

Contract No W-7405-eng-26

1

Reactor Experimental Engineering Division

A SUMMARY OF DENSITY MEASUREMENTS ON MOLTEN FLUORIDE MIXTURES AND A CORRELATION FOR PREDICTING DENSITIES OF FLUORIDE MIXTURES

S I Cohen T N Jones

DATE ISSUED

JUL 1 9 1954

OAK RIDGE NATIONAL LABORATORY Operated by CARBIDE AND CARBON CHEMICALS COMPANY A Division of Union Carbide and Carbon Corporation Post Office Box P Oak Ridge, Tennessee

ORNL 1702 Chemistry-General

INTERNAL DISTRIBUTION

								the second second
\$			INTERNA	L DISTR	IBUTIC	N		and the second second
г	a b	Contor			E6	٨	n	Collabor
2 1	U B	Center			50 57	A	บ น	Kallhal
23	Heal	th Physics	Labrera		58	Т	W R	Reiinoutoz
ر 4-5	Cent	rol Research	h Labrerv		50	Δ	P	Frees
	Reac	for Experim	ental		60	R	พื	Busserd
U	Engl	neering Lib	rarv		61	M	Е	LaVerne
7-13	Labo	ratory Reco	rds Department		62	E	ŝ	Bettis
' <u>1</u> 4	Labo	ratory Reco	rds. ORNL R C		63		Ĺ	Meem
15	CE	Larson			64	Ğ	Ā	Cristy
16	LB	Emlet (K-	25)		65	W	в	Cottrell
17	JР	Murray (Y	-12)		66	H	W	Savage
18	A M	Weinberg			67	С	Ρ	Coughlen
19	ЕН	Taylor			68	G	М	Adamson
20	ΕD	Shipley			69	\mathbf{L}	Α	Mann
21	СĒ	Winters			70	G	М	Nessle
22	FC	VonderLag	e		71	J	0	Bradfute
23	WН	Jordan	Υ.		72	ន	I	Cohen
24	JA	Swartout			73	Ν	D	Greene
25	S C	Lind			74	D	С	Hamilton
26	FL	Culler	X		75	H	W	Hoffman
27	AH	Snell			76	F	E	Lynch
28	AH	ollaender			77	L	D	Palmer
29	M T	Kelley			78	W	D	Powers
<u>30</u>	WJ	Fretague			79	M	W	Rosenthal
51 70	GH	Clewett			80	1	N	Jones
52 77	K Z	Morgan			01 01	W	D	Man⊥y
22 Z)	TA	Lincoln	A 2		02 97	Gi	P	
24	A D C C	Household	er		0) 8)	ป M	v m	Cathcart
22	כי סית	Ballangto	n		04 85	m C	т ъ	
37	ט ט ש ח	Cardwell	11		86	w W	ם ק	MILLD Crames
38	E M	King			87	77	л Я	Blankenshin
70 39	RN	Lvon			88	Ċ	.т	Barton
40	JA	Lane "			89	č	یال ۱۳	Barton
41	A J	Miller			90	L	G	Overholser
42	RB	Br2ggs			91	Ρ	Ā	Arron
43	A S	Kitzes			92	F	Ke	rtesz
44	0 S	ishan			93	Ε	G	Bohligenn
45	RW	Stoughton			94	Н	С	Claiberne
46	C 🦻	Graham			95	М	С	Edlund
47	WR	Gall			96	М	То	blas 🖹
48	H F	Poppendie	k		97	М	А	Bredig
49	/S E	Beall			98	J	S	Culver
<u> </u>	JP	Gill			99	J	Y	Estabrook
51	DD	Cowen			100	N	F	Lansing
52	W M	Breazeale	(consultant)		101	E	R	Van Artsdalen 🌇
✓ > ク ⊑1-	K A	Unarpie			T05	ل ل	M	Warde
/ 24	w K.	Blacend			10) 10)	U U	5	Dasmor
22	r r	DIIZaru			LU43, 124	Gr	U	
					1	<u>.</u>		
				₩¥.				2
				TEN/	Ř			

