

— LEGAL NOTICE —

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

ORNL-2103

This document consists of 74 pages. Copy 136 of 250 copies. Series A.

Contract No. W-7405-eng-26

AIRCRAFT REACTOR ENGINEERING DIVISION

COMPATIBILITY TESTS OF MATERIALS FOR USE IN BEARINGS, SEALS,

AND VALVES IN FUSED FLUORIDE SALTS AT 1200°F

W. C. Tunnell

DATE ISSUED

SEP 21 1956

OAK RIDGE NATIONAL LABORATORY Operated by UNION CARBIDE NUCLEAR COMPANY A Division of Union Carbide and Carbon Corporation Post Office Box P Oak Ridge, Tennessee

ORNL-2103 C-84 - Reactors-Special Features of Aircraft Reactors

indauer

INTERNAL DISTRIBUTION 49. R. B 1. R. G. Affel 50. R. S. Livingston 2. C. J. Barton 51. R. W Lyon 3. M. Bender 52. F. 🕻. Maienschein 4. D. S. Billington 53. W. D. Manly 5. F. F. Blankenship 54. 🗶. R. Mann 6. E. P. Blizard L. A. Mann 55 7. C. J. Borkowski 6. W. B. McDonald 8. W. F. Boudreau 57. F. R. McQuilkin 9. G. E. Boyd 58. R. V. Meghreblian 10. M. A. Bredig 59. R. P. Milford 11. W. E. Browning 60. A. J. Miller 12. F. R. Bruce 61. R. E. Moore 13. A. D. Callihan 62. J. G. Morgan 14. D. W. Cardwell 63. K. Z. Morgan 15. C. E. Center (K-25) 64. E. J. Murphy 16. R. A. Charpie 65. J. P. Murray (Y-12) 17. C. E. Clifford 66. M. L. Nelson 18. J. H. Coobs 67. G. J. Nessle 19. W. B. Cottrell 68. R. B. Oliver 20. D. D. Cowen 69. L. G. Overholser 21. S. Cromer 70. P. Patriarca 22. R. S. Crouse 71. R. W. Peelle 23. F. L. Culler 72. A. M. Perry 24. J. H. DeVan 73. J. C. Pigg 25. L. M. Doney 74. H. F. Poppendiek 26. D. A. Douglas 75. P. M. Reyling 27. E. R. Dytko 76, A. E. Richt 28. W. K. Eister 77. M. T. Robinson 29. L. B. Emlet (K-25) 78. H. W. Savage 30. D. E. Ferguson 79. A. W. Savolainen 31. A. P. Fraas 80. R. D. Schultheiss 32. J. H. Frye 81. E. D. Shipley 33. W. T. Furgerson 82. A. Simon 34. H. C. Groy 83. O. Sisman 35. W. R. Grimes 84. J. Sites 36. E. E. Hoffman 85. M. J. Skinner 37. H. W. Hoffman 86. G. P. Smith 38. A. Hollaender 87. A. H. Snell 39. A. S. Househol 88. C. D. Susano 40. J. T. Howe 9. J. A. Swartout 41. W. H. Jordan 90, E.H. Taylor 42. G. W. Keilhutz 91. R. E. Thoma 43. C. P. Kein 92. D. B. Trauger £ 44. M. T. Kelley 93. 🖻 R. Van Artsdalen 45. F. Kerterz 46. E. M. 🖌 ng 94. G. M. Watson 95. A. M. Weinberg 47-48. J. A. Zane

MacPherson 112. R. Ø 96. J. White 97. G. I Whitman ₩. 🕻 Osborn 113. L. Scott 114. 98. E. F Wigner (consultant) ⁶G. Smith 115. 99. G. C. Villiams . K. Stair ilson 116. 100. J.C. 101. C. E. Waters Æ. Storto 117 102. E. S. Bei W. C. Tunnell is. D. R. Ward 103. R. B. Brid 104. A. A. Abba J. Zasler Ю. llo 21. H. Inouye 105. L. P. Carper 122. W. H. Cook 106. W. G. Cobb 107. J. A. Conlin 124. ORNL – Y-12 Technical Library **Document Reference Section** 108. G. A. Cristy 25-134. Laboratory Records Department 109. S. M. DeCamp 135. Laboratory Records, ORNL R.C. 110. B. L. Greenstreet 136-137. Central Research Library 111. J. W. Kingsley

EXTERNAL DISCRIBUTION

- Plant Represen five, Baltimore 138. AN

- 139. AF clant Representive, Burbank
 140. AF Front Representative, Marietta
 141-143. AF Phot Representative, Santa Monica
 144-145. AF Plan Representative, Seattle

 - 146. AF Plan Rep sentative, Wood-Ridge έa
 - 147. Air Mater
 - 148. Air Resea and Development Command (RDGN)
 - 149. Air Techni Intelligence Center Ъn
 - 150. Allison Di
- 150. Allison Diacon
 151-153. ANP Project Office, Fort Worth
 154. Albuque due Guerations Office
 155. Argonne National Laboratory
 156. Armed porces Special Weapons Project, Sandia
 157. Armed forces Special Weapons Project, Washington
 158. Assignant Secretary of the Air Force, R&D
 159-164. Atomic Energy Commission, Washington
 165. Base the Memorial Institute
- 165. Bas Ile Memorial Institute 166-167. Besis Plant (WAPD)
 - 168. Breau of Aeronautics
 - 24) 169. reau of Aeronautics (Co
 - 170. Jureau of Aeronautics Gen al Representative
 - 171. Thicago Operations Office
 - 172 Chicago Patent Group
 - 17 Chief of Naval Research

 - Convair-General Dynamics Corporation 5. Engineer Research and Development Laboratories
- 9. General Electric Company (ANPD) 176
 - 80. Hartford Area Office
 - 181. Headquarters, Air Force Special Weaters Center
 - 182. Idaho Operations Office
 - 183. Knolls Atomic Power Laboratory
 - 184. Lockland Area Office

- 185. Los Alamos Scientific Laboratory
 186. National Advisity Committee for peronautics, Cleveland
 187. National Advisity Committee Aeronautics, Washington
 188. Naval Air Development and Neurial Center
 189. Naval Research Exboratory
 180. Naval Research Exboratory

