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SUMMARY 

Theoretical laminar flow analyses are given for free convection in fluids 

having a uniform volume heat source and for both parallel plate and cylindrical 

Pipe geometries The solutions are intended to be valid in the central region 

(vertically) of channels having small diameters and large lengths, that 1s, the 

solutions do not apply to short systems or near the ends of long systems where 

the velocity and temperature profiles are not yet fully established In addi- 

tion, the solutions are restricted to systems in which the long axis 1s vertical 

and in which the walls are uniformly cooled by a forced flow coolant flowing 

vertically upward parallel to the long axis of the system 

Solutions are obtained for the parallel plate geometry by two different 

techniques called exact and approximate’ In the "exact method the differ- 

ential equations for velocity and for temperature, which are interdependent 

in free convection systems, are solved simultaneously, in the 'approximate" 

method the form of the velocity distribution 1s postulated and substituted in 

the temperature equation which i1s then integrated Solutions by the two methods 

agree well in the range where the basic postulates are believed to be valid 

The velocity and temperature structures are functions of two new dimensionless 

moduli herein designated as Ny and Nyt



INTRODUCTION 

The purpose of this report i1s to provide a wider distribution for three 

analyses performed in 1951 than was accomplished by the very limited local 

distribution of References 1, 2, and 3 Originally these analyses were per- 

formed as the first step i1n a theoretical-experimental free convection research 

program At that time 1t was planned to withhold publication of these analyses 

as a report until the experimental data were available which proved their 

validity  Subsequently, other problems have diverted attention from free 

convection experiments so that this research has become a part time activity 

(Reference 4) This reduced experimental program 15 less comprehensive than 

would be required to adequately prove or disprove the validity of the basic 

assumption of these analyses Therefore the reason for delaying this publa- 

cation 1s no longer valiad It 1s expected that the results of the more modest 

experimental program will be reported in the near future 

The basic postulates that apply to all three analyses are discussed in the 

next section, following that 1s the 'exact" solution (Ideal System I) for the 

parallel plate geometry Then an approximate solution (Ideal System II) for 

the parallel plate geometry 1s presented Finally, an "approximate' solution 

(Ideal System III) for the cylindrical pipe geometry 1s given which is the 

cylindrical equivalent of Ideal System II



NOMENCLATURE¥* 

&, 8o constants 

A= éfi,-unlform vertical temperature gradient (6L.-1), also area (L?) 
Z 

B1(z) - function of z in Equation (%) (L-1 T"l) 

Bo(z) - function of z in Equation (6) 

Cq,Co; constants 

cp - constant pressure specific heat (FLM'l B’l) 

C - circumference of flow channel (L) 

d - separation of parallel plates or diameter of cylindrical pipe (L) 

Also used as differential operator 

Dy = %%, hydraulic diameter (L) 

f = (280 Dh) [ dpPr), friction factor 
o W2 dz 

where 9Pf 1 the pressure gradient due to friction 
dz 

g - gravitational acceleration (ET'Q) 

g, - dimensional constant (IMF~1 7=2) 

h - heat transfer coefficlent (FT~+ L1 9"1) 

h - height of system (L) 

k - thermal conductivity (FT™' @71) 

L - length of fluid circuit (L) 

  

*The last part of the definition of each symbol will indicate 1ts dimensions 
in the force (F), mass (M), length (L), time (T), temperature (@) system, 
when no dimensions are given the symbol i1s dimensionless



m = x, spatial coordinate (L) 

M=D1 
X1 

ABgd" Ny = oy’ form of Grashof times Prandtl modulus 

| 2 
Nyp = £ P8 g form of Grashof modulus 

k2 
hd L 

Nu = = X~ 3(0) Nusselt Modulus 

P - pressure (FL'2) 

Pr = %—, Prandtl Modulus 

q - heat transfer rate (FLT~1) 

q" - heat transfer rate per unit area (FL"l T'l) 

q' - volume heat source term (FL"2 T"l) 

r - radial coordinate (L) 

r, - value of r at the interface between the two free convection streams (L) 
1 

ro = &, pipe radius (L) 

  