4

١

١

÷

EXTERNAL DISTRIBUTION

-3-

		/
	105	American Cyanamid Company
10	6-113	Argonne National Laboratory
	11	Armed Forces Special Weapons Project (Sandia)
	11	Army Chemical Center
11	6-120	Atomic Energy Commission, Washington
	121	Battelle Memorial Institute
12	2-123	Brookhaven National Laboratory
12	4-125	Campide and Carbon Chemicals Company (C-31 Plant)
12	6-128	Carvide and Carbon Chemicals Company (K-25 Plant)
12	9 -13 2	Carbide and Carbon Chemicals Company (Y-12 Plant)
	133	Chicago Patent Group
	134	Chief of Naval Research
	135	Columbia University (Hassianis)
	136.	Dow Chemical Company, Pittsburgh
	137	Dow Chemical Company (Rocky Flats)
13	8-142	duPont Company, Augusta
14	3-145	General Electric Company (ANPP)
14	6-151.	General Electric Company, Richland
15	2-153	Goodyear Atomic Corporation
	154	Hanford Operations Office
	155	Iowa State College
15	6 -15 9	Knolls Atomic Power Laboratory
16	0-161.	Los Alamos Scientific Laboratory
	162.	Mallinckrodt Chemical Works
	163	Massachusetts Institute of Technology (Kaufmann)
	164	Materials Laboratory (MLDC)
	165	Merrill Company
16	6-168.	Mound Laboratory
	169	National Advisory Committee for Aeronautics, Cleveland
	170	National Bureau of Standards
	171	National Lead Company of Ohion
	172	Navel Medical Research Institute
17	3-174	Naval Research Laboratory
	175	New Brunswick Laboratory
17	6-178.	New York Operations Office
17	9-180	North American Aviation, Inc
- 0	181	Patent Branch, Washington
18	2-105.	Phillips Petroleum Company
	106.	Pratt & Whitney Aircraft Division (Fox project)
	101	Rand Corporation
;	/ 100	Konm and Haas Company
/	109	Sandia Corporation
	190.	Sylvania Electric Products, Inc
7	191.	Tennessee Valley Authority
1	192	U. S Naval Radiological Delense Laboratory
/ 10	193 193	UCLA Medical Research Laboratory (Warren)
19	4-191	University of California Radiation Laboratory, Berkeley
19	0-199	University of California Radiation Laboratory, Livermore
20	U-≇¥UI	Unaversity OI KOCNESTET
~~	202	Virginia-Carolina Chemical Corporation
20	3-204	Vitro Corporation of America Nectown Recovery University (Emicdoll)
~~	205	Western Reserve University (Friedett)
20	0-207	Westinghouse Alectric Corporation
20	0-222	Technical Information pervice, Oak Midge

а **9**

8

٤.

TABLE OF CONTENTS

	PAGE					
SUMMARY	5					
INTRODUCTION	6					
DESCRIPTION OF EXPERIMENTAL PROCEDURE	8					
A Discussion of Method	8					
B Description of Equipment						
EXPLANATION OF THE CORRELATION						
REFERENCES	26					
APPENDIX	27					
TABLE 1 Experimental Density-Temperature Data TABLE 2 Constants Used in Calculating Room	28					
Temperature Densities	29					
TABLE 3 Calculation of Room Temperature Densities TABLE 4 Comparison of Predicted and Experimental	30					
Density-Temperature Data	37					

ŧ

SUMMARY

This report contains a summary of all the experimental density measurements on molten fluoride mixtures that have been developed for the Aircraft Nuclear Propulsion Project A correlation of these data is presented which can be used to predict liquid densities of fluoride mixtures of known composition over wide, elevated temperature ranges

Experimental measurements were made by the buoyancy principle using a plummet suspended in the molten salts from an analytical balance, the entire system being enclosed in a dry-box

All the information available on compositions, experimental densities, melting points and cubical coefficients of expansion may be found in this report, calculated values of liquid and room temperature densities, molecular weights and molecular volumes of all the mixtures that have been developed for the ANP program are also presented

INTRODUCTION

- 6 -

Since the outset of the Aircraft Nuclear Propulsion project, interest has been centered on molten fluoride mixtures as the best potential circulating fluids for use in high temperature reactors of the ARE type During the course of the project, some fifty or more mixtures of fluorides have been suggested and a number of these aroused sufficient interest to merit measurements of their physical properties

In the early stages of the density research program the experimental accuracy was somewhat lower than in the later stages During the former period some questions concerning purity of both the molten salts and the blanketing atmosphere arose Also, the techniques of temperature measurement and control, and weighing facilities were refined during the latter period As a result, the more recent determinations afford a somewhat higher degree of accuracy than the earlier ones

The correlation described in this report is based on measurements on all the mixtures that have been studied. In a few instances, notably composition No 12 (Flinak), it has been possible to make a second set of measurements on a mixture for which the properties had been measured very early in the project, and in these instances the data listed below are the revised values. In past reports on several of the compositions, a correction based

§* 💧

on the volume change of the plummet with temperature was omitted, the error introduced being well within the accuracy claimed for the data However, this correction has been applied where necessary in this report and it is suggested that in subsequent studies involving the densities of fluorides, the data in this report be used