- 190. New York Operations Office
- 191. North American Aviation, (Aerophysics Division)
 192. North American Aviation, (Canoga Park)
 193. Nuclear Development Progration of America
 194. Office of the Chief of Trail Operations (OP-361)

- 194. Office of the Chief of
- 195. Patent Branch, Washing 196-199. Pratt & Whitney Airconne Vision (Fox Project)
 - 200. Sandia Corporation
 - 201. School of Aviation Edici
 - 202. Sylvania Electric Moducts
 - 203. USAF Project Re D
 - on Laboratory, Livermore
- 203. University of Centornia Radin on Laboratory, Liverr
 205-222. Wright Air Dev opment Center, VCOSI-3)
 223-247. Technical Information Service & Tension, Oak Ridge
 248. Division of Research and Development, AEC, ORO
 249. Richard G. Lee, P.O. Box 481, Ven Nuys, California
 250. Technical Desearch Group, New York

CONTENTS

Abstract	1
Materials Requirements	1
Self-Welding and Friction Effects	1
Test Apparatus	2
Selection of Materials	3
Test Procedure	3
Criteria for Rating Materials	3
Evaluation of Results	5
Conclusions and Recommendations	5
Acknowledgment	5
Appendix A. Index for Tests of Various Pin and Plate Combinations	19
Appendix B. Material Compatibility Tests – Correlation Series	23
Appendix C. Photographic Record of Wear Patterns	29

٧

•

-

•

•

•

-

COMPATIBILITY TESTS OF MATERIALS FOR USE IN BEARINGS, SEALS, AND VALVES IN FUSED FLUORIDES AT 1200°F

W. C. Tunnell

ABSTRACT

A series of tests were made for selecting combinations of materials compatible for possible use in journal bearings, face seals, and valve seats operating in fused fluoride salts at 1500°F. The test apparatus was designed to impose on the test specimen conditions similar to those that will be encountered in starting journal bearings and face seals from rest or in opening valves which have been seated for a considerable time. These conditions are considered to be those most likely to cause damage to the working surfaces.

Thirty-six combinations of ten different materials were tested in fused fluoride salts at 1200°F with the use of an apparatus consisting of a pin sliding against a rotating plate under a fixed load. The following combinations of materials showed sufficient promise to warrant further testing at higher temperatures:

Kennametal 151A vs Adamas A Adamas A vs Kennametal 138A Kennametal 151A vs Norbide B₄C Kennametal 151A vs Carboloy 608 Kennametal 151A vs Kennametal 151A Kennametal 151A vs High-Density Graphite

MATERIALS REQUIREMENTS

A basic requirement of materials used for pump journal bearings, face-type shaft seals, and valve seats in contact with fused fluoride salts at high temperatures is corrosion resistance. In addition the materials must resist wear, galling, and selfwelding under severe operating conditions. Therefore screening tests were developed to ascertain the design limitations that materials might impose on the Aircraft Reactor Test, in which a fused salt mixture is to be circulated at 1500°F. The selected corrosion-resistant materials were screened for compatibility under conditions that simulated, in a general way, the operation of journal bearings, face-type seals with boundary lubrication, or valve seats under load in fused fluoride salts at 1200 to 1500°F.

It was originally planned that the materials would be given a preliminary screening test at 1200°F, that those proving to be compatible would then be further tested at 1350 and 1500°F, and that any material proving to be compatible at 1500°F would be tested as actual bearing pump and valve components. However, tests at 1200°F were the only ones performed, because the work was stopped by higher priority projects.

SELF-WELDING AND FRICTION EFFECTS

In considering materials for high-temperature application, it is recognized that any formed, smooth surface has microscopic asperities. Also, it has been reliably demonstrated that two such surfaces in intimate sliding contact will generate sufficient heat to cause welding and shearing of these minute asperities as they come in contact under the extreme unit pressures, or that the asperities will shear without welding, or that they will slide "up and over" each other and create frictional forces, metal transfer, and/or surface damage. A similar condition exists in a valve poppet and seat, and it is intensified when the assembly is subjected to a high temperature with high unit pressures at the minute contact points; that is, a "weld" forms through diffusion bonding of the metals. When the valve is to be opened, the welds must be broken; surface damage and metal transfer result. Some metal combinations apparently resist diffusion bonding, or welding, but such resistant combinations can be determined only through tests. In a study of the friction of metals the conclusion has been that the magnitude of the frictional forces and the extent and type of surface damage caused by sliding are determined primarily by the relative physical properties of the two sliding surfaces.¹ In particular, the behavior is very dependent upon the relative hardnesses of the sliding surfaces, and, if the sliding speed is high, the relative softening or melting points are quite important. Properly designed, hydrodynamically lubricated bearings operate with a thin layer of the lubricant separating the two sliding surfaces, except in cases of extreme loads or of starting and stopping under load, when the thin film may be destroyed or interrupted and metal-to-metal contact may occur. The bearing then operates in what is called a "boundary region" of lubrication, and an analysis of the friction developed becomes complicated. The phenomena involved cannot be explained by any presently known lubrication theory. Surface finish and the chemical and physical properties of the sliding surfaces become critical in this situation, and hardnesses, shear strengths, and melting points of the materials are important.

TEST APPARATUS

The test apparatus, which was modified from apparatus previously used for testing seals, consisted of an Inconel sump tank, an Inconel operating pot, and a concentric spindle shaft and sliding shaft arrangement inserted in the operating pot and externally supported by ball bearings (Fig. 1). The $2\frac{3}{4}$ -in. specimen plate was rotated in the operating pot and was held against a ½-in.-dia stationary pin specimen. The contact pressure of the plate on the pin could be adjusted by an external spring. The surface of the plate specimen was lapped flat, to within three light bands, and the end of the stationary pin specimen was ground to a ¹/₂-in.-radius cylindrical surface so that theoretical line contact between the specimens could be obtained. The pin was mounted so that contact would occur at a mean radius of 1 in. from the center of the plate. The mean sliding speed (7.4 fps) used by Vail at KAPL² was selected for use in these tests. At the specified sliding speed of 7.4 fps, the plate rotated at 850 rpm.