2 

R =X 

To 

wD 
Re = I/h , Reynolds modulus 

+ X 
8 =X - (}_c.o__é__:‘;), spatial coordinate (L) 

5o =( "o___"l) (L) 
2 

S =5 
So 

t - temperature (8) 

u - x component of velocity (LT™1)



v - y component of velocity (LT~1) 

w - z component of velocity (LT-1) 

Wy - average velocity in the middle, hot, or upward flowing free 

convection stream  (LT-1) 

W, - average velocity in the outer, cold, or downward flowing 

free comvection stream (ILT-1) 

W = wd 

Y N1 
, velocity function   

Wy = EEE__ , mean velocity function 
Y11 

X - spatial coordinate (L ) 

X, - value of x at the interface between the two free convection 

streams (L ) 

Xo = g., half separation of the parallel plates (L ) 

¥Y,2, spatial coordinates (L ) 

Greek Symbols 

a = ?Pfif » molecular thermal diffusivity, (L? T'l) 
k 

B - volume coefficient of expansion (871) 

0(X), @(R) - temperature excess above wall temperature at the 

same value of z (8)



8.(0) = 8(0) for conduction only (@) 

8.(0) = : P P 0 43" for parallel plates 
8k 

e.(0) ' 4 lindrical pipe = or C narica 1 

c TSl v PP 
1/4 

» = (NI 
ol 

/1 - dynamic viscosity (l'.\fll."l T-l) 

3 = £ | kinematic viscosity (LZ T71) 
P 

p - mass density (ML-B) 

® = __6 _ , temperature function 
AE) 

A &, - mean buoyasnt temperature difference
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GENERAL DISCUSSION OF THE PROBLEM 

Laminar flow free convection systems are described by three equations of 

motion (Navier Stokes equations) and the heat conduction equation for a moving 

system These four partial differential equations are i1nterdependent and com- 

prise a set one would hardly attempt to solve It 1s intended here to briefly 

discuss the basic postulates that permit simplification of these equations to the 

quite elementary ordinary differential equations that are solved in this report 

Although the parallel plate or cartesian geometry of Figure 1 1s used in thas 

discussion the comments are equally applicable to the cylindrical pipe geometry 

The free convection system to be studied i1s the fluid in the channel between 

the parallel plates (Figure 1) separated by a distance, d, and of height, h, 

which 1s very long compared to & Heat 1s generated uniformly throughout the 

fluid and the heat 1s removed uniformly at the walls Because of these factors 

and because of the vertical orientation of the z axis there will be three 

parallel free convection fluid streams, the warm stream in the center of the 

channel will flow up and the two cool streams near the walls will flow down 

Below some critical velocity these streams should be quite stable and, in 

Tact, should behave much as three laminar forced flow streams separated by 

Physical boundaries might behave This tendency toward stability of the flows 

suggests that the flow would be one long vertical cell, not & number of small 

cells or laminar eddies a few diameters in length In forced flow heat transfer 

systems 1n conduits the velocity and temperature distributions are observed to
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become fully established or reach a stable form some diameters beyond the entrance 

Beyond this entrance region the velocity and temperature distributions no longer 

change as one proceeds down the pipe The similarity of the flow in the free 

convection system and the forced flow system above suggests that beyond some 

entrance region, near the ends of the present system, the velocity and tempera- 

ture profiles may also become fully established These are the two basic 

postulates of the systems analysed in this report and are stated more incisively 

as follows 

Postulate 1 

Postulate 2 

w = f(x) 

%E.= A, where A 158 a positive constant and 
Z 

uniform for the entire system 

Other postulates that are necessary to describe the three i1deal systems 

to be analysed are 

Postulate 3 

Postulate 4 

Postulate 5 

Postulate 6 

Postulate 7 

Postulate 8 

The volume heat source term, q'"', is uniform 

throughout the system and constant with time 

The height to diameter ratio, h/d, is very large 

The flow 1s laminar and steady (1 e , constant 

with time) 

The flow 1s two dimensional (1 e , the y component 

of velocity, v, 18 zero) 