DESCRIPTION OF EXPERIMENTAL PROCEDURE

A Discussion of Method

Density values reported here were determined by the buoyancy principle involving a plummet suspended in a liquid. The density of the liquid, ρ , is defined by

$$\rho = \frac{\mathbf{w}_{\mathrm{L}}}{\mathbf{v}_{\mathrm{L}}} \tag{1}$$

where,

 $w_{\rm L},$ weight of liquid displaced by the plummet $v_{\rm L},$ volume of liquid displaced by the plummet

and $W_{L} = W_{A} - W_{L}$ (2)

where,

$$W_A$$
, weight of plummet in air W_L , weight of plummet in liquid

Upon substituting (2) in (1), there results

$$\rho = \frac{W_{A} - W_{L}}{v_{L}}$$
(3)

- 8 -

Ĩ

The volume of liquid displaced by the plummet, v_L , is also equal to the volume of the plummet and may be determined by weighing the plummet in a liquid of known density (water was used) At room temperature the volume of the plummet is

$$v_{L_{O}} = \frac{W_{A} - W_{H_{2}O}}{\rho_{H_{2}O}}$$
(4)

1

1

where,

$$W_{\rm H_{2}O}$$
, weight of the plummet in $H_{2}O$ at
room temperature
 $\rho_{\rm H_{2}O}$, density of water at room temperature

The volume of the plummet at elevated temperatures is

$$v_{L} = v_{L_{O}} \left[1 + \beta_{p} \left(T - T_{O} \right) \right] = \frac{W_{A} - W_{H_{2}O}}{\rho_{H_{2}O}} \left[1 + \beta_{p} \left(T - T_{O} \right) \right]$$
(5)

where,

- T, liquid temperature
- T_o , room temperature
- β_p , cubical expansion coefficient of the plummet

Upon substituting equation (5) into equation (3), one obtains

$$\rho = \frac{(W_{\rm A} - W_{\rm L})}{(W_{\rm A} - W_{\rm H20})} \frac{\rho_{\rm H20}}{\left[1 + \beta_{\rm p} (T - T_{\rm 0})\right]}$$
(6)

1

ŧ

 W_A , W_{H_2O} and the temperature of water were measured before the experiment was started Values for ρ_{H_2O} and β_p are known, values of W_L at the various temperatures were measured

Experimental density data are represented in this report by the equation

$$\rho = a - bT \tag{7}$$

Values of the cubical coefficients of expansion were calculated from the defining equation

$$\beta_{\rm L} = -\frac{1}{\rho} \left(\frac{d\rho}{dT} \right)_{\rm p} \tag{8}$$

The experimental data are given in Table 1 and in Figure 3 where the temperature range over which measurements were made on each mixture is shown. The experimental data are also tabulated in Table 4 in the form of equation (7) A simple analysis indicates that these data are probably not in error by more than $\pm 5\%$ Experimental values for the coefficients of cubical expansion of the various liquids may be found in Table 1

B Description of the Equipment

The system (see Figure 1) used for taking these measurements consisted principally of a stainless steel plummet suspended in the molten salts by a

s 8

- 10 -

Fig 1 Schematic Diagram of Density Measurement System

UNCLASSIFIED ORNL-LR-DWG 577

Fig. 2. Photograph of Dry Box Containing Density Measurement System.

fine steel wire from a Voland 'Speedigram" balance (a chainomatic balance on which weights larger than 100 mg are controlled mechanically by knobs with no loss in accuracy) The plummets were fabricated from 1/4" No 316 stainless steel rod The containers for the molten salts were fabricated from 1 1/2' I P S , Schedule 40, No 316 stainless steel pipe The tube furnace was mounted on a small rolling platform equipped with ball-bearing casters to facilitate centering of the tube under the balance as well as under the two systems for determining viscosities which were also housed in the dry-box (Both density and viscosity measurements were made during the same heat-up period Viscosity studies will be discussed in a separate report)

The temperature of the melt was measured with the aid of two chromelalumel thermocouples and a Brown multipoint recorder, the couples were inserted in wells made of 1/8' stainless tubing and supported in the liquid salt so that one couple was 2-3 inches below the surface and the other 5-6 inches below the surface The wire supporting the plummet was of such length that the plummet was suspended at a depth between the two couples Temperature of the furnace was controlled by a combination of a variac and a Simplitrol with a chromel-alumel thermocouple The hot junction of this couple was imbedded in the outside surface of a thick-walled copper pipe used as a thermal diffuser between the heating surfaces of the tube furnace and the tube containing the melt Since this hot junction "sees' the heating element face, a very sensitive temperature control was afforded As the experiment progressed, the temperature setting was increased by a small

4 4 4 4

- 13 -

increment and in a short time the temperatures indicated by the two immersed thermocouples rose to a point slightly below that set on the Simplitrol, leveled off and approached each other, at this point the two readings were usually no more than 5 degrees apart After this practically isothermal condition was reached, a weight reading and the average temperature were recorded