The test apparatus was calibrated (tests Nos. 1 and 2) by use of acetylene tetrabromide (1.1–2.2 TEB) as the liquid, a Graphitar 14 plate, and an

Fig. 1. Bearing Materials Compatibility Tester.

Inconel pin. Contact pressure was applied in varying steps until, with a 10-lb load on the load spring and an initial Hertz stress of about 15,000 psi, the hydrodynamic film was interrupted and a boundary lubricated condition existed. With the load requirement established, a series of six correlation tests (tests Nos. 3 through 8, Appendix B) were conducted in which type 416 stainless steel plates were used in combination with six different

 ¹F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids, p 78, Clarendon Press, Oxford, 1950.
 ²D. B. Vail, Compatibility of Materials in Liquid Metal, KAPL-589 (Aug. 18, 1951).

pin materials: babbit, die steel, high-speed tool steel, Stellite 6, Stellite Star J, and Superoilite. The fluid used was regular-grade Texaco Regal "A" oil, without additives, which has a viscosity of 40 to 44 SSU at 210°F. The correlation tests were run at room temperature and were each of 2-hr duration. The results were in reasonable agreement with the KAPL data for the same material combinations.

A pin-wear classification guide (Fig. 2) was prepared by taking cuts of known amounts off the wearing nose of an unused test pin and then photographing the pin. The photographs provided a reference to which photographs of the tested pins could be compared to determine visually the extent of wear.

SELECTION OF MATERIALS

An examination of work by Vail³ with sodium and sodium-potassium alloy at temperatures up to 950°F and recommendations made by the Materials Chemistry Section and the Ceramics Department of ORNL were used as the basis for selecting materials. Samples of materials that were expected to be corrosion resistant were obtained and were exposed to the fluoride salt in static capsule or seesaw tests⁴ for 100 hr. The materials selected and the results of the corrosion tests are presented in Table 1.

TEST PROCEDURE

The test specimens were cleaned with alcohol and then slowly heated to 1200°F in a purging stream of dry, pure helium. After the operating pot and specimens were heated, a fluoride mixture at 1200°F was introduced into the pot and brought to the level-control probe. The rotation of the submerged plate specimen was started, and the system temperature was allowed to come to equilibrium at 1200°F. Contact was then established between the pin and plate specimens, with a 10-lb contact load being applied for 120 min, during which time the specimens remained submerged in the molten fluoride salt. The load was released, and the fluoride mixture was allowed to drain back into the sump pot and freeze. The system was allowed to cool to room temperature under a helium atmosphere before the specimens were removed for examination. Photographs were taken of the pin and the plate after each run (see Appendix C), and enlargements were made of the pin-surface and plate-surface photographs to show the wear pattern.

A Faxfilm replica was also made of each plate and pin. The process consisted in applying a clear solvent to the surface to be recorded, pressing a piece of soluble plastic tope against the solvent and surface, allowing a few seconds for reaction and drying, and then mounting the tape in slides for projection.

A sample of the fluoride was recovered after each run, and a spectrographic analysis was made, with special emphasis given to the constituents of the compatibility specimens. There was no increase of metal content, except in the case of the oxides, which were recognized as being soluble in the fluoride.

CRITERIA FOR RATING MATERIALS

The compatibility of pairs of materials operating in contact with each other was established as a relative measure of resistance to mechanical damage, such as wear, galling, and self-welding. For the purpose of classifying materials according to test results, arbitrary group standards were established, as follows:

Group A – Only slight wear on the narrow-band pin specimen; no spalling of either specimen; no galling or smearing tendency; no appreciable change in surface flatness of the plate; no change in surface finish, except an improvement (polishing or superfinishing); no appreciable reduction in hardness as indicated by the Rockwell hardness tester; and no evidence of erosion or corrosion by spectrographic or visual means.

Group B – Slight wear indications on either specimen; no spalling; no smearing or metal pickup; slight scoring and surface roughening; no appreciable reduction in Rockwell hardness; no evidence of erosion or corrosion by spectrographic or visual means.

Group C – More extensive wear than on specimens of Group B; some possible roughening of either surface or of both; some metal pickup, smearing, scoring, or spalling readily apparent; no evidence of erosion or corrosion by spectrographic or visual means.

³D. B. Vail, Compatibility of Materials in Liquid Metal, Second Report, KAPL-1021 (Jan. 5, 1954).

⁴A. deS. Brosunos, A Simplified Apparatus for Making Thermal Gradient Dynamic Corrosion Tests, ORNL CF-52-3-123 (Morch 13, 1952).

Group D - Excessive wear of either specimen; metal pickup; scoring or smearing; roughening of surfaces; reduction in hardness; deterioration of surface finish; corrosion or erosion readily apparent.

EVALUATION OF RESULTS

From the post-test photographs (presented in Appendix C), a very clear indication of the compatibility of the test materials was obtained. Wear, smearing, or metal buildup, galling or self-welding, spalling, and cracking are all identifiable in the photographs. The extent of pin wear may be observed by comparison of the test photograph with Fig. 2. The hardness readings and the spectrographic analyses were effective in indicating the compatibility of the specimens.

The test data, presented in Tables 2 and 3, showed that, in general, pairs of unlike materials were more compatible than pairs of like materials. Thirty-six combinations of ten different materials were tested, and the following were considered suitable for further testing at higher temperature:

Kennametal 151A vs Adamas A Adamas A vs Kennametal 138A Kennametal 151A vs Norbide B₄C Kennametal 151A vs Carboloy 608 Kennametal 151A vs Kennametal 151A Kennametal 151A vs High-Density Graphite

The repetition of various tests showed that the results were reproducible and indicated that the test apparatus and methods used were consistent and reliable.

No single property or combination of properties, such as surface finish, hardness, or chemical composition, was found which was characteristic of the best materials. It is felt that tests of additional combinations of carbides would be productive and that tests of available borides, nitrides, and silicides would greatly increase the chances of finding ideal combinations of materials for the desired applications.