All fluid properties except density are constants 

The density 1s constant in the heat equation and 1is 

a linear function of temperature in the dynamic 

equation
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As & consequence of Postulate 1 one can prove that the x component of 

velocity, u, and the transverse pressure gradient _gg.vanlsh and that %E 

15 uniform with x Thus, two of the dynamic equations are eliminated and the 

third is greatly simplified to 

iz_w;.zgfl(gg-l-pi) (1) 
ax2 /1. dz & 

As a result of Postulate 2 one can prove that the heat flux at the wall 

is uniform and therefore known, that is, each element of width, 4, and height, 

dz, loses through its own bounding wall surface exactly the amount of heat 

generated within that element Thus, no net heat loss occurs 1n the z direction 

for such an element An additional consequence of Postulate 2 is that the use 

of the temperature function, &, eliminates z as & variable and the equations 

involve only one independent variable, x The heat conduction equation i1s then 

simplified to 

i29 & " 
Z-a" "% (2) 

By definition p(t) = p(t,) (l - B(t - 'bo)) (3) 

Employing the function, &, and Equation (3), Equation (1) becomes 

a8 5= - Fe + m) (1) 

Note that the function Bj(z) 1s independent of x
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The heat conduction and dynamic equations that result from employing 

dimensionless functions 1in Equation (2) and (4) are 

dz‘b X = QNI W(X) -2 (5) 
dX’S 

2y T)'ddx(x = - 3}5 o(X) + By(z) (6) 

Equations (5) and (6) together with the accompanying boundary conditions 

define the parallel plate system to be analysed 

The equivalent set for a cylindrical pipe 1s 

%—.dER_ (R i‘é‘i@) = - 61137 (R) + Ba(z) (7) 

%% (R %5)_) = Ny W(R) - 4 (8) 

The boundary conditions and auxiliary information that go with the 

differential equations to complete the boundary value problem are given here 

Due to the definition of the temperature function & 

®(1) =0 (9) 

It 1s evident from inspection that both the velocity and temperature 

functions are symmetrical, thus 

w(x) (10p) 

W(R) (10c) 

W(-X) 

W(-R) 

 



and 

o(X) (11lp) 

¢(R) (11c) 

o(-X) 

o(-R) 

The velocity at the walls i1s zero, thus 

w(1) = 0 (12) 

No net flow occurs, therefore 

1 

/ W(X) a&X = © (13p) 
0 

1 

/ W(R) RAR = O (13c) 
O 

No net heat transfer occurs in the z direction so the heat generated at a 

given level must transfer to the walls at that level, thus 

__ng 1) - _L_?_gg = -2 (1%4) 

Equations (5) to (14), inclusive, define the systems to be solved
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IDEAL SYSTEM I (PARALLEL PLATES) 

The geometry was previously described in Figure 1 and the differential 

equations and boundary conditions were adequately discussed in the previous 

section It 1s sufficient here to define the system mathematically and then to 

obtein the solution 

The differential equations to be solved are 

498 _ oy w(x) - 2 (5) 
dX 

T - - 2 o(x) + Bola) (6) 

The boundary conditions to be employed are 

W(-X) = W(X) (1op) 

W(1) =0 (12) 

1 

/ W(X) dX = 0 (13p) 
0 

__ldgj(co -0 (11p) 

o(1) =0 (9)
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Velocity Solution 
  

Eliminating the temperature from Equations (5) and (6) one gets the 

velocity equation 

  

() 4 I yx) L (15) 

The general solution to (15) is 

W(X) = %;.(1 + a1 s1n AX sinh AX + &, cos AX cosh X 

+ 83 s1n AX cosh AX + &) cos AX sinh AX) (16) 

1/% 
where A= (g&) / (17) 

By successive application of boundary conditions (10p), (12), and (13p) one 

obtains 

az = ay =0 (18) 

a) = - (élnl cosh A + cos A sinh A -2 A cos A cosh f) (19) 
sinh A cosh A - sSi1n A cos A 

  H 

(éln A cosh A - cos A s1nh A -2 A sin A sinh l) (20) 
&2 sinh A cosh A - sin A cos A 

Thus, the velocity solution, plotted in Figure 2, 1s given by 

N1 W(X) = 1 + a7 sin X sinh AX + ap cos AX cosh AX (16a) 