- 14 -

Since the fluorides in the molten state are very sensitive to the atmosphere, a number of precautions were taken to insure its purity Argon was circulated through the dry-box and out of a bubbler at a measured rate until the calculated concentration of argon was above 99 9% These calculations have been checked experimentally by measuring the oxygen concentration of the gas in the dry-box with a Burrell Gas Analyzer Effort was made to remove the final traces of oxygen and water, these being the chief undesirable impurities, by placing indicating Drierite from a closed container into a flat open dish to get the water and by starting up an oxygen removal device consisting of a tube furnace containing a cartridge of copper filings and The filings were brought to red heat and the equipped with a 15 CFM blower atmosphere in the dry-box circulated over them Purity of the atmosphere, which determines the purity of the melt, is indicated by the appearance of the plummet when it is withdrawn from the melt The plummet, though discolored, will have a clean smooth surface when taken from a clean melt No difficulty was encountered with condensation on the wire except during measurements on mixtures containing ZrF4 When working with these salts, the plummet was removed between weighings and the tube containing the melt was covered to retard the zirconium snow effect

•

Although more than fifty different fluoride mixtures have been developed since the initiation of the ANP program, density measurements have been made on only fifteen of these mixtures In addition, new mixtures are developed as the program continues For these reasons it was felt that a method for predicting densities of molten fluorides would be useful and the correlation described below was developed

The correlation is based on plots of the experimentally determined liquid densities at any one temperature against the calculated densities of the corresponding mixture at room temperature These room temperature densities are calculated by the formula

$$\rho = \frac{\sum_{l=1}^{N} M_l f_l}{\sum_{l=1}^{N} (M_l / \rho_l) f_l}$$
(9)

where,

ρ, density at room temperature of the mixture (gm/cc)
M₁, molecular weight¹ of a component of the mixture (gm/mol)
f₁, mol fraction of that component
ρ₁, density at room temperature¹ of that component (gm/cc)

¹The values used for the various components are listed in Table 2 of the appendix

- 15 -

The numerator is the calculated molecular weight of the mixture and the denominator is the calculated molecular volume of the mixture Values of the room temperature density calculated from this formula were checked against experimentally determined values for a series of 10 fluoride mixtures and were found to differ by no more than ± 5 percent (Reference 1)

Figure 3 gives the density-temperature data for all of the liquid fluoride mixtures that have been studied to date (References 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) The figures in parentheses are the calculated room temperature densities The data given in Table 1 were used in drawing these curves It is noted that the average liquid densities are proportional to the calculated room temperature densities of the corresponding mixtures

Figures 4a, 4b, 4c and 4d represent plots of liquid densities against the calculated room temperature densities of corresponding mixtures at 600° C, 700° C, 800° C and 900° C respectively, these isotherms were cross-plotted from Figure 3 Figure 5 is a composite of figures 4a, 4b, 4c and 4d Knowing only the calculated room temperature density, the liquid density may be predicted for any mixture of fluorides over this temperature range

Figures 6 and 7 were derived from Figure 5 and give the constants, a and b, for equation 7, as a function of the room temperature density

The density correlation presented here satisfactorily represents all the experimental measurements on the fluoride mixtures, the mean deviation is about 3% and the maximum deviation is 6% Table 3 gives the calculated room

¥

- 16 -

Fig 3 Densities of Fluoride Mixtures (g/cc) vs Temperature (°C)(Numbers in Parentheses are Calculated Room Temperature Densities)

-17-

-18-

AN AVAILA

Fig 4b Liquid Density at 700° C vs Calculated Room Temperature Density

Fig 5 Liquid Density vs Calculated Room Temperature Density (Composite of Figures 2a 2b 2c 2d)

Fig 6 Intercept of Density-Temperature Curve (a) vs Calculated Room Temperature Density

temperature densities, as well as compositions, molecular weights and molecular volumes, for all the fluoride mixtures that have been formulated in the ANP program (References 13 and 14) and Table 4 lists the predicted densities in terms of equation 7 for all of these mixtures as well as the experimentally determined formulae to illustrate the agreement

Cubical coefficients of expansion at $700^{\circ}C$ of the liquids calculated from this correlation are inversely proportional to density and vary from 3 60 x 10^{-4} (1/°C) for a mixture having a room temperature density of 2 0 (gm/cc) to 2 37 x 10^{-4} (1/°C) for a mixture having a room temperature density of 5 5 (gm/cc)