CONCLUSIONS AND RECOMMENDATIONS

From the results obtained at 1200°F it is concluded that several of the combinations of materials tested were sufficiently compatible under the conditions imposed on them to warrant further testing at 1350 to 1500°F, as was originally planned (see "Materials Requirements"). Therefore the following recommendations are made:

1. Resume the compatibility screening tests reported herein and test additional promising combinations of carbides, as well as combinations of borides, nitrides, and silicides, which also offer promise.

2. Run a series of tests on the screened combinations at 1350 and 1500°F, successively screening and retaining the most promising.

3. Test the material combinations which show promise at 1500°F as journal bearings, face seals, and valve seats in apparatus designed to simulate operation in an actual reactor circuit.

ACKNOWLEDGMENT

The work of D. B. Vail of the Knolls Atomic Power Laboratory (reports KAPL-589 and - 021) on the compatibility of materials in sodium and in NaK was of considerable value in the initial selection of materials to be tested. It was also used to check and to validate the calibration of the apparatus used.

The data presented herein were obtained by P. G. Smith and J. W. Kingsley of ORNL and by W. K. Stair, consultant, the University of Tennessee.

Fluoride Salt Mixtures Used: 1. NaF-ZrF₄-UF₄ (50-46-4 mole %)

6

× 4

NaF-ZrF₄-UF₄ (46-50-4 mote %),
 NaF-ZrF₄-UF₄ (53.5-40-6.5 mole %)
 NaF-KF-LiF-UF₄ (10.9-43.5-44.5-1.1 mole %)

Manufacturer	Material Identification	Typical Composition (wt %)	Fluoride Salt Mixture Used (see above)	Type of Test ^a	Depth of Attack (mils)	Comments	Corrosion Reference
Adamas Carbide Corp.	AA	97 WC−3 C∘	1	Seesaw	0	Hot zone, 1500°F; cold zone, 1328°F	Ь
	A	94 WC-6 Co	1	Seesaw	0	Hot zone, 1490 ⁰ F; cold zone, 1355 ⁰ F	Ь
	66	60 WC-12 Co-28 TaC	1	Seesaw	1	Hot zone, 1500 ⁰ F; cold zone, 1319 ⁰ F	Ь
Borolite Corp.	MoSia	Nickel-bonded	3	Seesaw	0		с
	SIC		3	Static	0		d
	TiB ₂		3	Seesaw	2		d
	ZrB ₂		3	Seesaw	2		d
Carboloy Dept., General Electric Co.	44A	94 WC-6 Co	2	Static	0		е
	55A	87 WC-13 Co	2	Static	0		е
	608	83 Cr ₃ C ₂ -2 WC-15 Ni	2	Static		Some surface roughening	е
		5 2	1	Seesaw	4	Attack on exposed surface	1
	779	91 WC-9 Co	2	Static	0	Some evidence of spalling	е
	907	74 WC-6 Co-20 ToC	2	Static	0	Some evidence of spalling	е
	X350S	98 Cr ₃ C ₂ -2 WC	1	Seesaw	0	Specimen extremely brittle	f
The Carborundum Company	BN		3	Static	2 to 5		d
	Mo ₂ B 501		3	Seesaw	16		d
Electro Metallurgical Company	Cr ₃ C ₂		3	Static	0	Cr ₃ C ₂ particles did not appear well bonded in as-received condition	d
	Si3N4		3	Static	2 to 5		d
	TIC		3	Static	0	TiC particles did not appear to be formed or bonded as	d

.

.

well as could have been

*

۱.

Manufacturer	Material Identification	Typical Composition (wt %)	Fluoride Salt Mixture Used (see above)	Type of Test ^a	Depth of Attack (mils)	Comments	Corrosion Reference
Electro Metallurgical Company	ZrC		3	Static	Penetrated	Small incipient cracks in ZrC particles throughout specimen	d
Firth Sterling, Inc.	FS 27	43 TiC-50 Ni-7 Cr ₃ 0 ₂	1	Seesaw	2 to 5		е
Haynes Stellite Company	1	46 Co-31 Cr-13 W- 1 Ni-3 Fe-2.45 C	1	Static	10		е
	3	46 Co-31 Cr-13 W- 3 Ni-3 Fe-2.45 C	4	Static	6		е
			2	Static	29		е
	6	56 Co-30 Cr-5 W- 3 Ni-3 Fe-1.25 C	١	Static	15		е
	12	56 Co-31 Cr-8 W- 2 Fe-1.35 C	1	Static	13		е
	19	52 Co-31 Cr-10 W- 3 Fe-1.8 C	4	Static	2		е
			2	Static	29		e
	21	65 Co-25 to 30 Cr-4.5 to 6.5 Mo-2 Fe-1.5 to 3.5 Ni-0.2 C	1	Static	5		е
	25	40 Co-20 Cr-15 W- 10 Ni-3 Fe-1 Mo- 0.1 C	4	Static	0		е
			1	Static	5		е
	40	13.5 Cr-4.5 Fe-4 Si- 1 Co-3.2 B-Bal Ni	1	Static	5		е
	41	12 Cr-4.5 Fe-4 Si- 1 Co-2.25 B-Bal Ni	T	Static	23		е
	Hastelloy B	63 Ni-28 Mo-6 Fe-1 Cr	4	Static	5		е
	-		1	Static	5		е
	Hastelloy C	55 Ni-17 Mo-16 Cr- 6 Fe-4 W-7 to 10 Si	4	Static	2		е
			1	Static	1		е

TABLE 1. (continued)

.

۴

.

.

.

. .