The Reynolds modulus for the central or hot stream 1is 

Xy 
L Rey, = __Xj__‘:’.g. = 2 Nyg W(X)ax (21)
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Because the values of Rep computed by the numerical integration of Figure 2 

disagreed by less than five percent with the equation obtained in Ideal System 

11, that equation will be employed to display these results 

  

N Rew = II 
“h 3460 + 0 786 Ny (57) 

The critical value of Reyp above which the flow 15 no longer laminar must be 

determined by experiment Experiments in Reference (5) indicated that the 

critical value of Reynolds modulus for non-isothermal flow varies in a very com- 

plex manner and is not the same as for the i1sothermal flow case 

Temperature Solution 
  

At least three methods may be used to obtain the temperature solution, the 

method employed here 18 to substitute the velocity from Equation {1l6éa) into the 

temperature Equation (5) and integrate using the boundary conditions (9) and 

X X 

o(X) =///// dx///// (2w w(X) -2) X aX (22) 

1 o 

Putting W(X) from Equation (16a) in Equation (22) and performing the 

(11p) 

integrations one obtains 

o(X) = ._12_ (al(cos A cosh A - cos AX cosh \X) + 

A 

-an(sin A sinh A - sin AX sinh JLX)) {22a) 

and o(0) = Eé. aj(cos A cosh A - 1) - ap sin A sinh)\) (23) 
A
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A Nusselt modulus may be defined as follows 

= 5807 - T (24) 

The dimensionless temperature function, ®(X) 1s shown in Figure 3 as a 

function of X and Ny The value of Ny = O corresponds to the case of pure con- 

duction The variation of Nusselt modulus with N1 1s given 1n Figure b Tt is 

interesting to note the similarity in shape of this curve with conventional 

Nusselt modulus versus Grashof times Prandtl moduli plots for systems having no 

volume heat source
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IDEAL SYSTEM II (PARALLEL PLATES - APPROXIMATE) 
  

This solution is an approximeate method for obtaining an answer to the 

problem described by Ideal System I  If the two solutions agree satisfactorily 

the approximate" method offers the two advantages of presenting a less diffai- 

cult boundary value problem and of requiring less time to perform the numerical 

calculations The technique depends upon the jJudicious postulation of the form 

of the velocity distribution to be substituted into Equation (5) 

Velocity Solution 
  

Iet the real flow system of Ideal System I be replaced by a counter-current 

heat exchanger system such as that depicted in Faigure 5 To emphasize the 

method used, the X coordinate i1s replaced by the coordinate, M, in the hot upward 

flowing stream, and by the coordinate, S, i1n the cold, downward flowing stream 

One can think of these streams as separated by parallel plates inserted at 

+ X, (or M = + 1) The velocity distribution in each region is given by the 

equations with Figure 5, this 1s the familar parabolic expression for established 

isothermal, laminar, forced flow between parallel plates Since there 1s no net 

flow 

X, Wy = 285 W (25) 

To satisfy static equilibrium at the interface, x;i, the shear stress must be 

the same, or 

dw(xl) _ dW(Xl) (26) 

dm ds 
 



-24_ 

    

  

N 
N
N
\
 

| 
_ 

| | { —
 

|               R
\
 

N 
N 

N
N
 

3 

M=-1{ M-0 
X-0   
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Equations (25) and (26) require that 

X, =¥2' - 1and w, = V2 w, (27) 

The pressure drop due to friction around the fluid circuit of length, 

L, must be equal to the pressure rise due to the difference 1n the average 

density of the two streams, that is 

1 1 

2 2 
3 pdS - dM/ gL = + < 28 
2./{/// ////, ° ¢ Dy 2Dy (%) 

- O hot cold 

    

The friction factor for established, isothermal, laminar flow between parallel 

plates will be used 

r=2 (29) 

The left member of Equation (28) may be expressed in terms of a mean 

buoyant temperature difference, Ady,, defined as follows 

1 1 

Ady =/ oM - %/ 3ds (30) 