- 25 -

4

REFERENCES

- 26 -

\$

- 1 Melvin Tobias, S I Kaplan, S J Claiborne, ORNL CF 52-3-230
- 2 S I Kaplan, ORNL CF 51-8-97
- 3 J Cisar, ORNL CF 51-11-78
- 4 J Cisar, ORNL CF 51-11-198
- 5 J Cisar, Personal communication
- 6 R F Redmond, T N Jones, ORNL CF 52-11-105
- 7 S I Cohen, T N Jones, ORNL CF 53-7-125
- 8 S I Cohen, T N Jones, ORNL CF 53-10-86
- 9 S I Cohen, T N Jones, ORNL CF 53-8-217
- 10 S I Cohen, T N Jones, ORNL CF 53-12-179
- 11 S I Cohen, T N Jones, Memo to be issued
- 12 ANP Physical Properties Group, ORNL CF 53-3-261
- 13 C J Barton, ORNL CF 53-10-78

- 14 C J Barton, Personal communications
- 15 Katz and Rabinowitch, "The Chemistry of Uranium," NNES VIII-5, p 366
- 16 Henglein, F A, Z Elektrochem, Vol 30, p 5, 1924

1

APPENDIX

TABLE	l	Expe	rım	ental	Densi	ity	r-T€	mp	eratu	ire l	Data	
	~	~			-	~	-			-	-	

- TABLE 2Constants used in Calculating Room Temperature
Densities
- TABLE 3Calculation of Room Temperature Densities
- TABLE 4Comparison of Predicted and Experimental Density-
Temperature Data

1

TABLE 1

EXPERIMENTAL DENSITY-TEMPERATURE DATA

	LI	QUID DENS	SITY (gm	Cubical Coefficient of Expansion2		
Composition	600°C	700 ⁰ C	800 ⁰ C	900 ⁰ C	1/°C x 10 ⁴	Reference
2	4 00	3 89	3 78	3 67	2 96	2,12
2a.	388	3 77	366	3 55	2 92	3,12
12	2 10	2 02	194	1 88	3 61	11
14	2 11	2 02	1 93		4 46	4,12
19	3 13				348(600°C)	5,12
21			296	2 80	5 51(800°C)	5,12
25	3 23	314	3 05	296	2 90`	5,12
25a	3 17	3 09	3 01	2 93	2 59	5,12
31	3 23	3 14	3 05	2 96	2 96	6,12
33		3 98			3 99	6,12
40	3 27	3 21	316		1 71	7
43		460	4 47	4 34	283	8
44	3 38	3 27	316		3 36	9
46		3 91	3 79	3 67	3 07	10
100		2 03	1 97	1 92	2 71	11

² Value is for 700° C unless otherwise noted The calculated range of cubical expansion coefficients is from 3.6 x 10^{-4} 1/°C to 2.4 x 10^{-4} 1/°C The few experimental values which fall outside of this range probably do so because they are based on early or incomplete sets of data

Fr.

TABLE 2

Room Molecular Molecular Component Weight, Temperature Volume, M₁ (gm/mol) Density, M_1/ρ_1 (cc/mol) ρ (gm/cc) LıF 25 9 2 30 11 26 2 79 42 15 05 NaF 1 98 2 48 23 74 47 BeF2 58 1 23 43 KF 4 43 6 70³ 3 557 8 24 6 70⁵ 37 74 46 88 167 2 ZrF4 UF14 314 1 104 5 29 38 RbF 29 75 45 99 245 2 PbF2 308 1 ThF_4 8 956 UF 3 295 1 32 97

CONSTANTS USED IN CALCULATING ROOM TEMPERATURE DENSITIES

³Reference 15

¹Reference 16

⁵Value for UF4 Value for ThF4 not available

⁶Derived from X-ray data

All other values taken from Lange's Handbook of Chemistry, Eighth Edition

TABLE 3

CALCULATION OF ROOM TEMPERATURE DENSITIES OF FLUORIDE MIXTURES

ρ _{Room} Ter	$mp = \frac{Mol}{Mol} V$	t of Mi ol of M	<u>xture</u> =	$\sum_{\substack{1=1\\N\\1=1}}^{N} M_1 f_1$ $\sum_{\substack{1=1\\N\\1=1}}^{N} (M_1/\rho_1) f_1$	where,	M ₁ , molecular wt of component f _i , mol % of that component ρ _i , density at room temperature of that component		
Mixture	Component	fl	M _l f _l	Mol Wt of Mıxture	(M _l /p _l)f _i	Mol Vol of Mixture	^p Room Temp	
1	BeF2 NaF UF4	12 76 12	56 319 377	75 2	2 85 11 44 5 63	19 92	3 77	
2	Naf Kf Uf ₄	465 260 275	195 151 864	121 0	7 0 0 6 09 12 89	25 98	4 66	
28	Naf Kf Uf4	482 268 250	20 2 15 6 78 5	114 3	7 25 6 28 11 72	25 25	4 53	
3	BeF2 NaF UF4	60 0 25 0 15 0	28 2 10 5 47 1	85 8	14 24 3 76 7 03	25 03	3 43	
4	NaF KF UF4	35 20 45	14 7 11 6 141 3	167 6	5 27 4 69 21 10	31 06	5 40	
5	Naf Pdf2 UF4	60 23 17	25 2 56 4 53 4	135 0	9 03 6 84 7 97	23 84	5 66	
6	Naf Bef2 Kf	30 65 5	12 6 30 6 2 9	46 l	452 1543 117	21 12	2 18	