Manufacturer	Material Identification	Typical Composition (wt %)	Fluoride Salt Mixture Used (see above)	Type of Test ^a	Depth of Attack (mils)	Comments	Corrosion Reference
Haynes Stellite Company	Hastelloy D	83 Ni-4 Ca-1 Fe-1 Cr	1	Static	1.5		e
Kennametal, Inc.	138A	65 TiC-20 Co- 15 NbTiTaC₂	١	Seesaw	0.5 to 1	May have been slight attack on binder	g
	150A	80 TiC-10 Ni- 10 NbTiT₀C ₃	1	Seesaw	4		ſ
		-	3	Seesaw	0		с
			3	Seesaw	0		d
	151A	70 TiC-20 Ni- 10 NbTiTaCz	١	Seesaw	1 to 2		f
		J	1	Seesaw	6	Blisters on surface	c
			3	Seesaw	0		d
			3	Seesaw	0		d
	152B	64 TiC30 Ni 6 NbTiTaC2	ı	Seesaw	2		1
		3	1	Seesaw	4 to 7	Erratic attack	c
			3	Seesaw	0		d
			3	Seesaw	0		d
	153B	54 TiC-40 Ni- 6 NbTiTaC2	1	Seesaw	3	Uniform attack above TiC particle surface	8
	161B	? TIC-? NI-? Mo	۱	Seesaw	0	Only 208 ⁰ F temperature dif- ferential on capsule	g
	162B	64 TiC-25 Ni-5 Mo- 6 NbTiTaC2	1	Seesaw	9	Portions of surface appeared to be plated	1
		5	3	Seesaw	0		d
			3	Seesaw	0		d
	D4675	97.5 WC-2.5 Co	1	Seesaw	۱	Slight subsurface voids	с
			3	Seesaw	0	•	ď
	Metamic LT-1	77 Cr-23 Al ₂ 0 ₃	1	Seesaw		Completely penetrated	Ь
Norton Company	Norbide B ₄ C		3	Static	5	One side of specimen showed unidentified phase 14 mils deep	d

. .

v k

TABLE 1. (continued)

r •

Manufacturer	Material Identification	Typical Composition (wt %)	Fluoride Salt Mixture Used (see above)	Type of Test ^a	Depth of Attack (mils)	Comments	Corrosion Reference
ORNL Ceramics Laboratory	SiC-Si						
Sintercast Corp. of America	ı	50 TiC—50 Co-base binder	1	Seesaw	0.5 to 2	Random penetration, voids between TiC and binder	g
	4	48 TiC-52 Co-base binder	1	Seesaw	1	Possible phase change within particle	g
	5	48 TiC-52 Ni-base binder	1	Seesaw	0		g
	8	48 TiC-52 Ni-base binder	1	Seesaw	2	Some TiC without binder observed; not attacked	g
	10	47 TiC-53 Ni-base binder	۱	Seesaw	5	Some attack on binder; TiC particles separated	g
Vascoloy-Ramet Corp.	EE	80 WC-10 TiC-10 C∘	1	Seesaw	0	Hot zone, 1500°F; cold zone, 1346°F	Ь
	EH	54 WC-40 TiC-6 Co	١	Seesaw	0	Hot zone, 1500 ⁰ F; cold zone, 1445 ⁰ F	Ь
	2A3	89 WC-11 Co	۱	Seesaw	0	Hot zone, 1500 ⁰ F; cold zone, 1328 ⁰ F (55 hr only)	Ь
	2A7	95.5 WC-4.5 Co	١	Şeesaw	0	Hot zone, 1500 ⁰ F; cold zone, 1355 ⁰ F; spalling to a depth of 1 to 1.5 mils	Ь
Unidentified	TiN		3	Static	2		d
<u> </u>	Copper		4	Static	0	Negligible attack	i
	Graphite		4	Static	0	Negligible attack	i
	Graph-i-tite		1	Static	2		d
			3	Static	2		d

TABLE 1. (continued)

. .

. .

NOTE: See following page for references.

i r

^aStatic tests: specimen submerged in fluoride salt sealed in Inconel capsule for 100 hr at 1500°F. Seesaw test: tilting Inconel capsule filled with fluoride salt; temperatures of specimen end (hot zone) and other end (cold zone), as specified; tests of 100-hr duration.

^bMemorandum, D. C. Vreeland to W. D. Manly, Results of Corrosion Tests with Various Tungsten Carbide Cermets (Nov. 25, 1953).

^CData presented at conference at ORNL, May 25, 1954, by ORNL Metallurgy Division representatives.

^dPersonal communication from W. H. Cook.

ĸ.

e

^eMemorandum, D. C. Vreeland to W. D. Manly, Summary of Corrosion Resistance of Some Hard Facing Alloys, Cermets, and Ceramics in Various Media (Dec. 22, 1953).

^fMemorandum, E. E. Hoffman to W. D. Manly, Cermets Seesaw Tested in Fluoride #30 in Inconel Containers.

^gMemorandum, W. H. Cook to W. D. Manly, Dynamic Testing of Some Nickel-Base Bonded and Cobalt-Base Bonded Litanium Carbide Specimens in Fluoride #30 (April 20, 1954).

.

.

.

^bMemorandum, D. C. Vreeland to W. D. Manly, Results of Corrosion Tests with Metamic LT-1 Cermet (Nov. 24, 1953).

¹D. C. Vreeland, E. E. Hoffman, and L. D. Dyer, Met. Quar. Prog. Rep. Oct. 31, 1952, ORNL-1437, p 25.

Test	Pin	Plate	P i Hardn	n ess*	Pin Wear	Plate ear Hardness		Plate Fin	Surface hish**	Metal Pickup, Spalling,		Group
No.	Identification	Identification	Before Test	After Test	Resistance	Before Test	After Test	Before Test	After Test	and Galling Resistance	Remarks	Classification
1	Inconel	Graphitar 14	- <u> </u>								Calibration run for load reguirement using TEB	<u> </u>
2	Copper	Graphitar 14									One-hour operation, 10-16 Ioad, room temperature TEB	
3	Babbit	Type 416 stainless steel			Good			18-20	18	Good	Correlation test in oil, 2 hr at 850 rpm, room temperature	
4	Ontario die steel	Type 416 stainless steel			Poor			1820	150-160	Poor	Correlation test in oil, 2 hr at 850 rpm, room temperature	
5	Stellite 6	Type 416 stainless steel			Poor			18–24	175–225	Poor	Correlation test in oil, 2 hr at 850 rpm, room temperature	
6	Stellite Star J	Type 416 stainless steel			Poor			20-28	125-150	Poor	Correlation test in oil, 2 hr at 850 rpm, room temperature	
7	High-Speed tool steel	Type 416 stainless steel			Poor			24-32	160	Poor	Correlation test in oil, 2 hr at 850 rpm, room temperature	
8	Supervilite	Type 416 stainless steel			Good			1624	3035	Fair	Correlation test in oil, 2 hr at 850 rpm, room temperature	
9	Inconel	Graphitar 14			Good						Friction test, 18 ⁰ F temperature rise in oil	

TABLE 2. SUMMARY OF DATA OF MATERIALS COMPATIBILITY TEST

.