2 /1 

Employing Equations (3), (27), (29), and (30) Equation (28) may be expressed 

as 

Ady = 96(7 + 5 V2') Wy (31) 

The velocity structure 1s now completely defined in terms of constants and 

A&, which must be obtained from the temperature solution
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Temperature Solution 

The temperature solution will again be obtained by substituting the 

velocity solution into Equation (5) and performing the integrations 

(X —(—l 2Np W(X) - 2 (5) 

The forms of Equation (5) that will be used here in the hot and cold stream 

regions, respectively, are 

d2e (M) o W 2 = 2X,° Ny W (L) - x (5M) M2 1 YI %h (Wh) 1 

dEQ(S (1 -X ) W (1 -X = 2m 2 ) Ny oWy (e S -x)® (55) 
ds 2 W Wc 2 

The temperature in the cold stream is obtained by integrating Equation (58) 

0 a0 
as ad (1 X,)° SNTW ds ( ) el _I_h (1-52) + 1} as  (328) 

5 ! b 
1-X4 

Integrating, one gets 

2 
8(s) = X (1 -:_%".‘leh)(l - 8) + }%— (1 + 5—,%@ NIWR) (1 - S2) + 

\/"‘x 
Ni¥n (1L -5 ) (338)
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From Equation (33S) the temperature at the interface between the two streams 

may be computed for use as the boundary temperature in Equation (32M) 

2 o(-1) = 2X, - V2'X,° NyWy (34) 

For the hot stream 

@ de M M 
aM ad 2 3 2 

aMm d(afi) = X, dM 'é-NIWh(l-M ) - 1) aM (32M) 

0 1 0 

Integrating, one gets 

®{(1) 

  

o(M) = 2X, - ¥2'%,% NpWy, + X, (1 - g.NIWh)(l-ME) + Ny, (1 - M*) (33M) 

and 

2(0) = 1 - (2 @u 1) My (35) 

Also, recall 

_ il Nu = 36T (24) 

From Equations (30), (33M), and (33S) the mean buoyant temperature difference 

15 computed as 

Ady, = Eg‘ - (——-——-—-——-——5 V?O- h) NIWy, (36) 

Eliminating A&, between Equations (31) and (36) get 

Wh = L (37) 
- Wh(10 + 7 VD) + f% (5 - 2V2) Np 
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The Reynolds modulus of the hot stream may be obtained from Equation (37) 

  Re, = 2X,NyqHy, = — 1L (372) b I"b ™ 3480 + 0 786 Wg 

The temperature for Ideal System II was computed from Equations (33M), 

(33S), and (37) for various values of Ny and plotted in Figure 6 for comparison 

with the results of Ideal System I  The two solutions are in excellent agree- 

ment for values of Ny up to 10%  Above this value the solutions diverge 

rapidly so that for NI equal to lO5 the approximate solution yields tempera- 

tures that are too high
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S 

IDEAL SYSTEM III (CYLINDRICAL PIPE - APPROXIMATE) 
  

The excellent agreement of Ideal Systems I and II for values of Ny up 

to lOh supports the validity of the approximate method Since the solution to 

be presented here i1s i1dentical with Ideal System II, except for geometry, the 

accompanying discussion will be reduced to & minimum The "exact' solution of 

Equations (7) and (8) is not difficult, 1t 1s an uncommon form of Bessel's 

equation The disadvantage of the exact' solution in this case is the labor 

involved in the numericel calculations of the solutions 

Velocity Solution 
  

The postulated velocity distribution given in Figure 7 was obtained in the 

same manner as was used in Ideal System II, 1n this case the two regions are 

dynamically characteristic of isothermal, laminar, established forced flow in a 

pipe (for the hot stream) and in & circular annulus (for the cold stream) 

Since there 1s no net flow 

Yh R,2 = we(l - 312) (38) 

To satisfy static equilibrium at the interface 

%(Rl-)= %(Rfi) (39) 

Equations (38) and (39) require that 

R, % " 0 316198 (40) 

{ and wy = 2 16258 w, (41)
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Again, the buoyant force must be equal to the pressure drop due to friction 

  

  