٤ ۽

- 31 -

CALCULATION OF ROOM TEMPERATURE DENSITIES OF FLUORIDE MIXTURES

Mixture	Component	fi	Mltl	Mol Wt of Mıxture	$(M_1/\rho_1)f_1$	Mol Vol of Mıxture	PRoom Temp
7	NaF KF UF4	50 20 30	21 11 6 94 2	126 8	7 53 4 69 14 06	26 28	4 83
8	NaF	100		42			2 79 ⁷
9	BeF2	100		47			1 98 ⁷
10	LıF	100		25 9			2 307
11	KF	100		58 l			2 48 ⁷
12 (Flinak)	NaF KF LıF	11 5 42 0 46 5	48 244 120	41 2	1 73 9 84 5 24	16 81	2 45
13	NaF RbF UF4	53 20 27	22 3 20 9 84 8	128	798 588 1266	25 52	5 02
14 (Flinak)	KF Lif Naf UF4	435 445 109 11	25 3 11 5 4 6 3 5	44 9	10 19 5 01 1 64 52	17 36	2 59
15	NaF BeF2 KF UF4	295 640 49 16	12 4 30 1 2 8 5 0	50 3	4 44 15 19 1 15 75	21 53	2 34
16	NaF BeF ₂ UF4	34 0 57 5 8 5	14 3 27 0 26 7	68 0	5 12 13 65 3 99	22 76	2 99

7 Taken from Lange's Handbook of Chemistry, Eighth Edition

ŧ

\$

3

TABLE 3 (Con't)

CALCULATION OF ROOM TEMPERATURE DENSITIES OF FLUORIDE MIXTURES

Mixture	Component	fi	Mıfi	Mol Wt of Mixture	(M _i /p _i)f _i	Mol Vol of Mixture	o _{Room} Temp
17	Naf Bef2 UF4	47 0 51 0 2 0	19 7 24 0 6 3	50 0	7 07 12 11 94	20 12	2 49
18	Naf Lif Uf4	45 0 33 0 22 0	189 85 691	96 5	6 77 3 72 10 31	20 80	4 64
19	NaF KF ZrF4 UF4	50 510 420 20	21 296 702 63	108 2	75 11 95 15 85 94	29 49	3 67
20	NaF KF ZrF4	50 520 430	21 302 719	104 2	75 12 18 16 23	29 16	3 57
21	NeF KF ZrF4 UF4	48 501 413 38	20 291 691 119	115 1	72 11 74 15 59 1 78	29 83	3 76
22	KF ZrF4 UF4	46 0 50 0 4 0	26 7 83 6 12 6	122 9	10 78 18 87 1 88	31 53	390
23	KF NeF LlF ThF ₄	41 8 11 4 46 2 0 6	243 48 120 18	42 9	9 79 1 72 5 20 28	16 99	2 53
24	KF NaF ZrF4	18 0 36 0 46 0	10 5 15 1 76 9	102 5	422 542 1736	27 00	380

§ §

CALCULATION OF ROOM TEMPERATURE DENSITIES OF FLUORIDE MIXTURES

Mıxture	Component	fl	M _l f _l	Mol Wt of Mixture	$(M_1/\rho_1)f_1$	Mol Vol of Mixture	ρ _{Room} Temp
25	KF NaF ZrF ₄ UF ₄	17 4 34 7 44 4 3 5	10 1 14 6 74 2 11 0	109 9	4 08 5 22 16 76 1 64	27 70	3 97
25a	NaF KF ZrF ₄ UF4	35 1 17 6 44 8 2 5	14 7 10 2 74 9 7 9	107 7	5 28 4 12 16 91 1 17	27 48	3 92
26	KF NaF ZrF14 UF14	14 0 36 6 45 6 3 8	81 154 762 119	111 6	3 28 5 51 17 21 1 78	27 78	4 02
27	NaF ZrF4 UF4	46 0 50 0 4 0	19 3 83 6 12 6	115 5	6 92 18 87 1 88	27 67	4 17
28	NaF ZrF ₄	48 0 52 0	20 2 86 9	107 1	722 1962	26 84	3 99
29	NaF ZrF ₄	42 2 57 8	17 7 96 6	114 3	6 35 21 81	28 16	4 06
30	NaF ZrF ₄ UF4	500 460 40	21 0 76 9 12 6	110 5	7 53 17 36 1 88	26 77	4 13
31	NaF ZrF14	50 0 50 0	21 0 83 6	104 6	753 1887	26 40	396
32	NaF ZrF ₄	52 0 48 0	21 8 80 3	102 1	783 1812	25 95	3 93