.

.

,

*Hardness determined on Rockwell Hardness Tester. This machine was not available for use from the beginning of investigation. **Surface finish determined by use of The Brush Development Co. Profilometer in μin. rms.

.

.

TABLE 2. (continued)

Test No.	P in Identification	Plate Identification	Pi Hardn Before Test	n ess* After Test	Pin Wear Resistance	PI Hard Before Test	ate ness After Test	Plate Surface Finish** Before After Test Tes		Metal Pickup, Spalling, and Galling	Remarks	Group Classification
10	Inconel	Granbitur 14								Resistance		
11	Inconer	Graphitar 14			Good						Operation for 20 hr, 10-1b load, oi1, room temperature	
14	inconei	Graphitar 14			Good					Good	First test using fuel No. 30, metal buildup on pin	с
12	Carboloy 608	Kennametal 135A					71 R _e	4			Excessive metal buildup preventing contact	
13	Kennametal 138A	Kennametal 138A					71 R _c				Excessive metal buildup preventing contact	
14	Inconel	Graphitar 14			Good					Good	Temperature calibra- tion; pin 38 ⁰ F cooler than liquid	с
15	Carboloy 608	Kennametal 151A						10-12			Metal buildup investi- gation; Ni plate pot,	
16	Carboloy 608	Kennametal 151A					70 R _e	10			Metal buildup investi- gation; type 316 stainless steel pot, Inconel sump	
17	Carboloy 608	Kennametal 151A				:	72 R _c	7–10			Metal buildup investi- gation; Ni pot, Ni sump	
18	Carboloy 608	Kennametal 151A				;	71 R _c	7-10			Metal buildup investi- gation; Inconel pot, Inconel sump	

*Hardness determined on Rockwell Hardness Tester. This machine was not available for use from the beginning of investigation. **Surface finish determined by use of The Brush Development Co. Profilometer in μ in, rms.

v

*

٠

¥

×

*

Test	Pin	Plate Identification	Plate Identification	Pi Hardr	in ness*	Pin Wear	PI Hard	ate ness	Plate Fin	Surface hish**	Metal Pickup, Spalling,		Group
No.	Identification	Identification	Before Test	After Test	Resistance	Before Test	After Test	Befo re Test	After Test	and Galling Resistance	Remarks	Classification	
19	Carboloy 608	Kennametal 151A		65 R _c	Fair		70 R _c	67	67	Good	Slight taper wear on pin; plate alignment good	С	
20	Kennametal 151 A	Adamas A		72 R _c	Good		79 R _c	57	2-3	Good	Corner wear on misaligned pin; plate wear good	В	
21	Adamas A	Adamas A	77 R _c	78 R _c	Fair	78 R _c	78 R _c	7–10	16-18	Fair	Like materials ex- pected to wear; plate may be warped	С	
22	Carboloy 608	Adamas A	70 R _c		Fair	79 R _c	72 R _c	57	7-8	Good	Good pin pattern; plate may be warped	с	
23	Adamas A	Kennametal 151A	79 R _c		Good	73 R _e	66 R _c	57	5–7	Good	Good wear patterns; slight material buildup	В	
24	Adamas A	Kennametal 138A	79 R _e		Good	73 R _c		4–5	4-5	Good	Good wear pattern; very slight buildup	В	
25	Adamas A	Norbide B ₄ C	73 R _c		Excellent			8–10	15-20	Fair	Plate scored and excessive spalling	с	
26	Kennametal 151A	Kennametal 138A						5–7			Specimens reground before photos made; data destroyed	?	
27	ARE moder- ator BeO	Adamas A				72 R _c		5-7	Surface scale		Pin reacted with fuel; no contact existed	D	
28	Adamas A	High-Density Graphite	65		Good			10-12		Fair	Good wear pattern; some material buildup	с	

TABLE 2. (continued)

.

.

.

.

*Hardness determined on Rockwell Hardness Tester. This machine was not available for use from the beginning of investigation. **Surface finish determined by use of The Brush Development Co. Profilometer in µin. rms.

3

4

TABLE 2. (continued)

Test No.	Pin	Plate Identification	Pi Ha r dr	in hess*	Pin Wear	P1 Hard	ate Iness	Plate Fini	Surface ish**	Metal Pickup, Spalling,		Group
No.	Identification	Identification	Before Test	After Test	Resistance	Before Test	After Test	Before Test	After Test	and Galling Resistance	Remarks	Classification
29	ARE moder- ator BeO	ARE moder• ator BeO						15-18			Pin and plate reacted; fuel plate cracked	D
30	Adamas A	Kearfoot Al ₂ 0 ₃	70					15–18			Plate reacted with fuel; plate cracked	D
31	Adamas A	Graphitar 14	71	57	Good			3–5		Fair	Good wear pattern; some material buildup	
32	Carboloy 608	Carboloy 608	58	64	Fair	61 R	72 R _c	1-2	2-3	Good		
33	Carboloy 608	Norbide B ₄ C	58 R _c		Fair		-	2-3		Poor	Material buildup; plate misaligned; smearing	D
34	Carboloy 608	Kennametal 138A	59 R _c	70 R _c	Fair	59 R _c		1–2		Good	Pin and plate wear pattern even and concentric	с
35	Adamas A	Norbide B ₄ C		68	Good			2–3		Good	Dry run; inert atmos- phere; 900 ⁰ F noted even though no heat had been applied	с
36	Kennametal 151A	Norbide B ₄ C	56	67	Good			2–3		Fair	Some scoring of plate; pin wear good	В
37	Kennametal 151A	Carboloy 608	57	68	Good	61		1-2		Good	Only slight scoring of plate; pin wear very good	В
38	Kennametal 151A	Kennametal 151A	58	66	Good	61		1–2		Good	Slight scoring; may be warping of plate; pin wear even	B

ε •

*Hardness determined on Rockwell Hardness Tester. This machine was not available for use from the beginning of investigation. **Surface finish determined by use of The Brush Development Co. Profilometer in μin. rms.