2 2 fowy fow 
p B g 8.,(0) A, = ) + c 

hot DH DH cold 

R, 1 
2 where Ad = ®RAR - "“ELET' ®RAR 

g:E (1’R1 ) 

0 R, 

The friction factors are 

(fpwc2) _ 6]4-!& Wh cy 

cold 
Dh d2 

From Equations (42), (44), and (45) get 

1605 Wh At 

32(cl + Ch) " €5 

Temperature Solution 

(k2) 

(43) 

(k) 

(45) 

(46) 

The temperature solution 1s obtained by substituting the velocity equations 

from Figure T into Equation (7) and then performing the integrations 

a(r 42) = LA (R =) (NIwhwh 1) 4RAR (7)
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For the cold stream region, R;<R<1, 

o R 40 
aR R R 

dR = d(R gg_) = -/ %/ G. + 2¢o ::r—lc1 (1-R° + c3 In RD LRAR (47c) 

1 1 

which, when integrated, becomes 
e 

1 L 
® = 1-RC-cl NiWy (5 + 2(03-1)(1—R2+lnR) - R'h-_ + 2c3 Rem) (48¢) 

and ®(R,) = 1 - Ry° - cg NyWy, (49) 

by 
where 6 = Ch (l—“efij— + 2(c3-1)(1 - R, + 1mR;) + c3R;2 1n Rie) 

For the hot stream region OKR<R, 

o R 4@ = R R 

dR o\ _ dR aaR2Y L T d (R fi) = = (ENIWh(l c1R€)-1) LRdR (47h) 

1) 0 R, o ®(R 

which, when integrated, becomes 

¢ =1 - R® - NyWp(e7 - 2R® + %R”) (48h) 

and ®(0) = 1 - cq NylWy (50) 

2 
where c7 =15 Ri + c6
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The Nusselt modulus expression 18 the same as for the previous systems 

Nu = 5(1:37 (51) 

Using the temperature solution, Equations (47c) and (47h), in Equation 

(43) the mean buoyant temperature difference may be computed 

_ 1 
Ad% =5 - cg NIWy, (52) 

where cg = c6 + %312 - %(MJ C3(l + 5312) + (34 - S—;-) 312 + 10 th') 

Equations (46) and (52) yield 

  

W, = 1 
h 32 c7 + 2 cg Ny (53) 

The Reynolds modulus of the hot stream may be computed from Equation (53) 

gi1nce 

Rey, = N1r Ry Wy (54) 

The important equations are given here with the constants eliminated 

for O<KRKRjy 

(06838 - 2R® + 1 581 R¥) Ny ®R) =1 - R® 
(6930 + 0 T42 Ny) 

(55n)  
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for R <R<1 

2 2 _ 2 2 o(R) = 182 - (3 152-R (1352 + 18R - 4 276 1n R) + 0 676 1nR") Ny (55¢) 

(6930 + 0 742 N1) 

N 0(0) = 1 - 1 
o) (10,130 + 1 085 NI) (56) 

Equations (55c) and {55h) are plotted in Figure 8, the temperature curves 

are si1milar to those given in the parallel plates analyses In Figure 9 the 

Nusselt modulus as computed from Equation (56) 1s shown as a function of Nt
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DISCUSSION 

In the range where the basic postulates are believed to be valid, that is, 

for OKNT < th » the approximate method, Ideal System II, and the exact method, 

Ideal System I, yield temperature solutions that are in good agreement Up to 

N1 equal to 107 the two velocity distributions are 1in close agreement so that one 

1s not surprised at the good agreement of the temperature solutions in this range 

Above Ny equal to lO3 the value of Xl in the exact solution becomes greater, that 

1s, the interface between the hot and cold streams moves nearer to the wall 

4 
Above a value of Nt of 10" the difference in velocity structure i1s sufficient to 

cause a marked difference in the two temperature solutions It 1s 1nteresting 

that the approximate solution 1s always in error by giving a temperature that ais 

too high 

For the systems analyzed here, i1t appears that the reduction in tempera- 

ture due to laminar free convection 1s of the order of one half 

Some of the postulates upon which these analyses are based must yet be 

verified by free convection experiments in volume heat source channel systems
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