5

CALCULATION OF ROOM TEMPERATURE DENSITIES OF FLUORIDE MIXTURES

Mıxture	Component	fl	Mlfl	Mol Wt of Mıxture	$(M_l/\rho_l)f_l$	Mol Vol of Mixture	P _{Room} Temp
33	NaF ZrF4 UF4	50 0 25 0 25 0	21 0 41 8 78 6	141 4	7 53 9 44 11 72	28 69	4 93
34	NaF ZrF ₄	57 0 43 0	23 9 71 9	95 8	8 58 16 23	24 81	386
35	NaF BeF2	57 0 43 0	23 9 20 2	44 l	859 1021	18 80	2 35
36	Naf Bef2 Uf4	55 0 40 0 5 0	23 1 18 8 15 7	576	8 28 9 50 2 34	20 12	2 86
37	Naf UF4	50 0 50 0	21 0 157 05	178 05	753 2344	30 97	5 75
38	NaF ZrF4 UF4	500 480 20	21 0 80 26 6 28	107 54	7 53 18 12 94	26 59	4 O4
39	NaF ZrF4 UF4	65 0 15 0 20 0	27 3 25 08 62 80	115 18	9 78 5 66 9 38	24 82	4 64
40	NaF ZrF4 UF4	53 0 43 0 4 0	22 3 71 9 12 6	106 8	798 1623 188	26 09	4 09
41	NaF ZrF ₄ UF4	63 0 25 0 12 0	26 46 41 8 37 69	105 95	9 48 9 44 5 63	24 55	4 32

CALCULATION OF ROOM TEMPERATURE DENSITIES OF FLUORIDE MIXTURES

Mixture	Component	fl	M _l f _l	Mol Wt of Mixture	(M1/p1)f1	Mol Vol of Mixture	PRoom Temp
42	NaF ZrF _{l4} UF4	64 5 6 0 29 5	27 09 10 03 92 66	129 78	9 71 2 26 13 83	25 80	5 03
43	Naf Uf ₄	66 7 33 3	28 0 104 6	132 6	10 04 15 63	25 67	5 17
կկ	Naf Zrf ₄ Uf4	535 400 65	22 5 66 9 20 4	109 8	8 05 15 10 3 05	26 20	4 19_
45	NaF ZrF ₄	53 0 47 0	22 27 78 6	100 87	798 1774	25 72	3 92
46	NaF ZrF4 UF4	62 5 12 5 25 0	26 3 20 9 78 5	125 7	9 41 4 72 11 72	25 85	4 86 -
47	NaF LıF BeF2	35 20 45	14 7 5 2 21 2	41 I	5 27 2 25 10 68	18 20	2 26
C Test	NaF ZrF4	66 7 33 3	28 0 55 7	83 7	10 04 12 57	22 61	3 70
50 - 99	(to be hy	droxide :	mixtures)				
100	Lif Naf	60 0 40 0	15 5 16 8	32 3	6 76 6 02	12 78	2 53
101	LlF NaF UF4	576 384 40	14 9 16 1 12 6	43 6	6 49 5 78 1 88	14 15	3 08

1

۲

ţ

CALCULATION OF ROOM TEMPERATURE DENSITIES OF FLUORIDE MIXTURES

Mixture	Component	fl	M _l f _l	Mol Wt of Mıxture	(M ₁ /ρ ₁)f ₁	Mol Vol of Mixture	^р Room Temp
102	LiF KF	50 0 50 0	13 0 29 1	42 1	5 63 11 72	17 35	2 43
103	L2F KF UF4	48 0 48 0 4 0	12 4 27 9 12 6	52 9	541 125 188	18 54	2 85
104	RbF LıF	57 0 43 0	59 6 11 1	70 7	16 75 4 84	21 59	3 27
105	RbF L1F UF),	54 7 41 3 4	572 107 126	80 5	16 07 4 65 1 88	22 60	3 56

-> 2,09 @ 8000, 107 101 1 for Cp see ORNL-1956 Theand, of 107 - 1.035 Km°c 2 BTO 2 BTO Hor Inf. Coller, Pomens

16 X 14

TABLE 4

CALCULATED DENSITY-TEMPERATURE RELATIONSHIPS FOR ALL FLUORIDE MIXTURES COMPARISON OF CALCULATED RELATIONSHIPS AND AVAILABLE EXPERIMENTAL RELATIONSHIPS