х .

5 3

Test No. Idei	Pin	Plate - Identification	Pi Hardr	in ness*	Pin Wear	Pl Hard	ate Iness	Plate Fini	Surface ish**	Metal Pickup, Spalling,		Group	
No.	Identification	Identification	Before Test	After Test	Resistance	Before Test	After Test	Before Test	Before After Test Test	and Galling Resistance	and Galling Resistance	Remarks	Classification
39	Kennametal 151A	Graphitar 14	57	53	Fair			5-6		Fair	Spalling of plate; material buildup	с	
40	Kennametal 151A	High-Density Graphite	56	66	Good			50–60		Good	Slight scoring of plate; even wear pattern	В	
41	Carboloy 608	Graphitar 14	50	70	Fair			5-7		Good	Some smearing on pin; plate wear good	с	
42	Carboloy 608	High-Density Graphite	58	68	Fair			50-60	40-50	Good	Slight wear on plate; pin pattern even	С	
43	Norbide B ₄ C	Adamas A			Fair	72	79	1–2	1-2	Good	Pin misaligned; high stress on plate but no wear	с	
44	Norbide B _≰ C	Norbide B ₄ C			Fair			2–3	40-50	Fair	Pin spalled and worn; little plate wear; material buildup	D	
45	Norbide B ₄ C	Carboloy 608			Fair	60	70	4–5	4-5	Good	Pin spalled; mis- aligned plate; wear uneven	с	
46	Norbide B ₄ C	Kennametal 151A			Good	59	71	1–2	1–2	Good	Plate misaligned or warped; high stress; no wear	С	
47	Norbide B ₄ C	Kennametal 138A			Good	58	72	1–2	2–3	Good	Pin and plate wear even; slight spalling of pin	с	
48	Kennametal 138A	Adamas A	59	58	Fair	72	71	1–2	45	Fair	Some smearing and plate may have warped	с	

TABLE 2. (continued)

a a

.

.

*Hardness determined on Rockwell Hardness Tester. This machine was not available for use from the beginning of investigation.

**Surface finish determined by use of The Brush Development Co. Profilometer in μ in, rms.

3

+

Test No.	Pin Identification	Pin Identification	Plate Identification	Plate Identification	P Hardr	n ness*	Pin Wear	PI Harc	ate Iness	Plate Fir	Surface hish**	Metal Pickup, Spalling,		Group
No.	Identification	Identification	Before Test	After Test	Resi stance	Before Test	After Test	Before Test	After Test	and Galling Resistance	Kemarks	Classification		
49	Kennametal 138A	Norbide B ₄ C	60	71	Good			2-3	100-150	Poor	Plate scored and smeared			
50	Kennametal 151A	Inconel	53	65	Poor	84 R _B	84 R _B	4–5	200–225	Poor	Pin worn excessively; plate roughened but showed little wear	D		
51	Adamas A	Inconel	57	77		84 R _B		4-5						
52	Kennametal 151A	Inconel	58	66		84 R _B		4-5						
53	Adamas A	Inconel	70					4-5						
54	Kennametal 138A	Kennametal 138A	61			59		2-3						
55 (?)														

TABLE 2. (continued)

*Hardness determined on Rockwell Hardness Tester. This machine was not available for use from the beginning of investigation.

к к

1 I

**Surface finish determined by use of The Brush Development Co. Profilometer in μ in. rms.

. .

Test		xture (wt %	5)*							
No.	Specimen Materials	Al	В	Co	Cr	Fe	Ni	Si	Ti	w
				Sump Pot	No. 1					
39	TiC-Ni and graphite	<0.1	<0.01	<0.05	<0.05	<0.05	<0.05	<0.01	<0.05	<0.2
32	Cr ₃ C ₂	<0.01 T	<0.05	<0.05	0.2	<0.05	0.1	<0.05	<0.02	< 0.1
45	B ₄ C and Cr ₃ C ₂	<0.01 T	<0.05	<0.05	0.05	<0.05	<0.05	0.2	<0.02	<0.1
46	B4C and TiC-Ni	<0.05 T	ND	< 0.05	0.1	<0.5 T	<0.05	<0.05	<0.05	<0.1
48	TiC-Co and WC	0.1	т	<0.05	0.2	<0.05	0.05	0.2	<0.05	<0.1
				Sump Pot	No. 2					
40	TiC-Ni and High- Density Graphite	<0.1	<0.01	<0.1	<0.1 T	0.1	<0.5 T	0.02	<0.01	<0.2
41	Cr ₃ C ₂ and graphite	<0.1	<0.001	<0.1	<0.1	<0.05 T	<0.05	<0.01	<0.01	<0.2
42	Cr ₃ Cr and High- Density Graphite	<0.1 T	<0.05	<0.05	0.1	0.5	<0.05	0.05	<0.02	<0.1
44	B₄C	0.01, <0.01	<0.05 P	<0.05	0.2, <0.05	0.2, <0.05	<0.05 T	<0.05	<0.02	<0.1
47	B ₄ C and TiC-Co	0.05	ND	<0.05	0.2	<0.05	<0.05	<0.05	<0.05	<0.1
49	TiC-Co and B ₄ C	0.05	ND	<0.05	0.2	<0.05	<0.05	<0.05	<0.05	<0.1
50	TiC-Ni and Inconel	0.1	ND	<0.05	0.2	0.05	<0.05 0.2	<0.05	<0.05	<0.1
51	WC and Inconel	<0.05	ND	<0.05	0.2	<0.05	<0.05		<0.02	<0.1

TABLE 3. RESULTS OF SPECTROGRAPHIC ANALYSIS OF THE FLUORIDE AFTER VARIOUS TESTS

*T indicates a trace detected; P indicates element present; ND indicates not detected.

.

INDEX FOR TESTS OF VARIOUS PIN AND PLATE COMBINATIONS

APPENDIX A

.

~

•

.

.

...

--

INDEX FOR TESTS OF VARIOUS PIN AND PLATE COMBINATIONS

.

.

Key:	For test number for pin material, read across
	For test number for plate material, read down

. .

