

The difference between the plate wall temperature and the mixed-mean 

fluid temperature was obtained by evaluating the integral 

()« @) 
1 E,-!-, : '}”\u o : 

  

i PN L 
‘ " '« 

The dimensionless temperature difference, to -~ tm , is graphed as a function 

Wr02 
  

of Reynolds and Prandtl moduli in Figure 5. k 

The superposition of solutions of the boundary value problems (14) and 

(15) yields the more general boundary value problem defined by equations (13), 

(2) and (3). In the superposition process, all temperatures are expressed 

as tempefature increments above datum temperatures. The radial temperature 

distribution above the wall temperature, centerline temperature, or mixed- 

mean fluid temperature for the composite boundary value problem defined by 

(13), (2), and (3) is obtained by adding the radial temperature distributions 

above the wall tempefatures, centerline temperatures, or mixed-mean fluid 

temperatures, respectively of boundary value problems (14) and (15). Also, 

the rise in mixed-mean fluid temperature, at some point in the esfablished 

flow region of the parallel plates system, above its value at the entrance 

for the problem defined by (13), (2) and (3) is obtained by adding the 

corresponding temperature rises for problems (14) and (15). The solution of 

boundary value problem (15) expressed in terms of Nusselt, Reynolds, and 

Prandtl moduli as developed by Martinelli is presented in Appendix 3.
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DISCUSSION 

The forced convection analyses presented here pertain to the parallel 

plates system. These analyses may also be used to estimate heat transfer in 

annulus systems where the inner to outer wall radius ratio does not differ 

significantly from unity; under such circumstences, the annulus satisfactorily 

approximates a parallel plates system. 

The present report is the second one in a Planned series which are to 

explore the experimental as well as theoretical aspects of volume-heat-source 

forced convection. Two specific research activities have almost been com- 

Pleted and are to be reported in the near future. One activity involves an 

experimental study of volume-heat-source forced convection in a pipe system 

in the laminar and turbulent flow regimes; comparisons are made with the 

previously developed theory. Another activity is a mathematical study of 

volume -heat -source forced convection in the lsminar regime including a 

temperature dependent fluid viscosity.
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APPENDIX 1 

HYDRODYNAMIC RELATIONS FOR TURBULENT FLOW 
IN A SMOOTH PARALIEL PLATES SYSTEM 

The hydrodynamic relations given in Table I characterize turbulent 

flow in a smooth channel (parallel plates system). The manner in which this 

table was developed is illustrated below for the buffer layer. 

The turbulent shear stress equation is expressed as 

=(0+€)g~% (a) 
Dl

.q
 

In the buffer layer, the shear stress is very closely equal to the wall 

shear stress, 1., and the velocity distribution is given by, 

ut = -3.05 + 5.00 ln y* (b) 

Upon differentiating equation (b) it can be shown that 

5o 
~x P (c) 
J 

— &l
 

Upon substituting equation (c) and the wall shear stress in equation (2) and 

solving for the eddy diffusivity, there results, 

T 

_Jz;g; (a) 3 -1 

<
 

— 

64
 

™ 

i
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Two relations describing the pressure drop and wall shear stress in the 

parallel plates system are, 

LD _ ELZ 'u?m 
ax " Ir, Zg (e) 

and AD 

where the quantity, hro, is sometimes called the equivalent duct diameter 

and, § , is the friction factor which is uniquely related to the Reynolds 

modulus. Upon substituting equation (e) into equation (f) there results, 

JTQ=J§% (g) 

The Reynolds modulus for the parallel plates system (based on the equivalent 

diameter) and the friction factor relation are expressed as, 

  

b roup 
Re = ——— e = 2 (1) 

3 and _ 023 5 6 . 5= 5 for 5 x 10 <Re <10 (1) 

Upon substituting equations (g), (h), and (i) into equation (d) and 

simplifying, there results, 

= = 0.0076 Re"’n-1 () 
where n = 2
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The thickness of the buffer layer can be obtained from the defining y* 

relation, 

* [T 
y+=_Te_ (k) 

Upon substituting equations (g), (h), and (i) into equation (k) and 

simplifying, there results, 

g o 2635 (2) 
Re'9 

The buffer layer thus extends from n = lé&ig-(corresponding to y* =5) 
Re*® 

ton = Z§2 (corresponding to y* = 30). 
Re*?
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APPENDIX 2 

RADIAL HEAT FLOW RELATIONS 

The turbulent velocity profile in the radial heat flow expression, 

equation (16) mey be represented satisfactorily by two layers (a laminar 

layer and a turbulent core) rather than the four layers which are used in 

the temperature analysis. The laminar layer, which is postulated to extend 

to yt = 12, is represented by the linear velocity expression, 

ut = y* (m) 

or u = 0.00575 upy Re*S n for 0 <n<2'-6— (n) 
Re‘9 

Equation (m) was reduced to equation (n), with the aid of equations (g}, 

(h), and (i). The turbulent layer, which is postulated to extend from 

yt = 12 to the channei center, is represented by the one seventh power law 

expression, 

1/7 (o) 
u = Bon 

where By is related to the mean velocity on the basis that the sum of the 

volumetric flow rates in the laminar layer and the turbulent core is equal to 

the total volumetric flow rate; this relation is obtained as follows:
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I'L T'o 

2rg lupy =2 uldr+ 2 uldr (p) 

0 Iy 

or 1 ny, 

U, fuj//’-u dn + u dn 

nj, 0 

I’Bo [l,- nL8/7] + 0.00575 umRe'8 %%? (q) 

_ .8 nLa)_ s By (1 0.00575 Re* BL” ) 
  - = £lup (r) 

where njy, is the dimensionless thickness of the laminar layer equivalent 

to y* = 12. 

The radial heat flow in the laminar layer is obtained by substituting 

equation (n) into equation (16) and integrating, 

  

n 
dg 
dA .8 

W = 2 0.00575 Re. " ndn-=2n 
To 

2 o 

_ 0.0115 Re.8 n2 - on () 
2
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The radial heat flow in the turbulent layer is obtained by substituting 

equations (o) and (r) into a modified form of equation (16) (limits are ng, 

to n), 
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Equations (s) and (t) are graphed 'in Figure 2 as functions of Reynolds 

modulus.
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APPENDIX 3 

TURBULENT FORCED CONVECTION IN A PARALIEL PLATES 

SYSTEM WITH A UNIFORM WALL-HEAT-FIUX BUT NO 

VOLUME HEAT SOURCES WITHIN THE FIUID 

A list of some of the heat and momentum transfer analogy solutions given 

in the literature can be found in reference 1. Martinelli's solution for a 

parallel plates system is graphed in Figure 6 in terms of Nusselt, Reymolds, 

and Prandtl moduli. The Nusselt modulus can be expressed in terms of the 

wall-fluid temperature difference and the wall heat flux (these quantities 

arise in boundary value problem (15) ), 

    

day 
Nu = h '-l-ro - ((iA.)o to (u) 

k (to - tm)k 

where h is the heat transfer conductance or coefficient.
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Fig. 6. Nusselt Modulus as a Function of Reynolds Modulus for Turbulent Heat Transfer 

Between Parallel Plates for Several Prandtl Moduli.
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