Composition	мр (^о с)	Calculated Density	Experimental Density	Agreement ⁸	Reference
1	480	ρ = 3 60 - 0 00087T		· · · · · · · · · · · · · · · · · · ·	
2	530	$\rho = 455 - 000102T$	$\rho = 4$ 70 - 0 00115T	> 2%	2,12
2a	558	$\rho = 4 40 - 0 00099T$	$\rho = 454 - 000110T$	> 2%	3,12
3	465	$\rho = 324 - 00082T$			
4	708	$\rho = 560 - 000116T$			
5	405	$\rho = 6.01 - 0.001221$			
0	422	$\rho = 2 29 - 0 00005T$			
Ŕ	272	p = 4 70 - 0.001041			
0	8007				
10	8707				
11	8807				
12	460	o = 247 - 000068T	o = 2.53 - 0.00073T	>2%	רר
13	490	$\rho = 5 05 - 0 00108T$	p =	> _ p	
14	452	$\rho = 256 - 000070T$	ρ = 2 65 - 0 00090T	> 3%	4.12
15	433	$\rho = 240 - 00067T$	F F F F F F F F F F F F F F F F F F F		.,
16	500	$\rho = 2.87 - 0.00075T$			
17		$\rho = 249 - 000069T$			
18	506	$\rho = 454 - 000101T$		_	
19	405	$\rho = 346 - 00085T$	ρ = 3 78 - 0 00109T	6% (600°c)	5,12
20	450	$\rho = 3 38 - 0 00084T$			
21	540	$\rho = 355 - 00087T$	ρ = 4 27 - 0 00163T	>4% (800℃)	5,12
22	605	p = 369 - 00089T			
23	450	$\rho = 252 - 0.00070T$			
24	450	$\rho = 559 - 0.00087T$	7 79 0 00007	\ 7d	
27	242 515	$\rho = 2 (2 - 0.000901)$	$\rho = 2 (0 - 0.000911)$	$\leq \frac{1\%}{3}$	5,12
27a 26	242 540	p = 3.82 - 0.00091	p = 505 - 0.000001	→ 1%	5,12
20 x- 27 &	510	p = 1 Q7 = 0 0009TT			
ε <u>−</u> 1%		p = 4 - 91 = 0 - 000901			

Ç,

CALCULATED DENSITY-TEMPERATURE RELATIONSHIPS FOR ALL FLUORIDE MIXTURES COMPARISON OF CALCULATED RELATIONSHIPS AND AVAILABLE EXPERIMENTAL RELATIONSHIPS

۰.

Composition	мр (^о с)	Calculated Density	Experimental Density	Agreement ⁸	Reference			
28	510	$\rho = 379 - 000090T$						
29	5(0	$\rho = 500 - 0.000921$						
20 31	510	$\rho = 3.99 - 0.000991$		\1 d	6 10			
32	500	p = 372 - 0.000897	p = 7 + 9 = 0 + 000991	/ 1%	0,12			
24 33	610	$\rho = 4 90 - 0 00107T$	0 = 5.09 - 0.00159T	<u><u> </u></u>	6.12			
34	490	$\rho = 365 - 00088T$	p	///	0,11			
35	360	$\rho = 240 - 00067T$						
36	>500	$\rho = 2.76 - 0.00073T$						
37	715	$\rho = 6 \ 16 \ - \ 0 \ 00123T$						
38	510	$\rho = 3 83 - 0 00091T$						
39	610	$\rho = 455 - 000102T$	_	_				
40	520	$\rho = 389 - 00092T$	ρ = 3 60 - 0 00055T	>2%	7			
41	595	$\rho = 4 15 - 0 00096 \mathrm{T}$						
42	650 (ha	$\rho = 5 05 - 0 00107T$			•			
45 N	640 51 5	$\rho = 5 25 - 0 00111T$	$\rho = 551 - 000130T$	>3%	8			
44 \r	545	$\rho = 4 00 - 0 00093T$	$\rho = 4 \ 04 - 0 \ 00110T$	>3%	9			
45 116	500	$\rho = 5 71 - 0 000091$	- 1. 75 0.00100 m	. 	•			
40	$\frac{000}{350}$	$\rho = 4 05 - 0 00105T$	$\rho = 4 (5 - 0.001201)$	>5%	10			
τι C Test	625	p = 2 - 9 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0						
100	652	p = 2 + 3 = 0 000001		< 1¢.	11			
101	645	$\rho = 2.95 = 0.00077T$	$\beta = 2 + 2 = 0 000000$	<i>→</i> ± <i>p</i>	TT			
102	492	$\rho = 2.46 - 0.00068T$						
103	>500	$\rho = 2.75 - 0.00073T$						
104	462	$\rho = 3 \ 10 \ - \ 0 \ 00079 T$						
105	465?	$\rho = 3.36 - 0.00084T$						
8 Agreement or percent difference = $\frac{\rho_{exp} - \rho_{calc}}{1/2 (\rho_{exp} + \rho_{calc})} \times 100$ (Detempined at 700°C unless $1/2 (\rho_{exp} + \rho_{calc})$								