		Plate Material and Vendor Identification									
Pin Material	Vendor Identification	WC Adamas Grade A	Cr ₃ C ₂ Carboloy 608	TiC + Co Kennametal 138A	TiC + Ni Kennametal 151A	B ₄ C Norton Norbide	Graphitar 14	High- Density Graphite	Inconel	BeO ARE Moderator*	Al ₂ O ₃ Kearfoot Alumina*
WC	Adamas Grade A	Test 21		Test 24	Test 23	Tests 25, 35	Test 31	Test 28	Tests 51, 53	-	30
Cr_3C_2	Carboloy 608	Test 22	Test 32	Test 34	Tests 16, 17, 18, 19	Test 33	Test 41	Test 42			
TiC + C₀	Kennametal 138A	Test 48				Test 49			55		
TiC + Ni	Kennametal 151A	Test 20	Test 37	Test 26**	Test 38	Test 36	Test 39	Test 40	Tests 50, 52		
B₄C	Norton Norbide	Test 43	Test 45	Test 47	Test 46	Test 44					
BeO*	ARE Moderator	27								29	
	Inconel						Tests 11,** 14**				

*Material eliminated because of lack of corrosion resistance.

**Photographs not included.

•

.

-

APPENDIX B

MATERIAL COMPATIBILITY TESTS - CORRELATION SERIES

Tested in Texaco Regal "A" oil at room temperature, under 10-1b load, at 850 rpm for 2 hr.

-

, -

Test No. 3. Pin: Copper, Hard Drawn Plate: Type 416 Stainless Steel, Ground Finish

Test No. 4. Pin: Ontario Die Steel, As-Received Plate: Type 416 Stainless Steel, Ground Finish

Test No. 5. Pin: Stellite 6 Plate: Type 416 Stainless Steel, Ground Surface

Test No. 6. Pin: Stellite Star J Plate: Type 416 Stainless Steel, Ground Surface

Test No. 7. Pin: High-Speed Tool Steel (Type 6-6-2) Plate: Type 416 Stainless Steel, Ground Surface

Test No. 8. Pin: Supervilite Plate: Type 416 Stainless Steel, Ground Surface

and all the set of the

,
APPENDIX C

....

PHOTOGRAPHIC RECORD OF WEAR PATTERNS

• -

Test No. 16. Pin: Carboloy 608, Cr₃C₂ Plate: Kennametal 151A, TiC + Ni Pot: Type 316 Stainless Steel Sump: Inconel Note Material Buildup on Pin

Test No. 17. Pin: Carboloy 608, Cr₃C₂ Plate: Kennametal 151A, TiC + Ni Pot and Sump: Nickel Note Material Buildup on Pin

Test No. 18. Pin: Carboloy 608, Cr₃C₂ Plate: Kennametal 151A, TiC + Ni Pot and Sump: Inconel Note Small Amount of Material Buildup on Pin

Test No. 19. Pin: Carboloy 608, Cr₃C₂ Plate: Kennametal 151A, TiC + Ni

Test No. 20. Pin: Kennametal 151A, TiC + Ni Plate: Adamas Grade A, WC

Test No. 21. Pin: Adamas Grade A, WC Plate: Adamas Grade A, WC

Test No. 22. Pin: Carboloy 608, Cr ₃C ₂ Plate: Adamas Grade A, WC

Test No. 23. Pin: Adamas Grade A, WC Plate: Kennametal 151A, TiC + Ni

Test No. 24. Pin: Adamas Grade A, WC Plate: Kennametal 138A, TiC + Co

Test No. 25. Pin: Adamas Grade A, WC Plate: Norton Norbide, B₄C

Test No. 27. Pin: ARE Moderator BeO Plate: Adamas Grade A, WC

Test No. 28. Pin: Adamas Grade A, WC Plate: High-Density Graphite

Test No. 29. Pin: ARE Moderator BeO Plate: ARE Moderator BeO

Test No. 30. Pin: Adamas Grade A, WC Plate: Kearfoot Alumina, Al₂O₃

Test No. 31. Pin: Adamas Grade A, WC Plate: Graphitar 14

Test No. 32. Pin: Carboloy 608, Cr₃C₂ Plate: Carboloy 608, Cr₃C₂

Test No. 33. Pin: Carboloy 608, Cr₃C₂ Plate: Norton Norbide, B₄C

Test No. 34. Pin: Carboloy 608, Cr₃C₂ Plate: Kennametal 138A, TiC + Co

Test No. 35. Pin: Adamas Grade A, WC Plate: Norton Norbide, B₄C

Test No. 36. Pin: Kennametal 151A, TiC + Ni Plate: Norton Norbide, B₄C

Test No. 37. Pin: Kennametal 151A, TiC + Ni Plate: Carboloy 608, Cr₃C₂

Test No. 38. Pin: Kennametal 151A, TiC + Ni Plate: Kennametal 151A, TiC + Ni

Test No. 39. Pin: Kennametal 151A, TiC + Ni Plate: Graphitar 14

Test No. 40. Pin: Kennametal 151A, TiC + Ni Plate: High-Density Graphite

Test No. 41. Pin: Carboloy 608, Cr₃C₂ Plate: Graphitar 14

Test No. 42. Pin: Carboloy 608, Cr₃C₂ Plate: High-Density Graphite

Test No. 44. Pin: Norton Norbide, B₄C Plate: Norton Norbide, B₄C

Test No. 45. Pin: Norton Norbide, B₄C Plate: Carboloy 608, Cr₃C₂

Test No. 46. Pin: Norton Norbide, B₄C Plate: Kennametal 151A, TiC + Ni

Test No. 48. Pin: Kennametal 138A, TiC + Co Plate: Adamas Grade A, WC

Test No. 49. Pin: Kennametal 138A, TiC + Co Plate: Norton Norbide, B₄C

Test No. 50. Pin: Kennametal 151A, TiC + Ni Plate: Inconel

Test No. 51. Pin: Adamas Grade A, WC Plate: Inconel

Test No. 52. Pin: Kennametal 151A, TiC + Ni Plate: Inconel

Test No. 53. Pin: Adamas Grade A, WC Plate: Inconel

Test No. 55. Pin: Kennametal 138A, TiC + Co Plate: Inconel